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Abstract  
Seeds are very complex and diverse plant organs. Seed germination is the 

most sensitive stage of plant life and is influenced by various environmental 

signals including phytohormones, salt, light, temperature and water potential. 

Seeds have an innate mechanism called dormancy that blocks germination, and 

plants have developed several dormancy-inducing strategies to optimise the 

timing of germination. 

 

Seed germination vigour is an important factor in crop yield. Seedling 

vigour is defined as the sum of the seed properties which determine the level of 

activity and performance during germination and seedling emergence. A poor 

seed lot can be improved by post-harvest treatment such as hydro-priming as it 

is used in the seed industry, but the biological mechanism is unknown. The aim 

of this study is to understand the mechanism(s) of hydro-priming in order to 

improve seed vigour and seed germination. I set seeds at different temperatures 

to produce variation in seed vigour and it showed that germination of seeds with 

low vigour can be improved by hydro-priming. Using LC-IT-ToF/MS I 

characterised compounds that leach from seeds during hydro-priming, and 

showed that some of these are putative germination inhibitors. Adding these 

compounds to the water during hydro-priming showed that the inhibitory effect of 

these compounds is not the main mechanism that regulates germination. Also, 

transcriptomic analysis showed that genes involved in OPDA pathway are 

expressed during hydro-priming as well as during endosperm weakening cap 

associated genes. I concluded that hydro-priming improves the speed of 

germination of low temperature set and its efficiency is dependent of activation of 

metabolic activity. 
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General Introduction  
 

 

 



 

1.1 Introduction 

1.1.1 Seed germination 

Seeds are very complex and diverse plant organs; they store nutrients and 

allow far-distance dispersal as well as persistence of a species in the local 

habitat. Seeds are able to survive for long periods and harsh environments until 

weather conditions are favorable for germination and seedling development.  

 

Seed germination is the most sensitive stage of plant life and is influenced 

by various environmental signals including salt, light, temperature and water 

potential (Foolad et al., 2007; Mancinelli et al., 1966; Shichijo et al., 2001). These 

factors may delay the onset, rate and uniformity of germination. Nevertheless, the 

impact of the environment depends to a large extent on the interaction between 

the genetic makeup of the plant and the environment and it is believed that the 

plant’s response to environmental condition is controlled by many genes (Foolad 

et al., 2007). The beginning of seed germination is defined by the imbibition phase 

or water uptake and finishes by the elongation of the embryonic axis (Berrie and 

Drennan, 1971; Bewley, 1997). Water uptake by dry seeds in favourable 

conditions permits germination and radicle protrusion. The imbibition phase is 

divided into three phases of water uptake that allow the re-hydration of the seed 

and germination (Figure 1.1; Weitbrecht et al., 2011). Dry seeds have a very low 

water potential and phase I is a rapid uptake, followed by a plateau (phase II) and 

by another increase in water uptake, phase III, which permits the elongation of 

the embryo and the breaking of testa to complete germination (Figure 1.1; Finch-

Savage and Leubner-Metzger, 2006; Schopfer and Plachy, 1984; Weitbrecht et 

al., 2011).  
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Figure 1. 1 Key processes during germination of typical endospermic eudicot seeds with 

separate testa and endosperm ruptures. Time-course of B. napus seed water uptake, testa 

rupture, radicle growth >2 mm, and the effect of abscisic acid (ABA); control without added 

hormone (CON). Data from Weitbrecht et al., 2011. Journal of Experimental Botany. 

2011;62(10):3289-3309 

 

Modification of water potential alters the speed of tomato seed germination 

(Liptay and Schopfer,1983) and Bradford lab have shown that seed germination 

and speed of germination depend of water availability (Figure 1.2; Cheng and 

Bradford, 1999; Dahal and Bradford, 1994). During the imbibition phase, water 

penetrates into seeds through permeable seed coat by the micropyle as major 

entry point; this uptake modifies seed size and shape (Preston et al., 2009; 

Robert et al., 2008). It activates the biochemistry by the resumption of the 

metabolic activity and stimulates respiration and other mechanisms that deal with 

the damage imposed during the dehydration, storage or fast and inhomogeneous 

rehydration such as DNA repair, cell wall repair, activation of DNA ligase, DNA 

synthesis (Figure 1.1, Weitbrecht et al., 2011). The inability to repair DNA 

damage during the imbibition period contribute to loss of seed vigour (Elder and 

Osborne, 1993; Powell and Matthews, 2012).  
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Figure 1. 2 Seed water uptake and ambient water potential. Data from Leubner-Metzger – The 

seed biology place (2006). 

 

1.1.2 Seed dormancy, a process that blocks the completion of germination 

Many plant seeds have an innate mechanism called dormancy that blocks 

germination. Seed dormancy is defined as a failure of an intact viable seed to 

complete germination under favourable conditions, and plants have developed 

several dormancy-inducing mechanisms to optimise the timing of germination 

(Bewley, 1997; Foley, 2001). Harper established three categories of dormancy: 

innate, induced and enforced (Harper, 1957); then Baskin and Baskin defined 

and classed dormancy into new groups: physiological dormancy, morphological 

dormancy, morphophysiological dormancy, physical dormancy and 

combinational dormancy (Baskin and Baskin, 2004). In many plant species, seed 

dormancy strongly influences fitness by delaying germination until conditions are 

appropriate for growth (Hepher and Roberts, 1985; Hilhorst, 1995; Vleeshouwers 

et al., 1995; Li and Foley, 1997). Practical methods to release dormancy and 

promote germination include after-ripening, temperature treatment, hormone 

application, scarification and seed enhancement (Benech-Arnold, 2004; Halmer, 

2004). The period of dry storage of freshly harvested and mature seeds, usually 

several months, at room temperature is named after-ripening (Bewley, 1997). 

During this period, biochemical or physical changes occur in the mature dormant 

seed to ensure germination. In crops, the delay of germination or sporadic 

germination is undesirable for growers or seed companies but the absence of 

dormancy is unwanted too; especially for cereals which could germinate on 

mother plant, this phenomenon is known as pre-harvest sprouting (Bewley, 
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1997). Sprouting or vivipary can be observed in tomatoes during seed maturation 

(Wang et al., 2016); effectively tomato seeds are quiescent with a non-deep 

physiological dormancy which is often broken when seeds are exposed to low 

temperatures called chilling then exposed to elevated temperature (Bewley and 

Black, 1982; de Castro and Hilhorst, 2000; Hilhorst and Downie, 1995). Moreover, 

ABA-deficient mutant tomato seeds show that abscisic acid (ABA) prevents 

germination and plays a role in the induction of dormancy during seed 

development (Berry and Bewley, 1992; Groot and Karssen, 1992; Wang et al., 

2016).  

 

1.1.2.1 Environmental signals in dormancy 

Developing seeds rely on environmental signals to break or induce the 

dormancy such as temperature, light, nitrate, hormones, or chemical products 

(Figure 1.3; Holdsworth et al., 2008a; Seo et al., 2009; Nonogaki, 2014). Seed 

germination or dormancy is controlled by the phytohormones gibberellic acid 

(GA) and ABA; a change in balance of ABA/GA levels could break the dormancy 

(Figure 1.1; Debeaujon and Koorneef, 2000). ABA is a major inducer of seed 

dormancy and regulates negatively germination.  

 

1.1.2.2 Hormonal regulation of dormancy 

There are two main hormone pathways that are associated with dormancy: 

ABA and GA. Others hormones such as ethylene and jasmonic acid regulate the 

major pathways. 

 

The ABA biosynthesis pathway is now well understood and the germination 

phenotypes of a large number of mutants of the biosynthetic pathway have been 

characterised (Figure 1.3; Schwartz et al., 2003). The first step is the epoxidation 

of zeaxanthin and antheraxanthin to violaxanthin, which occurs in plastids. This 

step is catalyzed by a zeaxanthin epoxidase (ZEP; Marin et al., 1996). After a 

series of structural modifications, violaxanthin is converted to 9-cis-

epoxycarotenoid. Oxidative cleavage of the major epoxycarotenoid 9-cis-

neoxanthin by the 9-cis-epoxycarotenoid dioxygenase (NCED) yields a C15 

intermediate, xanthoxin (Schwartz et al., 1997). Xanthoxin is exported to the 

cytosol, where it is converted to ABA through a two-step reaction via ABA-

aldehyde. A short-chain alcohol dehydrogenase/reductase (SDR), encoded by 
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the abscisic acid biosynthesis ABA2 (ABA2) gene (Rook et al., 2001; Cheng et 

al., 2002; Gonzalez-Guzman et al., 2002), catalyzes the first step of this reaction 

and generates ABA aldehyde. ABA aldehyde oxidase (AAO) catalyzes the last 

step in the biosynthesis pathway.  

 

Figure 1. 3 ABA biosynthesis pathway. The pathway of ABA synthesis beginning with 

violaxanthin which is catalysed by zeaxanthin epoxidase (ZEP) through antheraxanthin. Isomers 

of neoxanthin and violaxanthin are cleaved by 9-cis-epoxycarotenoid dioxygenases (NCED) to 

form xanthonin. Xanthonin is converted to abscisic aldehyde by alcohol deshydrogenase (ABA2). 

Then the abscisic aldehyde is catalysed by an abscisic aldehyde oxidase (AOO3) to form abscisic 

acid. From Schwartz et al., Elucidation of the indirect pathway of abscisic acid biosynthesis by 

mutants, genes, and enzymes. Plant Physiology. 2003 Apr;131(4):1591-1601 

 

ABA is involved in regulating a number of developmental and growth 

processes under non-stressful conditions. ABA in developing seeds can either be 

derived from maternal tissues or be synthesized de novo in the embryo. Studies 

in Arabidopsis thaliana suggest that during seed development, two peaks of ABA 

appear (Karssen et al., 1983; Kanno et al., 2010). The first one occurs at mid-

maturation, promotes the synthesis of storage proteins and is derived from 

maternal tissues (Phillips et al., 1997). The second peak of ABA is from the 

biosynthesis of the embryo and activates the synthesis of late embryogenesis 

abundant (LEA) proteins. This peak also initiates seed dormancy. Seed 
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dormancy is affected by the seed maturation program which is controlled by LAFL 

regulators in Arabidopsis. The LAFL regulatory network includes LEAFY 

COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and 

LEAFY COTYLEDON2 (LEC2), FUSCA3 (FUS3), ABA INSENSITIVE 3 (ABI3; 

AFL) of the B3-AFL gene family (Luerssen et al., 1998; Kirkbride et al., 2013; Jia 

et al., 2014). The expression of LEC1 can activate LEC2, FUS3 and ABI3 which 

are a major component of ABA signalling and ABI3 is a main regulator of seed 

dormancy and germination (Bentsink and Koorneef, 2008). ABI3 expression is 

regulated by DESPIERTO (DEP) which is involved in ABA sensitivity during seed 

development and dep mutant seeds show complete dormancy loss (Barrero et 

al., 2010). Cytochrome p450 707A1 (CYP707A1) and CYP707A2 encode 8’- 

hydroxylases which are considered to be the key enzymes involved in ABA 

catabolism during seed development and germination (Kushiro et al., 2004, Saito 

et al., 2004). CYP707A2 plays a role in the decrease of ABA levels prior to seed 

germination. A key gene in dormancy is DELAY OF GERMINATION 1 (DOG1). 

DOG1 is expressed in seeds during the maturation stage and loss of function 

DOG1 results in no dormancy (Bentsink et al., 2006). The amount of DOG1 

protein in seeds determines the time they have to be stored to release dormancy 

(Nakabayashi et al., 2012). The regulation of DOG1 is complex and involves 

polyadenylation and splicing (Cyrek et al., 2016; Nakabayashi et al., 2015). 

DOG1 is predominantly located in the nucleus suggesting that it might be a 

transcriptional factor. DOG1 mediates a conserved coat-dormancy mechanism 

including temperature and GA-dependent pathway (Graeber et al., 2014). The 

epigenetic regulation of DOG1 is important (see below 1.1.2.4). During seed 

imbibition, the embryo maintains the seed in a reversible state between dormancy 

and germination by regulating the basic leucine zipper transcription (bZIP) factor 

ABI5 which is activated by Snf1-related protein kinase 2 (SnRK2; Lopez-Molina 

et al., 2001; Piskurewicz et al., 2008). ABI5 maintains seed osmotolerance by 

stimulating de novo expression of the late maturation genes including LEA genes 

(Finkelstein and Lynch; 2000). Although ABI5 has no effect on seed dormancy 

and does not affect dormancy level (Finkelstein, 1994), this transcription factor 

negatively regulates seed germination (Piskurewicz et al., 2008; Kanai et al., 

2010), suggesting the distinct signalling pathways for ABA-mediated seed 

dormancy and ABA-inhibited seed germination. Seeds of typical ABA-deficient 

mutants germinate faster than wild-type (Koornneef et al., 1984, Finkelstein, 
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1994) and transgenic plants constitutively expressing ABA biosynthesis gene 

maintain deep seed dormancy. WRKY41, a transcription factor, and RAF10/11, 

a mitogen-activated protein kinase kinase kinase (MAP3K), regulate Arabidopsis 

seed dormancy also through directly controlling ABI3 and ABI5 transcription 

during seed maturation and germination (Finkelstein, 1994; Ding et al., 2014; Lee 

et al., 2015c). Another key component in the ABA-signalling pathway, ABI4, was 

also described as a positive regulator of primary seed dormancy (Shu et al., 

2013). Furthermore, a study showed that calcium also regulates seed 

germination by affecting ABI4 transcription that controls ABA signalling (Kong et 

al., 2015). MYB96, the ABA-responsive R2R3-type MYB transcription factor, 

positively regulates seed dormancy and negatively regulates germination through 

mediating expression of ABI4 and ABA biogenesis genes, including NCED2 and 

NCED6 (Lee et al., 2015a, 2015b).  

 

In contrast with ABA, GA levels are initially low in dry seed; and GAs are 

required after imbibition for radicle emergence (Ogawa et al., 2003; Piskurewicz 

et al., 2008). GA-deficient mutants (ga1-3 and ga2-1) are defective in an early 

step of GA biosynthesis pathway and as ga1-3 seeds did not germinate without 

exogenous GAs application, GAs are suggested to be required for seed 

germination (Koornneef and van der Veen, 1980; Ogawa et al., 2003). The GA 

biosynthesis pathway is known and reviewed by Yamaguchi (Figure 1.4; 

Yamaguchi, 2008). Briefly, GAs are biosynthesised from trans-geranylgeranyl 

diphosphate (GGDP), formed in plastids through the methylerythritol phosphate 

pathway (Kasahara et al., 2002), then it converted by two plastid-localised 

terpene cyclases, followed by oxidation on the endoplasmic reticulum by 

cytochrome monooxygenases p450 which leads to the production of GA12 

(Yamaguchi, 2008). The dioxygenases comprise small families of GA 20-oxidase 

(GA20ox) and GA 3-oxidase (GA3ox) isozymes which convert GA12 to the active 

form GA4. A third class of dioxygenases, the GA 2-oxidases (GA2ox), produce 

inactive products and function to enable GA turnover. The GA signalling pathway 

is regulated by DELLA proteins which are transcriptional regulators through 

targeting GAs receptor named GIBBERELLIN INSENSITIVE DWARF1 (GID1). 

This binding changes the conformation of GID1 which is recognized by SLEEPY1 

(SLY1), an F-box component of the SCFSLY1 E3 ubiquitin ligase and address 

GID1-GA-DELLA for degradation through the 26S proteasome (Tyler et al., 
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2004). Mutation in DELLA RGA-LIKE2 (RGL2) is sufficient to rescue ga1-3 

germination (Piskurewicz et al., 2008) suggesting that RGL2 represses seed 

germination. Moreover, ABA promotes DELLA accumulation (Penfield et al., 

2006) and RGL2 stimulates ABI5 expression by increasing ABA synthesis 

(Piskurewicz et al., 2008). Cold stratification releases seed dormancy through an 

increase in GA levels which degrades RGL2 (Lee et al., 2002). Another DELLA 

factor, REPRESSOR OF GA1-3 (RGA), is expressed during seed germination 

and stimulates the expression of XERICO which promotes ABA accumulation 

(Tyler et al., 2004; Ko et al., 2006).  

 

Figure 1. 4 GA biosynthesis pathway. trans-geranylgeranyl diphosphate (GGDP) is converted 

by terpene synthase and p450 enzyme in GA12 through the intermediate ent-kaurene and ent-

kaurenic acid. GA12 is converted to a bioactive form GA4 by GA 20-oxidase (GA20ox) and GA 3-

oxidase (GA3ox). Adapted from Yamaguchi, 2008. Gibberellin metabolism and its regulation. 

Annual Review of Plant Biology. 2008;59:225-251. 

  

The role and molecular mechanisms of jasmonic acid (JA) and its 

precursor 12-oxo-phytodienoic acid (OPDA) in seed inhibition or germination 

activation have been less studied in contrast to ABA in relation to seed dormancy 

and germination. The pathway for jasmonate (JA) biosynthesis has first been 

described in Vicia faba by Vick and Zimmerman (1983). JA has been studied 

primarily for its role in plant responses to wounding stress and herbivore feeding 

(Wasternack, 2007; Wu and Baldwin, 2010). The biosynthetic precursor of 

JA,OPDA, is also a hormonal signal in physiological reactions and developmental 

processes. JA synthesis is initiated in the chloroplast with the conversion of α-

linoleic acid to OPDA which is mediated by 13-lipoxygenase (LOX), allene oxide 

synthase (AOS) and allene oxide cyclase (AOC) (Fonseca et al., 2009). Then 
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OPDA is transported to the peroxisome where is converted to 3-oxo-2-(2’-[Z]-

pentenyl)cyclopentane-1-octanoic acid (OPC-8:0) before entering 3 cycles of β-

oxidation to produce JA (Figure 1.5; Wasternack, 2007; Acosta and Farmer, 

2010). Jasmonic acid is converted to a JA-isoleucine conjugate (JA-Ile) in the 

cytoplasm, and JA-Ile binds to CORONATINE INSENSITIVE1 (COI1) which 

leads to the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which are 

key transcription repressors of JA-dependent responses (Boter et al., 2004; Chini 

et al., 2007). Dave et al. (2011, 2012) proposed, based on crossing several 

mutants impaired at several steps during ß-oxidation, that in fact OPDA, and not 

JA, has the stronger effect in inhibiting seed germination of A. thaliana. They 

found that OPDA was approximately ten times more efficient than JA to inhibit 

seed germination. They further found a synergistic effect of OPDA and ABA on 

the germination inhibition of A. thaliana seeds (Dave and Graham, 2011; Dave et 

al., 2012). 

 

Figure 1. 5 Oxylipin biosynthesis pathway and signal transduction in Arabidopsis thaliana. 

Jasmonic acid biosynthesis initiates in the plastid which release from membrane lipids. cis-OPDA 

and dn-OPDA are formed following sequential steps and is transported to the peroxixome where 

after reduction JA is formed and is transported in the cytosol. Active form of JA (JA-Ile) and cis-

OPDA are addressed to the nucleus. Figure from Dave and Graham (2012). Frontiers in Plant 

Science 3:42. 

 



Chapter 1: General introduction 

27 
 

Ethylene (C2H4) acts positively on seed germination in Arabidopsis thaliana 

(Kepczynski and Kepczynska, 1997). The ethylene biosynthesis pathway is well 

characterized (Figure 1.6; Yang and Hoffman, 1984; Arc et al., 2013). Briefly, S-

adenosyl-methionine synthesized from methionine by the S-adenosyl-methionine 

synthetase (or SAM synthetase), is converted to 1-aminocyclopropane 1-

carboxylic acid (ACC) by ACC synthase (S-adenosyl-L-methionine 

methylthioadenosine-lyase, ACS). Ethylene production results from the oxidation 

of ACC by ACC oxidase (ACO), which also generates CO2 and hydrogen 

cyanide. Breaking dormancy by GA shows an increase of ethylene production 

(Kepczynski and Kepczynska, 1997). Moreover, mutant lines altered in ethylene 

pathway such as ETHYLENE INSENSITIVE1 (ein1), ETHYLENE RESISTANT1 

(etr1) and ETHYLENE RESPONSE FACTOR (erf) demonstrated the role of 

ethylene in seed germination (Wang et al., 2007). For example, etr1 enhances 

primary dormancy relative to wild type (Chiwocha et al., 2005). Ethylene 

biosynthesis gene such as ACO1, ACO4, ACO5 and ERF9, ERF105, ERF112 

induced seed germination by activating genes involved in the endosperm rupture 

(Linkies et al., 2009; Arc et al., 2013; Wang et al., 2013). The major role of 

ethylene in seed germination is the rupture of endosperm cap by counteracting 

the role of ABA (Linkies et al., 2009). 

 

Figure 1. 6 Ethylene biosynthesis pathway. S-adenosyl-methionine (S-AdoMet) is synthetized 

from the methionine by the S-adenosyl-methionine synthetase (SAM synthetase). S-AdoMet is 

then converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC synthase. 5′-

methylthioadenosine (MTA) is recycled to methionine by successive enzymatic reactions 

involving 5-methylthioribose (MTR) and 2-keto-4-methylthiobutyrate (KMB). S-AdoMet is also the 

precursor of the spermidine/spermine biosynthesis pathway. Ethylene production is catalyzed by 

the ACC oxidase using ACC as substrate. Ethylene production is reduced by malonylation of ACC 

content to malonyl-ACC (MACC). From Arc et al., 2013. ABA crosstalk with ethylene and nitric 

oxide in seed dormancy and germination. Frontiers in Plant Science. 2013 Mar;4:63. 
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1.1.2.3 Histone regulation in dormancy  

The regulation of transcription elongation and chromatin remodelling are 

involved in dormancy mechanisms (Figure 1.7). For example, the transcription 

elongation factor S-II (TFIIS) assists RNA polymerase II to overcome the 

temporal arrest during elongation and enhances RNA synthesis (Kim et al., 

2010). A mutation in TFIIS resulted in reduced seed dormancy (Grasser et al., 

2009). A mutation in the ARABIDOPSIS TRITHORAX-RELATED 7 (ATXR7) and 

H2B MONOUBIQUITINATION1 (HUB1) causes reduced dormancy in seeds (Liu 

et al., 2011). Histone demethylases LYSINE SPECIFIC DEMETHYLASE LIKE 1 

(LDL1) and LDL2 repress seed dormancy by regulating DOG1 (Zhao et al., 2015) 

and chromatin remodelling of DOG1 is also involved in dormancy cycling (Footitt 

et al., 2015). Furthermore, the histone methyltransferases KRYPTONITE 

(KYP)/SUVH4 and SUVH5 repress DOG1 and ABI3 transcription during seed 

maturation (Zheng et al., 2012). These studies demonstrated that the DOG1-

mediated regulation pathway might be distinct from the ABA and/or GA pathway. 

Moreover, ABA stimulates SWI-INDEPENDENT3 (SIN3)-LIKE1 (SNL1) and 

SIN3-LIKE2 (SNL2) expression, which suggests that there is positive feedback 

regulation to maintain high levels of ABA through the histone deacetylation 

pathway (Wang et al., 2013). The four separate hormone pathways (ethylene/JA, 

ABA and GA) associated with dormancy are regulated by a HD2 histone 

deacetylase (HD2B; Yano et al., 2013; Zhou et al., 2005, 2013). Indeed, HD2B 

regulates DOG1 and ABI3 which are involved in ABA pathway, then HD2B affects 

GA4 accumulation that increase GA level in imbibed seeds. Moreover, JA and 

ethylene induce histone deacetylase19 (HDA19) which represses seed 

germination by binding to HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE 

GENE2-LIKE1 (HSL1; Zhou et al., 2005, 2013). Histone methylation also affects 

seed dormancy. For example, the methylation of H3K4 and H3K79 activates gene 

expression and causes seed dormancy while KRYPTONITE (KYP) caused the 

methylation of H3K9me2 and suppresses seed dormancy genes (Jackson et al., 

2002; Kim et al., 2012).  
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Figure 1. 7 Schematic presentation of the regulation of dormancy and germination. Frontiers 

in Plant Science. 2014 May;5:233. The positive (red) and negative (blue) regulators of seed 

dormancy and their roles in the chromatin remodelling, DNA modification or siRNA pathways are 

indicated, together with promotive (arrows) or suppressive (blocked arrows) effects on the 

downstream genes (italics). Active (green) or repressive (orange) marks on histones or DNA are 

also indicated. Gene and protein abbreviations: ABI3, ABA INSENSITIVE 3;  ABI4, ABA 

INSENSITIVE 4; ACO, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE; AGO4, 

ARGONAUTE 4; ATXR7, ARABIDOPSIS TRITHORAX-RELATED 7; CYP707As, Cytochrome 

p450 707A; DOG1, DELAY OF GERMINATION 1; ERF, ETHYLENE RESPONSE FACTOR; 

Ga2ox, GA2-oxidase; HDA19, HISTONE DEACETYLASE 2B 19; HUB1, H2B 

MONOBIQUTINATION 1; KYP, KRYPTONITE; RDO, REDUCED DORMANCY (=TFIIS); SNL, 

SIN3-LIKE; TFIIS, Transcription elongation factor S-II. From Nonogaki (2014). 

 

1.1.2.4 Role of the light in the dormancy  

Light is perceived by photoreceptors PHYA and PHYB which stimulate seed 

germination by increasing GA levels and decreasing ABA levels through the 

degradation of the PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5) 

also known as PHYTOCHROME INTERACTING FACTOR 1 (PIF1; Oh et al., 

2006, 2007). PIL5 is a phytochrome-interacting basic helix-loop-helix 

transcription factor (Oh et al., 2006) which promotes higher ABA levels by 

activating ABA1, NCED6 and NCED9 (Figure 1.5) and repressing CYP707A2 

(Oh et al., 2007). Then PIL5 promotes lower GA levels by repressing GA3ox1 

and GA3ox2 and activating GA2ox2 (Oh et al., 2007). Moreover, PIL5 regulates 

GA levels through the activation of GA INSENSITIVE (GAI) and RGA 

(Piskurewicz et al., 2008). The darkness permits the accumulation of PIL5. Light 
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regulates seed germination with PIF1 and PIF4. DELLA binds PIF1 to activate 

PIF1-regulated transcripts in the light and binds PIF4 to repress PIF4-regulated 

transcripts in the dark (Cheminant et al., 2011). Furthermore, an early far-red light 

pulse that blocks germination involves phytochrome B (phyB) inactivation in the 

endosperm, which blocks the expression in GA biosynthesis genes in the 

endosperm by stabilization of PIF1, and induces ABA release towards the embryo 

(Oh et al., 2006; Lee et al., 2012).  

 

1.1.2.5 Role of nitrate in dormancy  

Nitrate (NO3
-) is one of the most abundant nitrogen (N) sources and NO3

-

impacts plant development, growth and seed dormancy (Hilhorst, 1990; Alboresi 

et al., 2005; Vidal and Gutierrez, 2008; Wang et al., 2012). In Arabidopsis seeds, 

nitrate content is negatively related to the depth of dormancy (Alboresi et al., 

2005). Plant have developed nitrate transporters to ensure its supply, these 

nitrate transporters are encoded by NRT1 and NRT2 (Desikan et al., 2002). 

During seed imbibition NITRATE TRANSPORTER 1 (NRT1.1), which encodes a 

dual-affinity low/high nitrate transporter, is expressed at low concentration of NO3
- 

(Alboresi et al., 2005). This response to nitrate acts via CBL-INTERACTING 

PROTEIN KINASE 23 (CIPK23) on the phosphorylation/dephosphorylation of 

NRT1.1 (Ho et al., 2009). The regulation of CIPK23 regulates dormancy via 

temperature signals. The response to nitrate accumulation in nrt2 mutant did not 

change the germination, suggesting that this transporter has no role in seed 

germination. Even if NRT2 is not directly involved in seed germination, nrt2.7 

mutants are affected in proanthocyanidins (PAs) and have a lower content of 

NO3
- than wild-type (WT; Chopin et al., 2007; David et al., 2014). nrt2.7 mutant 

have a similar phenotype to transparent testa10 (tt10) and have higher levels of 

soluble PAs. Debeaujon et al., have shown that PA content in seed is correlated 

with dormancy levels suggesting that nrt2.7 is dormant (Debeaujon et al., 2000). 

 

1.1.2.6 Role of temperature in dormancy  

 Temperature is an environmental factor which acts on seed germination. 

A period of storage at cold temperature may overcome the seed dormancy. The 

sensitivity of seeds to cold was dependent upon the length of time that seeds had 

been dry after-ripened (Finch-Savage et al., 2007). Moreover, temperature acts 

with light. For example, hy2-1 mutant (deficient in phytochrome) mutant did not 
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overcome the dormancy during cold temperature (Donohue et al., 2007). The 

genetic mechanism for temperature regulation has been identified (Sidaway-Lee 

et al., 2010). Cold temperatures stimulate GA biosynthesis by inducing GA3ox1 

and GA3ox2 (Yamauchi et al., 2004). This regulation is mediated by the bHLH 

transcription factor SPATULA (SPT) which suppresses the expression of these 

genes (Penfield et al., 2005). Furthermore, the NCEDs (NCED2, NCED5 and 

NCED9) contribute to the thermo-inhibition of germination by high temperatures 

by increasing ABA levels (Toh et al., 2008). This results show that high 

temperatures act on GA biosynthesis as well with the repression of GA3ox1 and 

GA3ox2. MOTHER OF FLOWERING LOCUS T AND TERMINAL-FLOWER 1 

(MFT) plays a role in dormancy cycling through DOG1 (Dave et al., 2016). MFT 

and DOG1 expression is correlated with CIPK23 and PHYA expression and the 

changes in CIPK23 and PHYA permit to the germination through the sensitivity 

of nitrate and light signals (Footitt et al., 2013). Moreover, mft2 loses its sensitivity 

to ABA confirming the role of MFT in ABA signalling (Footitt et al., 2017).  

 

1.1.2.7 After-ripening in dormancy  

After-ripening (AR) is the period of dry storage where dormancy is 

released after its induction during seed maturation. The regulation of after-

ripening is poorly understood (Finch-Savage et al., 2007; Carrera et al., 2008). 

Changes in dry seeds during AR are associated with ABA genes. Indeed, NCED 

and ABA1 are down-regulated in imbibed AR seeds (Cadman et al., 2006). 

Moreover during after-ripening, JA pathway is induced through COI1 (Ellis and 

Turner, 2002; Barrero et al., 2009). After-ripening permits to adjust the balance 

of ABA/GA to induce germination or dormancy. Major environmental signals act 

on the ratio of ABA/GA to release the dormancy by decreasing ABA levels or to 

enhance GA levels as shown on the Figure 1.8 (Bentsink and Koornneef, 2008). 
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Figure 1. 8 Schematic presentation of processes controlling seed dormancy and germination in 

an Arabidopsis seed – From Bentsink and Koornneef (2008). Arabidopsis book doi: 10.1199/tab.0119. The 

Arabidopsis seed is characterized by the embryo with two cotyledons and a single layer endosperm. 

Germination promoting (green arrow) and inhibiting factors (red arrows) are indicated. 

 

1.1.3 Seed structure and role of endosperm and seed coat in dormancy  

The structure of the seed derives from the ovule. After fertilization, the 

carpel begins to develop into fruit and seed development commences (Ho and 

Hewitt, 1986). The endosperm is a product of double fertilization and serves as a 

nutrient source for the embryo during seed development and for the emerging 

embryo during seed germination and seedling establishment. Mature tomato 

seeds are composed of an embryo surrounded by an endosperm which is 

covered by a seed coat composed of testa and tegmen. Each of these structures 

is genetically distinct (Figure 1.9). The embryo develops from the egg cell and 

contains equal representation of the maternal and paternal genomes.  

 

Figure 1. 9 Cross section of a tomato seed. Male or female symbols present the genome’s 

origin of the tissue. 
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The endosperm has an important role in the regulation of germination. The 

triploid endosperm is formed by the fusion of the two polar nuclei and one sperm 

nucleus. The organisation of endosperm is controlled by DNA methylation and by 

FERTILIZATION INDEPENDENT SEED (FIS) which repressed the formation of 

seeds in the absence of the fertilization (Köhler and Makarevich, 2006; 

Hehenberger et al., 2012; Hands et al., 2016). The FIS genes encode Polycomb 

group proteins which ensure the stable propagation of H3K27me3 through mitotic 

cell cycles. In solanaceous species such as tomato, mature seeds have a 

substantial thick endosperm layer which is broken down during germination. 

Endosperm weakening has been shown to be biphasic: the first phase is ABA-

insensitive, and this is followed by a second phase which is inhibited by ABA 

(Bewley, 1997; Müller et al., 2006; Ni and Bradford, 1993; Toorop et al., 2000; da 

Silva et al., 2004). Endosperm tissue weakening is associated with the action of 

cell wall remodelling protein (CWRPs; Nonogaki et al., 2000; Finch-Savage and 

Leubner-Metzger, 2006; Holdsworth et al., 2008a). Cell wall remodeling can also 

be promoted by reactive oxygen species (ROS), including short-lived molecules 

such as superoxide (O2
.-), hydroxyl radicals (.OH) and hydrogen peroxide (H2O2), 

which are also known to play a role in the regulation of germination timing (Bailly, 

2004). In tomato seeds, the endosperm cap is equivalent to the micropylar region 

of endosperm in Arabidopsis seeds which surrounds the radicle tip. The 

resistance of the endosperm cap is due to the rigid and thick cell walls of the 

tissue (Bewley et al., 2013). Genes encoding cell-wall modifying proteins such as 

xyloglucan endotransglycolase/hydrolases (XTH) and expansins (EXPA4, 

EXPA8 and EXPA10) are expressed exclusively in the micropylar region of the 

endosperm in Arabidopsis and tomato during seed germination (Dekkers et al., 

2013; Chen and Bradford, 2000; Chen et al., 2002). In chickpea, xyloglucan 

endotransglucosylase/hydrolase (XTH), renamed XET4 in tomato, controls 

germination (Chen et al., 2002; Hernandez-Nistal et al., 2010). Moreover, it has 

been shown that polygalacturonase A (PG2), endo-ß-1,4-mannanase (MAN1 and 

MAN2) and endo-ß-1,3-glucanase (GluB) are specifically expressed in the 

micropylar endosperm during germination and are involved in hydrolysis of the 

mannan-rich cell walls (Chen and Bradford 2000; Nonogaki et al., 2000; Chen et 

al., 2001; Leubner-Metzger 2003). In tomato seeds, the degradation of the cell 
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wall is controlled by the embryo and is accompanied by the disappearance of 

storage vacuole and lipid bodies. 

 

The seed coat develops from the integuments of the ovule and plays an 

important role in embryo nutrition during seed development and forms a barrier 

between the embryo and its immediate environment. The seed coat can impose 

dormancy by being impermeable to water or oxygen, or by its mechanical 

resistance to radicle protrusion. Between plant taxa structural features controlling 

water permeability in seed coat vary, and the presence of one or more layers of 

impermeable palisade cells are observed in legume seeds (Baskin and Baskin, 

1998). It has previously been proposed that the cuticle is the key factor of the 

permeability (Shao et al., 2007; De Giorgi et al., 2015). Moreover, the composition 

of carbohydrates (such as xylan), hydroxylated fatty acid or phenols compounds 

in seed coat affect the level of permeability (Weber et al., 1996; Aparicio-

Fernandez et al., 2005; Shao et al., 2007). The phenolic compounds such as 

proanthocyanidins (PAs) colour the seed coat and decrease its permeability 

(Debeaujon et al., 2000). For example, red seeds of Sinapis arvensis exhibit a 

reduced dormancy compared with black seeds (Duran and Retamal, 1989). 

Genes affecting flavonoid metabolism have been characterized in detail (Winkel-

Shirley, 2001). Flavonoids are sub-classified into several families including 

flavonols, flavones, phlobaphese, isoflavonoids, anthocyanidin and condensed 

tannins (Winkel-Shirley, 2001). In Arabidopsis, mutation in genes encoding PAs 

biosynthesis proteins showed an alterations in seed coat pigmentations or in 

flower pigmentations (Koornneef, 1990). PAs biosynthesis and its regulation have 

been studied in Arabidopsis using transparent testa glabra (ttg) mutants and 

transparent testa (tt) mutants which regulate production, transport and storage of 

PAs. ttg and tt mutants which are blocked at different steps in flavonoid 

biosynthesis pathway have a range of seed coat colour from yellow to brown. 

Plants having an alteration in PAs pathways exhibited a reduction of seed 

dormancy and the reduced dormancy of the mutant is related to the degree of 

paleness of seed coat (Gfeller and Svejda, 1960; Debeaujon et al., 2000; Himi et 

al., 2002), suggesting a role of proanthocyanidins in dormancy. Authors have 

investigated the role of PAs as seed germination inhibitors and have shown a 

relationship between proanthocyanidins and ABA (Jia et al., 2012). Indeed, PAs 
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inhibition of seed dormancy is affected by ABA signaling even if the mechanism 

is still unclear. 

 

1.1.4 Seed vigour 

Seed vigour is defined as the performance of seed to germinate and 

complete germination until developing into a plant. Seed vigour is dependent on 

the seed maturation conditions and time in dry storage (Hampton et al., 1995). 

Moreover, the environment during seed production exerts great influence on seed 

quality (Horii et al., 2007). Seed vigour can vary between seed lots, cultivars or 

varieties. Seed vigour, among the other attributes, is affected by the amount and 

composition of protein (albumin, globulins and proalbumins), starch and oil 

(triacylglycerols), which are functionally dependent on the carbon–nitrogen (C‐N) 

balance, central metabolism and sink‐source interaction during development on 

the mother plant (Wobus and Weber, 1999; Castro et al., 2006; Toubiana et al., 

2012). Most of the reserves are accumulated in the endosperm (Bewley et al., 

2013). Tomato contains high levels of protein (22-33%) and lipids (20-29%) but 

low levels of starch (0.5-2%; Schauer et al., 2005; Sheoran et al., 2005). The 

quantity of the storage reserve is influenced by the availability of carbon and 

nitrogen to the parents (Singletary and Below, 1989). These reserves are 

important because they support early seedling growth after being degraded upon 

germination and participate in the crop establishment. The success of seedling 

establishment is determined by the quality of the seed, the interaction with the 

environment and the food reserves until seed becomes independent, autotrophic 

and can use light energy. Seed vigour is dependant of the accumulation of 

protecting proteins during maturation such as LEA, peroxiredoxins and heat 

shock proteins which increase seed storability and dessication tolerance 

(Delseny et al., 2001). 

 

1.1.5 Seed longevity 

 Seed longevity is defined as the total time that seeds remain viable. Seed 

longevity is a major challenge for the conservation of plant biodiversity and for 

crop success. Moreover, longevity is variable between species. For example, the 

seed longevity is higher than 2,000 years for Phoenix dactylifera while the seed 

longevity for Capsicum annuum L. is around two years (Sallon et al., 2008).  
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 Seeds possess a wide range of systems (protection, detoxification, repair) 

allowing them to survive in the dry state and to preserve a high germination ability 

(Sano et al., 2016). Knowledge of the seed longevity permit for seed companies 

to control the storage and avoid problem with storability. Indeed, seed longevity 

is affected by dry storage; dry seeds slowly deteriorate and lose vigor which 

results in germination failure. The seed viability decreases due to the ageing 

processes. Research on seed longevity under high relative humidity and high 

temperature (artificial ageing) to accelerate deterioration have shown that these 

conditions mimics molecular and biochemical events that occurs during natural 

seed ageing (Rajjou et al., 2008). Mutation in seed maturation and dormancy 

genes, such as LEAFY COTYLEDON1 (LEC1) and ABSCISSIC ACID 

INSENSITIVE3 (ABI3) lead to reduction in seed viability (Debeaujon et al., 2000). 

The testa-defective mutants, such as transparent testa (tt) and aberrant testa 

shape (ats), display a reduced seed longevity (Debeaujon et al., 2000). 

Waterworth lab showed that DNA LIGASEIV and DNA LIGASEVI, which are 

essential to maintain genome integrity, are determinant in seed longevity 

(Waterworth et al., 2015). In addition, the accumulation of oxidative damage in 

seeds is correlated with the loss of germination vigor (Rajjou et al., 2008). The 

accumulation of cellular oxidative damage induces a loss of seed vigor and a loss 

of germination capacity until irreversible death of the embryo. To remove excess 

ROS accumulated during dry storage, seeds use a set of anti-oxidant enzymes 

(Bailly, 2004). Loss of seed longevity is associated with the accumulation of DNA 

lesions (Cheah and Osborn, 1978; Waterworth et al., 2015). Heat stress protein 

overaccumulated improved tolerance to ageing (Prieto-Dapena et al., 2006). In 

conclusion, changes in the regulation of proteins synthesis, post-translational 

modifications and proteins turn-over are crucial determinants of the age-related 

decline in the maintenance, repair and survival of the seed (Figure 1.10; Sano et 

al., 2016; Prieto-Dapena et al., 2006; Waterworth et al., 2015). 
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Figure 1. 10 Model for the cellular systems protecting seeds from injury by oxidizing free 

radicals during dry storage and anhydrobiosis. In Plant & Cell Physiology. From Sano et al., 

2016 Apr;57(4):660-674. HSP, heat-shock protein; LEA, late embryogenesis abundant; RFO, 

raffinose family oligosaccharides. In dark red are factors that negatively influence seed viability 

during dry storage. In blue are factors that positively influence viability during dry storage.  

 

1.1.6 Maternal environment effects seed vigour 

Maternal environmental effects refer to the particular phenomenon in 

which the external ecological environment of the maternal parent influences the 

phenotype of its progeny (Roach and Wulff, 1987; Roff, 1998; Donohue, 2009). 

Even though paternal and maternal environments may contribute to 

transgenerational plasticity such as the accumulation of food reserve during seed 

maturation stage, maternal effects, such as quantity and quality of offspring, are 

greater than paternal effect (i.e. prior to fertilization such as flowering time) 

(Roach and Wulff, 1987; Schmid and Dolt, 1994; Lacey, 1996; Etterson and 

Galloway, 2002). Maternal effects enhance offspring fitness by increasing the 

germination rate and intensifying performance in the habitats their offspring are 

likely to experience (Galloway, 2005). Maternal effects in plants include effects 

caused by maternal inheritance of organelles, the effect of endosperm, the effect 
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of the seed coat (a maternal tissue), the effect of maternal provisioning during 

seed development and maternal determination of the progeny environment by 

seed dispersal at times of favourable photoperiod and temperature for growth 

(Donohue, 2009; Chen et al., 2014; Postma and Agren; 2015; MacGregor et al., 

2015). Seed dormancy level is influenced by the temperature experience by the 

mother plant (Kendall et al., 2011; MacGregor et al., 2015). Cold temperatures 

induce higher dormancy in Arabidopsis mature seeds (Kendall et al., 2011) and 

this response is maternally controlled by FLOWERING LOCUS C (FLC) and 

FLOWERING LOCUS T (FT; Chen et al., 2014). FT is known to play a role in 

temperature responses and high FT expression is associated with low dormancy 

(Chen et al., 2014). In Arabidopsis, the major repressor of flowering is a MADS-

box transcription factor FLC (Michaels and Amasino, 1999). After a prolonged 

period of low temperature (named vernalization), FLC expression is repressed 

and plants are able to initiate flowering. This repression of FLC is associated with 

chromatin change (Bastow et al., 2004). FLC is regulated by FRIGIDA (FRI) and 

by VERNALIZATION INSENSITIVE 3 (VIN3; Johanson et al., 2000; Sung and 

Amasino, 2004). FRI is responsible for the production of FLC protein and VIN3, 

which is induced at low temperature, reduces FLC activity during vernalization 

(Sheldon et al., 2000). The binding of FLC to the FT, SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1), and FLOWERING LOCUS D 

(FD) permits the floral transition (Searle et al., 2006; Helliwell et al., 2006). This 

binding represses the induction of these genes. Flowering is also regulated by 

phytochrome through FT. In long day conditions, GAs promote flowering by 

increasing FT expression (Porri et al., 2012) whereas, under short day conditions, 

ABA inhibits flowering time by the regulation of FLC through the ABI4 which 

activates FLC (Shu et al., 2016).  

 

All of these results confirm that the main regulator of the germination or 

dormancy is the ratio ABA/GA which is regulated at different levels (hormonal, 

temperature....). 

 

1.1.7 Effects of priming on germination and growth 

The performance of a seed is a function of the complex interaction 

between the genome and the environment; seed vigour can be enhanced during 

all of the different steps of the production process. As it is difficult to influence the 
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production environment, even under greenhouse conditions, plant breeders 

or/and seed companies try to acquire the best possible quality of seeds mainly 

by varying the location and method of harvest, and particularly by using post‐

harvest treatments such as cleaning, sorting, coating and priming and by 

controlling the storage conditions.  

 

The seed industry and growers want rapid and uniform seedling 

establishment of vigorous plants because this can affect the yield and the quality 

of the final product. Indeed, good crop establishment is vital in the production of 

annual crops from seed because patchy stands results in low yields. Several 

approaches have been employed to precondition seeds to improve germination 

and seedling growth of various crops, including seed priming, seed soaking (e.g. 

hydro-priming) and seed coating with plant growth regulators and nutrients 

(Basra et al., 2003). During coating a thin and permeable layer of emulsion is 

stuck to the seed surface. Priming is controlling the hydration level within seeds 

to allow seedlings to emerge more quickly and to help them all emerge at the 

same time. Priming is a physiological enhancement method in which seeds are 

pre-soaked in liquid then dried to re-attain their original moisture content 

(Heydecker, 1973). Initial imbibition is often accompanied by a massive leakage 

of cellular solutes from the rearrangement of the phospholipid bilayer at low 

temperature (Hoekstra et al., 1999; Matthews and Powell, 2006; Weitbrecht et 

al., 2011). Seeds go through the first stages of germination but do not begin 

radicle emergence. Seeds can be dried back to their original water content and 

will generally exhibit more rapid rate of radicle emergence upon subsequent 

imbibition (Heydecker and Coolbear, 1977, Bradford, 1986, Khan, 1992; Harris 

et al., 2002). It ensures rapid and uniform germination accompanied with low 

abnormal seedling percentage for most plants (Singh, 1995; Shivankar et al., 

2003). The beneficial effects of priming have being associated with various 

biochemical, cellular and molecular events including synthesis of ribonucleic acid 

(RNA) and proteins (Bray et al., 1989; Dell’Aquila and Bewley, 1989; Davison and 

Bray, 1991). Several studies on priming have observed an increase of the nuclear 

DNA content of radicle meristem cells from 2C to 4C indicating the progression 

of the cell cycle and reduced time to the radicle emergence following priming was 

correlated with this ratio of nuclei (Lanteri et al., 1994, 1996). Additional nuclear 

processes related to cell cycle are involved in germination advancement such as 
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DNA repair (Ashraf and Bray, 1993). Others work have shown that initial radicle 

protusion is dependent of cell expansion and not cell division (Haigh, 1988; 

Górnik et al., 1997). Moreover, both temperature and osmotic pre-treatment of 

tomato seeds have advanced germination but only the latter resulted in an 

increase of DNA content prior to radicle emergence (Coolbear and Grierson, 

1979; Coolbear et al., 1990).  

 

Priming of seeds has proved to be a successful strategy to increase the 

rate of radicle emergence and the uniformity of seedling emergence (Kaya et al., 

2006). Several types of priming are used by the seed industry. Seed performance 

is improved by osmotic adjustment and leakage of cellular solutes for some field 

crops (Harris, 1996; Matthews and Powell, 2006). Osmo-priming is defined by a 

soaking in osmotic solution (Parera and Cantliffe, 1994; Li et al., 2011). A high 

water potential solution is used to permit the absorption of water by seeds by 

reduction of the osmotic potential of the seed. As osmotic solution is more 

concentrated than seeds, ions from the solution can penetrate inside the seeds. 

Halo-priming is a treatment of seed with salt in order to improve germination and 

generally, a solution with sodium chloride enhances more the germination than 

other salt treatments (Gholami et al., 2015). The effect of halo-priming on seed 

germination has been studied in some vegetables (Bradford, 1986; Matsushima 

and Sakagami, 2013; Passam and Kakouriotis, 1994; Tarquis and Bradford, 

1992).  

Finally, hydro-priming is a technique that involves soaking of seeds in an 

oxygenated water solution followed by a step of drying. Hydro-priming allows the 

seeds to quickly reach a high level of moisture with a constant supply of oxygen 

as seeds are in liquid solution under movement through rotation axis. Thus, the 

level of metabolites associated with the germination process (intermediate 

metabolites) and enzymes associated with the production of energy increase; this 

enhancement is due to the imbibition phase which activates seed metabolism. 

Furthermore, hydro-priming minimizes the use of chemicals and avoids 

discarding materials that may be undesirable to the environment (McDonald, 

2000). 
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1.1.8 Seedling establishment as seed performance criteria 

Seedling establishment is defined as the proportion of germinated seeds 

that develop into normal seedlings. It is an important trait for good, sustainable 

and profitable crop production and final yield of the crop. During seedling 

establishment before cotyledon emergence, seeds used stored reserves to 

produce energy to develop in the new crop. The quality of the seed and seedling 

is determined by its interaction with the environment and food reserves until seed 

becomes an independent, autotrophic organism, able to use light energy (Castro 

et al., 2006; Ellis, 1992). Heavy seeds may lead to a better root architecture and 

seed size appears to have an essential role in an increased growth rate during 

its initial stage of seedling growth (Westoby et al., 1992). The length of the main 

root and the density of the lateral roots determine the architecture of the root 

system in tomato and other dicotyledons and plays a crucial role in determining 

whether a plant will survive in a particular environment (Malamy and Ryan, 2001). 

This may have a major impact required inputs, and could also have direct 

influence on the marketing quality of a crop (Finch‐Savage, 1995). Inadequate 

seedling growth will reduce total crop yield at harvest (Bleasdale, 1967). 

Abnormality at the time of seedling emergence can also affect the uniformity in 

plant size at harvest, which reduces the proportion of the crop in high‐value size 

grades (Benjamin, 1990). In such a case the gross production may be high but 

the net profit of the crop can be greatly reduced due to low marketable yield. Seed 

vigour is therefore an important key factor which not only contributes directly to 

the economic success of commercial crops, but can also contribute in a number 

of indirect ways on crop production (Finch‐Savage, 1995). For example, timing 

and uniformity of seedling emergence has an immediate impact upon the efficacy 

of herbicide applications, weeding strategies and other aspects of crop 

production that determine cost effectiveness. Poor seed quality also has a direct 

financial penalty for the production of plant from seed for vegetables and 

ornamentals in the glasshouse through wasted space, materials and reduced 

product quality resulting from non‐uniformity. 

 

For tomato, seedling establishment is determined 14 days after sowing 

(DAS) and is classified into four categories: normal seedling, abnormal seedlings, 

small seedlings and non-germinated seeds (Rao et al., 2006). Normal seedlings 

have the essential structures (roots, shoots and sufficient food reserves) and are 
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capable of development into reproductively mature plant. The primary root is at 

least three time longer than the hypocotyl and plants have two cotyledons (Figure 

1.11 A). Small seedlings have a normal structure but are smaller than those from 

the normal category (Figure 1.11 C). Abnormal seedlings have a stunted primary 

root, or a root which can be stubby, missing, broken, split from the tip, spindly or 

trapped in seed coat and the hypocotyl is short and thick, split right through, 

missing, constricted, twisted or glassy. The terminal bud or leaves are deformed, 

damaged or missing and cotyledons are swollen, deformed, necrotic, glassy, 

separated or missing (Figure 1.11 D). Non-germinated seeds don’t germinate 

(Figure 1.11 B). 

 

 

Figure 1. 11 Seedling establishment 14 days after sowing. A. Normal seedlings. B. Non-

germinated seeds. C. Small seedlings. D. Abnormal seedlings 

 

1.2 Thesis outline 

The aim of this project is to understand the basic mechanism of the 

effectiveness of hydro-priming in germination improvement, and whether hydro-

priming can overcome variation in seed vigour caused by changes in the maternal 

environment during seed production. My objective is to facilitate new methods for 

enhancement of seed vigour by integrating the physiology, transcriptomics and 

metabolomics of seeds during post-harvest treatment to identify the mechanism 

controlling seed germination in tomato seeds.  

 

A 

D 

B 

C 
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 This thesis is divided in seven chapters including this general introduction 

(Chapter 1).  

 

Chapter 2 introduces the materials and methods used for this work.  

 

Chapter 3 explores the effect of maternal environment on vigour, hydro-

priming and seed coat properties. This chapter also presents the impact of 

temperature during seed development on progeny and the optimal condition of 

hydro-priming. 

 

Chapter 4 shows the role of nutrient balance during hydro-priming 

treatments. Some elements were leaked, allowing the osmosis diffusion during 

hydro-priming. Moreover, the role of iron in germination and during hydro-priming 

is studied. 

 

Chapter 5 uses metabolomics to understand the various ways in which the 

seeds interact with the hydro-priming flow-through liquid called hydro-priming 

workflow. The work describes the relationship between the metabolites leaked 

into the flow through liquid and the effectiveness of hydro-priming treatments 

differing in duration and efficacy. Seed germination inhibitors were identified in 

liquid after hydro-priming treatments, supporting the concept that metabolites 

leakage during hydro-priming treatment could help it in the enhancement of seed 

germination. 

 

Chapter 6 assesses the transcriptomic variations during hydro-priming 

treatment. This chapter also presents a review of the genes involved during this 

treatment which may be the key to understand the potential pathways involved in 

seed germination during hydro-priming. 

 

Chapter 7 discusses the main findings and overall contribution of the thesis 

and a final critical opinion about present and future research needed to follow up 

for a better understanding of complex seed vigour and hydro-priming treatments.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 

 

 

 

 

Materials and methods 
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2.1 Plant materials and condition of growth 

Tomato plants (Appendices, Table 1), Solanum lycopersicum, were grown 

in temperate climate across the world in open fields, net house or greenhouse. 

Seeds were provides by Enza Zaden B.V. (Enkhuizen) and Microtom seeds were 

bought (www.myseeds.co). To produce temperature set batches, normal 

seedlings of microtom tomatoes were sown in compost Levington F2 (base 

fertilizer consists of 144 parts for the nitrogen (N), 73 parts for the phosphorus 

(P) for roots and 239 parts for the potassium sulphate (K) for flowers and fruit) 

until anthesis then plantlets were sowing in John Innes Seed compost (2N, 1K, 

2P). During the growth period, seedlings were entrained to long days 

photoperiods: 16L:8D (LD) in white light at 120 mmol.m-2.s-1 at 19°C, 22°C or 

25°C.  

 

2.2 Seed extraction 

Mature fruit was based on the colour of the skin which should be truly red 

to be sure to have mature seed inside the fruit. Freshly harvested tomatoes were 

smashed in a deionised water solution of Viscozyme (Sigma-Aldrich), an 

enzymatic mixture containing pectinase, cellulose and others enzymes, at 0.5% 

v/v in a 1:10 weight fruit / volume solution ratio. The mixture was placed at 27°C 

for at least 2h. After maceration, kitchen sieves were used to clean and remove 

the pulp from seeds under a flow of water. Collected seeds were dried at 25°C 

and 30% Relative Humidity (RH) with high air blowing-fan until seeds were 

reached 6 – 7% moisture content. 

 

2.3 Seed germination  

For experiments on the speed of germination and seedling establishment, 

seeds were taken from at last ten individual of one large population and mixed 

before use. Fifty dry seeds of tomato, surface sterilized, were sprinkled on two 9 

cm diameter filter discs (Whatman paper) wetted with 15.0 ml sterilized water and 

placed into 9 cm diameter Petri dish sealed with micropore tap and incubated in 

a growth chamber at 22°C, LD at 200 mmol.m-2.s-1 during 14 days. 

The percentage of germination was calculated with the following formula 

according to the International Seed Testing Association (ISTA) rules (ISTA, 

1996):  
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(%) = 𝑛/𝑁 × 100 

Where n is the number of germinated seeds and N is the number of total seeds. 

 

The speed of germination was determined with the following formula: 

∑ 𝐷 × 𝑛/𝑁 

Where n is the number of germinated seeds at each day, D is the numbers of 

days after the start of the experiment and N is the number of total seeds. 

 

The accuracy and reproducibility of the germination result were dependent 

on the quality of paper used for germination testing. Indeed, filter paper must 

meet the following basic requirements:  

- It should be non-toxic to the germinating seedlings,  

- It should be free from other microorganisms,  

- It should provide adequate, aeration and moisture to the germinating 

seeds,  

- It should be easy to handle and use, 

- It should make good contrast for judging the seedlings. 

 

2.4 Seeding establishment 

As described in Chapter 1 (Chapter 1, section 1.1.7, Figure 1.10), seedling 

establishment is determined after the termination of the experiment (14 days after 

sowing (DAS)) and seedlings from each replicates were separated into 4 

categories: normal seedlings, abnormal seedlings, small seedlings and non-

germinated seeds. Normal seedlings have the essential structures capable of 

development into reproductively mature plant. Abnormal seedlings were defined 

as plant having a default in essential structure and small seedlings have the 

essential structure as normal seedlings but they are smaller (ISTA, 1996). The 

percentage of normal seedlings on the total seedlings was calculated with the 

followed formula:  

 

𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠 (%) =  
𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑠
 𝑥 100 
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2.5 Priming  

2.5.1 Hydro-priming 

20% of seeds were primed in deionized water at 15°C for 24h at 200 rpm. 

After hydro-priming, water was discarded and seeds were dried at 25°C with high 

air blowing-fan until seeds reached 6 – 7% of moisture content before sowing for 

germination test. 

For experiments on the hydro-priming liquid and more exactly for 

conductivity measurement and Liquid Chromatography Ion-Trap Time-of-Flight 

Mass Spectrometry (LC-IT-ToF/MS), seeds were primed few seconds for 

negative control (T0) to determine the potential presence of compounds on the 

outer seed coat before hydro-priming. Duration of hydro-priming had defined 

time: 

Hydro-priming (h) Duration 

0 2 – 3 seconds 

3 3 hours 

6 6 hours 

12 12 hours 

24 24 hours 

 

2.5.2 Hydro-priming with addition in the solution 

For the experiment on the effect of external iron in hydro-priming flow, 

seeds were soaked in ferric sulfate (Fe2(SO4)3), in ferrous sulfate (FeSO4) 

solution (10 μM, 100 μM or 1 mM) or only in water at 15°C during 24h. After 

priming, seeds were dried until they reached the initial water content then seeds 

were stored until germination assay.  

 

For the experiment with adding external 12-oxo-phytodienoic acid (OPDA) 

in hydro-priming flow, seeds were soaked in deionized water + 1µg/ml OPDA at 

15°C for 24h. After priming, seeds were dried at 25°C and 30% RH with high air 

blowing-fan until seeds reached 6 – 7% of moisture content. Seeds were stored 

until for germination assay. 

  

2.6 Conductivity measurement 

Three replicates of 20% pre-weighed seeds of each seed lot were soaked 

in deionized water in plastic containers covered with a cap to prevent evaporation 
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loss and entry of foreign matter. A container of deionized water without seeds 

was prepared as the control and a container of deionized water with seeds in 

during 2-3 seconds was prepared as T0. This latter step is crucial because 

conductivity measures the leachates coming from the inside of the seeds, and 

leachates can also be present on the seed coat. All the containers were placed 

at 15°C for a time-course: 3h (T3), 6h (T6), 16h (T16) and 24h (T24). Conductivity 

was measured with an electrical conductivity meter (Oakton PCSTestr 35). 

 

2.7 Tetrazolium assay  

The tetrazolium salt assay (TZ) is a colorimetric assay for assessing seed 

coat permeability. It can give an early and quick snapshot of seed viability but it 

is not a replacement for the seed germination test. The protocol is adapted from 

Debeaujon et al. (Debeaujon et al., 2000) in which seeds need to be alive and 

permeable. Dehydrogenase enzymes present in living tissue reduce the 

tetrazolium chloride to formazan, a reddish, water-insoluble compound. This 

reaction occurs in or near living cells, which are releasing hydrogen in respiration 

processes. Seeds are soaked in water for negative control and 1% TZ solution.  

 

The staining is quantified with image analysis by ImageJ software 

(program developed at the National Institute of Health). Captured image of seeds 

is converted on black and white backgrounds, image type is changed into RGB 

stack, and threshold is adjusted with automatic setting for upper and lower limit 

for first time point in series. Around each sample, a circle is drawn and stack is 

measured (area, area fraction, limit to threshold and display label). The values 

are saved into Excel worksheet (Microsoft), area percent value for blue channel 

(background) is subtracted from red (all seeds) and green values (seeds not red) 

to eliminate non-specific information and the red staining are quantified with the 

following formulas: 

Staining (%) = 100 −  {
(Not red − Background)

(All seeds − Background)
} ∗ 100 

 

Or 

 

Staining (%) = 100 − {
(Green − Blue)

(Red − Blue)
} ∗ 100 
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The red colouration is determined by incubation in TZ solution and by 

subtracting the value for seeds in water only from the one from in TZ. To observe 

the staining on the endosperm or embryo, seeds could be dissected, either 

longitudinally or transversely, with a scalpel and one half of this seed is used for 

the test and the other half is discarded.  

 

2.8 Determination of proanthocyanidins content  

 The method used to determine proanthocyanidins (PAs) content was 

adapted from Routaboul (Routaboul et al., 2012). PAs were extracted from frozen 

ground seeds using methanol/acetone/water/acetic acid (30/42/28/0.05, v/v/v/v) 

as an extraction solvent. The first extraction was spiked with 3 μg of apigenin 

(Sigma-Aldrich) as an internal standard. The supernatant was removed and 

stored at -20°C, the pellet was extracted furthermore with 1 ml of the same 

extraction buffer overnight at 4°C. The solutions from both extractions were 

pooled and dried. The insoluble PAs which remained in the pellets during both 

extractions were kept at -20°C until required. Soluble PAs was redissolved in 300 

μl of extraction buffer, 10 μl were used for colorimetic acid butanol assay 

according to Porter (Porter et al., 1985) using 600 μl of butanol-HCl reagent 

(butanol-concentrated HCl, 95/5, v/v) and 20 μl of the ferric reagent (2% ferric 

ammonium sulphate in 2N HCl). Samples were heated to 95°C for 60 minutes 

and measured at 550 nm using a spectrophotometer. 

 

2.9 Mineral analysis using Inductively Coupled Plasma-Mass Spectrometry 

Pre-weighed seeds were primed in deionized water during 3h, 6h, 16h and 

24h at 15°C.  Water was retained after hydro-priming and was analysed by an 

external supplier (ALcontrol laboratories) which is ISO17025 and mCERTS 

accredited. The concentration of the elements were measured using inductively 

coupled plasma-mass spectrometry (ICP-MS) using the method 3125B 

(APHA/AWWA/WEF, 1999) and major cations in water were determined by iCap 

6500 Duo inductively coupled plasma-optical emission spectrometry (ICP-OES) 

using the method 6010B (US EPA). Ionized atoms were carried out to sampling 

and were transferred to quadrupole mass analyzer in which they passed through 

a series of ions lenses according to their mass to charge ratio. Ions were detected 
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and quantified by comparing with reference standards for each elements and 

above the Limit of Detection (LOD) (Table 2.1). The total amount of element in 

hydro-priming flow through liquid was established by means of ICP-MS data and 

was obtained from three independent experiments and the mean value was 

calculated for each mineral. All statistical analyses were performed using Minitab 

17 (Minitab) and Microsoft Excel. 

 

Table 2. 1 Analysis method using ICP-MS or ICP-OES. 

Elements Method Units LOD 

Aluminium TM 152 µg/l <2.9 

Antimony TM 152 µg/l <0.16 

Barium TM 152 µg/l <0.03 

Boron TM 152 µg/l <9.4 

Calcium TM 228 µg/l <12 

Chromium TM 152 µg/l <0.22 

Copper TM 152 µg/l <0.85 

Iron TM 228 µg/l <19 

Lead TM 152 µg/l <0.02 

Lithium TM 152 µg/l <1.92 

Magnesium TM 228 µg/l <36 

Manganese TM 152 µg/l <0.04 

Molybdenum TM 152 µg/l <0.24 

Nickel TM 152 µg/l <0.15 

Phosphorus TM 152 µg/l <6.3 

Potassium TM 228 µg/l <1000 

Sodium TM 228 mg/l <0.076 

Strontium TM 152 µg/l <0.05 

Titanium TM 152 µg/l <1.5 

Vanadium TM 152 µg/l <0.24 

Zinc TM 152 µg/l <0.41 
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2.10 Iron determination with Ferene 

 

Figure 2. 1 Flowchart summarizing the main steps taken in this thesis in the determination 

of iron with Ferene. The details of each steps are given below. 

 

For iron content determination on seed coat, seeds were primed during 

24h at 15°C, then the seed coat was removed and ground. Samples were 

concentrated in 100 μl of deionized water or stored at – 20°C. Iron quantification 

protocol was adapted from Smith (Smith et al., 1981). The iron within a protein 

complex is released by 1% (w/v) aqueous HCl solution. Excess acid is neutralized 

with 7.5% (w/v) aqueous ammonium acetate solution, iron(III), Fe3+, is converted 

into iron(II), Fe2+, by reduction with 4% (w/v) aqueous ascorbic acid solution. 

Precipitated protein is complexed with 2.5% (w/v) aqueous sodium dodecyl 

sulphate (SDS) solution. Finally, a 1.5% (w/v) aqueous iron chelator solution (3-

(2-pyridyl)-5,6-bis(5-sulfo-2-furyl)-1,2,4-triazine or Ferene) is added to form a 

blue complex and is measured at 593 nm using a spectrophotometer. 

 

2.11 Extraction of metabolites from hydro-priming liquid for LC-IT-Tof/MS 

detection with untargeted method 

Metabolite analysis was performed using a liquid chromatography ion-trap 

time-of-flight mass-spectrometer (LC-IT-ToF/MS or LC-MS) as summarized in 

Figure 2.2.  
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Figure 2. 2 Flowchart summarizing the main steps taken in this thesis in the metabolomic 

analysis of water retained from hydro-priming solution using LC-IT-ToF MS. The details of 

each steps are given below. 

 

Hydro-priming flow through liquid was freezed in liquid nitrogen after each 

time-point then frozen samples were freeze-dried during 2 days in freeze-dryer 

(Freeze Drying Solutions). Samples were stored at -80°C until needed for 

analysis. Samples were reconstitued in 20% methanol then were mixed 

throughtly. After centrifugation (2 minutes (min) at room temperature (RT) at 14 

000 rotation per minute (rpm)), samples were transferred in LC-MS screw cap 

vials and analysed using a Prominence/Nexera Ultra-Performance Liquid 

Chromatography (UPLC) system attached to an ion-trap ToF mass spectrometer 

(Shimadzu). Metabolomic features were detected with two ionization modes: 

positive and negative. These two modes of ionization analyses were separated 

to broaden the range of target analytes. Separation was on a 100×2.1mm 2.6μ 

Kinetex XB-C18 column (Phenomenex) and samples ran at 0.4 mL.min-1, 40ºC 

using the following gradient of acetonitrile versus 0.1% formic acid in water: 

Time (minutes) % acetonitrile 

0 4 

0.5 4 

15.0 95 

17.0 95 

17.2 4 

22.4 4 

 

The injection volume was 10 µL. The instrument was set up to collect 

visible and ultra-violet (UV) absorbance, and electrospray mass spectrometry 

(MS). Absorbance spectra were collected from 200-600 nm at 12.5 Hz with a 

time-constant of 0.16 sec. Full spectra were collected from m/z 80-800 (m/z 
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represents mass divided by charge number), m/z 200-2000 and m/z 50-2000 with 

a maximum ion accumulation time of 20 msec and automatic sensitivity control 

set to a target of 70% of optimal base peak intensity. The instrument also 

collected fragmentation MS-MS data for the most abundant ions in the range m/z 

50-2000 at an isolation width of m/z 3.0, 50% collision energy, and 50% collision 

gas, and 10 msec ion accumulation time. At least three spectra were collected 

for each precursor ion, after which the precursor was ignored in favour of the next 

most abundant, for 2.5sec.  

 

An LC-MS solution software was used for instrument control and data 

acquisition in profile mode (Shimadzu, Europe). Quality control (QC) samples 

used as positive controls were prepared by pooling all samples and control 

samples. Negative control samples were prepared using deionized water only 

following the same procedure as hydro-priming. The analysis order of samples, 

negative control and QC were randomized within the experiment batch. The 

untargeted metabolites were analyzed with LCMSsolution V380 and Profiling 

solution softwares. Metabolites in the hydro-priming work flow were separated by 

retention time (RT), and mass signals corresponding to the peak area was used 

to quantify abundance of compounds. An internal standard, sodium 

trifluoroacetate (NaTFA), was used to calibrate samples. Signals present in less 

than 3 replicates, or less than 5 controls were discarded. The mass spectra (ion 

m/z) of those signals corresponding to a compound were identified with a 

tolerance of 10 ppm from an online database (METLIN: Metabolite and Tandem 

MS Database). 

 

2.12 Phytohormone extraction from hydro-priming flow-through using LC-IT-

ToF/MS detection 

OPDA analysis was performed using LC-IT-ToF/MS method described in 

this chapter, section 2.11. Briefly, hydro-priming flow-through was reconstituted 

in 20% methanol (MeOH), samples were run using a Prominence/Nexera UPLC 

system attached to an ion-trap ToF mass spectrometer (Shimadzu). Separation 

was achieved on a Kinetex XB-C18 100×2.1mm 2.6μ column (Phenomenex) 

using the gradient of acetonitrile versus 0.1% formic acid in water, run at 

0.4mL.min-1 and 40ºC, as used in untargeted method (section 2.11).  
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LC-IT-ToF/MS data were collected in full MS scan mode over the mass 

range m/z 80 to 2000 in positive ionization mode and in negative ionization mode.  

 

Figure 2. 3 OPDA ion chromatograms after tuning. Peaks were identified based on retention 

times and m/z for specific ions for negative scan mode and positive scan mode. 

 

Figure 2. 4 OPDA spectrum obtained with positive ionization mode. 

 

Figure 2. 5 OPDA spectrum obtained with negative ionization mode. 

 

Extracted ion chromatograms (XIC) are obtained for the OPDA peaks from 

external standards and extracts using m/z for specific ions (Figure 2.3 – 2.5). The 

peak area of XIC obtained for each samples and standards were integrated using 

LC-MS solution software. NaTFA was used as internal standard and OPDA was 

used as external standard (Figures 2.3-2.5). This software was used for 

instrument control and data acquisition in profile mode (Shimadzu, Europe). 

Quality control (QC) samples were used as positive controls and were prepared 

by pooling all samples and control samples. Negative control samples were 

prepared using deionized water only following the same procedure as hydro-

priming experiment. The analysis order of samples, negative control and QC were 

randomized within the experiment batch. Metabolites in the water retained from 

hydro-priming were separated by retention time, mass spectra and mass signal 

250 500 750 1000 1250 1500 1750 m/z
0.0

0.5

1.0

1.5
Inten. (x1,000,000)

293.2091

437.1930

453.1668 976.9067 1287.6458239.1701 746.0378 1479.3324 1881.8830

250 500 750 1000 1250 1500 1750 m/z
0.0

2.5

Inten. (x100,000)

291.1967

391.1203 1230.6119 1573.5220697.0108 983.5891 1801.9331
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corresponding to the peak area was used to identify and quantify the abundance 

of compound. Signals present in less than 3 replicates, or less than 5 controls 

were discarded.  

 

2.13 Phytohormone extraction from dry seeds using LC-IT-ToF/MS detection 

Oxilipin analysis was performed using LC-IT-ToF MS method described 

by Theodoulou (Theodoulou et al., 2005). For seed analysis, seeds from five 

biological replicates were used. Briefly, 80 to 100 mg dry seed tissue was ground 

and extracted with 1.9ml of Extraction solvent (isopropanol (Thermo Fisher 

Scientific) plus 1% acetic acid (Sigma-Aldrich)) on shaker overnight in cold room 

in dark at 250 rpm with 10 μl internal standard mix (2 μg/ml Prostaglandin A1 

(Sigma-Aldrich) and 0.2 μg/ml Jasmonic acid (Sigma-Aldrich)) added as an 

internal standard. The samples were centrifuged at 12 000 rpm for 5 min at 4°C. 

Supernatant was dried in GeneVac low boiling point and lamp off settings 

selected then samples were re-extracted with 1 ml of extraction solvent for 60 

min on shaker in cold room at 250 rpm then samples were centrifuged at 12 000 

rpm for 5 min at 4°C. Supernatant was dried and samples were stored at -80°C. 

 

Samples were re-suspended in 100 μl of 20% methanol and extract was 

transferred into the LC-MS vial for analysis. Samples were run using a 

Prominence/Nexera UPLC system attached to an ion-trap ToF mass 

spectrometer (Shimadzu). Separation was achieved on a Kinetex XB-C18 

100×2.1mm 2.6μ column (Phenomenex) using a gradient of mobile phase water 

+ 0.1% formic acid and acetonitrile with a flow rate 0.8 mL/minutes.  

 

 

LC-IT-ToF/MS data were collected in full MS scan mode over the mass 

range m/z 80 to 2000 in positive ionization mode and in negative ionization. 

OPDA was quantified using authentic OPDA standard (Larodan) as external 

standard. Extracted ion chromatograms (XIC) are obtained for the oxilipins peaks 

Time (minutes) % acetonitrile 

0.01 4 

0.10 4 

3.00 95 

3.10 95 

3.15 4 

4.02 4 
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from internal standards and extracts using m/z for specific ions. The peak area of 

XIC obtained for each samples and standard were integrated using LC-MS 

solution software. This software was used for instrument control and data 

acquisition in profile mode (Shimadzu, Europe). Quality control (QC) samples 

were used as positive controls and were prepared by pooling all samples and 

control samples. Negative control samples were prepared using deionized water 

only following the same procedure as steeping experiment. The analysis order of 

samples, negative control and QC were randomized within the experiment batch. 

Metabolites compounds in the steeping work flow were separated by retention 

time (RT), mass spectra and mass signal corresponding to the peak area was 

used. Signals present in less than 3 replicates, or less than 5 controls (QC) were 

discarded.  

 

2.14 RNA-Sequencing 

2.14.1 Samples preparation for RNA-sequencing 

 Seeds of Kanavaro 547.392 were primed at 15°C in water for 3h (T3), 6h 

(T6), 16h (T16), 24h (T24) or un-primed (T0). After hydro-priming, seeds were 

frozen in liquid nitrogen and stored at -80°C until needed for experiment.  

All samples were performed from five or more biological replicates and in 

two technical replicates each (A and B) except for the negative control that was 

performed in three replicates (from A to C). 

 

2.14.2 Library preparation for RNA-sequencing 

 

Figure 2. 6 Flowchart summarizing the main steps taken in this thesis in the library 

preparation for RNAseq. The details of each steps are given below. 

 

Total RNA (Ribonucleic acid) was prepared from 100 mg of seed tissue 

using the Kit Total RNA isolation NucleoSpin 96 RNA (Macharey-Nagel) with 
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rDNase digestion step according to the manufacturer’s protocol (Macharey-

Nagel). Total RNA quality and quantity control were performed by 

spectrophotometry using Trinean DropSense (Trinean). An additional DNase 

digestion step was performed according to the manufacturer’s protocol (Rnase-

free Dnase set; Qiagen) then the quality and the quantity control were performed 

by spectrophotometry using Trinean DropSense. Replicates were pooled in the 

same tube. To purify, de-salt and concentrate acid nucleic, an additional ethanol 

precipitation step was performed. 3M of sodium acetate (NaAc) pH 5.2 was 

added (1/10 (v/v) NaAc/RNA) then 5 mg/ml of glycogen was added to obtain a 

bigger and more adhesive pellet. 630 µl of 100% ethanol was added then 

samples were incubated for 15 min at -80°C. Samples were centrifuged at 14 000 

rpm for 15 min at 4°C then ethanol was discarded. 150 µl of fresh 70% ethanol 

was added then samples were centrifuged at 15 000 rpm for 5 min at 4°C. 

Supernatant was removed and pellet was dried. Pellet was re-suspended in 25 

µl of Rnase-free water. Quality and quantity of total RNA was controlled by 

spectrophotometry.  

 

First strand cDNA (complementary Deoxyribonucleic acid) was 

synthesized from 1-10 µg DNA-free total RNA with M-Superscript II reverse 

transcriptase (200 U/µl) according to the manufacturer’s protocol (Thermofisher) 

using oligo (dT)20 primer, following the manufacturer’s instructions. Second 

strand of cDNA was synthesized using 10X second strand synthesis Reaction 

buffer and a second strand synthesis enzyme mix (E. coli DNA Ligase, E. coli 

DNA Polymerase I and E. coli Rnase H) for 2h at 16°C.  After incubation 2 µl of 

T4 DNA polymerase was added then sample were incubated for 5 min at 16°C. 

10 µl of 0.5M EDTA (ethylene-diamineteraacetic acid) was added to samples to 

stop reaction. cDNA clean-up was performed using MinElute PCR (Polymerase 

Chain Reaction) purification kit (Qiagen) according to the manufacturer’s 

protocol. cDNA was eluted into 20 µl of Rnase-free water then cDNA quantity was 

controlled using fluorometric quantification method with qubit (Qubit). DNA library 

preparation kit was prepared with Nextera XT Index kit (Illumina) according to the 

manufacturer’s protocol. Samples were prepared with different couples of index 

primers: 
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T0-A T0-B T0-C T3-A T3-B T6-A T6-B T16-A T16-B T24-A T24-B 

S701 S702 S703 S704 S705 S706 S707 S708 S709 S710 S711 

S502 S503 S504 S505 S506 S507 S508 S502 S503 S504 S505 

 

The reactions were performed in RT-PCR (Real Time-Polymerase Chain 

Reaction) system with the following program: 72°C for 3 min and 95°C for 30 sec, 

followed by 15 cycles of 95°C for 10 sec, 55°C for 30 sec and 72°C for 30 sec, 

and 72°C for 5 min. PCR products were purified for high-throughput sequencing 

(Hiseq) with 1X of Agencourt AMPure XP bead solutions (Beckman Coulter) for 

5 min at room temperature (RT). Samples were mixed and placed on magnetic 

tube holder for 5 min. Supernatant was drained without disturbing the beads, was 

washed with 150 µl of 80% ethanol for 1 min twice and was dried. After drying, 

20 µl of Rnase-free water was adding on sample. After vortexing, samples were 

incubated on the magnet holder at RT. If the incubation at RT exceeds 5 min, 

cDNA may be damaged and changed the results on transcript levels. 15 µl of 

cDNA library was used to control quality and quantity with Qubit. cDNA library 

was pooled to obtain a concentration of 1 ng/µl. The concentration was controlled 

using Qubit method. Volume of cDNA library was reduced by heating samples at 

65°C for 60 min. Samples were stored at -20°C until needed for sequencing.  

cDNA library was sequenced using MiSeq Reagent kit and MiSeq Reagent 

kit V3 (Illumina) according to the manufacturer’s protocol. cDNA library stock was 

pooled at 17 pM and 600 µl of solution was loaded.  

 

2.14.3 RNA-seq analysis workflow 

 

Figure 2. 7 Flowchart summarizing the main steps taken in this thesis in the transcriptomic 

analysis. The details of each steps are given below. 



Chapter 2: Materials & Methods 
 

59 
 

Sequencing was performed on the Illumina platform and was generated 

76 bp (base pair) paired-end sequence data using index primers selected on 

cDNA. Illumina high-throughput sequencing was provided high sequence data 

and all data analysis was performed on UNIX system. Data quality was 

investigated for each dataset to visualize the quality score.  FastQC was 

processed to generate a visual quality control report of the reads. Based on the 

results, the sequence data was processed using trimmomatic, a toolkit to trim the 

reads (Bolger et al., 2014).  

 

For all samples, quality score (Q(A)) was between 30-40 giving an error 

probability (P(~A)) of 0.001 according to the relationship: 

𝑄(𝐴) =  −10 log 0(𝑃(~𝐴)) 

 

Table 2. 2 Pre-processed RNA-sequencing data using Trimmomatic. Each sample represents 

seeds in function hydro-priming time-course. All statistics were calculated based on the paired-

end reads. 

Sample # of surviving reads Overall mapping rate (%) Alignment rate (%) 

T0-A 2,217,646 83.2 64.2 

T0-B 2,087,510 24.4 11.5 

T0-C 2,087,510 84.6 67.6 

T3-A 2,652,244 85.5 69.4 

T3-B 2,537,893 85.8 69.8 

T6-A 1,525,210 85.6 71.3 

T6-B 2,474,229 85.7 68.6 

T16-A 1,909,126 85.9 69.8 

T16-B 2,572,299 83.6 61.6 

T24-A 2,592,124 85.4 67.1 

T24-B 2,645,169 87.3 75.1 

 

After trimming, read 1 and read 2 of the same dataset were aligned 

together on the reference genome provided by Tomato Genome Consortium 

(Solgenomics) using tophat-toolkit based on the protocol published by Trapnell 

(Trapnell et al., 2012). The reference genome was built on SL2.50 and was 

annotated on February, 2014 by ITAG2.4 (Tomato Genome Annotation). The 

annotation was covered approximately 84% of the genome with 37 725 gene 

models.  
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Tophat-toolkit was produced several files: 

- accepted_hits.bam  

- align_summary.txt 

- deletions.bed 

- insertions.bed 

- junctions.bed 

- prep_reads.info 

- unmapped.bam 

 

As some part of the genome were not unique (common, repeated motifs or 

regions), samtools-toolkit was used to manipulate alignments created previously 

with the BAM file. Samtools sort was an option to sort alignment according to 

position on reference genome by producing accepted_hits.sorted.bam file, 

samtools flagstat was another option to collect and calculate statistics from BAM 

files and outputs in a text format. The last option of samtools was samtools index, 

it was used to coordinate sorted BAM file by producing accepted_hits.sorted.bai 

file. In order to assembl transcripts and test their abundance in sample, cufflinks-

toolkit was used on accepted_hits.bam file.  

 

This steps was produced 4 files: 

- genes.fpkm_tracking 

- isoforms.fpkm_tracking 

- skipped.gtf 

- transcript.gtf 

 

To find differential expressed genes and transcripts, cuffdiff-toolkit was 

used on accepted_hits.bam file. This option was produced many files: 

- bias_params.info 

- cds.count_tracking 

- cds.diff 

- cds.fpkm_tracking 

- cds.read_group_tracking 

- cds_exp.diff 

- gene_exp.diff 

- genes.count_tracking 

- genes.fpkm_tracking 

- genes.read_group_tracking 

- isoform_exp.diff 

- isoforms.count_tracking 

- isoforms.fpkm_tracking 

- isoforms.read_group_tracking 

- promoters.diff 

- read_groups.info 

- run.info 

- splicing.diff 

- tss_group_exp.diff 

- tss_groups.count_tracking 

- tss_groups.fpkm_tracking 

- tss_groups.read_group_tracki

ng 

- var_model.info 
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To compare transcript assemblies to annotation, cuffcompare-toolkit was used. 

This steps was produced several files: 

- cuffcmp.combined.gtf 

- cuffcmp.loci 

- cuffcmp.stats 

- cuffcmp.tracking 

 

 After transcriptome assembly, values were normalized by FPKM (Fragment Per 

Kilobase of exon per Million fragment) method. Values were normalized by length of 

exon, total number of mapped fragments. Differential expression analysis was 

performed using Weighted Gene Co-expression Network Analysis (WGCNA) package 

on R (Langfelder and Horvath, 2008) and using the open source software 

bioconductor. Expressed genes were described as being differentially expressed 

between primed and un-primed if the expression was two fold or more different.  

 

2.14.4 Clustering 

Clustering array was processed following Eisen protocol (Eisen et al., 1998) 

using Gene Cluster 3.0 and Java TreeView. On Cluster 3.0, data were log transformed 

in log2 counts/intensities and low expressed or invariant genes were removed. 

Relative expression of the gene from each experiment was represented by 

substracting the mean values of the gene from each experiment. Data were clustered 

for both genes and array. The results of clustering was visualized using Java 

TreeView. To avoid problems with taking the log of zero, +1 is adding to all read counts 

in Excel before importing the data into Gene Cluster 3.0 and replicates were clustered 

together to minimize the source of variation and permit to identify key genes.  

 

2.15 Statistical analysis 

To determine whether the differences between means were statistically 

significant, a two-tailed Student’s t-test was performed. Means are described as 

being significantly different throughout the thesis when P≤0.05. 

Analysis of variance (ANOVA) was performed using Excel (Microsoft) to 

determine the difference among group means. 

The standard error (SE) is used to determine the dispersion of sample means 

around the sample data. 
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3.1 Introduction 

3.1.1 Maternal environment effects seed vigour 

In different a. thaliana accessions, seeds can have different requirement 

for dormancy breakage and therefore may often vary in response to the same 

cues. For example under the same conditions, Landsberg erecta (Ler) seeds 

which have a low dormancy level needed about 6 weeks of dry storage to obtain 

100% of germination whereas Cape Verde Island (Cvi) strain which have a strong 

dormancy needed 15 weeks of dry storage to reach 100% of germination (Alonso-

Blanco et al., 2003). Genetic variation of seed dormancy is controlled by the 

DELAY OF GERMINATION 1 (DOG1) gene. DOG1 is regulated by temperature 

during maturation. Ecotypes having a high transcript level of DOG1 gene showed 

a strong dormancy (Bentsink et al., 2006). Moreover, the maternal environment 

may influence the phenotype of the offspring directly by maternal provisionning 

of resources and hormones and, maternal control of germination can operate 

throught seed coat or endosperm. Indeed, non-dormant seed are more 

permeable than the dormant ones (Debeaujon et al., 2000; MacGregor et al., 

2015). In Arabidopsis thaliana seeds, the depth of dormancy in fully matured 

seeds is determined by environmental conditions, particularly temperature and 

light, experienced by the mother plant (Dobrovolna and Cetl, 1966; Goto, 1982; 

Roach and Wulff, 1987; Biere, 1991; Platenkamp and Shaw, 1993; León-

Kloosterziel et al., 1994; Lacey et al., 1997; Baskin and Baskin, 1998). Seed 

dormancy is coat-imposed, with both the testa and endosperm playing a critical 

role in dormancy maintenance. The seed coat plays a role in dormancy through 

the accumulation of tannins in the inner integument (Debeaujon et al., 2000; 

MacGregor et al., 2015).  

 

3.1.2 Maternal effects on the seed coat 

The seed coat, composed of maternal tissue (see chapter 1), creates the 

environment that the embryo experiences (Schmitt et al., 1992; Platenkamp and 

Shaw, 1993; Donohue and Schmitt, 1998). It imposes mechanical constraints to 

germination (Kugler, 1951; Dobrovolna and Cetl, 1966; Goto, 1982; Biere, 1991; 

Platenkamp and Shaw, 1993; León-Kloosterzeil et al., 1994) and can determine 

permeability (Baskin and Baskin, 1998) and alters light environments 
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experienced by the embryo (Botto et al., 1996). Thus, the evolution of seasonal 

dormancy may involve selection on genetic variation in germination responses to 

offspring environments among maternal parents, as well as among individual 

seeds. For example, in the desert annual Ononis sicula, day-length variation 

caused changes in the development of the seed coat and its surface structure, 

modifying the permeability of the seed coat, its fungal resistance, and the seed 

longevity (Gutterman, 1992).  

 

3.1.3 Effect of hydro-priming on seed germination 

Hydro-priming uses only water to hydrate the seeds before radicle 

protrusion followed by drying of seeds to prevent radicle emergence (Cantliffe et 

al., 1984, Farooq et al., 2006). When seeds are primed, water content is limited 

and the metabolic steps necessary for germination can occur without the 

irreversible act of radicle emergence. Duration of soaking and temperature of 

hydro-priming are optimised for each crop variety (Kaya et al., 2006; Khan et al., 

2012; Dastanpoor et al., 2013).  

 

It has been previously shown that variation in maternal environment 

affects seed dormancy, but little is known about the effects on seed germination 

vigour in species with little or no dormancy, and whether these effects can be 

altered by priming. The compounds that are imported from the mother plant and 

also factors that are produced by the embryo itself are controlled by a large 

number of genes which are affected by both developmental and environmental 

factors. In tomato (Solanum lycopersicum) seeds, seedling emergence is 

frequently slow and not uniform. The objective of this study is to assess the 

influence of seed production temperature on tomato seed vigour and to optimise 

the maternal environment for production of tomato seeds that respond to hydro-

priming on germination and seedling emergence of tomato, thus creating a study 

system for assessing the effect of hydro-priming on seed germination. 
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3.2 Results 

3.2.1 Hydro-priming decreases the time necessary for germination and 

emergence  

Beef tomatoes have the lowest speed of germination in comparison with 

other tomatoes varieties and, to optimise a hydro-priming procedure for tomato, 

post-harvest treatment such as hydro-priming was tested at different 

temperatures and durations (Figure 3.1). Freshly harvested seeds that were 

matured in the field showed low germination rate without post-harvest treatment. 

The results showed that hydro-priming at cold temperatures, either 10°C or 15°C, 

increased the germination rate whilst hydro-priming at warm temperature, 20°C, 

reduced the germination rate. The duration of hydro-priming was tested to 

determine the best condition of hydro-priming. Germination rate was significantly 

higher in seeds with hydro-priming treatments at 10°C or 15°C. Two treatments 

had a higher germination rate: priming at 10°C during 24h and priming at 15°C 

during 24h, but only the second had more than 80% of germination. Therefore, 

for all experiences in this thesis, seeds will be primed at 15°C during 24h then 

dried for two days at 25°C before sowing for germination test.  

 

Figure 3. 1 Effect of hydro-priming temperature on beef tomato seed germination. 

Germination rate of seeds 3 days after sowing (DAS) at the indicated temperatures and duration 

of treatment. Data presented are the averages of four biological replicates ± SE of 50 seeds each. 

Significant differences by ANOVA: *, P<0.05; **, P<0.01; ***, P<0.001. 

 

In this thesis, seed performance is defined by two criteria: germination 

speed and seedling establishment. To try to understand the effect of maternal 

environment on seed performance, plants were grown at different temperatures 

under laboratory conditions. This temperature treatment is referred to as the seed 

“maturation temperature”.  

0

20

40

60

80

100

G
e

rm
in

a
ti
o

n
 (

%
)

* 

* ** ** *** *** 



Chapter 3: Effect of maternal environment on vigour, hydro-priming and seed 
coat properties 
 

66 
 

S. lycopersicum cultivar (cv.) Microtom seeds were used and the 

temperatures were chosen to sample the range of behaviours of seed set under 

standard conditions and also under conditions that are higher or lower in 

temperature compared to the standard (Figure 3.2). To grow tomatoes, optimal 

temperature of seed maturation is between 22°C-25°C (Adams et al., 2001). The 

increase in the seed maturation temperature from 12°C to 28°C have an effect 

on the speed of germination (Figure 3.2A). In general, little dormancy is induced 

when tomato seeds are matured at 25°C. In contrast, when seeds are matured 

at lower temperature, a delay in the speed of germination is observed. These 

results show that Microtom seeds display a sensitivity to the decrease of 

temperature maturation. Germination of a seed lot was assessed by a standard 

germination test in which the number of seeds capable of producing normal 

seedlings are recorded (Figure 3.2B). The frequency of normal seedlings 

produced from seed matured at 19°C were similar to the one of normal seedlings 

produced from seeds matured at 22°C. When seeds are matured at higher or 

lower temperature, the number of normal seedlings per batches decreased. 

These results show that by reducing maturation temperature or increasing the 

maturation temperature, the number of normal seedlings is negatively affected, 

even though radicle emergence frequencies remain high.  

 

Figure 3. 2 Effect of maturation temperature on seed vigour for S. lycopersicum cv. 

Microtom line. A. Germination time-course of Microtom seeds under different maturation 

temperatures as indicated. B. Seedlings establishment of Microtom seeds under different 

maturation temperatures as indicated. No normal seedlings are observed at 12°C. Data presented 

are the averages of three biological replicates ± SE of 50 seeds each. Significant differences 

between seeds matued at 28°C and other temperatures of maturation by a Student’s t-test: *, 

P<0.05; **, P<0.01. 
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In order to check if the maturation temperature affects the seeds, I 

measured and weighed seeds set from different temperatures and results 

showed that maturation temperature acts on seeds (Figure 3.3). Therefore I 

concluded that maturation temperature affects seed size and seeds matured at 

higher temperatures have higher weight than seeds matured at low temperatures.  

 

 

Figure 3. 3 Effect of maternal temperature on seeds weight for S. lycopersicum cv. 

Microtom line. A. Dry weight per seeds from seeds matured at different temperatures. B. Seeds 

cut longitudinally. The data presented are mean values ± SE of 3 replicates of 50 seeds each. 

Significant differences against 19°C by a Student’s t-test: *, P<0.01. 

 

3.2.2 Influence of hydro-priming on seed performance 

To optimise a hydro-priming protocol for Microtom seeds, a time-course 

experiment was conducted on freshly harvested seeds matured at 22°C (Figure 

3.4, Table 3.1). Germination speed, number of hours to 50% of germination (T50) 

and seedling establishment are measured for each condition: un-primed seeds, 

3h, 6h, 16h or 24h of hydro-priming. Primed seeds germinated significantly more 

rapidly than the controls ones. Hydro-priming treatments improved speed of 

germination. Indeed, seeds primed during 16h or 24h had a higher speed of 

germination than seeds primed during 3h, 6h or even the controls. Hydro-priming 

did not affect the seedling establishment frequency of Microtom seeds.  
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Figure 3. 4 Effect of hydro-priming for S. lycopersicum cv. Microtom line. A. Effect of duration 

of hydro-priming on speed of germination. B. Effect of hydro-priming on seed vigour. Duration of 

hydro-priming is indicated on the legend: un-primed seeds (T0), seeds primed for 3h (T3), 6h 

(T6), 16h (T16) and 24h (T24). The data presented are mean values ± SE of 3 replicates of 50 

seeds each. 

 

Table 3. 1 T50 of hydro-priming time-course for S. lycopersicum cv. Microtom line. 

Reciprocal of time to respectively 50% of viable seeds to germinate (h) in the control (T0), 3h  

(T3), 6h (T6), 16h (T16) and 24h (T24) of hydro-priming treatments. F values for Student’s t-test 

against T0 and T-value for Student’s t-test. 

 

 

 

 

 

 

3.2.3 Effect of seed set temperature on germination and seedling vigour 

The question tested in this study was whether hydro-priming could improve 

seed vigour of seed set matured at low temperatures (Figures 3.5 and 3.6). 

Tomato cv. Microtom seeds were set at three different temperatures: cool (19°C), 

intermediate (22°C) and warm (25°C). Fresh seeds from each condition were 

harvested and dried for two days at 25°C before the germination test. Germination 

took place at two temperatures (19°C and 22°C); half seeds were germinated at 

19°C with or without hydro-priming (Figure 3.5) and other half at 22°C with or 

without hydro-priming (Figure 3.6).  
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Figure 3. 5 Effect of hydro-priming and temperature on seed germination at 19°C for S. 

lycopersicum cv. Microtom line. A. Seeds set at 19°C. B. Seeds set at 22°C. C. Seeds set at 

25°C. Germination of un-primed (orange) and primed seeds (blue). D. Seedling establishment 14 

DAS. The data presented are mean values ± SE of 3 replicates of 50 seeds each. Significant 

differences between both un-primed / primed seeds at normal seedling establishment by a 

Student’s t-test: *, P<0.01. 

 

 

 

Table 3. 2 T50 of primed and un-primed temperature seed set for S. lycopersicum cv. 

Microtom line at 19°C. Reciprocal of time to respectively 50% of viable seeds to germinate (h) 

in primed or un-primed (control) seeds set at 19°C, 22°C and 25°C. F values for Student’s t-test 

and T-value for Student’s t-test. 
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For seeds germinated at 19°C, the results show that hydro-priming 

improves significantly the speed of germination without affecting seedling 

establishment (Figures 3.5 A, B and D). However, hydro-priming had no effect on 

the speed germination of seed set at 25°C, and had a negative effect on seedling 

establishment (Figures 3.5 C, D). These results showed that there are no 

correlation between size of seeds (Figure 3.3 B) and the effect of hydro-priming 

when seeds germinate at 19°C (Figure 3.5). I concluded that the effect of hydro-

priming on the speed of germination decreased when the seed set temperature 

increased. By comparison, hydro-priming had a similar effect on seeds 

germinated at 22°C and 19°C for speed of germination (Figure 3.6 A and B), 

whereas it had a significantly positive effect both on the speed of germination and 

it improved seedling establishment of set matured at warm temperature (Figures 

3.6 C and D). These results showed that hydro-priming enhanced seed 

performance of all sets when sown at optimal temperature (22°C).  

 

 

Figure 3. 6 Effect of hydro-priming and temperature on seed germination at 22°C for S. 

lycopersicum cv. Microtom line. A. Maternal temperature sowing at 19°C. B. Maternal 

temperature sowing 22°C. C. Maternal temperature sowing at 25°C. D. Seedling establishment. 

The data presented are mean values ± SE of 3 replicates of 50 seeds each. Significant differences 

between both un-primed / primed seeds at normal seedling establishment by a Student’s t-test: 

*, P<0.05; **, P<0.01. 
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Table 3. 3 T50 of primed and un-primed temperature seed set for S. lycopersicum cv. 

Microtom line at 22°C. Reciprocal of time to respectively 50% of viable seeds to germinate (h) 

in primed or un-primed (control) seeds set at 19°C, 22°C and 25°C. F values for Student’s t-test 

and T-value for Student’s t-test. 

 

3.2.4 Effect of hydro-priming on Enza varieties seeds 

 In order to test the effect of maternal environment on speed of germination, 

I sowed two Enza varieties, Predator and Fame, which were harvested at different 

location sites and at different years (Figure 3.7). Seeds batches did not mature in 

the same conditions (Appendices: Table 1), and did not germinate at the same 

speed. Predator 4 had the lowest speed of germination and Predator 5 had the 

fastest germination speed (Table 3.3). There is a significant difference in the 

speed of germination of the Fame lines. Therefore, I concluded that maternal 

environment during seed maturation is important for speed germination.  

 

Figure 3. 7 Effect of maternal environment on seed germination at 22°C for S. lycopersicum 

cv. Predator and cv. Fame lines. A. Predator lines sowing at 22°C. B. Fame lines sowing at 

22°C. The data presented are mean values ± SE of 3 replicates of 50 seeds each. Significant 

difference by ANOVA: *, P<0.05; **, P<0.01. 
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After testing the effect of maternal environment on Enza varieties, I tested 

the effect of hydro-priming on both varieties (Figure 3.8, Table 3.3). I compared 

the speed of germination, T50 and seedling establishment between primed and 

un-primed seeds for each batches. Generally, hydro-priming improves the speed 

of germination for these batches except for two batches: Predator 4 (Figure 3.8D) 

and Fame 1 (Figure 3.8H). In these cases, hydro-priming improves significantly 

the speed of germination at T50 except for Predator 4.  I concluded that hydro-

priming is efficient to improve the speed of germination for most seed lots.  

 

Table 3. 4 T50 of primed and un-primed Enza seeds for S. lycopersicum cv. Predator lines 

and cv. Fame lines. Reciprocal of time to respectively 50% of viable seeds to germinate (h) in 

primed or un-primed (control) seeds. F values for Student’s t-test and T-value for Student’s t-test. 

 

A positive effect of hydro-priming on seed germination did not predict a 

positive effect on seedling establishment (Figure 3.9). Generally, in seeds 

batches in which hydro-priming had a positive effect on speed of germination, 

there was no effect of hydro-priming on seedling establishment (Figure 3.9 A and 

B). By contrast, in seed batches in which hydro-priming had negative effect on 

speed of germination, there was a significant reduction of the seedling 

establishment (Figure 3.9 C). These results suggest that hydro-priming enhances 

only the speed of germination only. In general, primed seeds germinated one day 

earlier, or more than un-primed seeds without affecting seedling establishment 

except for Predator 4, Fame 1 and Fame 3.  

 

 Negative control  Hydro-priming   

Lines T50 (h) SD  T50 (h) SD F-Values T-Values 

Predator 1  77 ± 2.667  44 ± 3.333 0.7805 ≤0.01 

Predator 2  68 ± 0.333  48 ± 3.180 0.0217 ≤0.01 

Predator 3  77 ± 1.333  44 ± 4.000 0.2000 ≤0.001 

Predator 4 116 ± 15.377  132 ± 25.465 0.5344 ≥ 0.05 

Predator 5 53 ± 1.202  30 ± 2.000 0.5306 ≤0.001 

Fame 1 77 ± 4.485  60 ± 3.000 0.6183 ≤0.01 

Fame 2 68 ± 2.309  44 ± 1.453 0.5672 ≤0.001 

Fame 3 85 ± 1.155  56 ± 1.453 0.7742 ≤0.001 
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Figure 3. 8 Effect of hydro-priming on seed vigour for S. lycopersicum cv. Fame and cv. 

Predator lines. Time-course of seed germination of tomato seeds from different batches of 

Predator and Fame. Germination of un-primed (orange) and primed seeds (blue). The data 

presented are mean values ± SE of 3 replicates of 50 seeds each. 
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Figure 3. 9 Effect of hydro-priming on tomato seedling vigour for Predator and Fame 

batches. Total germination and seedlings vigour 14 DAS. The data presented are mean values 

± SE of 3 replicates of 50 seeds each. Significant differences between un-primed seeds and 

primed seeds by a Student’s t-test: *, P<0.05. 

 

3.2.5 Effect of varietal differences on tomato responses to hydro-priming  

Hydro-priming was optimised on laboratory variety (Microtom) and on 

Enza varieties seeds (Predator and Fame) produced at different locations and 

years. To determine if hydro-priming has a general use as post-harvest treatment 

in tomato, it was tested on a panel of tomato varieties including the main 

morphotypes plum, cherry, round, beef and rootstock tomatoes (Appendices, 

Table 1). All seeds were produced by Enza Zaden Seed Operations B.V. 

(Enkhuizen) and came from several production sites around the world.  
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These results show that hydro-priming is effective in most of varieties for 

speed of germination but not for seedling establishment (Table 3.4 and Figure 

3.10). For some varieties including Babette 608.564, Emma 616.831, Kiki 

543.998, Kiki 547.392 and Sofia 446.883, hydro-priming significantly improves 

the speed of germination but hydro-priming reduces the speed of germination of 

Feline 626.590 (Table 3.4). This result for Feline 626.590 may be explained by 

the fact that pathogens were located on the seeds. For Kiki 547.392, Nienke 

276.611, Sofia 446.684 and rootstock N408488, hydro-priming improves 

significantly the seedling establishment. Therefore I concluded that hydro-priming 

is effective to improve germination speed of the main tomato morphotypes. 

 

Figure 3. 10 Effect of hydro-priming on tomato seed vigour. A. Total germination of all cultivars 

was done 14 DAS. B. Seedling establishment was done 14 DAS. Total germination and seedlings 

vigours were compared between un-primed and primed seeds. The data presented are mean 

values ± SE of 3 replicates of 50 seeds each. Significant differences between un-primed and 

primed seeds by a Student’s t-test: *, P<0.05; **, P<0.01; ***, P<0.001. 
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Table 3. 5 T50 of primed and un-primed enza seeds for S. lycopersicum. Reciprocal of time 

to respectively 50% of viable seeds to germinate (h) in primed (hydro-priming) or un-primed 

(negative control) seeds. F values for Student’s t-test and T-value for Student’s t-test. 

 Negative control  Hydro-priming   
T50 (h) SE  T50 (h) SE F-Value T-Value 

Aba 498.010 91 ± 1,333  86 ± 1,202 0,8966 ≤ 0.05 

Babette 608.564 77 ± 3,712  70 ± 2,028 0,4596 ≤ 0.05 

Benthe 536.054 59 ± 1,667  62 ± 1,667 1,0000 ≥ 0.05 

Buffy 616.811 82 ± 1,453  75 ± 5,812 0,1176 ≥ 0.05 

Emma 282.234 88 ± 2,728  88 ± 1,667 0,5435 ≥ 0.05 

Emma 616.831 82 ± 0,333  79 ± 1,202 0,1429 ≤ 0.05 

Emma 630.727 141 ± 11,552  141 ± 7,333 0,5745 ≥ 0.05 

Emily 596.037 239 ± 5,207  236 ± 23,438 0,0941 ≥ 0.05 

Emily 673.803 141 ± 10,088  141 ± 6,960 0,6450 ≥ 0.05 

Emily 673.829 136 ± 2,000  119 ± 4,041 0,3934 ≥ 0.05 

Feline 626.590 46 ± 4,163  83 ± 4,667 0,8864 ≤ 0.01 

Feline 776.681 81 ± 1,764  85 ± 2,667 0,6087 ≥ 0.05 

Fonda 607.290 74 ± 1,856  72 ± 2,000 0,9254 ≥ 0.05 

Kiki 543.998 102 ± 4,410  90 ± 1,453 0,1959 ≤ 0.05 

Kiki 547.392 93 ± 1,333  66 ± 1,202 0,8966 ≤ 0.001 

Kiki 776.704 71 ± 1,764  68 ± 0,577 0,1935 ≥ 0.05 

Nienke 234.419 111 ± 4,041  112 ± 3,055 0,7273 ≥ 0.05 

Nienke 268.135 90 ± 1,000  98 ± 1,155 0,8571 ≤ 0.01 

Nienke 272.384 79 ± 1,333  82 ± 0,882 0,6087 ≥ 0.05 

Nienke 276.611 74 ± 1,000  73 ± 0,333 0,2000 ≥ 0.05 

Sofia 445.811 43 ± 0,667  43 ± 0,667 1,0000 ≥ 0.05 

Sofia 446.684 52 ± 2,848  54 ± 1,764 0,5545 ≥ 0.05 

Sofia 446.883 49 ± 1,202  44 ± 0,882 0,7000 ≤ 0.05 

Sofia 453.382 46 ± 1,453  44 ± 2,333 0,5588 ≥ 0.05 

Sofia 453.399 55 ± 0,667  50 ± 5,175 0,0327 ≥ 0.05 

Vayen 470.268 85 ± 1,764  80 ± 1,202 0,6341 ≥ 0.05 

Rootstock N611 824  196 ± 10,263  208 ± 17,321 0,5197 ≥ 0.05 

Rootstock N403 125  107 ± 1,764  91 ± 1,202 0,0282 ≥ 0.05 

Rootstock N403 842  123 ± 5,925  107 ± 3,712 0,5636 ≥ 0.05 

Rootstock N403 843  113 ± 2,906  104 ± 3,844 0,7273 ≥ 0.05 

Rootstock N408 488 171 ± 9,404  223 ± 28,113 0,2013 ≥ 0.05 

Rootstock N408 528  86 ± 1,453  154 ± 33,005 0,0039 ≥ 0.05 

 

To investigate how hydro-priming improves the speed of germination, 

three varieties in which the hydro-priming was efficient (Babette 608.564, Kiki 

543.998 and Kiki 547.392) and three others varieties in which hydro-priming was 

not efficient were chosen (Fonda 607.290, Nienke 272.384 and Sofia 453.399). I 
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chose these varieties because seed coat colours, sizes and shapes were different 

(Figure 3.11).  

 

Figure 3. 11 Photos of seed for hydro-priming candidates. Photos taken by Andrew Davis 

(JIC). Bar = 1 cm. 

 

3.2.6 Role of permeability in tomato seed germination 

In order to test the hypothesis that hydro-priming changes seed coat 

permeability using a Tetrazolium salt assay (TZ), I initially tested the permeability 

of the tomato seed coat on Microtom seeds.  

 

In Arabidopsis seeds, TZ penetrates into the seeds through the micropyle 

area (MacGregor et al., 2015) and the mechanism is similar on tomato seeds 

(Figure 3.12). Seeds were stained into TZ solution then seed coat was removed 

to visualize the red staining in the embryo and endosperm. The time-course of 

TZ penetration showed that red staining began through the endosperm close to 

the micropyle area after 9h of imbibition for Microtom seeds then staining 

propagated from endosperm to the cotyledon and micropyle areas (from 15h to 

24h). After 48h of imbibtion, results showed clearly that TZ is propagated on 

embryo through two directions: via the endosperm area at the level of cotyledon 

and via the micropyle area. I concluded that TZ assay is efficient to test seed coat 

permeability on tomato seeds.  

Babette Kiki 543 Kiki 547 

Sofia Nienke Fonda 
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Figure 3. 12 Tetrazolium progression into Microtom seeds. Time-course of tetrazolium 

penetration into Microtom seeds. 

 

 Secondly, to learn if tomato varieties sensitive to hydro-priming were more 

permeable than varieties insensitive to hydro-priming, I tested TZ uptake on the 

six hydro-priming candidates (Figure 3.13). Varieties insensitive to hydro-priming 

have significantly a higher TZ uptake rates for primed seeds than controls. 

Varieties sensitive to hydro-priming had the same TZ uptake rates in both 

treatments controls and hydro-priming, except for Kiki 547.392. This variety had 

a higher TZ uptake rates when seeds are primed. On Arabidopsis seeds, 

MacGregor et al. showed that TZ uptake is independent of seed coat integrity 

and temperature during seed maturation affects seed coat permeability by 

changing the flavonoid content of seeds (MacGregor et al., 2015).  Therefore, I 

concluded that insensitive seeds to hydro-priming absorbed more TZ so they are 

more permeable than sensitive seeds.  
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Figure 3. 13 Tetrazolium salt uptake on six candidates chosen for hydro-priming 

experiment. Primed seeds incubated in water for 24h at 15°C then dried 2 days at 25°C before 

staining (hydro-priming). Seeds incubated in 1% tetrazolium (TZ) for 4 days at 30°C in darkness. 

The data presented are mean values ± SE of 3 replicates of 50 seeds each. Significant differences 

between un-primed and primed seeds by a Student’s t-test: *, P<0.01; **, P<0.001. 

 

3.3 Discussion 

 Previous studies have shown the correlation between the maternal 

environment and the offspring genotype (Roach and Wulff, 1987; Roff, 1998; 

Donohue, 2009). Works on Arabidopsis have shown that low temperatures during 

seed maturation increased seed dormancy (Donohue, 2009, Kendall et al., 2011; 

Schmuths et al., 2006). Most of studies on the effect of maturation temperature 

accentuated their work on seed vigour and did not study the effect of maturation 

temperature on seedling establishment. My results show that maternal 

temperature affects germination speed and seedling establishment in tomato 

(Figure 3.2). Indeed, lower temperatures during seed maturation slows the speed 

of germination and reduces the number of normal seedlings.  Moreover, maternal 

temperature significantly affects seed size and affects seedling vigour (Figure 

3.3). Seedlings growing under a wide range of environments need to produce 

alive seeds to perpetuate species (Finch-Savage, 1995). Moreover, seedling 

establishment is an important factor for seed industry, the success to produce 

normal seedling is important for yield (Khan et al., 2012). 

 

The effectiveness of hydro-priming decreased when the seed set 

temperature increased (Figures 3.5 and 3.6), suggesting hydro-priming 

mechanism may act on germination process. In general, the maturation of seeds 
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at 19°C or 22°C lead to a higher level of normal seedlings (77 %). Nevertheless, 

for seed maturated at 28°C, only 42% of seed germinated develop into normal 

seedlings (Figure 3.2 B). It possible that seeds matured at 25°C or 28°C suffered 

of drought during maturation that may decrease seedling vigour.  

 

Post-harvest treatments are used to improve the vigour of seed lots. It has 

recently been shown that hydro-priming ensures rapid and uniform germination, 

but the mechanism underlying the effectiveness of hydro-priming remains unclear 

(Berrie and Drennan, 1971; Ahmadi et al., 2007; Dastanpoor et al., 2013; de 

Souza et al., 2016). The analysis of hydro-priming conditions on bad seed lots 

shows that hydro-priming for 24h at 15°C is optimal for high performance of 

germination, improving germination rates by 30% (Figure 3.1). As un-primed 

seeds need additional time to germinate, it is possible that hydro-priming 

improves seed lot by activating the germination process. It is important to note 

that the hydro-priming mechanism may act on earlier initiation of metabolic 

processes, better synthesis of DNA, RNA and protein, intermediate metabolites, 

enzymes associated with the production of energy, increasing the level of 

moisture or supply of oxygen without emergence of the radicle. Another 

explanation could be that the hydro-priming mechanism may be linked with the 

germination process. Indeed, seed priming may help in germination possibly by 

acting on the embryo development and/or leaching of emergence inhibitors 

during priming.  

The efficiency of hydro-priming on the speed of germination of 

uncommercial seeds was similar at this observed previously (Figure 3.8 and 

Table 3.4). Though, the analysis of hydro-priming on several varities of tomato 

seeds shows that hydro-priming was not an efficient post-harvest treatment 

(Figure 3.10), suggesting that hydro-priming had a positive effect on germination 

speed when seeds were matured at low temperature. This highlighted that the 

reduction of speed of germination of seeds matured at low temperature does not 

represent a loss of viability and seeds are able to germinate.  

 

The permeability of the seed coat was tested by tetrazolium salt assay 

(Figures 3.12 and Figure 3.13). The penetration of the dye on Microtom seeds is 

observed by scarifying the seed coats and by removing the embryo of the 
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endosperm (Figure 3.12). In Arabidopsis seeds, TZ uptake penetrates into seeds 

through micropyle area (MacGregor et al., 2015). The same pattern is observed 

in tomato seeds, TZ goes through endosperm and micropyle area to stain embryo 

both from radicle to cotyledon and from cotyledon to radicle. Furthermore, seed 

coat permeability tested on hydro-priming candidates show that insensitive 

candidates have higher permeability after hydro-priming (Figure 3.13). It is 

possible that the contrast between seed coat colour and TZ uptake was not 

enough different for image analysis for some tomato line (Kiki 547.392). 

Moreover, tomato seeds germinated very well in TZ solution preventing to test 

the TZ uptake rate with GA to prove that insensitive candidates were more 

permeable to tetrazolium salt. Further work will be necessary to test the seed coat 

permeability with seeds matured at several temperatures.  

 

In wheat, sage or physalis, seed priming was efficient when seeds were 

matured in stressful conditions (Ahmadi et al., 2007; Dastanpoor et al., 2013; de 

Souza et al., 2016). In Arabidopsis, seeds matured at low temperature showed 

increased dormancy which can be broken by cold stratification (Kendall et al., 

2011). To conclude, it is possible that tomato seeds matured at low temperature 

have a delay in germination caused by a residual activity of dormancy. This 

dormancy process is not sufficient to completely block progression to 

germination.  

 

Taken together, these results in this chapter highlighted a new discovery 

on hydro-priming; it has shown that the efficiency of hydro-priming is releated to 

the seed maturation environment. Indeed, seeds matured at low temperature are 

more vigorous after hydro-priming treatment; their germination were faster than 

un-primed seeds. In general, hydro-priming improved speed of germination when 

seeds are matured at 22°C, suggesting that this treatment is favourable for 

enhancement of germination. Hydro-priming may change seed coat integrity but 

this it is not clear whether this is linked to the hydro-priming process. 
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4.1 Introduction 

4.1.1 Role of nutrient in plants 

With regard to the provision of plants with nutrients, the germination and 

seedling establishment of plants are a critical developmental phase (Holdsworth 

et al., 2008b; Koorneef et al., 2002). As long as the root system is not established 

and nutrient uptake is not fully functional yet, nutrient provision of the early 

seedling depends on stored nutrient reserves. The ability of the seed to germinate 

quickly despite adverse environmental conditions is encompassed in the term of 

seed vigour and is dependent on the physiological constitution of the seeds. The 

knowledge on the role and on distribution of mineral elements in seeds is very 

limited (Holdsworth et al., 2008b; Rajjou et al., 2012; Weitbrecht et al., 2011). 

Essential mineral elements support important biochemical functions in plants, 

they are of particular importance during germination and seedling establishment 

(Eggert and von Wiren, 2013). Some of them act as cofactors of stress-related 

proteins (Cu, Fe, Mg, Mn, Mo, Ni, S, Zn), stabilize cell walls and allow cell 

elongation (B, Ca), form bio-membranes and energy carriers (P), or play an 

important role in turgor stability and osmoregulation (K) of plant cells (Husted et 

al., 2011; Hepler, 2005; Tanaka and Fujiwara, 2008; Hansch and Mendel, 2009). 

For rice, micronutrients are primarily localized in the embryo but also in the 

aleurone layer (Walker and Waters, 2011). The imbibition of seed in nutrient-

enriched solution and their re-drying have been proved to be an efficient measure 

to stimulate germination and seedling establishment (Taylor et al., 1998; 

Hassanpouraghdam et al., 2009).  

 

The plant system has an inbuilt mechanism for ion homeostasis in which 

it regulates ion accumulation. Nutrients are sequestered into several pools such 

as in vacuoles of the embryo, endoplasmic reticulum and vacuolar compartments 

of the chalazal endosperm, and nutrients are remobilized during germination 

(Lobréaux and Briat, 1991; Otegui et al., 2002; Grillet et al., 2014). Seeds store 

minerals in the form of mineral deposits then, during maturation, nutrients are 

decationized and hydrolyzed to serve as sources of food for embryo (Loewus and 

Murthy, 2000). Iron is one of the most important elements on Earth, and it is 

involved in many biological process such as respiration, glyoxylate cycle, 

photosynthesis, and co-factor of enzyme (Harrison and Arosio, 1996; Arosio et 
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al., 2009; Balk and Schaedler, 2014). Previous studies have shown that iron 

played a role in germination and seeds stored different forms of iron (Wada and 

Lott, 1997; Lobréaux and Briat, 1991; Ravet et al., 2009; Grillet et al., 2014). In 

plants, ferritin is a ubiquitinous iron storage protein, and it is found in seeds 

(Waldo et al., 1995, Chasteen and Harrison, 1999; Conte and Walker, 2011). For 

exemple in Phaseolus seeds within the same species, it was shown that different 

genotypes accumulate a different proportion of iron content in the seed coat, the 

embryonic axis and the cotyledon tissues (Cvitanich et al., 2010). Iron is supplied 

by releasing from ferritin and more especially from phytoferritin (Deng et al., 2010; 

Conte and Walker; 2011) and iron(II) (Fe2+) is known to be more toxic than iron(III) 

(Fe3+) because it induces oxidative stress (Deng et al., 2010; Ravet et al., 2009).  

 

4.1.2 Electrical conductivity as vigour test 

The electrical conductivity test is a quantitative and repeatable test which 

is related to field emergence for peas (Matthews and Powell, 1981; ISTA, 2006). 

This test is one of the tests used for the evaluation of the loss of cell membrane 

integrity through the concentration of electrolytes released by seeds during 

imbibition (Halloin, 1975; Simon and Raja-Harun, 1972). Cell membrane integrity 

is considered as the physiological events of seed deterioration processes 

(Delouche, 1976). Consequently low vigour seed lots exhibit higher losses of 

cellular constituents such as inorganic ions. Often ion leakage is used to measure 

vigour without germinating the seeds. For legumes, high level of leakage are a 

characteristic of low vigour lots with high levels of laboratory germination but low 

field emergence (Pandita and Nagarajan, 2002; Burcu and Peksen, 2008). 

Moreover, few studies have determined which specific cations are leached from 

imbibing seeds (Weges and Karssen, 1990). Potassium (K) has been shown to 

be the main ion leached by seeds during imbibition, followed by sodium and 

calcium, and may be used as an indicator of cell membrane integrity. The 

potassium leachate test is based on the same principle of the electrical 

conductivity test and it focus on a specific ion (potassium), while the electrical 

conductivity test evaluates a set of electrolytes release (Panobianco and Marcos-

Filho, 2001). Although this test is internationally standardized for peas and 

soybeans, it continues to require adjustement of methodology for application to 

others species. 
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The purpose of this study was to explore different strategies to identify 

nutrients regulating seed vigour during hydro-priming. A better understanding of 

micronutrients leakage from tomato seeds could lead to improved hydro-priming 

strategies. 

 

4.2 Results 

4.2.1 Determination of element leaks during hydro-priming 

The hypothesis is that the hydro-priming causes the movement of charged 

solutes out of the seeds. To investigate this, conductivity was measured at each 

time-point of hydro-priming for a few varieties (Figure 4.1) such as Microtom 

seeds set at 19°C, 22°C or 25°C (Figure 4.1 A), seeds sensitive or not to hydro-

priming (Figure 4.1 B) and rootstock lines (Figure 4.1 C) which had low seedling 

vigour without hydro-priming. Seeds were primed during 3h, 6h, 16h or 24h and 

conductivity was measured at each time-point to measure the kinetics of ion 

leakage. Data showed significant effects of hydro-priming duration on electrical 

conductivity of seed leachates, and that leakage occurs within the first three hours 

of imbibition. Furthermore, during seed set the temperature is modifying quantity 

of leachates, and temperature seeds set matured at higher temperature had a 

higher conductivity measurement (Figure 4.1 A). These results showed the 

opposite than expected and confirmed that during hydro-priming, metabolites 

leak out the seeds. The effect of genotype can affect the results on electrical 

conductivity test. Contrary to peas, high level of leakage are not characteristic of 

low vigour  tomato seeds.  
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Figure 4. 1 Conductivity measurement. A. Microtom set at 19°C, set 22°C and set at 25°C. B. 

Hydro-priming candidates. C. Rootstock lines. The data presented are mean values ± SE of 3 

replicates in hydro-priming solution; error bars are too small to see it. 

 

4.2.2 Presence of insoluble residues after freeze drying of hydro-priming flow 

through liquid 

Insoluble residues were found in water retained from hydro-priming after 

freeze drying. Residue colour observed were similar in colour to seed coat 

pigmentation (Figure 4.2 A) and the quantity of insoluble residues increased with 

the duration of hydro-priming (Figure 4.2 B). I hypothesised that residues came 

from the seed coat and candidates were tannins, melanin or iron.  

 

Figure 4. 2 Photos of insoluble residue after freeze drying of hydro-priming flow through 

liquid. A. Brown residue are the same color as the seeds coat. B. Time-course of  hydro-priming 

flow through liquid on Microtom seeds then presence of insoluble residue after freeze drying.  
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Several studies showed that the colour of the seed coat in Arabidopsis 

thaliana correlated with the presence of tannins and plants having a reduction in 

proanthocyanidins pathways exhibited a reduction of seed dormancy (Debeaujon 

et al., 2000). Plant polyphenols (tannins) constitute a group of natural polymers 

and are divided into two groups: hydrolyzable and condensed tannins (see 

chapter 1, Winkel-Shirley, 2001). One method to establish the presence of 

tannins is to determine the presence of PAs which are contained in seeds. A 

protocol adapted from Routaboul et al. (2012) was used with some modifications 

to extract seed flavonoids then, with colorimetric acid butanol analysis, I 

measured soluble and insoluble proanthocyanins (Porter et al., 1985; Makkar et 

al., 1999). The role of PAs as seed germination inhibitors was investigated in 

three tomato varieties: Microtom, Predator and Fame. No PAs (soluble nor 

insoluble) were found in tomato seed extracts (Figure 4.3). After 24h of hydro-

priming, presence of proanthocyanidins was only observed in the control 

Arabidopsis seed extract. Therefore, residue found in hydro-priming flow through 

liquid did not originate from seed coat proanthocyanidins. Two remaining 

hypotheses remain: the residue could be come from iron or melanin that is 

deposited in the seed coat.  

 

 

Figure 4. 3 Proanthocyanidins determination by acid butanol assay in tomato seeds. 

Soluble (black) and insoluble (white) proanthocyanidins. The data presented are mean values ± 

SE of 4 replicates of more 25 seeds each. Significant differences by a Student’s t-test: *, P<0.001. 

 

4.2.4 Iron determination in hydro-priming flow through liquid 

Iron is essential for embryo development and is stored under several forms 

in seeds and localization differed between species (Grillet et al., 2014; 

Roschzttardtz et al., 2011; Zhang et al., 2013). In Arabidopsis seeds, iron loaded 
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into seeds circulates via xylem and phloem around the seed coat. In Phaseolus 

seed, iron and ferritin were accumulated near to seed coat (Cvitanish et al., 

2010). Iron is found under diverse forms and, in legume seeds, ferritin is most 

important iron storage form. As ferritin is an important protein for seed 

development, I hypothesed that iron in the seed coat and could be a source of 

residue found. Very little knowledge is known on iron release during soaking. 

Three different tomato varieties (Predator, Fame and Microtom) were used and 

these varieties had a range scale of brown seed coat colour. Predator have a 

darker seed coat than Fame, the latter being darker than Microtom (Figure 4.4).  

I supposed that the colour of the insoluble residue (Figure 4.2) came from the 

seed coat, and the darker the seed coat is, the more iron is present in the seed 

coat.  

 

     

Figure 4. 4 Photos of tomato seeds. A. Predator seeds. B. Fame seeds. C. Microtom seeds. 

Photos taken by Andrew Davis (JIC). Bar = 1 cm.  

 

To quantify the amount of iron in the seed coat and water from hydro-

priming flow through liquid, standard curve with a known amount of iron is used 

(Smith et al.,1981; Smith et al., 1984). This method converts iron(III), Fe3+, into 

iron(II), Fe2+, then it is complexed with an iron chelator, Ferene, to measure the 

absorbance (Figure 4.5). The results showed that iron leakage increased with the 

duration of the hydro-priming and that the concentration of iron leaked from seeds 

differed between varieties (Figure 4.5 A). Indeed, iron concentration in flow 

through liquid from darker colour seeds (Predator) was significantly higher than 

lighter seed coat colour (Microtom). Additionally, Fame seeds with an 

intermediate seed coat colour had an intermediate concentration of iron which 

was present in the hydro-priming flow through liquid. Therefore, iron may be the 

brown residue found in water remaining after hydro-priming. Seed coats were 

dissected and isolated before iron extraction and quantification with Ferene. The 

concentration of iron in water retained from hydro-priming was similar to T24 and 

A B C 
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did not exceed the amount in seed coat (Figure 4.5 B). These results suggested 

that the iron which is present in the water retained from hydro-priming can come 

from the seed coat.  

  

Figure 4. 5 Iron measurement in water retained from hydro-priming for S. lycopersicum.  A. 

Iron quantification in water retained from hydro-priming. Hydro-priming flow through liquid from 

Predator seeds (blue), from Fame seeds (green) and from Microtom seeds (orange). B. Hydro-

priming time-course on the iron leakage in the water retained from hydro-priming in comparison 

with iron amount in seed coat. The data presented are mean values ± SE of 3 replicates of 50 

seeds each. A. Significant difference by ANOVA: *, P<0.05. B. Significant differences between 

seed coat and hydro-priming flow through liquid by a Student’s t-test: *, P<0.05; **, P<0.01. 

 

4.2.3 Role of exogenous iron in hydro-priming solution 

 In order to check if iron (Fe) leakage permits the germination and affects 

germination speed, I added iron in hydro-priming solution. Seeds were soaked in 

iron(II) sulphate (FeSO4) solution (Figure 4.6) or in iron(III) sulphate (Fe2(SO4)3) 

solution (Figure 4.7) at 10 μM, 100 μM or 1 mM, or only in water in order to obtain 

a treatment allowing Fe uptake into seeds. The effect of exogenous iron(II) 

sulphate on seedling vigour was observed on seeds matured at 19°C or 22°C 

(Figures 4.6). Adding exogenous ferrous sulfate did not enhance speed of 

germination for seeds matured at 19°C or 22°C (Figures 4.6 A and C). High 

concentration (1 mM) of ferrous sulfate was toxic for seedling vigour for each 

temperature sets but low concentration of ferrous sulfate improved seedling 

vigour (Figures 4.6 B and D). These results have shown that adding exogenous 

iron(II) sulphate in low concentration improved significantly seedling 

establishment rate for seed set at 19°C.  
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Figure 4. 6 Effect of exogenous ferrous sulfate (FeSO4 or iron(II) sulfate) on seed vigour for 

S. lycopersicum cv. Microtom. A. Germination time-course of Microtom seeds matured at 19°C.  

B. Seedling establishment of Microtom seeds matured at 19°C. C. Germination time-course of 

Microtom seeds matured at 22°C. D. Seedling establishment of Microtom seeds matured at 22°C. 

Un-primed seeds (blue), primed seeds with 10 μM of iron(II) sulphate (orange), primed seeds with 

100 μM of iron(II) sulphate (grey) and primed seeds with 1 mM of iron(II) sulphate (yellow). The 

data presented are mean values ± SE of 3 replicates of 50 seeds each. Significant differences 

between negative control and iron(II) by a Student’s t-test: *, P<0.05; **, P<0.001. 

 

After having tested the contribution of iron(II) sulphate during the hydro-

priming on seed vigour, the addition of iron(III) sulphate during hydro-priming is 

tested (Figure 4.7). Exogenous ferric sulfate in flow through liquid did not modify 

the speed of germination for seeds matured at 19°C or 22°C (Figures 4.7 A and 

C). As observed previously, high concentration of iron was toxic for seed 

germination, but low concentration of ferric sulfate improved seedling 

establishment of seeds matured at low temperature (Figure 4.7 B). These results 

have shown that adding exogenous iron(III) at low concentration improved 

significantly seedling establishment for the set matured at low temperature. 
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Figure 4. 7 Effect of ferric sulfate (Fe2(SO4)3 or iron(III) sulfate on seed vigour for S. 

lycopersicum cv. Microtom. A. Germination time-course of Microtom seeds matured at 19°C. 

B. Seedling establishment of Microtom seeds matured at 19°C. C. Germination time-course of 

Microtom seeds matured at 22°C. D. Seedling establishment of Microtom seeds matured at 22°C. 

Un-primed seeds (blue), primed seeds with 10 μM of iron(III) sulfate (orange), primed seeds with 

100 μM of iron(III) sulfate (grey) and primed seeds with 1 mM of iron(III) sulfate (yellow). The data 

presented are mean values ± SE of 3 replicates of 50 seeds each. None normal seedling grew 

with 1mM Fe3+. Significant differences between negative control and iron(III) by a Student’s t-test: 

*, P<0.05; **, P<0.0001. 

 

 To confirm that the enhancement of seed performance comes from 

exogenous iron during hydro-priming and not from sulfate, ferric EDTA (Fe-

EDTA) was used to chelate the iron that were released from seeds, and sodium 

sulfate (Na2SO4) was used as a control. For this experiment, I used Microtom 

seed set maturated at 19°C (Figure 4.8). The results showed that hydro-priming 

with deionised water enhanced significantly the speed of germination (Figure 4.8 

A, Table 4.1). Seeds primed with Fe-EDTA had a significantly lower seedling 

establishment rate than un-primed seeds and seeds primed with exogenous iron 

or sodium sulphate had no significant difference with un-primed seeds. 

Nevertheless, seedling establishment was higher in seed primed with water 

(Figure 4.8 B). These results showed that iron is not essential in hydro-priming 

solution to improve the seed performance.  
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Figure 4. 8 Effect of iron hydro-priming on seed vigour for S. lycopersicum cv. Microtom. 

A. Germination time-course of Microtom seeds under different treatments. B. Seedlings 

establishment of Microtom seeds under different treatments. The data presented are mean values 

± SE of 3 replicates of 50 seeds each. Significant differences between negative control and 

treatment by a Student’s t-test: *, P<0.05. 

 

Table 4. 1 T50 of hydro-priming treatments for S. lycopersicum cv. Microtom line. Reciprocal 

of time to respectively 50% of viable seeds to germinate (h) without hydro-priming (negative 

control), primed in water (hydro-priming), primed in 100 µM of sodium sulphate (100 µM NaSO4), 

primed in 50 µM of ferric-EDTA (50 µM Fe-EDTA), primed with 100 µM of iron(II) sulphate (100 

µM Fe2+) and primed in 100 µM of iron(III) sulphate (100 µM Fe3+) of hydro-priming treatments. F 

values for Student’s t-test and T-value for Student’s t-test. Significant differences between 

negative control and treatments. 

Treatments T50 (h) SD F-Values T-Values 

Negative control 75 ± 2.000 - - 

Hydro-priming 52 ± 2.529 0.7217 ≤ 0.01 

100 µM NaSO4 75 ± 3.111 0.0861 ≥ 0.05 

50 µM Fe-EDTA 71 ± 7.688 0.3491 ≥ 0.05 

100 µM Fe2+ 73 ± 3.203 0.1747 ≥ 0.05 

100 µM Fe3+ 73 ± 2.404 0.0974 ≥ 0.05 

 

4.2.5 Presence of metals in hydro-priming flow through liquid 

The ionome is involved in a huge range of important biological processes 

such as respiration, photosynthesis, osmoregulation and transport (Marschner, 

1995). The conductivity measurements showed a leakage of charged solutes in 
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hydro-priming flow through liquid. In order to understand how hydro-priming 

promotes germination, ionomic analysis by ICP-AES was undertaken by an 

external laboratory on the flow through liquid of Microtom set at 19°C (Figures 

4.9 and 4.10). In total 20 elements were present in sufficient concentrations to be 

detected in hydro-priming flow through liquid above the Limit of Detection (LOD) 

(Table 2.1). Figure 4.9 is a histogram showing the mean concentrations (μg/g 

seeds ± SE) of metals in hydro-priming flow through liquid after 24h of hydro-

priming of microtom seeds. The results indicated that sodium (Na), potassium (K) 

and phosphorus (P) are among the most dominant nutrients effluxed during 

hydro-priming. Boron (B), magnesium (Mg), iron (Fe), titanium (Ti) and aluminum 

(Al) were exuded after hydro-priming treatment in higher quantity than other 

mineral ions leached (Figure 4.9). As electrical conductivity is based on the fact 

that the seeds, when soaked in deionised water, exude ions, sugars and other 

metabolites due to changes in the integrity of the cell membrane, these results 

showed that ions moved out of the seeds.   

 

Figure 4. 9 Determination of elements present in flow through liquid after hydro-priming. A. 

Metals in hydro-priming flow through liquid (μg/g seeds). The data presented are mean values ± 

SE of 3 replicates. 

 

Data from time-course of the hydro-priming flow through liquid provided an 

analysis of the kinetics of the leakage (Figure 4.10).  Data showed that the 

leakage was the most rapid during the first moments of imbibition and the rate 

slowed down until 6h and a steady state condition was reached in the next 24h, 

in agreement with the results observed on conductivity (Figure 4.1), while hydro-

priming took 24h to be efficient. Therefore ion leakage can not be the mechanism 

of hydro-priming. 
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Figure 4. 10 Hydro-priming time-course on element leakage. A. Elements that are the most 

abundant in hydro-priming flow through (µg/g of seeds). B. Elements abundance in hydro-priming 

flow through (µg/g of seeds). C. Elements presence in hydro-priming flow through (μg/g of seeds). 

D. Trace of elements in hydro-priming flow through (μg/g of seeds). The data presented are mean 

values ± SD of 3 replicates. 
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4.3 Discussion 

Previous studies showed that the process of imbibition involved repair and 

restoration of damaged cell membrane integrity during the early minutes of 

contact between the seed and the surrounding water (Simon and Raja-Harun, 

1972; Powell and Matthews, 1978; Simon, 1984; Bewley and Black; 1986). 

Membrane damage occurring during seed maturation and desiccation is higher 

in low vigour seeds and cell death may take place due to the rapid uptake of 

water. This is the time during which solutes leak out of the cells. Many substances 

such as amino acids, organic acids, sugars, phenolics, phosphate and potassium 

ions, gibberellic acid and proteins, are leaked and rate of leakage is not the same 

for each substance. The increasing in electrical conductivity (E.C.) in leachates 

of imbibing seeds is due to the increasing leakage of these electrolytes (Simon, 

1984). It may be possible that the increased leakage of organic metabolites from 

seeds might indirectly enhance the growth of rhizosphere microorganisms 

providing nitrogen and carbon sources.  

 

Hydro-priming improves the speed of germination and permits an 

important leakage of elements during the first three hours of hydro-priming 

(Figures 4.1 and 4.10) It is possible that the cause of the leakage is the 

deterioration of membranes resulting from physiological ageing or deterioration, 

which can be defined as the loss of quality, viability and vigour either due to effect 

of adverse environmental factors or ageing (i.e. the progressive deterioration of 

the structures and functions of the seed over time). These ion concentrations are 

due to changes in the integrity of the cell membranes as a function of water 

amount and the level of seed deterioration. In deteriorated seeds, the repair 

mechanism is absent or inefficient, or the membranes are completely damaged 

thus permitting the leakage of larger electrolyte amounts (Bewley and Black, 

1986; McDonald, 1999). And, also during imbibition phase, water uptake reached 

a plateau (Bewley, 1997) and, permits a relative equilibrium by homeostasis, the 

permeability of the seed coat leads to increased conductivity. To tomato seeds, 

conductivity measurement was higher for varieties insensitive to hydro-priming 

treatment (Figure 4.1). The presence of compounds in solute leakage may differ 

from one variety to one other. Moreover, the difference between varieties in 

conductivity come from the fact that each variety does not absorb the same 
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quantity of water. Electrical conductivity as vigour test does not allow the 

detection of seed lots with low vigour in tomato seeds contrarily to large-seeded 

legumes such as beans, chickpeas and peas (Matthews and Powell; 2006). 

 

Kinetic analysis of the solute leakage out of the seed have shown that ion 

leakage occurred by 3h while hydro-priming took 24h (Figures 3.4, 4.1 and 4.10). 

This leakage has been used to understand what happens during imbibition 

phase. One explanation is that the initial water entry into seeds permits the 

passage of substance out of the tissue under condition where membrane 

reorganization can occur. Results showed that mineral elements present in 

hydro-priming flow were leaked at different concentrations and a diversity of 

elemental leakage is observed (Figures 4.9 and 4.10). Na, K and P were the 

dominant effluxed metals and potassium leakage was used as an indicator of 

membrane cell integrity on soybean seeds (Custodio and Marcos-Filho, 1997). 

Results also showed that the leachate contains a large number of nutrients and 

Fe, Mn, Na and Ca are known to play an important role in seed germination 

(Sethy and Ghosh, 2013; Singh and Barthi, 1985; Hakala et al., 2006; Millaleo et 

al., 2010). Futher work can be done on solute leakage from imbibiting seeds 

where hydro-priming is not effective to determine if solute leakage by cellular 

membrane can be used in improving tomato seed vigour. 

 

Iron is an essential ion in plant nutrition and is involved in many processes. 

Chapter 3 showed that hydro-priming is more suitable for seeds that are set at 

cold temperature. Previous work has showed that adding external iron is not 

sufficient to improve priming. Ravet et al., showed that iron and more especially 

ferritins are important for seed germination by the role of iron in protection against 

oxidative stress (Ravet et al., 2009). In this chapter, results showed that 

exogenous iron adding in solution at low concentration (10 µM) during soaking 

improved seedling establishment rate for seed set at 19°C (Figures 4.6 and 4.7). 

Fe content was not measured in seeds but previous studies on several crop used 

Fe priming as an increase of nutritional Fe available for health benefit to the plant 

(Afify et al., 2011; Wei et al., 2013; Zielińska-Dawidziak and Siger, 2012). These 

results suggested that iron sulphate may be added during priming at low 
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concentration not to improve the speed of germination but to improve seedling 

vigour even if it is not the main compound which improves seed performance.  

 

The role of iron in seedling establishment is not essential (Figure 4.8). A 

lack on iron by adding of chelating agent reduced significantly the seedling 

establishment rate without modify speed of germination. As hydro-priming 

improved significantly the speed of germination and the seedling establishment 

rate, in contrast to iron which improved only seedling establishment, I concluded 

that iron was not an essential element in germination. Moreover, iron played a 

role against oxidative stress (Doria et al., 2009). Ferritin protein accumulates a 

high concentration of iron which could be used in several biological processes 

when needed (Harrison and Arosio, 1996, Cvitanich et al., 2010). To reduce the 

toxicity of iron in the seeds, iron  released out and  it leachates found in hydro-

priming flow through came from seed coat (Figure 4.5). Iron and more especially 

ferritin played a protective role against reactive oxygen species (ROS; Ravet et 

al., 2009). But, ROS are produced during completion of seed germination (Bailly, 

2004). The availability of ferritin into seeds may be keeping seeds safe by 

detoxifying ROS during seed germination.  

 

In Arabidopsis seeds, flavonoids are abundant secondary compounds 

(Winkel-Shirley, 2001) and, among them, proanthocyanidins are particularly 

important. Debeaujon et al. have shown the role of PAs in seed coat and in 

dormancy (Debeaujon et al., 2000); moreover, the relationship between PAs and 

ABA was highlighted by Jia et al. (Jia et al., 2012). The role of PAs as seed 

germination inhibitors was investigated in tomato seeds and no PAs (soluble or 

insoluble) were found in tomato seeds (Figure 4.3). Indeed in tomato (Solanum 

lycopersicum), PAs are only synthetised in vegetative tissues and seeds only 

accumulate flavonols (Torres et al., 2005).  

 

Taken together, the results in this chapter highlight that the origin of the 

insoluble residue comes from the iron which comes from the seed coat. 

Moreover, ion leakage can not be the hydro-priming mechanism. 
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5.1 Introduction 

As seen in chapter 1, many studies have been conducted on seed 

physiology during hydro-priming but there is no information available concerning 

the metabolites that are present into hydro-priming flow through. Matthews and 

Powell have linked the conductivity test with seed vigour by the concentration of 

charged metabolites in the solution (Matthews and Powell, 1981). Hoekstra et al. 

have shown that cellular solutes were leaked when seeds are placed in water. 

Mostly, seeds leaked low molecular weight elements such as ions, amino acids, 

sugars, etc (Hoekstra et al., 1999). The mechanism of leakage was explained by 

a disorganization of the membrane which is reassembled during imbibition phase 

(Buttrose, 1973; Webster and Leopold, 1977; Morrison-Baird et al., 1979). In 

legumes, seeds are well protected against the damaging effect of a membrane 

phase change during imbibition by the seed coats which restrict penetration of 

liquid water (Duke and Kakefuda, 1981). The limited amount of water that 

eventually penetrates may create a sort of pre-hydration (Matthews and Powell, 

1981; Hoekstra et al., 1992; Tetteroo et al., 1996) and leakage involved diffusion 

through an intact bilayer (Duke et al., 1983; Senaratna and McKersie, 1983). 

 

Seeds contain thousands of metabolites, some of which are secondary 

metabolites that have different functions as defence function against bacteria or 

fungi, or seed germination inhibitors. Metabolites can be either “constitutive” 

which means high level of the metabolites are maintained in the seed, or 

“induced” which means the metabolite is changed in abundance when it is 

required. For example in yeast, animal and plant, the sucrose non-fermenting-1-

related protein kinase (SnRK1) acts as a major component of the sugar-sensing 

and response mechanism. In tomato seeds, the α-subunit is expressed 

constitutively and by contrast the β-subunit is induced during maturation 

(Bradford et al., 2003). Only the regulatory γ-subunit (LeSNF4) is responsive to 

GA, ABA, and stress (Bradford et al., 2003). Thus, hormonal signalling pathways 

played critical roles in the physiology of organisms. Measuring metabolic fluxes 

in seed is difficult, most pathways are interconnected and there are alternative 

routes and product turnover. Moreover, there is a rapid exchange of metabolites 

between the seed and the hydro-priming flow through liquid (Murphy and Noland, 

1982; Welbaum and Bradford, 1990). To understand the hydro-priming 
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mechanism, the metabolites leaked from seeds during hydro-priming were 

analysed by LC-IT-ToF/MS. 

 

Metabolomics is an emerging approach in plant and food science (Shu et 

al., 2008; Barvkar et al., 2012). Metabolites represent the end products of the 

interaction between the genome, the transcriptome, the proteome and the 

environment (Fiehn, 2002).  Metabolite profiling techniques aim at extracting, 

identifying and quantifying a broad spectrum of these metabolites with liquid 

chromatography (LC) coupled to mass spectrometry (MS). Only one method to 

determine the presence of strigolactones in root exudate has been reported by 

using LC-MS/MS (Sato et al., 2003). Indeed, the isolation and characterization of 

natural strigolactones were difficult because they were unstable and present in 

very low concentration. There are two ways to do LC-MS: one method is a 

targeted approach, users start with standards, they look for limited numbers of 

compounds and compared their peaks with standards. The other method is an 

untargeted approach, in this case users aim to set up methods able to measure 

a large set of targets. Genetic and environmental influences on crop metabolite 

profiles have been investigated (Frank et al., 2012). Metabolite profiling was used 

to show the importance of energy metabolism to support germination and 

seedling growth (Fait et al., 2006). Metabolite profiling is also considered to 

provide valuable data metabolic engineering and is used as a tool to improve 

agronomic characteristics (Dixon et al., 2006).   

 

The aim of this study was firstly to apply LC/MS-based metabolite profiling 

to tomato seeds in the course of the hydro-priming process to analysis of a broad 

spectrum of low molecular weight metabolites from a wide range of chemical 

classes, secondly to test the employed approach regarding its suitability to reflect 

the hydro-priming process by a time-dependent clustering based on multivariate 

analysis, and last but not least to identify and to quantify major contributors leaked 

into the hydro-priming solution. 
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5.2 Results 

A metabolite profiling approach based on liquid chromatography-ion trap-

time of flight-mass spectrometry (LC-IT-ToF/MS) was used to investigate time-

dependent metabolic leakage during hydro-priming (Chapter 2.11; Figure 5.1). 

Because of a lack of information on solutes leaking from seeds into hydro-priming 

flow through liquid, an untargeted approach was used on samples.   

 

Samples taken in the course of hydro-priming were subjected to an 

extraction and fractionation procedure covered a broad spectrum (mass spectra: 

m/z 80-800, m/z 200-2000 and m/z 50-2000) of lipophilic and hydrophilic low 

molecular weight tomato constituents. Metabolites in the water retained from 

hydro-priming were separated by retention time (RT), and mass signals 

corresponding to the peak area was used to quantify the abundance of 

compounds. The mass spectra (ion m/z) of those signals corresponding to a 

compound were identified with a tolerance of 10 ppm from an online database 

(METLIN: Metabolite and Tandem MS Database). All peaks identified in samples 

were present in all replicates. 

 

 

Figure 5. 1 Flowchart summarizing the main steps taken in this thesis in the metabolomic 

analysis of hydro-priming flow through liquid using LC-IT-ToF/MS.  

 

5.2.1 Application and testing of LC-IT-ToF/MS-based metabolite profiling on 

hydro-priming flow through  

To identify the metabolites involved during hydro-priming, the experiment 

was done on seeds from Microtom set at 19°C. To distinguish metabolites that 

are already present on the seed coat, seeds were soaked for a few seconds (T0) 

before analysis in deionized water and, for the others time points, hydro-priming 

flow through liquid was used. Metabolites leaked into the hydro-priming flow 
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through liquid were quantified (Appendices, Tables 2 and 3). Quantifications 

based on standardised peak heights revealed dynamic changes of the 

metabolites in the course of the different hydro-priming stages. 

 

 

Figure 5. 2 Venn diagram of summarising the number of shared and unique metabolites 

found in water retained from hydro-priming after soaking Microtom seeds. Metabolites 

measured in hydro-priming liquid flow through liquid after 3h of hydro-priming (T3), 6h of hydro-

priming (T6), 16h of hydro-priming (T16), 24h of hydro-priming (T24) and in control before hydro-

priming (T0). A. Positive ionization mode. B. Negative ionization mode. The data presented are 

mean values ± SE of 3 replicates of 50 seeds each. 

 

The LC metabolite profiling approach allowed the detection of a total of 

744 peaks in the five fractions of water retained from hydro-priming with the 

positive ionization mode (Figure 5.2 A) and a total of 254 peaks in the five 

fractions of hydro-priming flow through with the negative ionization mode (Figure 

5.2 B). A set of peaks was identified in all samples, I found 218 peaks that were 

present in all samples in positive ionization mode and 60 peaks in negative 

T24 

T24 
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ionization mode. At T0, 281 peaks were identified in positive ionization and 80 

peaks were identified in negative ionization. At T3, 417 peaks were identified in 

positive ionization mode and 146 peaks were identified in negative ionization 

mode. At T6, 497 peaks were identified in positive ionization mode and 211 peaks 

were identified in negative ionization mode. At T16, 496 peaks were identified in 

positive ionization mode and 154 peaks were identified in negative ionization 

mode. At T24, 548 peaks were identifed in positive ionization mode and 161 

peaks were identified in negative ionization mode. Some metabolites were 

identified at particular time-points. In positive ionization mode, I found only 11 

metabolites at T3, 22 metabolites at T6, 16 metabolites at T16 and 75 metabolites 

at T24. In negative ionization mode, I found only 2 metabolites at T3, 31 

metabolites at T6, 1 metabolite at T16 and 13 metabolites at T24. Some peaks 

appeared and disappeared (Appendices, Tables 2 and 3). These results obtained 

may permit a preliminary identification of metabolites leaking from seeds that may 

play a role in the hydro-priming process.  

 

5.2.2 Identification of major peaks of metabolites involved in hydro-priming flow 

through liquid 

The major metabolites leaked in the five fractions were preliminarily 

identified as alkaloids (e.g. dormantinone, ß1-tomatidine), flavonols (e.g. 

quercetin, kaempferol) and 12-oxo-phytodienoic acid (OPDA) in positive 

ionisation mode (Figure 5.3; Appendices: Table 2).  

 

Figure 5. 3 Main metabolites identified in hydro-priming flow through by LC-IT-Tof/MS on 

Microtom. Average abundance of metabolites identified with METLIN database in function RT, 

chromatogram and spectra. The data presented are mean values ± SE of 3 replicates of 50 seeds 

each. 
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5.2.3 Presence of OPDA in hydro-priming flow through  

After discovering OPDA in the metabolomic experiment with the 

untargeted approach, I used a targeted approach to confirm the presence of 

OPDA in hydro-priming workflow. OPDA content was quantified in water retained 

from hydro-priming by LC-IT-ToF/MS on Microtom set at 19°C and 25°C (Figure 

5.4). The Jasmonic Acid (JA) precursor 12-oxo-phytodienoic acid (OPDA) has 

been shown to be a key negative regulator of germination (Dave et al., 2011; 

Wasternack et al., 2012). It was hypothesised that levels of OPDA may differ with 

maturation temperature and leakage of OPDA content in hydro-priming flow was 

identified. These chromatograms confirmed the presence of OPDA in hydro-

priming flow throughof seed set at 19°C and 25°C.  

 

 

 

 

Figure 5. 4 Chromatograms of OPDA detection in water retained from hydro-priming on S. 

lycopersicum cv. Microtom. A) OPDA standard (10 μg/ml OPDA). B) Chromatogram of 

Microtom set at 19°C. C) Chromatogram of Microtom set at 25°C. Positive ionization (purple), 

negative ionization (blue). 
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Figure 5. 5 Chromatograms of OPDA detection in hydro-priming flow through on S. 

lycopersicum. A) OPDA standard (10 μg/ml OPDA). B) Chromatogram of Babette 608.564. C) 

Chromatogram of Kiki 543.998. D) Chromatogram of Kiki 547.392. E) Chromatogram of Sofia 

445.811. F) Chromatogram of Nienke 276.611. G) Chromatogram of Fonda 607.290. Positive 

ionization (purple) and negative ionization (blue).  
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I hypothesised that OPDA was present in hydro-priming flow of the Enza 

varieties, both sensitive and insensitive to hydro-priming. OPDA content was 

identified and quantified by LC-IT-ToF/MS using internal and external standard 

(Figure 5.5). Chromatograms confirmed the presence of OPDA in all Enza 

varieties. Therefore, I concluded that OPDA was leaked out the seed during 

hydro-priming. 

 

 

Figure 5. 6 OPDA content. Seeds that were sensitive to hydro-priming (black) and insensitive to 

hydro-priming (white).  A. Proportion of OPDA, in dry seeds freshly harvested for each cultivar, 

collected in positive ionisation mode. B. Proportion of OPDA, in water retained from hydro-priming 

for each cultivar, collected in positive ionisation mode. The data presented are mean values ± SE 

of 3 replicates. Significant differences by ANOVA: *, P<0.05. 

 

In order to understand the role of OPDA, which is a biologically active 

precursor of JA, on efficiency of hydro-priming, I supposed that seeds matured at 

low temperature (set 19°C) or that were sensitive to hydro-priming which have 

lower speed of germination without hydro-priming, would contain higher levels of 

OPDA in comparison to seeds matured at warm temperatures (set 25°C) or that 

were insensitive to hydro-priming. I measured OPDA content in freshly harvested 
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dry seeds and hydro-priming leachate by LC-IT-ToF/MS (Figure 5.6). OPDA 

levels were significantly lower in seeds that were matured at 25°C in comparison 

to seed set at 19°C. Then, I found the same pattern of OPDA content into dry 

seeds and hydro-priming leachate except for Babette which had more OPDA into 

seed. Therefore, these results highlight that there is a correlation between OPDA 

levels and seed maturation temperature. 

 

5.2.3 Role of OPDA on the speed of germination 

a. thaliana mutants of the ß-oxidation pathway, such as mutation of ATP-

binding cassette (ABC) transporter COMATOSE (cts), mutation of acyl-CoA 

oxidase (acx1) or mutation of 3-ketoacyl-coenzyme A thiolase (kat2), are 

impaired in their ability to catabolize fatty acids derived from storage oil and to 

synthesize jasmonate and are not only defective in seedling establishment but 

are also impaired in their germination potential by reduction of viable seeds and 

by a high rate of ovule abortion (Castillo et al., 2004; Theodoulou et al., 2005; 

Dave et al., 2011, 2012). In tomato, mutants of the ß-oxidation pathway were 

constructed on two different cultivars, Microtom and Castlemart, and were a gift 

of Dr. Hause. The ALLENE OXIDE CYCLASE (AOC), an important gene 

encoding a JA biosynthetic enzyme (Kallenbach et al., 2010) were transformed 

in double-stranded RNA interference line under the promoter 35S (35S::SlAOC 

RNAi) in Microtom cultivar and the transgenic line has very low levels of both 

OPDA and JA (Wasternack et al., 2012). The tomato Suppressor of Prosystemin-

mediated Responses2 (SPR2) encoded a fatty desaturase involved in the 

synthesis of the octadecatrienoic acid (18:3) was mutated in Castlermart cultivart 

(Wasternack et al., 2012). Loss of SPR2 function prevents the biosynthesis of 

both OPDA and JA. The third mutant used in this study is acx1a mutant in 

Castlemart cultivar and loss of function of an acyl-CoA oxidase (ACX1A) disrupts 

the production of JA but not the production of OPDA (Wasternack et al., 2012). 

To link the role of OPDA with the seed performance, I used mutant seeds 

deficient in OPDA pathways and wild-type seeds as control. Mutant lines spr2 

and acx1a and the corresponding wild-type background cv. Castlemart were 

used. I tested the speed of germination of these mutants with or without hydro-

priming treatment (Figure 5.7). Hydro-priming was not clearly effective in the wild-

type (WT) Castlemart. For spr2 mutant, the speed of germination is faster than 
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the wild-type and no difference at T50 with or without hydro-priming is observed 

(Table 5.1).  For acx1a mutant, the speed of germination is delayed in comparison 

with the WT. Therefore, these results showed that loss of both OPDA and JA 

improved the speed of germination in tomato and increased of OPDA levels in 

acx1a negatively affected the speed of germination. Moreover, it is likely that 

OPDA levels affect the germination speed in tomato. 

 

Figure 5. 7 Effect of hydro-priming on speed of germination of Solanum lycopersicum cv. 

Castlemart. Germination time-course of tomato seeds; wild-type (WT), spr2 mutant (spr2) and 

acx1a mutant (acx1a), as a function of hydro-priming treatment. The data presented are mean 

values ± SE of 3 replicates of 50 seeds each. 

 

Table 5. 1 T50 of primed and un-primed for S. lycopersicum cv. Castlemart. Reciprocal of 

time to respectively 50% of viable seeds to germinate (h) in primed (hydro-priming) or un-primed 

(negative control) seeds. F values for Student’s t-test and T-value for Student’s t-test. 

 Negative control  Hydro-priming   

 T50 SD  T50 SD F-Values T-Values 

Wild-Type 56 ± 10,611  50 ± 1,538 0,7184 ≥ 0.05 

acx1a 70 ± 3,333  74 ± 10,349 0,4197 ≥ 0.05 

spr2 50 ± 2,586  50 ± 2,200 0,8397 ≥ 0.05 

 

For WT, hydro-priming reduced significantly the seedling establishment 

rate while hydro-priming did not affect seedling establishment rate for spr2 and 

acx1a (Figure 5.8A). Moreover, hydro-priming reduced significantly the size of 

the main root in WT but there was no change in spr2 and acx1a (Figure 5.8B). 

Therefore, I concluded that loss of both OPDA and JA does not improve seedling 

establishment and hydro-priming had a negative effect seedling establishment 

and the length of root on wild-type cv. Castlemart.  
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Figure 5. 8 Effect of hydro-priming on seed vigour of Solanum lycopersicum cv. Castlemart. 

A. Seedling vigour of tomato seeds; wild-type (WT), spr mutant (spr2) and acx1a mutant (acx1a), 

in function of hydro-priming treatment. B. Effect of hydro-priming on the length of root. The data 

presented are mean values ± SE of 3 replicates of 50 seeds each. Significant difference between 

un-primed and primed seeds by a Student’s t-test: *, P<0.05. 

 

The effect of OPDA on seed performance was tested on mutant lines 

35S::SlAOC RNAi which are independent transgenic AOC overexpression line 

and the corresponding wild-type background cv. Microtom (Figure 5.9, Table 5.2). 

Hydro-priming improved significantly the speed of germination in wild-type (WT) 

but hydro-priming did not improve significantly the speed of germination of seeds 

of 35S::SlAOC RNAi. Moreover, 35S::SlAOC RNAi had a faster speed of 

germination than WT. These results confirmed the conclusion observed in 

Castlemart cultivar, that loss of both OPDA and JA improved the speed of 

germination.  

 

 

Figure 5. 9 Effect of hydro-priming on speed of germination on Solanum lycopersicum cv. 

Microtom. Germination time-course of tomato seeds; wild-type (WT) and 35S::SlAOC RNAi line 

16-5-1, in function of hydro-priming treatment. The data presented are mean values ± SE of 4 

replicates of 50 seeds each. 
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Table 5. 2 T50 of primed and un-primed for S. lycopersicum cv. Microtom. Reciprocal of time 

to respectively 50% of viable seeds to germinate (h) in primed (hydro-priming) or un-primed 

(negative control) seeds. F values for Student’s t-test and T-value for Student’s t-test between 

primed and un-primed seeds. 

 Negative control  Hydro-priming   

 T50 SD  T50 SD F-Values T-Values 

Wild-Type 62 ± 1,817  56 ± 3,349 0,5966 ≤ 0.05 

35S :SlRNAi 58 ± 2,786  56 ± 3,145 0,5797 ≥ 0.05 

 

The seedling establishment rate was tested for seeds from Microtom 

background (Figure 5.10). Hydro-priming did not affect seedling establishment 

rate and the length of the roots. To conclude, hydro-priming affects only the speed 

of germination in Microtom cultivar.  

 

  

Figure 5. 10 Effect of hydro-priming on seed vigour of Solanum lycopersicum cv. Microtom. 

A. Seedling vigour of tomato seeds, wild-type (WT) and 35S::SlAOC RNAi, in function of hydro-

priming treatment. B. Effect of hydro-priming on the length of root. The data presented are mean 

values ± SE of 3 replicates of 50 seeds each. Significant difference by a Student’s t-test.  

 

5.2.4 Role of OPDA in hydro-priming solution 

To test whether OPDA could counteract the effects of hydro-priming, I 

added exogenous OPDA (1μg/ml) to the hydro-priming solution (Figure 5.11 and 

5.12). As it was shown previously, primed seeds had a significantly higher speed 

of germination than un-primed seeds. On WT, adding exogenous OPDA in hydro-

priming liquid did not modify the speed of germination in comparison with the 

negative control but abolished hydro-priming effect (Figure 5.11, Table 5.3). In 

OPDA deficient mutant, hydro-priming improved significantly the speed of 

germination and OPDA reduced significantly the speed of germination. 

Therefore, the conclusion on OPDA was that exogenous OPDA in liquid was not 
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sufficient to overcome the promoting effects of hydro-priming on speed of 

germination.  

 

Figure 5. 11 Effect of adding exogenous OPDA in hydro-priming leachate on S. 

lycopersicum cv. Microtom. Germination time-course of tomato seeds; wild-type (WT), acx1a 

mutant (acx1a) and spr2 mutant (spr2), in function of hydro-priming treatment. The data presented 

are mean values ± SE of 3 replicates of 50 seeds each. Significant difference by Student’s t-test: 

*, P<0.05. 

 

Table 5. 3 T50 of primed and un-primed enza seeds for S. lycopersicum. A. Reciprocal of 

time to respectively 50% of viable seeds to germinate (h) in primed (hydro-priming) or un-primed 

(negative control) seeds. B. Reciprocal of time to respectively 50% of viable seeds to germinate 

(h) in un-primed seeds (negative control) or primed with OPDA (OPDA). F values for Student’s t-

test and T-value for Student’s t-test. 

 Negative control  Hydro-priming   

 

T50 SD  T50 SD F-Values T-Values 

Wild-Type 62 ± 4,055  55 ± 1,493 0,2388 ≤ 0,05 

35S::SlAOC RNAi 55 ± 2,407  40 ± 2,628 0,2757 ≤ 0,01 

 

 Negative control  OPDA   

 

T50 SD  T50 SD F-Values T-Values 

Wild-Type 62 ± 4,055  60 ± 2,906 0,6785 ≥ 0,05 

35S::SlAOC RNAi 55 ± 2,407  50 ± 1,824 0,1430 ≤ 0,05 

  

The effect of external OPDA in hydro-priming solution was tested on 

seedling establishment rate as well (Figure 5.12). Seedling establishment is not 

affected by hydro-priming or exogenous OPDA in hydro-priming solution. 

Moreover, hydro-priming or OPDA did not affect the size of the main root of 

normal seedling. With this complementary experiment, the conclusion on OPDA 

was that OPDA did not affect germination.   
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Figure 5. 12 Effect of hydro-priming on seed vigour of Solanum lycopersicum cv. Microtom. 

A. Seedling vigour of tomato seeds, wild-type (WT) and 35S::SlAOC RNAi, in function of hydro-

priming treatment with or without adding exogenous OPDA in water retained from hydro-priming. 

B. Effect of hydro-priming or adding exogenous OPDA during hydro-priming on the length of root. 

The data presented are mean values ± SE of 3 replicates of 50 seeds each. Siginificant difference 

between negative control and hydro-priming treatment by a Student’s t-test. 

 

5.3 Discussion 

Liquid chromatography-mass spectrometry (LC-MS) is an extremely 

sensitive analytical technique that enables the detection of metabolites with a 

vast range of chemistries and molecular masses. Metabolomic data can be 

described as ‘noisy’ with many features that do not represent real metabolites, 

and also real metabolites that are not recorded in every replicate due to 

technological failings (Hrydziuszko and Viant, 2012). These problems were 

circumvented by filtering out the ‘noise’ so that any remaining features are more 

likely to represent metabolites. In instances where a metabolite was not recorded 

in all replicate samples, these zero values in the data were removed to enable 

more robust statistical analyses. In addition, the relatively large number of 

biological replicates had been maximised to enable better filtering of the data and 

to increase the robustness of the measurements. Data sets from metabolic 

analysis contain thousands of data points and require various statistical and 

descriptive analyses to summarise this information. Appropriate statistics include 

specialist methods such as a combination of different approaches to interpret the 

data. Using both univariate and multivariate approaches together can give a 

clearer picture of an organism metabolome, and how the metabolites in an 

organism change in response to biotic and abiotic factors. This demonstrates how 
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careful consideration should be given to the statistical and descriptive analyses 

employed to fully explore the questions being asked. 

 

As identity of metabolites leaked from seeds during hydro-priming was not 

known an untargeted approach was used (Figures 5.2, 5.3, Appendices: Tables 

2 and 3). There are three crucial steps in this technique: sample extraction, 

chromatography separation and MS detection (Lu et al., 2008; Vuckovic, 2012). 

An inadequate protocol on preparation could cause loss of metabolites or 

degradation. Moreover, sometimes metabolites need to have specialized 

protocols to optimize their extraction (Lu et al., 2008). To follow-up the untargeted 

approach, I used a targeted approach to confirm the identity of compounds by 

comparison with external standard and check it matches in retention time, mass 

and fragmentation pattern (Figures 5.4 and 5.5).  

 

At the end of the hydro-priming, the tomato seeds released hundreds of 

metabolites were putatively identified as alkaloid, flavonols and oxidised acid 

(Figure 5.3, Appendices: Tables 2 and 3). In Solanaceae, alkaloids have been 

studied for their diverse biological activities such as phytoanticipins that protect 

plants against pathogens (Itkin et al., 2011). Dormantinone has been reported to 

be a steroidal alkaloid (Eich, 2008) and its role in germination is not 

known.Tomatidine is the main glycoalkaloid in tomato seeds and acts on 

pathogens by disruption of the membranes without being toxic in tomato cells 

(Keukens et al., 1995). Tomatidine leakage could indeed provide a chemical 

defence against the pathogen attack. Other major compounds found in hydro-

priming flow through are flavonols (Figure 5.3). Flavonoids are abundant as 

secondary products by their role in responses to environmental factors (Winkel-

Shirley, 2001). Flavonoids are sub-classified into several families including 

flavonols, flavones, phlobaphese, isoflavonoids, anthocyanidin and condensed 

tannins (Winkel-Shirley, 2001). Phenylpropanoid biosynthesis pathway leading to 

the synthesis of phenols or phytoalexins which have defence function in plants, 

such as the reinforcement of plant cell walls, antimicrobial activity and synthesis 

of signaling compounds such like salicylic acid (Wen et al., 2005). Moreover, 

some studies have reported that production of flavonoids compounds such as 

kaempferol or quercetin may serve as antimicrobial agents (Cushnie and Lamb, 

2011). Quercetin was found to be induced and accumulated in some other plants 
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after MeJA treatment (Rudell et al., 2002). Compared to the distinctiveness of 

metabolites leaked at different time-points, the biologically interesting compounds 

found in the hydro-priming liquid linked to the germination was OPDA. Indeed, 

OPDA had a role as seed germination inhibitor (Dave et al., 2011, 2012).  

 

The identification and profiling of plant metabolites using untargeted LC-

MS or targeted LC-MS could be employd to identify the specific metabolites that 

are affected by hydro-priming. With this current study on Castlemart variety, 

mutants on the OPDA/JA pathway had shown a delay in germination (acx1a) or 

an enhancement of the speed of germination (spr2) demonstrating the role of the 

OPDA in the inhibition of the speed of germination (Figure 5.7). RNAi technology 

was used to disrupt OPDA function in Microtom (35S::SlAOC RNAi line) 

(Wasternack et al., 2012). spr2 mutants and 35::SlAOC RNAi have lost both 

OPDA and JA (Stenzel et al., 2003; Dave et al., 2011). These plants showed an 

enhancement of the speed of germination (Figures 5.7, 5.9). In both varieties, 

loss of OPDA improved the speed of germination without affecting the seedling 

establishment (Figures 5.8, 5.10). Generally hydro-priming improved speed of 

germination, but in the case of the Castlemart variety, hydro-priming decreased 

the seedling establishment rate while, as seen in chapter 3, maternal environment 

affects the speed of germination and hydro-priming improved the speed of 

germination of low temperature matured seeds (Chapter 3, Figure 3.5). As hydro-

priming was more effective on Microtom variety than Castlemart variety, it was 

impossible to distinguish if the effect of hydro-priming on mutant was due to 

genetic (variety) or treatment (hydro-priming) even if primed seeds germinated 

faster than un-primed seeds (Figures 5.7, 5.9). In this study, the role of only 

OPDA as seed germination inhibitors was investigated as well as work done on 

Arabidopsis (Figure 5.7: acx1a; Dave et al., 2011). In the same manner, a delay 

of germination is observed on the mutant that is severely compromised in 

peroximal ß-oxidation (acx1a) suggesting the biochemical process is conserved 

between species.  

 

Taken together, these results in this chapter highlight that OPDA was 

identified as metabolite leaching from seeds during hydro-priming but 

experiments with lines with altered OPDA levels show weak support for the 

hypothesis that OPDA is important in the effectiveness of hydro-priming.   
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6.1 Introduction 

Higher plants such as tomato, accumulate proteins, oils and 

carbohydrates in their seeds during maturation. Studies have shown that 

maternal environment during seed maturation affects seed quality (Hilhorst and 

Toorop, 1997; Baskin and Baskin, 1998). Most of the genes involved in 

germination have been studied (see chapter 1). Seeds have developed protective 

molecules to defend themselves against stress and to permit germination. These 

molecules such as heat shock proteins or late embryogenesis abundant proteins 

are associated with seed longevity and germination (Kushwaha et al., 2013; Kaur 

et al., 2015). Furthermore, flavonoids and more especially PAs that are present 

in the testa are known to act on seed germination (Debeaujon et al., 2000). 

Results in previous chapters showed that 24h of hydro-priming at 15°C was most 

effective in the enhancement of germination and hydro-priming was more 

effective on seed matured at low temperature (Chapter 3). Moreover, hydro-

priming had stronger effect on the speed of germination than iron (Chapter 4). 

Metabolomic analysis revealed that OPDA, a germination inhibitor, is leaked out 

of seed during hydro-priming (Chapter 5). 

 

Clusters of genes with related functions exhibit expression patterns that 

are correlated and co-expression networks have been proven to be very effective 

to identify relevant gene interactions (Li et al., 2016). For example, Li used 

transcriptome analysis to link physiological development processes of seed 

dormancy and germination with auxin signal and regulatory networks. Global 

transcriptome analysis of un-primed seeds in comparison with hydro-primed 

seeds can provide fundamental molecular understanding of germination 

processes in tomato seeds. Moreover, transcriptome analysis can bring 

information on specific processes in hydro-priming mechanism(s). The first step 

of transcriptome analysis is RNA-sequencing (RNAseq), a sensitive technique 

that creates short reads by deep sequencing of cDNA fragments (Wang et al., 

2009). The key aim of this is to quantify the changing expression levels of a 

transcript under different conditions. Here, I used RNAseq to generate a high-

resolution map for S. lycopersicum cv. Kanavaro during hydro-priming to catch 

the moments when key events occur. I present the global analysis of gene 

expression during hydro-priming treatment. Utilizing gene annotation data from 
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the tomato assembly (Solgenomics), the transcriptome analysis of gene 

expression under the different hydro-priming conditions led to the identification of 

genes related to germination.  

 

6.2 Results 

After optimisation of hydro-priming conditions, a time-course experiment 

was conducted on Kanavaro seeds  to confirm the effectiveness of hydro-priming 

(Figure 6.1). Germination speed and T50 were measured for each condition: un-

primed seeds, 3h, 6h, 16h and 24h of hydro-priming. Primed seeds germinated 

significantly more rapidly than controls. Therefore, I concluded that increasing 

time of hydro-priming improved speed of germination and seeds that were primed 

during 16h or 24h had a higher speed of germination. I used this batch to do the 

RNAseq.   

 

Figure 6. 1 Effect of hydro-priming for S. lycopersicum cv. Kanavaro line. Effect of hydro-

priming on the duration on the speed of germination. Duration of hydro-priming is indicated on the 

legend: un-primed seeds (T0), seeds primed for 3h (T3), 6h (T6), 16h (T16) and 24h (T24). The 

data presented are mean values ± SE of 4 replicates of 50 seeds each.  

 

Table 6. 1 T50 of hydro-priming time-course for S. lycopersicum cv. Kanavaro line. 

Reciprocal of time to respectively 50% of viable seeds to germinate (h) in the control (T0), 3h 

(T3), 6h (T6), 16h (T16) and 24h (T24) of hydro-priming treatment. F-values for Student’s t-test 

and T-values for Student’s t-test. 

Treatment T50 SD F-Values T-Values 

T0 75 ± 2,887 -  -  

T3 69 ± 3,215 0,8929 ≥0,05 

T6 64 ± 1,000 0,2143 ≤0,05 

T16 58 ± 1,732 0,5294 ≤0,01 

T24 55 ± 1,528 0,4375 ≤ 0,01 
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The transcriptome analysis was carried out using RNAseq and data 

obtained can give an indication of which genes are differentially regulated 

between different experimental conditions.  

 

 

Figure 6. 2 Summary of the RNA sequencing process. 

 

The transcriptome of twenty-five seeds of Kanavaro from each conditions 

was sequenced and compared with wild-type seeds. A summary of the RNAseq 

process is shown in Figure 6.2 and a summary of the data analysis is shown in 

Figure 6.3. Reads were aligned to the reference genome S. lycopersicum cv. 

Heinz 1706 (Solgenomics). Transcriptome sequencing was performed on a 

hydro-priming time-course. All seeds that I used were dried after hydro-priming 

during two days at 25°C. Replicates of un-primed seeds (T0) and seeds primed 

for 3h (T3), 6h (T6), 16h (T16) or 24h (T24) were collected, mixed and then used 

for RNA isolation. Afterwards, paired-end libraries were prepared and sequenced 

as described in Figures 6.2 and 6.3. RNAseq data was analyzed using WGCNA 

(Langfelder and Horvath, 2008), Java Treeview (Saldanha, 2004) and Gene 

Cluster 3.0 (Eisen et al., 1998) as complementary differential expression analysis 

methods.  

 

Figure 6. 3 Summary of the transcriptomic data analysis pipline. 
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6.2.1 Molecular analysis and clustering 

The obtained dataset showed that, among the 34 725 annotated genes in 

the tomato genome, there were 25 279 expressed genes in seeds during hydro-

priming (Figure 6.4 and Table 6.2). Expressed genes are described as being 

differentially expressed between primed and un-primed (see Chapter 2) identified 

as differentially expressed genes (DEGs). Integrating the reproducibility between 

biological replicates, genes non-expressed during time-courses are removed and 

the distribution of these genes is shown in a Venn diagram (Figure 6.4A). This 

diagram highlights that 21 198 expressed genes (87%) were commonly identified 

in the five treatments. These results implied that the expression pattern changed 

quickly after 3h of hydro-priming while, after 16h of hydro-priming, the pattern 

changed again and the number of expressed genes increased. It was found that 

21 198 genes were expressed and showed a continuous up-regulation pattern or 

a continuous down-regulation pattern (Figure 6.4B). To highlight biological 

pathways involved during hydro-priming, I used MapMan software which 

classified genes and metabolites (Usadel et al., 2009). Many genes changed or 

reacted during hydro-priming but 35% of expressed genes are of unknown 

function (Figure 6.4C). Among the genes identified, those involved in protein 

metabolism (amino acid activation, assembly and cofactor ligation, degradation, 

folding, glycosylation, postranslational modification, synthesis and targeting) or in 

RNA metabolism (processing, regulation of transcription, binding and 

transcription) had a majority of transcripts (10%). Then those involved in lipid 

metabolism, secondary metabolism, transport, enzyme, signalling and stress 

pathway were expressed (4-5%). A third group having 1-2% of transcript 

expression were involved in cell metabolism (organisation, cycle, vesicle, death), 

hormone metabolism, development metabolism (late embryogenesis, multi-

target, squamosa, storage protein), DNA metabolism (repair, synthesis, 

chromatin synthesis) and cell wall metabolism (protein, synthesis, degradation, 

hemicellulose, modification, pectin, precursor, death). Others pathways had a low 

change in genes expression (≤ 1%). Most of these genes are up-regulated during 

hydro-priming (Table 6.2). Therefore, I concluded that hydro-priming involved 

various metabolic processes.    



Chapter 6: Characterisation of hydro-priming mechanism(s) by transcriptomic 
analysis 

120 
 

  

 

Figure 6. 4 Differentially expressed genes (DEGs) in hydro-primed seeds and non hydro-

primed seeds for S. lycopersicum cv. Kanavaro. A. Venn diagram of the 25 279 DEGs in 

seeds primed (T24) and un-primed (T0). B. Number of DEGs in each of the samples at five time-

point of the hydro-priming. C. Percentage of transcript expression in function of metabolic 

pathways.  
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Table 6. 2 Genes regulated during hydro-priming compared to the control. 

  Up-regulated genes (%) Down-regulated genes (%) 

Amino acid 81 19 

Biodegradation of Xenobiotics 70 30 

C1-metabolism 72 28 

Calvin cycle 72 28 

Cell 76 24 

Cell wall 80 20 

CHO metabolism 75 25 

Co-factor and vitamine metabolism 86 14 

Cytochrome P450 67 33 

Development 76 24 

DNA metabolism 80 20 

Enzyme 75 25 

Fermentation 83 17 

Gluconeogenese/ Glyoxylate cycle 56 44 

Glycolysis 72 28 

Hormone metabolism 68 32 

Krebs Cycle  82 18 

Lipid metabolism 75 25 

Metal handling 78 22 

Mitochondrial electron transport  87 13 

N-metabolism 71 29 

Nucleotide metabolism 83 17 

Oxidative Pentose Phosphate 86 14 

Photorespiration 70 30 

Photosystem  78 22 

Polyamine metabolism 56 44 

Protein metabolism 81 19 

Redox 75 25 

RNA metabolism 79 21 

S-assimilation 55 45 

Secondary metabolism 73 27 

Signalling 72 28 

Stress 69 31 

Tetrapyrrole synthesis 86 14 

Transport 78 22 

Unknown function 73 27 
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Figure 6. 5 Clustered display of data from hydro-priming time-course for S. lycopersicum 

cv. Kanavaro. A. Array with 5 clusters in yellow. B. Color scale, gene expression levels are shown 

with high expression represented in red and low expression represented in green. 

 

Java Treeview and Gene Cluster 3.0 were used to display differential 

expression and revealed differences in gene expression between the five 

investigated time-points (Figure 6.5). A cut-off q-value ≤0.05 and fold change ≥2 

was used to identify 7941 genes up and down regulated. The transcriptomes of 

the individual time-points clustered in a specific way, with time-points T16 and 

T0   T3    T6   T16  T24 
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T24 similar to each other but clearly distinct from earlier time-points. I identified 

five clusters: 

 -  Cluster 1 contains 2 138 genes that are up regulated at T0, T3 and T6 then 

they are down regulated at T16 and T24.  

 - Cluster 2 contains 3 482 genes that are down regulated at T0, T3 and T6 then 

they are up regulated at T16 and T24.  

- Cluster 3 contains 855 genes that are down regulated at T0 and T3 then they 

are up regulated at T6, T16 and T24.  

- Cluster 4 contains 1 038 genes that are down regulated at T0, T3, T6 and T16 

then they are up regulated at T24.  

- Cluster 5 contains 428 genes that are down regulated at T0 then they are up 

regulated at T3, T6, T16 and T24.  

 

The results obtained on DEGs coincides with the results on germination 

assay (Chapter 3). Previous results showed that hydro-priming increased the 

speed of germination after 16h of imbibition and 16h and 24h of imbibition showed 

similar results. Therefore, I concluded that hydro-priming is effective after 16h of 

imbibition and 16h corresponds to a large transcriptional change compared to 6h.  

 

Subsequently, I analysed the expression changes for individual genes. 

Un-primed seeds corresponded to T0 and primed seeds corresponded with T3, 

T6, T16 and T24. A comparison of gene expression of two conditions: un-primed 

seeds (y axis: T0) vs. primed (x axis: 3h, 6h, 16h or 24h) was conducted (Figure 

6.6). Selecting genes in the dendrogram were used (Figure 6.5) and gene score 

was used to produce the scatterplot (Saldanha, 2004). A comparison of gene 

expression of un-primed seeds and seeds hydro-primed during 3h (Figure 6.6 A) 

or 6h (Figure 6.6 B) showed a positive correlation. A comparison of gene 

expression of un-primed seeds and seeds hydro-primed during 16h (Figure 6.6 

C) or 24h (Figure 6.6 D) showed a negative correlation, suggesting these 

variables (un-primed seeds and primed seeds during 16h or 24h) had a negative 

association. These results confirmed that 16h or 24h of hydro-priming were 

sufficient to observe a change in gene regulation.  
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Figure 6. 6 Global transcriptome relationship among different duration of hydro-priming of 

S. lycopersicum cv. Kanavaro. Yellow dots are DEGs. A. Un-primed seeds vs. 3h of primed 

seeds. B. Un-primed seeds vs. 6h of primed seeds. C. Un-primed seeds vs. 16h of primed seeds. 

D. Un-primed seeds vs. 24h of primed seeds. 
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To find evidence about the way in which hydro-priming affects seed vigour, 

I observed the changes in gene expression level in individual genes in two 

conditions: un-primed seeds (T0) and primed seeds (T24). To reduce the list of 

candidate genes which have a role in hydro-priming efficiency, I selected DEGs 

having more than 100 hundred reads (Figure 6.7). Under these criteria 5207 

genes were expressed both in the negative control and in seeds after hydro-

priming, only 322 were especially expressed uniquely in the control and 2391 

were specially expressed after 24h of hydro-priming. Therefore, I concluded that 

24h of hydro-priming involved more DEGs than un-primed treatment.  

 

Figure 6. 7 DEGs having more than 100 reads in hydro-primed seeds versus un-primed 

seeds for S. lycopersicum cv. Kanavaro. Among the DEGs, 5207 are commonly expressed in 

un-primed seeds and in primed seeds. 322 DEGs are only presents in un-primed seeds and 2391 

DEGs are only presents in primed seeds. 

 

To identify the genes which were differentially expressed during hydro-

priming, I clustered these DEGs (Figure 6.8). I used bioconductor in R to create 

the clusters using RPKMs in log 2 scale as expression value. I used un-primed 

seed as a control then in functions of the five conditions (T0, T3, T6, T16 and 

T24) and of DEGs, to finally create five clusters: blue, darkgreen, magenta, purple 

and turquoise. In the “Blue” and “Turquoise” clusters, DEGs showed a peak in 

expression value after 3h of imbibition. As 3h of hydro-priming was not enough 

to have an effect on the germination (Chapter 3), the DEGs did not correlate gene 

expression with the effects of hydro-priming. The cluster “Purple” had transient 

DEGS, down-regulated from T0 until at T6 then up-regulated until T16 and down-

regulated until T24. The change in DEGs was unlikely to be associated with 

hydro-priming effects. DEGs in the cluster “Darkgreen” were up-regulated until 

T3 then down-regulated until T24. The expression value at T24 was lower than 

the expression value at T0. In the cluster “Magenta”, the expression value 

increased from T6 until T24. Germination assays have shown that the longer it 

takes for the hydro-priming to process, the more satisfactory is the efficiency of 
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hydropriming (Chapter 3). As the cluster “Magenta” showed an increased of 

expression values and the cluster “Darkgreen” showed a decrease of expression 

values, these two clusters were used to identify the candidate genes that their 

expression correlates with the hydro-priming process. Consequently, the function 

of the genes in the three others clusters (blue, turquoise and purple) were not 

considered as the major ones that are causing a difference in germination 

mechanism through hydro-priming.  

 

Figure 6. 8 K means clustering for gene expression during hydro-priming in S. 

lycopersicum cv. Kanavaro.  A. Cluster blue. B. Cluster darkgreen. C. Cluster magenta. D. 

Cluster purple. E. Cluster turquoise. 

 

6.3.2 Determination of hydro-priming mechanism(s) 

To determine whether the OPDA found in hydro-priming flow through liquid 

was related to differential gene expression patterns, I compared transcript levels 

of genes involved in OPDA pathway between primed and un-primed seeds 

(Figure 6.9). The OPDA biosynthesis pathway is known and the key genes 

involved in its regulation are identified (Dave et al., 2011; Wasternack et al., 

2012). OPDA is released of fatty acids from plastidial membrane lipids by lipases 
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such as DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) (Ishiguro et al., 2001; 

Hyun et al., 2008; Ellinger et al., 2010) then OPDA is catalized by a lipoxygenase 

(LOX), the allene oxide synthase (AOS) and the allene oxydase cyclase (AOC) 

in plasmid to form the cis-OPDA (Weber et al., 1997; Acosta and Farmer, 2010). 

Cis-OPDA migrates from plastid and is imported into the peroxisome by a 

transporter COMATOSE (CTS) and peroximal β-oxidation (CTS/PXA) 

(Theodoulou et al., 2005). Then the 12-oxophytodienoate reductase 3 (OPR3) 

reduces cis-OPDA (which is active in peroxisome) into OPC-8:0 (Sanders et al., 

2000; Schaller et al., 2000; Stintzi and Browse, 2000). A coumarate-CoA ligase 

activates OPC-8:0 to OPC-8-CoA which undergoes three rounds of β-oxidation 

by acyl CoA oxidase1 (ACX1), a multifunctional protein (MFP) and L-3-ketoacyl-

CoA thiolase 2 (KAT2) to form JA (Cruz Castillo et al., 2004; Pinfield-Wells et al., 

2005; Schilmiller et al., 2007; Graham, 2008). The spr2 mutant is affected in the 

generation of fatty acid. The transcript levels of AOC, APR3, AOS3, LOX, DAD1, 

ACX1A, MFP and SPR2 were increased significantly in primed seeds compared 

to un-primed seeds (Figure 6.9). Increasing in OPDA catabolism would be in 

consonance with biosynthesis activation suggesting a dynamic and active 

metabolism.  

 

Figure 6. 9 Transcript expression of genes involved in OPDA pathway. Significant differences 

between negative control and primed seeds by a Student’s t-test: *, P<0.01; **, P<0.001; ***, 

P<0.0001. Abbreviations of enzymes: AOC, allene oxide cyclase; OPR3, OPDA reductase 3; 

AOS, allene oxide synthase; LOX, lipoxygenase; DAD1, DEFECTIVE IN ANTHER 

DEHISCENCE1; ACX1A, acyl-CoA oxidase; MFP, multifunctional protein; spr2 mutant, affected 

in α-LeA fatty acid. 

 

In order to understand the important molecular basis of hydro-priming 

mechanism in tomato seeds, I examined the changes in expression abundance 

for gene-encoding proteins that were involved in the endosperm cap weakening. 
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It has previously been shown that testa rupture appeared in micopyle area and 

MAN genes were involved in the testa rupture (Dahal et al., 1997). Most of the 

genes encoding for micropyle area breaking showed a significant difference in 

transcript levels between the negative control and the hydro-primed seeds 

(Figure 6.10). GluB had more transcripts in the negative control than in hydro-

primed seeds, but MAN1, precursor of MAN1, EXPA4, EXPA10 and XET4 had 

more transcripts in primed seeds. Therefore, these results showed that hydro-

priming promotes the activation of genes involved in weaking in the endosperm 

cap leading to radicle protrusion, with the exception of GluB.  

 

Figure 6. 10 Transcript expression of endosperm genes for S. lycopersicum cv. Kanavaro. 

Significant differences between negative control and primed seeds by a Student’s t-test: *, 

P<0.0001. Abbreviations of genes: PG, polygalacturonase; MAN, endo-β-mannamases; GluB, 

endo-β-1,3-glucanase; EXPA, expansins; XET, xyloglucane endo-transglycosylases. 

 

6.4 Discussion 

To determine the global patterns of gene expression and highlight the 

involvement of the identified DEGs during hydro-priming, DEGs were annotated 

and those having more than 500 reads were reported in appendices table 4. A 

total of 24 282 genes were expressed (Figure 6.4) and I found that the majority 

of transcripts encoded proteins regulated various metabolic / biosynthesis 

processes including those involved in OPDA pathway and endosperm cap 

weakening (Figure 6.4). Majority of DEGs were expressed at different levels in 

un-primed seeds and primed seed but one third of DEGs were only expressed in 

primed seeds (Figure 6.7).   

 

0

100

200

300

400

500

600

700

800

900

T
ra

n
s
c
ri
p
t 
e
x
p
re

s
s
io

n
 

(R
e
a
d
s
) Negative

control

Hydro-
priming* 

* 

* 
* 

* 
* 



Chapter 6: Characterisation of hydro-priming mechanism(s) by transcriptomic 
analysis 

129 
 

As shown in Figure 6.9, the majority of the genes involved in OPDA 

pathways (AOC, OPR3, ACX1A and DAD1 genes), a precursor of jasmonate, 

showed an increase in gene expression after hydro-priming compared to 

controls. Jasmonate is known to inhibit the germination of non-dormant seeds 

and to stimulate the germination of dormant seeds (Yildiz et al., 2008; Linkies and 

Leubner-Metzger; 2012). Methyl jasmonate has been reported to have various 

effect on seed dormancy and germination. It inhibits germination of seeds of 

lettuce, sunflower, amaranthus, tobacco (Nicotiana attenuata), oat, wheat, and 

rape seeds (Daletskaya and Sembdner, 1989; Krock et al., 2002; Preston et al., 

2009) but it enhances germination of a number of dormant seeds including apple, 

pear, acer and ash (Daletskaya and Sembdner, 1989; Berestetsky et al., 1991; 

Ranjan and Lewak, 1992; Jarvis et al., 1997; Yildiz et al., 2008). Moreover, 

Wasternack showed that wounding causes jasmonate synthesis as well as 

changes in the pattern of gene expression (Wasternack et Hause, 2002). 

 

Expansins (EXPA) are large gene famillies and isoforms that have 

different functions in plant development such as leaf elongation and fruit 

development (Harrison et al., 2001; Reidy et al., 2001; Wu et al., 2001b; Zhang 

et al., 2014). In tomato, EXP4 was especially expressed in the endosperm cap 

and the expression of mRNA was correlated with endosperm weakening (Chen 

et al., 2001). EXP8 was only expressed only in radicle tip and EXP10 was 

expressed in seeds but both were known to have a role in seed development, 

germination and early seedling growth (Chen et al., 2001; Brummell et al., 1999). 

As EXP8 was only expressed in radicle tip, the fact as EXP8 had no significant 

difference in transcript expression level may indicate that this gene was not 

involved in the early step of germination and EXP8 may only have a role in the 

elongation of radicle tip (Figure 6.10). The expression of EXP10 was higher after 

24h of hydro-priming, suggesting this gene was involved in germination and 

endosperm weakening but this result needs to be confirmed by quantitative RT-

PCR. Tomato seeds contained >60% MAN whereas embryo cell walls contained 

it at only 30% (Dahal et al., 1997). Moreover GluB was expressed in the 

micropylar endosperm cap of Lycopersicon esculentum seeds just before radicle 

emergence through this tissue to complete germination (Wu et al., 2001a). 

Therefore, I concluded that hydro-priming increased the speed of germination by 
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activating genes that are involved in endosperm weakening but in order to confirm 

these results, additional information on the proteins coded by these genes and 

their activity on different types of cell walls were needed. Then, it would be 

important to confirm the gene expression differences by quantitative PCR (qPCR) 

before publication. 

 

Altogether, these findings suggest that there are considerable differences 

between negative control and hydro-primed seeds. MAN can contribute with 

expansin to cell wall disassembly in the endosperm cap to permit radicle 

emergence during germination.  
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7.1 Summary of the thesis findings 

 The main aim of my thesis was to identify the mechanism by which hydro-

priming improves germination of tomato seeds, and to test whether hydro-priming 

can overcome the effects of variation in the maternal environment. To achieve 

this I measured the effects of hydro-priming on the seed physiology, on the 

metabolome and on the transcriptome of the seeds. 

 

In chapter 3, I examined interactions between maternal environment and 

hydro-priming effects. All types of tomatoes were selected for this study to 

encompass a wide range of tomatoes. Seeds from plants growing at 

temperatures below 22°C had a lower seed size and germination speed was 

slower as well. After hydro-priming, the differences in vigour between produced 

lots was greatly reduced. Hydro-priming reduced the time necessary for 

germination, as well the emergence and the effectiveness of hydro-priming was 

related to the seed maturation environment: hydro-priming improved the vigour 

of seed set matured at low temperatures (below 22°C).  

 

In chapter 4, I examined ions that were leaked from seeds into the hydro-

priming liquid. The ionomic analysis of hydro-priming time-course showed that 

iron is released from seeds and I tested whether this could play a role in the 

effectiveness of hydro-priming. I ruled out a role for iron in the process, but 

showed that the iron released from seeds was present mainly in the seed coat 

and correlated with seed coat colour. I also showed that there were no 

proanthocyanidin pigments in tomato seeds. 

 

In chapter 5, I examined the metabolites that were leaked from seeds 

during hydro-priming and the kinetics of their release from seeds during hydro-

priming. I identified the presence of an important seed germination inhibitor, 

OPDA, in the hydro-priming flow through liquid. I tested whether this is important 

in the mechanism of hydro-priming. The presence of other metabolites such as 

glycoalkaloids or flavonols was also found, and I suggested that plant seeds 

secrete metabolites to protect against pathogens to permit a better seedling 

establishment.  
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In chapter 6, I examined transcript levels of genes under two conditions: 

un-primed seeds and primed seeds during 24h to compare the reactions of seeds 

to hydro-priming. The transcriptomic analysis of control seeds (i.e. un-primed 

seeds) and treatment (hydro-primed seeds) were compared to assess if hydro-

priming had an effect on the molecular pathways. The amounts of RNA 

expressed from control and primed seeds were compared. Genes involved in 

OPDA pathway were more expressed after hydro-priming, as were the genes 

involved in the weakening of the endosperm cap leading to radicle protrusion. 

One possibility is that hydro-priming reduces time of germination and improves 

seedling efficiency by activating the metabolic activities such as respiration, 

recruitment of ribosomes in polysome complexes or DNA repair. 

 

7.2 The suitability of hydro-priming as a treatment to improve germination 

The two important mechanisms in developmental processes are dormancy 

and germination which are regulated through environmental signals and by 

maternal effects. The dormancy in tomato seeds is physiological and non-deep 

(Bewley and Black, 1982; de Castro and Hilhorst, 2000; Hilhorst and Downie, 

1995). To understand how tomato germination can be improved is an imperative 

factor for seed industries. It is imperative for seed industries to understand how 

tomato germination can be improved for economical reasons. 

 

It is not clear how hydro-priming improves germination (Cheng and 

Bradford, 1999; Zulueta-Rodriguez et al., 2015). In this thesis I have addressed 

this question by measuring the performance of seed germination and seedling 

establishment on different cultivar of tomatoes (Chapters 3), by determining ions 

leaked in hydro-priming flow through (Chapter 4), by identifying the metabolites 

that are present in this leachate (Chapter 5), and by characterizing the genes 

expressed during hydro-priming (Chapter 6).  

 

Maternal environment is known into be an important factor which drives 

seed behaviour (McGregor et al., 2015). On Arabidopsis, seed set matured at low 

temperature are more dormant than seed matured at 20°C (Penfield and 

Springthorpe, 2012). Dormant seeds need signals such as cold stratification to 

break dormancy. As tomato seeds have not the same dormancy as Arabidopsis 

seeds, cold stratification is not required to improve the speed of germination. In 
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this case, hydro-priming is used to improve the speed of germination of tomato 

seeds. In this thesis (Chapter 3), hydro-priming experiment was tested on 

laboratories variety of tomato, Microtom. Results showed that the speed of 

germination of low maternal set temperature were improved after hydro-priming 

treatment but hydro-priming did not change the proportion of normal seedlings. 

To verify the hypothesis on low set temperature, hydro-priming treatment was 

generalised on large sample groups of tomato cultivars (beef, cherry, plum 

tomatoes) grown under different temperatures and locations. Results on hydro-

priming was similar as results observed on laboratory variety. However, the 

mechanism underlying the enhancement of speed of germination through hydro-

priming treatment could be investigated further. In reality, seed set matured at 

low temperature are more sensitive to hydro-priming. It is likely this is because, 

even if hydro-priming is efficient for low set temperature, hydro-priming may act 

on germination process by promoting pre-germinative metabolic events. However 

my results in chapter 3 showed that, if poor seed vigour has been caused by 

suboptimal conditions during seed production, such as low temperatures, then 

hydro-priming is effective at increasing vigour. However, if seeds are produced in 

optimal environments, then hydro-priming does not further improve vigour, and 

may even have negative effects. These results can be used by seed companies 

to decide when it is worth trying hydro-priming. 

 

The characterisation of the hydro-priming mechanism via molecular 

analysis was carried out by LC-IT-MS (Chapter 5). Metabolomic analysis 

measures thousands of metabolites, but no single metabolomic method is 

capable of measuring all the metabolites within a metabolome (Hall, 2006). The 

sample of metabolites measured is biased towards certain types of chemical 

compounds by the extraction and LC-MS methods used (Sanchez et al. 2008). I 

cannot assess what proportion of the metabolome the metabolic analysis 

represents because the total number of metabolites within a plant species is 

unknown, although estimates are in the region of several thousand metabolites 

per species (Davies et al. 2010). Metabolomic approaches have been already 

used to understand the regulation network in tomato plants (Toubiana et al., 

2012). Metabolites had been observed before in plants but the liquid after hydro-

priming had never been observed.   
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For instance, I wished to examine the metabolites leaked by seeds during 

hydro-priming (Chapter 5), and the coverage of the metabolome was sufficiently 

large to detect metabolites in hydro-priming flow through liquid (744 peaks). Such 

metabolites would probably not be revealed in a targeted analysis that measures 

a much smaller number of metabolites (it usually focuses on fewer than 50 

metabolites), therefore I used untargeted method to detect them. This method is 

able to include a wide range of metabolites because the metabolic analysis 

encompassed > 3000 metabolites per plant species. Moreover, METLIN 

database has a huge metabolite ranging analysed and provided MS/MS data. 

This molecule library permitted the investigation of molecules found in hydro-

priming flow. A summary of the results from this work which indicates peaks and 

their corresponding RT is shown in Appendices: Table 4. From these results, the 

role of OPDA in hydro-priming was investigated. OPDA is known to inhibit seed 

germination (Dave et al., 2011, 2012). Previous works on Arabidopsis have 

shown that pxa1-1/cts mutant seeds are more dormant due to the accumulation 

of OPDA into chloroplast (Dave et al., 2016). ABA was quantified in the cts-2 

mutant and the levels of ABA were higher in mutant seeds than WT. OPDA 

represses germination by increasing ABI5 protein. In this thesis, the role of OPDA 

was investigated on an overexpression line 35S::SlAOC RNAi, and two mutant 

loss of function: spr2 and acx1a. Increases in the speed of germination of this 

mutant were in correlation with the work on Arabidopsis seed and the negative 

effect of OPDA in seed germination. Thus, I expected that adding exogenous 

OPDA in hydro-priming flow of these mutants could overcome OPDA effect, 

whereas in reality exogenous OPDA partially affects the speed of germination. 

The leaching of OPDA only partly explained differences in germination in this 

study, which suggests that there were other mechanisms determining the 

success of germination by hydro-priming. In the future it will be interesting to 

measure ABA levels in seeds after hydro-priming treatment to compare them with 

those on Arabidopsis seeds. Hydro-priming may down-regulate ABA through the 

leakage of OPDA. It may be important to know OPDA levels to induce ABI5. 

Furthermore, the active OPDA pool was identified into the peroxisome, and 

during the imbibition phase, OPDA is transported from peroxisome to out of the 

seeds, suggesting that OPDA is involved in some germination/dormancy 

mechanisms and OPDA may be involved in feedback loop.  
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The integration of RNA-seq data with other types of genome-wide data 

allows us to connect the regulation of gene expression with specific aspects of 

molecular or physiology. For example, in chapter 5 I identified OPDA as potential 

candidate in hydro-priming mechanism and in chapter 6, I observed higher 

transcript expression of genes involved in OPDA pathway after hydro-priming. 

Integration of RNA-seq with metabolomics data has been used to identify 

pathways that are regulated at both the gene expression and the metabolite 

levels (Low et al., 2013).  

 

7.3 Future works 

7.3.1 Determining the function of abundant metabolite detected in workflow 

Previously, metabolites that were known to leach from the seeds such as 

sugars, polypeptides have been evaluated using GC-MS (Shu et al., 2008; 

Rosental et al., 2016; Han et al., 2017), whereas in this thesis I showed that 

approximately 744 metabolites were found in hydro-priming flow through with the 

positive mode of LC-IT-ToF/MS. There are no previous record of compounds 

transferring between seeds and leachate, probably because it is rarely used as a 

study system. I showed that seed leachate had a role in seed germination 

(Chapter 5). Such chemically intact metabolites in water retained from hydro-

priming are interesting because they suggest that either the metabolites are 

leached to protect the rhizosphere, or they inhibit the germination. The seed 

metabolome has already been explored in relation to germination and in 

developing seedling (Allen et al., 2010; Bhandari et al., 2015; Gorzolka et al., 

2016; Rosental et al., 2016). In a similar manner, the metabolome could be used 

to investigate potential biochemical mechanisms underpinning the speed of 

germination and seedling establishment. For example, changes in the 

metabolome could hold the key to understanding the mechanisms determining 

an increased normal seedling rate under hydro-priming, or the ability of seed to 

germinate faster when hydro-priming is used. This would determine the 

metabolites that are increased or decreased under these different treatments. 

Through the use of metabolomic databases that can suggest the flavonoid 

pathways some metabolites are associated with the mechanisms that help the 

seed to germinate. Screening for such metabolites through the examination of 

the metabolic data, as done here, could prove a productive research strategy for 

the following reasons. Firstly, OPDA was identified using only the molecular 
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weight of the metabolite and spectrum (Chapter 5) and OPDA is known to be 

seed inhibitors (Dave et al., 2011). Secondly, a standard of OPDA was used to 

confirm this identification. In research trials, I observed that exogenous OPDA 

was not sufficient to overcome the promoting effect of hydro-priming on the speed 

of germination. Therefore there is a possibility that the metabolites which are 

identified in this thesis are toxic for pathogens (if validated) and have the potential 

to play a role in the germination by protecting the rhizosphere.  

 

7.3.2 Determining the function of expressed genes after hydro-priming treatment 

 Approximately 2391 genes were expressed after 24h of hydro-priming. 

Like metabolomic data, there are no previous record of gene expression after 

hydro-priming treatment, probably because hydro-priming is not used as a study 

system of germination. As hydro-priming promotes the speed of germination of 

seed matured at low temperature (Chapter 3), the transcriptomic data could 

highlight the metabolic pathways involved in germination (Chapter 6). Preliminary 

results obtained in this thesis showed that is possible to link results obtained by 

physiology analysis (Chapter 3) and metabolic data (Chapter 5) to have a holistic 

view.  

 

7.3.3 Holistic view of hydro-priming mechanism(s) 

The grouping of metabolites found in hydro-priming liquid (Chapter 5) 

suggested that seeds leached certain metabolites that determined germination 

performance, whether these metabolites are known to be beneficial chemicals 

promoting growth or harmful metabolites inhibiting pathogen growth. Establishing 

if such chemicals exist and finding out the chemical identities of such metabolites 

would help to answer questions surrounding the suitability of hydro-priming. Such 

an experiment could first establish if the apparent relationship between metabolic 

data and seed germination proved robust when the metabolite is included in the 

hydro-priming liquid to reverse the effect of this metabolite. The metabolic and 

transcriptomic data could be used to distinguish the metabolites or elements that 

seeds need to germinate faster and develop normal seedlings. Metabolites can 

be associated with a known biochemical pathway by determining if a metabolite 

is increased or decreased in abundance at the time as up or down regulated 

genes. Through this approach, correlation network of expressed genes and 
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metabolites could potentially be created, providing new knowledge of how hydro-

priming improved seed performance. 

 



 

Appendices 
Table 1 List of tomato seeds used. Tomato batches information given in the table below. Seeds 

provided by Enza Zaden B.V. (Enkhuizen). 

Batch 
Temperature of seed production 

(average) 
Type of tomatoes 

Aba 490.010 28°C Cherry 

Babette 608.564  Large beef 

Benthe 536.054 20°C 
 

Buffy 616.811 24°C 
 

Emma 616.831 24°C 
 

Emma 630.727 22°C 
 

Emily 596.037 30°C 
 

Emily 673.803 24°C 
 

Emily 673.829 24°C 
 

Fame 446.670 (Fame 2) 30°C 
 

Fame 478.198 (Fame 1) 24°C 
 

Fame 498.010 (Fame 3) 30°C 
 

Feline 626.590 24°C 
 

Feline 776.681 24°C 
 

Fonda 607.290 24°C Rootstock 

Kiki 543.998 22°C Small beef 

Kiki 547.392 22°C Small beef 

Kiki 776.704 
 

Small beef 

Microtom 19°C, 22°C or 25°C Cherry 

Nienke 234.419 28°C Plum 

Nienke 268.135 
 

Plum 

Nienke 272.384 28°C Plum 

Nienke 276.611 28°C Plum 

Predator 266.093 (Predator 2) 28°C Large beef 

Predator 282.234 (Predator 1) 22°C Large beef 

Predator 616.831 (Predator 3) 24°C Large beef 

Predator 630.727 (Predator 4) 22°C Large beef 

Predator 776.677 (Predator 5) 22°C Large beef 

Rootstock N403 125 E28.34679 30°C 
 

Rootstock N403 842 E28.34190 22°C 
 

Rootstock N403 843 E28.34190 22°C 
 

Rootstock N408 488 E28.34190 24°C 
 

Rootstock N408 528 E28.34679 24°C 
 

Rootstock N611 824 E16R.40408 24°C 
 

Sofia 445.811 24°C Plum 
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Sofia 446.684 
 

Plum 

Sofia 446.883 
 

Plum 

Sofia 453.382 
 

Plum 

Sofia 453.399 
 

Plum 

Vayen 470.268 
 

Plum 

 

Table 2 List of metabolites found in LC-IT-ToF/MS positive ionization. 

 Ion m/z Ion RT 
T0 (peak 

area) 
T3 (peak 

area) 
T6 (peak 

area) 
T16 (peak 

area) 
T24 (peak 

area) 

540,8609 0,575 0 0 0 0 21 888 

545,1187 0,597 0 0 0 0 23 936 

641,4907 16,64 0 0 0 0 23 979 

254,1384 0,836 0 0 0 0 24 043 

298,0807 0,559 0 0 0 0 24 105 

406,1189 3,323 0 0 0 0 25 173 

415,3228 6,765 0 0 0 0 25 175 

433,3246 5,508 0 0 0 0 25 237 

448,9865 0,563 0 0 0 0 25 402 

464,1949 2,350 0 0 0 0 25 899 

494,8394 0,574 0 0 0 0 26 069 

511,4177 5,453 0 0 0 0 26 069 

527,6601 5,389 0 0 0 0 26 133 

575,3947 5,597 0 0 0 0 26 155 

594,3582 5,072 0 0 0 0 26 196 

615,4686 16,048 0 0 0 0 26 197 

636,2675 6,339 0 0 0 0 26 197 

434,1017 0,607 0 0 0 0 26 240 

214,0011 6,600 0 0 0 0 26 261 

253,1737 5,546 0 0 0 0 26 283 

324,163 3,037 0 0 0 0 26 411 

383,3274 6,112 0 0 0 0 26 813 

384,1406 2,187 0 0 0 0 27 051 

471,2285 5,682 0 0 0 0 27 115 

485,1765 2,525 0 0 0 0 27 157 

562,1324 5,668 0 0 0 0 27 221 

564,3546 4,348 0 0 0 0 27 285 

581,4265 5,366 0 0 0 0 27 307 

1170,85 4,399 0 0 0 0 27 349 

1175,121 4,589 0 0 0 0 27 371 

261,1084 0,837 0 0 0 0 28 032 

1337,802 4,579 0 0 0 0 28 043 

578,4042 4,808 0 0 0 0 28 203 

855,7029 17,757 0 0 0 0 28 224 

314,0873 0,645 0 0 0 0 28 288 

288,1715 0,637 0 0 0 0 28 331 
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363,9702 0,623 0 0 0 0 28 331 

111,0283 5,959 0 0 0 0 28 373 

634,1544 4,211 0 0 0 0 28 565 

329,0535 4,323 0 0 0 0 29 291 

184,0693 0,674 0 0 0 0 29 504 

941,4687 6,399 0 0 0 0 29 914 

432,2943 4,675 0 0 0 0 30 421 

444,9949 0,588 0 0 0 0 30 464 

104,1054 0,712 0 0 0 0 30 592 

478,7444 4,697 0 0 0 0 31 078 

1391,796 4,948 0 0 0 0 31 680 

742,4439 5,619 0 0 0 0 31 781 

1181,097 5,300 0 0 0 0 33 097 

416,3238 5,863 0 0 0 0 33 390 

232,0328 0,609 0 0 0 0 33 749 

521,1289 5,287 0 0 0 0 34 880 

353,2427 7,534 0 0 0 0 35 371 

606,2559 6,233 0 0 0 0 35 861 

323,1603 3,044 0 0 0 0 35 883 

1621,068 4,262 0 0 0 0 36 075 

298,0541 0,596 0 0 0 0 37 845 

274,1315 5,227 0 0 0 0 39 936 

1340,998 4,462 0 0 0 0 43 072 

269,1468 0,887 0 0 0 0 44 843 

281,0734 0,613 0 0 0 0 46 016 

222,4091 0,638 0 0 0 0 47 467 

588,9065 0,559 0 0 0 0 50 283 

333,0225 0,510 0 0 0 0 51 968 

433,3454 4,690 0 0 0 0 55 104 

289,0784 0,629 0 0 0 0 55 189 

916,4943 4,563 0 0 0 0 66 251 

261,0392 0,667 0 0 0 0 74 368 

415,3204 6,366 0 0 0 0 83 669 

354,231 6,989 0 0 0 0 96 469 

399,3215 9,619 0 0 0 0 98 688 

331,1077 2,733 0 0 0 0 116 843 

291,9776 0,526 0 0 0 0 119 199 

297,2308 9,331 0 0 0 0 126 539 

235,0697 0,480 0 0 0 0 224 364 

281,1638 1,858 0 0 0 20 096 151 044 

392,2546 3,772 0 0 0 26 027 25 131 

278,1965 0,812 0 0 0 26 155 24 064 

685,4184 16,636 0 0 0 26 155 29 376 

814,4602 5,537 0 0 0 27 029 63 061 

525,1484 0,602 0 0 0 28 267 31 232 

327,0573 9,052 0 0 0 28 499 77 342 
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425,1413 3,341 0 0 0 29 291 27 051 

367,0851 0,623 0 0 0 29 291 38 848 

625,8315 3,742 0 0 0 29 617 220 908 

413,3052 5,550 0 0 0 30 464 45 483 

273,9767 0,624 0 0 0 30 699 34 116 

297,022 0,577 0 0 0 31 539 56 405 

369,289 13,876 0 0 0 31 905 58 475 

418,3536 5,383 0 0 0 32 192 38 855 

615,0342 0,596 0 0 0 32 640 24 204 

465,3359 16,555 0 0 0 32 683 33 643 

468,987 0,504 0 0 0 33 493 29 778 

262,0184 0,611 0 0 0 33 749 56 469 

460,1452 5,381 0 0 0 34 494 30 635 

337,1091 9,678 0 0 0 38 997 152 969 

576,3731 4,690 0 0 0 41 553 44 203 

276,0505 0,600 0 0 0 41 941 58 112 

307,1674 3,232 0 0 0 42 784 73 131 

338,3413 16,061 0 0 0 44 096 102 445 

653,4106 5,753 0 0 0 44 253 86 208 

130,5252 18,115 0 0 0 45 956 28 203 

527,1521 0,602 0 0 0 51 755 65 045 

427,2643 6,567 0 0 0 53 382 116 172 

307,0485 0,623 0 0 0 57 536 30 613 

261,1112 6,973 0 0 0 62 477 126 805 

612,4016 5,081 0 0 0 67 392 123 138 

435,1081 0,599 0 0 0 71 360 32 768 

900,4977 5,214 0 0 0 76 544 62 059 

223,9753 0,586 0 0 0 87 040 35 968 

498,9793 0,576 0 0 0 94 080 83 585 

442,2405 4,505 0 0 0 96 612 251 776 

122,7989 0,532 0 0 0 156 653 87 189 

214,0694 0,336 0 0 0 294 489 76 992 

500,121 4,712 0 0 23 893 59 551 27 200 

678,6511 0,583 0 0 23 979 27 243 36 651 

560,2315 5,564 0 0 26 069 30 421 26 133 

645,9564 0,592 0 0 28 245 34 816 24 917 

529,1277 0,592 0 0 28 288 36 992 28 559 

211,271 0,828 0 0 29 440 69 376 36 096 

451,066 0,593 0 0 30 891 26 112 32 896 

220,7139 0,639 0 0 31 147 64 199 30 592 

1050,33 4,466 0 0 32 704 39 829 44 053 

339,1373 0,630 0 0 33 515 48 213 30 549 

436,8797 0,600 0 0 34 816 56 171 30 421 

401,0184 0,602 0 0 34 837 34 389 52 202 

388,9271 0,563 0 0 36 373 34 944 54 059 

303,087 6,507 0 0 37 888 45 547 84 501 
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94,047 0,514 0 0 37 973 116 288 275 878 

417,352 5,388 0 0 39 765 29 291 86 272 

415,3203 5,590 0 0 40 768 83 299 83 537 

683,0958 0,629 0 0 43 243 27 093 26 240 

309,1444 2,370 0 0 44 117 28 373 52 608 

224,9908 0,517 0 0 46 784 45 355 62 848 

662,7238 4,500 0 0 49 515 52 992 131 328 

81,5209 0,511 0 0 51 883 157 240 494 586 

274,0794 6,352 0 0 56 555 38 208 49 963 

236,9986 0,572 0 0 64 469 32 683 86 414 

925,481 9,627 0 0 64 533 102 274 211 566 

462,7593 5,385 0 0 69 184 74 787 173 544 

240,878 0,537 0 0 76 309 108 971 103 488 

1293,596 4,505 0 0 77 675 182 889 160 725 

527,7343 5,347 0 0 78 210 166 761 161 503 

282,1255 4,281 0 0 80 427 76 544 149 474 

247,1026 0,840 0 0 82 805 103 594 36 523 

432,3474 4,692 0 0 84 032 208 417 354 268 

455,0582 0,597 0 0 108 116 55 168 90 731 

446,1128 0,593 0 0 125 141 267 912 37 973 

362,0769 0,716 0 0 150 218 56 128 48 405 

349,0043 0,499 0 0 173 316 34 859 132 991 

644,7211 0,585 0 0 189 883 64 807 48 171 

266,1579 2,688 0 0 270 785 174 144 87 467 

309,9504 0,521 0 0 338 013 134 099 103 829 

233,0781 5,307 0 0 367 200 121 515 330 297 

415,3205 6,932 0 22 592 30 976 58 432 106 112 

353,2169 7,549 0 23 552 24 021 31 509 42 432 

524,1053 0,594 0 24 747 34 837 33 131 33 067 

592,3911 4,555 0 25 856 38 699 30 400 35 797 

315,1368 2,731 0 25 899 35 456 28 245 29 525 

432,3254 5,757 0 26 155 47 381 65 472 106 539 

225,9872 0,517 0 26 944 83 419 77 568 139 686 

284,8874 0,521 0 26 987 28 331 36 565 56 128 

516,7852 0,586 0 27 925 189 223 142 454 39 317 

469,4562 4,672 0 29 120 33 280 27 179 38 976 

535,7493 4,706 0 30 144 33 067 35 285 57 761 

1180,645 8,183 0 30 165 30 336 33 045 26 197 

517,5732 0,588 0 30 229 23 936 27 845 28 373 

286,0965 0,665 0 30 357 60 631 49 707 35 413 

412,0186 0,575 0 31 253 29 312 24 960 58 965 

751,4334 6,928 0 31 851 27 285 47 573 65 685 

284,1053 0,997 0 33 515 46 656 59 882 45 717 

227,0814 4,333 0 33 536 37 163 30 997 26 261 

189,1191 0,690 0 35 648 30 635 60 245 53 973 

460,1805 0,647 0 35 776 96 619 209 118 33 389 
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1032,527 4,420 0 37 504 49 088 102 717 141 227 

273,0675 0,620 0 38 549 44 288 78 405 96 578 

383,0796 0,612 0 38 613 205 399 80 191 103 296 

323,9626 0,538 0 41 237 135 622 128 056 147 670 

400,2476 4,272 0 41 685 84 485 37 077 98 475 

543,121 0,598 0 41 856 66 944 66 517 119 917 

331,1048 2,732 0 42 091 54 293 71 275 144 384 

377,2124 3,514 0 42 923 95 744 169 872 242 009 

291,0985 4,332 0 42 965 46 123 128 313 221 236 

345,0716 0,587 0 43 883 231 665 178 215 168 378 

307,0832 0,810 0 44 288 21 717 31 616 79 360 

204,1652 0,672 0 44 352 68 309 59 627 102 443 

200,9184 0,524 0 46 144 155 328 44 907 108 448 

303,0509 4,214 0 46 669 52 608 74 133 69 696 

111,0512 0,512 0 47 317 52 864 58 560 78 464 

182,0922 0,832 0 48 341 44 139 54 293 146 889 

384,1192 2,178 0 50 005 120 000 116 786 87 317 

592,3841 5,755 0 50 560 41 195 98 475 112 789 

636,4068 5,334 0 50 688 262 784 92 473 159 773 

646,9447 4,506 0 51 029 114 389 82 688 113 792 

905,5312 5,353 0 51 563 30 485 31 467 38 144 

241,9777 0,519 0 53 397 159 344 100 042 123 070 

741,4405 5,615 0 53 803 48 192 80 960 132 907 

577,3917 4,392 0 55 660 62 251 77 355 129 828 

342,0855 4,577 0 59 285 82 539 88 939 244 295 

369,2191 6,983 0 59 520 211 141 139 567 156 231 

353,2267 6,990 0 61 269 71 080 142 768 163 925 

272,0713 0,597 0 61 355 73 216 100 160 30 592 

652,4044 5,754 0 61 525 115 483 165 653 406 557 

442,8731 4,506 0 64 661 132 380 92 163 166 483 

167,1033 1,403 0 65 945 36 480 31 531 30 592 

1292,594 4,508 0 66 901 107 029 133 227 334 399 

533,1525 0,623 0 68 992 48 619 81 772 70 485 

416,3525 5,383 0 69 227 180 759 215 009 325 575 

904,5163 5,355 0 73 383 133 163 170 211 236 145 

465,1062 4,210 0 74 709 138 435 151 274 41 086 

273,1247 5,226 0 77 243 147 152 229 496 403 410 

341,033 0,678 0 77 648 50 411 32 597 39 659 

382,0822 0,609 0 79 983 53 781 94 187 60 885 

338,2368 9,334 0 85 525 63 573 59 456 136 469 

576,3899 5,223 0 86 987 121 090 196 981 497 780 

773,4668 4,083 0 90 263 331 846 339 543 256 831 

501,0329 0,530 0 94 933 39 765 98 261 133 419 

314,1865 5,362 0 99 371 174 981 36 907 48 904 

104,1042 0,572 0 100 146 58 880 68 139 81 600 

264,0946 0,589 0 101 056 92 459 85 293 33 365 
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529,4505 5,383 0 102 607 84 656 65 161 212 611 

652,4077 5,193 0 105 707 108 672 150 976 219 797 

291,0968 4,331 0 106 016 281 199 156 830 160 350 

492,3541 6,254 0 109 602 87 403 157 811 403 862 

814,4578 4,954 0 110 933 271 152 122 335 305 273 

645,3689 4,482 0 120 192 164 672 129 344 236 363 

143,9868 0,535 0 123 456 99 115 56 789 75 072 

420,3244 9,512 0 130 155 137 598 173 824 303 761 

295,2205 6,991 0 149 845 288 896 161 173 219 618 

580,4119 5,367 0 176 734 213 956 152 590 278 250 

1273,523 4,475 0 177 144 147 894 151 255 252 712 

940,4861 4,772 0 179 221 220 821 307 320 57 451 

259,0798 0,673 0 183 562 214 570 65 216 95 914 

362,0965 0,622 0 245 205 34 837 76 672 45 419 

152,0473 0,511 0 328 780 500 811 204 372 219 403 

315,132 2,734 0 1 204 303 304 264 668 257 144 655 

 

Table 3 List of transiants metabolites found in LC-IT-ToF/MS in positive ionization. 

Ion m/z Ion RT 
T0 (peak 

area) 
T3 (peak 

area) 
T6 (peak 

area) 
T16 (peak 

area) 
T24 (peak 

area) 

183,0615 0,787 0 0 0 22720 0 

277,151 0,792 0 0 0 23808 0 

900,4959 4,354 0 0 0 28117 0 

907,7695 17,78 0 0 0 28352 0 

251,0182 0,570 0 0 0 32555 0 

255,0798 0,595 0 0 0 32597 0 

438,0346 0,564 0 0 0 33771 0 

439,0168 0,600 0 0 0 33877 0 

432,1552 0,615 0 0 0 34816 0 

300,146 5,697 0 0 0 40981 0 

1068,556 5,622 0 0 0 41641 0 

1180,602 8,649 0 0 0 53568 0 

109,9263 11,427 0 0 0 54116 0 

265,1243 0,674 0 0 0 58496 0 

463,4109 5,410 0 0 0 76145 0 

391,2771 10,068 0 0 0 111680 0 

274,0791 6,356 0 0 0 168068 0 

358,8131 0,576 0 0 0 316245 0 

261,0708 0,677 0 0 21675 0 26283 

336,0922 0,667 0 0 21760 0 0 

593,3958 4,559 0 0 22848 0 31445 

355,0701 3,058 0 0 23765 0 0 

897,4247 5,103 0 0 26027 0 30507 

417,1516 3,925 0 0 26069 0 45760 

441,3123 12,066 0 0 27157 0 33792 

443,1255 0,613 0 0 27989 0 0 
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402,9957 0,512 0 0 28117 0 24107 

182,9857 19,008 0 0 28309 0 29461 

286,1207 0,654 0 0 29141 0 30507 

273,9936 0,619 0 0 29227 0 71305 

528,1603 0,595 0 0 30357 0 0 

478,9429 0,632 0 0 30507 37675 0 

896,4702 5,108 0 0 30549 0 0 

1173,64 4,242 0 0 30613 0 0 

329,0588 4,334 0 0 32555 67456 0 

325,037 0,606 0 0 32640 0 0 

324,8239 4,704 0 0 32939 0 0 

230,1387 0,701 0 0 33109 54458 0 

150,0619 0,748 0 0 34411 21717 0 

577,4046 4,844 0 0 34837 0 58560 

1349,132 5,827 0 0 35371 0 27541 

462,5908 4,821 0 0 36843 0 0 

278,1453 0,783 0 0 36971 0 40123 

579,3868 9,623 0 0 37461 0 26155 

472,6796 0,565 0 0 38656 0 28373 

465,0958 3,791 0 0 38805 0 0 

371,1575 17,466 0 0 39851 71051 0 

656,8137 0,557 0 0 41195 40192 0 

350,9992 0,546 0 0 41365 0 34581 

271,1727 5,449 0 0 43115 0 25109 

1176,657 4,341 0 0 43520 0 0 

391,2843 20,213 0 0 44011 51840 0 

1216,427 4,309 0 0 45696 0 0 

417,3362 5,648 0 0 46485 30528 0 

205,1052 2,264 0 0 46592 0 0 

268,972 0,519 0 0 49600 0 25047 

1573,802 4,403 0 0 50069 41963 0 

290,9294 0,574 0 0 50709 0 0 

310,0923 0,794 0 0 50816 0 29506 

293,9697 0,523 0 0 51648 0 0 

611,1657 4,212 0 0 51733 0 54016 

247,1156 0,680 0 0 51880 0 34773 

304,0539 3,816 0 0 53568 0 0 

329,1468 3,246 0 0 54677 0 30617 

541,1545 3,576 0 0 57515 0 23244 

132,4504 10,731 0 0 58432 0 37184 

273,0852 4,312 0 0 63718 0 83543 

342,9294 0,569 0 0 64012 0 0 

335,0286 0,615 0 0 65396 0 45547 

625,1403 0,616 0 0 66624 0 31616 

313,5023 4,630 0 0 68464 26653 0 

426,0615 0,602 0 0 71595 0 0 
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414,0597 0,608 0 0 73152 0 30400 

435,1044 3,226 0 0 74347 0 0 

489,3397 6,791 0 0 116971 0 0 

185,0262 0,559 0 0 122806 0 42176 

546,0608 0,588 0 0 140333 0 0 

611,2506 4,058 0 0 149867 0 113920 

597,8923 0,597 0 0 149909 0 0 

414,3323 5,891 0 0 163395 0 62357 

297,2383 6,882 0 0 185564 0 74986 

353,0381 0,591 0 0 188279 264947 0 

284,0992 0,988 0 0 197213 0 64853 

535,1258 0,579 0 21504 0 0 0 

292,2602 0,630 0 21547 0 25045 0 

550,8983 0,550 0 22421 30507 0 24107 

442,2297 4,075 0 22592 25003 0 29291 

917,4952 4,562 0 23595 45781 40939 0 

448,1642 0,612 0 23616 28203 0 0 

539,1183 4,913 0 23637 0 0 0 

310,0507 0,492 0 23637 24917 26112 0 

516,1519 0,594 0 23701 28288 0 0 

559,3877 5,571 0 23723 0 0 0 

207,21 0,572 0 23765 0 23616 0 

605,2636 0,589 0 23765 43349 0 0 

583,8477 0,590 0 24768 0 0 0 

486,9744 0,529 0 24789 0 0 25941 

130,0862 0,610 0 25685 0 34411 26240 

399,0485 0,579 0 25771 188238 0 37973 

577,3833 5,223 0 25792 0 36312 106278 

404,1367 2,227 0 25813 0 26112 25131 

594,1387 0,597 0 25899 0 0 0 

461,7658 4,848 0 26155 0 0 25468 

277,1131 0,645 0 26944 0 0 34570 

269,983 0,657 0 28011 0 29419 26325 

663,1541 4,116 0 28075 0 0 26197 

295,1434 2,742 0 28075 31467 25045 0 

610,3334 0,593 0 28117 0 0 0 

404,8726 0,552 0 28160 45419 0 35755 

1049,552 5,761 0 30165 32576 45184 0 

901,5092 5,212 0 30251 0 56256 58880 

463,0346 0,620 0 30677 38741 0 0 

371,1314 0,616 0 32341 0 0 24107 

443,7355 0,610 0 32597 46443 75605 0 

599,3938 16,366 0 34539 0 0 48640 

322,8638 0,566 0 34688 31424 33621 0 

533,9313 0,603 0 34731 1093922 1392984 0 

902,501 4,841 0 34944 42240 28331 0 
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461,7656 4,842 0 35221 0 0 71107 

594,3999 4,692 0 35243 41024 0 0 

740,4586 5,358 0 35520 35968 27371 0 

609,3378 16,496 0 35840 0 0 0 

322,9462 0,563 0 36373 0 42027 0 

360,1369 0,612 0 36523 0 0 30379 

319,2315 2,722 0 37589 50603 63424 0 

640,9822 0,583 0 38379 0 0 0 

606,1665 0,605 0 38933 153771 0 0 

332,2781 9,313 0 39637 50091 0 88736 

492,6031 4,728 0 44096 0 0 34937 

658,3296 4,497 0 45013 217850 0 74987 

319,3108 0,610 0 47360 20352 0 0 

617,0038 3,974 0 47531 0 0 50773 

132,1034 0,904 0 48469 0 34773 79893 

304,1371 0,692 0 51648 0 0 26368 

269,1057 0,914 0 52011 0 0 56405 

525,8101 0,600 0 57963 89280 81643 0 

371,1523 17,626 0 58005 54549 50816 0 

208,1714 6,818 0 59861 135467 135637 0 

1087,527 5,771 0 61598 0 0 27307 

394,9986 0,618 0 64320 0 72981 0 

342,139 1,393 0 64789 75925 70443 0 

469,1423 3,500 0 67221 73877 77099 0 

245,0655 0,570 0 67477 78165 155964 0 

887,4872 5,943 0 70115 105131 96299 0 

580,3931 5,616 0 72021 366319 0 140007 

311,7696 0,600 0 82645 158059 207125 0 

275,0621 0,652 0 85440 103063 175833 0 

903,4947 5,738 0 87765 0 0 0 

320,91 0,556 0 90936 0 129465 211144 

429,0524 0,544 0 92821 425849 494508 0 

256,1219 0,689 0 98709 30421 0 24981 

275,1399 1,193 0 99157 76745 173553 0 

256,1178 0,802 0 114880 49813 0 0 

316,1274 2,744 0 125254 35925 51349 0 

423,2583 5,006 0 132565 142891 124459 0 

905,7594 15,663 0 133012 0 0 0 

251,1206 1,995 0 133765 115007 0 36544 

513,1614 0,614 0 135400 787216 821009 0 

260,0997 0,724 0 163648 140800 165760 0 

261,9944 0,603 0 193473 30507 65003 0 

260,0947 0,664 0 205803 35989 64908 0 

202,1075 0,629 0 250932 0 0 0 

872,4886 5,487 0 268966 58069 0 24000 

418,3403 5,622 0 304721 40832 0 28501 
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382,6975 5,34 0 448182 0 0 28331 

 

Table 4 Genes expressed > 500 reads. 

Gene ID Annotation  T0  T3  T6  T16  T24 

Solyc00g006470 Unknown Protein  32642 31692 29079 40858 32157 

Solyc00g006670 Unknown Protein 23032 25695 24592 36196 25990 

Solyc00g006680 Plant senescence-associated protein (Fragment)  2189 2415 2160 3744 2663 

Solyc00g006690 Unknown Protein  921 855 975 681 610 

Solyc00g007270 Translation initiation factor   1648 2126 2045 1975 2085 

Solyc00g008580 Unknown Protein  1231 1310 1113 1703 1376 

Solyc00g009020 Mitochondrial ATP synthase    602 572 685 862 

Solyc00g009760 Cytochrome P450 monooxygenase  31966 31651 28673 40447 32191 

Solyc00g009800 Unknown Protein  976 740 562 905   

Solyc00g011150 Unknown Protein 18005 17161 15448 21376 16746 

Solyc00g011160 Unknown Protein 8026 8697 8007 12302 8769 

Solyc00g011170 Unknown Protein  2050 2342 2151 3012 2314 

Solyc00g012430 Unknown Protein  2499 2500 2295 3413 2793 

Solyc00g012440 TO54-2 (Fragment)  10621 11530 10335 17095 12253 

Solyc00g013180 NADH-ubiquinone oxidoreductase chain 4  1007 1525 1345 1096 1073 

Solyc00g019730 Cytochrome c oxidase subunit 3     713 645 628 652 

Solyc00g068970 Cytochrome P450 like_TBP  74788 79222 71862 107989 80424 

Solyc00g068980 Unknown Protein  20939 22290 21533 26982 20886 

Solyc00g102000 Unknown Protein  45051 47930 46697 67952 47663 

Solyc01g005400 Calcium binding protein Caleosin  936 1068 1029     

Solyc01g005550 Carboxyl-terminal peptidase    541   751 757 

Solyc01g005560 Isocitrate dehydrogenase          582 

Solyc01g005620 
Mitochondrial 2-oxoglutarate/malate carrier 
protein  

      673 855 

Solyc01g005810 Mak16 protein  1243 1603 1433 1755 1504 

Solyc01g005820 Splicing factor arginine/serine-rich 4          511 

Solyc01g006120 Casein kinase-like protein    636 640     

Solyc01g006170 
rRNA processing protein ebna1-binding protein-
related  

  632 596 817 660 

Solyc01g006280 Formate-tetrahydrofolate ligase          521 

Solyc01g006430 Omega-6 fatty acid desaturase  653 752 767 552 629 

Solyc01g006800 Methionine aminopeptidase          542 

Solyc01g006900 
Phosphatidylglycerol/phosphatidylinositol transfer 
protein  

769 1104 846 660 698 

Solyc01g006990 F-box family protein    521 579     

Solyc01g007110 NC domain-containing protein  1183 1599 1917 1497 1282 

Solyc01g007250 U3 small nucleolar ribonucleoprotein protein IMP4        787 834 

Solyc01g007320 ATP synthase subunit beta chloroplastic    585 539 536 696 

Solyc01g007330 Ribulose bisphosphate carboxylase large chain    652 520 521 501 

Solyc01g007490 ATP-dependent Clp protease proteolytic subunit   860 1181 1055 1130 1186 

Solyc01g007560 DNA-directed RNA polymerase subunit alpha  1499 1850 1395 1318 1595 
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Solyc01g007570 30S ribosomal protein S11 chloroplastic        513 866 

Solyc01g007580 30S ribosomal protein S8          585 

Solyc01g007600 50S ribosomal protein L16 chloroplastic    531   510 545 

Solyc01g007610 30S ribosomal protein S3 chloroplastic  1523 1833 1427 2077 2243 

Solyc01g007630 50S ribosomal protein L2 chloroplastic  2998 3843 3356 2780 3293 

Solyc01g007640 Ycf2   1045 1581 1147 1509 1802 

Solyc01g007670 30S ribosomal protein S7 chloroplastic  1525 1992 1554 1733 1762 

Solyc01g007690 Unknown Protein  1611 1527 1391 1416 891 

Solyc01g007710 Unknown Protein  1462 1221 1186 1210 517 

Solyc01g007720 ORF42f       503 550 

Solyc01g007730 ORF91  1541 1887 1729 1986 2185 

Solyc01g007940 Alanine aminotransferase 2  554 719 594 917 1142 

Solyc01g008000 ADP-ribosylation factor  439 568 563     

Solyc01g008060 Phosphoglycerate mutase   510 712 611 731 738 

Solyc01g008080 Ribosomal protein S27  955 1232 1211 1048 1117 

Solyc01g008090 Ribosomal protein S27     521 520 562 669 

Solyc01g008110 Cytochrome P450         610 

Solyc01g008360 Pre-mRNA branch site p14-like protein     701 653 606 618 

Solyc01g008370 26S proteasome regulatory subunit   1566 2091 1913 1719 2012 

Solyc01g008550 Cinnamoyl CoA reductase-like protein     660 572 562 660 

Solyc01g008780 Phospholipase A22         559   

Solyc01g008820 Signal peptide peptidase family protein         608 693 

Solyc01g008840 COP9 signalosome complex subunit 2         535 560 

Solyc01g008850 CBL-interacting protein kinase 18   614 780 822     

Solyc01g008910 Scarecrow transcription factor family protein     587 568     

Solyc01g008950 Calmodulin 5/6/7/8-like protein   1448 1968 1688 1694 1738 

Solyc01g008960 Argonaute 4-like protein  820 1306 1025 792 1204 

Solyc01g008970 
Heterogeneous nuclear ribonucleoprotein A3-like 
protein 2  

651 810 827 583 816 

Solyc01g009100 Ribosomal protein L30   805 1050 1034 1471 1616 

Solyc01g009170 Ethylene insensitive 3 class transcription factor   969 1180 1110 1032 1116 

Solyc01g009310 Sterol reductase         507 649 

Solyc01g009470 Poly(ADP-ribose) polymerase, catalytic region  505 692 648     

Solyc01g009520 Ribosomal protein  1515 2182 2081 2218 2587 

Solyc01g009660 Low-temperature-induced 65 kDa protein  1705 2138 1692 983 919 

Solyc01g009850 Unknown Protein        564 521 

Solyc01g009990 Peptidyl-prolyl cis-trans isomerase           601 

Solyc01g010270 Nitrilase associated protein-like  504 586 564 450 402 

Solyc01g010440 Unknown Protein    505       

Solyc01g010540 Ribosomal protein     536 519 754 915 

Solyc01g010580 Ribosomal protein   1134 1312 1310 1041 1203 

Solyc01g010700 AKIN gamma   533 642 614     

Solyc01g010760 
Porin/voltage-dependent anion-selective channel 
protein  

      537 726 
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Solyc01g011000 Eukaryotic translation initiation factor 5A  672 787 895 1019 1280 

Solyc01g011040 LRR receptor-like serine/threonine-protein kinase   522       

Solyc01g014180 
Zinc finger A20 and AN1 domain-containing 
stress-associated protein  

1479 1923 1951 1177 1307 

Solyc01g015020 PRLI-interacting factor A (Fragment)  631 737 709   520 

Solyc01g028810 chaperonin   1251 1694 1514 1462 2050 

Solyc01g028860 YTH domain family 2 (Predicted)  1099 1724 1619 1458 1929 

Solyc01g044360 Importin beta-3        580 806 

Solyc01g044480 Elongation factor P   963 1205 1222 1360 1525 

Solyc01g049890 Unknown Protein  1075 1372 1257 1459 1574 

Solyc01g057000 Universal stress protein family protein   1820 2569 1871     

Solyc01g058410 Unknown Protein  1216 1330 1345 1231 1250 

Solyc01g058500 Unknown Protein  44667 49791 45352 71732 50378 

Solyc01g059930 Universal stress protein   587 782 859     

Solyc01g059980 Beta-glucanase   867 1124 861 868 581 

Solyc01g060030 Zinc finger CCHC domain-containing protein 10  787 927 886 582 576 

Solyc01g060070 Pore protein homolog   2719 3593 3159 1891 1824 

Solyc01g060130 ADP-ribosylation factor-like protein 3         800 513 

Solyc01g060150 Unknown Protein    553   597 542 

Solyc01g060470 Importin alpha-1b subunit           584 

Solyc01g065580 Pumilio domain-containing protein KIAA0020         743 881 

Solyc01g065980 Ethylene responsive transcription factor 2b          563 

Solyc01g066720 
Hypoxia induced protein conserved region 
containing protein   

1273 1577 1459 985 811 

Solyc01g066840 40S ribosomal protein S21   1794 2041 2116 2569 2429 

Solyc01g066910 PVR3-like protein           864 

Solyc01g067070 Mitochondrial deoxynucleotide carrier   500 622 596     

Solyc01g067360 CHY zinc finger family protein expressed         527 520 

Solyc01g067390 Chromodomain-helicase-DNA-binding protein 2           521 

Solyc01g067730 Acyl carrier protein   527 553 599 646 681 

Solyc01g067740 Superoxide dismutase   775 932 985 895 1189 

Solyc01g068240 Ubiquitin carboxyl-terminal hydrolase          500 

Solyc01g068530 30S ribosomal protein S9  1528 2126 2066 2334 2678 

Solyc01g073650 Serine/threonine-protein phosphatase  868 1244 1081 1128 1191 

Solyc01g073660 Uncharacterized MFS-type transporter C19orf28        507 526 

Solyc01g073740 Citrate synthase  600 839 684 654 749 

Solyc01g079230 Agenet domain-containing protein           528 

Solyc01g079250 
mRNA splicing factor ATP-dependent RNA 
helicase   

987 1445 1301 942 1213 

Solyc01g079420 Cytochrome c oxidase subunit VC family protein         500   

Solyc01g079710 Uncharacterized conserved protein     532 512 517 593 

Solyc01g079870 Nuclear transcription factor Y subunit C-2    555 598   573 

Solyc01g079880 Asparagine synthetase          569 

Solyc01g080500 Unknown Protein  864 1103 1021     

Solyc01g080540 Histidine-containing phosphotransfer protein         584   
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Solyc01g080640 
Multidrug resistance protein ABC transporter 
family   

1024 1326 1034 1139 1250 

Solyc01g080880 Receptor-like kinase           507 

Solyc01g081010 Nucleolar GTP-binding protein   1180 1441 1457 1296 1927 

Solyc01g081450 Unknown Protein       506     

Solyc01g081500 Histone-lysine N-methyltransferase SUV39H2           556 

Solyc01g081590 Non-specific lipid-transfer protein           534 

Solyc01g086750 Protein TIF31 homolog         651 842 

Solyc01g086870 BHLH transcription factor     566 533     

Solyc01g086970 
Zinc finger A20 and AN1 domain-containing 
stress-associated protein 

1665 2132 1845 982 913 

Solyc01g087180 Unknown Protein  1709 2135 1648 1851 2003 

Solyc01g087210 Cellulose synthase            532 

Solyc01g087620 Unknown Protein  1356 1627 1734 958 834 

Solyc01g087730 50S ribosomal protein L1   660 794 693   503 

Solyc01g087900 
N-alpha-acetyltransferase 20, NatB catalytic 
subunit   

546 714 627 839 920 

Solyc01g088010 Lactoylglutathione lyase family protein  784 997 831     

Solyc01g088080 T-complex protein theta subunit     614 619 616 915 

Solyc01g088100 Zinc finger CCCH domain-containing protein 22    671 530 1009 856 

Solyc01g088370 Eukaryotic translation initiation factor 3 subunit B   519 676 687 928 1259 

Solyc01g088700 Eukaryotic translation initiation factor 4 gamma 1         526 658 

Solyc01g089970 Nucleoside diphosphate kinase   1378 1643 1626 1585 1976 

Solyc01g090190 Nuclear RNA binding protein           535 

Solyc01g090350 Non-specific lipid-transfer protein   40181 46012 44241 32129 29714 

Solyc01g090360 Non-specific lipid-transfer protein   10173 11343 10734 8575 8241 

Solyc01g090750 T-complex protein 1 subunit alpha          629 

Solyc01g091060 Methionine aminopeptidase           547 

Solyc01g091160 Agmatinase   605 814 796 1318 1403 

Solyc01g091350 ATP-dependent DNA helicase 2 subunit KU80         562 610 

Solyc01g091730 Peroxisomal membrane protein 11-5   1193 1556 1609 2343 2635 

Solyc01g094120 Cytochrome P450   516       

Solyc01g094480 Pre-mRNA-splicing factor prp46     502       

Solyc01g094560 60S ribosomal protein L36   527 694 659 967 921 

Solyc01g094800 Chromodomain-helicase-DNA-binding protein 1         531 598 

Solyc01g094950 Protein BPS1, chloroplastic  4626 5868 4657 4134 3284 

Solyc01g095050 Negatively light-regulated protein    580 606     

Solyc01g095140 Late embryogenesis abundant protein (Fragment)  710 827 682     

Solyc01g095150 Late embryogenesis abundant protein (Fragment)  1006 1021 1025     

Solyc01g095200 Reticulon family protein   525 700 693 562 748 

Solyc01g095320 BCL-2-associated athanogene 6   1722 2060 1749 1011 1090 

Solyc01g095410 Eukaryotic translation initiation factor 1A   1352 1855 1843 2286 1933 

Solyc01g095460 G-box binding factor 3   700 881 730     

Solyc01g095790 Splicing factor 3a subunit 3  1502 1932 1636 771 892 

Solyc01g096040 Aspartic proteinase nepenthesin I     533 541 555 693 
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Solyc01g096270 Unknown Protein  786 1018 971 1090 988 

Solyc01g096290 Ubiquitin   1912 2485 2392 2098 2310 

Solyc01g096340 Auxin-induced SAUR-like protein     514       

Solyc01g096580 30S ribosomal protein S10   1688 2115 1970 1919 2060 

Solyc01g096590 30S ribosomal protein S10   894 1131 1070 1237 1360 

Solyc01g096700 Chaperone protein dnaJ 1       550   614 

Solyc01g096940 Receptor like kinase, RLK       905 1093 

Solyc01g097760 Ribosomal protein L7a   1511 1859 1914 2061 2857 

Solyc01g097870 40S ribosomal protein S24   2055 3043 2556 2875 3136 

Solyc01g097880 Deaminase   527 846 715 538   

Solyc01g098000 Elongation factor-like protein   751 979 884 1311 1554 

Solyc01g098030 RNA-binding protein   586 612     

Solyc01g098100 60S ribosome subunit biogenesis protein NIP7  503 623 562 825 769 

Solyc01g098760 
Heavy metal-associated domain containing 
protein expressed   

  621 684     

Solyc01g098770 Xylanase inhibitor (Fragment)          686 

Solyc01g098850 
Short-chain dehydrogenase/reductase family 
protein  

4657 5680 4657 1677 1959 

Solyc01g098860 Uncharacterized GPI-anchored protein    556 519   528 

Solyc01g098880 Seryl-tRNA synthetase           601 

Solyc01g098910 Mitochondrial carrier protein     595       

Solyc01g098920 Mitochondrial Rho GTPase 1     647 591   741 

Solyc01g099100 Long-chain-fatty-acid coa ligase   549 669 715 841 1135 

Solyc01g099370 SRC2 homolog (Fragment)   2714 3097 2898     

Solyc01g099670 40S ribosomal protein S10-like  1087 1278 1351 1789 2137 

Solyc01g099680 REF-like stress related protein 1   831 977 1299 995 692 

Solyc01g099760 26S protease regulatory subunit 6A homolog    569 510 556 695 

Solyc01g099770 Translationally-controlled tumor protein homolog   30662 40109 38532 25618 21322 

Solyc01g099780 Translationally-controlled tumor protein homolog   1180 1497 1645 1321 749 

Solyc01g099800 Unknown Protein  560 817 717     

Solyc01g099810 Arginine/serine-rich splicing factor   526 615 565     

Solyc01g099830 60S ribosomal protein L22-2   3406 4602 4519 4879 4803 

Solyc01g099900 Ribosomal protein L18   609 808 890 956 1255 

Solyc01g099910 Epoxide hydrolase           642 

Solyc01g099920 
Photoassimilate-responsive protein PAR-1b-like 
protein   

  539       

Solyc01g100140 Protein DEHYDRATION-INDUCED 19 homolog 3  587 745 677 547 571 

Solyc01g100320 Thioredoxin/protein disulfide isomerase   543 613 605 1115 1628 

Solyc01g100350 ADP-ribosylation factor-like protein 3   1018 1208 1112 904 1006 

Solyc01g100370 Universal stress protein    569   538 603 

Solyc01g100380 Calreticulin 2 calcium-binding protein        954 1582 

Solyc01g100710 Importin alpha-1b subunit          513 

Solyc01g100750 
Susceptibility homeodomain transcription factor 
(Fragment)  

      544 898 

Solyc01g100820 Galactinol synthase   931 1046 850     

Solyc01g100960 Pyrrolidone-carboxylate peptidase   501 733 615 532 555 
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Solyc01g100990 Kinase family protein   691 982 1003 940 1207 

Solyc01g101000 Protein of unknown function DUF408    541 538     

Solyc01g101050 S-adenosylmethionine synthase   3828 5611 5468 2573 2896 

Solyc01g102320 Acetyl xylan esterase A        765 880 

Solyc01g102650 
Maleylacetoacetate isomerase / glutathione S-
transferase   

576 705 646 820 902 

Solyc01g102750 PHD finger family protein        813 749 

Solyc01g103000 Cullin-associated NEDD8-dissociated protein 2          528 

Solyc01g103040 Auxin response factor 1     586 542 546 532 

Solyc01g103210 Cytochrome c   762 997 1088 922 863 

Solyc01g103400 Nucleic acid binding protein   653 854 814 630 732 

Solyc01g103440 Chaperone DnaK     575   721 935 

Solyc01g103530 YTH domain family 2   2395 3184 3065 2037 2544 

Solyc01g103710 Ribosome biogenesis protein ERB1           625 

Solyc01g103790 40S ribosomal protein S12  1020 1174 1248 952 1064 

Solyc01g103930 Serine/threonine protein kinase   592 660 746 601 516 

Solyc01g103960 RING finger protein 170   545 653 767 512 543 

Solyc01g104120 Oxoglutarate and iron-dependent oxygenase        506 542 

Solyc01g104160 Ankyrin repeat domain-containing protein 2   883 947 985 830 986 

Solyc01g104360 60S acidic ribosomal protein P1   716 920 949 1132 1331 

Solyc01g104460 mRNA turnover protein 4 homolog  5810 7495 6981 4791 4939 

Solyc01g104550 Pinin/SDK/memA protein           526 

Solyc01g104580 Ribosomal protein L3   2500 2830 2930 3107 3990 

Solyc01g104670 GTP-binding nuclear protein Ran-A1  1314 1776 1590 1585 1960 

Solyc01g104690 GTP-binding nuclear protein Ran-A1  1891 2356 2082 1606 2066 

Solyc01g104910 26S protease regulatory subunit 8 homolog         671 691 

Solyc01g104940 Alpha-L-arabinofuranosidase/beta-D-xylosidase        537 521 

Solyc01g105230 Ubiquitin carboxyl-terminal hydrolase      541     

Solyc01g105330 Chaperone protein dnaJ     575 592     

Solyc01g105400 Unknown Protein       710 608 

Solyc01g106200 Chaperone DnaK   1048 1293 1095 1412 1828 

Solyc01g106220 Transcriptional factor B3          541 

Solyc01g106270 DNA-binding bromodomain-containing protein    511       

Solyc01g106670 Unknown Protein  552 716 574 992 937 

Solyc01g107120 Vacuolar sorting receptor           513 

Solyc01g107160 Zinc finger protein    513 611     

Solyc01g107320 SWIB/MDM2 domain protein          510 

Solyc01g107720 Cyclin          530 

Solyc01g107810 UDP-glucuronosyl/UDP-glucosyltransferase  2959 3673 3790 1815 1017 

Solyc01g107860 Poly(A) RNA binding protein  1623 2270 2172 2402 3239 

Solyc01g108270 Serine/threonine protein kinase        675 750 

Solyc01g108490 Nucleotide-binding, alpha-beta plait  6969 9063 8701 6296 6366 

Solyc01g108590 Presequence protease, mitochondrial           596 



 

155 
 

Solyc01g108900 COSII_At2g15890 (Fragment)  628 754 884   527 

Solyc01g109290 
4-hydroxy-3-methylbut-2-enyl diphosphate 
reductase   

  511       

Solyc01g109340 WD-40 repeat-containing protein    584     566 

Solyc01g109350 Tyrosyl-tRNA synthetase     710 658 1027 1194 

Solyc01g109400 
Dolichyl-diphosphooligosaccharide-protein 
glycosyltransferase  

  570 524 679 885 

Solyc01g109530 Coatomer subunit gamma           599 

Solyc01g109600 2-hydroxyacid dehydrongenase (Fragment) 543 652 531   529 

Solyc01g109610 4Fe-4S ferredoxin, iron-sulphur binding, subgroup  822 1132 1074 921 866 

Solyc01g109650 Glycine-rich RNA-binding protein  665 834 846 957 1082 

Solyc01g109780 Glucose-1-phosphate adenylyltransferase         667 594 

Solyc01g109840 Diaminopimelate decarboxylase           574 

Solyc01g109870 BZIP transcription factor  1367 1714 1062 3231 2259 

Solyc01g109910 Dehydrin   4424 4954 4726 3550 3880 

Solyc01g109930 26S protease regulatory subunit         587 780 

Solyc01g110380 NADH dehydrogenase   594 738 791 734 812 

Solyc01g110440 Arginine decarboxylase        618 647 

Solyc01g110510 Amidophosphoribosyl transferase        539 636 

Solyc01g110530 Unknown Protein          568 

Solyc01g110690 Unknown Protein  1128 1320 1427 1548 1913 

Solyc01g111150 Peptidyl-prolyl cis-trans isomerase       637 1089 1219 

Solyc01g111160 Unknown Protein 2629 3141 2593 2356 2928 

Solyc01g111290 Cold-shock protein, DNA-binding      544 618 649 

Solyc01g111410 Ribosomal protein L1  609 717 734 914 812 

Solyc01g111430 Senescence-associated protein 12   1356 1509 1925 604 608 

Solyc01g111510 C2 membrane targeting protein    558 546   592 

Solyc01g111550 Ras-like GTP-binding protein RHO   708 867 798 970 1024 

Solyc01g111590 Heavy metal transport/detoxification protein  1382 1632 1410 1478 1693 

Solyc01g111630 E3 ubiquitin ligase, SCF complex, Skp subunit  581 680 787 510   

Solyc01g111640 E3 ubiquitin ligase, SCF complex, Skp subunit  2763 3447 3431 2469 2185 

Solyc01g111700 
26S proteasome non-ATPase regulatory subunit 
3   

  554 542 672 853 

Solyc01g111750 V-type ATP synthase beta chain          532 

Solyc01g112220 EC metallothionein-like protein, family 15  1030 1373 1001 1139 1432 

Solyc01g113620 
Pre-mRNA processing ribonucleoprotein, binding 
region  

5736 6627 6066 7941 8842 

Solyc02g014310 Polyadenylate-binding protein   843 1000 992 1591 2038 

Solyc02g014460 WD repeat-containing protein         958 965 

Solyc02g014670 Genomic DNA chromosome 3 P1 clone MPN9  1551 1847 1810 796 691 

Solyc02g021220 Peptidase S8, subtilisin-related  699 810 627 1176 1803 

Solyc02g022870 EMB1611/MEE22    518 501 834 699 

Solyc02g023970 GTP-binding protein   1116 1439 1456 1566 1746 

Solyc02g062240 Small nuclear ribonucleoprotein Sm D3         543   

Solyc02g062460 Oxoglutarate and iron-dependent oxygenase  1266 1784 2579 1127 573 

Solyc02g062620 Nuclear cap-binding protein subunit 2   705 589 676 775 
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Solyc02g062770 Late embryogenesis abundant protein  1140 1526 1300 807 717 

Solyc02g062920 Splicing factor U2AF large subunit       519 595 

Solyc02g062970 Xaa-Pro aminopeptidase 2   512 714 663   559 

Solyc02g063070 14-3-3 protein beta/alpha-1   891 1113 1130 1253 1565 

Solyc02g063280 Unknown Protein  733 890 922 1402 1112 

Solyc02g063490 Malate dehydrogenase   661 851 817 956 930 

Solyc02g064670 Ribosomal protein L26-like 1     637 591 773 1023 

Solyc02g064730 
Expressed protein having alternate splicing 
products   

1329 1746 1592 1245 1081 

Solyc02g065300 Leucyl-tRNA synthetase         670 877 

Solyc02g065370 Unknown Protein  687 878 777 948 811 

Solyc02g065770 COBRA-like protein 4   653 972 936 762 708 

Solyc02g067440 Cupin RmlC-type           555 

Solyc02g067460 
Porin/voltage-dependent anion-selective channel 
protein   

713 918 857 1387 1686 

Solyc02g067580 B12D-like protein     587 543     

Solyc02g067870 Chalcone isomerase   724 803 832     

Solyc02g068130 Mitochondrial import receptor subunit TOM20    608 604 630 545 

Solyc02g068150 Nuclear transport factor 2          503 

Solyc02g068420 Tumor suppressor protein Gltscr2    574 517 556 598 

Solyc02g068740 Glycine cleavage system H protein 1     510 603     

Solyc02g068770 50S ribosomal protein L30  576 828 803 883 866 

Solyc02g069090 Cathepsin B   722 898 938 1670 1966 

Solyc02g069150 Vesicle-associated membrane protein 7B   1348 1721 1693 1460 1388 

Solyc02g069490 FAD linked oxidase domain protein         1018 1457 

Solyc02g069590 Coatomer protein epsilon subunit family protein         500 595 

Solyc02g069610 Protein transport protein GOT1        517   

Solyc02g069850 40S ribosomal protein S25-1   600 784 830 776 1035 

Solyc02g069950 Ribosomal RNA assembly protein mis3    621   696 630 

Solyc02g070310 Ribosomal protein L32  2542 3202 3002 3678 4216 

Solyc02g070320 40S ribosomal protein S4-like protein   841 1171 1147 1056 1251 

Solyc02g070330 40S ribosomal protein S4-like protein  751 943 956 1179 1526 

Solyc02g070340 40S ribosomal protein S4-like protein     670 674 945 1146 

Solyc02g070350 40S ribosomal protein S4-like protein   557 765 735 836 940 

Solyc02g070360 40S ribosomal protein S4-like protein    589 595 835 1170 

Solyc02g070500 
Susceptibility homeodomain transcription factor 
(Fragment)  

650 669 608     

Solyc02g070510 Proteasome subunit alpha type         551 704 

Solyc02g070570 30S ribosomal protein S11           527 

Solyc02g070640 60S ribosomal protein L18a   831 1139 1074 1386 1679 

Solyc02g070650 60S ribosomal protein L18a   1079 1476 1328 1418 1537 

Solyc02g071150 DNA-binding protein     501 515   511 

Solyc02g071180 TA9 protein (Fragment)       501 639 858 

Solyc02g071250 Protein phosphatase   729 910 877 585   

Solyc02g071320 Unknown Protein        1000 1031 
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Solyc02g071510 Bromodomain-containing protein     520 549   576 

Solyc02g071760 DUF1264 domain protein   1119 1362 1118 649 786 

Solyc02g072130 Protein transport protein SEC61 alpha subunit   812 1013 1055 1473 2181 

Solyc02g073580 BZIP transcription factor  1565 1927 1216     

Solyc02g077410 Casein kinase substrate, phosphoprotein PP28  887 1211 1135 1217 1174 

Solyc02g077440 Transcription elongation factor 1 homolog  1662 2182 1994 925 730 

Solyc02g077530 O-methyltransferase   1980 2627 2092 3899 4162 

Solyc02g077880 Auxin-repressed protein   1136 1480 1149 1072 1484 

Solyc02g077970 Late embryo abundance protein (Fragment)  4936 5693 4796 3558 3623 

Solyc02g077980 Unknown Protein 775 1070 735     

Solyc02g078120 Translation initiation factor 3 subunit 7  533 594 586 1006 1112 

Solyc02g078150 Plant-specific domain TIGR01615 family protein  507 679 805 931 805 

Solyc02g078260 DNA-directed RNA polymerase  697 912 817 645 840 

Solyc02g078300 Transcription initiation factor TFIID subunit    574       

Solyc02g078380 Aluminum-induced protein-like protein    551   530 512 

Solyc02g078610 Splicing factor 3b subunit 2   681 831 799 693 714 

Solyc02g079060 Translation initiation factor eIF3 subunit  949 1285 1153 1280 1172 

Solyc02g079290 SELF PRUNING 2G 1107 1329 1086 524 537 

Solyc02g079400 Nitric oxide synthase interacting protein   684 890 942 997 1026 

Solyc02g079780 Pro-resilin    566   650 595 

Solyc02g080130 Heat shock protein DnaJ    564 570   506 

Solyc02g080370 Tobamovirus multiplication protein (Fragment)    675 589   527 

Solyc02g080530 Peroxidase   552 720 701 797 1128 

Solyc02g080630 Lactoylglutathione lyase   1168 1376 1301 853 916 

Solyc02g080880 Aspartic proteinase   3028 3696 3275 1882 2373 

Solyc02g080970 Unknown Protein    609 611     

Solyc02g081430 Microsomal glutathione S-transferase 3         560 528 

Solyc02g081590 FACT complex subunit SPT16    514     557 

Solyc02g081680 Nucleolar complex protein 2 homolog         715 760 

Solyc02g081700 Proteasome subunit alpha type   513 695 661 995 1043 

Solyc02g081810 tRNA pseudouridine synthase B   1352 1673 1511 2496 2655 

Solyc02g081880 Molybdenum cofactor sulfurase protein-like   564 729 656 520 603 

Solyc02g082000 30S ribosomal protein S19   3031 3951 4083 4547 5178 

Solyc02g082020 Unknown Protein        528 573 

Solyc02g082130 Unknown Protein     509   652 724 

Solyc02g082270 RNA recognition motif, RNP-1    599 596     

Solyc02g082340 
RNA polymerase I-specific transcription initiation 
factor  

  567 511     

Solyc02g082700 High mobility group protein   2584 3596 3082 2089 2370 

Solyc02g083200 Unknown Protein  567 587 785 716 848 

Solyc02g083250 
Cellular retinaldehyde-binding/triple function C-
terminal   

888 985 1045 1268 1302 

Solyc02g083280 Thiosulfate sulfurtransferase  547 587 636     

Solyc02g083350 DNA-directed RNA polymerase   577 886 840 663 746 
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Solyc02g083470 Pre-rRNA-processing protein ESF1  646 687 742 708 634 

Solyc02g083710 
26S proteasome non-ATPase regulatory subunit 
4   

        523 

Solyc02g083860 Flavanone 3-hydroxylase   554 584 539 2264 1873 

Solyc02g084240 H1 histone-like protein   542 646 512     

Solyc02g084840 Dehydrin DHN1   6019 7517 7369 4960 6159 

Solyc02g084850 Unknown Protein   1777 2032 2183 1013 887 

Solyc02g084920 Proteasome subunit beta type  1261 1629 1409 1582 1690 

Solyc02g085150 Late embryogenesis abundant protein  714 888 721 621 604 

Solyc02g085310 Unknown Protein  959 1250 1108     

Solyc02g085350 Succinate dehydrogenase flavoprotein subunit          604 

Solyc02g085420 U1 small nuclear ribonucleoprotein   858 1155 940 898 1006 

Solyc02g085590 Vicilin (Fragment)   3253 4048 3319 2495 2887 

Solyc02g085770 ABA induced plasma membrane protein PM 19     658 518     

Solyc02g085790 T-complex protein 1 subunit zeta           574 

Solyc02g085910 Unknown Protein 565 693 566     

Solyc02g086080 Mannose-6-phosphate isomerase 1.1 1436 1915 1585 1482 1424 

Solyc02g086230 50S ribosomal protein L5           639 

Solyc02g086360 ER Phosphatidate Phosphatase  1094 1274 1097 587 809 

Solyc02g086870 Formate dehydrogenase   593 710 706 1068 1313 

Solyc02g086960 Aldehyde dehydrogenase 1     561       

Solyc02g087230 
NADH-quinone oxidoreductase F subunit family 
protein   

        502 

Solyc02g087380 Paired amphipathic helix  506 521 653 675 676 

Solyc02g087700 Structure-specific recognition protein          539 

Solyc02g087920 60S ribosomal protein L34   1189 1489 1257 1508 1759 

Solyc02g088810 Peptidase S10, serine carboxypeptidase          572 

Solyc02g088900 Ninja-family protein 3   1326 1576 1321 940 963 

Solyc02g089060 Proteasome component region PCI        562 764 

Solyc02g089090 Unknown Protein 618 803 808 914 869 

Solyc02g089150 Cytochrome P450   538   1181 1016 

Solyc02g089250 E3 ubiquitin-protein ligase    521   542 635 

Solyc02g089590 Ribosomal RNA-processing protein 7 homolog A  595 735 717 832 957 

Solyc02g090360 Reticulon-like protein B13  2713 3205 2620 1148 1320 

Solyc02g090380 Serine-threonine protein kinase  1481 2035 1999 1063 1015 

Solyc02g092060 Growth regulating factor 1     517   625 700 

Solyc02g092900 Chromatin modification-related protein EAF3    543   521   

Solyc02g093030 Cathepsin B-like cysteine proteinase   1215 1605 2059 2835 2839 

Solyc02g093500 cDNA clone J023001A15 full insert sequence        716 616 

Solyc02g093820 Glucose-6-phosphate dehydrogenase    589 577 570 644 

Solyc02g093870 DNA-binding bromodomain-containing protein    538 515     

Solyc02g093910 Proteasome component region PCI    506   639 699 

Solyc02g094030 Lipase   686 1022 927 805 537 

Solyc02g094110 Sulfite oxidase  4049 5496 5150 1604 1526 
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Solyc02g094120 Kelch related  506 834 727   531 

Solyc02g094130 Mitochondrial import receptor subunit TOM20  501 670 574 785 786 

Solyc02g094460 Mitochondrial phosphate carrier protein           532 

Solyc02g094860 Lateral organ boundaries, LOB        645 696 

Solyc03g005230 
Menaquinone biosynthesis methyltransferase 
ubiE   

  539   540 616 

Solyc03g005750 Genomic DNA chromosome 5 P1 clone MPL12           558 

Solyc03g005940 Unknown Protein  8720 11988 9481 7379 6644 

Solyc03g006360 Auxin-repressed protein   682 875 814     

Solyc03g006490 Aluminum-induced protein-like  801 912 1268     

Solyc03g007170 Peptidyl-prolyl cis-trans isomerase, FKBP-type  759 932 899 1473 1359 

Solyc03g007190 SPFH domain / Band 7 family protein   701 903 940 731 715 

Solyc03g007230 Protein phosphatase 2C  906 1329 1192 535 550 

Solyc03g007480 Myosin   806 1089 941 804 683 

Solyc03g007600 Pentatricopeptide repeat-containing protein    628 579     

Solyc03g007740 Reticulon family protein  870 1058 1008 1521 1758 

Solyc03g007890 Heat shock protein Hsp90  1743 2412 1667 753 1053 

Solyc03g013460 Cytochrome c oxidase subunit 3    712 557     

Solyc03g019780 40S ribosomal protein SA   620 724 800 718 1042 

Solyc03g019790 Aldolase-type TIM barrel  824 999 965 775 1026 

Solyc03g019820 Aquaporin   928 1002 1077 693 873 

Solyc03g025270 rRNA 2'-O-methyltransferase fibrillarin  906 1199 1143 1343 1751 

Solyc03g025520 60S ribosomal protein L36   1649 2070 1996 2352 2427 

Solyc03g025630 Tripeptidyl-peptidase II         608 

Solyc03g025810 Low-temperature-induced 65 kDa protein     570   576 614 

Solyc03g025950 Cytochrome b5  696 806 755 603 629 

Solyc03g026020 Heat stress transcription factor     534       

Solyc03g031680 RNA polymerase, Rpb8    599 566 634 588 

Solyc03g031690 ABC transporter FeS assembly protein SufB       541     

Solyc03g031750 Homeobox-leucine zipper protein ATHB-14           623 

Solyc03g031880 Cold induced protein-like  1025 1425 1401 699 712 

Solyc03g031910 Oligopeptide transporter OPT superfamily        718 1008 

Solyc03g032120 High mobility group, HMG1/HMG2  1440 1931 1591 2328 2212 

Solyc03g033550 Zinc finger protein   543 677 521     

Solyc03g034020 Ce-LEA  3468 4483 3689 1112 1096 

Solyc03g034430 Translation initiation factor IF2/IF5    507       

Solyc03g043990 Ribosomal protein L26  921 1229 1220 1022 1341 

Solyc03g044140 Subtilisin-like protease         3073 3968 

Solyc03g044250 Ubiquitin-conjugating enzyme E2 I          504 

Solyc03g045100 40S ribosomal protein S5   847 1151 1055 863 950 

Solyc03g046340 Ribosomal RNA-processing protein   512       

Solyc03g046370 Seed maturation protein PM41  1012 1316 1230 500 524 

Solyc03g046590 ORF104  964 1023 960 1173 1218 
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Solyc03g051890 30S ribosomal protein S1           537 

Solyc03g058320 Unknown Protein  1434 1755 1484 1453 1109 

Solyc03g058340 Translation initiation factor         812 820 

Solyc03g058910 
Porin/voltage-dependent anion-selective channel 
protein   

890 1146 1016 1241 1538 

Solyc03g062900 
5'-3' exonuclease N-terminal resolvase-like 
domain  

  624   643 666 

Solyc03g063470 Unknown Protein     591 530 654 

Solyc03g071680 Non-symbiotic hemoglobin     549       

Solyc03g078230 UDP-glucosyltransferase   864 1023 833 600 697 

Solyc03g078390 Actin   1582 2138 2216 1828 2093 

Solyc03g078560 Ras-related protein Rab-6A   1296 1650 1264 1750 1894 

Solyc03g079930 Mitochondrial import inner membrane translocase   1262 1544 1534 1244 1290 

Solyc03g080080 No apical meristem (NAM) protein    549 660     

Solyc03g080150 Nascent polypeptide-associated complex  645 822 781 965 1200 

Solyc03g082370 Arginine/serine-rich splicing factor     655 597     

Solyc03g082560 Ubiquitin   1586 1858 2098 2446 2400 

Solyc03g082590 Cytochrome b5   706 945 925 741 899 

Solyc03g082910 Heat shock protein 70  851 1036 993 3296 3537 

Solyc03g083520 40S ribosomal protein S13   1201 1617 1550 1246 1518 

Solyc03g093330 Unknown Protein   551       

Solyc03g093470 U3 small nucleolar RNA-associated protein 10     530   746 1084 

Solyc03g094070 RNA recognition motif, RNP-1  597 788 705 680 741 

Solyc03g095210 Translocase of chloroplast          552 

Solyc03g095250 WD40 repeat-like    534 508   518 

Solyc03g095710 Transcription elongation factor, TFIIS      526 604 578 

Solyc03g096030 
Mitochondrial peroxiredoxin with thioredoxin 
peroxidase activity   

1659 1799 1582 1188 1621 

Solyc03g096350 60S ribosomal protein  1534 1904 1896 2476 2920 

Solyc03g096660 Protein phosphatase 2C  579 686 536 622 715 

Solyc03g096790 Unknown Protein          529 

Solyc03g096800 Transmembrane protein    599 565 533 575 

Solyc03g096850 Unknown Protein  576 862 797 764 664 

Solyc03g096910 Exportin-1         515 759 

Solyc03g096930 NADH ubiquinone oxidoreductase subunit    661 622 767 852 

Solyc03g096950 Unknown Protein 512 786 750 1086 936 

Solyc03g097170 NERD domain containing protein  610 724 739     

Solyc03g097240 Unknown Protein       501 561 

Solyc03g097260 Cysteine proteinase inhibitor   3916 5541 5576 5040 4748 

Solyc03g097280 Alanyl-tRNA synthetase           664 

Solyc03g097480 Dek protein         601 531 

Solyc03g097890 40S ribosomal protein   685 891 922 959 1325 

Solyc03g098040 Calmodulin 3 protein   561 766 654 736 748 

Solyc03g098270 ARGONAUTE 1           576 

Solyc03g111000 Glyceraldehyde-3-phosphate dehydrogenase   968 1112 1056 573 658 
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Solyc03g111080 Bromodomain factor   714 884 942 727 584 

Solyc03g111130 Malate synthase  1949 2393 2248 2317 3773 

Solyc03g111220 60S ribosomal protein  2595 3491 3380 3233 3856 

Solyc03g111630 Initiation factor eIF-4 gamma, MA3  1051 1281 1387 876 1315 

Solyc03g112040 Serine/threonine protein kinase  1458 1751 1789 1450 1425 

Solyc03g112220 
ZZ type zinc finger domain-containing protein 
(Fragment)   

1230 1690 1649 1876 2193 

Solyc03g112840 60S ribosomal protein L44 700 817 845 952 1194 

Solyc03g113120 Cupin RmlC-type   518 610   590 731 

Solyc03g113260 Homeobox-leucine zipper-like protein   503 620 603     

Solyc03g113790 Aldehyde dehydrogenase          515 

Solyc03g113900 Gibberellin-regulated protein        679 634 

Solyc03g114160 Deleted in split hand/splt foot protein 1     539   736 607 

Solyc03g114350 Poly(ADP-ribose) polymerase, catalytic region      553     

Solyc03g114360 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

        613 

Solyc03g114940 ABC transporter, transmembrane region  727 1085 1183 1228 1058 

Solyc03g114960 Nitrilase associated protein-like (Fragment)          516 

Solyc03g115100 ATP synthase gamma chain   531 605 713 623 722 

Solyc03g115350 40S ribosomal protein S19-like   840 1139 1155 1144 1468 

Solyc03g115360 Diacylglycerol kinase 1   581 721 734     

Solyc03g115620 Carbamoyl-phosphate synthase small chain   1241 1604 1507 1871 2371 

Solyc03g115640 Translation elongation factor, IF5A  5751 7166 6457 2462 2024 

Solyc03g116160 Nucleosome assembly protein family   678 902 925 1136 1264 

Solyc03g116370 WD-40 repeat protein           536 

Solyc03g116380 Late embryogenesis abundant protein  5408 6433 5835 3562 4156 

Solyc03g116670 Methyl-CpG DNA binding  545 794 855 526 597 

Solyc03g116740 WD-40 repeat protein-like (Fragment)     531 534     

Solyc03g117020 CCR4-NOT transcription complex subunit 7     563 501     

Solyc03g117030 Unknown Protein   580 504   570 

Solyc03g117050 60S ribosomal protein  593 725 709 645 786 

Solyc03g117470 Inorganic H+ pyrophosphatase  776 1021 905 1447 1788 

Solyc03g117580 Chaperone protein dnaJ   764 890 1058   527 

Solyc03g117670 Transcription regulatory protein SNF5  535 688 677   517 

Solyc03g117760 Serine incorporator 1   1043 1456 1243 1108 1249 

Solyc03g117930 U2 small nuclear ribonucleoprotein A'       524 588 

Solyc03g118010 Tudor / nuclease domain-containing protein           623 

Solyc03g118030 Calcium-binding protein Calnexin  553 633 572 1555 1933 

Solyc03g118040 Unknown Protein  1906 2523 2118 1256 1220 

Solyc03g118730 Auxin efflux carrier         510   

Solyc03g118770 Thaumatin-like protein         532 693 

Solyc03g119030 Guanine nucleotide-binding protein    538 554 622 851 

Solyc03g119050 Unknown Protein         1012 

Solyc03g119070 Beta-glucosidase   4932 6411 5371 16012 27338 
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Solyc03g119120 Histone H1        531 600 

Solyc03g119350 Ribosomal protein S7e  565 732 828 1045 1219 

Solyc03g119410 Unknown Protein 1424 1679 1719 892 627 

Solyc03g120030 Unknown Protein         1138 

Solyc03g120250 G-protein beta WD-40 repeat, region        608   

Solyc03g120270 RAN binding protein  956 1167 1078 1012 970 

Solyc03g120340 Tetratricopeptide-like helical        544 642 

Solyc03g121080 Cold induced protein-like 2010 2339 2878 1013 934 

Solyc03g121170 Lipase, GDSL  689 637   510 696 

Solyc03g121260 IAA-amino acid hydrolase         712 615 

Solyc03g121300 RWD domain-containing protein   665 865 805 746 789 

Solyc03g121320 60S ribosomal protein  1209 1656 1730 1664 2077 

Solyc03g121340 Unknown Protein 1156 1570 1288 1153 1498 

Solyc03g121580 Root hair defective 3 GTP-binding  567 757 676 793 926 

Solyc03g121870 Protein phosphatase 2C   735 921 810 766 663 

Solyc03g122080 Protein transport protein Sec22         528 520 

Solyc03g122170 mRNA 3-UTR binding protein   656 865 900 829 882 

Solyc03g122370 
(P)ppGpp synthetase I (GTP pyrophosphokinase) 
SpoT/RelA   

    506     

Solyc03g123490 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

      725 889 

Solyc03g123520 CCAAT-binding factor  511 660 526 706 809 

Solyc03g123590 Alanine aminotransferase       514     

Solyc03g123870 FMN-binding split barrel, related    588 554     

Solyc04g005330 Periodic tryptophan protein 1 homolog   1364 1815 1550 1251 1310 

Solyc04g005340 Alpha-1 4-glucan protein synthase   647 891 843 1042 1035 

Solyc04g005380 Unknown Protein   631       

Solyc04g005510 Translation elongation factor, IF5A    546 510 619 663 

Solyc04g005680 Ribosomal protein   1131 1441 1367 1385 1638 

Solyc04g007550 ATP synthase    612 548 597 917 

Solyc04g007570 Lipase, GDSL    589   1723 2268 

Solyc04g007970 Ubiquitin-conjugating enzyme E2  1586 1799 1794 983 922 

Solyc04g008460 Ribosomal protein L15   935 1307 1356 1556 1857 

Solyc04g008500 Zinc finger, C2H2-type  683 983 751 850 654 

Solyc04g008540 Unknown Protein   578 591     

Solyc04g008680 
Cell division cycle and apoptosis regulator protein 
1   

501 560 519 684 814 

Solyc04g008740 Pyruvate kinase   568 748 662 915 1252 

Solyc04g008810 40S ribosomal protein S26  825 1028 1028 1309 1499 

Solyc04g009410 Proteasome, subunit alpha/beta  1191 1610 1469 1468 1502 

Solyc04g009770 DNAJ chaperone   2552 3129 3047 2004 2286 

Solyc04g009820 Calcium-responsive transactivator   538 746 642 998 840 

Solyc04g009950 Pre-mRNA splicing factor           524 

Solyc04g010240 60S ribosomal protein L35       522 663 988 

Solyc04g011430 Ubiquitin-conjugating enzyme, E2  6494 9080 7379 3060 2913 
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Solyc04g011440 Heat shock protein 70    512   596 1153 

Solyc04g011510 Triosephosphate isomerase   887 1081 985 923 1069 

Solyc04g012120 14-3-3 protein  878 1093 1004 1602 1532 

Solyc04g014250 FIP1           507 

Solyc04g014390 
Ribosomal protein/NADH  dehydrogenase 
domain  

637 878 776 552 704 

Solyc04g014500 
Diphosphoinositol polyphosphate 
phosphohydrolase   

  516       

Solyc04g014600 Universal stress protein family protein     621       

Solyc04g014670 Glucose/ribitol dehydrogenase    605 510   530 

Solyc04g015190 Glycoside hydrolase   591 595     

Solyc04g015200 6-phosphofructokinase 2 503 604       

Solyc04g015370 Acyl carrier protein   648 1000 802 601 584 

Solyc04g015620 Unknown Protein   678 593 1342 1870 

Solyc04g015680 Peptidase  977 1221 1152 892 1172 

Solyc04g016380 Ribosome biogenesis protein 730 924 896 1469 1590 

Solyc04g017670 F-box family protein  1195 1349 1067 1008 806 

Solyc04g026100 30S ribosomal protein        544 690 

Solyc04g039760 Chloroplast Ycf2  790 905 938 675 554 

Solyc04g040180 Methyltransferase type 12    619 696 636   

Solyc04g045480 Ubiquitin thioesterase otubain-like protein   929 1247 1138 1313 1218 

Solyc04g047770 VHS subgroup  536 769 726 612 651 

Solyc04g049140 Transcription factor jumonji          509 

Solyc04g049330 Vacuolar (H+)-ATPase G subunit    603 575   588 

Solyc04g049580 
Similarity the ORF shows strong similarity to EST 
5419  

2322 2892 2711 3084 2931 

Solyc04g049960 Plasma membrane protein 3   880 1196 986 661 644 

Solyc04g051280 Unknown Protein 4183 5694 5128 4670 5592 

Solyc04g051350 Ribonucleoside-diphosphate reductase          513 

Solyc04g051370 Proteasome component region PCI  590 882 775 935 1031 

Solyc04g051510 Receptor like kinase, RLK         543 

Solyc04g051670 ATPase putative          713 

Solyc04g051730 Cytochrome P450 6521 7339 5934 5520 6322 

Solyc04g051850 Unknown Protein    564 549     

Solyc04g053080 OTU domain-containing protein 6B   873 961 848     

Solyc04g054710 Aspartate aminotransferase         642 689 

Solyc04g054890 Acyl-CoA oxidase           546 

Solyc04g054910 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

      569 562 

Solyc04g055020 Iron sulfur subunit of succinate dehydrogenase   512 620       

Solyc04g055030 Iron sulfur subunit of succinate dehydrogenase     544       

Solyc04g056380 Adipose-regulatory protein, Seipin  1213 1336 1368 904 1063 

Solyc04g058040 30S ribosomal protein   1649 2149 2036 1901 1938 

Solyc04g058070 Phosphoribosylformylglycinamidine cyclo-ligase   1109 1398 1332 1294 1387 

Solyc04g063270 30S ribosomal protein  838 1071 1221 1470 2000 

Solyc04g064600 RAG1-activating protein 1 homolog     560 542 579 633 
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Solyc04g064680 Transcription elongation factor spt5       523   588 

Solyc04g064690 Alcohol dehydrogenase   1074 1274 1249 550 630 

Solyc04g064740 Serine carboxypeptidase    506   1257 2124 

Solyc04g071750 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

    533     

Solyc04g072040 Ras small GTPase, Rab type        542 542 

Solyc04g072090 Microsomal signal peptidase 25 kDa subunit        529   

Solyc04g072230 Heat shock protein Hsp20  2878 3775 2517 1039 722 

Solyc04g072240 Midasin         592 700 

Solyc04g072420 MRNA complete cds clone RAFL23-27-B01    513   591 564 

Solyc04g072430 Unknown Protein        600 698 

Solyc04g072450 Defensin-like protein   500 586 511     

Solyc04g072640 Ribosomal protein L30   2200 3099 2749 2783 3117 

Solyc04g072650 DNA-binding SAP        537 750 

Solyc04g072870 WD-40 repeat family protein     661 528     

Solyc04g072890 
Endoplasmic reticulum-Golgi intermediate 
compartment  

968 1162 1072 889 882 

Solyc04g074070 Nucleolar complex protein 3 homolog        515 636 

Solyc04g074080 Senescence-associated protein  975 1279 1187 989 942 

Solyc04g074210 14-3-3 protein    514 508 617 642 

Solyc04g074280 30S ribosomal protein   638 757 812 950 1468 

Solyc04g074560 Histone H3   864 1081 1058 618 525 

Solyc04g074680 Leucine zipper, homeobox-associated        623 547 

Solyc04g074890 40S ribosomal protein S21   1062 1460 1337 1258 1091 

Solyc04g074970 
ZF-HD homeobox protein Cys/His-rich 
dimerisation region  

      587   

Solyc04g076040 14-3-3 protein  626 745 718 709 985 

Solyc04g076460 Serine/threonine protein kinase          564 

Solyc04g076600 Ubiquitin-protein ligase 1     548   529 638 

Solyc04g076830 AUX/IAA protein        606 839 

Solyc04g076860 Phosphoenolpyruvate carboxykinase   1347 1530 1485 1276 1795 

Solyc04g076870 Ubiquitin-fold modifier-conjugating enzyme 1           504 

Solyc04g077000 Tubulin alpha-3 chain   999 1187 1154 1390 1750 

Solyc04g077760 Zinc finger, LIM-type    640 536     

Solyc04g077950 Adenine phosphoribosyl transferase          535 

Solyc04g078050 
Expressed protein having alternate splicing 
products  

      658 676 

Solyc04g078280 Transcription factor, MADS-box  607 733 766 840 850 

Solyc04g078430 Unknown Protein  687 1031 807     

Solyc04g078620 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

642 865 807     

Solyc04g078900 Peroxisomal multifunctional enzyme type 2         701 743 

Solyc04g079180 26S proteasome regulatory subunit       562 868 913 

Solyc04g079290 RNA Binding Protein 47     514 595 635 805 

Solyc04g079410 Nucleobase ascorbate transporter    527 501     

Solyc04g079590 Cytochrome P450     584     

Solyc04g079940 Ubiquitin-conjugating enzyme, E2  7123 10106 8347 4200 3841 
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Solyc04g080210 Unknown Protein         603 

Solyc04g080250 Unknown Protein  2473 2782 2032 2230 2526 

Solyc04g080270 2-hydroxyacid dehydrongenase (Fragment)    508 504     

Solyc04g080410 Maf-like protein  8555 8560 6719 6127 4986 

Solyc04g080510 ST225  3233 4265 3143 4671 5166 

Solyc04g080560 Proteasome, subunit alpha/beta          560 

Solyc04g080570 Heat shock protein DnaJ, N-terminal          533 

Solyc04g080590 Glycoside hydrolase, subgroup, catalytic core    540 526 775 1635 

Solyc04g080670 Unknown Protein 584 625 741 594 842 

Solyc04g080710 Basic leucine zipper    583 555     

Solyc04g080820 Thioredoxin   685 933 1065 635 578 

Solyc04g081000 Low temperature viability protein        573 551 

Solyc04g081060 
V-type proton ATPase 16 kDa proteolipid subunit 
c2   

  527   585 590 

Solyc04g081200 TLDc    531       

Solyc04g081430 Unknown Protein        668 630 

Solyc04g081460 Tubulin beta-1 chain         722 1311 

Solyc04g081520 Thaumatin-like protein         567 668 

Solyc04g081540 
Molecular chaperone, heat shock protein, 
endoplasmin  

      1392 2380 

Solyc04g081550 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

  537 561 873 931 

Solyc04g081700 Unknown Protein  1295 1750 1640 878 903 

Solyc04g081850 RNA/RNA-binding protein  1142 1585 1704 1702 2022 

Solyc04g082170 Dehydrin   544 691 781 613   

Solyc04g082430 Catalase   1210 1503 1748 1445 1342 

Solyc04g082650 
Chloroplast channel forming outer membrane 
protein  

  590 603 550 617 

Solyc05g005190 ADP-ribosylation factor     548 643 849 1132 

Solyc05g005510 DNA-binding related protein (Fragment)     598 537 641 637 

Solyc05g005620 Splicing factor PWI        549 579 

Solyc05g005690 30S ribosomal protein S9     574 564 624 639 

Solyc05g005710 Spermine synthase          501 

Solyc05g006070 RNA recognition motif, RNP-1        624 601 

Solyc05g006160 Gibberellin regulated protein  1740 2010 1574 923 1164 

Solyc05g006240 Heat shock protein DnaJ  539 652   601 566 

Solyc05g006400 Unknown Protein   513       

Solyc05g006520 Pyruvate dehydrogenase E1 component          575 

Solyc05g006980 Homeobox-leucine zipper-like protein         751 629 

Solyc05g007120 Receptor like kinase, RLK 510 703   558   

Solyc05g007200 RNA recognition motif containing protein       569     

Solyc05g007250 Ribosomal protein       533 719 940 

Solyc05g007560 60S ribosomal protein L34   1598 2256 2166 2741 2790 

Solyc05g007570 Unknown Protein       627 752 

Solyc05g007970 Phytanoyl-CoA dioxygenase     678 586 587 560 

Solyc05g007980 Sulphate anion transporter    573   646 811 
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Solyc05g008010 60S ribosomal protein L31   620 785 807 755 1021 

Solyc05g008440 Unknown Protein  750 898 898     

Solyc05g008460 ATP synthase subunit beta         506 763 

Solyc05g008600 Fructose-bisphosphate aldolase           524 

Solyc05g008630 Poly(A) polymerase           547 

Solyc05g009030 Isopropylmalate dehydrogenase          533 

Solyc05g009240 Unknown Protein 952 1087 990 507 660 

Solyc05g009360 Unknown Protein  815 893 926 526   

Solyc05g009450 
Pathogenesis-related transcriptional factor and 
ERF 

        634 

Solyc05g009470 Glycoside hydrolase, family 31        1196 1658 

Solyc05g009550 Unknown Protein 1835 2250 1897 539 508 

Solyc05g009600 Phosphatase 2A regulatory A subunit   508 625 632 825 999 

Solyc05g009730 Unknown Protein  500 681 618 848 1066 

Solyc05g009840 No apical meristem (NAM) protein    516       

Solyc05g009910 Coiled-coil domain-containing protein 94   1478 1850 1925 691 555 

Solyc05g010540 F-box domain containing protein   551 823 913     

Solyc05g010810 Phosphatidylinositol kinase   504 740 740   654 

Solyc05g011990 Nucleolar protein        591 561 

Solyc05g012370 Glucan endo-1 3-beta-glucosidase 1     564 503     

Solyc05g013680 GDSL esterase/lipase         1539 2423 

Solyc05g013810 Peptidase T1A, proteasome beta-subunit        699 829 

Solyc05g013910 Cathepsin B-like cysteine proteinase   4571 5022 4978 5789 10216 

Solyc05g013980 T-complex protein 1 subunit epsilon   510 714 685 932 1372 

Solyc05g014120 COP1-interacting protein 4  573 723 761 704 708 

Solyc05g014460 Glyceraldehyde 3-phosphate dehydrogenase  580 657 640 590 910 

Solyc05g015380 Rubber elongation factor  1721 2253 1917 1213 1444 

Solyc05g015410 MYND finger family protein expressed   580 535 695     

Solyc05g015480 
Lipid transfer protein/seed storage/trypsin-alpha 
amylase inhibitor  

602 611 536 1079 1518 

Solyc05g015490 Zinc finger, RanBP2-type    626 562     

Solyc05g015520 Ribosome associated membrane RAMP4  608 736 763 1018 943 

Solyc05g016120 Photosystem I assembly protein ycf3   595 743 528   526 

Solyc05g017880 THO complex subunit          598 

Solyc05g018480 Early fruit mRNA  616 735 694 763 669 

Solyc05g018800 Nucleosome assembly protein (NAP)  1917 2195 2042 1616 1725 

Solyc05g023790 GTP-binding nuclear protein Ran-A1     628 676 831 1081 

Solyc05g024150 Pyruvate dehydrogenase E1 component  788 1040 914     

Solyc05g025500 WD40 repeat, region  740 884 798 505 567 

Solyc05g025560 Unknown Protein  911 707 527 888   

Solyc05g026040 Charged multivesicular body protein 4b     645 589     

Solyc05g042020 BAH-PHD domain-containing protein (Fragment)   1190 1396 1255 780 735 

Solyc05g050190 Translation initiation factor 1A (eIF-1A)  1102 1404 1409 1262 1195 

Solyc05g050790 Phosphoglycerate mutase family protein    555       
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Solyc05g050840 Unknown Protein        547 534 

Solyc05g050990 40S ribosomal protein S13         500 666 

Solyc05g051040 Serine/threonine protein kinase  505 669 678 519   

Solyc05g052400 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

530 604 610   510 

Solyc05g052780 Organic anion transporter     555 512     

Solyc05g053130 26S proteasome non-ATPase regulatory subunit        591 689 

Solyc05g053150 Plasma membrane associated protein  1460 2066 1538 989 1012 

Solyc05g053340 Desiccation-related protein  1229 1235 950 1036 1323 

Solyc05g053430 60S ribosomal protein L29   528 668 689 870 1033 

Solyc05g053460 Chaperonin Cpn60    535   519 831 

Solyc05g053540 Chalcone synthase   630 643   1786 2105 

Solyc05g053640 26S proteasome regulatory subunit           617 

Solyc05g053660 60S ribosomal protein L13a-like protein   1240 1406 1472 1761 2261 

Solyc05g053800 Serine hydroxymethyltransferase           509 

Solyc05g054060 60S ribosomal protein L6     539   761 940 

Solyc05g054090 Transmembrane protein  571 773 752 854 866 

Solyc05g054120 Calcium-binding protein  917 1170 1072 833 834 

Solyc05g054180 Trans-membrane        512 550 

Solyc05g054340 Epoxide hydrolase   1088 1336 1370 519 540 

Solyc05g054360 Acyl-CoA dehydrogenase   546 636 595     

Solyc05g054480 Trans-2-enoyl-CoA reductase           553 

Solyc05g054490 DNA/RNA-binding protein KIN17   647 775 715 516 539 

Solyc05g054570 60S acidic ribosomal protein  972 1314 1490 1737 2884 

Solyc05g054630 2-oxoglutarate dehydrogenase E1 component          573 

Solyc05g054720 Cation efflux protein          544 

Solyc05g054800 60S ribosomal protein L35         504 690 

Solyc05g054910 Splicing factor arginine/serine-rich 6       508 546 643 

Solyc05g055150 Heat shock protein DnaJ  4809 5970 5768 2274 2396 

Solyc05g055220 40S ribosomal protein S17-like protein   559 721 737 711 870 

Solyc05g055250 Small nuclear ribonucleoprotein G        764 847 

Solyc05g055430 Histone H2B   545 620 522 511 567 

Solyc05g055440 PolyrC-binding protein 2         530 587 

Solyc05g055630 60S ribosomal protein L38   644 754 768 980 1000 

Solyc05g055760 
Basic leucine zipper and W2 domain-containing 
protein  

1406 1862 1790 2036 2256 

Solyc05g055860 F-box protein PP2-B1      668 552 741 

Solyc05g055870 Pre-mRNA processing ribonucleoprotein    551 517 788 869 

Solyc05g056100 mRNA-decapping enzyme    576 506 511 589 

Solyc05g056150 Proteasome subunit beta type  528 663 708 1086 1177 

Solyc05g056230 Acyl carrier protein (ACP)  589 834 680     

Solyc05g056240 Asparaginyl-tRNA synthetase         554 754 

Solyc05g056270 RNA-binding protein Luc7-like 2         539 633 

Solyc05g056300 T-complex protein 1 subunit gamma   677 955 942 910 1249 
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Solyc05g056340 
Cleft lip and palate associated transmembrane 
protein-like   

1962 2686 2531 2146 2397 

Solyc05g056460 ABC-2 type transporter          616 

Solyc06g005060 Protein synthesis factor, GTP-binding  4448 6132 5811 6117 9289 

Solyc06g005210 Cytochrome P450 like_TBP  10646 12605 11155 18662 13075 

Solyc06g005360 Actin-binding, cofilin/tropomyosin type  1231 1692 1703 1326 1197 

Solyc06g005670 mRNA binding protein  717 938 799 795 1018 

Solyc06g005790 Ribosomal protein S1, RNA binding domain        521   

Solyc06g005940 Protein disulfide isomerase  599 778 712 1489 2331 

Solyc06g007200 Methionine aminopeptidase           516 

Solyc06g007210 Unknown Protein   549 695 659 878 942 

Solyc06g007220 Unknown Protein   510 764 726 969 1196 

Solyc06g007340 
Gamma-interferon-inducible lysosomal thiol 
reductase  

712 1005 880 1037 1215 

Solyc06g007470 40S ribosomal protein S26   828 1028 1053 1010 1355 

Solyc06g007510 Ubiquitin-conjugating enzyme, E2  4034 5278 4234 2178 2038 

Solyc06g007520 Ribosomal protein L10       537 658 738 

Solyc06g007540 Cytochrome b-c1 complex        689 680 

Solyc06g007670 60S ribosomal protein L5  2049 2628 2669 3093 4070 

Solyc06g007710 Mitochondrial import receptor subunit TOM40          524 

Solyc06g008170 50S ribosomal protein L14    546 571 661 848 

Solyc06g008260 60 ribosomal protein L14     558 559 680 712 

Solyc06g008870 GID1-like gibberellin receptor   727 998 868     

Solyc06g009000 Mediator of aba-regulated dormancy 1  1178 1534 1145     

Solyc06g009020 Glutathione S-transferase   1569 2058 2155 1310 828 

Solyc06g009050 Universal stress protein   769 933 752     

Solyc06g009140 Late embryogenesis abundant protein  553 726       

Solyc06g009210 Ribosomal protein L19   848 1040 1102 1190 1541 

Solyc06g009530 Carbohydrate-binding-like fold          515 

Solyc06g009960 Translation elongation factor EF1A          562 

Solyc06g009970 Translation elongation factor EF1A  2363 3087 2874 3497 5118 

Solyc06g011280 Translation elongation factor EF1B 849 1150 1102 1635 2184 

Solyc06g011490 Unknown Protein  2393 2738 2550 3100 3299 

Solyc06g016660 Unknown Protein  3236 3636 3365 5077 3717 

Solyc06g017860 Peptidase S10, serine carboxypeptidase  530 614   890 1326 

Solyc06g024210 TO54-2 (Fragment)  61634 69236 62547 102031 71483 

Solyc06g024230 TO54-2 (Fragment)  2316 2778 2532 3987 2857 

Solyc06g024350 Unknown Protein  2730 2263 1721 2836 1463 

Solyc06g024370 Unknown Protein  3624 3875 3447 5663 3918 

Solyc06g024380 Unknown Protein  16081 17376 16747 21921 16748 

Solyc06g034040 Oleosin   1476 1915 1651 941 1102 

Solyc06g035450 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

805 1232 1387 964 1221 

Solyc06g035460 DEAD-box ATP-dependent RNA helicase  1083 1328 1418 986 1260 

Solyc06g035970 Tubulin beta chain   564 687 687 926 1029 
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Solyc06g036050 60S ribosomal protein L36   1091 1376 1373 1569 1824 

Solyc06g036290 Heat shock protein Hsp90  772 941 599   610 

Solyc06g048610 tRNA-binding region          605 

Solyc06g048840 Late embryogenesis abundant protein  11392 14891 12386 2886 3264 

Solyc06g050120 Ribosomal protein L7A  2274 2806 2809 2956 3298 

Solyc06g050770 Alpha-soluble NSF attachment protein   618 924 897 1082 1097 

Solyc06g050870 
Hypoxia induced protein conserved region 
containing protein  

797 838 857     

Solyc06g050980 Ferritin     504 603     

Solyc06g051810 Unknown Protein 598 611 577 813 1025 

Solyc06g053160 Cytochrome b5  588 819 702 649 597 

Solyc06g053310 DNA-directed RNA polymerase I subunit rpa49   797 1151 1076 1223 1111 

Solyc06g053800 30S ribosomal protein S19     527 579 685 728 

Solyc06g053820 AUX/IAA protein  700 727 1059 661   

Solyc06g059970 Undecaprenyl pyrophosphate synthase   617 771   933 1857 

Solyc06g060130 Replication factor C          513 

Solyc06g060170 Cytochrome P450 1286 1357 1364 1378 1810 

Solyc06g060210 No apical meristem (NAM) protein    570 553     

Solyc06g060270 Protein disulphide isomerase          690 

Solyc06g060380 Ribosomal protein L15   2108 2469 2375 2212 2560 

Solyc06g060700 Peroxisomal biogenesis factor  707 962 921 913 966 

Solyc06g060820 Oleosin   531 534       

Solyc06g060980 Casein kinase II, regulatory subunit  664 901 892 563 677 

Solyc06g061090 Unknown Protein   1365 1752 1494 1008 1380 

Solyc06g062330 
Holliday junction ATP-dependent DNA helicase 
ruvB  

      646 644 

Solyc06g062410 Inositol oxygenase         1032 1461 

Solyc06g062480 60S ribosomal protein L28   519 686 693 613 690 

Solyc06g062570 Transmembrane 9 superfamily protein member   645 763 784   557 

Solyc06g062770 Serine/threonine protein kinase    511   511 578 

Solyc06g062980 Polyadenylate-binding protein   1109 1632 1409 737 769 

Solyc06g063050 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

1077 1320 1287 2316 2725 

Solyc06g063120 26S protease regulatory subunit        608 692 

Solyc06g063280 Kelch-domain-containing protein   663 846 765 587 513 

Solyc06g063300 Unknown Protein      541     

Solyc06g064450 Ribosomal protein L7  2842 3596 3553 3843 3975 

Solyc06g064610 Ribosomal protein L15   803 1083 1007 1419 1843 

Solyc06g064630 Glucose/ribitol dehydrogenase  636 774 699     

Solyc06g064800 Lipase, GDSL          637 

Solyc06g064810 WD-40 repeat protein        578 737 

Solyc06g065000 TGF-beta receptor, type I/II extracellular region    631 612   604 

Solyc06g065030 Transmembrane protein  1613 2122 1591 928 953 

Solyc06g065210 GCN5-related N-acetyltransferase          524 

Solyc06g065350 Subtilase family protein     605 631 595 537 
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Solyc06g065500 T-complex protein eta subunit        843 1071 

Solyc06g065570 60S ribosomal protein L18         671 

Solyc06g065690 
Sister chromatid cohesion protein PDS5 homolog 
B-B  

      600 628 

Solyc06g065960 Nucleic acid binding protein        666 765 

Solyc06g066040 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

1212 1578 1469 1840 2145 

Solyc06g066080 Nucleic acid binding protein     759 670 887 863 

Solyc06g066290 Transcription factor iws1  583 702 759 651 698 

Solyc06g066630 Ribosomal protein L37     601 580 562 696 

Solyc06g067930 Glutaredoxin family protein     664 601 689 788 

Solyc06g067950 Unknown Protein 1809 2537 2056 985 676 

Solyc06g068020 Nucleic acid binding protein     693 622 613 563 

Solyc06g068110 Methyl-CpG DNA binding  546 637 647     

Solyc06g068130 Cystathionine beta-synthase, core  2242 2813 2054 1071 1338 

Solyc06g068240 Oxoglutarate and iron-dependent oxygenase  1374 1590 1333 1482 1608 

Solyc06g068250 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

528 662 598     

Solyc06g068380 CCR4-NOT transcription complex subunit  730 1009 1000 576   

Solyc06g068920 Phosphoethanolamine N-methyltransferase        505 523 

Solyc06g068980 
Guanine nucleotide-binding protein beta subunit-
like protein  

  616 660 592 996 

Solyc06g068990 Protein synthesis factor, GTP-binding  1692 2121 1867 1937 2098 

Solyc06g069060 40S ribosomal protein S7  593 860 798 1012 1455 

Solyc06g069080 Lipid transfer protein and hydrophobic protein 1315 1275 1356 1063 1734 

Solyc06g069090 Unknown Protein  2256 2809 2705 1030 1188 

Solyc06g069300 Serine/threonine protein kinase     583 510 553 521 

Solyc06g069730 DNA-directed RNA polymerase    593 669 680 690 

Solyc06g069860 Nucleosome assembly protein (NAP)        545 658 

Solyc06g070950 Ubiquitin-conjugating enzyme E2  2081 2719 2521 1692 1794 

Solyc06g071070 ATPase, P-type, plasma-membrane proton-efflux          623 

Solyc06g071440 
Peroxisome membrane anchor protein Pex14p, 
N-terminal  

        605 

Solyc06g071500 60S ribosomal protein L44   1084 1438 1316 1741 1773 

Solyc06g071690 60S ribosomal protein L27      538   512 

Solyc06g071790 Zinc finger, TAZ-type          834 

Solyc06g071840 60S ribosomal protein L17  661 761 783 988 1152 

Solyc06g071850 60S ribosomal protein L17  552 587 537 713 889 

Solyc06g071890 Glyceraldehyde-3-phosphate dehydrogenase  924 1063 940 783 972 

Solyc06g071960 AAA-type ATPase family protein  667 924 663 588 595 

Solyc06g072090 40S ribosomal protein SA   1055 1148 1280 1667 2324 

Solyc06g072100 Aquaporin   549 702 664 502 700 

Solyc06g072460 40S ribosomal protein S1    558 642 748 1038 

Solyc06g072640 Glucose/ribitol dehydrogenase  2774 3413 3223 1146 1140 

Solyc06g072650 TB2/DP1 and HVA22 related protein  906 1156 1046 687 584 

Solyc06g073250 LL-diaminopimelate aminotransferase         547 695 

Solyc06g073270 60S ribosomal protein L27   990 1123 1088 1086 1291 



 

171 
 

Solyc06g073280 Ribosomal protein L6  1915 2403 2267 2376 3071 

Solyc06g073300 Lysyl-tRNA synthetase           595 

Solyc06g073340 40S ribosomal protein S18   1858 2384 2364 2431 2421 

Solyc06g073400 40S ribosomal protein S29   1533 1646 1717 1562 1735 

Solyc06g073420 Unknown Protein 626 802 692     

Solyc06g073520 RNA-binding protein          578 

Solyc06g073670 Small nuclear ribonucleoprotein LSM8     690 597 755 771 

Solyc06g073760 40S ribosomal protein S11   1771 2262 2258 2146 2473 

Solyc06g073770 40S ribosomal protein S11   1026 1377 1248 1625 1816 

Solyc06g074270 Ribosomal protein L1  919 1248 1290 1750 2101 

Solyc06g074360 Fatty acyl coA reductase     561   816 1282 

Solyc06g074400 Ribosomal protein 60S  1171 1552 1480 1995 2081 

Solyc06g074460 Unknown Protein    586 550 642 618 

Solyc06g074560 Chloroplast Ycf2  859 1092 1038 1198 1236 

Solyc06g074600 Glycosyl transferase, family 2          696 

Solyc06g074690 Nucleotide-binding, alpha-beta plait  2602 3251 3129 2308 2564 

Solyc06g074950 ATPase, AAA-type, CDC48  1293 1880 1568 1203 1565 

Solyc06g075150 Ribosomal protein L12   675 959 806 941 1284 

Solyc06g075490 Glutathione S-transferase, C-terminal-like  813 1103 951     

Solyc06g075960 
Glyoxalase/bleomycin resistance 
protein/dioxygenase  

919 1202 1125 789 754 

Solyc06g076310 mRNA binding protein        561 815 

Solyc06g076330 Chloroplast envelope protein translocase, IAP75          505 

Solyc06g076460 Unknown Protein  520 582   592   

Solyc06g076490 Heat shock protein Hsp20  982 1420 1034     

Solyc06g076610 Tubulin beta chain           675 

Solyc06g076960 Vitamin B6 biosynthesis protein        809 966 

Solyc06g082060 Methionine aminopeptidase   1291 1636 1423 2546 2958 

Solyc06g082070 Related to ATP dependent RNA helicase 529 709 683   652 

Solyc06g082110 Unknown Protein   834 1195 1132 1344 1765 

Solyc06g082330 U2 small nuclear ribonucleoprotein B   857 1104 1200 1115 1024 

Solyc06g082360 Unknown Protein 504 616 556 523 713 

Solyc06g082530 Translation initiation factor IF2/IF5          524 

Solyc06g082590 RNA-binding protein PNO1-like protein  1559 2031 2001 1481 1807 

Solyc06g082600 26S protease regulatory subunit           535 

Solyc06g082620 60S ribosomal protein L10         627 733 

Solyc06g082640 Ribosomal protein L10   1314 1707 1626 2114 2468 

Solyc06g082840 60S ribosomal protein L5 1068 1304 1416 1223 1544 

Solyc06g082870 Unknown Protein       514   

Solyc06g083150 40S ribosomal protein S8   557 774 733 1020 1336 

Solyc06g083160 Peptidyl-prolyl cis-trans isomerase, FKBP-type  747 992 818 518 698 

Solyc06g083200 GTP cyclohydrolase I     558   780 740 

Solyc06g083270 Ras GTPase-activating protein-binding protein    595 607   562 
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Solyc06g083310 Wound-induced basic protein         604 618 

Solyc06g083330 DNA-directed RNA Polymerase II subunit L   903 1199 1236 1178 1190 

Solyc06g083560 B3 domain-containing transcription factor ABI3         535 579 

Solyc06g083570 B3 domain-containing transcription factor ABI3   555 747 871 610 504 

Solyc06g083590 26S protease regulatory subunit 4     592 570 768 1099 

Solyc06g083750 50S ribosomal protein L14   1811 2518 2416 2479 2592 

Solyc06g083760 Succinyl-CoA ligase     658 683 923 864 

Solyc06g083790 60 ribosomal protein L14       528 662 852 

Solyc06g083840 Structural maintenance of chromosomes 1 protein         688 695 

Solyc06g084060 Histone H2A     525 549     

Solyc06g084200 40S ribosomal protein S24        586 879 

Solyc06g084280 Small nuclear ribonucleoprotein Sm D1          531 

Solyc06g084470 Unknown Protein        675 613 

Solyc06g084490 Ubiquitin-protein ligase Cullin          546 

Solyc07g005050 60S ribosomal protein L39       556 579 700 

Solyc07g005200 Longin  567 687 666 597 538 

Solyc07g005210 Outer membrane lipoprotein blc   828 1011 745 908 959 

Solyc07g005230 Unknown Protein    684 538 539   

Solyc07g005300 Unknown Protein    682 597 511   

Solyc07g005530 Ubiquitin carboxyl-terminal hydrolase   632 872 883 794 873 

Solyc07g005560 Translation elongation factor, IF5A  854 1089 1032 1437 1574 

Solyc07g005600 Nonaspanin (TM9SF)  501 699 599 903 966 

Solyc07g005810 Translation initiation factor  627 929 905 1103 1402 

Solyc07g005820 Heat shock protein 70  1195 1348 1154 527 503 

Solyc07g006140 Cytochrome P450     724     

Solyc07g006150 Transmembrane protein  549 750 782 899 790 

Solyc07g006280 Senescence-associated protein  2767 3639 2517   558 

Solyc07g006500 Glycosyl transferase     629     

Solyc07g006650 Xylose isomerase           627 

Solyc07g006800 UDP-glucuronosyl/UDP-glucosyltransferase    508 835     

Solyc07g006870 Xyloglucan endotransglucosylase/hydrolase  2394 2764 2340 3383 4540 

Solyc07g007210 Elongation factor like protein          587 

Solyc07g007380 Glucosidase II beta subunit-like    525   719 621 

Solyc07g007500 Unknown Protein        706 743 

Solyc07g007600 Inorganic H+ pyrophosphatase        674 1067 

Solyc07g007930 Raffinose synthase        1535 1578 

Solyc07g008250 SCF E3 ubiquitin ligase complex F-box protein  2780 3746 2979 1678 1599 

Solyc07g008290 Growth regulator like protein   785 1041 711     

Solyc07g008320 Calcium-transporting ATPase 1   651 979 863   529 

Solyc07g008330 Nucleolar and coiled-body phosphoprotein 1-like  987 1264 1154 1832 1703 

Solyc07g008340 ABC transporter, ABCE        633 640 

Solyc07g008370 60S ribosomal protein L7     599 637 774 952 

Solyc07g008390 Hydroxycinnamoyl CoA quinate transferase  1126 1519 964 614 852 
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Solyc07g008540 CONSTANS-like zinc finger protein         670   

Solyc07g008710 Major latex-like protein   894 1040 767 556 787 

Solyc07g008720 Nascent polypeptide-associated complex NAC  2040 2790 2439 3532 3597 

Solyc07g008750 Nuclear nucleic acid-binding protein C1D    504       

Solyc07g008880 Pre-mRNA-processing-splicing factor 8   825 1210 1229 1286 1633 

Solyc07g008950 Methionyl-tRNA synthetase     611 659 879 1023 

Solyc07g009140 
26S proteasome non-ATPase regulatory subunit 
6   

524 788 759 1070 1149 

Solyc07g009330 60S acidic ribosomal protein P3   600 668 705 937 1212 

Solyc07g016150 
Translation elongation factor EF1B, guanine 
nucleotide exchange  

783 999 1068 915 1090 

Solyc07g016200 Peptidase T1A, proteasome beta-subunit        526 626 

Solyc07g017490 Red family protein   516 540 525   

Solyc07g017750 Flavin-binding kelch domain F box protein     526 569     

Solyc07g017780 ATPase, P-type, plasma-membrane proton-efflux        653 928 

Solyc07g018290 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

852 1068 878 1700 1902 

Solyc07g019460 Cytochrome P450 NADPH-reductase   969 1209 1213 1005 917 

Solyc07g026660 Unknown Protein  78728 85192 82272 113827 83572 

Solyc07g026770 
Mitochondrial ATP synthase g subunit family 
protein   

549 728 691 550 750 

Solyc07g032260 Unknown Protein   522   941 967 

Solyc07g032740 Aspartate/other aminotransferase  557 640 537 503 619 

Solyc07g039200 Guanine nucleotide-binding protein subunit    593 622 740 907 

Solyc07g039290 TO54-2 (Fragment) 11851 14354 13417 20554 14391 

Solyc07g039330 Histone-binding protein RBBP7           526 

Solyc07g040680 Heat shock factor (HSF)-type, DNA-binding  3008 3362 2924 906 645 

Solyc07g040960 Unknown Protein   509       

Solyc07g040990 Protein phosphatase 2C    538       

Solyc07g041020 Cell growth-regulating nucleolar protein     562   831 823 

Solyc07g041150 Myosin XI        555 551 

Solyc07g041310 Ribosomal protein S3 906 962 908 1042 1260 

Solyc07g041870 Tubulin--tyrosine ligase-like protein        706 766 

Solyc07g041970 Subtilisin-like protease         545 750 

Solyc07g042170 Jasmonate ZIM-domain protein  962 1452 1487 959 812 

Solyc07g042230 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

762 1005 565 632 521 

Solyc07g042250 Chaperonin 21, chloroplast    735 1028 897 650 932 

Solyc07g042620 Prefoldin beta-like    552   609 619 

Solyc07g043360 60S ribosomal protein L27   737 1032 969 1092 1126 

Solyc07g043420 Oxoglutarate and iron-dependent oxygenase  3561 4227 3278 2467 2498 

Solyc07g043460 Cytochrome P450         532 665 

Solyc07g044760 ATP-dependent RNA helicase   557 867 799 671 788 

Solyc07g044840 
2 3-bisphosphoglycerate-independent 
phosphoglycerate mutase   

        617 

Solyc07g045140 Uncharacterized membrane protein  589 707 599 674 712 

Solyc07g045240 RNA-binding protein-like           628 

Solyc07g045340 Defence response, Rin4  551 891 695 767   
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Solyc07g047670 Unknown Protein 604 853 837 979 1184 

Solyc07g047790 Chaperone heat shock protein Hsp90  1077 1273 1134 1392 1830 

Solyc07g047800 Glucose/ribitol dehydrogenase  758 946 866 727 521 

Solyc07g049360 Ubiquitin  718 855 892 1011 854 

Solyc07g049450 Thioredoxin/protein disulfide isomerase         605 779 

Solyc07g049720 DNA topoisomerase I   525 645 556 559 779 

Solyc07g051850 Aspartic proteinase           570 

Solyc07g052110 
Ribosomal RNA small subunit methyltransferase 
F  

741 948 806 1544 1709 

Solyc07g052350 Aconitase/iron regulatory protein 2          756 

Solyc07g052480 Isocitrate lyase  2527 2812 2741 1715 2017 

Solyc07g052600 Unknown Protein 758 1141 1031 1000 920 

Solyc07g052980 Xyloglucan endotransglucosylase/hydrolase        504 585 

Solyc07g053260 14-3-3 protein  1477 1873 1868 1894 2196 

Solyc07g053280 Ketol-acid reductoisomerase   2064 2964 2947 1973 2411 

Solyc07g053360 Late embryogenesis abundant protein  2078 2733 2230 1631 1997 

Solyc07g053650 26S proteasome regulatory subunit     541   915 1232 

Solyc07g053750 Zinc finger, CCCH-type  1172 1572 1358 1842 2137 

Solyc07g053800 E3 ubiquitin-protein ligase RING1    561 564     

Solyc07g054270 Unknown Protein         566 

Solyc07g054760 Wound induced protein        621 723 

Solyc07g054780 Wound induced protein        894 809 

Solyc07g055210 Aspartate/other aminotransferase    528 526 575 698 

Solyc07g055230 50S ribosomal protein L5     615 587 615 840 

Solyc07g055840 Citrate synthase, type II    517       

Solyc07g056040 Transmembrane  1240 1359 1125 1095 1393 

Solyc07g056340 RNA-binding protein         501 539 

Solyc07g056370 Unknown Protein     598 607     

Solyc07g056420 Glutathione S-transferase-like protein       504     

Solyc07g056470 Glutathione S-transferase-like protein       552     

Solyc07g056480 Glutathione S-transferase-like protein     641 1192   513 

Solyc07g056550 Bystin         601 721 

Solyc07g061940 Acetolactate synthase     575 525     

Solyc07g062500 Cytochrome P450 3100 4298 4160 2827 1645 

Solyc07g062970 Protein phosphatase 2C  1759 2346 2202 2150 2006 

Solyc07g062990 Unknown Protein  675 795 646 527   

Solyc07g063100 Proton pump interactor 810 1180 1047 1302 1527 

Solyc07g063270 Nucleolar GTP-binding protein  1038 1398 1337 1082 1449 

Solyc07g063320 LanC-like protein  1328 1696 1367 708 943 

Solyc07g063850 GH3 auxin-responsive promoter  801 927 941 502 685 

Solyc07g063940 GRAS family transcription factor     545 568 607 673 

Solyc07g064130 Ubiquitin   3670 4310 5264 3013 4262 

Solyc07g064150 Translation initiation factor SUI1   12996 16859 14277 5744 4718 
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Solyc07g064520 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

      500   

Solyc07g064610 Calcium-dependent protein kinase 2  575 705 859 561   

Solyc07g064620 Translation initiation factor SUI1   845 1203 1406 899   

Solyc07g065170 40S ribosomal protein S8         520 516 

Solyc07g065490 Dek protein   1055 1411 1241 1638 1759 

Solyc07g065840 Heat shock protein Hsp90  38673 45323 40438 24697 26367 

Solyc07g066080 Ubiquitin-conjugating enzyme E2   665 832 866 584 578 

Solyc07g066380 Unknown Protein 538 690 699 524 489 

Solyc07g066400 Seed maturation protein  504 714       

Solyc07g066600 Phosphoglycerate kinase           704 

Solyc07g066650 DCN1-like protein  729 959 847 658 780 

Solyc08g005020 Unknown Protein          573 

Solyc08g005150 Ubiquitin ligase   539 506     

Solyc08g005270 Poly(ADP-ribose) polymerase, catalytic region  1176 1351 1309 646 751 

Solyc08g005430 Growth-regulating factor        533 528 

Solyc08g005470 Serine/threonine protein kinase    549 511 563 698 

Solyc08g005910 Ankyrin repeat domain protein   3133 4128 4008 2952 2265 

Solyc08g005960 Lipid transfer protein and hydrophobic protein    880   2076 1885 

Solyc08g005970 Protein arginine N-methyltransferase   573 807 729 652 892 

Solyc08g006040 40S ribosomal protein S6   779 912 842 1021 1232 

Solyc08g006150 ChaC cation transport regulator-like 1   537 699 783     

Solyc08g006430 Sarcosine oxidase, monomeric        516 622 

Solyc08g006800 Unknown Protein  656 868 768     

Solyc08g006890 Tubulin alpha-3 chain  1118 1394 1255 1750 2760 

Solyc08g006900 Ribosomal protein L32           621 

Solyc08g007140 60S ribosomal protein L37  1056 1461 1407 1705 1993 

Solyc08g007220 Nuclear RNA binding protein (Fragment)         871 1017 

Solyc08g007990 D-site 20S pre-rRNA nuclease    583     507 

Solyc08g008160 WD40 repeat, region        555 521 

Solyc08g008220 Ubiquitin-conjugating enzyme E2  1460 1684 1630 1120 1146 

Solyc08g008350 Ubiquitin carrier protein      525     

Solyc08g008370 Kelch related    560 559     

Solyc08g008590 Ubiquitin     512   786 828 

Solyc08g014340 Cysteine synthase         765 994 

Solyc08g014550 Ribosomal L9-like protein     528 558 733 791 

Solyc08g015690 Late-embryogenesis abundant protein  1264 1453 1460 826 648 

Solyc08g015870 MLO-like protein   576 810 674     

Solyc08g016180 60S ribosomal protein L18 1133 1423 1304 1614 1841 

Solyc08g016510 Proteasome, subunit alpha/beta    582 585 836 964 

Solyc08g048500 Nucleic acid binding protein         508 584 

Solyc08g060810 Ubiquitin ligase complex F-box protein GRR1   654 935 980 870 927 

Solyc08g061000 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

        563 
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Solyc08g061100 Cellulose synthase          518 

Solyc08g061130 bZIP transcription factor, bZIP-1        923 605 

Solyc08g061320 Smr domain containing protein     510   556 606 

Solyc08g061560 Receptor like kinase, RLK         500 

Solyc08g061850 Ribosomal protein           539 

Solyc08g061960 Ribosomal protein     546 564 685 999 

Solyc08g062210 Nuclear transcription factor Y subunit A-3           522 

Solyc08g062220 UDP-glucuronosyl/UDP-glucosyltransferase  581 822 675 894 595 

Solyc08g062340 Class II small heat shock protein  585 678 555     

Solyc08g062450 Heat shock protein Hsp20  1230 1785 1218     

Solyc08g062660 Ran GTPase binding protein   1315 1706 1505 1698 1736 

Solyc08g062800 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

  658 722 895 1277 

Solyc08g062910 Protein synthesis factor, GTP-binding  569 771 695 930 1660 

Solyc08g062920 Protein synthesis factor, GTP-binding  1299 1647 1562 1933 2944 

Solyc08g063080 NAD(P)-binding domain    607 603 677 730 

Solyc08g065160 
Mediator of RNA polymerase II transcription 
subunit  

  585       

Solyc08g065490 Serine hydroxymethyltransferase           558 

Solyc08g066110 Profilin  503 630 506 683 788 

Solyc08g067090 Peptidyl-prolyl cis-trans isomerase   518 561   660 842 

Solyc08g067260 Fatty acid elongase 3-ketoacyl-CoA synthase          544 

Solyc08g067270 Unknown Protein  538 684 635     

Solyc08g067870 M355  511 586 716 535   

Solyc08g067950 CHY zinc finger family protein expressed   606 737 580     

Solyc08g068140 BURP domain-containing protein  3532 3713 3463 3077 4111 

Solyc08g068170 Ribosomal protein L37       541 619 705 

Solyc08g068300 RNA binding motif        579 602 

Solyc08g068320 Aspartate/other aminotransferase          549 

Solyc08g068330 RNA polymerase I-associated factor PAF67  601 690 684 887 1200 

Solyc08g074230 40S ribosomal protein S6   2249 2674 2297 2303 2118 

Solyc08g074280 BRI1-KD interacting protein 129 (Fragment)  801 963 1013 967 1136 

Solyc08g074410 Unknown Protein 706 953 1001 960 735 

Solyc08g075080 60S ribosomal protein L7   2656 3590 3575 3617 3883 

Solyc08g075270 Uncharacterized membrane protein           501 

Solyc08g075360 Unknown Protein  2141 2621 2834 1930 1827 

Solyc08g075370 F-box protein   556 853 904 687 617 

Solyc08g075530 Alternative oxidase   700 864 921     

Solyc08g075690 60S ribosomal protein L13   881 1182 1162 1139 1616 

Solyc08g075720 Anamorsin homolog   557 662 676 764 707 

Solyc08g075840 50S ribosomal protein L24     605 522 814 867 

Solyc08g076190 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

1265 1593 1645 1789 1933 

Solyc08g076330 40S ribosomal protein S30-like   738 969 1066 1339 1338 

Solyc08g076410 Poly(ADP-ribose) polymerase, catalytic region  584 824 903 574 657 
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Solyc08g076500 Unknown Protein    569       

Solyc08g076530 t-SNARE  718 804 822 639 596 

Solyc08g076650 RNA recognition motif, RNP-1    542       

Solyc08g076720 TPR domain protein   557 621       

Solyc08g076850 Zinc-binding family protein   1513 1802 1811 1151 1038 

Solyc08g076870 Unknown Protein    625       

Solyc08g076910 Arf GTPase activating protein    645 607 822 896 

Solyc08g077090 Zinc finger, RING-type  1684 2002 2309 918 826 

Solyc08g077210 Tetraspanin family protein   1110 1470 1154 1042 1027 

Solyc08g077470 Unknown Protein 686 781 524 1648 1124 

Solyc08g077700 60S ribosomal protein L37 626 796 745 927 1076 

Solyc08g077710 60S ribosomal protein L37 674 827 822 943 1267 

Solyc08g077970 Bax inhibitor           504 

Solyc08g078150 Oleosin   2544 3431 3030 2187 2232 

Solyc08g078420 
Pre-mRNA processing ribonucleoprotein binding 
region 

1403 1778 1723 1519 1477 

Solyc08g078430 Unknown Protein   538 530     

Solyc08g078520 Agenet        657 709 

Solyc08g078690 Heat shock protein Hsp20  509 609       

Solyc08g079050 Trehalose-phosphatase  1032 1352 1321     

Solyc08g079150 Vacuolar-processing enzyme   2734 3230 2731 2030 2527 

Solyc08g079160 Stress-induced protein sti1-like protein   728 904 778     

Solyc08g079250 Serine/threonine-protein phosphatase (Fragment)   514 606 556     

Solyc08g079270 Cytochrome P450 688 907 811     

Solyc08g079350 Copper amine oxidase  592 786 574 933 1682 

Solyc08g079560 Nucleotide excision repair, TFIIH, subunit TTDA  559 768 750 812 782 

Solyc08g079570 ATP-dependent Clp protease proteolytic subunit           621 

Solyc08g080430 Unknown Protein  6173 8054 7070 4984 5836 

Solyc08g080440 
Lipid transfer protein/seed storage/trypsin-alpha 
amylase inhibitor  

2805 3825 3288 1128 799 

Solyc08g080850 
Glutathione S-transferase/chloride channel, C-
terminal  

501 628 629 531   

Solyc08g080890 Glutathione peroxidase   2753 3716 3710 1749 1547 

Solyc08g081100 GMP synthase         653 771 

Solyc08g081140 Aquaporin  502 655 700 690 858 

Solyc08g081200 Aminopeptidase N         618 833 

Solyc08g081290 ATP-dependent DNA helicase   519 590 557 603 561 

Solyc08g081530 Pin2-interacting protein X1 759 965 973 957 1241 

Solyc08g081690 ATPase, AAA-type, core  741 944 708 1317 1791 

Solyc08g081900 Ubiquitin-conjugating enzyme E2  2007 2544 2285 1196 1119 

Solyc08g081960 Myosin heavy chain-like protein         531   

Solyc08g082130 Abscisic acid receptor  659 915 844     

Solyc08g082210 Protein phosphatase 2C  1021 1271 925 1591 1334 

Solyc08g082560 Kelch related  1416 1680 1361 804 607 

Solyc08g082650 26S proteasome non-ATPase regulatory subunit    514 512 518 755 
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Solyc08g082770 Heat shock protein 70        584 871 

Solyc08g082800 ABC transporter-like  639 877 831 629 862 

Solyc08g083070 Ubiquitin   618 736 697 1023 1221 

Solyc08g083270 Glycogen/starch synthases, ADP-glucose type          543 

Solyc08g083280 Lipid-binding START  728 889 927   680 

Solyc08g083330 
Mitochondrial import inner membrane translocase 
subunit 

      549 532 

Solyc09g005060 Phosphatidylethanolamine-binding protein PEBP  1922 2315 1701 776 535 

Solyc09g005260 Calcium/proton exchanger  833 1203 714 992 935 

Solyc09g005720 60S ribosomal protein L23  1353 1605 1639 1783 2497 

Solyc09g005760 U3 small nucleolar RNA-associated protein     578 502 567 586 

Solyc09g007180 Adenylate kinase  562 779 794 755 947 

Solyc09g007230 Zinc finger, CCCH-type          522 

Solyc09g007250 60S ribosomal protein L4/L1   688 913 826 1156 1535 

Solyc09g007350 30S ribosomal protein S12   681 919 871 1311 1314 

Solyc09g007850 RNA recognition motif, RNP-1        531 638 

Solyc09g007920 Phenylalanine ammonia-lyase  561 563 532   872 

Solyc09g008230 Zinc finger protein    666 654 575 598 

Solyc09g008610 Unknown Protein         536 

Solyc09g008720 Ethylene receptor         515 535 

Solyc09g008770 Late embryogenesis abundant protein  3384 4014 3397 2203 2515 

Solyc09g008800 60S ribosomal protein L24   595 766 733 847 1124 

Solyc09g008830 Unknown Protein       977 958 

Solyc09g009010 Enolase         623 936 

Solyc09g009020 Histone deacetylase 2a-like   2349 2808 2528 2226 2912 

Solyc09g009170 Chaperone protein dnaJ           516 

Solyc09g009250 Fructose-bisphosphate aldolase           582 

Solyc09g009750 bZIP transcription factor, bZIP-1          535 

Solyc09g009880 Polyadenylate-binding protein           559 

Solyc09g010090 30S ribosomal protein S11   933 1159 1228 1218 1302 

Solyc09g010320 Nascent polypeptide-associated complex NAC    551 540 862 1045 

Solyc09g010430 Actin-binding, cofilin/tropomyosin type    591       

Solyc09g010450 Proteasome component region PCI  537 747 683 1019 1407 

Solyc09g010490 DNA-directed RNA polymerase  725 1015 1021 935 897 

Solyc09g010500 Glucose/ribitol dehydrogenase  727 849 709   647 

Solyc09g010620 Heat shock protein 70  5140 7033 7493 5232 7160 

Solyc09g010790 Metallothionein   5318 6177 6027 6256 6032 

Solyc09g010850 Expansin           1270 

Solyc09g011460 Unknown Protein  1112 1317 1344     

Solyc09g011580 Glutathione S-transferase, C-terminal  508   830 1302 937 

Solyc09g011620 Glutathione S-transferase, C-terminal        576   

Solyc09g014610 Unknown Protein    625 535     

Solyc09g014740 Late embryogenesis abundant protein   7819 10675 8785 7191 6706 



 

179 
 

Solyc09g015060 Aldo/keto reductase subgroup  2174 2594 2269 729   

Solyc09g015070 Phosphatidylinositol transfer protein SFH5         503   

Solyc09g015270 Photosystem I assembly protein ycf3  573 739 578 500 510 

Solyc09g015310 Photosystem I P700 chlorophyll a apoprotein A1  666 807 617 560 616 

Solyc09g015440 Unknown Protein    500 628     

Solyc09g015640 
Non-green plastid inner envelope membrane 
protein  

519 697 612   516 

Solyc09g015860 
Cytochrome C oxidase subunit II, transmembrane 
region  

  583   552 601 

Solyc09g018440 Ubiquitin-activating enzyme E1         545 730 

Solyc09g020120 60S ribosomal protein L5  1427 1825 1692 1648 1745 

Solyc09g025200 Unknown Protein 710 994 792     

Solyc09g031640 Zinc finger, RING-type          509 

Solyc09g050010 Cytochrome b/b6    554   556 525 

Solyc09g056440 U-box domain-containing protein     577       

Solyc09g057660 Peptidyl-prolyl cis-trans isomerase, FKBP-type        501 639 

Solyc09g059260 ER lumen protein retaining receptor        551 705 

Solyc09g059610 SAM domain family protein     594 529 547 637 

Solyc09g061380 Maturase K  624 708 590 1297 1212 

Solyc09g061420 GNL3L/Grn1 putative GTPase  660 844 859 1261 1197 

Solyc09g061610 Vesicle-associated membrane protein    624 564 586 515 

Solyc09g064580 RNA-processing protein, HAT helix        531 729 

Solyc09g064850 Ubiquitin system component Cue  1069 1288 1282 1114 1256 

Solyc09g064990 Xylanase inhibitor (Fragment)   1062 1160 1262 1030 927 

Solyc09g065110 Preprotein translocase secY subunit    539       

Solyc09g065320 40S ribosomal protein S24   1963 2648 2578 3338 3546 

Solyc09g065450 Vicilin (Fragment)   1169 1490 1310 633 963 

Solyc09g065750 Plant-specific domain TIGR01615 family protein   626 819 659   532 

Solyc09g066420 60S ribosomal protein L14   1581 1952 1822 1999 2094 

Solyc09g066490 Unknown Protein          532 

Solyc09g072550 Unknown Protein 634 939 880     

Solyc09g072560 Pre-mRNA-splicing factor SLU7 743 839 848 531   

Solyc09g072860 50S ribosomal protein L14   943 1263 1313 1346 1637 

Solyc09g072990 Elongation factor          527 

Solyc09g074650 Thymidylate kinase   547 681 607     

Solyc09g074670 Cullin 1B     513       

Solyc09g074860 Ubiquinol-cytochrome C reductase hinge  966 1416 1259 1183 1118 

Solyc09g074900 TspO/MBR-related protein  564 766 542     

Solyc09g075000 Prostaglandin E synthase 3    651 581 786 745 

Solyc09g075010 ABC transporter, transmembrane region        778 1009 

Solyc09g075110 Small nuclear ribonucleoprotein-like protein   635 805 742 815 830 

Solyc09g075140 60S ribosomal protein L22    587 593 604 584 

Solyc09g075200 Late embryogenesis abundant protein   531 702 727 611 605 

Solyc09g075260 POT family domain containing protein expressed     669       
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Solyc09g075280 Ribosomal protein L18       505 518 745 

Solyc09g075420 Ribosomal protein L19         605 1023 

Solyc09g075660 Gibberellin receptor GID1L2   616 759 843     

Solyc09g075820 Time for coffee  530 700 676     

Solyc09g075940 Heat shock protein 70    514       

Solyc09g082050 Cysteine synthase           566 

Solyc09g082090 Seed maturation protein   2150 2389 1868 1272 1205 

Solyc09g082100 Seed maturation protein   1417 1529 1174 711 794 

Solyc09g082200 Unknown Protein  709 961 757 1446 1298 

Solyc09g082330 Unknown Protein 14635 16632 13546 15175 21378 

Solyc09g082510 40S ribosomal protein 786 953 848 816 971 

Solyc09g082680 Early light-induced protein          507 

Solyc09g082970 GDP-D-mannose-3â ,5â -epimerase 2 640 874 1071 1439 1514 

Solyc09g083060 
Pre-mRNA processing ribonucleoprotein, binding 
region  

3334 3979 3812 4959 5192 

Solyc09g083370 Unknown Protein       976 765 

Solyc09g089800 Oxoglutarate and iron-dependent oxygenase  2191 2621 2073 2325 2432 

Solyc09g090120 
Malate dehydrogenase, NAD-dependent, 
cytosolic  

  580 605 757 1118 

Solyc09g090130 Unknown Protein 1468 1865 1619 625   

Solyc09g090410 Cyanate hydratase    596 583 597 589 

Solyc09g090500 Heterogeneous nuclear ribonucleoprotein   676 928 945 912 1023 

Solyc09g090560 Eukaryotic translation initiation factor 4E (eIF-4E)  654 828 832 869 1087 

Solyc09g090590 50S ribosomal protein L14     501 593 772 1017 

Solyc09g090640 WD40 repeat, region      545   561 

Solyc09g090700 26S proteasome regulatory subunit   795 971 900 788 927 

Solyc09g090780 Plasma membrane associated protein   1244 1307 1540     

Solyc09g090950 Major allergen Mal d 1   30454 37416 32449 28639 30891 

Solyc09g090960 Major allergen Mal d 1   2918 3529 3295 4829 4833 

Solyc09g091010 Beta-amylase   946 1156 1028     

Solyc09g091160 Chaperonin Cpn60          658 

Solyc09g091420 Histone deacetylase           564 

Solyc09g091450 3-ketoacyl CoA thiolase  3541 4059 4073 4446 4503 

Solyc09g091580 Tetratricopeptide-like helical  508 710 1113     

Solyc09g091720 60S ribosomal protein L13  852 1114 1009 781 921 

Solyc09g091820 Glutathione-disulfide reductase           527 

Solyc09g091920 Unknown Protein    516     506 

Solyc09g092060 50S ribosomal protein L7A        552 614 

Solyc09g092070 50S ribosomal protein L13         501   

Solyc09g092120 Methyltransferase           505 

Solyc09g092220 Down-regulated in metastasis    575   581 682 

Solyc09g092300 RNA recognition motif, glycine rich protein        823 827 

Solyc09g092360 Adenosylhomocysteinase   1741 2169 2357 2066 2921 

Solyc09g092370 Adenosylhomocysteinase     564 581 1134 1424 
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Solyc09g092560 Cytochrome P450 680 790 888 559   

Solyc09g097830 Cysteine proteinase inhibitor   1062 1161 1426 760 653 

Solyc09g097880 Rab11-related        621 545 

Solyc09g098060 Aldo/keto reductase   699 795 749 938 965 

Solyc09g098090 Unknown Protein   2496 2809 2555 2423 3388 

Solyc09g098200 DNA helicase, ATP-dependent, Ku70 subunit        798 1051 

Solyc09g098210 
Importin-7 (Imp7) (Ran-binding protein 7) 
(RanBP7)   

        586 

Solyc09g098270 Unknown Protein  801 983 1225 945 804 

Solyc09g098280 Unknown Protein  695 861 1026     

Solyc09g098330 Ribosome biogenesis protein NSA2   3682 4486 4423 3510 3544 

Solyc09g098520 UBX domain-containing protein   639 740 607 672 789 

Solyc10g005260 RNA Binding Protein 45   860 1125 1210 804 1030 

Solyc10g005330 Lipid-binding START          592 

Solyc10g005480 F-box family protein    609 537     

Solyc10g005510 Glyceraldehyde 3-phosphate dehydrogenase          635 

Solyc10g005560 Bi-ubiquitin           554 

Solyc10g005800 Cwf15/Cwc15 cell cycle control protein  900 1231 1076 850 783 

Solyc10g005960 Fasciclin-like arabinogalactan protein        511 678 

Solyc10g006070 40S ribosomal protein S8   818 1062 965 1065 1029 

Solyc10g006080 Sodium/hydrogen exchanger    664 592 562 774 

Solyc10g006130 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

  514       

Solyc10g006260 SWAP/Surp    509 501     

Solyc10g006470 Translation initiation factor SUI1  1670 2384 2274 2039 1636 

Solyc10g006480 Ubiquitin   518 619 732 562 622 

Solyc10g006560 Histone H2A    585 711 609   

Solyc10g006580 50S ribosomal protein L2     554 551 717 990 

Solyc10g007150 Apoptosis inhibitor   515 736 697 569 721 

Solyc10g007390 Protein transport protein SEC61 alpha subunit         523 596 

Solyc10g007590 Nucleotide-binding, alpha-beta plait    542   629 641 

Solyc10g007650 RNA polymerase Rbp10        568 550 

Solyc10g007660 Transmembrane  1529 1728 1539 803 1031 

Solyc10g007760 Phosphoribosyl pyrophosphokinase  936 1227 1051 822 919 

Solyc10g007980 50S ribosomal protein L5  1338 1900 1841 2079 2225 

Solyc10g008040 Seed biotin-containing protein SBP65   1749 2074 1811 1187 1454 

Solyc10g008130 Pre-rRNA-processing protein ESF2     522       

Solyc10g008140 Prohibitin 1-like protein    599 640 951 1254 

Solyc10g008190 Nucleic acid-binding, OB-fold  568 750 724 925 932 

Solyc10g008300 Glycoside hydrolase, family 5    536       

Solyc10g008870 Transcription elongation factor 1 homolog   958 1379 1364 1106 1068 

Solyc10g011670 Mitochondrial carrier protein    527     605 

Solyc10g011960 Unknown Protein  737 924 632 641   

Solyc10g012070 Protein BPS1, chloroplastic    578 590 696 636 
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Solyc10g012370 Cysteine synthase         1024 913 

Solyc10g039190 Small-subunit processome, Utp12        535 631 

Solyc10g044670 Phytochrome A       583 937 

Solyc10g046930 Ribosomal RNA methyltransferase J          510 

Solyc10g048060 Uncharacterized mitochondrial protein  1762 2174 2353 1655 1567 

Solyc10g049630 Serine/threonine protein phosphatase 2C      517     

Solyc10g074980 Vacuolar sorting receptor         651 844 

Solyc10g075050 
Lipid transfer protein and hydrophobic protein, 
helical  

2942 3360 3348 1799 2327 

Solyc10g076510 
Pyruvate decarboxylase/indolepyruvate 
decarboxylase  

507 688 578 580 847 

Solyc10g077010 EF-Hand type  609 789 765 706 663 

Solyc10g078150 
Nascent polypeptide-associated complex, alpha 
subunit  

873 1038 1184 1177 1117 

Solyc10g078220 Cytochrome P450 593 689   891 1019 

Solyc10g078230 Cytochrome P450 701 671 630 768 775 

Solyc10g078300 Single-stranded nucleic acid binding R3H    606 641 604 749 

Solyc10g078620 Ribosomal protein S5   865 1130 1196 1215 1716 

Solyc10g078630 40S ribosomal protein S28       514   632 

Solyc10g078660 60S ribosomal protein L24       505 508 546 

Solyc10g078670 BZIP transcription factor   696 773 557   551 

Solyc10g078770 Late embryogenesis abundant (LEA) group 1  3305 4331 3625 1474 1544 

Solyc10g078780 Late embryogenesis abundant (LEA) group 1  1839 1879 1866 1254 1392 

Solyc10g078960 60S ribosomal protein L21-like protein   1711 2229 2224 2423 2859 

Solyc10g079880 Translation initiation factor 3, subunit 6  896 1133 1167 1089 1161 

Solyc10g080370 Unknown Protein    517 556     

Solyc10g080710 Asparaginyl-tRNA synthetase, class IIb    560 521 684 831 

Solyc10g081020 
Nascent polypeptide-associated complex, alpha 
subunit  

1126 1398 1369 1630 1675 

Solyc10g081110 Alpha-L-arabinofuranosidase   554 717 617   660 

Solyc10g081160 EF-Hand type  658 771 757     

Solyc10g081310 MYB transcription factor         635   

Solyc10g081500 
methyltetrahydropteroyltriglutamate-
homocysteine S-methyltransferase  

      602 1044 

Solyc10g081560 KED  1450 1779 1465 522   

Solyc10g081570 t-SNARE  1058 1485 1314 1127 960 

Solyc10g081790 
Phosphatidylglycerol/phosphatidylinositol transfer 
protein   

1074 1287 1169 798 921 

Solyc10g083370 Unknown Protein  1447 1835 1343 780 960 

Solyc10g083430 UDP-glucuronosyl/UDP-glucosyltransferase        722 727 

Solyc10g083590 Brix domain        575 645 

Solyc10g083630 U2 auxiliary factor small subunit  536 654 623 515   

Solyc10g083710 Pyruvate kinase         695 824 

Solyc10g083730 60S ribosomal protein L24           538 

Solyc10g083750 Threonine dehydratase biosynthetic     524       

Solyc10g084040 26S protease regulatory subunit 6B homolog        561 701 

Solyc10g084170 Zinc finger, C2H2-type    769 621 574 532 

Solyc10g084300 30S ribosomal protein S12   1464 1903 1757 1429 1507 
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Solyc10g084990 Tubulin beta chain        587 623 

Solyc10g085170 
Acyl-CoA dehydrogenase/oxidase, middle and N-
terminal  

562 650 603 929 717 

Solyc10g085180 BZIP family transcription factor        677 538 

Solyc10g085390 Unknown Protein     551 566     

Solyc10g085400 Saposin (Fragment)     769 689 557 533 

Solyc10g085450 60S ribosomal protein L24   1013 1408 1249 1252 1050 

Solyc10g085710 GDSL esterase/lipase  1817 2369 2074 2324 3119 

Solyc10g085980 60S ribosomal protein L4/L1           526 

Solyc10g085990 30S ribosomal protein S12   652 805 747 797 1002 

Solyc10g086110 Single-stranded DNA binding protein        686 762 

Solyc10g086300 60S ribosomal protein L23        570 700 

Solyc10g086380 Heat shock protein 70  1843 2222 1903 1587 2105 

Solyc10g086750 Oxoglutarate and iron-dependent oxygenase        536   

Solyc11g005170 RNA splicing factor     531   565 683 

Solyc11g005330 Actin    630 621 820 1249 

Solyc11g005380 GT-2 factor (Fragment)     688 509     

Solyc11g005670 Ubiquitin   2720 3648 4018 1024 1114 

Solyc11g005680 40S ribosomal protein S18           548 

Solyc11g006070 Peptidyl-prolyl cis-trans isomerase   613 776 744 1134 1425 

Solyc11g006350 Aspartate carbamoyltransferase           515 

Solyc11g006460 Heat shock protein DnaJ  3044 3918 3566 1619 1644 

Solyc11g006470 Unknown Protein   724 951 760 855 704 

Solyc11g006720 MYB transcription factor    574 510     

Solyc11g007610 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

  601   581 562 

Solyc11g007850 Plastid DNA-binding protein (Fragment)        555 579 

Solyc11g008260 Cysteine proteinase cathepsin F   1059 1381 1432 985 1474 

Solyc11g008280 Peptidase S10, serine carboxypeptidase  1144 1481 1389 1710 2157 

Solyc11g008510 60S ribosomal protein L38  555 763 784 610 652 

Solyc11g009080 DAHP synthetase, class II  977 1299 1099 593 676 

Solyc11g010330 Zinc finger, C3HC4 RING-type  554 596 547     

Solyc11g010500 Mitochondrial substrate carrier    553       

Solyc11g010520 Unknown Protein   4111 4461 4467 3249 3159 

Solyc11g010530 Unknown Protein   5124 5316 4680 4105 3736 

Solyc11g010600 Unknown Protein           544 

Solyc11g010960 Alcohol dehydrogenase           530 

Solyc11g011220 Unknown Protein          572 

Solyc11g011330 Cinnamyl alcohol dehydrogenase   675 962 1337 1091 727 

Solyc11g011380 Glutamine synthetase         613 707 

Solyc11g011780 
Nonsense-mediated mRNA decay NMD3 family 
protein   

1667 2103 3001 1015 607 

Solyc11g012110 60S ribosomal protein L6   824 1040 1121 1411 2032 

Solyc11g012190 Glycoside hydrolase, subgroup, catalytic core    529       

Solyc11g013110 Oxoglutarate and iron-dependent oxygenase  1107 1187 1113 3117 3572 



 

184 
 

Solyc11g017070 Translation initiation factor 3 subunit   716 983 951 904 840 

Solyc11g020810 Ribosomal RNA methyltransferase J  1187 1437 1357 2077 1893 

Solyc11g022530 Transmembrane protein  1269 1560 1373 797 891 

Solyc11g027650 Unknown Protein   6629 6589 5386 4548 3797 

Solyc11g027660 Unknown Protein   9559 10244 9625 13471 10131 

Solyc11g027670 Cytochrome P450  2858 2833 2464 3585 2879 

Solyc11g027710 Unknown Protein   26861 28531 25309 38003 27482 

Solyc11g027750 Unknown Protein   17602 18556 18153 25229 18017 

Solyc11g027760 Cytochrome P450 13933 14958 13999 22049 15571 

Solyc11g027770 Cytochrome P450 monooxygenase (Fragment)  1431 1481 1316 1888 1480 

Solyc11g027790 Unknown Protein  1213 1029 772 1230 691 

Solyc11g032050 GDSL esterase/lipase  1068 1267 867 1597 1808 

Solyc11g033280 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

        544 

Solyc11g039840 
Ubiquinol-cytochrome c reductase iron-sulfur 
subunit   

  513     569 

Solyc11g039980 ATP synthase subunit alpha   1018 1591 1458 1431 2493 

Solyc11g039990 Unknown Protein          721 

Solyc11g040370 Far upstream element-binding protein        642 810 

Solyc11g042610 Ribosomal protein S5  637 821 822 1088 1105 

Solyc11g042930 E3 ubiquitin ligase, SCF complex, Skp subunit          536 

Solyc11g043110 GDSL esterase/lipase  629 684 703 720 1443 

Solyc11g044610 Cell wall-associated hydrolase   629 658 620 673 651 

Solyc11g045120 Translation initiation factor SUI1  636 825 700 539   

Solyc11g045130 CCR4-NOT transcription complex subunit  525 712 743 597 612 

Solyc11g045150 Uncharacterized mitochondrial protein  997 1149 1298 895 807 

Solyc11g045350 Regulator RWP-RK  707 906 918 679 711 

Solyc11g045440 Unknown Protein  892 885 932 864 905 

Solyc11g051180 Unknown Protein  2160 2008 1608 1871 1340 

Solyc11g051190 Unknown Protein  1393 1134 847 1323 739 

Solyc11g051200 Cytochrome P450 5518 5449 4788 6834 5596 

Solyc11g051210 Unknown Protein  6788 6947 5991 4710 4150 

Solyc11g051230 Unknown Protein  578 516   640   

Solyc11g062130 Mitochondrial ADP/ATP carrier proteins  660 830 886 991 1446 

Solyc11g062190 Mitochondrial ADP/ATP carrier proteins           717 

Solyc11g062270 
Signal recognition particle, SRP72 subunit, RNA-
binding  

        510 

Solyc11g063510 Unknown Protein  855 919 1111 1129 1283 

Solyc11g063520 Unknown Protein   612 671 861 789 967 

Solyc11g065180 THUMP domain-containing protein    525       

Solyc11g065600 Xyloglucan endotransglucosylase/hydrolase          505 

Solyc11g065670 Ribosomal protein  517 698 680 847 843 

Solyc11g066060 Heat shock protein 70          861 

Solyc11g066280 U3 small nucleolar ribonucleoprotein protein  774 915 840 603 543 

Solyc11g066840 Histone deacetylase-like protein  1806 2431 2456 2216 2781 
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Solyc11g067010 G10 protein    534       

Solyc11g067100 Ribosomal protein 60S  878 1103 1049 995 1038 

Solyc11g067250 Poly(ADP-ribose) polymerase, catalytic region  997 1280 1089 649 1002 

Solyc11g068420 Ribosomal protein L1  1222 1608 1529 1540 1746 

Solyc11g068430 Ferredoxin [2Fe-2S]         623 

Solyc11g068440 Glycoside hydrolase 777 1064 967     

Solyc11g068510 F1F0-ATPase inhibitor protein        593 531 

Solyc11g069000 T-complex protein 1 subunit beta           658 

Solyc11g069040 Lactoylglutathione lyase          530 

Solyc11g069090 ATP-binding cassette protein   579 797 880 659 916 

Solyc11g069150 
Proteasome endopeptidase complex, beta 
subunit  

542 787 692 1114 1438 

Solyc11g069270 Glycoside hydrolase         716 

Solyc11g069440 Ribosomal protein L12   557 693 552 788 878 

Solyc11g069700 Translation elongation factor EF1A 866 1023 1094 1341 1918 

Solyc11g069720 26S protease regulatory subunit 6B homolog         586 743 

Solyc11g069780 2-phosphoglycerate kinase    694 578 566 726 

Solyc11g069790 Chaperonin Cpn60  1192 1608 1280 886 1205 

Solyc11g071490 Ribosomal protein L30   564 764 710 793 872 

Solyc11g071690 Cellular nucleic acid binding protein    603 592   535 

Solyc11g071870 Ubiquitin-conjugating enzyme   506 671 694     

Solyc11g072190 
Translation elongation factor EF1B, guanine 
nucleotide exchange  

1330 1848 1784 1817 2054 

Solyc11g072240 EF-Hand type    569 562 713 799 

Solyc11g072380 Vicilin-like protein (Fragment)   3300 3417 3421 2152 2792 

Solyc11g072450 Mitochondrial F0 ATP synthase D chain     573 625 751 763 

Solyc12g005270 Histone H2A  576 760 816     

Solyc12g005330 50S ribosomal protein L2     560 552 632 1005 

Solyc12g005860 Aconitase/iron regulatory protein 2  565 853 739 561 761 

Solyc12g006460 Cytochrome P450       1209 1803 

Solyc12g006470 Aminotransferase class-III  621 793 737 1652 2356 

Solyc12g006550 Ribosomal biogenesis regulatory protein        543 628 

Solyc12g006680 Early nodulin 93 protein   1209 1630 1453 1018 1375 

Solyc12g007030 Aldehyde dehydrogenase  1136 1167 955   522 

Solyc12g008360 Oligosaccharyl transferase, STT3 subunit          554 

Solyc12g008570 Arginyl-tRNA synthetase         708 831 

Solyc12g008700 40S ribosomal protein S30    654 637 739 695 

Solyc12g008720 60S ribosomal protein L31   1352 1748 1680 1661 1932 

Solyc12g008760 Protein arginine N-methyltransferase  557 786 749 1032 966 

Solyc12g008940 Nucleosome assembly protein (NAP)  570 744 734 986 1073 

Solyc12g009140 Proteasome subunit alpha type         595 658 

Solyc12g009560 F-box/LRR-repeat protein   860 1386 1342 783 682 

Solyc12g009860 Unknown Protein    527 525 620   

Solyc12g009870 Leucine-rich repeat-like protein   978 1342 970     
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Solyc12g009990 Signal recognition particle protein   533 711 614 644 677 

Solyc12g010040 Leucyl aminopeptidase         591 719 

Solyc12g010060 Translation elongation factor, IF5A, hypusine site  1249 1675 1418 1271 1396 

Solyc12g010130 Serine/threonine protein kinase  1195 1640 1650 1786 1349 

Solyc12g010350 60S ribosomal protein L39   565 654 731 741 902 

Solyc12g010640 Unknown Protein  599 709 716     

Solyc12g010820 Late embryogenesis abundant protein  718 927 726 567 889 

Solyc12g010920 Oleosin   4314 5370 4965 3151 3601 

Solyc12g010930 50S ribosomal protein L5     501   519 656 

Solyc12g011310 Glutathione S-transferase   817 998 742 671 761 

Solyc12g013690 Monooxygenase FAD-binding protein   546 770 933     

Solyc12g013700 Aluminum-induced protein-like protein  2112 2634 2718 1484 1751 

Solyc12g014230 DAG protein          523 

Solyc12g014400 Cell differentiation protein rcd1   530 702 661 546 682 

Solyc12g015770 Cellulose synthase   531 730 524 559 762 

Solyc12g015880 Heat shock protein Hsp90  1919 2061 1749 2815 4743 

Solyc12g017570 Rab GDP dissociation inhibitor  949 1197 1136 1235 1512 

Solyc12g020000 Arginine/serine-rich coiled-coil protein 2 536 728 592 664 670 

Solyc12g021320 Unknown Protein          565 

Solyc12g035130 ATP dependent RNA helicase   1098 1563 1652 864 1114 

Solyc12g038430 Kinesin-like calmodulin binding protein    591   643 675 

Solyc12g038980 50S ribosomal protein L7A 816 1183 1000 1677 1586 

Solyc12g039120 40S ribosomal protein S19  560 749 675 977 1018 

Solyc12g042060 ATP-dependent clp protease ATP-binding subunit     585 505 524 812 

Solyc12g042080 40S ribosomal protein S11   1337 1589 1759 1216 1549 

Solyc12g042600 UDP-glucuronosyl/UDP-glucosyltransferase    660 652 881 521 

Solyc12g042650 40S ribosomal protein S12   542 706 739 948 1270 

Solyc12g042950 ADP/ATP carrier protein   821 1313 1286 1446 2120 

Solyc12g043120 Heat shock protein 70    549     540 

Solyc12g043160 Unknown Protein    649 608 582 504 

Solyc12g044720 60S ribosomal protein L28   543 655 631 529 587 

Solyc12g055870 RAG1-activating protein 1 homolog   682 864 647     

Solyc12g056590 
Pathogenesis-related transcriptional factor and 
ERF, DNA-binding  

750 937 882     

Solyc12g057060 UDP-glucuronosyl/UDP-glucosyltransferase      962 1222 801 

Solyc12g087940 Aspartic proteinase nepenthesin        574 1254 

Solyc12g088290 U3 small nucleolar RNA-associated protein        539 867 

Solyc12g088720 Polyadenylate-binding protein 2   1848 2446 2347 3063 3914 

Solyc12g094620 Catalase         789 1724 

Solyc12g095930 Serine hydroxymethyltransferase         579 681 

Solyc12g095990 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

  546 615 689 1097 

Solyc12g096000 
DNA/RNA helicase, DEAD/DEAH box type, N-
terminal  

  542 529 735 889 

Solyc12g096150 60S ribosomal protein L13         595 738 
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Solyc12g096220 60S ribosomal protein L7   1009 1256 1295 1248 1637 

Solyc12g096300 40S ribosomal protein S6   995 1133 1122 1407 1753 

Solyc12g096450 Zinc finger family protein   1755 1965 2143 1427 1283 

Solyc12g096690 Cytosolic Fe-S cluster assembly factor nbp35       565     

Solyc12g096700 Ribosomal L9-like protein   1302 1863 1759 1913 2003 

Solyc12g096930 Caleosin  1578 1856 1746 911 913 

Solyc12g098130 Unknown Protein  1051 1090 1056   570 

Solyc12g098150 
Potassium channel, voltage-dependent, beta 
subunit, KCNAB-related  

778 996 858 624 683 

Solyc12g098330 60S ribosomal protein L13a-like protein         513 

Solyc12g098490 Serine hydroxymethyltransferase           769 

Solyc12g098500 Adenosylhomocysteinase           649 

Solyc12g098850 Soluble diacylglycerol acyltransferase    605 505     

Solyc12g098900 Late embryogenesis abundant protein  19199 22861 20966 7558 6315 

Solyc12g098940 Ubiquitin           572 

Solyc12g099000 S-adenosylmethionine synthase   562 793 913 637 538 

Solyc12g099030 Ubiquitin           559 

Solyc12g099370 GATA transcription factor  506 680 641     

Solyc12g099390 Protein DEHYDRATION-INDUCED 19 homolog  574 820 709     

Solyc12g099440 3-hydroxyacyl-CoA dehydrogenase, NAD binding  892 1230 1190 1137 1464 

Solyc12g099900. GRAS transcription factor    617 749 540   
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