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Abstract 
 
We study the radiative and bound acoustic modes supported by a rigid grating formed of three same-
depth, narrow grooves per unit cell. One of the grooves is twice the width of the other two, forming a 
‘compound’ grating.  The structure supports so-called ‘phase’ resonances where the phase difference 
of the pressure field between the grooves on resonance varies by multiples of p. We explore the 
dispersion of these modes experimentally by monitoring the specularly reflected signal as a function of 
the angle of incidence. In addition, by near-field excitation, the dispersion of the non-radiative surface 
modes has been characterised. Our results are compared with the predictions of a finite element method 
model.  
 
 
 
Introduction 
 
Patterning of surfaces to control sound attenuation has been a topic of many studies. These 
include structuring surfaces to manipulate acoustic surface waves (ASWs)1–3 leading to 
increased transmission4, scattering from arrays of elastic scatterers to create sonic crystals to 
attenuate transmission5–7, as well as controlling the propagation of the wave using labyrinthine 
structures8,9. Recently, a number of works10–13 have shown that enhanced acoustic transmission 
of sound through sub-wavelength perforations (holes or grooves) can be achieved. These 
studies are somewhat analogous to the extraordinary optical transmission found in the 
electromagnetic domain  explained by coupled surface wave and evanescent diffraction 
phenomena14.  Work by Skigin and coworkers11,15 has shown that transmission of 
electromagnetic radiation through a so-called ‘compound grating’, comprising of more than 
one groove per unit cell, is significantly different to that for a simple groove grating. The 
additional complexity of the unit cell typically broadens the exisiting resonant mode (due to 
increased radiaitive and non-radiaitive losses), while a new, narrow (i.e., high-Q-factor) 
‘phase’ resonant mode is observed. These phase resonances are characterised by the resonant 
acoustic fields in adjacent grooves varying by mulitples of p with strong field enhancement on 
resonance15. 
 
Analogous behaviour in the acoustic domain was predicted by Wang et al.13 and then 
experimentally verified by Ward et al.16 who demonstrated phase resonances in compound-
groove-gratings with different structure factors.  Narrow resonant dips within the band of the 
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broad transmission maxima were observed and attributed to evanescent diffractive coupling 
between adjacent cavities modes. More recently, Zhang et al.17 investigated the acoustic 
transmission for compound gratings comprising different square and triangular shaped 
elements; they reported some degree of control of the resonance frequencies. 
 
In addition to transmission-type gratings, similar phase-resonance effects in reflection 
compound gratings have also been studied in the electromagnetic domain18–20. In a study by 
Fantino et al.18, a number of different metallic compound gratings were numerically 
investigated.  For a transverse-magnetic-polarised incident beam, phase resonances were 
observed as maxima in the reflectivity spectrum of the surface, with strongly enhanced fields 
within the grooves. A similar phenomenon for reflection gratings has yet to be recorded in the 
acoustic domain. 
 
 
In this work, we explore fully the dispersion of the acoustic surface modes supported by a 
compound grating with three grooves per unit cell of two different widths (all of the same 
depth), see Figure 1. This configuration was chosen as it allows for near critical coupling when 
there is perfect destructive interference between the reflected field and the internal field - the 
radiative and internal losses from the surface are balanced allowing for maximum absorption 
on resonance. 21,22 To determine the mode dispersion in the radiative region we record the 
reflectivity of the sample as a function of the polar angle of incidence, q. In addition, in order 
to characterise the surface mode dispersion in the non-radiative region, we probe the 
propagation of trapped sound across the surface via near-field excitation and detection.  Both 
the radiative and non-radiative features are attributed to Acoustic Surface Waves (ASWs), 
which are strongly dispersive in frequency-wavevector space, particularly on approach to 1st 
Brillouin zone boundary 	"#

$
,	where 𝑘' = 	

$)
*#

 is the grating vector. Further the addition of 
additional grooves to the unit cell allows for surface modes to be supported beyond the first 
Brillouin zone16, which are scattered by integer multiples of 𝑘' back into the first Brillouin 
zone to become features in the reflected signal.   
 
Using the two experimental methods previously described we determine the dispersion of both 
the lowest order radiative branches and the non-radiative acoustic surface mode. The results 
are compared to the predictions of a finite element method (FEM) model. To the authors 
knowledge, this is the first observation of ASWs on a compound grating. 

 
Figure 1. Schematic of a unit cell used in the experiment, comprised of three grooves per period (𝜆' 
= 19 mm) where the central groove is twice the width of the adjacent two. Here, wA = 1 mm, wB = 2 
mm, l = d = 5 mm, and 𝜃 is the polar angle of incidence. 
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Results & Discussion 

 
Sound incident onto a flat rigid surface (i.e., acoustically-rigid, so no penetration of sound into 
the material is allowed) will have a reflectivity of unity. This will still be true if the sample is 
periodically structured, in the absence of loss and for frequencies below the onset of diffraction.  
However, this is not realistic because losses occur at a fluid-solid boundary due to the presence 
of thermal and viscous boundary layers 23. Thermal losses arise because temperature gradients 
in the fluid irreversibly transfer heat into the walls. Viscous losses arise both in the bulk of the 
air but primarily in a thin boundary layer due to the no-slip condition at the wall causing a 
velocity gradient and thereby viscous dissipation. Associated with these viscous and thermal 
boundary layer effects are two boundary layer thicknesses23. 
 
The reflectivity as a function of frequency is shown in Figure 2(a). The rather broad and 
shallow mode at 15.5 kHz (C) corresponds to a resonance where all the fields in the three 
grooves in a unit cell are in-phase. The fundamental mode of the grooves is the quarter-
wavelength (l/4) condition plus an end correction. The dependence of the modes’ resonant 

Figure 2. (a) Experimental reflectivity data for near-normal incidence (blue crosses) compared 
with the FEM model (solid line). (b) FEM model predictions of the reflectivity showing the 
reflectivity spectrum for different angles of incidences. The sharp feature at ~12 kHz for 𝜃	= 30° 
corresponds to the onset of diffraction where the in-plane component of the incident radiation 
l0x is comparable to lg. As this condition is met, radiation is diffracted into unwanted loss 
channels rather than coupling to the surface mode. 
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frequencies on the angle of incidence is shown in Figure 2(b): off-normal excitation also 
reveals a third mode (B) that cannot be excited at normal incidence, to which there is increased 
coupling strength with increasing angle of incidence (q). Also of interest is the angle 
dependence of the resonance frequency of mode (A) that shows a decrease in frequency as the 
angle of incidence is increased. 
 
  
From such data one obtains a mapping of much of the dispersion curve in the radiative region 
(i.e., for in-plane wavevector kx < 2πf/v, where f is frequency and v is the speed of sound) for 
the plane containing the grating wavevector kg. Figure 3(a) shows the experimental data 
obtained for the reflectivity measurements demonstrating the dispersion of the three modes, 
compared to the predictions of the reflectivity from a Finite Element Method (FEM) model24. 
 
We also explored the excitation of the bound surface modes supported by the sample, i.e., the 
dispersion of the modes kx > 2πf/v, i.e., beyond the sound line. Figure 4 demonstrates that the 
surface mode dispersion is close to being isotropic at the lowest studied frequencies, but 
becomes highly anisotropic as the frequency rises and the mode approaches the Brillouin zone 
boundaries. 
 

From a composite of each of the isofrequency maps such as shown in Figure 4, Fourier-
transformed field measurement in any direction in k-space can be extracted to yield a 
representation of the mode’s dispersion. This is shown for the plane containing the grating 
vector in Figure 3(b), where the experimental data is the colour scale and the points are the 
eigenvalues predicted by the FEM modelling. Note here the weak modulation of the intensity 
of the experimental signal along the dispersion curve: this arises from the finite size of the 
sample defining a limiting k-space resolution. 

 
Figure 3. (a) Radiative domain in blue - frequency of reflectivity minima from experimental 
measurements (symbols) compared with predictions of the reflected intensity from the FEM model 
(colour-scale). The broad and shallow mode C has also been labelled for completeness. (b) Non-
radiative region in blue - Fourier transform of the spatial near-field maps (colour-scale) compared 
with the predictions of the surface wave eigenmodes from the FEM model (symbols). Inset: 
Predictions of the dispersion obtained from the FEM model across a broader range of frequencies.  
The surface eigenmodes are shown in red, the solid black lines represent the sound line and onset of 
diffraction, and the shaded area represents frequency below our measured range (i.e., only the 
unshaded region of wavevector-frequency space is depicted in the main part of this figure). 
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With three grooves per unit cell there are three degrees of freedom available. This leads to three 
different eigenmodes, i.e., three resonant features in reflection. The first is the broad and 
shallow branch (C) for which the field in each of the three grooves has the same phase in any 
given unit cell. Its frequency is approximately given by its wavelength being four times the 
groove depth, d - the fundamental resonance of the groove. When cavities are excited on 
resonance, evanescent end-effects occur at the opening of each cavity. These near-fields couple 
the groove resonances together over the surface in the form of a wave. For an ASW mode 
within the first Brillouin zone (BZ) only one pressure antinode per unit cell is allowed. This 
mode can be excited in the case of a monograting because the ASWs wavelength (lx) 
approaches that of twice the grating wavelength (lg): with one resonator per unit cell as the 
condition of one antinode per unit cell is satisfied. In the case of shorter ASW wavelengths (in 
the second BZ) two antinodes are required per unit cell with one being required over the rigid 
surface, this cannot occur. With the addition of an additional degree of freedom, i.e. a second 
groove per unit cell, the condition of two antinodes per unit cell may now be met. Then, by the 
process of first order diffraction this mode is observed in the radiative region of the first BZ. 
Extending the discussion to the case of the sample measured, with three resonators per unit cell 
a third mode existing within the third BZ can be excited. Hence, with the extra degree of 
freedom, ASWs with smaller wavelengths than lx = lg can now be excited as an eigenmode 
with three antinodes per unit cell is now available. Similar to the second mode, this mode is 
also scattered by diffraction into the radiative region of the first BZ. These modes can be seen 
in the inset of Figure 3(b) as the two red lines in the radiative region.  
 
The acoustic field configurations for modes A, B and C are represented in Figure 5. As 
evidence of the previous discussions, notice that the ASW wavelength lx, matches the 

Figure 4. Experimental equifrequency contours within the first Brillouin zone (in kx) for 12, 13, 14 
and 15 kHz. There is no periodicity in y, but the ky axis is plotted on the same scale as kx. 
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associated wavevector of the Brillouin zone boundary from which it was scattered; and note 
that mode C is a purely radiative mode and not confined to the surface. The relative pressure 
field in comparison to the nonresonant case, for modes A, B and C are 32.4, 21.7 and 3.5 
respectively. When a comparison is made between the absorption and the relative pressure field 
strength, it becomes apparent that as the pressure field within the grooves increases the amount 
of absorption, seen as a reduction in  reflectivity in Figure 2, also increases. 
 
The increased field on resonance is similar to the case of transverse-magnetic light incident on 
a metallic compound grating, however, the difference is that in the electromagnetic case the 
feature of the phase resonance gives a maximum in the reflectivity while in the acoustic case a 
minimum is observed.  This is due to the relative backgrounds in the two cases: for p-polarised 
light, the phase resonance features as a sharp maximum in a low background, because of [18]. 
For acoustic waves, the resonance is a sharp minimum in a high background.  
 
From Figure 3(a) it is apparent that mode B is not excited at normal incidence. This arises 
simply because the fields in the outer two cavities have to be in antiphase for this mode with 
the central cavity fields having zero amplitude at normal incidence. It is thus impossible to 
excite with a plane, normal incidence wave. Away from normal incidence there is a phase 
difference across a unit cell and this mode may now be excited. These phase resonances allow 
the possibility for developing narrow-band acoustic filters.  
 

Note from Figure 4 how the surface wave propagation becomes progressively more anisotropic 
as the frequency is increased. The equi-energy circle distorts first into an ellipse and then at 
frequencies above the first resonance of the system (at normal incidence) a band gap occurs 
where no mode is excitable in the x-direction and the equi-energy contour splits into curved 
lines. (The weaker features shown towards the centre of each image are modes scattered into 
the first BZ by first order diffraction, there are also reflections present due to the finite sample 
size). From these isofrequency contours the direction of the group velocity (vg) (determined by 
vg = Ñkw, 𝜔 being angular frequency) is obtained and if it has a region which has constant gradient, 
acoustic beaming occurs where a range of wavevectors have the same vg. An example of this 
effect in the frequency domain is shown in Figure 6. Interestingly, for different frequencies the 
acoustic power is directed in different directions allowing for a frequency dependent directivity 
of acoustic power on the surface. 

Figure 5. Pressure fields for phase resonances A (the central cavity fields being in antiphase with the 
outer two), B (fields in the outer two grooves being in antiphase, with the central one having zero 
amplitude), and C, the  normal in-phase resonance. The scaling factors of the colour scale are 32.4, 
21.7, and 3.5 respectively. 
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Conclusions 
 
In this study, a compound groove grating having three grooves per period which supports 
acoustic phase resonances and acoustic surface modes has been modelled and the results 
verified experimentally, showing a sharp minimum in the reflectivity spectrum, giving the 
possibility of a frequency specific acoustic filter. The surface was also found to support 
acoustic surface modes whose dispersion has been obtained and which, for a range of 
frequencies, exhibit frequency dependent directional acoustic power beaming.  
 
Method 
 
 
Non-radiative experiment 
 
In order to measure experimentally the non-radiative regime of the dispersion diagram, we 
position a loudspeaker behind the grating with the tip of an attached hollow cone positioned 
with its narrow tip inside a small hole of radius 1 mm drilled through the centre of the sample, 
a simple diagram can be seen in Figure 7. The diffracted sound couples via high wave-vector 
components to the surface mode on the structured side. A microphone with a needle probe with 
its tip about 0.5 mm from the grating is then raster-scanned over the structured face of the 
sample. For every microphone position, a pulse is emitted from the loundspeaker and 
subsequently detected by the microphone.  By performing a temporal Fourier transform on the 
detected signal,  the amplitude and phase is determined, hence obtaining a spatial field-map for 
each frequency component. A 2D Fast Fourier Transform is then performed on each of the 
spatial field maps to create an iso-frequency k-space plot of the modes supported. A 400 mm 
by 400 mm scan area was chosen as this allows for sufficient resolution in k-space. 
 

Figure 6. Experimental data for the instantaneous pressure fields at 13 kHz, showing that the power 
flow is strongly confined in four directions.  



	 8	

 
Radiative experiment 
 
In order to obtain the reflectivity from the grating in the radiative regime, a pulse-measurement 
technique in free space was used. A speaker is placed at the focus of a collimating mirror to 
provide a near-plane wave incident on the 450 mm–square  sample, with a second collimating 
mirror used to re-focus the reflected signal onto the detecting microphone (Figure 8). A 
Gaussian electrical pulse centred at 12 kHz was fed into the loudspeaker to provide a broad 
range of frequencies. A number of repeat measurements are recorded in the time-domain, and 
subsequently averaged. The time domain signals are then Fast Fourier Transformed (FFT) and 
the resulting frequency domain response is normalised to that of an unpatterned, rigid plate. In 
order to avoid this direct transmission between source and receiver three separate methods were 
used. Firstly, for near normal incidence (θ = 0o), the direct signal was removed simply by time-
gating as the time between the two signals (directed and reflected) was large enough that there 
was no overlap. Secondly, for small angles (θ < 50o) a metal plate was inserted vertically 
between the source and receiver which proved to be sufficient to remove the direct signal. 
Finally, for the largest angles (θ > 50o), no plate was required since the placement of the speaker 
and the receiver meant that extremely little/no direct signal was measured. By moving the 
source, detector, and mirrors, the reflectance for incident angles (with the incident wavevector 
lying in the x-z plane) from near normal incidence (θ = 0o) to approximately 60o was measured. 
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m

Figure 7. Schematic (not  to scale) of the sample for the non-radiative experiment. The sample 
consists of 23 units where the cavities extend the whole y-length of the sample. Here, an acoustic 
pulse is emited through a hole in the centre of the sample (black dot) and the wave diffracts and 
couples to a surface wave. A microphone is then raster-scanned near the surface within the red 
dashed square recording the evolution of the wave as a function of time for every position. 
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A typical set of data recorded for near-normal incidence (𝜃 ⪝ 0.1°) is shown in Figure 2(a): 
the strong minimum in reflectivity (A) is associated with the ‘phase-resonance’ mode25. 
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