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Abstract 

Realgar (As4S4)-rich tailings are iron-deficient arsenical mine wastes. The mechanisms and products 

of the dissolution of realgar by Acidithiobacillus ferrooxidans (A. ferrooxidans) in the presence (0.2 

g and 2 g) and absence of zerovalent iron (ZVI) are investigated for three stages (each of 7 d with 

fresh A. ferrooxidans medium addition between the stages). SEM-EDX, FTIR, XPS and selective 

extraction analysis are used to characterize the solid-phase during the experiments. ZVI addition 

causes the systems to become more acid-generating, although pH increases are observed in the first 

day due to ZVI dissolution. Arsenic is released to solution due to realgar oxidation (~30 mg L-1 in the 

0 g ZVI system in Stage I), but low concentrations are observed in the ZVI-added systems (<5 mg L-

1) and in Stages II and III of the 0 g ZVI system. As(III) dominates the released As(T) at day 1 (83-

89% of As(T)), but is largely oxidized to As(V) at day 7 of each stage (53-98% of As(T)). Arsenic 

attenuation is attributed to the formation of mixed As-Fe oxyhydroxides and oxyhydroxy sulfates that 

take up released arsenic and are abundant in the 2.0 g ZVI system, and to passivation of the realgar 

surface. Consequently, a new strategy that combines A. ferrooxidans and exogenous ZVI addition for 

treating in-situ iron-deficient realgar-rich tailings is proposed, although its long-term effects need to 

be monitored. 
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1. Introduction 

Arsenic (As) is a ubiquitous concern worldwide because of its toxic, carcinogenic and 

teratogenic properties on human health (Smith et al., 1992; Nordstrom and Alpers, 1999; Smedley 

and Kinniburgh, 2002). Dissolution of As-rich tailings is one of main causes of As contamination in 

water, soil and diverse ecosystems (Macur et al., 2001; Mkandawire and Dudel, 2005; Shi et al., 2017). 

The behavior of As in tailings and soils is strongly influenced by the oxidative and reductive microbial 

dissolution of As-bearing sulfides and Fe oxyhydroxides (Johnston et al., 2011; Lu and Wang, 2012; 

Burton et al., 2013). Arsenopyrite (FeAsS) and arsenian pyrite (Fe(S, As)2) are common iron-rich As 

sulfides that can incorporate gold, silver, etc., but mining and hydrometallurgy operations involving 

them can result in significant release of As to the environment (Reich et al., 2005; Corkhill and 

Vaughan, 2009). Microbial techniques can be used to treat these mine wastes by enhancing As 

immobilization (Gonzalezcontreras et al., 2010, 2012; Okibe et al., 2017). For example, Egal et al. 

(2009) found that various Acidithiobacillus ferrooxidans (A. ferrooxidans) strains can help the 

formation of kinds of ferric oxyhydroxy sulfates (e.g. tooeleite, schwertmannite and jarosite) that are 

able to incorporate As within their structure or adsorb them at their surface during microbial Fe(II) 

oxidation. Gonzalezcontreras et al. (2010) have shown that Acidianus sulfidivorans can promote the 

formation of scorodite (FeAsO4·2H2O), which has low solubility and is a good mineral trap for As. 

Arsenian pyrite can contain up to 10 wt.% As (Qiu et al., 2017). The microbial dissolution of 

pyrite involving organisms such as A. ferrooxidans has been studied for more than forty years (Singer 

and Stumm, 1970; Percak-Dennett et al., 2017). A. ferrooxidans is an acidophilic iron-oxidizing 

bacteria which oxidizes Fe(II) to Fe(III) at pH 1.5-7.0 to obtain energy for growth (Meruane and 

Vargas, 2003; Ko et al., 2013). The released Fe(III) can also oxidize pyrite and increase its dissolution 

rate. The oxidative dissolution of arsenopyrite, leading to the release of As(III) and As(V), has also 
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been extensively studied (Barrett et al., 1993; Corkhill and Vaughan, 2009). It has been shown that 

addition of excess Fe(III) can trigger electron transfer between Fe(III) and Fe(II) in arsenian pyrite 

and arsenopyrite dissolution, resulting in higher oxidative dissolution rates and production of 

secondary phases such as iron oxyhydroxides (Chen et al., 2014; Neil and Jun, 2016). These newly-

formed iron oxyhydroxides can in turn sequester As via sorption or co-precipitation reactions (Dixit 

and Hering, 2003; Root et al., 2009; Johnston et al., 2012). 

Realgar (As4S4) is another common As sulfide (containing mainly As(II)) (Lengke and Tempel, 

2003; Wu et al., 2017), but compared to arsenopyrite and pyrite, is iron-deficient. Like the other As-

bearing sulfides, realgar dissolution can be affected by physical, chemical and biological factors 

including pH, Eh, oxygen, light, solution composition/speciation and microorganism activity (Cullen 

and Reimer, 1989; Kyono et al., 2005). A. ferrooxidans, for example, has been shown to oxidize 

realgar (Zhang et al., 2007; Chen et al., 2011; Yan et al., 2017). Zhang et al. (2007) showed that the 

oxidation of realgar in acidic condition was significantly accelerated in the presence of dissolved 

Fe(II) and mixed cultures of A. ferrooxidans and A. thiooxidans, compared to single culture 

experiments. By contrast, Chen et al. (2011) found that microbially-generated Fe(III) can prevent the 

oxidation of realgar. These studies have mainly focused on the effects of aqueous iron ions (e.g. Fe(II), 

Fe(III)) and no studies to date have been carried out to investigate the effect of exogenous solid 

zerovalent iron (ZVI) on the dissolution of realgar. ZVI is a wide and effective commercial 

remediation agent used to remove As and other contaminants from groundwater and soils (Kuijae et 

al., 2009; Tuček et al., 2017; Xie et al., 2017). Recently, Liang et al. (2017) used ZVI to stabilize As-

containing sludge, and showed that the extent of ZVI oxidation was closely related to its As sorption 

capacity. These findings raise important questions. What will happen when ZVI is added to iron-

deficient As sulfides such as realgar? What are the mechanisms of As release during microbial realgar 
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dissolution with and without ZVI? An understanding of the mechanisms and products of realgar 

dissolution by A. ferrooxidans with ZVI would answer these questions. If the process is effective, 

exogenous ZVI combined with A. ferrooxidans might be an efficient remediation strategy for in-situ 

realgar-containing tailings. 

Therefore, the aim of this study was to determine the mechanisms and products of realgar 

dissolution by A. ferrooxidans with and without ZVI. We used A. ferrooxidans since it is a common 

bacterium in AMD system and it is tolerant to, but does not metabolize, As (Jones et al., 2003; Yan et 

al., 2017). The specific objectives of the study were to (i) investigate the behavior and speciation of 

As during realgar dissolution; (ii) determine the character and stability of the secondary products; (iii) 

identify the mechanisms involved. This knowledge will be beneficial for developing remediation 

schemes for in-situ iron-deficient realgar-rich tailings. 

 

2. Materials and methods 

2.1. Sample preparation 

The raw realgar used in this study was obtained from the Shimen Realgar Mine (Hunan Province, 

China), the largest former As supplier in Asia (Chen et al., 2017; Fan et al., 2018). The realgar was 

ground, sieved to less than 100 mesh (<180 μm) and without any other treatment to represent typical 

realgar tailings. X-ray diffraction (XRD) analysis confirmed that realgar was the dominant phase with 

no distinct diffraction peaks of other minerals observed (Fig. S1). X-ray fluorescence (XRF) analysis 

showed that the realgar was composed mainly of As (63 wt.%), S (3.46 wt.%) and Fe (4.5 wt.%), 

with minor amounts of Si (0.36 wt.%), Ca (0.26 wt.%), Al (0.26 wt.%), Sb (0.01 wt.%) and Se (0.06 

wt.%). The ZVI powder used in the experiments was purchased from Sinopharm Chemical Reagent 

Co., Ltd (China), and XRD analysis showed it was composed of pure iron (Fig. S2). All chemicals 
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and reagents used in this study were of analytical grade and all solutions were prepared with deionized 

water (Milli-Q, Millipore, ≥18.2 MΩ cm). 

 

2.2. Bacterial strain and bioleaching procedure 

The A. ferrooxidans strain (Acidithiobacillus ferrooxidans SW 02) used in this study was 

provided by the Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest 

University of Science and Technology, Mianyang, China. Pure cultures of A. ferrooxidans cells were 

incubated at 30 °C in 9K liquid medium as follows: 1 L media of 0.5 g K2HPO4·3H2O, 0.01 g CaNO3, 

0.1 g KCl, 0.5 g MgSO4·7H2O, 3 g (NH4)2SO4, 44.3 g FeSO4·7H2O, pH 2.2 (adjusted with 5 M H2SO4) 

(Silverman and Lundgren, 1959). Cells were harvested during the late exponential growth phase. 

Batch experiments were carried out in 250 mL Erlenmeyer flasks under ambient air on a rotary 

shaker at 150 rpm and 30 °C for three stages (7 d per stage), which are hereafter denoted as Stage I, 

II and III. The flasks were covered loosely with nonwoven cloth to decrease water evaporation. 

Microcosms were designed using 100 mL A. ferrooxidans culture mixed with 1 g ground realgar at a 

pulp density of 1 % (w/v). Triplicate realgar microcosms were employed for each mass of ZVI added 

(0 g, 0.2 g, 2.0 g). The control treatment was set as 1 g realgar in 100 mL sterilized A. ferrooxidans 

liquid medium without ZVI addition. The medium in the Erlenmeyer flasks was replaced with 100 

mL fresh A. ferrooxidans culture every 7 d (one stage) to ensure adequate bacteria activity. At regular 

intervals, ca. 5 mL aliquots were withdrawn using a pipette and immediately passed through a 0.22 

μm cellulose membrane filter and acidified (10% HCl) for the total As and Fe (As(T) and Fe(T)) 

analysis. The extracted aliquots were compensated by the addition of 5 mL sterilized 9K medium. 

The solid samples were separated from the supernatant by vacuum filtration (SHB-IIIG, China), 

washed three times with de-ionized water and freeze-dried (Labonco, FreeZone, USA) for 
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characterization. 

 

2.3. Aqueous-phase analysis 

The pH and Eh were measured using a freshly calibrated pH meter (Sartorius PB-21) and 

HACH440d meter with a platinum electrode (MTC 10103). Aqueous Fe(T) and As(T) concentrations 

were determined by Inductive Coupled Plasma Emission Spectrometry (ICP-AES, iCAP6500 

Thermo Fisher, USA). For concentrations below the ICP-AES detection limit (0.08 mg L-1), As 

concentrations were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS, 

Agilent 7700, USA). Concentrations of As(V) and As(III) were quantified by high-performance liquid 

chromatography (HPLC, SAP-20, Jitian, China) with a Hamilton PRP-X100 ion exclusion column 

linked to an atomic fluorescence spectrometer (AFS-8230, Jitian, China), with a detection limit of 

0.01 μg L-1. Aqueous As speciation was measured at day 1 and 7 of each stage due to the growth cycle 

of A. ferrooxidans. The relative error of As(T) measured by ICP-AES/ICP-MS and HPLC-AFS 

(calculated by the sum of As(III) and As(V)) was less than 1.5%. 

 

2.4. Solid-phase Characterization 

X-ray diffraction (XRD) patterns of raw realgar and ZVI powder were recorded using an X’ Pert 

PRO (PANalytical, Netherland) instrument with a Cu-Kα source. Diffraction data were acquired over 

a 2θ range of 10-90  with a scan time of 10.16 s per step and a step size of 0.03 °. The bulk elemental 

compositions of powder sample were determined by X-ray fluorescence (XRF) analysis using a 

PANalytical Axios instrument equipped with a rhodium anode. 

Changes in mineralogy were examined by Fourier Transform Infrared spectrometry (FTIR, 

Spectrum, Perkin Elmer) coupled with a diamond attenuated total reflection (ATR) in a spectral band 
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ranging from 400 cm-1 to 4000 cm-1 with a resolution of 1 cm-1 and 64 scans per sample. The surface 

morphology of the solid sample was imaged using Scanning Electron Microscopy (SEM, EVO@18, 

ZEISS) equipped with energy-dispersive-X-ray-spectroscopy (EDX) operating at 15 kV. Changes in 

solid-phase As, Fe and S oxidation states were determined by X-ray photoelectron spectroscopy (XPS, 

R3000, VG-Scienta) equipped with a Al-Kα source at 30 eV and a step size to 0.05 eV. The specimen 

surface was analyzed under an Ar+ beam in the vacuum chamber. Photoelectron binding energies were 

referenced to C1s level at 284.8 eV. The deconvolution of the raw data was fitted using the software 

of CasaXPS, and the Shirley-type background was subtracted before deconvolution and fitting. The 

binding energies for the component peaks of As, Fe, S were identified by comparison to previously 

reported values (Nesbitt and Muir, 1998; Ouyang et al., 2014). 

Solid-phase samples retrieved from batch microcosms were also assessed using selective 

chemical extraction. Three fractions were extracted i.e. surface-adsorbed fraction (F1); the 

amorphous Fe (oxyhydr)oxides fraction (F2); crystallized Fe (oxyhydr)oxides fraction (F3) (Wenzel 

et al., 2001). Briefly, 0.25 g freeze-dried solid materials were weighed into 50-mL polypropylene 

centrifuge tubes in triplicate and selectively extracted using the reagents and methods listed in Table 

S1. After each extraction step, the suspensions were collected by centrifugation for 10 min at 10000 

rpm. The extracts were filtered (0.22 μm) for As concentration analysis by ICP-AES. 
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3. Results and discussion 

3.1 Dynamics of As and Fe release during realgar dissolution with and without ZVI 

 
Fig. 1 Changes in pH and Eh during realgar dissolution by A. ferrooxidans with and without ZVI. The experiments 

were carried out over three stages (hereafter denoted as Stage I, II, III, 7 d per stage), with fresh A. ferrooxidans 

culture refreshment between Stages. Error bars denoted as standard deviations (n = 3). 

 

pH and Eh variations are important indices for understanding mineral dissolution mechanisms 

in environmental systems (Burlo et al., 1999; Yamaguchi et al., 2011). Changes in pH and Eh as a 

function of time and ZVI presence and absence are shown in Fig. 1. The pH and Eh values in the 

control at every stage were relatively stable at ∼2.4 and ∼250-350 mV, respectively. In Stages I and 

II, dramatic increases in pH to ∼3.5-4.0 and Eh decreases to ∼180 mV were observed in the first day 

of the 2.0 g ZVI addition experiments. In Stage III, the 2.0 g ZVI experiment pH and Eh values were 

almost same as in the 0 g and 0.2 g ZVI experiments. The pH continuously decreased with 

corresponding increases in Eh in the 0 g, 0.2 g and 2.0 g ZVI experiments. High ZVI (2.0 g) addition 
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had the most significant influence on solution pH and Eh. 

 

Fig. 2 Changes in aqueous As(T) and Fe(T) concentrations during realgar dissolution by A. ferrooxidans with and 

without ZVI. The experiments were carried out over three stages (hereafter donated as Stage I, II, III, 7 d per stage), 

with fresh A. ferrooxidans culture refreshment between Stages. Error bars denoted as standard deviations (n = 3). 

 

Fig. 2 shows As(T) and Fe(T) leachate concentrations over the three stages. In Stage I, the As(T) 

release for the 0 g ZVI experiment rose dramatically to ∼30 mg L-1 in the first two days, and the rate 

and extent of realgar dissolution was enhanced in the presence of A. ferrooxidans compared to the 

control (∼20 mg L-1). In Stage II As(T) release for the 0 g ZVI experiment plateaued, suggesting that 

dissolution reached steady-state, while in the control experiment As(T) increased to ∼40 mg L-1, 

eventually exceeding all of the other experiments. After fresh microbial culture addition between the 

two stages, As(T) concentrations for the 0 g ZVI experiment in Stages II and III were significantly 

less than those in Stage I, eventually rising to ∼14.6 mg L-1 and ∼9.1 mg L-1, respectively. 
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Overall, the As(T) concentration patterns for the 0.2 g and 2.0 g ZVI experiments were similar 

throughout the experiment, but the magnitudes were dissimilar. In Stage I, As(T) concentrations were 

very low (<1 mg L-1), but rose to ca. 5 mg L-1 at day 7, with those of the 0.2 g ZVI experiments 

slightly exceeding those of the 2.0 g ZVI experiments. As(T) concentrations were still low (<1 mg L-

1) in the 2.0 g ZVI experiments in Stage II, and were lower overall than those of 0.2 g ZVI experiments. 

In the latter, As(T) concentrations during the initial six days in Stage II were similar to those of day 

7 in Stage I, but rose significantly to ca. 10 mg L-1 at day 15. As(T) concentrations in the 0.2 g ZVI 

Stage II experiment were higher than those of the 0 g ZVI experiment, except for day 7. In Stage III, 

As(T) concentrations for the 0.2 g and 2.0 g ZVI experiments were higher than those of the 0 g ZVI 

experiment. Concentrations rose during Stage III, and were highest for the 0.2 g ZVI experiment. In 

the control system, As(T) was highest at the end of each stage. The As(T) release rate in the first two 

days was slow, but then surpassed those of the ZVI and A. ferrooxidans addition experiments. 

Fe(T) concentrations in the 0 g, 0.2 g and 2.0 g ZVI-added experiments were below those in the 

control treatment over the three stages. In Stage I, the concentration patterns of Fe(T) contrasted with 

those of As(T), and the Fe(T) concentrations declined through this stage (Fig. 2). Surprisingly, 

concentrations of Fe(T) were high (6400 mg L-1) in the 0 g ZVI experiment, despite the fact that only 

realgar was used which had low amounts of Fe (4.5 wt.%). These high Fe(T) concentrations are 

ascribed to the FeSO4·7H2O used in the bacterial medium. Fe(T) concentrations in the 0 g, 0.2 g and 

2.0 g ZVI experiments were clearly below the control experiment, and at the beginning of Stage I, 

were higher than those of 0 g ZVI experiment, suggesting that some iron was released through ZVI 

dissolution. After 4 d, Fe(T) concentrations in the 2.0 g ZVI experiment were still higher than those 

of 0 g ZVI experiment, suggesting that Fe was still released by ZVI dissolution. The opposite trend 

was observed in 0.2 g ZVI experiment, as concentrations fell below those of the 0 g ZVI, suggesting 
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that the Fe released by ZVI dissolution earlier in Stage I had been consumed. 

In Stage II, Fe(T) concentrations were highest for the 2.0 g ZVI experiment, followed by the 0 

g and 0.2 g ZVI experiments. In each experiment, Fe(T) concentrations were relatively stable until 

15 d when they rose. In Stage III, Fe(T) concentrations were similar for the 0.2 g and 2.0 g ZVI 

experiments; they rose from 15 d to 19 d, declined slightly to 22 d, then rose slightly at 23 d. Fe(T) 

concentrations in the 0 g ZVI experiment were higher than those in the 0.2 g and 2.0 g ZVI 

experiments at 17 d of Stage III, but after peaking at 18 d, declined overall by 23 d to fall below those 

of 0.2 g and 2.0 g ZVI experiments.  

 

3.2 Dynamic of aqueous As speciation changes during realgar dissolution with and without ZVI 

Changes in aqueous As speciation during the experiments are shown in Fig. 3 and the data are 

compiled in Tables S4 and S5. The speciation of As in the control and in the 0 g, 0.2 g and 2.0 g ZVI-

experiments were completely different. In the control experiment, the released As was dominantly 

As(III) (83-100% of As(T)) with only minor As(V) detected in these three stages. For the 0 g ZVI 

experiment in Stage I, the As(V) release rate was higher than that of As(III) (267 μg L-1 d-1 vs. 21 μg 

L-1 d-1), while in Stages II and III, the release of As(III) decreased. The relative proportions of As(V) 

were 62%, 89% and 88% in Stage I of the 0 g, 0.2 g and 2.0 g experiments, respectively. 

 
Fig. 3 Changes in aqueous As speciation during realgar dissolution by A. ferrooxidans with and without ZVI. The 

experiments were carried out at 1 d and 7d of each stage (three stages hereafter donated as Stage I, II, III), with 
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microbial culture refreshment between stages. Error bars denoted as standard deviations (n = 3). 

 

Addition of 0.2 g ZVI decreased the proportion of As(III) and increased the proportion of As(V) 

(Fig. 3A-C). As(III) dominated at 1 d (83-89% of As(T)), whereas As(V) dominated at 7 d of each 

stage (66-98% of As(T)). As(III) also dominated at 1 d of the 2.0 g ZVI experiments. In contrast to 

the 0.2 g ZVI experiments, however, a relatively large proportion of As(III) was seen at 7 d of Stages 

II and III (37-47% of As(T)) in the 2.0 g ZVI experiments.  

 

3.3 Formation of secondary products as a result of realgar dissolution with and without ZVI 

Visible color changes were observed in the experiment process and the solid samples (Fig. 4 and 

Fig. S3). The color changed from red to brown with the increase of ZVI, indicating the variation of 

secondary mineral composition due to ZVI addition. 

 
Fig. 4 Visible changes in color during realgar dissolution by A. ferrooxidans 

in three ZVI treatments after stage III. (A: control, B: 0 g ZVI, C: 0.2 g ZVI; 2.0 g ZVI). 

In agreement with the color changes, SEM-EDX observations (Fig. 5) of the solid precipitates 

after the 2.0 g ZVI addition confirmed the presence of mixed Fe-O-As oxyhydroxides and hydroxy 

sulfates on the realgar surfaces. However, in the 0 g and 0.2 g ZVI systems, no As-bearing Fe 

precipitates were observed. 
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Fig. 5 SEM-EDX images of incubation products in control (A, B), 0 g (C, D), 0.2 g (E, F) and 2.0 g ZVI (G, H) 

systems after stage III. 
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Fig. 6 ATR-FTIR spectra of solid products of the realgar dissolution experiments with and without ZVI after stage 

III. 

 

The nature of the secondary surface precipitates was further characterized using ATR-FTIR (Fig. 6). 

The data suggested that the precipitates were composed mainly of four groups of surface-bound 

species: sulfate compounds, Fe oxyhydroxides, organic matter derived from bacteria residues and 

water molecules bound to oxidization products. The peak at 3392 cm-1 corresponded to bulk H2O/OH 

stretching vibrations, as observed for scorodite at ∼3300 cm-1 and for ferrihydrite at ∼3380 cm-1 

(Cornell, 2004; Wang et al., 2009). The strong peaks at 1195 cm-1 and 995 cm-1 were assigned to SO4 

asymmetric stretching vibrations (υ3) and symmetric stretching vibration (υ1), respectively, whereas 

the SO4 in-plane asymmetric bending vibration (υ4) and weak symmetric bending vibration (υ2) 

appeared at 622 cm-1 and 443 cm-1 with ZVI addition (Moraes and Nart, 1999; Lane et al., 2015). 

Small peaks at 793 cm-1 and 884 cm-1 were observed only in 2.0 g ZVI experiment, which were 

assigned to As-O-Fe complexes (Jia et al., 2007; Guan et al., 2008; Adamescu et al., 2010). The band 

at 1080 cm-1 was assigned to jarosite (Bigham and Nordstrom, 2000). The peaks at 460-490 cm-1 were 

assigned to Fe-O adsorption bending vibrations (Ardelean et al., 2008; Tabelin et al., 2016). The 
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intensity of the As-O-Fe complexes and Fe-O absorption bands increased with the amount of ZVI, 

suggesting that the abundance of mixed As(III)/As(V)-Fe oxyhydroxide (and possibly Fe oxyhydroxy 

sulfate) compounds was related to the amount of ZVI used. The band at 1422 cm-1 was assigned to 

the C=O and C-H deformation modes of organic matter, which might derive from bacteria residues, 

representing metabolic products formed by the cells (Litescu et al., 2012). 
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Fig. 7 XPS spectra in As 3d (A, D), Fe 2p (B) and S 2p (C, E) regions of solid products after realgar 

dissolution in the 0 g, 0.2 g and 2.0 g ZVI experiments after stage III. The As 3d spin orbit-split doublets were 

fixed of 3:2 at 0.70 eV, and the S 2p spin orbit-split doublets were fixed of 2:1 at 1.2 eV. 

 

The surface of the solids was characterized by XPS to determine the oxidation states of Fe, As and S 

(Fig. 7 A-C, Table S2). The As 3d spectra were fitted by As 3d5/2 and As 3d3/2 doublets with an 

intensity ratio of 3:2 and spin-orbit splitting of 0.7 eV. The S 2p spectra were fitted by S 2p3/2 and S 

2p1/2 doublets with an intensity ratio of 2:1 at 1.2 eV. The valence of As in the control experiment was 

As(II), as suggested by the strong intense As 3d peak that is related to the density of As(II) (Fig. 7A). 

The decrease in the As 3d peaks in the experimental systems (Fig. 7A), and small shift to higher 

binding energies (Fig. 7D), indicated decreases in electron densities around the As atom and partial 

oxidation of As(II) to As(III), or even to As(V), during the dissolution process. As shown in Fig. 7B, 
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the Fe peak in the control experiment was invisible, but after ZVI addition, peaks at 712 and 726 eV 

corresponding to the binding energies of 2p3/2 and 2p1/2 of Fe(III) were observed on the solid surface. 

S 2p spectra can be deconvoluted in to three constituents corresponding bonds such as S2(-II), S(0) 

and SO4, respectively. ZVI addition decreased the peaks of S2(-II), S(0) while the SO4 peaks increased 

(Fig. 7E). All of these XPS analyses further elucidated the formation of mixed As(III)/As(V)-Fe 

oxyhydroxyide and oxyhydroxy sulfate coatings on the realgar surface. 

To further identify whether the amount of ZVI added in the experiments affected the production 

of As-bearing secondary precipitates, the reaction products of each stage were measured for As 

fractionation via selective extraction. As shown in Fig. S4 and Table S3, arsenic concentrations in 

crystallized iron oxyhydroxides (F3) were significantly higher than in the other two fractions (F1 and 

F2) during the entire incubation period. In addition, the amount of As in F3 increased along with the 

amount of ZVI used (17, 21 and 18 mg kg-1 with 0 g ZVI vs. 33, 62 and 58 mg kg-1 with 2.0 g ZVI at 

each stage). High ZVI addition in the experiments resulted in higher production of amorphous and 

crystalline mixed As(III)/As(V)-Fe oxyhydroxides or oxyhydroxy sulfates. 

 

3.4 Mechanisms of realgar dissolution with and without ZVI 

3.4.1. 0 g ZVI experiments 

During the 0 g ZVI experiments, the Fe(II) in bacterial medium was likely oxidized to Fe(III) 

by dissolved O2 or A. ferrooxidans (Eq. (1)): 

                            (1) 

Realgar can be dissolved by H2O (Eq. (2)). The biogenic Fe(III) produced by A. ferrooxidans 

can also accelerate realgar oxidation (Eq. (3)), and the released elemental S can be further oxidized 

to SO
2-

 4 (Eq. (4)): 

2 3 -  Fe Fe e
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 2 2 2 3 3 414 2 2 20 18As S H O H AsO HSO H e           (2) 

      (3) 

2

2 2 42 3 2 4S O H O SO H                      (4) 

As(II) does not form aqueous species, so in order for arsenous acid to be a product of this reaction, 

the As(II) in realgar must have been oxidized to As(III). This was confirmed by the XPS results (Fig. 

7D). Lengke and Tempel (2003, 2005) have noted that this may occur within the realgar structure 

itself, and Naumov et al. (2007) suggested the process might be due to photo-induced reaction of 

As(II) with oxygen. The As(III) released in Eq. (2) was then oxidized to As(V) in the presence of A. 

ferrooxidans (Eq. (5)), as suggested by the increases in As(V) as the experiments proceeded (Fig. 3). 

This appeared to have a relatively slow process in the 0 g ZVI experiments, since there was a large 

proportion of As(III) still in solution remaining at 7 d of Stage I (Fig. 3): 

   . +

3 3 2 3 4 2 2A ferroxidansH AsO H O H AsO H e         (5) 

The decline in Fe(T) corresponding with As(T) (Fig. 2, Fig. S5) over the 7 d in Stage I suggested 

that As-Fe complexes such as Fe oxyhydroxides, Fe arsenates or jarosite formed (Eqs. (6)-(8)). This 

hypothesis can be confirmed by the color change of precipitates (Fig. 4, Fig. S3) and the SEM-EDX 

(Fig. 5), ATR-FTIR (Fig. 6), XPS (Fig. 7) and selective chemical extraction results (Fig. S4; Table 

S3): 

        (6) 

    (7) 

  (8) 

The persistence of As(T) in solution in Stage I while Fe(T) declined (Fig. 2) may be due to the 

abundant As(III) present (Fig. 3) not absorbing or not being incorporating as well as As(V) in the neo-

formed Fe oxyhdyroxides and oxyhydroxy sulfate solids. The lesser affinity of Fe(III) phases for 

As(III) compared to As(V) in the pH range of our experiments has been well-documented in previous 
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work (And and Hering, 2003). The decreases in As(T) at 7 d of Stage I (Fig. 2), concomitant with 

increases in As(V) (Fig. 3), suggest that this As was removed from solution by sorption of the arsenate 

to amorphous iron oxyhydroxides or hydroxy sulfates. These precipitates likely coated on the realgar 

surface, restricting its further dissolution. Burnol et al. (2007) pointed out that re-sorption of released 

As(V) is the main reason for incongruent release of As from As-adsorbed and co-precipitated 

ferrihydrite. The similar patterns of As(T) and Fe(T) in Stage I (Fig. 2) occurred once the abundance 

of the secondary Fe precipitates reached a critical threshold. 

Stage II As(T) and Fe(T) concentrations were relatively low compared to those in Stage I (Fig. 

2). This suggested either that realgar oxidation occurred to a lesser degree in Stage II, or that this 

process did occur, and the As released from realgar oxidation was immediately absorbed to, or co-

precipitated with, secondary iron precipitates. As in Stage I, the dominant species of As released at 1 

d of Stage II was As(III) (Fig. 3), it was unlikely that a significant proportion of this As(III) was 

absorbed to the Fe precipitates. Therefore, realgar oxidation was likely inhibited in Stage II. The 

increases in As(T) and Fe(T) at the end of Stage II (Fig. 2, Fig. S5) could have been due to the partial 

dissolution of amorphous Fe-As oxyhydroxides or hydroxy sulfates formed earlier in the experiment 

in response to declining pH (Alabed et al., 2007), or to a lack of nucleation sites for fresh Fe-As 

hydroxy sulfates coated on realgar surface. Increases in Fe(T) at the beginning of Stage III may have 

been due to the inputs of fresh microbial medium between the stages. 

The declines in pH seen over the 7 d of Stages I to III were likely due to the generation of protons 

during realgar oxidation (Eq. (2)-(3)), As(III) oxidation (Eq. (5)) and secondary Fe mineral formation 

(Eq. (6)-(8)). 
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3.4.2. 0.2 g and 2.0 ZVI experiments 

The mechanisms described above for realgar oxidation in the presence of A. ferrooxidans likely 

also occurred in the 0.2 g and 2.0 g ZVI experiments, but the addition of the ZVI introduced further 

complexity to the system. The significant pH and Eh changes in Stages I and II of the 2.0 ZVI 

experiment were primarily due to the consumption of protons and oxygen, respectively, during the 

abiotic reaction of ZVI with oxygen (Eq. (9)) (Su and Puls, 2001; Mkandawire and Dudel, 2005; Xie 

et al., 2016): 

       (9) 

The lack of significant pH and Eh changes in the 0.2 g ZVI experiments might be due to the low 

quantities of ZVI present and the ability of the system to buffer minor changes. The Fe(II) generated 

in Eq. (8) would have been an additional source of Fe(II) for A. ferrooxidans to generate Fe(III) (Eq. 

(1)), which could in turn form additional Fe(III) precipitates (Eq. (6)-(8)) evidenced by ATR-FTIR, 

XPS and selective extraction data. Lengke and Tempel (2003) showed that the degree of realgar 

oxidation and extent of As release will increase with decreasing pH. Thus, decreases in pH observed 

towards the end of all the experimental stages (Fig. 1) likely enhanced As release, but the released As 

was then attenuated via sorption or co-precipitation of the As to secondary Fe precipitates (Eq. (6)-

(8)). 

 The increase in As(III) in day 7 of the 2.0 g ZVI experiments (Fig. 3) indicated that some of the 

As(V) produced by oxidation of As(III) was reduced back to As(III). This likely occurred by the 

reduction of the As(V) by the ZVI (Burlo et al., 1999; Chunming Su and Puls, 2001; Su and Puls, 

2001), which in turn oxidized, producing additional Fe(II). This process, shown in Eq. (10), would 

have led to further generation of Fe(II), which would in turn have oxidized to Fe(III) to generate more 

secondary As-Fe phases (Eq. (6)-(8)). This is confirmed by the selective extraction results. 

2
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   (10) 

 

  
Fig. 8 Schematic of realgar dissolution by A. ferrooxidans in the absence and presence of ZVI. 

 

Our schematic model for realgar dissolution by A. ferrooxidans in the presence and absence of 

ZVI, discussed above, is shown in Fig. 8. 

 

3.5 Environmental Implications 

The village of Shimen in Hunan Province, China, is grossly contaminated with As and has been 

described as a ‘Cancer Village’ (Dong et al., 2014; Chen et al., 2017). The mine was closed by the 

Chinese government in 2011 due to serious As poisoning in the surrounding area (Fan et al., 2018). 

2
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Arsenic concentrations of Shimen tailings pore waters vary from 0.5 to 782 mg L-1 (Fan et al., 2018). 

These waters are the main As contamination source to the Shishui River. The As-containing tailings 

in this area have low Fe concentrations (1.41-4.23 wt.% Fe2O3) compared to those of arsenopyrite-

rich tailings, such as in the Yao Gang Xian mine, China (28.57 wt.% Fe2O3) (Liu et al., 2015). Realgar 

ores have also been mined in many other parts of China (e.g., Nanhua, Dali, Sinan, Ningshan) and 

the rest of the world (e.g., USA, Russia, Turkey, France) (Migon and Mori, 1999; Tempel et al., 2000; 

Çolak et al., 2003; Wu et al., 2017). Huge quantities of realgar-rich tailings and related wastes are 

deposited in open-air impoundments in these areas, and many have only been treated by addition of 

a soil cover. Based on our results, we suggest that a combination of commercial or slag ZVI dust and 

A. ferrooxidans might be used to treat these in-situ realgar tailings to reduce As release in these areas. 

Increases in As(T) release at the end of Stages II and III of the experiments (Fig. 2), however, indicate 

that the effectiveness of such a treatment scheme would need to be monitored in the long-term. 

 

4. Conclusions 

This study examined gradient levels (0 g, 0.2 g, 2 g) of exogenous zerovalent iron (ZVI) addition 

on the realgar dissolution by A. ferrooxidans. Our major findings are depicted schematically in Fig. 

8 and are summarized as follows: 

1) Realgar dissolution by A. ferrooxidans results in decreases in solution pH and increases in Eh. 

However, high amounts of ZVI (2.0 g) addition initially causes increases in pH and decreases in 

Eh due to ZVI dissolution at first, but as realgar oxidation proceeds, these trends are reversed. 

2) The As(II) in realgar is oxidized to As(III), and this it released to solution as dissolution proceeds. 

Most released As(III) is then oxidized to As(V), although with some of the As(V) is reduced 

back to As(III) by ZVI in the high (2.0 g) experiment. 
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3) High amounts of ZVI addition (2.0 g in this study) significantly decreases As release (down to 

0.2 mg L-1 in this study) compared to experiments using A. ferrooxidans only (0 g ZVI; to 30 mg 

L-1), although As release in the latter also decreases over time. Arsenic attenuation is attributed 

to uptake of mainly As(V) by secondary Fe oxyhydroxides and hydroxy sulfates, or by 

passivation of the realgar surface. Higher amounts of crystalline As-bearing Fe oxyhydroxides 

(F3) are produced in high ZVI (2.0 g) experiments (33, 62 and 58 mg kg-1 per stage) compared 

with the 0 g ZVI addition experiments (17, 21 and 18 mg kg-1 per stage). 

4) A combination of commercial or slag ZVI dust and A. ferroxidans could be used to treat these 

in-situ realgar tailings to reduce As release, although its long-term effects need to be monitored. 
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1.1 Selective extraction method 

Table S1. Selective extraction procedure and reagents 

Step Extractant Target phase Condition Target species 

1 0.05 M KH2PO4 Surface-adsorbed As 
pH 5.0, 16 h shaking 

at 20 o C 
F1 

2 0.2 M NH4-oxalate buffer 
Amorphous Fe 

(oxyhydr)oxides As 

pH 3.25, 4 h shaking 

at 20 o C in the dark 
F2 

3 
0.2 M NH4-oxalate buffer 

+ 0.1 M ascorbic acid 

Crystallized Fe 

(oxyhydr)oxides As 

pH 3.25, 30 min in a 

water basin at 96 o C 

in the light 

F3 

1) F1: A 10 mL aliquot of 1 M KH2PO4 at pH 5.0 was added to 50 mL polyethylene centrifuge tubes 

containing 0.25 g solid. Samples were prepared in duplicate. The tubes were continuously shaken 

for16 h and centrifuged for 10 min at 10,000 rpm, after which the separated extraction solution 

was carefully pipetted off. The residue was rinsed with 19 mL deionized water, centrifuged, and 

decanted. 

2) F2: The residue from Step 1 was extracted with 10 mL 0.2 M NH4-oxalate buffer in 50 mL 

polyethylene centrifuge tubes. Samples were shaken for 4 h and then treated in the same manner 

described in Step 1. 

3) F3: The residue from Step 2 was extracted with 10 mL NH4-oxalate buffer + 0.1 M ascorbic acid 

in a water bath at 96°C for 30 min. The extraction was piped off in the same manner described in 

Step 1. 
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1.2 XRD analysis 

 

Fig. S1 XRD pattern of the raw realgar. 

 

Fig. S2 XRD pattern of the ZVI power. 

1.3 The color change of the experiment 

 

Fig. S3 Visible changes in color during oxidative dissolution of realgar by A. ferrooxidans 

in three ZVI treatments. (A: control, B: 0 g ZVI, C: 0.2 g ZVI; 2.0 g ZVI). 
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1.4 XPS analysis 

Table S2 Iron, arsenic and sulfur peak XPS parameters and chemical states of solid products after 

realgar dissolution in different ZVI amendments. 

Spectral peak Binding energy (eV) FWHM Chemical state 

S 2p3/2 

162.4±0.2 1.0 S2(-II) 

164.4±0.2 1.2 S(0) 

168.8±0.2 1.2 SO4 

S 2p1/2 

163.6±0.2 1.0 S2(-II) 

165.6±0.2 1.2 S(0) 

170.0±0.2 1.2 SO4 

As 3d5/2 

42.7±0.2 1.1 As(II) 

44.4±0.2 1.1 As(III) 

45.3±0.2 1.1 As(V) 

As 3d3/2 

43.5±0.2 1.1 As(II) 

45.0±0.2 1.1 As(III) 

46.2±0.2 1.1 As(V) 

1.5 Selective extraction results 

Table S3 Arsenic concentrations in the selective extraction F1, F2 and F3 steps in the different ZVI 

amendments. 

 ZVI (g) F1 (mg kg-1) F2 (mg kg-1) F3 (mg kg-1) 

Stage I 0 6.52 10.58 16.64 

 0.2 2.25 24.36 23.16 

 2.0 17.15 28.72 33.40 

Stage II 0 9.53 3.78 7.82 

 0.2 3.15 6.33 5.96 

 2.0 21.29 46.57 61.61 

Stage III 0 5.70 2.04 4.09 

 0.2 1.80 7.28 9.19 

 2.0 17.55 33.63 57.95 
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Fig. S4 As distribution identified through selective extraction performed on different incubation 

systems. Surface-adsorbed (F1), Amorphous iron oxyhydroxides As (F2), crystallized iron 

oxyhydroxides As (F3) phases were extracted on the 7th day of each stage. Error bars denote standard 

deviations (n = 3). 

 

1.6 The relationship between As(T) and Fe(T) 

  

 

 

Fig. S5 Relationship between aqueous As(T) and Fe(T) in the 0 g, 0.2 g and 2.0 g ZVI 

amended experiments in three stages (As(T): total arsenic; Fe(T): total iron). 
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The data were processed using Microsoft Excel software 2016. A liner regression was employed 

to compare the correlation between soluble As(T) and Fe(T) (Fig. S5). Strong correlations (R2 = 0.41-

0.99) were observed between aqueous As(T) and Fe(T) in the 0, 0.2 g treatments in stage I and II. In 

stage III the correlations were complex, suggesting that two As release mechanisms may exist. 

 

1.7 As(III) and As(V) concentrations and proportions of the three stages 

Table S4 Arsenic species distribution (mg L-1) during realgar dissolution in different ZVI amendments 

of the three stages. 

Condition 

 Stage I (mg L-1)  Stage II (mg L-1)  Stage III (mg L-1) 

 As(III) As(V)  As(III) As(V)  As(III) As(V) 

Control-1d  12.86 1.39  4.22 0.58  2.10 0.42 

Control-7d  32.60 4.26  17.93 1.86  10.36 0.79 

A.f+Realgar+0 g ZVI-1d  10.51 2.83  3.14 0.57  3.80 0.86 

A.f+Realgar+0 g ZVI-7d  15.24 15.16  0.80 6.74  0.77 5.52 

A.f+Realgar+0.2 g ZVI-1d  0.66 0.14  4.14 0.72  9.31 1.16 

A.f+Realgar+0.2 g ZVI-7d  0.10 4.99  1.70 5.41  3.89 8.18 

A.f+Realgar+2.0 g ZVI-1d  0.07 0.14  0.39 0.13  4.32 0.93 

A.f+Realgar+2.0 g ZVI-7d  0.09 0.40  0.34 0.20  6.11 3.65 

Table S5 Arsenic species proportion (%) during realgar dissolution in different ZVI amendments of 

the three stages. 

Condition 

 Stage I (%)  Stage II (%)  Stage III (%) 

 As(III)/As(T) As(V)/As(T)  As(III)/As(T) As(V)/As(T)  As(III)/As(T) As(V)/As(T) 

Control-1d  90 10  88 12  83 17 

Control-7d  88 12  91 9  93 7 

A.f+Realgar+0 g ZVI-1d  79 21  85 15  82 18 

A.f+Realgar+0 g ZVI-7d  50 50  11 89  12 88 

A.f+Realgar+0.2 g ZVI-1d  83 18  8 15   89 11 

A.f+Realgar+0.2 g ZVI-7d  2 98  24 76  32 68 

A.f+Realgar+2.0 g ZVI-1d  33 67  75 25  82 18 

A.f+Realgar+2.0 g ZVI-7d  18 82  63 37  63 37 
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1.8 The As-Fe-O-H-S system for the experiments 

 

Fig. S6 Eh-pH diagram for the system As-Fe-O-H-S 

at 25 °C and 1.013 bars total pressure. ∑{Fe} = ∑{S} = ∑{As}= 10-6. 

 

The As-Fe-O-H-S phase diagram (Fig. S6) shows which phases were to be expected at metastable 

equilibrium under acidic to circumneutral pH conditions. In the 2.0 g ZVI-added experiment As(III) 

was the dominant phase, and in the 0.2 g and 0 g ZVI-added treatments As(III) and As(V) both existed. 

These data suggested that mixed As-Fe oxyhydroxides and oxyhydroxy sulfates formed during the 

experiments. 


