
UNIVERSITY OF EXETER

DOCTORAL THESIS

Light in scattering media: active control

and the exploration of intensity

correlations

Author:

Alba M. PANIAGUA-DIAZ

Supervisors:

Prof. William L. BARNES

Dr. Jacopo BERTOLOTTI

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in March 2018

Signed:

http://www.exeter.ac.uk




Light in scattering media: active control 

and the exploration of intensity 

correlations 

 

 

 

Submitted by Alba Maria Paniagua Diaz to the University of Exeter as a thesis for the 

degree of Doctor of Philosophy in Physics in March 2018 

 

 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

 

 

I certify that all material in this thesis which is not my own work has been identified 

and that no material has previously been submitted and approved for the award of a 

degree by this or any other University. 

 

 

 

 



 

All data created during this research is available from the University of Exeter’s 

institutional repository at https://doi.org/10.24378/exe.443. The point of contact for 

any queries on the thesis/data and relevant code/software is Dr. Jacopo Bertolotti, 

email address: j.bertolotti@exeter.ac.uk. 



“Caminante no hay camino, se hace camino al andar”...

“Wayfarer there is no path, the path is done when walking”...

Antonio Machado - Spanish poet





vii

UNIVERSITY OF EXETER

Abstract
Physics and Astronomy

College of Engineering, Mathematics and Physical Sciences

Doctor of Philosophy

Light in scattering media: active control and the exploration of intensity correlations

by Alba M. PANIAGUA-DIAZ

When light encounters scattering materials such as biological tissue, white paint or clouds, it

gets randomly scattered in all directions, which traditionally has been seen as a barrier for imaging

techniques (reducing their resolution) or sensing, due to the reduction of the penetration depth of

light. However, in recent years it has been shown that scattering might not necessarily be an

impediment, and that the knowledge of the properties of multiple scattering can be indeed useful

for imaging, sensing and other applications.

In the first part of this thesis (Chapters 2 to 5) we study the implications of manipulating the

light incident on a multiply scattering material. We experimentally show how by actively controlling

the output light of a bad quality laser we manage to not only improve its beam quality, but also in an

energy-efficient way, in comparison with traditional methods. In a different experiment presented

in this thesis, we show how the active control of the light incident on a scattering material can be

useful to improve sensing through scattering media, by means of increasing the transmission and

energy deposited inside (Chapter 5).

In the final part of the thesis we present the first experimental observation of intensity correla-

tions between transmitted and reflected patterns from a scattering material (Chapter 6), exploring

how it depends on the parameters of the scattering medium. In the last part of the thesis (Chapter

7) we present a new imaging technique based on the use of the intensity correlations described in

the previous chapter, opening new possibilities to non-invasive imaging through highly scattering

materials.
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Introduction

Understanding the nature of light has been a matter of study for centuries. The first written attempt

to explain the nature of light and human vision is due to the Greek philosopher Euclid (c.300

BC).1 In Optica Euclid postulated that light travelled in straight lines, describing mathematically

the laws of reflection and refraction. Although they originally thought light rays were originated

from the eyes and to subsequently reach the objects, that geometrical approach is equally valid to

explain how light travels from the objects to our eyes.2,3 Geometrical optics has been successfully

employed during the last centuries as an extremely useful tool to control light or to design imaging

elements, among other applications.4,5

However, even though geometrical optics can easily explain how light propagates in an homo-

geneous medium, e.g. in air or in a tank of water, explaining how light propagates through highly

inhomogeneous media, e.g. clouds or fog, becomes very challenging, although such media are

just small drops of water in air. This is because when light encounters such small drops of different

refractive index, it is scattered in different directions and multiple times, which makes ray tracing

very hard to implement. This lack of directionality prevents light from reaching far distances on a

foggy day, and scrambles the light before it reaches our eyes. This is the same phenomenon that

occurs when light travels through biological tissue, clouds or most white substances.

FIGURE 1: Picture of my dad in a field of olive trees where the fog blurs the more distant details.

Light scattering has been considered as an impediment for many years, degrading the resolu-

tion of imaging techniques and limiting light penetration in scattering media.6–9 However multiple
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scattering is not as random as it seems and it was shown that it is possible to take advantage

of its deterministic nature to, for instance, obtain a diffraction limited image behind a completely

opaque layer10,11 by means of the optical memory effect.12 However, despite the importance of

this breakthrough, the optical memory effect needs the scattering material to be thin and at a

distance apart from the object to image, which limits the potential applications of the technique.

Another milestone in exploiting the properties of scattering media is based on the control

of light propagation through such media. The group of Mathias Fink13 was the first to show

the possibility to manipulate a scattered acoustic wave and focus it back to the source point,

by making use of the time-reversal invariance. It was not until 2007 that light control through

scattering media was demonstrated by Vellekoop and Mosk,14 focusing light through an opaque

scattering material.This was initially achieved by modifying the phase of the wavefront of the

beam in different regions, using a liquid crystal spatial light modulator. Shortly after that, differ-

ent applications of wavefront control were developed, showing different possibilities of focusing

light through scattering materials,15,16 imaging improvement,17–22 spectral control of broadband

light,23 or cryptography24,25 among others.

In addition to these applications, it was shown that wavefront shaping techniques are also

capable improving one of the major limitations of light in scattering media: reduced penetration

depth. As I discuss in more detail in Chapter 1, wavefront shaping is capable of substantially

change the amount of light that is being transmitted or reflected by the scattering material.26–28

This property is of particular importance for optical sensing in biomedical applications, which are

limited to work near the illumination surface due to the attenuation of the multiple scattering in

biological tissue.9 However the potential of wavefront shaping to increase the penetration depth

in this field has not been completely explored, only for weakly scattering materials.17

Despite the usefulness of wavefront shaping for light control in scattering media, in order to

properly design the wavefront it is necessary to have access to both sides of the material, either

to characterize the transmission or reflection matrix or to use a guide-star or feedback element for

the design of the wavefront. This limits the applications of wavefront shaping to systems in which

generally both sides of the material are accessible.

Aim and outline of this thesis

The work presented in this thesis addresses the current challenges of light in scattering media

from two perspectives: applications of active wavefront control (Chapters 2 to 5) and intensity

correlations in scattering media (Chapters 6 to 7). In the first part of the thesis we revisit and

partially extend the theory of optical wavefront control, to fully cover the experimental situations

detailed in Chapters 4 and 5. One of the experiments on wavefront control addresses the problem
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of poor beam quality at the output of optical fibers, and the second and main experiment is based

on increasing of the penetration depth for optical sensing in medical applications.

In the second part we present the first experimental observation of intensity correlations be-

tween the reflected and transmitted intensity patterns produced by a scattering medium. The ex-

istence of these correlations not only open new possibilities to imaging through strongly scattering

media as we show in Chapter 7, but open new possibilities for non-invasive wavefront control.

The structure of the thesis is:

In Chapter 1 we present the framework of multiple scattering of light and the theory used to

describe light propagation. We show the usefulness of diffusion theory to describe the propagation

of average intensity through scattering media, when the wavefront has not been modified. We

present the scattering matrix formalism to study the fields that propagate through complex media,

and how this knowledge can be used to modify the wavefront to a desired output. In the final

part we present Random Matrix Theory and the Uncorrelated Transmission Coefficients model,

highlighting their importance in estimating the transmission through a scattering material, very

useful to implement wavefront shaping.

In Chapter 2 we introduce optical wavefront control and all the elements needed to understand

the wavefront optimization process, such as wavefront modulators, feedback components or the

algorithm used. Given that we use a Digital Micromirror Device in the experiments described in

Chapters 4 and 5, we make particular emphasis on how the wavefront can be modulated both in

amplitude and phase using these devices.

In Chapter 3 we present the concept of ideal wavefront control, and the effects of imperfect

wavefront modulation. We detail the processes of focusing light through a scattering medium,

and increasing the total transmitted light through it. In this chapter we also introduce the details

about focusing and maximal transmission enhancements such as the maximal expectations under

experimental situations as well as the statistical distribution of the optimal enhancements.

In Chapter 4 we investigate and extend the theory of wavefront control, so far well studied

for plane wave manipulation. We explore the consequences of manipulating a speckle pattern as

illumination beam. In addition we present an experiment in which we manipulate a speckled beam

coming out of a multimode fiber and convert it to a diffraction limited Gaussian spot, showing very

good agreement between theory and experimental results.

In Chapter 5 we present an experiment in which we increase the generated Raman signal of

an element embedded inside a scattering medium by almost 50%. This is achieved by increasing

the total transmitted light through the medium, using wavefront shaping techniques. We show that

the increase in total transmission through the medium is linear with the increase of the Raman

signal from inner depths. In addition, we study the energy distribution inside the sample assuming
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ideal wavefront control, and total transmission through the sample, and how that would affect the

collection of Raman signal from different depths.

In Chapter 6 we introduce the intensity correlations between reflected and transmitted speckle

patterns, for scattering media of different thicknesses and mean free paths. We first introduce

the well studied speckle correlations in transmission to then present the terms that contribute in

the reflection-transmission configuration. We present the first experimental observation of such

correlations and study the properties and features of the correlation in different scattering regimes.

In Chapter 7 we present a new imaging technique: Blind Ghost Imaging, that exploits the

correlations between reflected and transmitted speckle patterns described in the previous chapter.

Given that this imaging approach is based on Ghost Imaging Techniques, we first introduce these

techniques and then present our approach, showing the main differences between the two and

the potential of this new approach.



5

Chapter 1

Light propagation in scattering

media

1.1 Light scattering and diffusion of light

When a beam of light impinges onto a scattering material two fundamental things can happen:

light passes through without being scattered by the medium, or it encounters an inhomogeneity

and it is scattered by it. The light that is not scattered by the medium is called ballistic light. The

more inhomogeneities that are present in the medium, the more likely it is that light interact with

it, and therefore less ballistic light will come out, as one might expect. A good estimate for the

ballistic light leaving the scattering medium is given by the Lambert-Beer law.29,30 When there is a

defined direction of propagation, e.g. the beam of light propagates along the z direction, assuming

an absorption-free medium†, the Lambert-Beer law reads:

I(z) = I0e−z/`s , (1.1)

where I0 is the incident intensity in the medium and `s the scattering mean free path of the sample.

The scattering mean free path is defined as the average distance the beam travels before it suffers

a scattering event.29–31 At the macroscopic scale, the scattering mean free path `s is the distance

at which the incident intensity is reduced by a factor 1/e ≈ 37%.32

The scattering mean free path represents also the average distance after which the incident

beam is randomized, assuming the scattering is isotropic. When the scattering is not isotropic,

meaning that the scattered waves have a preferred direction of scattering, the distance needed to

randomize the beam is different and it is given by the transport mean free path `t:

`t =
`s

1− 〈cos(θ)〉 , (1.2)

†In this thesis we consider all the scattering media to be absorption-free (as in our experiments to a very good
approximation), which means that the only attenuation of light comes from scattering. If absorption was present, in eq. 1.1
the intensity would decay as e−z/(`s+`a) with `a the absorption mean free path.
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where θ is the angle between the incident beam and the scattered one, and the brackets 〈...〉

indicate averaging over the angles θ, taking into account the dependence of the scattering cross

section σ with the angle, i.e. 〈cos(θ)〉 =
∫ 2π

0 σ(θ)cos(θ)dθ. Biological tissues are a good example

of anisotropic scattering media, resulting in 〈cos(θ)〉 between 0.7 - 0.95 in the optical regime.32–34

For isotropic scattering 〈cos(θ)〉 = 0 and consequently `t = `s.

Knowing the distance at which the beam starts to get randomized (`t) and the total distance

travelled (L), that allows us to classify the system into three different scattering regimes: quasi-

ballistic, moderate scattering and diffusive regime. In the quasi-ballistic regime `t > L, therefore

the randomization of the beam is very small, given that the average distance for being randomized

(`t) is larger than the distance travelled (L). In the moderate scattering regime `t ∼ L, therefore

there will be a non-negligible fraction of light that will be randomized after propagation. In the

diffusive regime `t � L and consequently most of the light will be randomized. Most of the work

presented in this thesis is done in the diffusive regime, so the main part of this section is focused

on establishing the background knowledge about diffusion.

In the diffusive regime, light is scattered multiple times in random directions before leaving the

medium§. By averaging the effect of interference, the propagation of the average intensity follows

a diffusion process and can therefore be well described by diffusion theory.29,30,35,36 The diffusion

equation of the averaged intensity reads:

∂I(~r, t)
∂t

= D∇2 I(~r, t) + S(~r, t), (1.3)

where~r are the spatial coordinates, t is the time, D the diffusion coefficient and S(~r, t) the intensity

source dependent on space and time. The solution to the diffusion equation depends on the

geometry of the medium (providing the boundary conditions) and gives us the intensity distribution

inside the medium in space and time. In our experiments we use the slab geometry (Fig. 1.1a),

where the only variation in intensity we are interested in is along one dimension, z‡. When the

system is in the steady state, the diffusion equation simplifies to:

D∇2 I(z) + S(z) = 0, (1.4)

where S(z) is the steady state intensity source. There are generally two sources used in the

literature: a simplified point source, so S(z) = I0δ(z − zinj) that would represent very well the

diffusion process originated at the position zinj (such as an excited fluorophore inside a medium)

and a decaying exponential source S(z) = I0e−z/zinj , that considers the exponential decay of

the ballistic intensity travelling through a medium (given that it is scattered before leaving the

§As a general rule, every time we mention scattering, we refer to isotropic scattering, unless stated otherwise.
‡The slab geometry can be well approximated by a flat medium with a finite thickness and infinite lateral dimensions,

as shown in Fig. 1.1a. When studying the light transmitted or reflected by the scattering slab, only the finite dimension (z)
is of relevance.
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medium). The injection depth zinj is the depth at which the light starts diffusing, or the effective

diffusive source. This distance is: zinj = `t cos α, where α is the angle of incidence of the beam

with respect to the normal to the sample.37,38

Aside from the source, in order to solve eq. 1.4 it is necessary to set the boundary conditions

given by the sample. Following the approach developed by Zhu, Pine and Weitz35,39 it is possible

to determine the effect of the boundaries of the medium by imposing the conservation of energy

fluxes in it. In this way we have that the intensity is non-zero at the edges, and zero at a distance

from it, defined as the extrapolation length, ze. The resulting extrapolation length is dependent on

the effective reflection coefficient R of the interfaces of the sample and the transport mean free

path:

ze = `t
2(1 + R)
3(1− R)

, (1.5)

where R is the Fresnel coefficient averaged over all angles and polarizations.3,35 It might happen

that the scattering slab is in contact with two different media, e.g. a glass holding the sample and

air, in this case the extrapolation length will be different in each side of the sample (ze1, ze2), given

that the reflection coefficient R is different. Taking all these conditions into account, the solution

to the diffusion equation depending on the sources considered are:

I(z) =
I0

D

(
(z + ze1)(L + ze2 − ze1)

L + ze2 + ze1
+ (zinj − z)H(z− zinj)

)
for S(z) = I0δ(z− zinj) (1.6)

I(z) =
I0

D

zinje
−z/zinj

(
ez/zinj(z + ze1)(L + ze2 − zinj) + ez/zinj(zinj − z)− zinj

)
(L + ze2 + ze1)H(z)

(L + ze2 + ze1)

for S(z) = I0e−z/zinj ,
(1.7)

where H is the Heaviside step function. As an illustrative example we plot in Fig. 1.1b,c) the

intensity distribution inside a diffusive medium for the two types of sources mentioned before: the

point source (Fig. 1.1b), and the exponentially decaying source (Fig. 1.1c).

FIGURE 1.1: a) Schematic of a sample with slab geometry. b) Intensity distributions for a medium of
thickness L = 5`s (shadowed part), and coefficients R = 0.3, D = 12 originated by a point source following

equation 1.6 and an exponential source given by equation 1.7(c)
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In many situations it is useful to know how much diffuse intensity is being transmitted or re-

flected from the sample, as we discuss in Chapter 5. The total transmission through a diffusive

medium is given by Fick’s law for the current J = −D∇I,40,41 resulting in:

T = −D
I0

∂I(z)
∂z

∣∣∣∣
z=L

(1.8)

When L� zinj ' `s and L� ze1, ze2, we obtain the Ohm’s law for optics: T ' `s
L .

1.2 Scattering and transmission matrices

Despite the usefulness of the diffusion theory to describe the propagation of the average intensity,

it neglects light interference and therefore it does not provide the full picture of light transport

inside the scattering medium. The most notable example of what diffusion theory fails to explain

is the speckle pattern, a random interference intensity pattern resulting from the light scattered by

a medium disordered in the order of the wavelength.42 In principle, if we had all the information

about the scattering medium such as the position of the scatterers, size, etc. it would be possible

to determine exactly how light propagates inside.

It is well known that when light propagates through a material, e.g. a waveguide, its geometry

imposes boundary conditions for the Maxwell equations, defining light propagation through the

waveguides. Depending on the geometry of the waveguide, there will be a different number of

solutions to the Maxwell equations that can propagate. These solutions are called propagating

modes of the waveguide or the system. This same concept of propagating modes also holds

in a disordered scattering medium. In a real sample there is a limited number of supported

propagating optical modes: 2M, where the 2 accounts for reflection and transmission, as we

see later. An optical field propagating through a scattering medium can therefore be described

as a combination of the 2M orthogonal modes. These propagating modes are also known as

the scattering channels of the sample. It is possible to represent the scattering medium as a

scattering matrix in the basis of these propagating modes such that:

Eout = SEin, (1.9)

where Eout is the outgoing electric field, Ein the incoming one and S is the 2M × 2M scattering

matrix.43 The knowledge of this matrix allows to determine the output field once the input is known.
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In a sample with a slab geometry, as shown in Fig. 1.2, it is necessary to take into consideration

only fields coming from the left or from the right. In that case, we have a tensor S describing the

scattering sample:43

S =

 r−+ t−−

t++ r+−

 , (1.10)

where the first signs (+ and −) show the direction of the incident beam and the second, the

direction of the outgoing one (as indicated in Fig. 1.2).The terms r and t represent the M × M

reflection and transmission matrices, respectively.

FIGURE 1.2: Schematic of the incident electric fields on a scattering sample with a slab geometry.

Given that in the experiments performed in this thesis we are only interested in the illumination

coming from the left, and mostly interested in the transmitted intensity, the problem simplifies and

the only term relevant to us is the transmission matrix t++, that we will refer as t for simplicity. The

transmitted field through a scattering medium, then follows the equation:

Eout = tEin. (1.11)

The dimensions of the transmission matrix (M×M) depend primarily on the illuminated area of

the sample. In the waveguide geometry, the illuminated area at the entrance is the same that at

the output, therefore following eq. 1.11, the transmission matrix is square. In these cases it is

possible to choose a complete and orthogonal basis of propagating TE and TM modes, that fully

describe light propagation.

In the slab geometry there are no lateral constraints and light can spread sidewise as it prop-

agates, following a diffusion process. This implies that at the output of the sample the beam is

broader than at the entrance, resulting in a rectangular transmission matrix (N×M, with N > M).

As a consequence, in this case it is not possible to choose a basis that is both complete and or-

thogonal. In this geometry it is common to use an over-complete set of modes describing the

propagation through the sample such as the number of diffraction limited spots contained in the

illuminated area A:27

NA '
2πA
λ2 , (1.12)
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where the factor 2 is due to two orthogonal polarizations and λ is the wavelength of the beam.44

When we consider the area illuminated at the entrance of the slab, NA = M and at the output

of the medium NA = N. As an example, from equation (eq. 1.12) we have that for a wavelength

λ = 633 nm the number of propagating modes in an illuminated area of 1 mm2 is around one

million, resulting in a matrix of enormous dimensions to work with.

For a particular realization of disorder the transmission matrix t connects the incoming and

outgoing fields of the sample. It is important to note however, that the two orthogonal polarizations

of the field are independent of each other and even though the transmission matrix (characterized

by the disorder) remains unchanged, the two polarizations give rise to different output fields. If we

take into account polarization, the transmission matrix t takes the form:

 Eout⊥

Eout‖

 =

 t⊥⊥ t⊥‖
t‖⊥ t‖‖

 Ein⊥

Ein‖

 . (1.13)

For simplicity we consider the case in which we are filtering out one polarization channel both in

the incident and outgoing fields, unless it is stated differently.

The use of samples with slab geometry makes it more difficult to fully describe the system.

However, as we will mention later, it is possible to obtain some analogies from the theory that

works in the wave-guide geometry. In the wave-guide geometry where the transmission matrix is

square, by using eigenvalue decomposition we can write t as:

t = UΓU−1, (1.14)

where U is a square and unitary matrix performing the basis transformation between the free

space modes incident on the sample and the transmission eigenchannels (or eigenvectors) of

the sample and vice versa. Γ is a diagonal square matrix, with real and positive elements τ

representing the eigenvalues of the sample or transmission coefficients. The distribution of the

eigenvalues τ is described using Random Matrix Theory.

When the sample under study has the slab geometry, the transmission matrix is rectangular

(N×M) where N are the modes at the output surface and M the modes at the input. In this case,

we would need to follow a singular value decomposition (t = UΓV† instead of eq. 1.14) where

now U is a N × N matrix and V† is M×M. In this situation it is not possible to obtain a diagonal

Γ matrix and the maximal number of diagonal elements in Γ is min(N, M). The distribution of the

singular values in the case of slab geometry is not trivial, however when the thickness of the slab

is not too large, ( a few micrometers generally ), numerical calculations45,46 showed that Random

Matrix Theory is a good tool to describe its distribution, despite the fact that it is originally only

valid for waveguide geometries.
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1.3 Random Matrix Theory

Random matrix theory (RMT) is a mathematical tool to study the statistical properties of large

matrices with random distributed elements. It was originally introduced in 1928 by Wishhart,47

but it was not until 1950’s that it emerged as a useful approach in nuclear physics, to study the

spacings between the energy levels of slow neutron resonances in nuclear reactions.48,49 After

that, RMT was shown to be useful in different areas of physics such as quantum chaos, quantum

field theory and wave propagation through disordered media.43,50,51

RMT is based on the assumption that the complex system can be described by a random

Hamiltonian or potential¶ . However it takes into account physical constraints such as energy

conservation, which allows it to represent very accurately physical phenomena. RMT provides

the probability distribution of the eigenvalues of the matrix elements. The probability density of

the transmission eigenvalues through a disordered medium is described by the Dorokhov-Mello-

Pereyra-Kumar (DMPK) distribution:43,52

P(τ2) = 〈τ2〉 1

2τ2
√

1− τ2
, (1.15)

where 〈τ2〉 ≈ `t/L is the averaged transmitted intensity through the sample. The probability

density function is shown in figure 1.3. The function in equation 1.15 has two divergences: one at

1, and the other at 0. The divergence at 1 is integrable and therefore it implies the probability of

finding eigenvalue coefficients 1 is finite. At zero, the function is not integrable, meaning that the

eigenvalues can not reach the value 0, so the minimum value used as truncation of the distribution

is generally τ2 = cosh−2(L/`t).38,43

FIGURE 1.3: Probability density function of the intensity eigenvalues according to DMPK distribution.

The fact that the transmission coefficients through a scattering medium follow the distribution

in eq. 1.15 entails an important consequence. From the distribution we see that the number of

eigenvectors with average transmission is very small, therefore the wave transport through the
¶In optics the concept of a random potential can be seen as a system with random variations of the refraction index in

the order of the wavelength.
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sample is given by a combination of eigenvectors with transmission coefficients close to 1 (totally

transmitted) or close to 0 (totally reflected). It is common to refer to eigenvectors or channels with

transmission coefficient close to 1 as "open" channels, and to those with transmission close to

0 as "closed" channels.53 Numerical simulations show the existence of such channels, even in a

slab geometry.45,46

Experimental coupling to open and closed channels has been a subject of great interest from

the very beginning, however success in fully coupling to these channels has been very limited in

optics,26–28,54 with a recent exception in acoustics.55 In an equivalent way several experiments

attempted to measure the DMPK distribution of eigenvalues,56–58 but instead they retrieved a dis-

tribution similar to the Marcenko-Pastur distribution, described in the next section. It was shown

numerically46 that in order to access or visualize the DMPK distribution consequence of RMT it

is necessary to have full control over the input and the output channels of the system. When

the fraction of controlled channels is slightly smaller than 100%, the peak corresponding to the

open channel quickly dissapears and the distribution gradually converges to the Marcenko-Pastur

distribution. This is because the constraints imposed by RMT result in the matrix elements to

yield correlations between themselves,43 the moment all these elements are not fully measured

or controlled, the correlations are less and less visible until the system becomes completely un-

correlated. Given that most experimental situations are in the uncorrelated regime, in the next

section we briefly discuss the eigenvalue distribution in this case.

1.4 Uncorrelated Transmission Coefficients model

As discussed above, if in a experiment only a small region of the transmission matrix or channels

are addressed, as it is the case in a practical situation, correlations coming form the RMT are

not visible, and the elements of the transmission matrix can be treated as uncorrelated. In the

Uncorrelated Transmission Coefficients (UTC) model the eigenvalues or singular values do not

follow the DMPK distribution, therefore there are no open or closed eigenchannels. In this case

they folow the probability distribution given by the Marcenko-Pastur law:59

P(τ) =
γ
√

τ2 − τ2
min

√
τ2

max − τ2

πτ
, (1.16)

where τmin = 1−
√

1/γ is the minimum singular value, τmax = 1 +
√

1/γ the maximum singular

value and γ is the aspect ratio of the matrix, therefore taking into account the cases where the

transmission matrix is not squared. The distribution of singular values as well as τmin, τmax are

very dependent on γ. In Fig. 1.4 we plot the distribution on eq. 1.16 for different values of γ.
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FIGURE 1.4: Probability distribution for the singular values τ given by the Marcenko-Pastur law, when
considering different γ

In summary, although real scattering media are properly described using RMT and the trans-

mission elements are correlated due to energy conservation, in practical cases these correlations

are not observable and the use of UTC model can simplify the calculations, as we discuss in

Chapter 3, therefore becoming more convenient. In this thesis we will be generally using the

UTC model for the calculations. We will consider as well RMT when studying the distribution of

eigenvalues in Chapter 5.
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Chapter 2

Wavefront control in multiply

scattering media

In this Chapter we look at the basic concepts of wavefront control and how interference determine

the output intensity. We study as well two of the more common wavefront modulators: liquid

crystals and Digital Micromirror Devices (DMD), reviewing their advantages and disadvantages.

Given that in the experiments presented in this thesis we use a DMD, we give details of how these

devices work and how the phase or amplitude of the wavefront can be controlled. In the final

part we discuss the algorithm we designed and used for the wavefront optimization. Most of the

information presented in this chapter is a review from the literature. The only contribution of my

own is the custom algorithm defined at the end of the chapter.

2.1 Wavefront control

When coherent light propagates through a disordered material, most of the light is elastically

scattered† by the inhomogeneities of the medium. Given that elastic scattering preserves the

coherence, the different modes propagating through the medium interfere with each other, de-

termining the global propagation through the medium. The principle behind wavefront control

or wavefront shaping techniques relies on modifying the interference between these propagating

modes, which leads to a different distribution of the optical energy, i.e. different light propagation.

As we discussed in Section 1.2 even from a small illuminated area of ≈ 1 mm2 in a highly scatter-

ing medium there are millions of propagating modes. To gain intuition, we first look at the simplest

case: the propagation of two modes, that will help us to understand the full behaviour easier. We

consider two modes (E1, E2) interfering with each other and giving rise to the field E:

E = E1 + E2 = A1eiφ1 + A2eiφ2 (2.1)
†In the case the medium has negligible absorption, as it is the case we consider in this thesis.
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where A1, A2 are the amplitudes of the modes 1 and 2 and φ1, φ2 are the respective phases.

Following eq. 2.1, the intensity is:

I = E · E∗ = I1 + I2 + 2
√

I1 · I2 cos(φ1 − φ2). (2.2)

From the above equations we can see that a modification in the amplitude or phase of one of the

modes modifies the interference term, leading to a higher (or lower) intensity and, consequently,

modifying light propagation. Wavefront shaping techniques are based on the manipulation of the

field incident on the sample in order to change the output field and consequently the propagation

of light through the medium. The manipulation of the phase and/or amplitude is done using spatial

light modulators. These devices contain a multitude of pixels that can independently control the

amplitude or phase, therefore allowing the control of multiple propagating modes.

2.1.1 Wavefront modulators

The manipulation of the phase or amplitude of a wavefront is performed using Spatial Light Mod-

ulators (SLM). There are various types of SLM available, the two more broadly used for wavefront

shaping techniques are Liquid Crystals SLM (LC-SLM) and Digital Micromirror Devices (DMD).

LC-SLM are capable of modulating the phase of the wavefront by controlling the orientation of

the liquid crystal molecules in the different pixels. The big advantages of LC-SLM are that they

have a large number of pixels and they are energy efficient, in comparison with other commercially

available SLMs. However, despite their advantages, they also have some disadvantages. One of

the disadvantages is the slow response time, limited by the time it takes the molecules to reach

a stable orientation, resulting in a general speed limit around 100 Hz. The second important

disadvantage is that in most available devices phase modulation is coupled to the modulation of

the polarization of the beam, which prevents a simple independent phase modulation.

A common alternative to LC-SLM are the Digital Micromirror Devices. A DMD is a Micro-Opto-

Electromechanical System (MOEMS) consisting of an array of mirrors of a few microns in size.

Each mirror can be individually tilted to ±12◦, representing the "on" or "off" states. The main ad-

vantage of a DMD is that they can work at much higher speeds than LC-SLM (tens of kHz), which

makes them an excellent option when dealing with live tissue for instance, where in general the

media can be considered static only for a few milliseconds.60,61 The main disadvantage of these

devices is that they are binary amplitude-only modulators. Although it is possible to modulate the

phase using Lee holographic techniques62 , it is necessary to filter components in the Fourier

plane as described in Section 2.2.2, but it is not as energy-efficient as a LC-SLM.

Although it was shown that it is possible to control both amplitude and phase successfully,63,64

it is technically challenging, so in the majority of the cases either phase or amplitude are mod-

ulated, not both at the same time. It was shown in the literature,14,15 and briefly discussed in
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the next subsection, that when only the phase of the wavefront is modulated it is possible to ob-

tain larger variations in the output intensity than when only the amplitude is modulated. For this

reason, most experiments in wavefront control are performed by modulating only the phase.

The experiments presented in this thesis are performed using a DMD so in the next section

we give details on how to manipulate amplitude or phase using a Digital Micromirror Device.

The DMD used for the experiments in this thesis is a Texas Instruments DLP 9500. It consist of

1920 × 1080 squared mirrors of sizes 10.8× 10.8 µm, with a maximal refresh rate of 23.1 kHz.

2.2 Amplitude and Phase modulation using a DMD

In this section we examine two main possibilities for modulating the wavefront: amplitude-only

and phase-only modulation. In order to compare the two, we examine how much energy can be

focused at the output of the medium, following the two different approaches. Focusing light into

a diffraction spot at the output of the medium has been widely used and well characterized,14,15

therefore the evaluation of the intensity deposited at the focus is a good measure of the wavefront

control. In this section we examine how much intensity could be deposited at the focused spot

using phase-only and binary amplitude modulation.

2.2.1 Binary amplitude modulation

The more straightforward approach to create a focus using a DMD binary amplitude modulator

is by amplitude modulation.15 It consists of turning "on" or "off" the different mirrors (or pixels) in

the DMD. This is the same as assigning an amplitude of zero to one of the interfering waves in

eq. 2.1. A graphical explanation of this concept using phasor diagrams is shown in Fig. 2.1. In

Fig. 2.1a) we represent the sum of four random field components (red arrows) contributing to the

intensity of a hypothetical focus spot. The total field is represented by the blue arrow. As we can

see there are field elements like E2 that contributes to the reduction of the total field at that spot.

If we cancel the contribution of E2 by assigning a zero amplitude to it, the total field at the focus

spot will increase, as we see in Fig. 2.1b), therefore resulting in larger intensity deposited at the

selected spot.

2.2.2 Phase modulation: Lee holography method

Phase modulation consists of modifying the phase in different areas of the electric field impinging

on the medium. In the phasors diagram this is equivalent to rotating the small red arrows. If we

start from the sum of random fields (Fig. 2.1a), if we rotate any of the red arrows aligning them

with each other, i.e. adding them all in phase, the total field is maximal (Fig 2.1c) and larger than

what could be achieved by amplitude-only modulation.



18 Chapter 2. Wavefront control in multiply scattering media

FIGURE 2.1: Examples of phasor sums of random complex components. a) Phasor sum of random com-
ponents, simulating the field obtained in the target area to optimise when the wavefront is not shaped. b)
Resultant sum when the components contributing to decrease the field have been cancelled in amplitude.

c) Resultant sum when all the components have been optimised in phase.

Since a DMD is an amplitude-only modulator, we cannot modulate the phase directly, as can

be done using a liquid crystal SLM. To modulate phase with an amplitude modulator, we use the

Lee holography method.62 Lee holography is a type of Computer Generated Hologram (CGH) that

uses the similarities of CGH with interferograms to design or reconstruct different phases. The

equivalent fringes in the interferogram are displayed on the screen of the DMD to form the CGH.

To give an insight on how the phase of the wavefront can be modulated in this way, we use the

simplest example, in which we consider the amplitude pattern displayed is sinusoidal, in the form:

f (x) =
1
2
[1 + cos(2πxk0 − φ(x))] (2.3)

where, x is the spatial coordinate of the pattern, k0 the spatial frequency and φ(x) accounts for

the lateral shift of the sinusoidal pattern. Once this pattern is loaded onto the DMD, we use a lens

to perform a Fourier transform of it,3,65 as illustrated in Fig. 2.2, leading to:

F{ f (x)} =
√

π

2
δ(k) +

√
π

8
eiφ(x)δ(k− 2πk0) +

√
π

8
e−iφ(x)δ(k + 2πk0) (2.4)

where the first term is the zeroth diffracted order and the second and third are the +1 and -1

orders. In the Fourier plane of this lens we use a diaphragm to filter out the zeroth and one of

the first diffracted orders (for example the last term in eq. 2.4). Using a second lens, we perform

again a Fourier Transform but only of the filtered first diffracted order, obtaining:

F{
√

π

8
e−iφ(x)δ(k + 2πk0)} =

1
4

ei(2πxk0+φ(x)). (2.5)

As a result of this second filtering we obtain a plane wave where the spatial shift information φ(x)

defined in equation 2.3 is now encoded in as a phase shift in the plane wave: ei(2πxk0+φ(x)).

The experimental implementation of phase modulation with a DMD has however some sub-

tleties. First of all, in order to obtain a proper phase modulation using this method, it is very
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important that we have a 4-f system, as shown in Fig. 2.2. The reason for this is that only in the

image plane of the system we will have the desired phase transformation, so it is there where the

sample should be placed. If the distances are not the appropriate ones, quadratic phases will be

added to the phase pattern,65 due to the Fourier transforming properties of the lenses, which will

reduce the efficiency of phase modulation.

Secondly, as we can see from eq. 2.5, even under the assumption of perfect sinusoidal mod-

ulation, only 1/4 of the initial field is being used for the phase modulation, so using a DMD to

modulate the phase is not very energy efficient. In addition, in order to generate an amplitude

interferogram, half of the display has zero or near zero amplitude, resulting in roughly half the

energy coming to the SLM lost. In our experimental case, given that we have a binary amplitude

modulator, we load a binary square wave in the DMD chip instead of a sinusoidal pattern, with half

of the mirrors in the ’off’ state. The main difference coming from using the squared wave is that

there will be higher orders generated in the Fourier plane, so even less energy will be controlled.

Taking all this into account, the total energy efficiency of the DMD to modulate the phase is around

5-10% of the total intensity, which is far from the roughly 50% that can be achieved in LC-SLM.

However the advantages such as speed can overcome the energy efficiency limitations in certain

applications.

FIGURE 2.2: Schematic of the Lee holography method to perform phase modulation with a DMD. A lens
(L1) performs the Fourier transform of the pattern loaded on the DMD, generating its Fourier Transform at
distance f1 from the lens. At this place an iris filters the first order of the diffraction pattern (eq. 2.4). A
second lens (L2) performs the second Fourier Transform, resulting in the phase modulation (eq. 2.5) that

is finally impinging on the sample.

In order to independently control the phase of different regions of the wavefront, the full array

of pixels of the DMD is divided into smaller groups of mirrors, referred as "macropixels" (squared

subarrays of pixels controlled independently) each with a sinusoidal-like pattern loaded, where

the shift of each of them can be tuned independently. These macropixels are the smallest units

used to perform phase modulation with the DMD.

The size of the macropixels is an important factor. In principle, given that different modes of the

sample (or diffraction limited spots) can be considered independent, (as discussed in Section 1.2)

the process will be more efficient when the individual macropixels match the size of the individual

modes, i.e. when they are diffraction limited in size. The macropixels in our experiments were a
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group of 12 by 12 mirrors, therefore the real size of them was 129.6× 129.6 µm. In order to make

them diffraction limited we had to choose the lenses and extra elements accordingly, as we will

detail in the respective Chapters 4, and 5.

2.3 Wavefront optimization algorithms

The field leaving the sample is given by the product of the transmission matrix of the sample and

the incident field, as described in eq. 1.11. If we had full knowledge of the transmission matrix, we

could find the incident field needed to obtain the desired output field. However, as discussed in

Section 1.2, measuring the transmission matrix experimentally is a very challenging task, mainly

due to its large dimensions.44,56

However, if the goal of the experiment is to increase the intensity in a spot (such as light

focusing), or any other that can be easily measured with a feedback device, it is possible to use

an approach that does not require measuring the transmission matrix, but instead it is based on

the use of an iterative algorithm. In these cases, in order to optimize the wavefront three main

elements are needed: a wavefront modulator, a detector providing the feedback and an algorithm

deciding which wavefront should be loaded in the modulator, according to the feedback. This is the

approach we use in the experiments described in this thesis. The basic setup of the experiment

is represented in Fig. 2.3.

FIGURE 2.3: Schematic of the basic experimental set-up. The detector provides feedback that is analysed
by the computer. After the analysis is done, the DMD or SLM is addressed by the software to display a

pattern according with the feedback gathered.

In order for the algorithm to find the optimal configuration, it has to evaluate the feedback

element for the different phases or amplitudes of the input. In the experiments of this thesis,

we use an iterative algorithm to increase the intensity in transmission (at one diffraction limited

spot and the total transmitted light), using phase-only modulation. The task of our algorithm is

to find the input phase that maximises the intensity at the desired place. One might think that

the easiest approach is to try all the independent input phases, and keep the ones leading to the

maximal intensity. However, as we saw in eq. 2.2, the interference term follows a sinusoidal curve

as the phase between the interference parts is changed, therefore it is possible to speed up the

process by just taking 2 samplings of the sinusoidal, fitting the data to the function A0 cos( 2π
λ x +
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φ). However, the fewer data points we take the more sensitive to noise the measurements are.

Therefore it is common to choose 4 or 6 samplings of the sinusoidal as a good compromise

between speed and Signal to Noise Ratio (SNR).66 In our experiments we found that 6 data

points per iteration was a good compromise and that was the sampling used for the experiments

in this thesis.

Types of algorithms

An important decision when designing the algorithm is to choose how many modes are being

modulated in each iteration, or in other words, how many macropixels are being addressed at

the same time. There are several variants in the literature67 but here we only briefly discuss two

that lead to our particular choice. These two basic algorithms are the so called step-wise and

the partitioning algorithms.67 Both change the phase or amplitude of a set of macropixels while

the remaining macropixels are kept unchanged, basically the only difference is in the number of

macropixels modulated at a time. When we are interested in increasing the intensity in a given

region, e.g. focusing to a spot, using wavefront shaping, the number of macropixels addressed

is particularly important in the Signal to Noise Ratio (SNR). The more macropixels we modulate,

the larger the modulated signal will be, which will increase the chances the algorithm makes the

right decisions when picking the optimal phase patterns.

Step-wise and partitioning algorithms

The step-wise algorithm modulates just one macropixel at a time. Given that different modes

of the sample can be considered independent, modulating the macropixels (and therefore the

modes) independently should lead to the best results. The main disadvantage of this algorithm

is that the signal to noise ratio in this case is very small because the signal is given by only one

macropixel.

A good alternative is the partitioning algorithm. In this case instead of modulating just one

macropixel at a time, approximately half the total number of macropixels is modulated in one

iteration. The macropixels to modulate are chosen randomly each time. This allows the signal to

noise ratio to be maximal in each iteration.

Custom algorithm

In our experiments we used a variation of the partitioning algorithm, combining macropixels of

different sizes. Figure 2.4 shows the dynamic of a typical intensity optimization. At the beginning

of the optimization, the signal in the detector is small, so the measurement is noisy. In order to

quickly increase the signal, we group 8 by 8 macropixels, changing a large percentage of them,

around 30% up to iteration 2500 (first grey solid line in the figure). This allows the intensity in the

target to increase fast, but given that the number of elements independently controlled is small
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and the size of the macropixels is not optimal, the intensity increase becomes slower. At this point

we choose a smaller group of macropixels (4 by 4), also reducing the percentage of macropixels

addressed, which allows the intensity optimization to increase again. We continuously decrease

the size of grouped macropixels (in the figure represented by the dashed vertical lines) until we

address independent macropixels. At the same time we progressively decrease the percentage

of macropixels addressed, up to 2% approximately.

FIGURE 2.4: Graph showing the dynamic increase of the optimized intensity in which total transmission
was being maximized. Solid vertical lines represent a reduction on the number of grouped macropixels
addressed independently and dashed vertical lines indicate a reduction in the percentage of macropixels

addressed in each iteration.
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Chapter 3

Wavefront control and effect of

imperfections: focusing and

optimal transmission

In this chapter we present the ideal optimization that can be achieved by wavefront shaping and

the influence that imperfections in the modulation have over it. We discuss the two observables

that are measured in the experiments shown in the next two chapters of this thesis: focusing light

into a diffraction limited spot and the increase of total transmission through a scattering medium.

We first assume that one can achieve the wavefront needed, i.e. we assume the wavefront is

ideally modulated, and therefore technical limitations from the experiment are not taken into con-

sideration. In the final part of the chapter we present the influence of the imperfections and how

these should be taken into account.

The derivation of the ideal focusing enhancement is taken from the literature44,68 as well as the

the influence of imperfections over the wavefront modulation.44,68 My contributions to this chapter

are the derivation of the maximal total transmission under experimental conditions as well as the

study of the distribution of the ideal enhancements of the total transmission and optimal focusing.

3.1 Ideal wavefront control

In this section we explore the optimizations that can be achieved assuming ideal wavefront control

in two cases: focusing through a scattering medium and increasing total transmission through it.

3.1.1 Focusing optimization

Light control in scattering media by wavefront shaping techniques is often measured by how

much of a plane wave can be focused into a diffraction-limited speckle spot after passing through

a scattering medium.14 This figure of merit is referred to as enhancement factor and it is defined
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as the ratio between the intensity focused in the optimized speckle spot over the average intensity

at that spot with a non-optimized wavefront:14,44

η̃ =
Ĩ f

〈I f 〉
, (3.1)

where 〈·〉 represents the ensemble average over different realizations of disorder, Ĩ f is the inten-

sity in the optimized speckle spot f and I f is the intensity at the same spot with a non-optimized

wavefront.

In the following we derive the optimal enhancement factor following the same procedure used

in the literature.44,68 The intensity at one speckle spot at the output of the scattering material is

given by:

I f =|
N

∑
i

t f i · Ei |2, (3.2)

where N is the number of modes transmitted through the sample, Ei is the incident field at the

input channel i and t f i are the transmission matrix elements contributing to the output channel

f from the input i. The maximal value that the intensity in equation I f can take is given by the

Cauchy-Schwartz inequality:

|
N

∑
i

t f i · E∗i |2≤
N

∑
i
| t f i |2

N

∑
i
| Ei |2 . (3.3)

The maximal intensity that is possible to concentrate in one speckle spot is then given by the

equality of these two terms. The two terms are equal if the electric field Ei =∝ t∗f i. In order

to have a normalized total intensity ∑N
i | Ei |2= 1 we choose the proportionality factor to be the

normalization factor, so that Ei = C t∗f i, with C =
(√

∑N
i | t f i |2

)−1
. We refer to this field as Ẽi to

indicate it is the optimal field for the desired output. The optimal intensity at the spot f is given by:

Ĩ f =
N

∑
i
| t f i |2

N

∑
i
| Ẽi |2=

N

∑
i
| t f i |2, (3.4)

where the last simplification is due to the normalization of the incident field.

The non-optimized intensity can be described either as a different field impinging on the same

scattering medium (| ∑N
i t f i · E′i |2) or as the same optimized input filed Ẽi impinging onto a

completely different region of the sample, defined by a different transmission matrix ξ f i. We will

use the latter approach for simplicity. In this way, the non-optimized intensity at the spot f is given

by:

I f =|
N

∑
i

ξ f i · Ẽi |2=
N

∑
i
| ξ f i |2| Ẽi |2 +

N

∑
i

N−1

∑
i′ 6=i

ξ f i Ẽ∗i′ξ
∗
f i′ Ẽi. (3.5)
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In order to calculate the enhancement factor (defined in eq. 3.1), we ensemble average the non-

optimized intensity I f over different realizations of disorder. In this case, the terms representing

the disorder of the system are the matrix elements ξ f i, so we obtain:

〈I f 〉 = 〈
N

∑
i
| ξ f i |2| Ẽi |2〉+ 〈

N

∑
i

N−1

∑
i′ 6=i

ξ f iξ
∗
f i′ Ẽi Ẽ∗i′〉. (3.6)

Assuming different elements of the transmission matrix are uncorrelated, the second term reduces

to zero when averaged over a large number of realizations of disorder, and so the remaining

averaged intensity is:

〈I f 〉 =
N

∑
i
〈| ξ f i |2〉 | Ẽi |2= 〈| ξ f i |2〉

N

∑
i
| Ẽi |2, (3.7)

thus the enhancement factor becomes:

η̃ =
Ĩ f

〈I f 〉
=

∑N
i | t f i |2 ∑N

i | Ẽi |2

〈| ξ f i |2〉∑N
i | Ẽi |2

=
∑N

i | t f i |2

〈| ξ f i |2〉
. (3.8)

The average value of the enhancement factor is then given by:

〈η̃〉 =
〈 Ĩ f 〉
〈I f 〉

=
∑N

i 〈| t f i |2〉
〈| ξ f i |2〉

=
N〈| t f i |2〉
〈| ξ f i |2〉

= N, (3.9)

where the last simplification is possible given that the matrices t and ξ are uncorrelated and the

average over disorder of the absolute value squared is the same for both. Equation 3.9 recovers

the results presented in the literature.14,44,68 This result has been broadly used in the literature

as the reference optimal value when focusing through scattering media. However, although the

average value give us a very good estimate of what we can hope for, this is not the value we obtain

from a single measurement of the enhancement factor. When we make a single measurement

we measure the enhancement factor given by eq. 3.8, which follows a probability distribution that

has not been investigated so far. In the next section we look into the properties of this probability

distribution and show its dependence on the number of independent modes N.

Enhancement factor distribution

The focusing enhancement factor is given by the ratio of the optimized intensity Ĩ f divided by

the average intensity, as seen from eq. 3.8. Given that the average intensity is a constant, the

probability distribution of the enhancement is given by the probability distribution of the optimized

intensity Ĩ f . As defined in eq. 3.4, the optimized intensity is given by the sum of intensity terms

| t f i |2. This term comes from the optimal field intensity (eq. 3.4) and therefore its distribution

is given by the components of the electric field. The real and imaginary parts of the electric

field are normally distributed, therefore the modulus squared (i.e. the intensity) is the sum of two
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normally distributed random variables squared:| t f i |2=| <[t f i] |2 + | =[t f i] |2. The distribution

of the sum of squared terms is given by the χ2
2 distribution, where the sub index is the number

of degrees of freedom (or number of terms summed up). As a consequence, the distribution of

the enhancement factor is given by the sum of χ2
2 distributed terms, which tends to a Gaussian

distribution when the number of added elements is large (N � 1), for the Central Limit Theorem.

In order to evaluate the probability distribution for all values of N we go into the details of the

calculation.

It follows from the definition of chi-squared distributions that the sum of N terms χ2
2 distributed

also follows a chi-squared distribution, which is given by: χ2
2N. If we consider N to be the sum of

the two orthogonal polarizations N = N⊥ + N‖, the resultant distribution is the result of the sum

of these two polarizations:

P(η̃) =
1
2

χ2
2N⊥ +

1
2

χ2
2N‖

=
1
2

χ2
(2N⊥+2N‖)

=
1
2

χ2
2N , (3.10)

where N = N⊥ + N‖ and the factor 1/2 is given by the denominator in equation 3.8: 〈χ2
2〉 = 2.

FIGURE 3.1: In these graphs we show the probability distribution of the enhancement factor for different
number of modes N, where the solid line represents the probability distribution described in eq. 3.10 and
the dots are numerical data for the given number of modes. On left hand side graph we show the widening
of the function as the number of N increases, towards a more symmetric function. In the graph on the right

side shows the function for a large number of independent modes N = 1000.

In figure 3.1 we show the normalized probability distribution of the ideal enhancement factor

together with numerical data for different values of N. When N = 1 and therefore only one

polarization mode is present, we obtain the exponential decay in intensity, whereas when two

independent modes are present the Rayleigh distribution appears, as we should expect.42 It is

of particular interest to note how, for small values of N, (easily achievable in small core optical

fibers) the enhancement factor can deviate significantly from the mean value. When the number of

modes is much larger, as shown in the graph on the right, the distribution is closer to a Gaussian,

as a result of the central limit theorem.
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For the numerical analysis of the distribution of the enhancement factor, we defined a trans-

mission matrix with normally distributed terms. The dots in Fig. 3.1 represent the normalized his-

togram of the summation of the absolute value squared of the transmission matrix elements, i.e.

the dots represents the histogram of the summation: ∑N
i=1 | t f i |2= ∑N

i=1

(
| <[t f i] |2 + | =[t f i] |2

)
,

which leads to the distribution of the enhancement factor in eq. 3.8. The solid line curve repre-

sents the normalized χ2
2N function.

3.1.2 Total transmission optimization

In the previous section we have seen how much of the incident wavefront we can redirect into one

selected speckle spot, by looking at the ratio between the optimized and non-optimized fields.

However, this is not the only thing that can be achieved by wavefront shaping the incident beam.

Another application of wavefront shaping that we will implement in the experiment described in

Chapter 5 is the increase of the total transmission of light through a scattering material. In this

section we study the optimal transmission that can be achieved under ideal modulation and ex-

perimental situations using wavefront shaping.

Optimal transmission under ideal modulation

The transmitted field through a scattering material is determined by the incident field and the

transmission matrix (eq. 1.11). The properties of the transmission matrix are well described using

Random Matrix Theory (see Section 1.3). It was found by Dorokhov52 that the transmission

through scattering materials is described by a set of open channels (sample scattering channels

with transmission close to unity) whereas the main contribution to the reflected wave was given by

the closed channels (sample scattering channels with transmission close to zero), as discussed

in Chapter 1. If the incident field is optimized so that it couples to an open channel, in principle it

is possible to transmit all of the light.43,52

Experimental coupling to open channels is a subject of great interest in optics. Kim et al54

designed an experiment where they measured the transmission matrix and calculated the open

channels (or the ones with optimal transmission which was in fact much lower than 1). After imple-

menting the incident field corresponding to that open channel, they achieved a total transmission

4 times larger than the non-optimized one. Choi et al showed as well the possibility to increase

total transmission by a factor of 2 and reduce total reflection by iterative algorithms.26 Another ap-

proach that was proved very useful in exploiting the coupling to high transmission channels was

shown by Vellekoop and Mosk,27 where they showed the increase in total transmission converges

to the average universal value of 2/3 when an optimal focus is created in transmission. This is

because creating a focus in transmission is in fact done by mainly coupling to high transmission

channels.27,68
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One of the difficulties when attempting to couple to the open channels described by Random

Matrix Theory (RMT) is that they are only well defined in the wave-guide geometry,43,52,69 where

the transmission matrix is square, as discussed in Section 1.3. In the slab geometry, for small

thicknesses, there are simulations showing their existence,45 as well as experiments showing that

the DMPK distribution from RMT is still valid to some extent.26–28,54 However in none of these

cases the total transmission achieved was close to full transmission, as one could expect from

coupling to open channels. This tells us that although RMT can be useful to describe some

features or in particular cases, it is not fully describing the real situation.

As discussed in Section 1.3, RMT only only defines well the scattering material when there

are the same number of modes through propagation, i.e. the transmission matrix is squared.43 In

addition, RMT also takes into account energy conservation, which as a consequence considers

the transmission coefficients to be correlated. In a general experiment with a slab as scattering

material, the transmission matrix is not squared. Furthermore, in general only a small part of the

transmission matrix is illuminated in a experiment, so the correlations between the transmission

coefficients described by RMT are not visible. In these cases, it is useful to consider the Uncorre-

lated Transmission Coefficients (UTC) model, where no correlations are considered between the

transmission elements and there are no open or closed channels, as seen in Section 1.4.

We expect our experiments to be better described by the UTC than RMT model, given that the

number of experimentally controlled modes is much smaller than the propagating modes through

the sample, and therefore correlations between transmission coefficients should be negligible.

Whereas in the RMT model the optimal transmission is 1 when coupling to an open channel, the

optimal transmission that can be achieved assuming the UTC model has not been investigated in

detail, and that is the purpose of the next subsection.

Experimental maximal transmission under ideal modulation

Here we derive the optimal total transmission that can be achieved when optimizing every indi-

vidual channel. The procedure of this derivation is based on the optimization performed with the

step-wise algorithm, in order to show the optimal situation that can be achieved with the exper-

imental procedure. We optimize channel by channel and pick the phase of each of them that

give us an optimal total transmission. The relation between input and output fields is given by the

transmission matrix, so following eq. 1.11:

EO1 = t11EI1 + t12EI2 + ... + t1N EIN

EO2 = t21EI1 + t22EI2 + ... + t2N EIN
...

EON = tN1EI1 + tN2EI2 + ... + tNN EIN .

(3.11)
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This equation shows the contribution of each input channel (EIi) to the output ones (EOi). The

total field transmitted when no optimization is done is given by the sum of all the output modes N:

TF = ∑N
k=1 EOk. We assume phase-only modulation, and so the amplitude of the incident field is

not modified in the optimization, therefore the intensity is uniformly distributed over all the incident

channels:

EIi =
1√
N

eiφi , | EIi |2=
1
N

and
N

∑
i=1
| EIi |2= 1. (3.12)

The contribution of the input channel EI1 to the total transmitted field is given by:

TF |EI1= (t11 + t21 + ... + tN1)EI1 =
N

∑
j=1

tj1EI1 =|
N

∑
j=1

tj1 | eiθt1 · | EI1 | eiφ1 , (3.13)

where θt1 is the resultant phase of the sum of transmission matrix components tj1 and φ1 is the

phase component of EI1, which is the phase that varies during the optimization. Using equation

3.12, the contribution of EI1 to the total transmitted field results:

TF |EI1=
1√
N
|

N

∑
j=1

tj1 | e(θt1+φ1) = A1ei(θt1+φ1), (3.14)

where A1 = 1√
N
| ∑N

j=1 tj1 |.

In the step-wise algorithm we modify the phase of one channel (say EI1) and look at the

interference term of the intensity between the contribution of this channel and the rest of the

channels, that works as a reference field. The contribution to the total field of the rest of the

channels that are not being modified is given by:

TF |T−EI1=
N−1

∑
k 6=1

(
N

∑
j=1

tjkEIk

)
=

N−1

∑
k 6=1

(
|

N

∑
j=1

tjk || EIk | ei(θtk+φk)

)
=

N−1

∑
k 6=1

(Akei(θtk+φk)). (3.15)

Again to simplify the notation we define AR as the absolute value of TF |T−EI1 and ψR as the

resultant phase, so that:

TF |T−EI1= AReiψR , (3.16)

where AR =| ∑N−1
k 6=1 (Akei(θtk+φk)) | and ψR = Arg[∑N−1

k 6=1 (Akei(θtk+φk))]. The interference term

between the modulated channel and the reference is given by:

TI =| A1ei(θt1+φ1) + AReiψR |2= (A1ei(θt1+φ1) + AReiψR)(A1e−i(θt1+φ1) + ARe−iψR)

=| A1 |2 + | AR |2 +A1 AR(ei(θt1+φ1−ψR) + e−i(θt1+φ1−ψR))

=| A1 |2 + | AR |2 +2A1 AR cos(θt1 + φ1 − ψR).

(3.17)

Equation 3.17 shows the intensity interference when only one channel is modulated and the rest
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act as a reference. The first two terms of the sum give the offset of the interference, or non-

optimized total intensity as we discuss later. The last term in the sum is the interference term,

that is changed when the modulated phase (φ1 in this case) changes. In order to obtain a good

intuition about the optimal increase in transmission we look at the average value.

〈TI〉 = 〈| A1 |2〉+ 〈| AR |2〉+ 〈2A1 AR cos(θt1 + φ1 − ψR)〉. (3.18)

Using eq. 3.14, the average value of | A1 |2 is given by:

〈| A1 |2〉 = 〈
1
N
|

N

∑
j=1

tj1 |2〉 =
1
N
〈|

N

∑
j=1

tj1 |2〉. (3.19)

In the same way, using eq. 3.16 the average value of | AR |2 is:

〈| AR |2〉 = 〈|
N−1

∑
k 6=1

Akei(θtk+φk) |2〉 = 〈
(

N−1

∑
k 6=1

Akei(θtk+φk)

)(
N−1

∑
k′ 6=1

Ak′ e
−i(θtk′+φk′ )

)
〉

= 〈
N−1

∑
k=k′ 6=1

| Ak |2〉+ 〈
N−1

∑
k 6=k′ 6=2

Akei(θtk+φk)Ak′ e
i(θtk′+φk′ )〉.

(3.20)

The last term of the summation averages to zero given that they are random complex numbers

normally distributed around zero. In this way, using eq. 3.15, | AR |2 becomes:

〈| AR |2〉 = 〈
N−1

∑
k=k′ 6=1

| Ak |2〉 = 〈
N−1

∑
k 6=1
||

N

∑
j=1

tjk | · | EIk ||2〉 =
N−1

∑
k 6=1

1
N
〈|

N

∑
j=1

tjk |2〉 =
N − 1

N
〈|

N

∑
j=1

tjk |2〉.

(3.21)

The average value of the interference term in eq. 3.18 can be split into the average of the cosine

and the average of the amplitude, given that the two terms are independent from each other, so

that:

〈2A1 AR cos(θt1 + φ1 − ψR)〉 = 〈2A1 AR〉〈cos(θt1 + φ1 − ψR)〉. (3.22)

From the definition of variance we know that: Var[A1 AR] = 〈A2
1 A2

R〉 − 〈A1 AR〉2, so that 〈A1 AR〉

can be written as: 〈A1 AR〉 =
√
〈A2

1 A2
R〉 −Var[A1 AR]. Given that the variance of a distribution is

always positive, in order to find a simplification for the calculus of 〈A1 AR〉 we use the inequality:

〈A1 AR〉 ≤
√
〈A2

1 A2
R〉. The term 〈A2

1 A2
R〉 is:

〈A2
1 A2

R〉 = 〈
1
N
|

N

∑
j=1

tj1 |2
(

N−1

∑
k=k′ 6=1

| Ak |2 +
N−2

∑
k 6=k′ 6=1

Akei(θtk+φk)A′kei(θtk′+φk′ )

)
〉,

thus

〈A1 AR〉 ≤

√√√√〈 1
N
|

N

∑
j=1

tj1 |2
N−1

∑
k=k′ 6=1

| Ak |2〉+ 〈
1
N
|

N

∑
j=1

tj1 |2
N−2

∑
k 6=k′ 6=1

Akei(θtk+φk)A′kei(θtk′+φk′ )〉.

(3.23)
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The second term of the summation inside the square root averages to zero as in the previous

case, given that it is the sum of random normally distributed variables centred around zero. This

leads to a simplification in eq. 3.23, so that:

〈A1 AR〉 ≤

√√√√〈 1
N
|

N

∑
j=1

tj1 |2
N−1

∑
k=k′ 6=1

| Ak |2〉 =

√√√√ 1
N
〈|

N

∑
j=1

tj1 |2〉
N − 1

N
〈|

N

∑
j=1

tjk |2〉

=

√
N − 1
N

〈|
N

∑
j=1

tji |2〉,

(3.24)

where we have assumed that the average value of the sums of uncorrelated transmission matrix

elements are equal, so we use the index i for a general term ∑N
j=1 tji. Next we look for the average

value of the cosine. However this is not a regular average, due to the nature of the optimization.

The value of the cosine will change only to maximize the interference term, meaning that it will

not take negative values. The possible values we can obtain when optimizing are 0 if the channel

addressed is already optimal or two times the amplitude of the cosine, in the case the phase of

the channel addressed is minimal. In order to account for this, we will look at the average of the

cosine when varying between 0 and 1 and multiply the result by two to account for the fact it can

double the amplitude. In this way, the average of the cosine is:

〈cos(θt1 + φ1 − ψR)〉 = 2
1

π/2− 0

∫ π/2

0
cos(θt1 + φ1 − ψR)dφ1 = 2

2
π

=
4
π

. (3.25)

Putting it all together, we have that the interference term due to the modulation of one channel is:

〈TI〉 ≤
1
N
〈|

N

∑
j=1

tj1 |2〉+
N − 1

N
〈|

N

∑
j=1

tjk |2〉+
8
π

√
N − 1
N

〈|
N

∑
j=1

tji |2〉. (3.26)

The optimized total transmitted intensity as a result of the optimization of the N channels is given

by multiplying by N the interference term in equation 3.26:

〈TOP
I 〉 ≤

1
N
〈|

N

∑
j=1

tj1 |2〉+
N − 1

N
〈|

N

∑
j=1

tjk |2〉+
8
π

√
N − 1〈|

N

∑
j=1

tji |2〉

= 〈|
N

∑
j=1

tjk |2〉+
8
π

√
N − 1〈|

N

∑
j=1

tji |2〉.
(3.27)

In order to quantify the enhancement due to the optimization of each channel, we calculate the

total transmitted intensity when no optimization is performed and look at the ratio, as we did when

looking at the optimal focusing enhancement. The total field transmitted when no optimization is

performed is given by:

TF |T=
N

∑
k=1

(
N

∑
j=1

tjkEIk

)
=

N

∑
k=1

(
|

N

∑
j=1

tjk || EIk | ei(θtk+φk)

)
=

N

∑
k=1

(
Akei(θtk+φk)

)
, (3.28)
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therefore the non-optimized total intensity is given by:

TNO
I =

(
N

∑
k=1

Akei(θtk+φk)

)(
N

∑
k=1

Ake−i(θtk+φk)

)
=

N

∑
k=k′=1

| Ak |2 +
N−1

∑
k 6=k′

Akei(θtk+φk)A′kei(θtk′+φk′ ),

(3.29)

thus the average intensity becomes:

〈TNO
I 〉 = 〈

N

∑
k=k′=1

| Ak |2〉+ 〈
N−1

∑
k 6=k′

Akei(θtk+φk)A′kei(θtk′+φk′ )〉. (3.30)

Given that the second term in the sum averages to zero, the average non-optimized total trans-

mission is:

〈TNO
I 〉 = 〈

N

∑
k=k′=1

| Ak |2〉 = 〈
N

∑
k=1
||

N

∑
j=1

tjk | · | EIk ||2=
N

∑
k=1

1
N
〈|

N

∑
j=1

tjk |2〉 = 〈|
N

∑
j=1

tjk |2〉. (3.31)

The enhancement in the total transmitted intensity is then given by:

〈η̃T〉 =
〈TOP

I 〉
〈TNO

I 〉
≤
〈| ∑N

j=1 tjk |2〉+ 8
π

√
N − 1〈| ∑N

j=1 tji |2〉
〈| ∑N

j=1 tjk |2〉
= 1 +

8
π

√
N − 1, (3.32)

where the average in the elements of the transmission matrix can be simplified under the assump-

tion that the elements are uncorrelated.

This result shows the optimal enhancement we can achieve when we consider the channels we

address are completely uncorrelated. It is interesting to note the difference between the increase

in total transmission and the increase in the focus intensity. We showed that the enhancement

in total transmission scales with
√

N − 1 whereas the enhancement in the focus intensity scaled

linearly with N, as we showed in equation 3.9.

Numerical evaluation

We performed a numerical optimization that gives the optimal enhancement in transmission when

the UTC model is considered†. We defined a transmission matrix with normally distributed ele-

ments. The incident field, as defined in eq. 3.12 with initial phase set equal zero in all the modes,

except for the one that was being optimized, for simplicity. We added the fields given by the

modulated mode and the rest, and evaluated the resulting intensity |TF |EI1 +TF |T−EI1 |2.

In order to obtain the total optimized intensity due to the modulation of one mode (eq. 3.26) we

calculated the differences in the intensity when choosing the right phase or the original phase, for

each independent mode. After optimizing each different mode we added all of them (equivalent to

the term 8
π

√
N − 1〈| ∑N

j=1 tji |2〉 in eq. 3.32). After adding and dividing by the total transmission,

we obtain the normalized enhancement factor for the total transmission. We repeated the full
†The code used for this numerical simulation can be found on Appendix A.
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optimization process 1100 times to obtain the average enhancement factor described in eq. 3.32.

Figure 3.2 shows the numerical results of the enhancement in total transmission as a function

of the number of degrees of freedom N. The black solid line is a fit to the data in the form

1 + α
√

N − 1 where α is the fit parameter, in this case α = 2.95. The green solid line shows a fit

to the data in the form 1 + β(N − 1) with β the fit parameter, with β = 0.09 in the graph. The dots

in the graph represent the average value of the enhancements achieved in the 1100 realizations.

The error bars represent the standard deviation of the values in the enhancement factor. If the

enhancement in total transmission had the same scaling as the focusing enhancement, it should

follow the green curve. It is clear from the graph that total transmission fits to the 1 + α
√

N − 1

curve, in very good agreement with equation 3.32.

FIGURE 3.2: Numerical data showing the dependance of the enhancement in total transmission with the
number of channels N. The black solid line is a curve following 1 + α

√
N − 1 where α is an adjustable

parameter, and the green curve shows how the total transmission should increase if it was linear in N-1,
that it is clearly off from the numerical data points.

Distribution of the enhancement in total transmission

As we showed for the case of optimal focusing, the optimal total transmission also follows a dis-

tribution. The distribution of the total transmission comes from the distribution of the interference

term, which is the one leading to the increase in transmission. As we saw from equation 3.17

the interference term is the result of the product of two normally distributed terms, each of them

with different mean and standard deviation values. Figure 3.3 shows the distribution of the total

transmission for different number of degrees of freedom N. Each curve represents the histogram

obtained out of 1100 total transmission optimizations. The histograms are not normalized, in order

to enhance visibility they have been enlarged to have a maximal value of 1.

As shown in Fig. 3.3 for small number of N the distribution is asymmetric and shifted to the

left. As the number of degrees of freedom N becomes larger, the distribution becomes more

symmetric, as expected from the Central Limit Theorem.
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FIGURE 3.3: Numerical data showing the distribution of the enhancement factor (P(η)) of total transmission
as the number of degrees of freedom N becomes larger.

3.2 Imperfect wavefront control

So far we have been looking at ideal enhancements assuming perfect phase modulation. In prac-

tice, this control gets reduced by several factors like the number of segments available to control

in the spatial light modulator, individual control of phase or amplitude, etc. All these experimen-

tal imperfections can be captured by the factor γ, which is the scalar product between the ideal

required optimal field Ẽa and Ea, the experimentally synthesized field:27

γ =
N

∑
a=1

Ẽa · E∗a√
Ĩ I

. (3.33)

where Ĩ and I are the ideal and non-ideal intensities, respectively. Given that γ is defined as

the scalar product of the ideal field and the synthesized one, we know that we can write the

synthesized one as the its projection over the ideal one and an error term, so that:

Ea = cos(θ)Ẽa +
√

1− cos2(θ)∆Ea, (3.34)

where in our case cos(θ) = γ. The experimental synthesized field can then be written as:

Ea = γẼa +
√

1− | γ |2∆Ea. (3.35)

where ∆Ea is an error contribution, by definition orthogonal to Ẽa. | γ |2 is known as the fidelity

factor.

Given that | γ |2≤ 1 this result shows the effect in the enhanced intensity under experimental

conditions. If the fidelity factor is known it is then possible to obtain an estimate of the realistic

optimal enhancement factor one can achieve. Given that the enhancement in total transmission

and maximal focusing have a different dependency with N, we expect a different dependency for
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the fidelity factor as well.

3.2.1 Focusing enhancement factor under imperfect modulation

Using equation 3.35 and substituting it into eq. 3.9, the average experimental enhancement factor

becomes:

〈η〉 = 〈| γ |2〉〈η̃〉+ (1− 〈| γ |2〉) ≈ 〈| γ |2〉N when N >> 1, (3.36)

so, the total enhancement is linear to the average value of the enhancement factor.

3.2.2 Total transmission enhancement under imperfect modulation

Given that the γ factor only affects to the term that has been actively modulated, as we saw in

eq. 3.33, when calculating the enhancement in total transmission it should only be added to the

interference term, which is the one we are actively modulating. That is, from equation 3.18, it

should only affect the last term (〈2A1 AR cos(θt1 + φ1 − ψR)〉), given that the rest cancel out when

normalized (eq. 3.18).

Given that the actively modulated field is A1eφ1 , γ only affects this term. Following equation 3.35,

we have that:

A2
1 A2

R =|∑ tj1γẼ1 |2 · |
N−1

∑
k 6=1

(∑ tjkEk) |2 . (3.37)

Following the same procedure given in eq. 3.24 we obtain:

〈A1 AR〉 ≤
√
〈| γ |2〉

√
N − 1
N

〈|
N

∑
k 6=1

tjk |2〉 (3.38)

resulting in an total transmission enhancement:

〈ηT〉 ≤ 1 +
√
〈| γ |2〉 8

π

√
N − 1. (3.39)

In this case, we see how the enhancement in total transmission also scales with the square root

of the fidelity factor, instead of linearly as for the focusing enhancement.

Main contributions to the fidelity factor

The fidelity factor is the combination of different independent experimental contributions.27,44 Con-

ditions such as phase-only modulation or temporal decorrelation of the sample are responsible

for the reduction of the ideal value of the enhancement factor derived in equations 3.9 and 3.32.

In table 3.1 we identify the more important contributions to the total fidelity factor. If the reader is

interested in detailed derivations, Vellekoop’s or van Putten’s thesis are excellent references.44,68
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The total fidelity factor is given by the product of all the different and independent contributions:

| γ |2=| γcont |2 · | γph |2 · | γt |2 · | γlee |2 · | γamp |2 · | γpol |2 . (3.40)

In Chapter 4 we study the case in which speckle illumination is sent to the spatial light modulator

and we detail how such a patterned illumination contributes to the fidelity factor.

3.3 Summary

In this chapter we have studied the ideal wavefront optimizations when focusing the light to a

speckle spot, to be used in Chapter 4. We have studied for the first time at the distribution

of its enhancement factor, showing that the optimal enhancement that can be achieved is not

indeed a fixed number, but if follows a distribution that can lead to significant variations in the

measurements. We have derived the optimal total transmission through a scattering material

under ideal phase wavefront modulation although considering an experimental approach with

the step-wise algorithm, along with its probability distribution, verified numerically. Although this

derivation is not exact and only give us an upper limit on the increase in total transmission, it

provides us with a useful tool to estimate the possible increase in total transmission when full

access to the open channels is not possible due to reduced wavefront control.46 In the final part

we study how imperfections in the wavefront modulation effect the ideal enhancements and how

these should be taken into account.
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SOURCE OF IMPERFECTION CONTRIBUTION

Controlled degrees of freedom44,68:

accounts for the difference between degrees

of freedom of the sample and the ones we

can control with the SLM

| γcont |2= NC
N

NC : controlled degrees of freedom

Phase-only modulation14: accounts for the

case when only phase is being modulated

from the SLM

| γph |2≈ π
4

Binary amplitude modulation15: : accounts

for the case when only amplitude is being

modulated from the SLM

| γba |2≈ 1
2π

Temporal decorrelation: account for the

change in time of the sample or the system

temporal instabilities

| γt |2= τS
τop

τS: time it takes the sample to change (due to

heat, vibrations, ...) leading to a decorrelated

speckle pattern

τop: time of the wavefront optimization.

Discrete phase modulation70: takes into

account the mistakes can be made by

discretizing the steps in the synthesized

phase

| γlee |2=
(

sin(π/Nst)
π/Nst

)2

Nst : number of phase steps

Non-uniform illumination44: takes into

account the case where the SLM is not

illuminated homogeneously

| γamp |2= Aa
2

Aa
2

Aa = 1 + δAa
|Eid

a |
: amplitude error of the field in

channel a. The overline is a spatial average

Single polarization control: accounts for

the case where only one polarization is being

modulated by the SLM

| γpol |2=
NC

p

NC
p +NNC

p

NC
p , NNC

p : Modes of the controlled and

not-controlled polarizations, respectively

TABLE 3.1: Contributions to the fidelity factor arising from different and independent sources
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Chapter 4

Improving beam quality by

wavefront shaping of speckle

patterns

In this chapter we study the implications of manipulating a completely randomized beam using

wavefront shaping, a technique that has been well studied assuming plane wave illumination as

starting point in the wavefront modulator. Then we use this approach to improve the beam quality

of the output of a multimode fiber, converting it to a diffraction limited Gaussian beam, on average

with 300 times more energy than conventional spatial filtering. This approach has the potential

to be used with poor beam quality lasers, originated by the multimode lasing operation. All the

results presented in this chapter are my own work.

4.1 Introduction

The fabrication of high power lasers with single mode operation (or high beam quality) are of great

interest, having a wide range of applications, such as high energy density physics, laser printing,

biomedical imaging, etc.71–73 However the combination of high power and good beam quality

is very challenging and in general, the easiest way to obtain a high power laser is by allowing

multiple transversal modes to be amplified in the gain medium,72,74 which results in a multimode

beam with poor beam quality. The origin of the poor beam quality is the random interference of the

multiple modes being amplified, that results in a random intensity speckle pattern at the output.

This is comparable to the random interference of modes in multimode fibers, where the different

modes travelling at different speeds end up in a random interference, resulting in a speckle pattern

at the output.

Traditional solutions to improve the beam quality of multimode lasers are based on spatial

filtering of the output beam, e.g. placing a pinhole or single mode fiber to filter one spot of the
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speckle pattern. Other more sophisticated solutions are based on bend-induced losses to the

modes different from the fundamental and gain filtering,75,76 however all these approaches are

highly energy inefficient and negate the power gained by employing multimode lasers.

It was shown that wavefront shaping techniques can focus most of the light to a diffraction

limited spot at one end of the fiber (therefore making the beam quality optimal) if at the wavefront

incident on the scattering system can be manipulated by an SLM.77–79 Although this has useful

applications, this approach is not suitable when we only have access to the already randomized

or speckled beam. The manipulation of a partially randomized wavefront is not novel though, and

it has been shown to be very useful to reduce imaging aberrations80 or focus light to a diffraction

limited spot.81 However, when the wavefront is completely randomized, e.g. large variation in the

length scale of λ/2,80,82 as at the output of a highly multimode laser, the efficiency of wavefront

shaping to transform the speckle pattern to a diffraction limited spot is not well studied, only done

in passing.25

In this experiment we study the implications of using wavefront shaping techniques to modify

a speckle pattern illumination. Then we experimentally shape the wavefront of a speckled beam

and transform it into a diffraction limited Gaussian beam. As a proof of concept experiment, for

simplicity and experimental convenience we perform the study using the speckle pattern gener-

ated at the output of a multimode fiber instead of a multimode laser, although this approach can

be very well extrapolated to temporally coherent multimode lasers with static speckle patterns as

output beam (e.g. high power VCSEL lasers74).

4.2 Random interference from a multimode optical fiber and

beam quality

In this section we present a brief background to understand the origin of the random interference

pattern observed at the output of a multimode fiber when coherent light travels through it.

Optical fibers are broadly classified into two types: single mode and multimode fibers, depend-

ing on the number of propagating modes they support. In single mode fibers only one mode can

propagate and the output is given by the shape of this mode, a diffraction limited Gaussian beam

in conventional fibers. Multimode optical fibers are, in simple terms, large core fibers supporting

several propagating modes. The total number of propagating modes in a multimode fiber, N f

depends on its normalized frequency V (or V-parameter), containing the useful parameters of the

fiber, such that:4,83

N f ≈
V2

2
and V ≈ 2π

λ0
(NA)a (4.1)
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where λ0 is the source wavelength in vacuum, NA is the numerical aperture of the fiber and a is

the core radius, in the case of a step index fiber†.

In order to gain an intuitive and reasonably accurate understanding of mode propagation in

optical fibers, we rely on geometrical ray optics. From this perspective, each propagating mode

can be treated as a ray travelling with a given angle.42,83 Depending on the angles the rays

are propagating with, they travel different distances, given by: d = L/ cos(θ)
c/n1

, as shown in the

schematic on Fig. 4.1a, where L is the length of the fiber, θ the angle of the propagating ray with

the horizontal axis, and c/n1 the speed of light in the medium. Given that all rays travel at the

same speed, different angles lead to different delays in leaving the medium, resulting in different

phase delays. If the phase delays between different modes are larger than 2π and the source is

coherent, all the different modes will interfere randomly, creating a speckle pattern at the output,42

as shown in Fig. 4.1b.

FIGURE 4.1: a) Schematic of a step-index multimode fiber where the red and black arrows represent
propagating rays at different angles. b) Typical speckle pattern generated at the output of a multimode fiber

when coherent light is propagated.

4.2.1 Beam quality

The quality of a laser beam is a term used to characterize how tight we can focus the laser.

A standard way of quantifying the beam quality is the M2 beam quality factor.84 This factor is

defined as the beam parameter product (product of the beam radius at the focus waist (ω0) and

the far-field divergence angle of the beam Θ), divided by λ/π (beam parameter product of a

diffraction-limited Gaussian beam with the same wavelength):

M2 =
πω0Θ

λ
. (4.2)

The optimal beam quality factor M2 is achieved by a diffraction limited Gaussian beam, result-

ing in M2 = 1. At the focus of a diffraction limited spot the wavefront is flat, therefore any distortion

that deteriorate the flatness of the wavefront, such as the random interference resulting from the

multimode fibers, make the beam quality worse, and consequently the M2 factor larger.
†We use the definition of the V-parameter for step index fibers because that is the kind of fibers we use in the

experiment presented in this chapter.
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4.3 Effect of speckle pattern illumination on focusing enhance-

ment

In Chapter 3 we investigated the optimal focusing enhancement that can be achieved assuming

ideal modulation. In order to obtain the optimal enhancement (see Section 3.1.1), we assumed

we could implement any desired wavefront, and the optimal was given by the Cauchy-Schwartz

inequality. Then, in order to account for imperfections in the modulation, we defined the fidelity

factor, that takes into account if we can only modulate the phase or amplitude, controlled modes in

the sample, etc. An important assumption underlying all this derivation was that in the experiment

you can start from a plane wave to which you can in principle modulate the phase and amplitude.

However, if the illumination of our wavefront modulator is a speckle pattern, the starting point will

be an inhomogeneous intensity, as shown in Fig. 4.2a) which restricts importantly the options of

modulation and makes the ideal focusing derivation not obviously valid in this case.

Although naively one could think the two cases are equivalent, there are indeed important dif-

ferences: a speckle pattern has naturally mixed polarizations and inhomogeneous spatial intensity

and phase. When different modes propagate through a fiber, the original polarization is scrambled

and it results in a pattern where both orthogonal polarizations are present. Given that wavefront

shaping is based on modifying the interference and different polarizations interfere independently,

only one polarization can be actively controlled at a time. If we only control one polarization, the

total controllable degrees of freedom is reduced by half (if both polarizations are equally present)

from the beginning.

FIGURE 4.2: a) Simulated intensity speckle pattern. b) Phase pattern of the speckle in panel a)

The second important difference comes from the spatial inhomogeneities in phase and in-

tensity of the speckle pattern, as seen in Fig. 4.2. In the regions where the phase is not well

defined (phase vortices), the intensity of the pattern is zero. Obviously the SLM cannot act over

these regions, given they have zero intensity, which reduces even more the degrees of free-

dom the SLM can control. The condition for the optimal focusing enhancement (equality on the

Cauchy Schwartz condition in eq. 3.3) is that the modulated wavefront Ẽi ∝ t∗f i which imposes
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that | Ẽi |=| t f i | and Arg[Ẽi] = Arg[t∗f i]. When speckle illumination is used, there will be regions

where the intensity cannot match the required one (regions where intensity is zero, given that it

can not be increased by the SLM). If either the amplitude or the phase can not perfectly match for

all channels i in either the amplitude or phase, the equality is not fulfilled, which decreases the

optimal enhancement factor.‡

Deriving from scratch the ideal enhancement that can be achieved under speckle illumination

is not straightforward, given that now we can not use the Cauchy-Swartz inequality, as done in

Section 3.1.1. As an alternative, we attempt to account for the speckle illumination in the fidelity

factor (see Section 3.2 for details). As mentioned before, the consequences of speckle illumination

was the reduced control due to the mixture of polarization and intensity inhomogeneity. The

contribution to the fidelity factor from the polarization depends on the fraction of light in each of

the polarizations. If we assume that both polarizations are equally present§, we obtain:

| γpol |2=
1
2

. (4.3)

We can account for the effect of the inhomogeneous intensity by using:

| γa |2=
Ai

2

Ai
2

, (4.4)

where Ai = 1 + δAi
|Ẽi |

is the variation in amplitude of the field over different incident channels and

the over-line represents the spatial average. In particular, when contrasted speckle (coherent and

initially polarized source) is the source of illumination, the fidelity factor becomes: | γa |2≈ 1
2 , so

reducing by half the possible enhancements we could achieve with a plane wavefront.

In summary, the influence of using speckle pattern as the source of illumination, results in

a fidelity factor of: | γa |2 · | γpol |2≈ 1/4. However, it is important to note that this is an

approximation, a full new derivation would be necessary to rigorously obtain the optimal focusing

enhancement of a speckle pattern.

4.4 Experimental results

In this section we present an experiment in which we use wavefront shaping techniques to improv-

ing the beam quality at the output of a multimode fiber, when only access to the random speckle

pattern is available. A schematic of the experimental apparatus is shown in Fig 4.3. The laser

source used was a He-Ne laser (632.8 nm) coupled to a multimode fiber (a = 275 µm, NA = 0.22).
‡In Appendix A there is a simple code verifying that when the amplitude condition is not fulfilled, although the condition

in the phase might be maintained (Arg[Ẽi ] = Arg[t∗f i ]), the average focusing enhancement drops by roughly 1/2.
§This is true in our experiments, and most cases where speckle is generated, being a notable exception the speckle

pattern generated by single scattering in diffusers.



44 Chapter 4. Improving beam quality by wavefront shaping of speckle patterns

At the output of the multimode fiber the random interference of the propagating modes generate

a high contrast speckle pattern. The beam was then collimated by a 400 mm focal length lens

and sent to a SLM to shape the wavefront. The focal length of the lens and the distance from the

fiber to the lens was chosen so that the collimated speckle pattern had the speckle spots of the

size of the phase pixels (or macropixels) on the DMD, that was 129.6× 129.6 µm.‡ A second lens

of 750 mm focal length collected the modulated beam and focused it to its focal plane. We used

a pinhole at the focal plane, of a size slightly larger than a speckle spot (100 µm in diameter), to

filter out a diffraction-limited spot (or speckle spot). Using a photodiode behind the pinhole (to gain

speed) we optimized the intensity passing through in it. That intensity was then used as feedback

for the algorithm controlling the SLM. We could have used a CCD camera as feedback element,

instead of the pinhole with the photodiode, however we decided to use the latter to gain speed in

the optimization.

FIGURE 4.3: Schematic of the experimental setup used to improve the beam quality of a multimode beam
by wavefront shaping techniques. The output of the multimode fiber is collimated and sent to the SLM,
where an algorithm changes the phase of the wavefront in order to compensate for the random scattering
of the modes in the fiber. An iterative algorithm evaluates the phase compensation needed by the SLM, in

order to deposit the maximal energy into a diffraction limited spot.

4.4.1 Results: beam quality and total intensity measurements

In Fig. 4.4 we show the images of the beam waist at the focal length of the second lens (L2

in the set-up schematic), when the beam is not optimized (panel a), when it has been spatially

filtered by a single mode fiber (panel b), pinhole (panel c) and when it has been optimized through

the pinhole. In order to evaluate the beam quality of this and subsequent beams, we use the

standardized beam quality factor M2, as described in Section 4.2.1, which compares any beam

with an ideal Gaussian diffraction-limited beam.84

‡As we discussed in Chapter 2, given that different speckle spots are (to a very good approximation) independent
from each other, the most efficient manipulation will happen when we control them also independently.
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FIGURE 4.4: Images of the beam waists at the focal plane of a 750mm lens under different configurations.
a) Beam waist of the output from the multimode optical fiber, showing the speckle pattern of the beam. The
beam quality factor is M2 = 59± 5. b) Beam waist of the output of a single mode fiber. The beam quality
factor in this case is 1.4± 0.4 and the intensity deposited is ≈ 0.5% of the total intensity in the multimode
beam. c) Beam waist of a filtered speckle spot using a 100µ diameter pinhole. The beam quality factor
in this case is 1.5± 0.3. The intensity deposited is ≈ 0.5% of the total intensity in the multimode beam.d)
This picture shows the beam filtered through the pinhole after the completion of the wavefront shaping
optimization. The beam quality factor in this case is 1.2± 0.3. The intensity deposited is ≈ 25% of the total

intensity in the multimode beam.

The beam waist at the output of the multimode fiber (Fig. 4.4a) shows a speckle pattern with

a large number of diffraction limited spots (N ≈ 2000). This results in a poor beam quality, with

an M2 factor equal to 59± 5. If we couple the beam to a single mode fiber, we can readily obtain

a diffraction-limited spot at the beam waist (Fig. 4.4b). In this case M2 = 1.4± 0.4, which is very

close to the ideal value of 1 for an ideal diffraction limited Gaussian beam. However the energy

conversion from a multimode output to a single mode one is very energy inefficient, coupled power

was less than 0.5% in our experiments. Another equivalent and conventional solution is to use a

pinhole to spatially filter a single spot from the multimode pattern in Fig. 4.4a. The spatially filtered

beam is shown in Fig. 4.4c, and although the beam quality is again improved, holding a value of

M2 = 1.5 ± 0.3, the energy efficiency is reduced to less than 0.5%. In Fig. 4.4d we show the

result of using wavefront shaping techniques to increase the intensity deposited into the chosen

diffraction limited spot. In this experiment we achieved focusing enhancement factors of 300± 13,

i.e. the intensity in the optimized spot became 300 times larger than the average intensity of any

spot in the multimode beam (Fig. 4.4a). An immediate consequence of this is the improvement of

the M2 factor from 59± 5 to 1.2± 0.3 for the optimized spot.¶

In Fig.4.5 we show the increase in the intensity deposited in the optimized diffraction-limited

spot as the algorithm progresses. The power of the filtered mode is normalized by the total power

of the unoptimized multimode beam (shown in Fig. 4.4a). From this graph we can see that the

power deposited in the optimized mode goes from an initial value of the total intensity smaller

than 0.5% (when considering a simple pinhole filtering) to a value of 24± 1% of the total intensity,

achieved when the transmission through the pinhole is optimized.

To conclude, we compare the experimental focusing enhancement factor obtained with the

expected one, given by eq. 3.36 that accounts for the experimental conditions in the fidelity factor

| γ |2. The total number of degrees of freedom in this case is given approximately by the number
¶This experiment was performed 13 times. The uncertainty in the enhancement factor is given primarily by the different

values obtained in the different measurements. The uncertainty in the beam quality is dominated by the uncertainty in the
measurement of the beam diameter, for which the camera had few pixels to resolve. This measurement could be improved
using other methods to measure the diameter, such as knife edge measurements.
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of speckle spots in the multimode output N ≈ 2000. Given that the illumination beam on the SLM

is a speckle pattern, if we take into account the amplitude inhomogeneity and single polarization

control, as discussed in Section 4.3 we have a contribution to the fidelity factor of | γspeckle |2∼

1/4¶. This limits our maximal enhancement factor to u 500. Other experimental factors also have

to be included, such as phase-only modulation (| γph |2≈ π/4), temporal decorrelation (| γt |2≈

0.9) and discrete phase modulation (| γlee |2≈ 0.98). All these factors account for imperfections

in the wavefront modulation, which result in an expected enhancement factor η = η̃ | γ |2≈ 340.

This value is in good agreement with our experimental results (300± 13). This shows that even

though the approach followed to estimate the optimal enhancement factor and the influence of

speckle illumination was not rigorously correct (as discussed in Section 4.3), it is still a useful

theoretical framework even when speckle patterns are used as illumination.

FIGURE 4.5: Total intensity transmitted through the pinhole as the optimization algorithm evolves. We can
see the increase in transmission stagnates at approximately 24% after 24500 iterations.

4.5 Summary and outlook

In this chapter we have discussed the effect of having speckle patterns rather than plane waves

as illumination for the efficiency of wavefront shaping techniques. We have seen that even though

the current theoretical framework cannot be rigorously applied to the case of speckle illumination,

it is possible to give a very good estimate of the expected experimental focusing enhancement.

We have also discussed the problem that multimode lasers have with the output beam quality,

and demonstrated that wavefront shaping techniques are capable of improving the spatial filtering

of the beam while maintaining around 300 times more intensity than when no optimization is

done, with a total optimized intensity of 24%. This opens new opportunities to use wavefront

correction techniques as an added component at the output of multimode lasers, as long as they

are coherent in time. This correction might be done with an SLM or it might also be in the form of

an incorporated phase mask at the output.

¶In our experiment both polarizations are roughly equally present in the speckle pattern, so | γpol |2∼ 1/2, therefore
leading to | γspeckle |2∼ 1/4
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Chapter 5

Enhanced deep detection of Raman

scattered light by wavefront

shaping

The work presented in this chapter is the result of a collaboration with Prof. Nick Stone and Dr.

Adrian Ghita from the Biomedical Physics Group at the University of Exeter and our group lead

by Dr. Jacopo Bertolotti. I did all the numerical calculations presented in the chapter, as well as

the proof of concept experiment presented in Section 5.2. I performed the main experiment and

improved the algorithm for the wavefront optimization with the help of Dr. Tom Vettenburg. The

guidance and help of Dr. Adrian Ghita was particularly useful in the part involving the measure-

ment of the Raman signal, as well as in the post-analysis.

The final goal of the experiment presented in this chapter is to enhance the optical detection of

tumours (or other elements) embedded in biological tissue (such as human breast) using wave-

front shaping techniques. As a first step, in this experiment we aim to improve the detection of

elements hidden behind a highly scattering medium. The approach we use to detect the hidden

element (and future detection of tumours) is based on studying the Raman inelastic scattered

light, that provides a unique fingerprint of the chemical composition of the illuminated element

(as detailed in Section 5.1). In order to improve the detection of the Raman signal of elements

deep inside the medium, we increase the the light transmitted through the medium (equivalent

to increase the penetration depth of the incident light, as we will see later in Section 5.6), using

wavefront shaping techniques. Given that we use a fast Digital Micromirror Device (23.1 kHz re-

fresh rate), this approach could potentially be used for almost real-time optimizations, given that

biological tissue can be considered static for a few tens of milliseconds.60,61

We first introduce Raman spectroscopy, its advantages and the main limitation, that comes

from a reduced penetration depth of the pump (or incident illumination). We then present the

potential of wavefront shaping techniques to increase the penetration depth. Next we introduce a
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numerical study to show the changes in the distribution of light inside the medium when the wave-

front is (or is not) optimized, and its consequences for the Raman light detection. We then present

the experiment and the experimental results, where we show the capability of increasing the in-

tensity inside by almost 50%. In the final section we make an estimate of the extra penetration

depth that the increase in pump intensity inside the medium would generate.

5.1 Introduction to Raman spectroscopy

Raman spectroscopy is an optical technique capable of identifying the chemical composition of

the material that is being illuminated, via the analysis of the spectrum of the Raman inelastically

scattered light. Although the light incident on a material is mostly elastically scattered, a small

fraction of it (around 10−3 in gases to 10−6 in solids85) is inelastically scattered by the molecules

of the material. In the semi-classical theory of scattering, under the dipole approximation (light

wavelength much larger than the dimension of an atom) in the elastic scattering, a molecular sys-

tem is on a fixed quantum state and the scattering is due to the periodic deformation of the state,

caused by the electric field of the incident light. On the other hand, inelastic Raman scattering is

associated with a quantum transition in the system. If the incident field excites the molecule with

frequency ω and it causes the molecular system to go from an initial quantum state to a different

one, that energy difference is compensated by a frequency change in the outgoing scattered pho-

ton ω±∆ω.† In this way, the inelastically scattered light has a spectrum different from the incident

one, that is unique to any different chemical composition. The study of the spectrum of the Raman

scattered light provides a unique way of identifying the molecules and chemicals of the illuminated

element, which is very useful in imaging88–90 and in sensing, e.g. to distinguish between cancer-

ous or benign tumours in medical diagnosis.9,91–94 In this work we are particularly interested in

the sensing application of Raman spectroscopy. For sensing, the main limitation arises from the

diffusive transport of light in scattering media, that makes the intensity decay roughly linearly with

the depth, as discussed in Section 1.1 and represented in Fig.1.1. If the tumour or chemical to

be detected is deep inside the medium, there will be very little intensity reaching it, and there-

fore the Raman scattered light (proportional to the pump intensity‡) will be very weak or even

undetectable. Naively one might think we could solve that problem by increasing the intensity

of the pump, to consequently increase the intensity inside. However this approach is not always

valid, given that one might damage the illuminated tissues, overheating them.95–97 As a conse-

quence, Raman spectroscopic techniques are usually restricted to work near the surface of the

material.9,94,98 In this work we show that wavefront shaping techniques can significantly increase

the intensity delivery inside the scattering material by just modifying the phase of the incident

†A full explanation of the semi-classical theory on Rayleigh and Raman scattering can be found in the literature.86,87

‡We study spontaneous Raman scattered light which is linear with the pump intensity90
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wavefront, mitigating the problem of penetration depth of the pump light and avoiding the need to

increase the pump power.

5.2 Increase of the transmitted intensity by wavefront shaping

When light impinges onto a medium with different refractive index, part of the energy is reflected,

and the rest, transmitted (assuming a non-absorbing medium). Energy conservation tells us that:

R + T = I0, where I0 is the initial intensity. If we want to illuminate a target embedded inside

the medium, all the light that is being reflected is not useful for this purpose. In principle, one

would like to reduce or eliminate the fraction of light reflected in these cases and increase the

transmitted one, but this is not possible to do with conventional techniques.

With the development of wavefront shaping techniques, it was shown that it is possible to

increase the transmission of light through a scattering material.26,27,54 A schematic to show this

idea is shown in Fig. 5.1, where panel a) shows the case where the incident beam is not optimized

and a large fraction of light is being reflected, and panel b) the situation in which the wavefront

has been modified to maximize transmission. In principle, in a wave-guide geometry it is possi-

ble to transmit all the incident light by coupling to the open channels of the sample‡, however, in

scattering media with slab geometry, limited control of the wavefront from the SLMs and imper-

fections in the modulation reduce considerably the efficiency of these techniques, as discussed in

Sections 1.3 and 3.1.2.

FIGURE 5.1: Schematic showing the amount of light reflected and transmitted when the wavefront incident
on the material is not optimized (left) and when it is optimized to increase transmission through it (right).

As a proof of concept, to know how much we could increase the transmission in our experi-

mental conditions, we designed an experiment in which we used a scattering sample of TiO2 (of

thickness 8± 3 µm) and designed an algorithm to increase the total transmission through it. In

Figure 5.2 we show the results of this experiment, where we can see the increase in transmis-

sion as the algorithm evolves, and at the same time, the decrease in the reflected intensity as

dictated by energy conservation. In order to fully understand the plots in Fig. 5.2 it is important
‡The description of open and closed channels is in Section 1.3
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to note that, to a very good approximation we were collecting the total transmission§ but not the

total reflection, only around 70% of it, due to the numerical aperture (NA = 0.9) of the collection

microscope objective. Given that we do not know the reflection properties of our sample, it is not

possible to determine exactly the total reflection when only a fraction of it is retrieved. However,

it is clear from the data that there is a considerable drop in the reflected light as the transmitted

increases by a factor 2.3.

In this experiment we are not coupling all the light to open channels of the sample. First of

all because in a slab geometry they are not well defined (as discussed in Section 1.3), second,

because although the total transmission is 2.3 times larger, we are not achieving total transmission

of 100%, as shown in the vertical axis of Fig.5.2a). As we have already discussed, there are

simulations45 showing the existence of open channels for scattering slabs of small thicknesses, as

well as experiments that show the possibility to couple more light to these open channels.26–28,54

Given that we are able to increase the total transmission by a considerable amount (obtaining

similar and in some cases larger increases in total transmission than the cited examples in the

literature), we claim we are depositing as well more intensity into the open channels of our sample,

which results in the increase of the total transmission.

FIGURE 5.2: Experimental results showing the increase in total transmission through a scattering material
(a) as reflection is decreasing (b), as the algorithm evolves.

A very interesting property of open channels is that they have a symmetric energy distribu-

tion inside the medium.45,69 This implies that when optimizing the total transmission through a

scattering medium, given that we distribute more light to open channels, we are indeed modifying

the energy distribution inside, going from the originally diffusive intensity distribution (represented

in Fig.1.1) to a symmetric one, peaked at the centre of the sample.28,45,69 This difference in the

energy distribution can be very useful to deposit more light at deeper positions within the sample

and therefore increase the penetration depth inside.
§We can assume total transmission was collected, given that the photo-diode was around 150µm away from the

sample and its collection area was much larger than the output spot (photo-diode diameter is 9.8 mm and the diameter of
the output illuminated spot ≤ 100µm)
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5.3 Energy density distribution of optimized and non-optimized

wavefronts

As we mentioned in the introduction of this chapter, the main limitation to detect the Raman

signal from elements embedded deep in scattering media is the decay of the pump intensity

at large depths, due to the diffusive scattering process that light undergoes. The energy density

distribution inside the material is given by the solution to the diffusion equation of the medium. For

the slab geometry (that is the case of our experimental sample¶), we can use the one dimensional

diffusion equation in the direction of propagation z, such that:

∂I(z, t)
∂t

= D∇2 I(z, t) + S(z, t), (5.1)

where D is the diffusion coefficient and S(z) the diffusive light source. The steady state solution of

the diffusion equation can be written in the complete basis of the Laplacian. In this way the result-

ing energy density in the medium can be described as a linear combination of the eigenvectors of

the Laplacian. The steady state solution to equation 5.1 in a slab geometry across the direction

of propagation of light is given by:99

Id(z) =
∞

∑
m=1

Im(z) =
∞

∑
m=1

Cm sin
(

πm
z + ze1

Lex

)
, (5.2)

where m is the eigenvector index, Cm is the corresponding coefficient, Lex = L + ze1 + ze2 is

the effective thickness of the sample and ze1, ze2 the extrapolation lengths at the front and back

surfaces of the sample, respectively, as defined in Section 1.1. The eigenvector’s coefficients are

derived in the literature99 and given by:

Cm =
AmL2

ex
π2m2D

sin
(

πm
zinj + ze1

Lex

)
, (5.3)

where zinj is the thickness at which the light becomes diffuse, or the position of the diffuse source.

The elements Am are given by:

Am =

2I0

[
πmzinj cos

(
πmze1

Lex

)
− e
− Lex

zinj
(

πmzinj cos
(

πm Lex+ze1
Lex

)
+ Lex sin

(
πm Lex+ze1

Lex

))]
L2

ex + π2m2z2
inj

+
2I0Lex sin

(
πm ze1

Lex

)
L2

ex + π2m2z2
inj

.

(5.4)

¶We use a round sample with a diameter of 18mm and the thickness of the layer over which the optimization is
performed is of 29± 2µm. The illumination spot is approximately 66µm in diameter at the entrance and approximately
112µm at the back of the sample, still much smaller than the lateral dimensions of the sample, therefore edge effects are
negligible and slab geometry is applicable in our case
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If we sum all the solutions for the steady-state diffusion equation (Im(z) in eq. 5.2), it results in the

energy density distribution for the non-optimized wavefront, described by eq. 1.7.

The use of diffusion theory for light propagation is valid as long as we neglect the interference

effect. It is useful to determine how light propagates through a disordered medium, when the

incident light (or light propagation) is not being modified, e.g. by wavefront shaping techniques.

In our case, we optimize the wavefront in order to have maximal total transmission, and therefore

we are modifying light propagation. As a consequence regular diffusion theory is not valid to

describe the propagation of the optimized wavefront. As we mentioned earlier, when we optimize

the transmission of the pump and couple more light to the open channels, the energy follows a

different distribution.

The energy distribution of an open channel has been investigated in the literature45,69 and

several reasons have led to the conclusion that their energy distribution is very similar to the one

described by the fundamental solution (m = 1) of the diffusion equation (green curve in Fig. 5.3a).

The first main reason is that the fundamental solution is the one that contributes the most to the

total transmission, as shown in Fig. 5.3b). As we mentioned before, the optimized wavefront is

distributing more light to the open channels, so it should be coupling to the solutions that contribute

the most to the transmission. The second important reason is that, as shown in the literature, the

energy distribution of open channels is symmetric and peaked at the centre of the sample,45,69

which are the features of the fundamental solution as well.

Taking all the above arguments into account, although we know that experimentally we are not

coupling all the light into an open channel, it is safe to assume that we are coupling more light to

the open channels. Although we do not know the energy distribution in our experimental case, it

should be in between the diffusive and open channel distributions. For the sake of the comparison,

we investigate the energy distributions in the two extremes: diffusive energy distribution (blue

curve in Fig. 5.3a) and symmetric energy distribution corresponding to an open channel (green

curve in Fig. 5.3a), representing the normalized ‖ distribution of the energy when the wavefront

is not optimized and when it is optimized, respectively. Next we study how the different intensity

distributions of the illumination pump can affect the collected forward and backwards scattering of

Raman light†† (FS and BS respectively) of elements at different depths.

The solution to the diffusion equation depends on different parameters of the sample, which

set the boundary conditions to solve the equation, as seen in Section 1.1. In the numerical

calculations shown in Fig. 5.3, the parameters of the sample are: `t = 0.6 µm, L = 29 µm,

R = 0.58, D = vE`t
3 ≈ 26.5 m2/s, zinj = `t, ze1 = ze2 = 2

3 `t
1+R
1−R

= 7.6 µm, Lex = L + ze1 + ze2.

These parameters were chosen to match the sample we used in the subsequent experiment.

‖Details on the process of normalization is detailed in Appendix B
††Raman scattered light is in principle scattered isotropically.90 We make the distinction between forward and back-

wards scattered light to represent the light that is being collected in the forward direction (i.e. transmitted from the slab)
and the light that is being collected in the backwards direction (i.e. reflected from the slab).
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FIGURE 5.3: a) Normalized energy distribution of the pump light when the beam is not optimized (blue)
and when all the incident energy is optimized and coupled to the fundamental solution of the diffusion
equation (m=1). b) Contribution to the total transmission of the different solutions of the diffusion equation,
normalized to the transmission of the fundamental mode. c) Forward scattered Raman light (FS) of a target
at position zR/`, when the beam is optimized (orange) and when it is not optimized (purple). d) Backwards
scattering of the Raman light (BE) of a target at position zR/`, when the beam is optimized (orange) and

when it is not optimized (purple)

In Fig. 5.3b) we plot the normalized contribution of each of the solutions of the diffusion equa-

tion (in eq. 5.2) to the total transmission through the sample, following eq. 1.8. As discussed

before, if we manage to couple to an open channel of the sample, the energy distribution would

be equivalent to that of the fundamental mode of the diffusion equation, that as we can see, it is

the one contributing the most to the total transmission.

Taking into account the intensity distribution of the optimized and non-optimized pump light,

we modelled how much Raman scattering we can obtain from an element placed at different

depths inside the sample. In order to do that, we assumed that the Raman scattering of the

element we want to detect is originated at a specific position (zR). Once generated, the Raman

signal will propagate diffusively to the exit of the sample. Under the assumption that the Raman

signal is only generated at position zR, it is equivalent to assume it is generated by a point source

S(z) = I0δ(z− zR), and therefore the intensity distribution follows eq. 1.6. We then calculated the

normalized forward and backwards Raman scattering from the point source as the position of the

element varied between zR = 0 and zR = L (see Appendix B for full details on this calculation)

if the pump light was the same at all positions inside the medium. However this assumption

is false, as we can see in Fig. 5.3a). To obtain the realistic Raman scattering in the forward

and backwards directions we weighted the normalized values by the intensity distribution of the

pump at each position in depth (detailed in Appendix B). In Fig. 5.3c) and Fig. 5.3d) we plot
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the forward and backwards Raman scattering weighted by the pump distribution, respectively.

In the horizontal axis we plot the position in depth normalized by the transport mean free path,

to give an insight on the optical thickness of the material. In the vertical axis we represent the

percentage of the Raman signal that is being scattered in the forward and backwards direction,

assuming an absorption-emission ratio of 1, for simplicity. The purple curves represent the Raman

signal emitted with the non-optimized or diffusive pump intensity, whereas the orange curve is the

resulting Raman scattering with the optimized pump.

An important feature from the graphs in Fig. 5.3c) and Fig. 5.3d) is that when the Raman

target is close to the surface where the pump is incident (zR ' 0), given that the non-optimized

pump deposits more energy in that region (Fig. 5.3a), there is not much difference between the

optimized and non-optimized pumps. However, when the Raman element is around the centre

of the sample, the optimized pump is much more efficient in generating Raman signal. This

is particularly interesting because the centre of the sample is the hardest region to access for

conventional Raman spectroscopy.

The study shown in Fig. 5.3 was done for a sample with optical density OD = L/`t u 48,

which is comparable to approximately 5 cm of fatty tissues, such as human breast, where the

transport mean free path is ≈ 1 mm.32,34 We chose these parameters because they matched the

experimental sample of the experiment detailed in the next section. However, in order to see how

our approach would work for even optically thicker samples, we repeated the calculations for a

thicker sample, L = 120 µm, resulting in an optical density OD = 200. This would be comparable

to approximately 20 cm of breast tissue.

FIGURE 5.4: a) Normalized intensities distributions of a diffusive pump (blue curve) and an optimized pump
coupling to an open channel of the sample (green curve). b) Forward Raman scattered light depending on
the position of the Raman element (zR) and the pump distribution. The orange curve represents the Raman
scattering generated by the optimized pump, and the purple curve, the Raman scattering generated by the
diffusive one. c) Backwards Raman scattered light as a function of the position of the Raman element (zR)
and the pump distribution. The orange curve represents the Raman scattering generated by the optimized

pump, and the purple curve, the Raman scattering generated by the diffusive pump.

In Fig. 5.4 we present the numerical results obtained in this case. In Fig. 5.4a) we plot the

normalized intensity pumps for a regular diffusive pump (in blue) and for the optimized wavefront

coupled to an open channel (in green). As we can see, in this case the energy density of the

non-optimized pump becomes very small for large optical densities, and given that by definition

the optimized wavefront is being fully transmitted (given that it is coupled to an open channel),
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there is a larger difference between the two intensity distributions. When the non-optimized pump

is used, we find that the intensity collected higher near the surface of illumination (z = 0), in

agreement with the results in Fig. 5.3. When the optical density gets larger, the collection of

Raman signal becomes very small. When the optimized pump is used, we see how much more

energy is at deeper positions of the medium, therefore generating more Raman scattering. As a

consequence we see a high increase in the collected forward and backwards Raman scattering at

for deeper regions (Fig. 5.4b, c), particularly near the centre of the medium, which is the hardest

region to detect for conventional Raman spectroscopy, given that it is not easy to access it with

high intensity (conventional) pump.

As a summary of this section we have seen that an optimized pump is very useful to re-

trieve the Raman signal from elements deep inside a scattering medium, the region of hardest

access for conventional Raman spectroscopy. Additionally, we have seen that as the scattering

medium becomes thicker, the optimized pump presents more advantages in comparison to the

non-optimized one. Although (as we mentioned at the beginning) in our experiments we are not

achieving the distribution of the perfectly optimized one presented in this section (given that we

are not coupling to the open channels of the sample), when we increase the total transmission

through the medium, we are depositing more light into these channels, so we expect the energy

distribution to be in between the two presented here. As a consequence, we expect that our

experimentally optimized wavefront will present an advantage (versus the non-optimized one) in

retrieving the Raman signal of an element deep inside a medium, as we verify in the next section.

5.4 Experiment

In this experiment we increase the Raman scattered light of an element hidden behind a strongly

scattering layer, by means of increasing the total transmission of the pump light. By increasing the

total transmission of the pump we intend to couple more light to the open channels of the sample,

which should deposit more pump intensity at deeper layers of the sample and, consequently,

generate more Raman signal of elements embedded deep inside, as discussed in the previous

section.

The experimental apparatus is shown in Fig. 5.5. The pump laser has central wavelength in the

near infrared λ = 785 nm, to achieve larger penetration depth in biological tissue. The wavelength

region that allows maximal penetration in the optical regime is roughly between 700and900 nm,32,34

where the absorption band of water has a broad dip. The pump laser is incident on the Spatial

Light Modulator (SLM) that iteratively adapts the phase profile of the wavefront. The modulated

wavefront is focused on the sample by a microscope objective. A photo-diode collects the total

transmitted light (mainly from the pump) and utilizes it as feedback for the algorithm controlling the
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FIGURE 5.5: Schematic of the experimental apparatus used to increase total transmission through a scat-
tering medium whilst the Raman spectra is collected in reflection. Red arrows represent the pump light at
785 nm and the purple arrow represents the longer wavelengths generated due to the spontaneous Raman

scattered light.

SLM. A dichroic mirror allows us to filter the pump laser line and analyse the longer wavelengths

of the Raman scattered light.

The sample is made of two different scattering materials squeezed between two microscope

cover slides. The reason to use a two layered sample is to test how much light we are depositing at

a different depth when the total transmission is increased. The incident beam is first impinging on

a layer of a highly scattering material (TiO2) and right behind it there is an inner layer of a common

biological element: Hidroxyapatite (HAP)‡‡. The spectrometer collects the backscattered Raman

light, mostly the signal form the first (or outer) layer of TiO2. We chose the thickness of this

scattering layer so that we could still collect a small amount of Raman signal from the inner HAP

layer, to characterize the optimization. We increase the total transmission through the sample and

evaluate the intensity from the different layers by looking at the intensity of the Raman spectrum

of the different layers. Given that spontaneous Raman scattering is linear with the pump intensity,

the intensity increase in Raman spectrum is equivalent to the intensity increase of pump light at

the layer.

Naively, one might think that a more direct and effective option to increase the Raman signal

from an element would be to use that same Raman signal (from the HAP in our case) as feedback

for the optimization algorithm. This procedure has been reported previously in the literature,100

but that approach is conceptually different from ours. The goal of our experiment is to use this

technique for "blind sensing" with Raman spectroscopy, i.e. where one does not know if there is

a hidden material, e.g. in breast screenings to know if there are cancerous tumours or not. As a

consequence, using the target Raman signal as feedback is not useful for this purpose. Secondly,

increasing the pump light instead of the Raman light, has the advantage of using a feedback signal

much stronger, which would allow to speed up the optimization to times considerably shorter than

that needed for a Raman measurement, and potentially use it for in vivo sensing.
‡‡More details about the sample and its composition is given below in the subsection Sample
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Sample

The sample consists of a layer of TiO2 of thickness L = 29± 2 µm and a second layer of Hidroxya-

patite (HAP) with a thickness of 120± 10 µm. The layer of TiO2 was chosen because it is a highly

scattering material with very little absorption, so a thin layer of this material can lead to large op-

tical densities, that can be compared to thicker biological samples, given that the transport mean

free path in the latter is much larger. In our case, the mean free path of TiO2 is ` = 0.6± 0.2 µm,

and the thickness of L = 29 µm, which results in an optical density OD ≈ 48. In biological media

such as fatty tissues, where the transport mean free path is approximately 1 mm,32,34 an optical

density of 50, is equivalent to a thickness of approximately 5 cm.

HAP is a calcium phosphate mineral that is used in different biomedical applications,101 for

instance as a marker to detect calcifications in breast tissue.9 In our case it has the advantage

of having its strongest Raman peak well separated from those of TiO2, which allows a good

differentiation in the experiment. Fig. 5.6 shows the spectral data for the TiO2 and HAP materials

(panels a and b) and panel c) shows the combined spectra collected by the spectrometer in the

experimental configuration, where we can see the reduced peak from HAP at around 960 cm−1,

attenuated by the TiO2 layer in the inset of the figure.

FIGURE 5.6: Normalized Raman spectra of the different materials used in this experiment: a) Anatase TiO2
spectrum, with three main peaks at 396, 512and631 cm−1 b) Hydroxyapatite (HAP) with the main peak at
960 cm−1 and c) collected spectrum of the combined sample of TiO2 and HAP, where we can see a strong
signal coming from the first layer of TiO2 and a weak peak coming from the inner HAP at 960 cm−1 in the

inset. The broad contribution around 1500 cm−1 is due to the fluorescence of the microscope cover slip.

5.5 Raman signal enhancement

Using the apparatus described in the previous section, after increasing the total transmission of

the pump by a factor close to 1.5, we managed to collect up to 1.48 times a stronger Raman signal

from the inner layer of the sample. In Fig. 5.7 we show the intensity corresponding to the inner

HAP main peak when no optimization is done (red) and after the wavefront has been optimized

(green), and the spectral background subtracted. The solid line curves are Lorentzian fits to the

data.

The enhancement in the Raman signal was calculated by looking at the ratio of the areas of the

HAP peak when the beam was optimized and not optimized. Given that the measurements of the
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optimized and non-optimized spectra were taken with the same integration time, the noise of the

spectra is the same, whereas the signal is around 40% stronger in the optimized case, therefore

achieving a significant increase in the signal to noise ratio of the Raman spectra. The two spectra

were taken consecutively to avoid any possible artefacts, e.g. coming from the sample changing

during the optimization time, changes in temperature, etc. This increase in the Raman signal was

achieved when the total transmission was increased by 39%, suggesting a simple relationship

between the two. In order to test how these two values are correlated, we performed several

optimizations with different transmission enhancements and measured the Raman increase in

every case.

FIGURE 5.7: Graph showing the normalized spectral data points of the HAP peak collected in reflection
before and after the wavefront optimization. The red dots represent the data of the HAP peak before the
wavefront optimization and the the green ones, after the optimization is done. The red and green solid lines
represent the Lorentzian fits of the non-optimized and optimized data respectively. The data in the figure
corresponds to an enhancement in the Raman signal of 41%, which was achieved with an increase in total

transmission of 39%.

5.5.1 Linearity of the enhancement

We performed several measurements for different values of the increase in total transmission,

which shows the relationship between the percentage increases in the Raman emission (RE) and

the increase in the total transmitted intensity (∆T). The graph in Fig. 5.8 shows the linear scaling

between the two.

The best fit linear model, represented by the green solid line, shows a slope of 1.07 ± 0.12,

which tells us there is approximately a one to one relationship between the increase in total trans-

mission and the increase of Raman signal from the second (or inner) layer of the sample. This

result does not only reassure that the increase in total transmission is a reliable way of increasing

the light delivered deeper inside a material, but it also shows that wavefront shaping can be used

to control the intensity deposited through the material, given that it is directly proportional to the

increase in total transmission, which is a measurable quantity.
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FIGURE 5.8: Plot of the increase in the Raman emission against the increase in the total transmission. It
is possible to see how the data points follow a linear trend (in green) with a slope of 1.07 ± 0.12.

5.6 Estimated increase in penetration depth

As we mention at the beginning of the chapter, the aim of this work was to use wavefront shaping

techniques to increase the penetration depth of the pump light, however so far we have just seen

how much we can increase the Raman scattered signal from an inner layer, the total transmission

of the pump through the sample, and the relationship between the two.

In order to experimentally determine the extra penetration depth that an optimized wavefront

reaches versus the non-optimized one, we would need to place the HAP element at different

distances or to embed Raman active particles inside the medium at controlled distances. Although

that is not impossible, it is experimentally challenging and could not be done for lack of time.

Instead, we decided to make an estimate of what is the extra distance at which an element with

the extra intensity (given by the optimized pump) can be placed, so that the collected Raman

signal from the medium is the same. The Raman signal can be quantified by the total forward and

backwards scattering from the medium, which is equivalent to calculate the total transmission or

reflection from the Raman source, given by Fick’s law (as discussed in Appendix B), and leads to:

FS = −D
I0

∂I(z)
∂z

∣∣∣∣
z=L

and BS =
D
I0

∂I(z)
∂z

∣∣∣∣
z=0

(5.5)

where FS is the equivalent to the transmission from a diffusive source (eq. B.5) and BS is the

equivalent to the total reflection from it (eq. B.6). We use different terminology to avoid confusion

with transmission or reflection from the pump.

One way of estimating the extra depth achieved as a consequence of the extra pump intensity

is by looking at the Signal to Noise Ratio (SNR) of the collected Raman signal. That is, calculate

the extra depth at which the optimized and non-optimized Raman intensities give rise to the same

SNR. Given that the noise of the measurement will be the same for the optimized or non-optimized
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case, this is equivalent to evaluating the intensity of the signal. In order to find the extra depth

achieved by the extra intensity in forward scattering, we impose the equality: FS(zR) = FOP
S (zO

R ),

where FS(zR) is the collected forward emission generated by a Raman element at position zR and

FOP
S (zO

R ) is the collected forward emission generated from a Raman element at position zO
R with

the optimized intensity. The same condition has to be set to find the extra depth in reflection:

BS(zR) = BOP
S (zO

R ). For simplicity and to easily interpret the results, we consider the intensity

distribution of a point source Raman element, that follows:

I(z) =
βI0

D

(
(z + ze1)(L + ze2 − zR)

L + ze2 + ze1
+ (zR − z)H(z− zR)

)
(5.6)

where I0 is the initial intensity, β is the increase in the Raman intensity due to the wavefront opti-

mization, L the thickness of the medium, ze1, ze2 the extrapolation lengths and H is the Heaviside

function.

FIGURE 5.9: a) Intensity distributions of Raman elements at two different positions giving rise to the same
forward emission. The dashed blue curve represents the intensity distribution of a Raman element excited
with a non-optimized pump at position zR. The green curve represents the intensity distribution of a Raman
element at a position zO

R excited with an optimized pump (with 1.5 times more intensity), farther from the
end of the sample (L = 29µm) and resulting in the same forward emission. b) Normalized increase in
the distance at which an optimized Raman element would give rise to the same forward emission than a
non-optimized one, dependent on the position of the Raman element (zR). Vertical axis are represented
in logarithmic scale. c) Intensity distribution of an optimized and non-optimized Raman elements resulting
in the same backward emission. d) Normalized increase in the distance at which the optimized Raman

element should be in order to give the same backwards emission than the non-optimized.

In Fig. 5.9a) we present the intensity distribution of two point Raman elements resulting in the

same forward scattering. The grey area represents the limits of the sample. The dashed blue
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curve shows a point Raman element of intensity I0 = 1, β = 1 (i.e. not optimized) at position

zR, where the peak is. The green curve represents the energy distribution of a Raman element

with equivalent forward scattering detected and excited by a larger intensity IOP (I0 = 1, β = 1.5)

at position zO
R , further from the output surface (black solid line at L = 29 µm). Given that we are

using the simplified point source intensity distribution in eq. 5.6, the total forward Raman scattering

(eq. 5.5) is essentially given by the slope of the intensity distribution at the exit of the medium.

In this way, the forward signal of the two Raman distributions is the same as long as the slopes

coincide at the output of the medium, as represented in Fig. 5.9a). When we are interested in

measuring the Raman signal scattered in the forward direction, the closer the Raman element

is to the output surface, the better (see Fig. B.2 for more details). Therefore, being capable

of achieving the same Raman signal from an element which is deeper inside the medium is a

important advantage.

The extra distance d =| zO
R − zR | is not fixed for a given increase in pump intensity, but

it is dependent on the position of the Raman element. Given that the condition to obtain the

same Raman output is reduced to have the same slope (or angle with the horizontal axis), as

discussed before, it is possible to calculate the dependency of the extra distance with the position

of the Raman element d(zR) with purely geometrical arguments. Imposing that both intensity

distributions hold the same angle in the output side of the sample z = L, we have that:

tan(α) =
I(z = zR)

DsL
=

IOP(z = zO
R )

DsO
L

, (5.7)

where DsL = L− zR + ze2, DsO
L = L− zO

R + ze2 are the distances to the output surface L. Taking

into account that d =| zO
R − zR |, and that IOP(z) = βI(z), eq. 5.7 gets reduced to:

I(zR)

DsL
=

βI(zR − d)
DsL + d

. (5.8)

Solving eq. 5.8 for the distance d, we obtain that the dependency of the extra distance with the

position of the Raman element zR is given by:

d(zR) =
−1
2β

(
−βG(zR) +

C(zR)

DsL(zR)

)

+
1

2β

√(
βG(zR)−

C(zR)

DsL(zR)

)2

− 4β(C(zR)(1− β)),

(5.9)

where the function G(zR) = −L + ze1 − ze2 + 2zR and C(zR) = (zR + ze1) · (L + ze2 − zR).

In Fig. 5.9b) we show the extra depth at which a Raman element with the optimized pump

can be placed, giving the same output than the non-optimized. In the vertical axis we plot (in

logarithmic scale) the normalized increase in the distance to the output surface ( d(zR)
L−zR

), achieved

by the extra pump intensity. In the horizontal axis we plot the position of the non-optimized Raman
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element. When we collect the forward Raman scattering, having extra intensity would help to

detect elements which are deeper inside the medium, usually detected with lower intensities. We

can see how the increase in the distance to the output surface depends on the position of the

element and in the limit, where the non-optimized Raman element is close to the output surface,

the optimized Raman element with equivalent transmission is more than 10 times deeper inside

(1000% increase).

In Fig. 5.9c) we represent the intensity distribution of two Raman elements excited by the

optimized and non-optimized pumps. These are placed at different positions and result in the

same Raman signal now collected in the backwards direction. The main difference with Fig. 5.9a)

is that the output surface is now at z = 0, collecting the backscattered light. In analogy with

Fig. 5.9a) the position of the optimized Raman element giving the same signal, is farther from the

output surface or deeper inside the medium.

In Fig. 5.9d) we represent the normalized increase in the distance to the output surface of the

optimized and non-optimized Raman elements, with the vertical axis in logarithmic scale. The

function d(zR) in this case is slightly different to eq. 5.8. The main differences are that now the

distances to the output surfaces are given by Ds0 = zR + ze1, DsO
0 = zO

R + ze1 and G(zR) has the

opposite sign: GR(zR) = −G(zR) = L− ze1 + ze2 − 2zR, resulting in:

dR(zR) =
−1
2β

(
−βGR(zR) +

C(zR)

Ds0(zR)

)

+
1

2β

√(
βGR(zR)−

C(zR)

Ds0(zR)

)2

− 4β(C(zR)(1− β))

(5.10)

In the same way as Fig. 5.9b), we find that the increase in the distance is dependent on the

position of the Raman element. In the same way, when the Raman element is close to the output

surface of the sample, the equivalent distance of the optimized element is more than ten times

larger.

The plots in Fig. 5.9b,d) give an estimate of the increase in the penetration depth due to the

increase of the pump intensity inside the medium. We can conclude from these graphs that

there is no fixed increase in the penetration depth, but instead it depends on where the Raman

element is. The most impressive increase in penetration depth is when the Raman element is

close to the output surface, as mentioned earlier. However, when the Raman element is close to

the surface, conventional approaches of Raman spectroscopy already work well, so this region

is not of enormous interest. When the Raman element is deeper inside, farther away from the

output surface, it is still possible to obtain important increases in the penetration depth, between

30-100%. This region is where conventional Raman finds difficult to work in, and an increase of

30-100% in the depth at which they can work can be extremely useful.
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5.7 Effect of sample thickness on the signal enhancement

When light propagates through a scattering medium, the thicker the material is, the larger the out-

put illuminated spot will be, as a result of the natural diffusion of light. However a large illuminated

spot at the output surface makes wavefront shaping techniques more inefficient and therefore the

total increase in the pump intensity will be smaller.

As seen in Section 3.1.2, the efficiency of wavefront shaping techniques in increasing the total

transmission depends on the number of modes of the sample that can be controlled. This number

is fixed and it is given by the SLM used in the experiment. If the number of modes of the sample

is the same that what we can control, we would be in the optimal case. However, as we discussed

in Section 1.2, the number of modes of the sample (i.e. the total degrees of freedom) grow

linearly with the illuminated area. The illuminated area grows as the beam propagates through

the material, as result of the diffusion process, so the illuminated area at the end of the sample

will be larger than at the entrance, and the thicker the material, the larger the illuminated area.

This implies that there will be more modes at the output of the sample than at the entrance, so we

will have control only over a fraction of the total number of modes. Given that the energy travelling

through the sample is divided approximately uniformly between the different modes, this means

we will only have control over a fraction of the total energy.

The influence of the size of the output spot (and therefore the thickness) on the efficiency

of wavefront shaping can be estimated by means of the fidelity factor (see Section 3.2). The

contribution to the fidelity factor takes the form of: | γcont |2= Nin
Nout

, where Nin is the number of

controlled modes at the input of the sample (generally given by the number of pixels of the SLM),

and Nout is the number of modes (proportional to the illuminated area as seen in eq. 1.12) at the

output side of the sample. This allows us to estimate how much the total transmission can be

increased (eq. 3.39) or how the effect of the thickness reduces the optimal value.

5.8 Summary

In this chapter we have shown that an increase in total transmission of the pump light through a

sample leads to an increase of the energy deposited at deeper layers. In particular, we have seen

that the optimization of the pump is particularly well suited to detect centred elements, of harder

access for conventional Raman spectroscopy. We experimentally increased the total transmission

through the sample using wavefront shaping techniques, achieving a maximal increase of 48% in

the energy deposited inside. We showed that the increase in total transmission leads to a linear

increase in the emitted spontaneous Raman signal of an element hidden behind the TiO2 layer

with OD ∼ 48. Additionally we estimated numerically and analytically the increase in the pene-

tration depth due to the extra intensity in the medium. We saw that the extra penetration depth
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is dependent on the position of the Raman element, that in the central regions of the sample can

be between 30-100% larger. These results show the potential of wavefront shaping techniques

as a useful tool in sensing applications in scattering media, offering a significant mitigation to

the problem of small penetration depth, opening new possibilities to optical sensing in biomedical

applications.
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Chapter 6

Intensity correlations between

transmitted and reflected speckle

patterns

In this chapter we present the work conducted in collaboration with Remi Carminati’s group at

ESPCI in Paris (France).102 They worked on the theoretical framework and numerical simula-

tions†. Ilya Starshinov and myself conducted the experiments presented in this chapter. Most of

the results presented in this chapter have been recently published102 Here we present the first

experimental observation of the intensity correlations between reflected and transmitted speckle

patterns. In order to place the result into context, we introduce the background theory on speckle

correlations in the well studied transmission configuration104 and the reflection-transmission con-

figuration. We then present the experimental measurement of the correlation function between

reflected and transmitted speckle patterns, and show its dependency with the thickness L and

scattering mean free path ` of the medium, exploring all the range from the single scattering

(L . `) to the diffusive regime (L � `). In the last part of the chapter we present the agree-

ment between theory and experiments and introduce some preliminary results on polarization

dependence of the correlation function, exploring its features beyond the theoretical model.

6.1 Introduction

In multiply scattering materials, coherent light is mostly elastically scattered leading to a seemingly

random interference pattern, known as speckle pattern,42,105 as discussed in Chapter 1. How-

ever, speckle patterns are not as random as they seem. The interference between the possible

scattering paths in the medium produces spatial correlations between the intensity measured at

different positions.29,104,106 Recently it was demonstrated that these correlations can be used for
†Full theoretical calculations and details about the simulations are provided in the PhD thesis of Nikos Fayard,103 and

references therein.
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imaging,10,11 although its use has been limited to the optical memory effect12 so far, a correlation

of purely geometrical origin.

Recent theoretical papers suggested the existence of non-zero statistical correlations be-

tween the reflected and transmitted intensity speckle patterns, even for optically thick scattering

media.107,108 Although the presence of these correlations have been mentioned in the past,109,110

very little attention has been paid to it. Naively one might think that such correlations should

quickly average to zero, given that reflected and transmitted waves follow very different scatter-

ing sequences, however that is not the case. The existence of this non-zero intensity correlation

between reflected and transmitted speckle patterns in optically thick scattering materials open

new possibilities for imaging and wave-front control in opaque media, allowing the retrieval of

information from the transmitted speckle pattern by just measuring the reflected intensity.

6.1.1 Intensity correlations in the transmitted speckle pattern

Speckle correlations are commonly divided into three categories: Short-range correlations (C1)

that determines the size of a speckle spot, decaying with the separation between the observation

points on the scale of the wavelength.111 Long-range correlations (C2) with a polynomial decay

and originated as a consequence of constraints such as energy conservation or reciprocity,111–113

and the third are infinite-range correlations (C3).104,114

In order to characterize the correlation function in a disordered medium it is necessary to have

some knowledge about the medium or the field interacting with it. The usual approach is based

on studying the statistics of the field leaving the disordered medium and the knowledge of the

statistical properties of the medium.103 Considering scattering systems such that k0` � 1, with

k0 the wave vector in vacuum (as the majority of scattering media where the Anderson localiza-

tion regime is not considered), the fields following two different scattering paths are independent

from each other. As a consequence, the total scattered field should follow Gaussian statistics,

due to the central limit theorem.42 However it is possible that two different scattering paths cross

inside the medium and the pairs of fields following these paths‡ get mixed (see Fig. 6.1), there-

fore breaking that independence assumption. Non-Gaussian corrections to the field have been

derived to take this into consideration,106,114 resulting in different contributions to the correlation

function, such as C0, C2 and C3. The short-range term C1 is the contribution from the Gaussian

approximation of the field.105 Having this distinction in mind, the total correlation function can be

separated in two, representing the Gaussian and non-Gaussian contributions, such that:

CTT(~r2, ~r1) =
| 〈δE1(~r1)δE2(~r2)〉 |2

〈I1〉〈I2〉
+
〈δE1(~r1)δE∗1 (~r1)δE2(~r2)δE∗2 (~r2)〉c

〈I1〉〈I2〉
, (6.1)

‡When fields propagate in pairs (i.e. E, E∗) they can travel longer distances through the sample, giving rise to the
diffuse intensity. Paired propagating fields are predominant for thicknesses much larger than the wavelength.
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where δ f = f − 〈 f 〉 is the fluctuation of the random variable f and 〈...〉 denotes the ensemble

average. δE1 and δE2 are the fluctuating fields at positions ~r1 and ~r2 in transmission, respectively,

and I1, I2 their correspondent intensities. The second term of the sum, represented with the sub-

index 〈...〉c represents the connected or non-Gaussian part of the correlation function. The first

term of eq. 6.1 corresponds to C1, or the contribution from the Gaussian approximation of the

field. For distances r2 − r1 < λ the fields δE1 and δE2 are strongly correlated, leading to a strong

C1 intensity-intensity correlation, dominating CTT. When the distance between two points is larger

than λ the C1 term vanishes quickly, leaving the second term as the dominant one. The second

part of eq. 6.1 is a complicated term to study mathematically, given that it involves all possible

ways of connecting four fields inside a medium.

One way of gaining intuition on the complex mathematical expressions such as the non-

Gaussian term in eq. 6.1 is the use of diagrammatic representations.115 The diagrammatic ap-

proach§ is based on the decomposition of scattering sequences into smaller building blocks, in

which the information of each scattering sequence is contained. The diagrammatic representation

of C1 in transmission, CTT
1 , is shown in Fig. 6.1a). The twisted lines in the diagram represent the

fluctuating paired fields (or diffuse intensity)¶ The solid and dashed lines represent the electric

field and its conjugate. The different colours in the diagrams represent pairs of fields travelling

originally through different scattering paths. In the diagram leading to the C1 term, the pairs of

fields follow independent propagation or scattering paths up to the last scattering event where

they exchange field partners. This is the dominant term between intensities at two different points

at distances shorter than λ.

FIGURE 6.1: a) Diagrammatic representation of the field terms leading to the C1 correlation in the diffusive
regime. Different colours represent the fields travelling originally by different scattering paths. In this case
both paired fields travel independently from each other up to the very last scattering event where the fields
exchange partners. b) Diagram of the field terms leading to the C2 correlation in the diffusive regime.
In this case the fields exchange partners inside the medium, and propagate diffusively afterwards. c)
Diagrammatic representation of the field terms leading to the C3 correlation in the diffusive regime. Here

field partners are exchanged twice inside the medium.

§An alternative to the diagrammatic approach is based on the Random Matrix Theory, however it is difficult to obtain
a physical insight from the results, and it fails to provide an exact form of the correlation function.116

¶ Even though in a scattering material the scattered fields can travel paired or unpaired, after averaging over real-
izations of disorder the contribution due to the unpaired fields averages out, leaving only the contribution from the paired
terms, which is the case we are considering.
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The C2 long-range correlation is the dominant term of the correlation between the intensity of

two points or directions from an integrated illumination source. Microscopically this term comes

from the exchange of field partners inside the medium, as represented in Fig. 6.1b). The C3

correlation is the main term of the fluctuation of the integrated intensity when all channels of the

medium are excited. This term is the one responsible for the universal conductance fluctuation.106

It originates from a double exchange of field partners inside the medium, as shown in Fig. 6.1c).

An additional infinite-range correlation (C0) is the leading contribution of the correlation between

two distant speckle spots under illumination by a point source located inside the medium.117

6.1.2 Intensity correlations in the reflection-transmission configuration

Similarly to eq. 6.1, the correlation function between reflected and transmitted speckle patterns is

given by:

CRT(∆~r) =
|〈δER(~r1)δET(~r2)

∗〉|2
〈R(~r1)〉〈T(~r2)〉

+
〈δER(~r1)δER(~r1)

∗δET(~r2)δET(~r2)
∗〉c

〈R(~r1)〉〈T(~r2)〉
, (6.2)

where δER(~r1), δET(~r2) are the fluctuating fields in reflection and transmission respectively, at

positions ~r1 and ~r2 = ~r1 + ∆~r. The term 〈R(~r1)T(~r2)〉 = 〈δER(~r1)δER(~r1)
∗δET(~r2)δET(~r2)

∗〉.

The first term of Eq. 6.2 represents the Gaussian contribution to the correlation function, the

short-range C1 contribution. This contribution can be large, of the order of unity, if the distance

between observations points is smaller than the wavelength. Whereas this is possible in the

transmission configuration, where points r1 and r2 are in the same plane, in the R-T configuration

the distance between observation points is
√

L2 + ∆r2, therefore, the C1 contribution is always

negligible for L � λ, as is the case in our experiments. This analysis shows that the R-T config-

uration is particularly well suited to isolate the non-Gaussian contributions to the correlation func-

tion (〈δER(~r1)δER(~r1)
∗δET(~r2)δET(~r2)

∗〉c), without requiring any post-processing to remove the C1

contribution that dominates in the pure transmission geometry.111,112,118,119 Non-Gaussian terms

are the ones dominating the CRT correlation in the full range from the deep diffusive (L � `) to

the quasi-ballistic (L . `) regime.

The correlation function between reflected and transmitted speckle patterns is mainly due to

the contribution of two Non-Gaussian terms: CRT
2 and a new term CRT

0 , with the same diagram

structure than CTT
0 .102,103 The diagrams representing these contributions are shown in Fig. 6.2.

The diagram of the CRT
2 contribution is represented in Fig. 6.2a), and it is the leading term for

large optical densities (OD = L/` � 1). It represents the case where the fields are exchanged

at the entrance of the medium and one more time inside, after they have propagated diffusively.

The long-range character of this term originates from the crossing of two diffusive paths. Due to

the multiple scattering sequences that the fields undergo before and after exchanging partners,

the CRT
2 term is isotropic and independent of the angle of incidence. The contribution of this term
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to the correlation function scales as CRT
2 = − f (| ∆ ~r |)/(k L)2 (as we verify experimentally in

Section 6.4.1),where f is a dimensionless function decaying on a range | ∆~r | u L.107

There are two main differences between CRT
2 and CTT

2 : first of all, in the diffusive regime

(L � `), CRT
2 is independent of the disorder strength k `, in contrast to CTT

2 ∼ 1
(k `)(k L) ∝ 1/g,

where g is the dimensionless conductance of the sample.114 The second difference is the evolu-

tion of the information content for detection purposes. Whilst in the case of CTT
2 it does not matter

where it is measured, i.e. the surface of the sample or in the far field, this is not the case for CRT
2 .

In order to recover the information of CRT
2 it is necessary to measure the intensity pattern on the

sample surface, given that in the far field CRT
2 (~kb, ~kb′) ∼

∫
CRT(∆~r)d∆~r = const., for any pair of

observation direction kb, kb′ , and the information content is uniformly spread across all degrees of

freedom.102,103 For this reason all the measurements described in the next section were done by

measuring the speckle patterns at the surface of the sample.

In the single scattering regime (` ∼ L � λ) the correlation function is dominated by the C0-

type contribution. The diagram leading to this contribution is formally similar to the one leading

to the infinite-range C0 term originated by a point source inside the medium.117,120 The differ-

ence is that in this case the source is an incident plane wave instead of a point source. The

diagram is represented in Fig. 6.2b). The contribution of this term to the correlation function

scales as 1/(k L)4 for OD � 1, therefore at large optical thicknesses the CRT
2 term (scaling as

1/(kL)2) dominates. In this case the two fields are connected at the entrance of the scattering

medium by an extra scattering event (black spot in Fig. 6.2b) and propagate diffusively from there.

This extra scattering event makes this term sensitive to the angle of incidence of the illumination

beam. This C0-type contribution to the reflection-transmission correlation is long-range and satis-

fies
∫
〈CRT

0 (∆~r)〉d∆~r = 0. This fact leads to the conclusion that this C0-type contribution is specific

to speckle patterns measured on the surface of the sample, vanishing in the far field as CRT
2 .

FIGURE 6.2: Diagrams representing the leading terms of the reflection-transmission correlation. a) Dia-
grammatic representation of the C2 contribution term to CRT . Two pairs of fields exchange partners inside
the medium and propagate diffusively to the different sides of the medium. b) Diagram of the C0 contri-
bution to the reflection transmission correlation. The fields exchange partners in a scattering event at the
entrance of the medium (black spot) and then propagate diffusively to the different sides of the medium.
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6.2 Experimental observation of reflection/transmission cor-

relations

6.2.1 Experimental apparatus

The experimental apparatus used to measure the reflection-transmission correlation is shown in

Fig. 6.3a). A 2 mW HeNe laser is incident on the scattering sample at an angle of approximately

45◦. The reflected and transmitted intensity patterns, R(~r) and T(~r) respectively, are recorded

by two identical imaging systems involving a 10x microscope objective, a plano-convex 150 mm

lens, and a CCD camera (Allied Vision Manta G-146). The scattering material is made of a

suspension of TiO2 particles in glycerol. The sample is held between two microscope slides

separated by calibrated spacers to form a scattering slab, where the thickness of the sample (L)

can be adjusted by using different spacers. The mean free path of the sample (`) is modified by

varying the TiO2 concentration of the solution. In Fig. 6.3b) we show three samples with different

optical thicknesses OD = L/`, from semitransparent (OD ∼ 0.3) to fully opaque (OD ∼ 2).

FIGURE 6.3: (a) Experimental set-up: a scattering slab, made of a suspension of TiO2 particles in glycerol,
is illuminated by a HeNe laser incident at an angle ∼ 45◦. The speckle patterns on the two surfaces, T(x, y)
and R(x, y) respectively, are recorded with two identical imaging systems. (b) Examples of samples with
thickness L = 20 µm but different TiO2 concentrations: from left to right 5 g/l, 10 g/l and 40 g/l, which

correspond to a mean free path of (60, 20.4 and 9.8) ± 2.5 µm, respectively.
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Given that the samples used are liquid, Brownian motion of the scatterers result in continu-

ously changing speckle patterns, with a decorrelation time τ, dependent on the sample thickness.

Choosing an integration time in the cameras < τ, and a time interval between successive mea-

surements > τ, it is possible to measure speckle patterns R(~r) and T(~r) for a large number of

realizations of disorder. In Fig. 6.4a,b) we show an example of two speckle patterns measured for

a given realization of disorder. For each pair of patterns R(~r) and T(~r) we calculate the correlation

function CRT, defined as:

CRT(∆~r) =
〈δR(~r)δT(~r + ∆~r)〉
〈R(~r)〉 〈T(~r + ∆~r)〉 , (6.3)

which is the experimental equivalent to eq. 6.2, where ∆~r = (∆x, ∆y) is a transverse shift between

the images. In the experiment, the averaging process is performed in two steps‖. In first place

we perform a cross correlation product between δR and δT, i.e. the integral
∫

δR(~r)δT(~r + ∆~r)d~r,

is processed for each realization of disorder. In Fig. 6.4c) we show the 2D plot of the cross-

correlation product, showing a random granularity similar to a speckle pattern. The second step

consist on ensemble averaging over the realizations of disorder, which shows the shape of the

correlation function CRT(∆x, ∆y), with features much larger than a speckle spot (Fig. 6.4d).

FIGURE 6.4: Typical measured speckle patterns in transmission (a) and reflection (b), for a sample with
L = 20 µm and ` ' 60 µm. (c) Cross correlation product between the speckle patterns in (a) and (b) after
average subtraction. (d) Correlation function CRT(∆x, ∆y) obtained after additional ensemble averaging
from 104 realizations of the disorder. The long-range character of the correlation function, that extends far

beyond the size of a speckle spot, is clearly visible.

6.2.2 Experimental results

In Fig. 6.5 we show the correlation function CRT for different mean free paths ` and thicknesses L,

from the single scattering to the diffusive regime. The upper graph is a 2D map of CRT(∆x, ∆y) and

the lower graph represents a cut through ∆y = 0, indicated by a dotted line. The columns display
‖Detailed information of this process can be found in Appendix C
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the correlation CRT for fixed thicknesses and varying mean free paths. In the rows the samples

have the same mean free path and the thickness changes. By looking at the experimental results

we find that the shape of CRT varies consistently with the optical density, being dominated by

a peak in the single scattering regime (OD . 1), a dip in the diffusive (OD � 1), and in the

intermediate regime a peak and a dip. However, it is clear from the experimental that CRT has

a different dependency with ` and L, showing how as L becomes larger, the extension of CRT

increases as well, for similar OD.

FIGURE 6.5: Averaged reflection-transmission correlation function CRT for different values of L and ` and
optical thickness OD = L/`. In each case we show both 2D maps of CRT(∆x, ∆y) and a cross-sections
along the line ∆y = 0, indicated as a dotted line in the 2D maps. Two regimes are identified: for moderate
optical thickness (OD . 1), the correlation function is dominated by a narrow peak with a negative side
lobe. For large optical thicknesses, (OD > 1), the correlation function is dominated by a wide negative dip.

As mentioned before, the short-range (C1) contributions to CRT decay on the scale of the

wavelength, therefore CRT is necessarily a non-Gaussian long-range correlation. The measured

quantities also exclude any possible specularly reflected or transmitted fields, thanks to the ex-

perimental geometry where the beam is incident at an angle.

To support the experimental data, in Fig. 6.6 we present full numerical simulations of wave

propagation in three-dimensional disordered media. In the simulations, the samples consist of

slabs of dipole scatterers at random positions. Given that the experiments are not resolved in

polarization and after travelling a distance of roughly ` the wave is expected to be randomly polar-

ized, it can be well approximated by a scalar wave,121 which simplifies the calculations. The scalar

wave equation is solved numerically using the coupled-dipole method.122 As we can observe, the
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general shape of the correlation function is in very good agreement with the experimental data

(first column of Fig. 6.2.2) when comparing similar optical densities, OD < 1, OD ' 1 and

OD > 1.

FIGURE 6.6: 2D maps of the correlation function CRT(∆x, ∆y) resulting from 3D numerical simulations
in the differnt scattering regimes: a) single scattering (OD < 1), b) moderate (OD ∼ 1) and c) diffuse

(OD � 1).

6.3 Properties of CRT

In the regime of large optical thicknesses L � `, corresponding to Fig. 6.5(e-i), we find that

CRT(∆~r) is negative, in agreement with the prediction in literature.107 This means that for every

bright spot in reflection (transmission) the corresponding area in transmission (reflection) is more

likely to be darker, and vice versa. It is worth noting that the existence of negative long-range

C2 correlations has been previously pointed out,110,123 but this is the first time they have been

experimentally observed. The theoretical study of this correlation function showed that both the

amplitude and the width of the correlation function depend on L and `,103 in agreement with

the experimental data in Figs. 6.5(e-i). For L � `, the dominant diagrams belong to the class

represented in Fig. 6.2a), the long-range CRT
2 correlation function.

In the regime of moderate optical thickness ` ∼ L � λ, single scattering is expected to dom-

inate, and we find an intensity correlation much larger than the size of a single speckle spot, as

shown in Fig. 6.5(a-d). In this case we have a positive peak appearing in the vicinity of the neg-

ative CRT
2 contribution. The apparent relative position and amplitude between the peak and the

dip depends on the angle of incidence of the illumination (as we discuss in more detail in Sec-

tion 6.4.2). The long-range character and dependence on the angle of incidence are in agreement

with a description based on the diagrams represented in Fig. 6.2b), as mentioned before. Finally,

in the quasi-ballistic regime ` � L � λ, which is not the focus of our experiment, we expect the

correlation CRT to contain additional contributions to CRT
2 and CRT

0 .102,103

6.4 Further details of the R/T correlation

In order to get a deeper insight on the nature of this newly observed correlation between reflected

and transmitted speckle patterns, we performed additional measurements that corroborate the
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theoretical derivations as well as measurements that go beyond the developed theory so far.

6.4.1 Thickness dependence of CRT
2

In Section 6.1.2 we discussed how the theory developed by our collaborators at ESPCI determines

that in the large optical thickness regime, the CRT
2 contribution to the correlation function scales

as: CRT
2 = − f (| ∆~r |)/(kL)2, meaning that the amplitude of the correlation is independent of the

mean free path and only depends on the thickness L. We designed an experiment to check if this

scaling can be observed experimentally.

Experimental thickness dependence of CRT
2

Using the same experimental apparatus described in Fig. 6.3 we prepared a new diffusive sample

that allowed us to observe the CRT
2 correlation for the largest number of thicknesses, in order to

obtain a sampling range as large as possible. In this section we experimentally demonstrate the

dependence of the amplitude of CRT
2 on the thickness of the sample, when the mean free path of

the sample is fixed. Ideally we wanted a sample with an optical thickness such that we obtain the

sole contribution of the CRT
2 term and that it is still visible for a large number of thicknesses, that

go in steps of 10 µm due to the availability of spacers. We found that a sample with a mean free

path of 16.0± 2.5 µm gave us a good range of thicknesses, allowing us to take 6 data points.

FIGURE 6.7: a) Plot of the dip of the correlation function dominated by CRT
2 for different thicknesses of the

same sample, against the transverse distance normalized by the thickness L. b) Plot of the correlation
function normalized by the thickness factor L2 for different thicknesses of the same sample, against the

transverse distance normalized by the thickness L

In Fig. 6.7 we plot a cross-section (at ∆y = 0) of the correlation function CRT
2 over ∆R/L, i.e.

the transverse distance normalized by the thickness. In Fig. 6.7a) the amplitude of the correlation

function is the original obtained from the experiments. We can see how the amplitude of the

correlation functions of samples with different thicknesses decrease as the thickness increases,

as expected. As we mentioned above, the theory says the amplitude should decrease with the

thickness squared so in Fig. 6.7b) we normalize by this factor and plot CRT
2 (∆R/L) · L2. If the

theory is correct, all curves should overlap with each other, which as we can see is in general well

satisfied by our experiment.
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This experiment confirms that in the regime of large optical thickness the amplitude of the CRT
2

mainly depends on the thickness of the sample, scaling with L−2. It would also be interesting to

check the scaling of CRT
0 , predicted to drop with L−4, however in order to collect reliable data,

ideally we would need to be in a regime where only CRT
0 exists, so we can be sure the overall

amplitude is not being affected by CRT
2 . This means the measurement should be done in the

quasiballistic regime or very weak scattering regime but as we mentioned before, we can not be

sure there are not additional terms contributing to the peak in the correlation.102,103

6.4.2 Dependence on the angle of incidence

In this subsection we examine the dependence of the correlation function CRT(∆~r) on the angle

of incidence of the beam. In subsection 6.1.2 we discussed that the diagrams leading to CRT
0

allow for angular dependence with the incident beam, so we investigate this phenomenon in the

moderate optical regime (` ∼ L), where CRT
0 is dominant.

In Figure 6.8 we show the experimental line-shape of the correlation function at ∆y = 0 for

different angles of incidence. The experimental results correspond to a sample with OD ∼ 1 with

a variation in the angle of incidence from 44◦ to 73◦, limited by experimental constraints. The data

represented in Fig. 6.8 has been slightly shifted in the x axis so that the dips of all measurements

coincide, with the purpose of facilitating the visualization of the variation of the correlation with the

angle of incidence.

As the angle of incidence increases, the line-shape of the correlation changes, and the peak

and dip appear separated by a larger distance, at the same time, the peak also increases in size.

The shape of this correlation function is interpreted as the superposition of the two contributions

to CRT: CRT
0 and CRT

2 . As discussed in Section 6.1.2 the CRT
2 contribution is responsible for a dip

and it is independent of the angle of incidence. In this sense, the peak should be the only one

moving and changing in size. However we were not able to verify experimentally that only the

peak was moving∗∗, although one can clearly see an absolute change in the distance between

the peak and the dip.

6.4.3 Polarization dependence

In the study of the correlation function we have never taken into account the polarization of the

beam. The main reason is that both the theoretical and numerical studies of the correlation func-

tion become much harder to solve. However, as discussed in Section 6.2.2, when polarization is

not discriminated in the measurement, assuming a scalar wave reproduces very well the experi-

mental results. Given that from the experimental point of view a study of the polarization does not
∗∗This is because in the experiment the position of the correlation function was highly sensitive on the alignment of

the imaging systems. This alignment slightly changed every time we had to, for instance, refocus to a different part of the
sample, to avoid inhomogeneous regions due to cluttering of the powder, or if we had to change the sample.
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FIGURE 6.8: Experimental data showing the variation of the line-shape of the correlation function as the
angle of incidence on the sample is changed.

complicate the experiment significantly we performed an experiment to gain further understanding

of the nature of CRT. In this subsection we present the preliminary results obtained when filtering

different polarizations in the collected speckle patterns.

The experimental apparatus used for this experiment is very similar to the one described for

the main experiment in Fig. 6.3a), with the difference of two additional linear polarizers, placed

between the cameras and the focusing lenses. The sample used had an optical thickness OD ' 2

(` ' 16µm and L = 30µm). When no polarization is filtered we expect a single and narrow dip

dominating the correlation function, in agreement with Fig. 6.5h). In Fig. 6.9a) we show the corre-

lation function obtained in this case, without filtering any polarization, which is in good agreement

with Fig. 6.5h). In panels b-e of Fig. 6.9 we show the correlation function with the four combi-

nations of the linear polarizers, when the transmission and reflection polarizers are both parallel

to the incident beam (a) (reference polarization), when the transmission polarizer is parallel and

the reflection perpendicular (b), when reflection is perpendicular and transmission parallel (d) and

when both are perpendicular to the reference (e).

When both polarizers are parallel to the reference (Fig. 6.9b) we can see that a dip still domi-

nates the correlation function. Naively one might expect to retrieve this same correlation function

when both polarizers are perpendicular to the reference (Fig. 6.9e), given that they both correlate

the same polarization again. However, in this case the correlation function shows an unexpected

peak instead of the original dip.

When the polarizers in transmission and reflection are filtering different polarizations we also

observe an unexpected behaviour. In principle we could think no correlation should survive, given

that we are filtering and therefore correlating speckle patterns with orthogonal polarizations in the

different half spaces. However that is not the case. In Fig. 6.9c) we show the correlation function

when the transmission polarizer is parallel and the reflection one, perpendicular to the reference.

We see a dip dominating the correlation function in this case as well. Again, there is no obvious

reason to expect the opposite configuration (transmission perpendicular, reflection parallel) to be

different. However, as we can see in (Fig. 6.9c), the correlation function displays a peak rather



6.4. Further details of the R/T correlation 77

than a dip. Surprisingly we find that instead of having a non-zero correlation function, we obtain a

peak or a dip depending on which one is perpendicular to the reference.

FIGURE 6.9: 2D maps of the correlation function CRT and 1D cuts for ∆y = 0 (indicated by the dotted line)
when different polarizations are filtered. a) Correlation function CRT when no polarization is filtered. b) CRT

2
when two linear polarizers are parallel to the reference polarization both in reflection and transmission. c)
CRT

2 when the polarizer in reflection is perpendicular and the one in transmission is parallel to the reference.
d) CRT

2 when the polarizer in transmission is perpendicular to the reference polarization and the one in
reflection, parallel. e) CRT

2 when the two linear polarizers are perpendicular to the reference polarization
both in reflection and transmission.

We can see that the measurements where the polarizers were used (Fig. 6.9b-e) appear more

noisy and the shape of the correlation slightly larger. A possible explanation for this is that we

were not retrieving an image exactly from the surface (which is important to clearly appreciate

CRT, as discussed in Section 6.1.2). The reason for not being imaging exactly the surface is

that the polarizers were added after the imaging systems were focused. Given that re-focusing

slightly changes the position of the correlation function, as discussed before, we avoided that,

trying to obtain a precise position of the correlation function. However, the orientation of the glass

of the polarizer was not perfectly perpendicular and when rotated (to explore all the polarization

configurations) the position of the correlation also changed, so the exact position of the correlation

function can not be considered artefacts-free.

The preliminary results showed in Fig. 6.9 constitute a step forward towards the full under-

standing of the nature of the correlation function CRT. In this chapter, we first demonstrated that

a purely scalar wave theory works very well to predict and explain the features of the correlation

function CRT. However, this last experiment where polarization is taken into account, suggests
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that the terms contributing to the correlation function are very dependent on the polarization of

the speckle patterns we collect. In particular we have seen that where originally (with no polar-

ization filtering) the correlation function is dominated by a dip, when the transmission polarizer is

crossed, we obtain a peak instead. Indeed the correlation function seems to be only dependent

on the polarization filtered in transmission, when the polarization in transmission is aligned with

the reference, it does not matter if the reflected one is aligned or crossed, we obtain a dip in any

case.

These results suggest that the correlation function is made of two main contributions, that can

be separated by filtering the polarization. In particular it seems that when the polarization of the

transmitted field is crossed with the reference, the CRT
2 contribution to the correlation (responsible

for the dip) vanishes, suggesting this term keeps a memory of the incident polarization of the

beam. When the CRT
2 term is filtered out it is possible to see a weak peak as part of the correlation

function, invisible otherwise, possibly due to the much stronger contribution of the CRT
2 element.

A full study of the polarization dependence in different scattering regimes would be interesting

to gain a full and better understanding of this phenomenon. This experiment shows that in order

to fully comprehend the correlation function in reflection-transmission, it would be necessary to

develop a the analytical and numerical support dealing with vector waves instead of scalar waves.

It would also be very interesting to study quantitatively the size of the different elements of the

correlation, as well as the relative position.

6.5 Summary

In this chapter we have introduced the correlation function between reflected and transmitted

speckle intensity patterns. We have demonstrated experimentally the existence of the CRT cor-

relation function and how its shape depends on the mean free path and thickness of the sample.

We have shown how the experiment, theory and numerical simulations find excellent agreement

with all the features of the correlation function in all optical regimes, from the diffusive to the quasi-

ballistic. We have seen that in the optical regimes studied here there are two main contributions

to CRT: CRT
2 , responsible of the dip appearing in the diffusive regime and CRT

0 , leading term in the

moderate optical regime, contributing a peak to the correlation function. These two contributions

have different responses to the angle of incidence of the illumination beam and the filtered polar-

ization. These findings open new ways to exploit intensity correlations in the fields of imaging, as

we will see in Chapter 7, the control of wave propagation by wavefront shaping techniques124,125

or mutual information experiments.108
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Chapter 7

Blind Ghost imaging: using

intensity correlations to image

through turbid media

In this chapter we present a new approach to imaging, Blind Ghost Imaging (BGI), based on

exploiting the correlations between reflected and transmitted speckle patterns that we described

in Chapter 6. This new imaging modality has its roots in Ghost Imaging (GI) techniques, so we

will first set the background on conventional GI along with its limitations and potentials. Then we

will detail what BGI is, the fundamental differences with conventional GI and we will show how

this new approach works. To conclude, we present the experimental results showing for the first

time the image of an object hidden by an opaque scattering layer of Optical Density OD ' 2.5.

The results presented in this chapter were obtained by Ilya Starshynov and myself.

7.1 Introduction

Imaging objects hidden by scattering media such as white paint, atmospheric turbulence or bi-

ological tissue has been an ongoing challenge for years.6 Random scattering of light produces

a blurred image of the object, reducing the resolution and contrast, up to the point in which the

object is no longer recognizable. This limitation has been particularly under study for biological

applications, where optical imaging usually does not involve damaging the material. In biological

samples, the limiting depth at which conventional microscopy can work and retrieve a good image

is around 100 µm.126 Given that in biological tissues the transport mean free path is of the order of

1mm (dependent on the kind of biological tissue34,126), this results in an optical density OD ∼ 0.1.

Confocal and multiphoton microscopy managed to retrieve high resolution images beyond this

OD, holding a limiting depth of around 1 mm, i.e. OD ∼ 1.126 Retrieve a good image for higher

OD with optical techniques is difficult, and when possible, it is usually required the use of optical

reporters such as fluorescent probes or chromophoric agents and nanoparticles,126,127 making
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the imaging process to some extent invasive or not always safe for medical applications, which

limits the application of safe optical imaging techniques for OD > 1.

Here we present a non-invasive approach to optical imaging that is capable of retrieving the

image of objects hidden by scattering layers of OD > 2. It takes advantage of the intensity corre-

lations between the transmission and reflection speckle patterns of the scattering layer (described

in Chapter 6). This technique can be added to existing microscopic techniques, allowing imaging

objects hidden by scattering layers in principle independently of its opacity†, in a non-invasive way.

7.2 Ghost Imaging techniques

Ghost imaging was originally developed in 1995 by Pittman et al128 as an imaging technique

taking advantage of the quantum nature of light. Despite its origin, it was soon realized that GI

techniques could also work with classical light, using classical intensity correlations.129–131 The

field of GI has been attracting great attention from the very beginning, resulting in different exper-

imental realizations, discussions of the fundamental physics as well as a long debate about the

quantum or classical origin.131–134 The experiment and technique described in this chapter make

use of purely classical correlations so in the following there will be no discussion of the quantum

features of the technique. Despite the variations in the design or approach of the different GI tech-

niques, the general idea is based on the reconstruction of an image from the cross-correlation of

the intensity from two spatially separated detectors. The term of "ghost imaging" was coined to

point out that none of the beams of light generate an image itself, but it is the correlation of both

what yields the image.

FIGURE 7.1: Typical set-up used for conventional Ghost Imaging experiments.

In Fig. 7.1 we show a typical experimental set-up for classical ghost imaging. This arrangement

was initially used to prove the classicality of ghost imaging.131 In general, a thermal light source

passes through a rotating diffuser, resulting in a beam with spatial features. The beam with spatial

information is then separated into two by a beam splitter, hence generating two totally (or highly)

spatially correlated beams. In one of the arms it is common to have a multi-pixel detector such

as a CCD, to image the spatial intensity distribution of the beam. The other half of the beam
†As discussed in Chapter 6, the amplitude of CRT correlation decays with the thickness of the material, but it is

not technically zero. Consequently, this technique should work as long as there is a non-zero CRT correlation. In the
experiment presented in Section 6.2 we measured a non-zero correlation for OD as large as OD ' 6.
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illuminates the object to be imaged. The intensity transmitted (or reflected) by the object is then

collected by a bucket detector with no spatial resolution. By correlating the information collected

by the two detectors it is then possible to reconstruct an image of the object.

There have been several adaptations to this approach, such as substituting the rotating diffuser

by other scattering materials,135 or generating known patterns with spatial light modulators, giving

rise to computational ghost imaging.134,136

The image reconstruction is possible because the spatial intensity patterns generated (by the

diffuser, other mediums or the SLM) form a complete or over-complete basis. Any image can

be written as a linear combination of weight terms of the basis elements. In the case mentioned

before, when light goes through a diffuser, a speckle pattern is generated and a large number

of different speckle patterns create an over-complete basis over which any image can be recon-

structed. The weight factor correspondent to the respective speckle patterns is evaluated by the

single pixel detector, that integrates the transmitted intensity of the speckle pattern and the object

to image. Experimentally, the spatial distribution of the beam (T(x, y, z = d)) is usually collected

by a multi-pixel detector, or CCD camera, at a distance z = d. For simplicity the object is placed

at the same distance d, so one knows immediately that the intensity pattern illuminating the ob-

ject is the same as the one collected by the camera (T(x, y, d)). The intensity recovered by the

bucket detector is then Bi =
∫

Ti(x, y, d) O(x, y) dx dy, for every spatial intensity distribution i, and

O(x, y) is the the transmitted intensity from the object. The reconstructed image (I(x, y)) can then

be written as:

I(x, y) =
1
N

N

∑
i=1

BiTi(x, y, d) = 〈BiTi(x, y, d)〉, (7.1)

where N is the number of intensity patterns used to reconstruct the image and 1
N ∑N

i=1 is the

averaging operator normalizing the image, equivalent to ensemble average over different spatial

distributions of intensity 〈 ... 〉. The image is then reconstructed by the averaged sum of different

spatial intensity distributions with the right weight, provided by the integrated intensity of the bucket

detector, which holds the information about the object.

7.3 Blind Ghost Imaging

In this section we present a new variation to conventional Ghost Imaging (GI) techniques: Blind

Ghost Imaging (BGI). This new approach exploits the correlations between reflected and transmit-

ted speckle patterns discussed in Chapter 6, in order to reconstruct the image. As we mentioned

in the introduction, conventional microscopic techniques are generally limited to work with sam-

ples where the scattering layers have an optical density OD ' 1, given that larger OD blurs

and spoil the image. GI techniques have been limited by this phenomena in the same way. The
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reconstruction of an image using GI is based on the knowledge of the spatial intensity pattern

illuminating the object. If the scattering layer hiding the object is opaque enough (OD ≥ 2), the

pattern illuminating the object will be multiply scattered and will become very different from the

original one used as reference, making the image retrieval extremely challenging and therefore

posing an important limitation for non-invasive optical techniques.126,137,138

However, as we demonstrated in Chapter 6 multiple scattering of light does not fully randomize

the beam and correlations between the reflected and transmitted intensity patterns CRT survive,

even for highly opaque (OD ∼ 6) scattering layers. The existence of such correlations means

that the reflected pattern contains information about the transmitted one, which is the pattern

illuminating the object. BGI techniques use the correlations between reflected and transmitted

speckle patterns to obtain information about the pattern that is illuminating the object (transmitted

pattern) by measuring the reflected speckle pattern. This allows non-invasive optical imaging

through scattering layers with OD > 2. Given that the correlation between the reflected and

transmitted speckle patterns is not zero, in principle BGI techniques should work for any OD.

However, the amplitude of CRT decays with thickness of the sample, as discussed in Chapter 6,

and experimentally one will reach a limit beyond which it will not be easy to retrieve the correlation

function from the noise. In the experiments presented in Section 6.2 that limit was reached for

OD ' 6.

In order to reconstruct an image with this approach, we can use a very similar process of

reconstruction than the one used for conventional GI, with some conceptual differences. First of

all, the spatial distribution of the beam that one has access to (reflected speckle pattern R(x, y)), is

different from the spatial distribution of the beam reaching the object (transmitted speckle pattern

T(x, y)). The intensity detected by the bucket detector is then: Bi(x, y) =
∫

Ti(x, y)O(x, y)dxdy

for every pattern i. In this way, the image would be formed by:

IB(x, y) =
1
N

N

∑
i=1

Bi Ri(x, y) = 〈BR(x, y)〉. (7.2)

In principle Ri(x, y) and Ti(x, y) are very different, so naively one might think there is no way of

retrieving an image, given that the measured spatial information Ri(x, y) is weighted by a non-

similar integrated amount
∫

Ti(x, y)O(x, y)dxdy. However, as we mentioned before, due to the

non-zero correlation between the reflected and transmitted speckle patterns, it is possible to obtain

some information of the transmitted pattern (Ti(x, y)) by only retrieving the reflected one (Ri(x, y)).

It is interesting to note that, as discussed in Section 6.2, the correlation function between two

single speckle patterns ( Ri(x, y)~ Ti(x, y) = CRT
i (x, y)) does not provide very useful information,

resulting in a random pattern with features similar to a speckle pattern (see Fig. 6.4c). It is the

ensemble averaged correlation function ( 〈CRT
i (x, y)〉 = CRT) that displays the line-shape of with

recognizable features only dependent on the parameters of the sample (see Fig. 6.4d). As a
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consequence, it is necessary that we make use of the ensemble averaged correlation function in

the image reconstruction process.

In order to gain intuition on how an image is retrieved using the Blind Ghost Imaging technique,

we need to take make an assumption: approximate the autocorrelation of a speckle pattern by a

delta function: Ti(x, y)~ Ti(x, y) = δ(x, y), where ~ is the correlation product. This is well justified

in the experimental situation where a speckle spot can be as large as a pixel. This is equivalent

to approximate the C1 speckle correlation by a delta function, that in reality is a centred peak of

the size of a speckle spot with a near-zero background. We know that the correlation between

Ri(x, y) and Ti(x, y) is: Ri(x, y)~ Ti(x, y) = CRT
i (x, y). Using the previous assumption, as well as

the associativity and identity properties of the correlation product, we obtain:

Ti(x, y)~ (Ri(x, y)~ Ti(x, y)) = Ti(x, y)~ CRT
i (x, y)⇒ Ri(x, y) = Ti(x, y)~ CRT

i (x, y). (7.3)

From this equation we can easily see that if CRT
i (x, y) = δ(x, y) (meaning Ri(x, y) = Ti(x, y) under

our assumptions), the image recovered would be given by eq. 7.1. If now CRT
i (x, y) = − δ(x, y),

it would mean that both patterns are complementary (i.e. Ri(x, y) = −Ti(x, y)), therefore the

outcome of eq. 7.2 would lead to retrieving the negative image of the object. However, as seen in

Chapter 6, CRT
i is not a delta function, but a seemingly random function instead (see Fig. 6.4c),

and when it is ensemble averaged over disorder it shows features larger than a speckle spot (see

Fig. 6.4d), which are dependent on the parameters of the sample. In this case, using eq. 7.3 in

eq. 7.2, the reconstructed image results:

IB(x, y) =
1
N

N

∑
i=1

BiTi(x, y)~ CRT
i (x, y) =

1
N

N

∑
i=1

Bi

∫
Ti(x + ∆x, y + ∆y)CRT

i (x, y)d∆xd∆y

=
1
N

∫ N

∑
i=1

BiTi(x + ∆x, y + ∆y)CRT
i (x, y)d∆xd∆y

=
1
N
· N

∫
〈BT(x + ∆x, y + ∆y)CRT

i (x, y)〉d∆xd∆y,

(7.4)

where the integral comes from the definition of the correlation product. Given that we only know

the shape of 〈CRT
i 〉 = CRT, we need to simplify the expression in eq. 7.4 further, in order to gain

intuition of the effect of the averaged correlation function in the image formation. The covariance

function allows us to separate the expected (or averaged) values of a product of variables such

that:

Cov[X, Y] = E[X, Y]− E[X]E[Y], with Cov[X, Y] = E[(X− 〈X〉)(Y− 〈Y〉)], (7.5)
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where X, Y are different variables and E[...] is the expected or average value. Applying eq. 7.5 to

eq. 7.4 we obtain:

IB(x, y) =
∫
〈BT(x + ∆x, y + ∆y)〉〈CRT

i (x, y)〉d∆xd∆y

−
∫ 1

N

N

∑
i=1

[BiTi(x + ∆x, y + ∆y)− 〈BT(x + ∆x, y + ∆y)〉][CRT
i (x, y)− 〈CRT

i (x, y)〉]d∆xd∆y

(7.6)

For simplicity of notation we will omit the variables in T and CRT
i in the next calculations. Simplify-

ing further eq. 7.6, and taking into account eq. 7.1, we have:

IB(x, y) =I(x, y)~ 〈CRT
i 〉 −

1
N

∫ N

∑
i=1

BiTiCRT
i d∆xd∆y +

1
N

∫ N

∑
i=1

BiTi〈CRT
i 〉d∆xd∆y

+
1
N

∫ N

∑
i=1
〈BT〉CRT

i d∆xd∆y− 1
N

∫ N

∑
i=1
〈BT〉〈CRT

i 〉d∆xd∆y

(7.7)

thus:

IB(x, y) =I(x, y)~ CRT − 1
N

N
∫
〈BTCRT

i 〉d∆xd∆y +
1
N

N
∫
〈BT〉〈CRT

i 〉d∆xd∆y

+
1
N

N
∫
〈BT〉〈CRT

i 〉d∆xd∆y− 1
N

N
∫
〈BT〉〈CRT

i 〉d∆xd∆y
(7.8)

Taking into account that IB(x, y) =
∫
〈BTCRT

i 〉d∆xd∆y as seen in eq. 7.4, and that I(x, y) = 〈BT〉

from eq. 7.1, we have that:

IB(x, y) = I(x, y)~ 〈CRT
i 〉 − IB(x, y) + I(x, y)~ 〈CRT

i 〉+ I(x, y)~ 〈CRT
i 〉 − I(x, y)~ 〈CRT

i 〉 (7.9)

which leads to the final result:

IB(x, y) = I(x, y)~ 〈CRT
i 〉 = I(x, y)~ CRT (7.10)

By comparing eq. 7.10 with eq. 7.1 we see that the resulting image is given by the convolution

of the original image with the correlation function between reflected and transmitted speckle pat-

terns.

7.3.1 Experimental set-up

The experimental set-up used for the blind ghost imaging experiment is shown in Fig. 7.2a). It

is very similar to the one used to measure the correlation between the reflected and transmitted

speckle patterns. The object is on the transmission surface of the scattering media, therefore it

is illuminated by the transmitted speckle pattern of the scattering medium. An imaging system

composed of a 10x microscope objective, 150 mm lens and a CCD camera (Allied Vision Manta

G-146) records the image of the speckle pattern at the reflection surface of the sample. The
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illumination source is a HeNe laser (2 mW, 632.8 nm) which is incident on the scattering sample

at an angle of approximately 45◦.

FIGURE 7.2: a) Experimental set-up used for the blind ghost imaging experiment. An imaging system
records the reflected speckle at the surface of the scattering media. A bucket detector collects the trans-
mitted intensity modulated by the object. b) Target element used as object for this experiment and a slab

of scattering material with OD ' 2.5 that appears completely opaque.

Sample

The sample used in this experiment consists of a scattering material and an object on one of its

surfaces. An image of the sample from the reflection side is shown in Fig. 7.2b). The scattering

material is prepared in the same way that the samples used in the experiments in Chapter 6, a

solution of TiO2 particles in glycerol. The sample used in this experiment had an optical density

OD ' 2.5, mean free path of 16 ± 2.5 µm and thickness of 40 µm. The scattering solution is

squeezed between two glasses, a microscope slide and a calibration test target, that works as

our object. The pattern on the test target (Thorlabs Negative 1951 USAF test target) is on one

of the surfaces. In this way the object is just on the surface of the scattering material. As we

can appreciate from Fig. 7.2b), the scattering layer completely hides the target in the region of

interest.

7.3.2 Experimental results

We used a small region of the test target as our object, shown in Fig. 7.3a). We collected the

reflected intensity of the scattering medium and following eq. 7.4 we reconstructed the image of

the object, shown in Fig. 7.3b). Even though the retrieved image is still a bit noisy, it is possible to

clearly distinguish all the features of the object.

As seen from eq. 7.10, a consequence of using the correlation between the transmission and

reflection speckle pattern as a tool for imaging, is that the retrieved image is convolved with the

correlation function of the scattering medium. In Fig. 7.4 we show the averaged correlation func-

tion CRT for a sample with the same parameters as the scattering medium used in this experiment.
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FIGURE 7.3: a) Picture of the region of the test target used as the object to image. b) Reconstructed image
of the object shown in panel a, after 2.7 million averages over realization of disorder.

FIGURE 7.4: Correlation function between the reflected and transmitted speckle patterns for a sample with
the same parameters (` = 16± 2.5 µm, L = 40 µm) that the one used for the experiment of Blind Ghost

Imaging.

As an illustration of eq. 7.10, here we compare the experimental image obtained by BGI

(Fig. 7.3b) with a numerical convolution of the real image (Fig. 7.3a) and the correlation func-

tion of the sample (Fig. 7.4). For simplicity we only look at the profile of one of the features of the

image, the top right vertical lines in Fig. 7.3 a,b). In Fig. 7.5a) we plot the intensity profile of the

vertical lines of the object in Fig. 7.3a). As we could expect, the three lines appear clearly visible

and with high contrast. In Fig. 7.5b) we plot an intensity cut of the correlation function shown in

Fig. 7.4 at ∆y = 0, presenting a broad and noisy negative dip. In Fig. 7.5c) we represent the

numerical convolution of the real image in panel a) and the correlation function in panel b). We

can see the intensity profile is now inverted, due to the convolution with the negative correlation

function. In Fig. 7.5d) we plot the profile of the vertical lines from the experimental image using

the BGI technique. Although it is not easy to make a quantitative comparison, we can see a qual-

itative resemblance between panel c) and d). In order to make a fair comparison, the correlation

function shown in Fig. 7.4 should be obtained exactly with the same sample and experimental

conditions, given that these can affect in the amplitude or extension of the correlation function.
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FIGURE 7.5: a) Normalized intensity cut of the top right vertical lines in Fig. 7.3a, b) Intensity cut of the
correlation function CRT in Fig. 7.4 at ∆y = 0. c) Numerical convolution of the data presented in panels a

and b. d) Intensity cut of the top right vertical lines in Fig. 7.3b.

7.4 Summary and outlook

In this chapter we have presented an alternative approach to conventional ghost imaging that we

call blind ghost imaging. The main difference is that instead of using two highly correlated beams

reaching the two detectors, now the information reaching the object is retrieved based on the

correlations between the reflected and transmitted speckle patterns of the scattering layer hiding

the object. We have shown for the first time that the statistical correlations between reflected and

transmitted speckle patterns can be used for imaging through an opaque layer of scattering ma-

terial with OD ∼ 2.5, although in principle imaging through larger OD should be possible, due to

the non-zero correlation CRT. We have seen as well that the image retrieved with this technique is

the result of the convolution between the regular image of the object and the correlation function

of the scattering layer. This open new possibilities for non-invasive imaging through opaque scat-

tering materials, such as the combination of blind ghost imaging with current imaging techniques

in microscopy.
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Summary and outlook

The work presented in this thesis is centred around two main areas: wavefront control, exploring

its applications in the laser and biological sensing fields, and intensity speckle correlations, where

we have presented the first experimental observation of the correlations between transmitted and

reflected speckle patterns, characterizing it for the different scattering regimes as well as showing

the possibility to use these correlations for imaging through scattering materials.

In the first part of the thesis, dedicated to wavefront control, we have applied wavefront shaping

techniques for the correction of a multimode speckled beam into a diffraction limited spot, which

could potentially be applied to large improvements in the beam quality and energy of temporally

coherent multimode lasers. Although conceptually transforming a speckle pattern into a spot is

not new, it is generally done by modifying a plane wave with an SLM before it impinges onto the

scattering material. In our case, we directly shaped the speckle pattern, which has not been stud-

ied in detail and could lead to new applications of wavefront shaping. In the experiment presented

in Chapter 4 we make a detailed study on the transformation of speckle pattern illumination into a

diffraction limited spot, achieving a large improvement in the beam quality, as well as the energy

deposited on it, in comparison with conventional techniques. We explored the theoretical and ex-

perimental expectations, setting a reliable frame for potential applications (e.g. in laser industry).

As a further step, it would be interesting to consider the fabrication of a mask to add to the output

of temporally coherent multimode lasers, which could enable the single mode operation with small

losses in the wavefront correction operations.

The second application of wavefront control is presented in Chapter 5, and it is based on in-

creasing the penetration depth of light in scattering media using wavefront shaping techniques.

As mentioned in the introductory chapter, the diffusive behaviour of light limits the penetration

depth of light in scattering materials, posing an important limitation for optical sensing techniques.

In this experiment, by using an iterative algorithm we shape the wavefront incident on a scattering

material, increasing the total transmission through it and consequently modifying the limiting diffu-

sive behaviour. Using a two layered sample, we study the intensity of the Raman scattered light,

proportional to the pump intensity, verifying that by means of increasing the pump transmission,

we linearly increase the intensity delivered inside. We show with a numerical study that the energy

distribution of the optimized pump is particularly well suited for the detection of centred objects,

the most disadvantageous configuration for optical sensing techniques in scattering media. We
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estimated the increase in the penetration depth of the pump as a consequence of depositing more

light inside, finding that the extra distance at which we could detect a Raman element depends on

the original position that we are comparing it with, but for centred elements the optimized pump

is capable of detecting elements around 30-100% deeper. These results open new possibilities

for non-invasive deep optical sensing in turbid media, where wavefront shaping techniques can

increase the applicability or current existing techniques such as Raman spectroscopy. The results

obtained in this project were performed with a very thin and highly scattering sample, and having

biomedical applications in mind, a very interesting future step would be to change the sample for

a more realistic one, with thicknesses, transport mean free paths and anisotropy factors closer to

the ones of biological media. A further step would be to make the wavefront shaping optimiza-

tion faster, exploiting the advantages in high speed of the DMD, and perform the optimizations in

almost real time, making the technique suitable for in vivo biological applications.

The second part of the thesis is dedicated to the study and applications of the intensity cor-

relations between the reflected and transmitted speckle patterns. In Chapter 6 we present the

first experimental measurement of this correlation, revisiting briefly the theoretical framework as

well as the numerical calculations. We presented a detailed characterization of this correlation

in all scattering regimes, from the diffusive to the quasi-ballistic. We highlighted the its depen-

dency with the sample thickness, transport mean free path, angle of incidence and polarization.

A further study on the effects of the polarization detected would be very interesting to shine more

light on the nature of these correlations. Additionally, a study to show the distance at which the

information held in this correlation vanishes will be very interesting for the potential applications.

The existence of these correlations open interesting opportunities for non-invasive wave control

through scattering media, currently in need to access both sides of the scattering material to gain

feedback. Being capable of extracting that information by just measuring the reflection half-space

open new potential applications of wavefront shaping techniques. Not only limited to wavefront

control, these correlations can be used for imaging as well, as demonstrated in our last project.

In the last part of the thesis we exploit the correlations between transmission and reflected

speckle patterns to develop a new imaging technique: Blind Ghost Imaging. In this experiment we

do not only demonstrate that the information contained by the correlations can be harnessed for

imaging, but we derive the theoretical framework that allows us to characterize elements such as

the point spread function, given by the correlation spatial profile, and the expected retrieved image,

a convolution of the correlation function with the object to image. The possibility to image an object

completely hidden by a optically thick scattering material open new possibilities towards non-

invasive optical imaging in turbid media. Further steps in this field could be the use of compressive

sensing techniques to speed up the imaging process, or a full non-invasive configuration, having

no signal form the transmitted side.
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Appendix A

Code for numerical simulations

In this appendix we attach the code that I produced to generate the different numerical simulations

along the thesis.

A.1 Total optimal transmission

In Section 3.1.2 we calculated the optimal total transmission that can be achieved under ideal

phase modulation, following a step-wise algorithm. In this section we present the code used for

the numerical calculations plotted in Fig. 3.2 and Fig. 3.3. The code is written in the programme

Wolfram Mathematica.

We first define a transmission matrix t of dimension n with uncorrelated normally distributed

complex elements, centred around 0, with standard deviation σ such that:

t = Table[RandomVariate[NormalDistribution[0, σ]] +

I*RandomVariate[NormalDistribution[0, σ]], n, n];

The normalized transmission matrix is then:

tn= t/ Abs[Total[Flatten[t]]];

We next define the incident field Ei as in eq. 3.11:

Ei = Table[E∧(I*Mod[φ, 2 Pi])/Sqrt[n], n];

We then next create an array with the sum of the transmission elements corresponding to one

output channel, as in eq. 3.13 for every index i of the incident field:

Cx = Total[Table[tn[[i]][[j]], {i, 1, n}, {j, 1, n}]];

With all this, the initial total transmitted field becomes:

InitTotField = Total[Table[Cx[[i]]*1/Sqrt[n], {i, 1, n}]];

The field corresponding to one modulated element of the incident field (equivalent to eq. 3.14) is

then:
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MacroField = Table[Ei[[i]]*Cx[[i]], {i, 1, n}];

The optimization is based on finding the constructive interference between the modulated field

(MacroField) and the rest of the transmitted field (InitTotField-MacroField), consequently de-

fined as (eq. 3.15):

RestField = Table[InitTotField - Cx[[i]]*E[[i]], {i, 1, n}];

The intensity interference term between one element modulated in phase and the rest, corre-

sponding to eq. 3.17, is therefore:

IntMacroRest = Table[Abs[MacroField[[i]] + RestField[[i]]]2, {i, 1, n}];

In this way, the contribution of this modulated element to the transmitted intensity is:

Contrib = Table[Abs[ Evaluate[IntMacroRest[[i]] /. φ-> RandomReal[0, 2π]] -

Evaluate[IntMacroRest[[i]] /. φ-> 0]], {i, 1, n}];

This corresponds to the contribution of one modulated element to the total transmission. If we

now run this for all the elements in the incident field, we will be able to collect and add up all

the contributions to the output transmitted field (Total[Contrib]). Now this value represents the

extra increase in total transmission due to the optimization. To represent the total increase, we

add this to the total initial transmission and divide by that same value, so that the total increase in

the total transmission, equivalent to eq. 3.32, reads as:

Increase = (InitTotInt + Total[Contrib])/InitTotInt;

This process give us one total enhancement in transmission, however this code is done for gen-

erating i repetitions of the total enhancement, which allow us to generate the histogram. In

order to generate a series of total enhancement it is only necessary to add the For loop, i.e.,

For[i=1,i=NumberIterations, i++

...]

Each point of the results presented in Fig. 3.2 is the average value of the list of elements

produced in this way. The error bars are the standard deviation of these elements. The information

in Fig. 3.3 represent the histograms of these values.

A.2 Effect of speckle illumination over ideal enhancement fac-

tor

In this section we present the code used to find out the effect of using a speckle pattern as

illumination of the SLM to focus the light to a diffraction limited spot. The next calculations are

based on the analytical derivations in Subsection 3.1.1.
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In this code we numerically perform 1000 optimizations in order to gain a statistical insight.

(*We first define the lists where the enhancement factors will be stored*)

dop = Table[0, 1000];

dsp = Table[0, 1000];

(*Here we use the For loop to impose the number of optimizations, as in the previous section *)

For[j = 1, j < 1001, j++, nn = 1000; (*This is the dimension of the incident vector field Ei*)

ArgT = Table[(I*RandomReal[0, 2 Pi]), {i, 1, nn}]; (*Here we define Arg[t f i]*)

t = Table[RandomReal[0, 1]*E∧(ArgT[[i]]), {i, 1, nn}]; (*This is equivalent to t f i in Sub-

section 3.1.1*)

y = Table[RandomReal[0, 1]*E∧(I*RandomReal[0, 2 Pi]), {i, 1, nn}];(*This is equivalent

to ξ f i in Subsection 3.1.1*)

(*Definition of the ideal wavefront according to Cauchy-Swartz condition Ẽi ∝ t∗f i *)

wo = Conjugate[t];

(*Following eq. 3.8 the ideal enhancement is:*)

IdEnhancement = Abs[Total[Table[t[[i]]*wo[[i]], {i, 1, nn}]]]∧2
Abs[Total[Table[y[[i]]*wo[[i]], {i, 1, nn}]]]∧2

;

(*Definition of the speckled wavefront but optimizing the phase, i.e., Arg[Ẽi] = Arg[t∗f i]*)

r = Table[RandomReal[0, 1], {i, 1, nn}];

sw = Table[r[[i]]*E∧(-ArgT[[i]]), {i, 1, nn}];

phEnhancement = Abs[Total[Table[t[[i]]*sw[[i]], {i, 1, nn}]]]∧2
Abs[Total[Table[y[[i]]*wo[[i]], {i, 1, nn}]]]∧2

;

dop[[j]] = IdEnhancement;

dsp[[j]] = phEnhancement;

]

Mean[dsp]/Mean[dop]≈ 1/2
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Appendix B

Pump energy distribution and

Raman enhancement with

optimized and non-optimized

wavefronts

B.1 Energy distribution of the pump light

In this Appendix we detail the calculations presented in Section 5.3. When a non-optimized beam

impinges on to a scattering slab, it follows a diffusive process described by the one dimensional

diffusion equation:
∂I(z, t)

∂t
= D∇2 I(z, t), (B.1)

where D is the diffusion constant. Assuming continuous wave light, equation B.1 can be simplified

to the steady state equation and it can be written in the complete basis of the Laplacian, which

allows to describe the energy density in the medium as a linear combination of the eigenvectors

of the Laplacian. The solutions to the steady state diffusion equation in one dimension are:99

I(z) =
∞

∑
m=1

Im(z) =
∞

∑
m=1

Cm sin
(

πm
z + ze1

Lex

)
, (B.2)

where m is the eigenvector index, Cm is the corresponding coefficient, Lex = L + ze1 + ze2 is

the effective thickness of the sample and ze1, ze2 the extrapolation lengths at the front and back

surfaces of the sample, respectively, as defined in Section 1.1. The eigenvector’s coefficients are

derived in the literature28,99 and given by:

Cm =
AmL2

ex
π2m2D

sin
(

πm
zinj + ze1

Lex

)
, (B.3)
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where zinj is the thickness at which the light becomes diffuse. The elements Am are given by:

Am =

2I0

[
πmzinj cos

(
πmze1

Lex

)
− e
− Lex

zinj
(

πmzinj cos
(

πm Lex+ze1
Lex

)
+ Lex sin

(
πm Lex+ze1

Lex

))]
L2

ex + π2m2z2
inj

+
2I0Lex sin

(
πm ze1

Lex

)
L2

ex + π2m2z2
inj

.

(B.4)

If we sum all the solutions from the steady-state diffusion equation (Im(z) in eq. 5.2), it results in

the energy density distribution for the non-optimized wavefront, described by eq. 1.7 in the limit

where m→ ∞, represented by the blue curve in Fig. B.1.

FIGURE B.1: Normalized pump energy densities for a non-optimized (blue) and an optimized (green) beam.

Fig. B.1 represents the energy distribution of the pump (or illumination) beam inside the sample

(defined by the grid-lines and with grey background). The horizontal axis is given by the depth

normalized by the transport mean free path, accounting for the optical thickness of the element.

The vertical axis represents the normalized energy density, that is detailed next.

The normalization of the energy density is done by taking into account the total transmitted

(T) and reflected (R) intensities in the medium. In the case of the non-optimized beam, the total

transmission is given by Fick’s law as a result of flux conservation, leading to:

T = −D
I0

∂Id(z)
∂z

∣∣∣∣
z=L

(B.5)

In the same way, total reflection is given by:

R =
D
I0

∂Id(z)
∂z

∣∣∣∣
z=0

(B.6)

For simplicity, we normalize the intensity distribution of the non-optimized beam so that the total

intensity I0 = 1, ID = Id(z)/(R + T), which is the blue curve represented in Fig. B.1.

In the case of the optimized beam, the approach for normalization is slightly different. We need

to remember that the the diffusive behaviour of light is an approximation and it does not take into

account interference. Diffusion theory is widely used because it gives a very good approximation

on how the average intensity propagates in a multiply scattering material.



97

However, when we consider the optimized wavefront, we can couple the incident light to an

open channel of the sample. Coupling to open channels can be done by changing the interference

happening in the medium, therefore diffusion theory can not describe it properly. However, as

mentioned before, it was shown45 that the energy distribution of a beam coupled to an open

channel of the sample has an energy distribution very similar to that of the first solution (m=1) to

the diffusion equation28,69 therefore we use this energy distribution Im=1(z) to describe the energy

distribution of the optimized beam. In order to properly normalize the energy distribution, we need

to scale it so that the transmission resulting from the first solution is the total transmission28 (T=1)

as a consequence of coupling to an open channel. Using eq. B.2, the transmission corresponding

to the first solution is:

Tm=1 = −D
I0

∂Im=1(z)
∂z

∣∣∣∣
z=L

= −A1Lex

π I0
sin
(

π
zinj + ze1

Lex

)
cos

(
π

L + ze1

Lex

)
(B.7)

The normalized energy distribution of the optimized wavefront, using eq. B.2 is then:

IOP(z) =
Im=1(z)

Tm=1
=

1
Tm=1

C1 sin
(

π
z + ze1

Lex

)
(B.8)

Fig. B.1 represents the two normalized energy distributions of the optimized and non-optimized

pump light, both assuming the same initial intensity (I0 = 1).

B.2 Raman intensity output coming from the optimized and

non-optimized beams

So far we have looked at the energy distribution of the pump light, however our real interest is

to find out what is the effect that the different pumps have over the Raman output light. In order

to take this into account, we assume a Raman element as a point source, located at different

positions (zR) within the sample, following eq. 1.6. For each position of the Raman element we

evaluate the forward and backwards Raman scattering, given by eq. B.5, and eq. B.6, respectively.

The result of this evaluation is represented in Fig. B.2.

As we could expect, when the Raman element is near the end of the sample (zR/`t ∼ L/`t),

the percentage of collected scattered Raman in the forward direction is maximal and the reflected

one, minimal. The opposite happens when the Raman element is close to reflection surface.

Raman intensity output dependent on the pump intensity distribution

The plots presented in Fig. B.2 were calculated assuming the Raman element acting as a source

had the same amplitude (or intensity) at any different position zR, i.e. constant energy distribution

with depth, which is of course an idealization. In a real experiment the energy distribution of the
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FIGURE B.2: Forward (a) and backwards (b) Raman scattering of an element at position zR/`, assuming
equal intensity of the Raman source at each position.

pump varies with the thickness, as seen in Fig. B.1. The variation of the intensity of the pump

with the depth will determine the amplitude of the Raman scattered light at the different positions.

In order to take the spatial distribution of the pump into account, we weight the Raman scattered

light presented in Fig. B.2 by it. We normalize the pump distributions to a global maximal value

of 1 so that the results are easier to interpret. Fig. B.3 shows the result of the weighted Raman

forward a) and backwards b) scattering.

FIGURE B.3: a) Normalized forward collected Raman scattered light of a target at position zR/`, when
the beam is optimized (orange) and when it is not optimized (purple). d) Total backwards collected Raman
scattered light of a target at position zR/`, when the beam is optimized (orange) and when it is not optimized

(purple)
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Appendix C

Experimental calculation of the

correlation function

In order to experimentally measure the correlation function CRT(∆~r) defined by eq. 6.3, it is nec-

essary to perform two average processes. In first place we take a spatial average,∫
δR(~r)δT(~r + ∆ ~r)d~r, which is the cross correlation of every pair of reflected and transmitted

speckle patterns. After the spatial average is done, we perform an ensemble average of the cor-

relation function over the realizations of disorder, which leads to the final correlation function used

in eq. 6.3.

It is important to notice that the speckle patterns measured are subject to artefacts from the

cameras. In Figs. C.1a) and C.1b) we show two typical speckle patterns measured from the

cameras. At a first glance it looks like proper speckle and we don’t see any sign of undesired

artefact. However after averaging over a large number of realizations of disorder we find an

irregular pattern that is present in all the measurements (see Figs. C.1c) and C.1d)). These fringe

patterns are due to the interference of the light in the glass window in front of the CCD chip.

If we measure the correlation function without subtracting the irregular fringe pattern from the

cameras, the correlation function CRT will be hidden by a large inhomogeneous background (see

Figs. C.1e)). In order to obtain the proper correlation function (defined in eq. 6.3) it is necessary to

substract the fringe pattern present in every measurement of speckle, which allows us to recover

the quantities δT and δR appearing in eq. 6.3. When the background intensity of the speckle

patterns is properly subtracted, it is possible to recover the real shape of the correlation function

CRT (see Figs. C.1f)).
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FIGURE C.1: a) Typical raw speckle pattern in reflection and b) in transmission. c) Averaged intensity
pattern over 2000 realizations of disorder in reflection and d) in transmission. e) Resulting correlation
function when the fringe patterns in (c) and (d) have not been subtracted from the speckle images. f)

Cross-correlation between δR and δT as described in the main text.
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