
Program Trace Optimization

Alberto Moraglio1 and James McDermott2

1 University of Exeter, UK A.Moraglio@exeter.ac.uk
2 University College Dublin, Ireland James.McDermott2@ucd.ie

Abstract. We introduce Program Trace Optimization (PTO), a sys-
tem for ‘universal heuristic optimization made easy’. This is achieved by
strictly separating the problem from the search algorithm. New problem
definitions and new generic search algorithms can be added to PTO eas-
ily and independently, and any algorithm can be used on any problem.
PTO automatically extracts knowledge from the problem specification
and designs search operators for the problem. The operators designed by
PTO for standard representations coincide with existing ones, but PTO
automatically designs operators for arbitrary representations.

Keywords: Universal optimisation, operator design, genotype-phenotype
mappings

1 Introduction

In the 1960s and onwards, researchers in genetic algorithms proposed a vision of
them as ‘universal solvers’, capable of addressing any search and optimization
problem. Later, researchers found that this promise could not be delivered be-
cause each new problem required a significant investment of time and expertise
in tailoring the algorithm to the problem for acceptable performance. This is
common to all metaheuristics: solvers succeed only when using an encoding and
search operators which are well-chosen for the problem at hand. This is hard
work, to be done per problem, and a black art, which requires (often unwritten)
expertise in both the problem and the solver.

The PTO vision is to make universal optimisation easy. This is achieved by
(i) neatly separating problem specification and solver definition, and (ii) auto-
matically tailoring the solver to the problem by analysing and using the structure
of the problem specification. In PTO, the core task for the user is to write a gen-
erator, which implicitly defines the set of possible solutions, rather than design a
representation and search operators as in most EAs. PTO will then induce these
automatically. For some problems, a good representation and search operators
are easy to create and PTO’s will be equivalent. In others, a generator is easier
to create: it is a more concrete task, perhaps more aligned with the thinking
of domain experts, as opposed to metaheuristics experts. In yet other cases, a
generator may be an easy way to avoid constraint violations or express search
bias difficult to express through operators (e.g. the Heuristic TSP generator of
Section 4). PTO’s automatic design of search operators deals seamlessly with ar-
bitrarily complex representations. The PTO user does not have to think about

2 Alberto Moraglio and James McDermott

how to optimise, while the researcher working on PTO solvers does not have to
think about specific problems.

2 Overview of PTO

PTO has two key ingredients: (i) a universal solution representation – the pro-
gram trace – that decouples problem and solver; (ii) a naming scheme on the
trace reflecting the problem structure that automatically adapts generic search
operators to the problem at hand. In the following, we briefly describe these.

2.1 Universal solution representation

Any search method requires an implicit or explicit representation for generation
and manipulation of solutions. PTO uses a universal solution representation
that applies to any problem. Metaheuristics defined on such a representation
can be applied unchanged to any problem, thus becoming universal optimisers.
The representation used by PTO is as follows. The user supplies a solution
generator, which implicitly defines the set of possible solutions. PTO runs it and
traces its execution, resulting in a sequential data structure called a program
trace. The trace can be thought of as the sequence of outcomes of (random)
decisions made by the generator in producing a particular solution. The trace
can be manipulated: it can be ‘played back’ in the generator to redo the same
sequence of decisions and produce the same solution; it can be edited and played
back to produce a variant solution; two parent traces can be combined and the
result played back to produce a child solution. That is, the trace is a genotype,
the solution is the corresponding phenotype, and the playback mechanism in
the generator is a developmental mapping; editing and recombination of traces
are search operators. The trace is a universal representation that applies to any
problem because it is implicit in the problem definition (in the generator) and
can be extracted automatically by tracing. No other representation can be more
general or more powerful, since the generator can use Turing-complete code.

2.2 Naming scheme

The trace is a linear structure for any problem; the corresponding solution can be
any arbitrarily complex structure as the generator can use any construct of the
programming language, e.g. data structures, function calls and recursion, and
can return any data structure. The linear genotype allows for easy adaptation of
existing metaheuristics such as genetic algorithms or particle swarm optimiza-
tion to work in PTO, while indirectly searching spaces of arbitrarily complex
phenotypes. PTO annotates the trace so that it captures the problem structure
implicitly expressed by the user in the generator. The key observation is that
the control structures used in the code of the generator reflect the structure of
the solutions generated, e.g., a solution with a matrix structure may be reflected
in the use of nested loops in the generator; a solution with a tree structure may

Program Trace Optimization 3

be reflected in the use of multiple recursion in the generator. To make this in-
formation about solution structure available to the search operators acting on
the linear genotype, the trace is annotated with the ‘execution context’ in which
each random decision (a trace entry) took place. This execution context contains
information about the state of the process (a picture in time of the running pro-
gram), e.g., including the line of code from which the random number generator
was invoked, the values held in the loop indices, and the current stack of (possi-
bly recursive) calls. Search operators for annotated traces preserve the execution
context as much as possible, to prevent the equivalent of the disruptive “ripple
effect” [10] of Grammatical Evolution (GE). Generic search operators on the
trace representation induce domain-specific search operators on the phenotype
which are equivalent to known-good operators for standard representations. This
mechanism of automatic implicit adaptation of the search operators to the struc-
ture of the problem at hand naturally extends to arbitrarily complex solution
structures, as any solution structure can be described by a generator using a few
fundamental control structures (i.e., sequence, condition, iteration, subroutine),
which are handled by the annotation scheme.

2.3 PTO software architecture

PTO has a modular design in three parts. The tracer hooks into the user-supplied
generator, and records and plays back program traces. The solver is pluggable:
any metaheuristic solver can be plugged-in as the solver. The problem is also
pluggable: the user supplies an objective function and a generator. Advances in
any component do not require changes in the others.
User interface: PTO automatically makes all design decisions and parameter
configurations. This makes the user interface unobtrusive and the learning curve
flat, and allows for reuse of existing code, e.g. EA initialisation methods or
constructive heuristics as generators (as in PODI [6]).
Tracer: The tracer interfaces to the problem definition by tracing the generator
when it is run, and playing back modified traces in the generator. This is achieved
by overriding the calls to any function of the Python standard random library
used by the generator, so that tracing and playing back are invisible to the user.
The tracer annotates the trace entry by dynamic analysis of the running code of
the generator as described in Section 3.1. The annotated trace is the interface
between the tracer and the solvers. Search operators work on annotated traces
but are only allowed to use the labels to align entries with the same label in
different traces, and cannot use any other information stored in the labels. This
decouples tracer and solvers, allowing the naming scheme (the information stored
in the labels) to be modified without the need to alter solvers.
Search algorithm: The requirement for a meta-heuristic to work with PTO is
that it can work on the trace representation. This is a dictionary, i.e. a variable-
length linear structure with entries identified by names rather than by indexes,
and with heterogenous entries (real, binary, integer, and permutations – the out-
put domains of random number generators in the Python library). Generalising
meta-heuristics to work on the trace representation can be done in a principled

4 Alberto Moraglio and James McDermott

way using the geometric framework [7] so as to retain the original dynamics of
the meta-heuristic on the new representation. The meta-heuristics currently in
PTO include Genetic Algorithm, Stochastic Hill-Climbers, Geometric Particle
Swarm Optimisation [8] and Random Search.

2.4 Related work

PTO builds on and combines previous ideas. The idea of using a sequence of deci-
sions as a genotype was originally introduced in the Program Optimisation with
Dependency Injection (PODI) system [6], with emphasis on using it with com-
plex and smart generators, to evolve complex constrained structures. PODI is
similar to the decision chain encoding [5]. Constructive heuristics and simulated
annealing have also been hybridized for vehicle routing problems [1]. PODI can
be thought of as a generalisation of GE [9] that, instead of using a grammar to
map linear genotypes to complex phenotypes, uses an unrestricted program i.e.,
the generator, which is much more expressive. GE and by extension PODI can
suffer from low locality [11] and the ripple effect [10] as a result of the mapping.

PTO goes beyond PODI and the other approaches by seeing the trace as a
universal representation, allowing generic meta-heuristics to be used on any prob-
lem. The PTO philosophy of separating problem specification and solver mirrors
that of Probabilistic Programming (PP) [4]. Connections between PTO and PP
run deep. The PTO trace representation and naming scheme are the translation
to an optimisation context of a successful PP approach [13] to inference over
complex probabilistic models. Links between PP and EC have previously been
made, including optimisation on a type of program trace [2]. The idea of auto-
matic implicit design – that generic search operators on the trace representation
induce domain-specific search operators at the “phenotype” level – is novel to
PTO. This will be described in some detail in Section 3.

PTO differs from other works. There are approaches for the automatic de-
sign of search operators for specific problems based on hyper-heuristics e.g., [3].
PTO automatic design is different from these approaches, as it does not rely
on searching the space of search operators but rather on extracting and using
implicit problem-knowledge from the problem specification. Also PTO design
differs from that of mathematical theories for the design of search operators
such as the geometric framework [7], as in PTO the design is automatic and
implicit rather than manual and explicit. PTO aims at shielding users from
choosing parameters. This is not done by automatic off-line parameter tuning
and algorithm configuration [12], but rather by choosing default robust parame-
ter values in a principled manner that work well in many situations. PTO aims
at being very easily extendible and encompasses a large number of problems and
search algorithms, and its design is highly modular. But unlike existing software
libraries for metaheuristics, PTO is a self-configuring system which seamlessly
adapts to any problem and any arbitrarily complex representation.

The No Free Lunch theorem [14] does not prevent PTO from good univer-
sal performance, because as will be described, PTO automatically tailors the
operators to the problem. Thus, PTO is effectively not a black-box method.

Program Trace Optimization 5

3 Implicit operator design

Here, we define the naming scheme and generic search operators on traces. For
illustrative purposes, we then give two examples using simplified naming schemes
to show how the naming scheme implicitly adapts generic search operators to
problem-specific search operators by using the control structure in the code of
the generator. Finally, we discuss how problem knowledge is embedded in PTO.

3.1 Naming scheme

We follow the approach of Wingate et al. [13] and name random choices according
to their structural position in the execution trace, which we define in a way
roughly analogous to a stack address: a random choice’s name is defined as the
list of the functions, their line numbers, and their loop indices, that precede it
in the call stack. A trace annotated in this way is called a structured trace. The
formal specification is inductive, as shown in Algorithm 1 (some details omitted).

Algorithm 1 Annotating a structured trace.

Begin executing the generator with empty function, line, and loop stacks.
When entering a function,

- push a unique function id on the function stack
- push a 0 on the line stack.

When moving to a new line, increment the last value on the line stack.
When starting a loop, push a 0 on the loop stack.
When iterating through a loop, increment the last value on the loop stack.
When exiting a loop, pop the loop stack.
When exiting a function, pop the function stack and the line stack.
When a random choice is made, name it with the entire contents of all stacks.

We also define a linear trace. It can be seen as a special case of the structured
trace, in which each entry is named after its sequential position in the trace, thus
more similar to PODI [6]. The search operators defined next work on both linear
and structured traces.

3.2 Search operators on named traces

Initialisation runs the generator and traces its execution. Point mutation
picks a random entry of the trace and replaces its value with a value drawn
from the same random call. Uniform crossover aligns parent traces on their
names (i.e. dictionary keys). For names that appear in both parents, the offspring
inherits the corresponding entries from either parent at random, i.e. using a
random mask to select. For names that appear in only one parent, the offspring
inherits all of them. Repair is applied after each alteration of the trace, i.e.,
after the application of any variation operator. The repair takes place when

6 Alberto Moraglio and James McDermott

running the modified trace in the generator in playback mode to generate the
corresponding solution. If there is a mis-match, i.e. the current value comes from
a random call other than the one identified by the name, then a new random
value is drawn from the correct random call. If the trace is used up before the
generator finishes, the trace is extended with new random entries as needed.
Excess entries in the trace, not used by the generator, are deleted.

3.3 Example: loops & matrices

The user writes a generator and objective function using standard Python:

1: def generator():

2: s = random.randint(1,5)

3: return [[random.randint(1,15) for i in range(s)]

4: for j in range(s)]

5: def objective(matrix): return determinant(matrix)

In this simple example, the generator outputs a random square matrix, such
as those shown below (bottom of page). The objective function (to be maximised)
is the determinant, calculated by recursively decomposing into sub-matrices.
Tracing. When the generator runs to generate a solution, a sequence of ran-
dom events take place. The sequence of outcomes of the random events is
the trace associated with the solution. In the example, the generator makes
1 call to random.randint(1,5) and then s2 calls to random.randint(1,15). The
(unannotated) trace is a sequence of the outcomes of these random calls, e.g.,
T=(3,9,13,5,1,11,7,3,7,4). In this example, the trace (genotype) is a list of in-
tegers, and the solution (phenotype) is a square matrix of integers, e.g., trace T

corresponds to the matrix at bottom of page on left.
Playback. Given a trace, the corresponding solution is found by running the
generator in ‘playback mode’ using the trace to override the source of randomness
when random calls are made. This is the genotype-phenotype mapping.
Mutation & linear trace. Point mutation changes a single entry of the trace.
E.g., in the trace T if 13 changes to 4, then T ⇒ (3,9, 4 ,5,1,11,7,3,7,4), cor-
responding to the change in solution illustrated below on the left. The change
in the trace T ⇒ 2 ,9,13,5,1,11,7,3,7,4) corresponds to the change illustrated
in the centre. When the trace is played back in the generator, excess entries are
deleted to obtain (2,9,13,5,1). The mutation has changed the size of the matrix
from 3 to 2, and the original trace is scanned sequentially (i.e., played back) to
fill in the smaller matrix (and the surplus elements are discarded).

9 13 5
1 11 7
3 7 4

⇒

9 4 5
1 11 7
3 7 4

 ;

 9 13 5

1 11 7
3 7 4

⇒
(

9 13
5 1

)
;

 9 13 5

1 11 7
3 7 4

⇒
(

9 13
1 11

)

This is however not satisfactory, as the mutation operator is treating these
square matrices as sequential objects. A more satisfactory mutation operator

Program Trace Optimization 7

would act as illustrated above on the right, extracting a square submatrix of size
two from the original one.
Mutation & structured trace. The structured trace aims to fix this problem.
For illustrative purposes, in this example we use the simplified naming scheme
with line number of the call and loop indices i and j, i.e., of the form [line

number, i, j], instead of the general one in Section 3.1. The original trace T,
i.e., (3,9,13,5,1,11,7,3,7,4), is then annotated as follows:

([2,-,-]:3, [3,1,1]:9, [3,1,2]:13, [3,1,3]:5, [3,2,1]:1, [3,2,2]:11,

[3,2,3]:7, [3,3,1]:3, [3,3,2]:7, [3,3,3]:4).
As before, the first element of the trace is mutated from 3 to 2. When played

back in the generator, elements of the structured trace are not accessed sequen-
tially but by the context in their names, e.g., when line 3 is executing with i=1,
and j=2, the decision returned from random.randint(1,15) is 13. Excess elements
not used in play-back are deleted. Since now size=2, when playing back the mu-
tated trace in the generator the values of i and j that will be encountered are 1
and 2 (never 3), producing the modified trace:

([2,-,-]:2, [3,1,1]:9, [3,1,2]:13, [3,2,1]:1, [3,2,2]:11).
Induced phenotypic operators. The structured naming scheme and generic
trace operators combine to give induced phenotypic operators tailored to ma-
trices. In mutation, when size changes, the top left square matrix is retained.
Crossover works by aligning parent matrices at the top left corner before recom-
bination, as illustrated in Table 1.

Table 1: Uniform crossover
on structured traces for
matrices: (right) recombine
aligned traces p1 and p2
using random mask m to
obtain the child trace uc,
which when repaired becomes
c; (left) phenotypic effect of
crossover.

p1 =

9 13 5
1 11 7
3 7 4

p2 =

(
1 2
3 4

)
c =

(
9 2
1 4

)

name p1 p2 m uc c

[2,−,−] 3 2 2 2 2
[3, 1, 1] 9 1 1 9 9
[3, 1, 2] 13 2 2 2 2
[3, 1, 3] 5 5
[3, 2, 1] 1 3 1 1 1
[3, 2, 2] 11 4 2 4 4
[3, 2, 3] 7 7
[3, 3, 1] 3 3
[3, 3, 2] 7 7
[3, 3, 3] 4 4

3.4 Example: recursion & expressions

The example in this section illustrates that PTO with linear trace suffers from a
disruptive “ripple effect” similar to GE’s due to offspring genotype entries being
used out of context. This is resolved by using the structured trace which results
in implicit design of meaningful search operators for tree structures.

Below is a recursive generator in standard Python for random Boolean ex-
pressions on three variables contained in strings.

8 Alberto Moraglio and James McDermott

1: def gen():

2: expr_type = random.choice([’var’,’uop’,’biop’])

3: if expr_type == ’var’:

4: return random.choice([’x1’,’x2’,’x3’])

5: if expr_type == ’uop’:

6: return ’not ’ + gen()

7: if expr_type == ’biop’:

8: return ’(’ + gen() + random.choice([’ and ’,’ or ’]) + gen() + ’)’

Tracing. Let us consider an example expression E=(x2 or x1). The unannotated
trace for this expression is T=[biop, var, x2, or, var, x1].
Mutation & linear trace. The entries of the trace have types, so when we
apply point mutation to an entry it can be replaced only with values of the
same type e.g., the first entry of T with biop can be changed only to var or uop

i.e., possible outputs of random.choice([’var’,’uop’,’biop’]). Point mutation
on the linear trace can have a global effect. For example, changing var in the
second entry of T to uop alters the context of all subsequent elements i.e., results
in type-mismatch for all of subsequent elements when the mutated trace is played
back in the generator to obtain the corresponding solution. The trace is then
repaired by resolving type mismatch errors in the trace by replacing erroneous
values by freshly generated values of the correct type, e.g. changing E=(x2 or

x1) ⇒ (not x3 and x3) with trace [biop, uop, var, x3, and, var, x3].

[gen, 2] : biop

[gen, 8, gen-A, 2] : var

[gen, 8, gen-A, 4] : x2

[gen, 8] : or

[gen, 8, gen-B, 2] : var

[gen, 8, gen-B, 4] : x1

(a)

������

����������� ������������ ��������� ������������

���������� ��������� ���������� ���������

(b)

Fig. 1: (a) Annotated structured trace for (x2 or x1). To read this we say, e.g., “x2
is the result of a call on line 4 of the first call (unique ID created by addition of -A) to
gen on line 8 of gen.” (b) “Derivation” tree. Bold integers indicate execution order; ‘L’
indicates line number; node labels (e.g. biop) indicate results of random calls; edges
indicate random calls from parent to child; shading indicates results of terminal random
calls.

Mutation & structured trace. Continuing the example, using the simplified
naming scheme [function, line number]* instead of the general one, the original
trace T, i.e., [biop, var, x2, or, var, x1], is annotated as in Fig. 1(a). It can
be rendered as a tree as in Fig. 1(b). This is analogous to a GE derivation tree,
but distinct structurally: e.g. x1 is not a child of var and one does not read the
leaves to obtain the output (recall, it is returned by the generator).

Program Trace Optimization 9

When we apply the same point mutation to T as before (var ⇒ uop at the sec-
ond element, that is at the leaf labelled 4 in Fig. 1(b)), now with the structured
trace, the mutation affects only the local context and it is much less disruptive,
this time changing E e.g. (x2 or x1) ⇒ (not x3 or x1).

Table 2: Uniform crossover on
structured traces for expressions:
recombine aligned traces p1 and p2
using random mask m to obtain the
child trace uc, which when repaired
becomes c; the phenotypic effect of
crossover is:
p1=(x2 or x1)

p2=(not x3 and x3)

c=(not x3 or x1).

name p1 p2 m uc c

[gen, 2] biop biop 2 biop biop
[gen, 8] or and 1 or or
[gen, 8, gen-A, 2] var uop 2 uop uop
[gen, 8, gen-A, 4] x2 x2
[gen, 8, gen-B, 2] var var 1 var var
[gen, 8, gen-B, 4] x1 x3 1 x1 x1
[gen, 8, gen-A, 6, gen, 2] var var var
[gen, 8, gen-A, 6, gen, 4] x3 x3 x3

Induced phenotypic operators. The structured naming scheme and generic
trace operators combine to induce phenotypic operators tailored to nested ex-
pressions. The phenotypic operators have a modularity property.
Mutation: when a decision node C (a leaf in the tree view of the annotated
trace) is mutated, no other change may be needed, so the effect is a point muta-
tion on the expression. In the worst case, mutation invalidates the contents of all
subtrees, of parent node P , following C. This is because (i) P (a function call)
is scoped and modular, and (ii) the execution order is mirrored in the ordering
of siblings of C, so a change in C cannot have an effect on past execution.
Crossover (see Table 2): aligning parents on names corresponds to aligning
their common tree structures at root (homologous crossover) with the effect on
phenotypes that corresponding sub-expressions between parents are exchanged.

Analogously to these two examples (Section 3.3 on matrices and Section
3.4 on trees), the general naming scheme in Section 3.1 can induce phenotypic
operators tailored to any solution structure because it encompasses all control
structures i.e., sequential, conditional, nested and recursive function calls, nested
loops, and any composition of these, that can describe any generator.

3.5 Implicit problem knowledge

Different generators for the same problem lead to different annotation on traces,
different induced phenotypic operators, and so to different performance. PTO
assumes that the control structures used by the user coding the generator im-
plicitly reflect an understanding of the inherent structure of the problem and
its underlying implicit representation. E.g., the user could have used a flat list
representation for the matrix problem. This generator would not embed problem
knowledge, and would lead to a structured trace coinciding with the linear trace,
hence possibly worse performance. The assumption of PTO is that users will see
the patterns and structures of the problem and use these in writing generators.

10 Alberto Moraglio and James McDermott

We believe that this is a realistic assumption, and users will do this naturally
and intuitively. PTO then automatically carries out design based on user’s in-
tuition on the problem. The resulting phenotypic operators will be effective to
the extent that the generator captures the structure of the problem.

Perfecting the naming scheme based on experience of how users use the sys-
tem in practice, and providing explicit guidelines to the user of how to effectively
put structure in generators, is an important line of future research.

4 Experiments and results

Is the structured trace better than the linear trace? Do “smart” generators
boost performance? To seek preliminary answers, we test PTO on two very
different domains: travelling salesman problems, and symbolic regression with
grammatical evolution. We use three solvers: Random search (RS), simple Hill-
climbing (HC), and an Evolutionary Algorithm (EA). The budget is set to 20,000
evaluations for all experiments. For the EA, PTO internally sets the number of
generations = population size =

√
20000 = 141.

For symbolic regression by GE, the grammar for n variables is:

<expr> ::= <op>(<expr>, <expr>) | <var> | <const>

<op> ::= add | sub | mul | aq

<var> ::= x1 | x2 | ... | xn

<const> ::= 0.0 | 0.1 | ... | 1.0

Here, aq is the analytic quotient aq(x, y) = x/
√

1.0 + y2. We use the natural
generator which creates a program by making uniform choices among all possible
productions at each step. There is no maximum depth or weighting by tree
depth. The objective is -RMSE. We report results on several problems. Synthetic
instances are polynomials on n variables with degree d = 4, for n = {1, . . . , 10},
with coefficients uniform in [0, 1] for all possible terms. Well-known benchmarks
are also used: Pagie-2D, Vladislavleva-4, Dow Chemical, Tower, and Housing3.
We compare 3 solvers and 2 trace types, Linear (L) and Structured (S). We show
results on training data only since the goal is to investigate search performance
rather than generalisation. Results are shown in Fig. 2. These show that the best
combinations use the structured trace: HC/S and EA/S. HC/L does very well,
whereas EA/L is very weak. RS does very badly on larger synthetic problems,
and for RS the trace type makes no difference. For synthetic problems, the
differences are stronger for larger problems, demonstrating PTO scaling.

For travelling salesman problems we define two generators. In the Un-
biased (U) generator, a random permutation is generated by starting with the
integers {1, . . . , n}, and for each index, swapping with a randomly-chosen later
index. In the Heuristic (H) generator, a route is constructed by starting with a
random starting city, and at each step, choosing the next city randomly from
all those remaining, with their probabilities inversely weighted by the distance

3 Datasets taken from http://www.github.com/ponyge/ponyge2.

Program Trace Optimization 11

1 2 3 4 5 6 7 8 9 10
Number of variables n

2

1

0

O
bj

ec
tiv

e
RS/L
RS/S
HC/L
HC/S
EA/L
EA/S

P-2 V-4 Dow Tow Hous
Problem

0.4

0.3

0.2

0.1

Fig. 2: Regression results (mean of 30) for polynomials (left) and dataset problems
(right).

from the current city. Results on 6 TSPLIB4 instances for 3 solvers and 2 gener-
ators are shown in Table 3. On larger problems in particular, EA/H is the best
combination: it out-performs each of its components (EA/U and RS/H).

Table 3: TSP results presented as mean (stddev). Lower is better. Integers in instance
names (48–575) indicate problem size. Bold indicates best result per-instance.
Solver Gen att48 berlin52 eil101 u159 a280 rat575

RS U 112397 (3521) 23108 (464) 2854 (43) 381521 (5157) 30203 (420) 104536 (935)
RS H 71150 (2084) 15878 (448) 2029 (40) 222018 (3822) 18542 (304) 64691 (608)
HC U 67573 (4875) 14699 (827) 1628 (79) 198736 (8807) 16390 (520) 59456 (1385)
HC H 59976 (6092) 13850 (1110) 1888 (100) 201490 (12426) 18286 (1084) 65858 (2172)
EA U 68377 (4678) 14103 (913) 1747 (97) 224842 (9276) 18936 (499) 70865 (1183)
EA H 67503 (5192) 14727 (1065) 1910 (65) 112444 (6228) 10086 (279) 34949 (705)

Overall, the structured trace gives consistently better performance than the
linear trace, and “smart” generators can do very well. One surprising result is
the good performance of hill-climbing with a linear trace in GE.

5 Conclusions and future work

PTO provides a novel perspective on heuristic optimization by neatly separating
problem specification and search algorithm, and automatically tailoring search
operators to the problem at hand. We believe PTO has great potential and
envisage an ambitious research plan, organised in three research strands.
(i) Problems: PTO will be extended to other optimisation paradigms such as
multi-objective, co-evolution, dynamic and noisy objective functions. A broad
range of complex real-world applications will be tested, from logistics to inter-
active art. Generators for many problems will be borrowed from throughout the
fields of heuristics and EC and tested.

4 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

12 Alberto Moraglio and James McDermott

(ii) Trace: Variant naming schemes will be investigated for performance and for
their effect on operator design. The naming scheme will be used in a GE variant
which avoids the ripple effect in a principled way. Alternative styles of writing
generators will be investigated, and the results provided to users as guidelines.
(iii) Algorithms: Many more metaheuristics will be plugged-in to PTO, in-
cluding several already in the geometric framework [7], such as Surrogate-Based
Optimisation and Estimation of Distribution Algorithms. Robust parameter set-
tings and self-adaptive parameters will be investigated. Landscape analysis will
be used to validate algorithm design and generator choices. The links between
PTO and probabilistic programming will be used to import and export ideas.

Finally, PTO will be promoted as a community resource. Code is available
at https://github.com/program-trace-optimisation.

References

1. de Armas, J., Keenan, P., Juan, A.A., McGarraghy, S.: Solving large-scale time ca-
pacitated arc routing problems: from real-time heuristics to metaheuristics. Annals
of Operations Research pp. 1–28 (2018)

2. Batishcheva, V., Potapov, A.: Genetic programming on program traces as an in-
ference engine for probabilistic languages. In: ICAGI. pp. 14–24. Springer (2015)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society 64(12), 1695–1724 (Dec 2013)

4. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering. pp. 167–181. ACM (2014)

5. Janssen, P., Kaushik, V.: Decision chain encoding: evolutionary design optimiza-
tion with complex constraints. In: EvoMUSART. pp. 157–167. Springer (2013)

6. McDermott, J., Carroll, P.: Program optimisation with dependency injection. In:
Krawiec, K., et al. (eds.) EuroGP. pp. 133–144. Springer (2013)

7. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.
thesis, University of Essex (2008)

8. Moraglio, A., Di Chio, C., Poli, R.: Geometric particle swarm optimisation. In:
Ebner, M., et al. (eds.) EuroGP. pp. 125–136. Springer (2007)

9. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Norwell, MA (2003)

10. O’Neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolu-
tion. Genetic Programming and Evolvable Machines 4(1), 67–93 (Mar 2003)

11. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P.,
et al. (eds.) EuroGP. pp. 320–330. Springer (2006)

12. Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
Laredo, J.L.J., et al. (eds.) GECCO (Companion), pp. 681–702. ACM (2015)

13. Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Gor-
don, G., et al. (eds.) AISTATS. PMLR, vol. 15, pp. 770–778 (11–13 Apr 2011)

14. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. Trans.
Evol. Comp 1(1), 67–82 (Apr 1997)

