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Summary   

Policymakers often need to rely on experts with disparate fields of expertise when making 

policy choices in complex, multi-faceted, dynamic environments such as those dealing with 

ecosystem services. For policy-makers wishing to make evidence-based decisions which will 

best support pollinator abundance and pollination services, one of the problems faced is 

how to access the information and evidence they need, and how to combine it to formulate 

and evaluate candidate policies. This is even more complex when multiple factors provide 

influence in combination. The pressures affecting the survival and pollination capabilities of 

honey bees (Apis mellifera), wild bees and other pollinators is well documented, but 

incomplete. In order to estimate the potential effectiveness of various candidate policy 
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choices, there is an urgent need to quantify the effect of various combinations of factors on 

the pollination ecosystem service. Using high quality experimental evidence is the most 

robust approach, but key aspects of the system may not be amenable to experimentation or 

may be prohibitive based on cost, time and effort. In such cases, it is possible to obtain the 

required evidence by using structured expert elicitation, a method for quantitatively 

characterizing the state of knowledge about an uncertain quantity. Here we report and 

discuss the outputs of the novel use of a structured expert elicitation, designed to quantify 

the probability of good pollinator abundance given a variety of weather, disease and habitat 

scenarios.  

Key words: Structured expert elicitation, IDEA protocol, bees, hover flies, pollinators, 

conservation, ecosystem services 

   

Introduction  

  The dynamics of pollinator populations and factors that impact upon these 

populations, are a focus of attention for policy-makers concerned with conservation and 

vital ecosystem services like pollination.  There are substantial gaps in knowledge about the 

status of pollinators worldwide (e.g. abundance declines, distribution, species declines) and 

the effectiveness of measures to protect them (GM crop regulation, pesticide policy, 

pollution control, etc.) (L. V. Dicks et al., 2016; Godfray et al., 2014; Potts et al., 2016). In 

order to adequately protect and preserve pollinators, such as by means of England’s 

National Pollinator Strategy (NPS) in the UK (Defra, 2014), it is vital to know what and how 

much effect various key factors have on the abundance of honey bees, wild bees and other 

pollinators (such as hover flies) and whether these effects act independently or in 

combination. A suitable monitoring framework to support the pollinator strategies is vital 

(Carvell et al., 2016).  

 It is estimated that over 70% of important food crops worldwide are dependent 

upon pollinators (Klein et al., 2007), and pollinator-dependent food products are important 

contributors to healthy human diets and nutrition (Potts et al., 2016). The status of bees and 

other pollinators is also of key concern in global food security (Bailes, Ollerton, Pattrick, & 

Glover, 2015; Blaauw & Isaacs, 2014; Lonsdorf, Kremen, Ricketts, Winfree, & Greenleaf, 

2009; Lucas, 2017; Ollerton, 2012). Many agricultural businesses employ migratory bee 

services in order to ensure adequate pollination of crops (Bishop, Jones, Lukac, & Potts, 

2016; Gordon, Bresolin-Schott, & East, 2014). However, the mere presence of bee colonies 
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on site may not guarantee optimal pollination, if the colonies are weakened by disease or 

struggling for environmental or other reasons. Whilst honey bees are not the only 

pollinators (Breeze et al., 2014; Rader et al., 2016), they are distinctive as they are often 

managed by humans so can be described as livestock. As such, the direct impact of bee 

keepers on their survival and health, for example by controlling levels of parasites and 

disease, is a potential point of intervention for policymakers.  In the UK, protected crops 

within polytunnels, like most of the UK soft fruit industry, use bought-in boxes of 

bumblebees, with the health of these bees assured by the supplier. This is another potential 

point for policy intervention. 

 There are two interrelated problems facing policy-makers wishing to make evidence-

based decisions. The first is how to access the information and evidence they need, including 

quantitative statements about levels of uncertainty, for example probabilistic estimates of 

pollinator distributions (Elith, 2009; Fithian, Elith, Hastie, & Keith, 2014; Guillera-Arroita et 

al., 2015; Renner et al., 2015). The second problem is how to combine evidence in a 

transparent, defensible, coherent and statistically robust manner. This is especially difficult 

when the evidence is incomplete, and that which does exist is inherently uncertain 

(probabilistic) in nature, particularly with respect to estimates of future values.  The latter 

point, how to integrate probabilistic data for policy decisions, is addressed by (Smith, 

Barons, & Leonelli, 2017), who developed a formal statistical methodology to draw on the 

expertise of a variety of disparate panels of experts and their diverse supporting 

probabilistic models and then integrate this network of information coherently in order to 

explore and compare the efficacy of different candidate policies. In this paper, we focus on 

the difficulty of accessing information that is required, but is prohibitively difficult or 

expensive to obtain in the form of a designed experiment, as is the case of combinations of 

interacting and interrelated factors affecting pollinator abundance on realistic spatio-

temporal scales. For this, we harnessed the power of structured expert elicitation.   

Expert elicitation  

Using expert advice and opinion to support policy decision-making is commonplace. Indeed, 

the opinions and contributions of experts and stakeholders were integral to the 

development of England’s NPS. Expert judgment elicitation seeks to elicit a subjective 

probability distribution for a quantity of interest from each of several experts and to 

summarize these distributions to provide insight about the quantities of interest, the extent 

of uncertainty, the sources of the uncertainty, the extent of agreement/disagreement and 
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reasons for any disagreement among the group of experts consulted. Commonly, the way in 

which their contributions are synthesized and amalgamated to inform the eventual decision 

is not very transparent. Additionally, where informal elicitation and aggregation is employed, 

experts are subject to a number of well-documented biases: social biases deferring to the 

member with the most compelling personality or who is seen as the most senior, bias 

towards the most readily available information and misunderstandings due to semantic 

differences (Kahneman & Tversky, 1984; Slovic, 1999). As a result, unstructured elicitation 

of expert judgements can produce results that are not reproducible and can be unreliable 

and heavily biased. However, the difficulties that beset unstructured expert elicitation can be 

substantially reduced by using structured approaches designed to mitigate the most 

pervasive and debilitating psychological and contextual frailties of expert judgement (W. 

Aspinall, 2010; Burgman, 2016; R. Cooke & Goossens, 2008; Keeney & von Winterfeldt, 

1991; O'Hagan et al., 2006).  

 Structured elicitation of expert opinion in pursuit of decision support is an 

increasingly important technique and the European Food Safety Authority recently 

composed a detailed guidance document on its use for food and feed safety risk assessment 

(EFSA, 2014). It has also been used to guide policy on safety from volcanic eruptions (W. a. 

C. Aspinall, Roger M. , 1998), assess health risks (R. M. Cooke et al., 2007), climate change 

(Granger Morgan, Pitelka, & Shevliakova, 2001) and to quantify uncertainty in the risks of 

herbicide-tolerant crops (Krayer von Krauss, Casman, & Small, 2004). Aggregation of 

experts' judgements can be behavioural (seeking consensus) or mathematical (combining 

individual estimates using a formula) or a mixture of the two. There are several well-

established methodologies for structured expert elicitation protocols, each with its own 

strengths and limitations, described in detail in the EFSA guidance: namely Delphi, Cooke's 

and Sheffield protocols. For this elicitation, we used the IDEA protocol (Hanea et al., 2016), 

a recently-developed elicitation method which combines the strengths of these three 

methods (individual estimates, group discussion, and calibration) and ameliorates some of 

the limitations (a requirement for consensus).  

 The IDEA protocol  

The acronym IDEA arises from the combination of the key features of the protocol that 

distinguish it from other structured elicitation procedures: it encourages experts to 

Investigate and estimate individual first round responses, Discuss, Estimate second round 

responses, following which judgements are combined using mathematical Aggregation.  
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In the pre-elicitation stage, the information sought needs to be expressed as 

precisely as possible to minimise any risk of semantic or other misunderstandings arising and 

to aid in the identification of the suitable experts. The elicitation stage consists of three 

phases: investigate, discuss and estimate. After investigating relevant background material, 

experts are asked to provide their private estimates for the quantities of interest in the 

order: lowest plausible, highest plausible and then best estimate to avoid anchoring around 

the central estimate.  After a facilitated discussion of the anonymised results for each 

question in turn, experts are asked to give second private estimates for the quantities of 

interest.  Calibration questions, which have `answers' that can be checked, are elicited using 

the same protocol. Finally, individual experts’ estimates are aggregated into a single estimate 

for each question using information gained in the calibration stage. More details of the IDEA 

protocol are given in Appendix 1. 

  

Materials and methods  

The IDEA protocol was used to elicit from pollinator experts the conditional probabilities 

required to populate a Bayesian Network (BN) (Pearl, 1985) representation of the 

pollinator system. BNs are probabilistic graphical models in which nodes represent variables 

of interest and directed arrows represent (possibly causal) relationships between the 

variables. This BN is to be used to provide an overarching framework for combining the 

probabilistic elements of the pollinator system in order to produce a decision support 

system for policymakers (see methodology developed in (Smith et al., 2017)). After the 

quantities which needed to be elicited were identified, relevant experts were invited to take 

part in an expert elicitation exercise. Background evidence was sought through a literature 

search and sent out to experts and the quantities of interest refined into specific questions. 

These steps were followed by the face-to-face elicitation workshop.   

The experts  

The selection of suitable experts is key to a successful elicitation exercise. Eleven experts 

agreed to attend and a list of background materials circulated to them, given in Appendix 1. 

One of the experts attended for an additional working day prior to the elicitation workshop 

to lend domain knowledge to the refinement of the questions of interest in order to ensure 

that they were clear and fair.  

Selection of the questions of interest  
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Selection of the questions of interest was based on the variables revealed as key drivers of 

pollinator abundance in a literature search. From these the system was represented by a BN 

developed with the aid of multiple experts in pollinating insects and pollination services in 

the UK and Australia.  Whilst good evidence is available to quantify many aspects of the 

system, quantitative assessments of the effects of disease, habitat and weather on pollinator 

abundance were weak and so we elected to supplement these with a structured expert 

elicitation exercise. In the full model, variables identified in the literature and by the 

pollination experts as impacting the abundance of pollinating insects (Brown et al., 2016; 

Mayer et al., 2011), include: 

 land use, its incentives & costs (K. Baldock et al., 2015; K. C. R. Baldock et al., 2015; 

Cranmer, McCollin, & Ollerton, 2012; Hall et al., 2016; Hicks et al., 2016; Matheson 

& Carreck, 2014; Meixner et al., 2014; Ollerton, Erenler, Edwards, & Crockett, 

2014; Orford, Murray, Vaughan, & Memmott, 2016; Senapathi, Goddard, Kunin, & 

Baldock, 2016; Tarrant, Ollerton, Rahman, Tarrant, & McCollin, 2013),  

 weather & climate, (Al-Ghamdi, Abou-Shaara, & Mohamed, 2014; Kerr et al., 2015; 

Settele, Bishop, & Potts, 2016)  

 disease & pest pressure (Arundel, 2011; Bull et al., 2012; Capri, Higes, & Kasiotis, 

2013; N. Carreck, 2011; N. L. Carreck, Ball, & Martin, 2010a, 2010b; Dave 

Chandler, Bailey, et al., 2011; D. Chandler, Davidson, Pell, Shaw, & Sunderland, 

2000; Dave Chandler, Prince, & Pell, 2011; Datta, Bull, Budge, & Keeling, 2013; 

Fürst, McMahon, Osborne, Paxton, & Brown, 2014; Gordon et al., 2014; Manley, 

Boots, & Wilfert, 2015; Martin, Ball, & Carreck, 2010; Ryabov et al., 2014; Wilfert et 

al., 2016),  

 pesticide, fungicide and herbicide use, (Botias et al., 2015; Dively, Embrey, Kamel, 

Hawthorne, & Pettis, 2015; Godfray et al., 2014; Pettis et al., 2013)  

 habitat loss, degradation and fragmentation (Staley et al., 2013)  

 social attitudes & incentives (Gill et al., 2015; Ollerton, Rouquette, & Breeze, 2016; 

Staley et al., 2012),  

 standards of beekeeping and husbandry – this is a major pressure on honeybee 

colonies - and agricultural inputs (N. L. Carreck & Ratnieks, 2014; Godfray et al., 

2014; Hartfield, 2017).  
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These all change over time, and are all linked directly or indirectly to the abundance of 

different classes of pollinator. Policies which may be adopted include incentives and 

regulations on various aspects of land use and agricultural inputs, policies to ameliorate the 

effects of extreme weather events, research investments on pests and diseases of 

pollinators, and social marketing and education related to societal and farming support for 

pollinators (L. V. Dicks et al., 2016). In order to evaluate these policies, it is necessary to 

agree upon suitable measures of pollinator abundance and to quantify the effects of various 

policies on this measure.  

It is important, for a successful elicitation, to agree upon clear definitions of the 

variables to be quantified, depicted in Figure 1.  

[FIGURE 1 HERE] 

The overarching goal was to provide decision support for policymakers; given that disease 

burden is only amenable to direct human intervention – and thus to policy change – in 

managed honey bees, disease pressure was assumed to affect honey bees only.  In order to 

avoid over-burdening the experts participating in the structured elicitation, the cumulative 

effects of weather, environment and disease pressure on pollinator abundance needed to be 

restricted to two levels for each as follows: abundance of various pollinators was considered 

to be good or poor; weather was either average, or unusual, disease pressure was high or 

low and the environment was supportive or unsupportive. We then needed to define 

precisely what we meant by these categories and how they would be measured.  

 Following careful discussion with the experts at the elicitation workshop, good 

abundance of honey bees was defined as overwinter losses of no more than 30% as defined 

by the honey bee research association, COLOSS (van der Zee et al., 2013), and poor 

abundance corresponded to overwinter losses greater than 30%. For wild bees, abundance 

was considered good if the number of observations recorded in the spring season by the 

Bees, Wasps and Ants Recording Society (BWARS) was within the range of averages for the 

spring season recorded in the last five years and poor if fewer. For other insect pollinators, 

hover flies were considered to be a representative taxon and so abundance was defined as 

good if the number of observations recorded in the spring season by the Hoverfly 

Recording Scheme (HRS) was within the range of averages for the spring season recorded in 

the last five years and poor if fewer. Some limitations of the BWARS and HRS recording 

methods were noted, particularly that recordings of rare species are more likely to be made 
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than common varieties and that survey regions are likely to be limited to easily accessible 

areas.  

The participating experts considered the parasitic mite Varroa (Varroa destructor) to 

be the key pest affecting honey bees. The UK National Bee Unit's BeeBase website provides 

a wide range of free beekeeping information for UK beekeepers and the threshold for 

Varroa treatment given on BeeBase was used to delineate between good and poor Varroa 

control and this was used as a proxy for overall disease pressure.   

Following in depth discussion, environment was defined as supportive if it had at 

least 15% of semi natural land, and unsupportive if the percentage was below this threshold, 

following a study by (E. Benjamin, R. Reilly, & Winfree, 2014). 

The weather was categorised as average or unusual based on figures obtained from 

the UK Meteorological Office: average if the number of days with more than 0.2mm of rain 

fell between 35-70, hours of sunshine fell between 240-480 and mean daily temperature fell 

between 3-10C; and unusual otherwise.  

 Following these clarifications, the experts each gave private, individual first round 

estimates for the probability of good pollinator abundance given the various combination of 

the influencing factors in each of the elicitation questions. It was assumed that the 

probability of poor pollinator abundance is: 1- the probability of good abundance. The 

experts’ estimates were plotted in anonymised form on graphs (see Appendix 2 Figure A2.1) 

ready for the discussion phase. The elicitation questions are listed in Appendix 1 

During the discussion of the anonymised results, experts shared their understanding of what 

precisely each question was asking, discussed how they had come to their estimates and the 

reasons for the width of the interval between their lowest and highest plausible estimates. In 

particular, it was important for the facilitators to understand whether a wide interval was 

indicative of the expert's perceived uncertainty in the system or a reflection of their own 

uncertainty, for example, where they had more expertise in honey bees than hover flies and 

so felt less well able to estimate quantities on the questions about hover flies. Following the 

discussion, the experts each gave private, individual second-round responses in line with the 

IDEA protocol.  

 After the workshop, the experts’ first and second-round estimates were compared 

and whilst some responses were unchanged, others were changed considerably. Of 

particular note, many of the experts reduced the interval between highest plausible and 

lowest plausible values in their second-round estimates, suggesting that they were more 
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certain about the interval within which a good estimate should lie following the discussion. 

For example, in Q1.7, expert 1 showed a lot of uncertainty in round one which is reduced 

after the discussion as seen in a reduced distance between upper and lower estimates in 

their round 2 estimates. Experts 4 and 5 showed a significant change of mind on the location 

of their estimates following discussion, but remaining experts did not change much. A similar 

plot was produced for each question. In Q1.6, expert 2 shows a great deal of confidence 

with narrow bands between the upper and lower estimates which do not change after the 

discussion. Expert 3, in contrast, completely relocates their estimate following the 

discussion, so that the upper and lower bounds do not overlap. Expert 9 shows enormous 

uncertainty before discussion and a greater certainty afterward, as shown by reduced bands 

between upper and lower values from a difference of 90% to a difference of 20% (see 

Appendix 2 Figure A2.2 and A2.3).  

The calibration exercise  

Following the main elicitation exercise, the experts kindly agreed to take part in a 

calibration exercise. Permission was generously granted by a number of authors of refereed 

papers (see acknowledgments) to base calibration questions on their papers after they had 

been accepted for publication in a journal, but ahead of their actual publication, so that these 

papers were unavailable to the experts at the time of giving estimates for the calibration 

questions. The wording of the questions and the papers on which they were based is given 

in Appendix 1.  

 First-round estimates were received from ten of the original eleven experts via email 

and these were plotted in an anonymised format on graphs, as before. The discussion phase 

was held by Skype, with experts who were unable to attend agreeing to read the 

anonymised written record of the discussion before making their own second-round 

estimates. During the discussion, it emerged that the experts present at the meeting felt 

they had insufficient expertise between them to answer calibration questions 9, 10 and 11 

with any confidence, so the second-round estimates for these questions were assumed to 

be identical to the first and calibration scoring was done both with and without these 

questions as a sensitivity analysis. All ten experts subsequently provided second estimates by 

email by an agreed date. These were analysed using the following measures of performance 

(See Appendix 1 and (Hanea et al., 2016) for details): 

 The Brier score (per question, per expert)  
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 The average Brier score (per expert)  

 The length of the uncertainty interval (per question, per expert)  

 The calibration term of the Brier score (per expert calculated from all questions)  

 Relative informativeness (per expert calculated from all answers) 

These analyses showed that the differences in calibration scores were not significant 

between experts. This means that the estimates of the quantities of interest from the 

original elicitation workshop can be combined using an equal-weighting scheme of the 

second-round estimates.  

Results 

Using an equally weighted combination average, the aggregated lowest plausible, highest 

plausible and best estimates for the probability of good abundance of honey bees, other 

bees and hover flies were calculated from the of the second-round estimates.  

 These are given in Table 1. 

[TABLE 1 HERE] 

 Using these values in the Bayesian network, we can now perform “what-if” analysis 

for all possible scenarios. The first scenario is a baseline, populated with the best estimate 

probabilities from Table 1 with the baseline probabilities that weather is average 62% of the 

time and 20% of UK environment is supportive as defined previously and that there is a 

50/50 chance of good Varroa control (Figure 2).  

[FIGURE 2 HERE] 

The following scenarios are produced by asserting that one or more aspects of weather, 

environment or Varroa control have been observed, by setting these to 100%, also called 

`adding evidence'.  

 With a supportive environment the probability of good abundance increases from 

baseline values, but with a smaller improvement for honey bees as these are still impacted 

by the quality of Varroa control. Similarly, with an unsupportive environment the probability 

of good pollinator abundance reduces from baseline values, but less so for honey bees 

(Figure 3).  

[FIGURE 3 HERE] 

 With good Varroa control, the probability of good honey bee abundance increases 

significantly from baseline values whilst the probability of good abundance of other bees and 
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hover flies is unaffected since only honey bees are affected by the quality of Varroa control 

and analogously for poor Varroa control (see Appendix 2 Figure A2.4).  

 A combination of good Varroa control and unusual weather captures the balance of 

the influencing factors on different classes of pollinators. The values for hover flies and other 

bees are the same as unusual weather alone. The effect on honey bees of the combination 

of good Varroa control with unusual weather, shows probability of good abundance higher 

than baseline values, reflecting the experts' assertion that Varroa control has a stronger 

influence on honey bee abundance than weather. Similarly, the effect on honey bees of the 

combination of poor Varroa control with unusual weather shows probability of good 

abundance much lower than baseline values, reflecting the strong effect of poor Varroa 

control exacerbated by unusual weather (Figure 4).  

[FIGURE 4 HERE] 

A combination of good Varroa control and supportive environment shows a 

probability of good abundance of all pollinator classes much higher than baseline values 

(Figure13), which persists even in the event of unusual weather (see Appendix 2, Figure 

A2.5). 

 Finally, using the BN we can determine what the probabilities of good Varroa 

control, average weather and supportive environment need to be in order to be certain of 

good pollinator abundance. For good abundance of all classes of pollinators, Varroa control 

would need to be good with 73% probability in combination with 82% probability of average 

weather and 82% probability of supportive environment (Figure 5). 

[FIGURE 5 HERE] 

For good honey bee abundance, this level Varroa control along with probabilities of 

supportive environment and average weather raised slightly from baseline values would be 

sufficient. Under these conditions, the probability of good abundance of hover flies and 

other bees is also slightly improved. For good other bee abundance, a further slight increase 

in the probability of average weather in combination with a probability of supportive 

environment of 45% would be required.   Honey bees and hover flies would also be 

expected to have an increased probability of good abundance under these conditions. For 

good hover fly abundance, a further increase in the probability of average weather is 

required. The probability of supportive environment is lower than for other bees, but still 

more than double the baseline values (see Appendix 2, Figure A2.6). 
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Discussion 

We have estimated the probability of good pollinator abundance under various 

combinations of weather conditions, environmental circumstances and disease pressure 

profiles using structured expert judgement, overcoming the prohibitive difficulties of 

obtaining these by designed experiment. Structured expert judgement provides a way to 

estimate these quantities in a transparent and defensible manner. In the elicitation of 

quantities from experts, we have also shown that the differences in expertise between 

acknowledged specialists can be properly and robustly dealt with and reduced by the careful 

use of facilitated discussion, avoiding the severe problems associated with unstructured 

elicitation. 

We have shown that these quantities can be used to quantify the likely effects of changes in 

drivers on the abundances of various classes of pollinating insects. This leads to the ability to 

test policy interventions alone and in combination for the likely impact on pollinator 

abundance to inform policy choice or pilot studies. For example, the quantities provided by 

the experts show that Varroa control has an enormous effect on the abundance of honey 

bees, so interventions which include assistance in good Varroa control are likely to be 

supportive of good honey bee abundance (Figure A2.4).   We see that a supportive 

environment is good for all pollinators, but its effect is more constrained for honey bees as 

these are still influenced by the quality of Varroa control (Figure 3).  We can also determine 

likely effect of policies on pollinator abundance under the effects of uncontrollable drivers, 

like weather.  As more evidence becomes available, for example evidence on disease 

pressure for other pollinators, this can be incorporated into this model to refine the 

estimates of pollinator abundance. This approach can also be extended to include other 

drivers. For example, estimating the effect of climate change on weather variability could be 

used to adjust the probability of unusual weather (as defined here) and so quantify the 

knock-on effect on pollinator abundance. Work to do this using the methods in (Smith et 

al., 2017) is currently under way and will be reported separately.  

By eliciting not only best estimate values for the probability of good abundance, but 

also the lowest and highest plausible values (Table 1), it becomes evident that not all these 

influencing factors have a symmetrical effect.  For example, unusual weather has the effect of 

lowering the lowest plausible probability of good abundance for all pollinator classes more 

than the highest plausible probability of good abundance, with other factors constant. The 
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notable exception to this is for honey bees when Varroa control is poor; here additional 

weather effects are small. 

Further interesting patterns can be seen in the similar and different responses of 

different classes of pollinators. Whenever the environment is unsupportive, the highest 

plausible value for the probability of good abundance in all pollinator classes is less than 43%, 

except in the case of honey bees with good Varroa control, where it is still under 60%.  This 

suggests that a supportive environment is a key modifiable factor to support pollinator 

abundance. Whenever Varroa control is poor, the highest plausible value for the probability 

of good abundance of honey bees is below 45%, regardless of the other factors, suggesting 

that Varroa control is a key modifiable factor to support honey bee abundance. Using the 

BN to determine what the probabilities of good Varroa control, average weather and 

supportive environment need to be in order to be certain of good pollinator abundance, we 

have shown how the different classes of pollinator have differing requirements. Since, in the 

short term at least, weather is not a controllable factor, we return to the scenario in Figure 

A2.5 and show that in areas where the environment is supportive and Varroa control is 

good, then we can expect a probability of good abundance of pollinators of all classes in 

excess of 60%. 

Important policy conclusions from this work are: 

 Actions to improve the effectiveness of Varroa control should be a priority for the 

honeybee policy area. The results demonstrate the importance of Varroa 

management for individual beekeepers, but given that Varroa management was by far 

the most important driver for honeybee abundance identified in this study, it 

suggests also that improvements to government policy on Varroa management 

would also be a useful way forward,  

 Improving the amount of supportive environment will have large benefits for wild 

bees and other pollinators, with some benefits also for honeybees – the results 

suggest this should be a priority policy area.  

This study adds an estimate of how much change in pollinator abundance might be expected 

form implementation of policy recommendations. 
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  The strengths of this study are the use of established and validated methods to 

derive quantities of interest, making this a unique contribution. The provision of the likely 

effect of combinations of factors on pollinator abundance is of great importance within 

ecosystem service management and conservation as well as policy design. In particular, the 

preservation of pollinators is of such importance that there are national strategies in the UK 

and elsewhere and these findings can be used to evaluate candidate policies in order to 

support policymakers in making evidence-based choices. The experts who contributed to 

the workshop and provided estimates are recognized as top experts in the field, and many 

have already given evidence to the UK government in the development of the national 

strategy, giving confidence that these estimates are likely to be reliable given the current 

state of knowledge.  

 The limitations of the study are the rough discretisation of the continuous variables 

and the choice of calibration questions. We had to reduce the levels of weather, disease 

pressure and environment to two levels each in order to complete the elicitation in the 

time available. Ideally a more nuanced categorisation would be preferred. However, more 

levels per variable lead to a rapid rise in the number of conditional probabilities to be 

elicited, hence in an increased elicitation burden. Future work could include the use of 

continuous BNs which can drastically reduce the number of parameters to be elicited 

(Hanea, Kurowicka, & Cooke, 2006; Morales, Kurowicka, & Roelen, 2008). Also only a 

subset of drivers were chosen which excluded some others known to be major stressors on 

pollinators, such as climate change and pesticides. Finding evidence on which to base 

calibration questions was enormously difficult and the calibration questions are not as 

similar to the elicitation questions as we would have liked. In our implementation of the 

protocol the difficulty was increased by having the calibration exercise remotely; for 

practical reasons, the calibration discussion was carried on by Skype and not face-to-face. It 

is likely that the intervals between the highest and lowest plausible estimates would have 

been smaller following a face-to-face discussion.  Three questions were deemed beyond the 

experts' domain knowledge. However, by undertaking sensitivity analysis with respect to 

these questions, we have shown that the calibration score and so the weighting between 

experts is not significantly affected. To undertake structured expert elicitation well takes 

time and is very demanding for experts. These compromises, whilst not ideal, enabled the 

study to take place.  



15 
 

 Future work will include the incorporation of these values with other evidence on 

major drivers of pollinator abundance to provide a proof of concept decision support 

system which could be used by policy-makers to evaluate the effect on pollinator abundance 

of plausible scenarios and policy interventions, based on new methodology for coherent 

inference in networked systems (Smith et al., 2017). We conclude that when evidence based 

decision-making is required, structured expert judgement can provide useful, transparent 

and defensible evidence, including in the ecosystem services domain.  
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Appendix 1. 

A.1 The IDEA protocol 

Like most structured elicitation protocols, IDEA has a pre- and post- elicitation stage. Prior 

to the elicitation the questions must be formulated and the experts identified. Two types of 

questions may be asked during the elicitation: the questions of interest, and the so-called 

calibration questions which can be then used to calibrate the experts' assessments, calculate 

performance measures to be used as weights for the mathematical aggregation step of the 

protocol. The IDEA protocol was refined and tested as part of a forecasting “tournament” 

that started in 2011 as an initiative of the US Intelligence Advanced Research Projects 

Activity (IARPA). In making their estimates for each question, experts may answer questions 

about quantities / variables measured on a continuous scale, or about probabilities of 

discrete variables. In asking about probabilities, IDEA uses a 3 step format (Hanea et al., 

2016; Sutherland & Burgman, 2015).  

 In the pre-elicitation stage, the problem needs to be defined as precisely as possible 

to minimise any risk of semantic or other misunderstandings arising, and to aid in the 

identification of the suitable experts. A detailed search is used to find potential experts and 

these are approached for their involvement. The data on which the calibration questions will 

be based is ideally identified at this stage and designed to be as close to the experts' domain 

and the questions of interest as possible. Finally, some training is delivered to the experts to 

explain what is required of them and, if relevant, discuss the estimation of probabilities. The 

elicitation stage consists of three phases: investigate, discuss and estimate. It begins with 

experts investigating several resources, individually. A list of essential documents and 

resources is circulated amongst experts. If any expert knows of relevant evidence which 

does not appear in the list, they suggest these to the facilitator who makes the resource 

available to all the experts. However, the amount of resources provided should be limited 

to the essential reading, since too much information might bias the experts. In the 

discussion stage, more information and resources are revealed and discussed. Based on 

these investigations, the experts provide individual estimates of the quantities of interest by 

answering the questions without discussing with, or disclosing their responses to, the other 

experts. They are asked to provide their estimates in a particular order: their lowest 

plausible, highest plausible and then best estimate of the quantities of interest. This ordering 

is designed to avoid anchoring the upper and lower estimates around the best estimate and 

leads to better accuracy.  
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 The second phase is a facilitated discussion of the anonymised results for each 

question in turn, which irons out any residual semantic difficulties and allows experts to 

share their reasoning and any further additional evidence with each other. This ensures that 

every expert is answering the same question based on the same evidence. The third phase is 

a second round of individual, private estimates, allowing experts the opportunity to revise 

(or not) their estimates, based on what they heard in the discussion. The privacy afforded 

for providing their second round estimates protects them from any pressure to conform to 

the views of others.  

 The calibration exercise is identical in format to the elicitation. The principal 

difference is that the `answers' to the calibration questions can be checked - either they will 

become known shortly or they are already known to the elicitation facilitator, but not 

accessible to the experts. The calibration data is used to construct a set of test questions 

for which experts are asked to give highest plausible, lowest plausible and best estimate with 

a facilitated discussion and second private estimate identical to the elicitation exercise. It is 

important that these questions are as central to the experts' area of expertise as possible 

and sufficiently similar to the quantities of interest in the main elicitation. The experts' 

estimates on the test questions can be compared by the elicitation team to the known 

values and performance measures can be calculated. These performance measures can be 

used to inform the mathematical aggregation into a single distribution or point estimate.  

Performance Measures   

(See (Hanea et al., 2016) for details): 

 The Brier score is twice the squared difference between an estimated probability of 

an event (best guess) and the actual outcome; therefore it takes values between 0 

and 2. Lower values are better and are achieved if an expert assigns large 

probabilities to events that occur, or small probabilities to events that do not occur. 

We calculated this per question, per expert. 

 The average Brier score is a participant’s accuracy is measured over many questions 

and averaged to represent long term accuracy. Since scores close to 0 are good for 

the individual questions, it follows that scores close to 0 are good for the average of 

those individual question scores and that a big score corresponds to poor 

performance. A score of 0.5 can be achieved by setting all answers to 50% i.e. ‘I 

don’t know’.  We calculated this per expert. 
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 The length of the uncertainty interval is an indication of an experts’ confidence in the 

best estimate given; small scores are better because they represent certainty.  We 

calculated this per question, per expert. 

 The calibration term of the Brier score places forecasts into groups or bins with the 

same forecast probability and is based on the difference between the empirical and 

the theoretical distribution of each bin, therefore smaller scores are better. We 

calculated one number per expert calculated from all questions.  

 Relative informativeness is based on measuring entropy. For details see (R. Cooke, 

1991). We calculated one score per expert calculated from all answers. Larger 

scores are better  

The final stage is the mathematical aggregation of experts' judgements. Commonly, some 

form of weighting is used based on the calibration exercise, which provides insight into the 

ability of the experts to estimate probabilities - a task known to be difficult. The ideal expert 

is both expert in the domain of interest and good at estimating probabilities.  

 

A.2 Background materials 

 These materials were circulated as background ahead of the elicitation:  

(K. C. R. Baldock et al., 2015; Barker, Garthwaite, & Parrish, 2014; Baron, Raine, & Brown, 

2014; Baude et al., 2016; Matthias A. Becher et al., 2014; M. A. Becher, Osborne, Thorbek, 

Kennedy, & Grimm, 2013; Blaauw & Isaacs, 2014; Botias et al., 2015; Breeze, Roberts, & 

Potts, 2012; N. L. Carreck & Ratnieks, 2014; Chauzat et al., 2014; Connolly, 2013; Datta et 

al., 2013; Defra, 2013; L. Y. N. N. V. Dicks et al., 2015; Dively et al., 2015; Easac, 2015; 

EFSA, 2012, 2013; Fürst et al., 2014; Garibaldi et al., 2011; Garratt et al., 2014; Garthwaite, 

Barker, et al., 2014a; Garthwaite, Barker, Laybourn, Huntly, Parrish, Hudson, & Thygesen, 

2014; Garthwaite, Barker, et al., 2014b; Godfray et al., 2014; Jaffé et al., 2010; Kennedy et 

al., 2013; Kerr et al., 2015; Lecocq, Jensen, Kryger, & Nieh, 2016; Lonsdorf et al., 2009; 

Manley et al., 2015; McGrath, 2013; Orford et al., 2016; Perry, Sovik, Myerscough, & Barron, 

2015; Polce et al., 2013; Potts et al., 2016; Rader et al., 2016; Renner et al., 2015; Ryabov et 

al., 2014; Scheper et al., 2013; Stanley, Smith, & Raine, 2015; Tuell & Isaacs, 2010; Vanbergen 

& Initiative, 2013; Vicens & Bosch, 2014) 
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A.3 The elicitation questions 

 The experts then gave their individual, subjective estimates of the lowest plausible, highest 

plausible and best estimate of probabilities (in %) for the questions:  

Q1.1 What is the probability of observing good honey bee abundance, given that the 

environment is supportive, the weather is average, and the Varroa control is good?  

Q1.2 What is the probability of observing good honey bee abundance, given that the 

environment is supportive, the weather is average, and the Varroa control is poor?  

Q1.3 What is the probability of observing good honey bee abundance, given that the 

environment is supportive, the weather is unusual, and the Varroa control is good?  

Q1.4 What is the probability of observing good honey bee abundance, given that the 

environment is supportive, the weather is unusual, and the Varroa control is poor?  

Q1.5 What is the probability of observing good honey bee abundance, given that the 

environment is unsupportive, the weather is average, and the Varroa control is good?  

Q1.6 What is the probability of observing good honey bee abundance, given that the 

environment is unsupportive, the weather is average, and Varroa control is poor?  

Q1.7 What is the probability of observing good honey bee abundance, given 32 that the 

environment is unsupportive, the weather is unusual, and the Varroa control is good?  

Q1.8 What is the probability of observing good honey bee abundance, given that the 

environment is unsupportive, the weather is unusual, and the Varroa control is poor?  

Q2.1 What is the probability of observing good other bee abundance, given that the 

environment is supportive, the weather is average?  

Q2.2 What is the probability of observing good other bee abundance, given that the 

environment is supportive, the weather is unusual?  

Q2.3 What is the probability of observing good other bee abundance, given that the 

environment is unsupportive, the weather is average?  

Q2.4 What is the probability of observing good other bee abundance, given that the 

environment is unsupportive, the weather is unusual?  

Q3.1 What is the probability of observing good other pollinator abundance, given that the 

environment is supportive, the weather is average?  

Q3.2 What is the probability of observing good other pollinator abundance, given that the 

environment is supportive, the weather is unusual?  

Q3.3 What is the probability of observing good other pollinator abundance, given that the 

environment is unsupportive, the weather is average?  
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Q3.4 What is the probability of observing good other pollinator abundance, given that the 

environment is unsupportive, the weather is unusual?  

A.4 Calibrations Questions  

 

Based on (beeinformed.org, 2015; Seitz et al., 2015; Spleen et al., 2013) 

CQ1 Total losses over winter together with a 95% CI were reported. What is the 

probability that the upper bound of the reported CI is higher than 25%?  

CQ2 Total losses over the entire 20142015 beekeeping year, together with a 95% CI were 

reported? What is the probability that the upper bound of the reported CI is less than 45%?  

CQ3 Participants of the survey indicated a loss up to 18.7% on average as acceptable over 

winter. What is the probability that the proportion of all beekeepers who had higher colony 

losses than they deemed acceptable was less than 70%?  

Based on (Liolios et al., 2015) 

CQ4 Bees collected pollen from a large number of taxa, but only some of those contributed 

significantly to their nutritional requirements. What is the probability that the proportion of 

the taxa that included more than 80% of the total proteins that were available for bees, to 

be larger than 25%?   

CQ5 What is the probability that the average crude protein of these selected pollen 

sources was larger than 30%?  

CQ6 What is the probability that the average protein content of the plants blooming in the 

spring is less than 20%?  

CQ7 What is the probability that the correlation between the average protein content per 

mixed sample and the corresponding average amount of collected pollen was statistically 

significant (significantly different than 0) during the year?  

CQ8 What is the probability that the correlation between the protein content and the 

number of collected taxa was statistically significant (significantly different than 0) during the 

year?    

Based on (Alvarez et al., 2015) 

CQ9 What is the probability that the average length of the cells constructed by M. concinna 

is larger than 10mm?  

CQ10 33 nests were studied. What is the probability that the average number of cells per 

nest is lower than 10?  
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CQ11 What is the probability that the proportion of overall cells of M. concinna which did 

not reach maturity (for whatever reasons) is larger than 40 %?  

Based on (Jones et al., 2016) 

CQ12 Given that in 2008, during January, February, and March, total rainfall was 14.22 cm, 

51.5% of total annual rainfall, and during the growing season the highest average monthly 

temperature recorded was 27.63C for August and 10.57C for December, what is the 

probability that the total number of bumble bees observed (at all sites) decreased by more 

than 80%? 

 CQ13 If the season and sites are combined the primary pollinators by percent of visits in 

2008 were: hummingbirds, Acton giant flower-loving y; western honey bee; long-tongued 

digger bees; longhorned digger bees and sweat bees. What is the probability that 

hummingbirds and Acton giant flower-loving flies accounted for more than 50% of the total 

visits?  

CQ14 If the season and sites are combined the primary pollinators by percent of visits in 

1995 were: longhorn digger bees; hummingbirds; sweat bees; bumble bees and the Acton 

giant flower-loving y. What is the probability that hummingbirds and digger bees accounted 

for more than 50% of the total visits?  

CQ15 A comparison of the pollination data collected for early, mid, and late blooming 

seasons during the 1995 and 2008 efforts elicits patterns of abundance, indicating transition 

of pollinator presence across the season. During the 1995 season, the distribution of visitor 

abundance relative to total abundance was similar in early (39%) and mid-season (37%), 

whereas it tapered off during late season (24%). What is the probability that the visit 

abundance during the early season of 2008 is significantly different than the visit abundance 

during the early 34 season of 1995 (as indicated by a one-way ANOVA)?  

CQ16 Abundance of primary pollinators observed for years when data were available was 

correlated to mean annual precipitation for the year before observations to elicit trends in 

pollinator abundance. What is the probability that a statistically significant positive 

relationship was found for the collective grouping of butteries and moths?  

Based on (Liu et al., 2016) 

CQ17 Given that all Nosema bombi infections from 2013 were detected using PCR methods, 

what is the probability of commercial Bombus colonies (detected to be) infected with 

Nosema bombi to amount to more than 1% in 2013?  
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CQ18 Consider the entire period of the study, all the inspected colonies, and the four 

pathogens and parasites tested for. What is the probability of the total (detected to be) 

infected colonies to amount to less than 0.5 %?  

CQ19 Consider the entire period of the study and all the inspected colonies. What is the 

probability of commercial Bombus colonies (detected to be) infected with Crithidia bombi to 

amount to more than 0.3%?  
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Appendix II Supplementary figures 

 

Q1.3 What is the probability of observing good honey bee abundance, given that the 

environment is supportive, the weather is unusual, and the Varroa control is good 

Figure A2.1. The first round-estimates of lowest plausible, highest plausible and best 

estimate of the probability of good pollinator abundance for each expert were anonymously 

compared along with the mean of the upper, lower and best estimates for comparison.  
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Q1.7 What is the probability of observing good honey bee abundance, given that the 

environment is unsupportive, the weather is unusual, and the varroa control is good? 

Figure A2.2. Second round estimates for each expert, given following the discussion of first 

round estimates, were anonymously compared along with the mean of the upper, lower and 

best estimates for round 2. Each estimate was compared with the estimates for the same 

expert in round one.  
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Q1.6 What is the probability of observing good honey bee abundance, given that the 

environment is unsupportive, the weather is average, and Varroa control is poor?  

Figure A2.3. Second round estimates for each expert, given following the discussion of 

round one estimates, were compared with the estimates for the same expert in round one 

anonymously, along with the mean of the upper, lower and best estimates for round 2.  
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A 

 

B 

 

Figure A2.4. Bayesian network populated with the best estimate probabilities from the Table 

1 with A. good Varroa control and B. poor Varroa control.  The numbers and bars show 

the probability of each state being true. Image produced in NETICA. 
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A 

 

B 

 

Figure A2.5. Bayesian network populated with the best estimate probabilities from the Table 

1 with a combination of A. good Varroa control and supportive environment and B. unusual 

weather, good Varroa control and supportive environment. The numbers and bars show the 

probability of each state being true. Image produced in NETICA. 
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A
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C

 

Figure A2.6. Bayesian network populated with the best estimate probabilities from Table 1 showing 

the values for Varroa control, weather and environment which would be required to ensure good 

abundance of A. honey bees alone, B other bees alone, C. hover flies alone.  The numbers and bars 

show the probability of each state being true. Image produced in NETICA  
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Figure A2.6. Bayesian network populated with the best estimate probabilities from Table 1 

showing the values for Varroa control, weather and environment which would be required 

to ensure good abundance of A. honey bees alone, B other bees alone, C. hover flies alone.  

The numbers and bars show the probability of each state being true. Image produced in 

NETICA.  
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Figures and tables 

 

 

Table 1. The best estimate (lowest plausible, highest plausible) for the probability that 

abundance of honey bees, other bees and hover flies is good, under all combinations of 

environment, weather and disease pressure. 

Environment  Weather  Varroa 

control 

Probability abundance is good 

   Honey bees Other bees Hover flies 

Supportive Average Good 0.77 (0.57, 0.89) 0.73 (0.49, 0.87) 0.71 (0.48, 0.87) 

Supportive Average Poor 0.27 (0.16, 0.45) 0.73 (0.49, 0.87) 0.71 (0.48, 0.87) 

Supportive  Unusual  Good  0.52 (0.29, 0.76) 0.47 (0.29, 0.73) 0.51 (0.32, 0.71) 

Supportive Unusual Poor 0.24 (0.13, 0.44) 0.47 (0.29, 0.73) 0.51 (0.32, 0.71) 

Unsupportive Average Good 0.38 (0.21, 0.59) 0.21 (0.11, 0.42) 0.25 (0.12, 0.43) 

Unsupportive Average Poor 0.14 (0.07, 0.29) 0.21 (0.11, 0.42) 0.25 (0.12, 0.43) 

Unsupportive Unusual Good 0.33 (0.15, 0.51) 0.18 (0.07, 0.41) 0.17 (0.06, 0.37) 

Unsupportive Unusual Poor 0.11 (0.05, 0.23) 0.18 (0.07, 0.41) 0.17 (0.06, 0.37) 

 

  



39 
 

 

Figure 1.  The effects on the honey bee, wild bee and other insect pollinator abundance of 

all combinations of possible states of weather, the environment and disease pressure were 

elicited from a panel of experts. Evidence for the link between disease and honeybees is 

strong, but relatively incomplete for other bees and other pollinators.  For this reason, we 

did not ask the experts to estimate the effects of disease on other bees and other 

pollinators and omit the link between disease pressure and other bees and other pollinators 

in the schematic. Image produced in NETICA. 

  



40 
 

 

Figure 2. Bayesian network populated with the best estimate probabilities from the Table 1 

with the baseline probabilities that weather is average 62% of the time and 20% of UK 

environment is supportive as defined previously. At baseline, no evidence has been added as 

to whether Varroa control is good or not, so these probabilities are 50:50. The numbers 

and bars show the probability of each state being true. Image produced in NETICA. 
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B 

 

Figure 3. Bayesian network populated with the best estimate probabilities from the Table 1 

with A. a supportive environment, B. an unsupportive environment. The numbers and bars 

show the probability of each state being true. Image produced in NETICA. 
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A 

 

B 

 

Figure 4. Bayesian network populated with the best estimate probabilities from the Table 1 

with a combination of unusual weather and A. good Varroa control and B. poor Varroa 

control captures the balance of the influencing factors. The numbers and bars show the 

probability of each state being true. Image produced in NETICA.  
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Figure 5. Bayesian network populated with the best estimate probabilities from Table 1 

showing the values for Varroa control, weather and environment which would be required 

to ensure good abundance of honey bees and other bees and hover flies. The numbers and 

bars show the probability of each state being true. Image produced in NETICA.  
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