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Abstract

Let R be a commutative ring. To each finitely presented R-module M one can associate

an ideal, FitR(M), called the (zeroth) Fitting ideal of M . This ideal is always contained

within the R-annihilator of M . Now let R be an integrally closed complete Noetherian

local ring and let Λ be a (not necessarily commutative) R-order. A. Nickel generalised

the notion of the Fitting ideal, providing a definition of the Fitting invariant for finitely

presented modules M over Λ. In this case, to obtain the relation between the Fitting

invariant of M and the annihilator of M in the centre of Λ, one must multiply the Fitting

invariant of M by a certain ideal, H(Λ), of the centre of Λ, called the denominator ideal

of Λ. H. Johnston and A. Nickel have formulated several bounds for the denominator

ideal and have computed the denominator ideal for certain group rings. In this thesis,

we prove a local-global principle for denominator ideals. We build upon the work of H.

Johnston and A. Nickel to give improved bounds for the denominator ideal of Λ assuming

some structural knowledge of Λ. We also build upon the work of P. Schmid and K.

Roggenkamp to determine structural information about certain group rings. Finally, we

use this structural information to compute the denominator ideal of group rings R[G],

where G is a p-group with commutator subgroup of order p.
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1 Preliminaries

1.1 Introduction

Let R be a commutative ring (with identity) and let M be a finitely presented R-module.

In [Fit36], H. Fitting introduced the notion of Fitting ideals associated to M . Thanks to

several useful properties, Fitting ideals have since become an important tool in commuta-

tive algebra. For example, the zeroth Fitting ideal, FitR(M), is always contained within

the R-annihilator of M . We will discuss further properties of FitR(M) in Section 1.2.

More recently there has been an effort to generalise the concept of the Fitting invariant

to non-commutative rings. In [Sus88] and [Sus89], J. Susperregui considered skewcom-

mutative graded rings and rings of differential operators satisfying the left Ore property.

P. Grime [Gri02] considered several cases including matrix rings over commutative rings,

certain hereditary orders and (twisted) group rings. Moreover, A. Parker [Par07] defined

non-commutative Fitting invariants for modules with quadratic presentation over the rings

Z[G], Z(p)[G] or Zp[G], where G is a finite group and p is a prime number.

Let R be an integrally closed complete local Noetherian domain with field of fractions

F , let A be a separable F -algebra, let Λ be an R-order in A and let M be a finitely

generated Λ-module. In [Nic10], A. Nickel gave a definition of the Fitting invariant for

M . In the same setting, H. Johnston and A. Nickel [JN13] gave an alternative definition.

These two notions are used in different contexts and both have useful properties similar

to those of the zeroth Fitting ideal. A further discussion of the merits of these methods is

given in Section 1.11.

As in the commutative case, the Fitting invariant of a Λ-module M is related to the

annihilator of M over the centre of Λ. However, the relationship is not quite as straightfor-

ward as in the case of the zeroth Fitting ideal. The denominator ideal, H(Λ), is needed to

formulate a relation between the Fitting invariant of M and the annihilator of M over the

centre of Λ. In particular, to obtain annihilators of a Λ-module M the Fitting invariant

of M must be multiplied by the denominator ideal of Λ. In this thesis, we address the

problem of computing or approximating denominator ideals.

Fitting invariants have several applications in number theory. If L/K is a finite Galois

extension of number fields with Galois group G then the class group clL of L has a

natural structure as a Z[G]-module. There are several conjectures on the annihilators of

class groups. For example the Brumer-Stark conjecture, first formulated for non-abelian

extensions in [Nic11, Conjecture 2.1], predicts annihilators of clL using special values of

Artin L-functions and the denominator ideal of Z[G]. If p is a prime number then the

p-part of the class group Zp⊗Z clL is a module over Zp[G] meaning that Fitting invariants

may be used to give a bound on the annihilator of the class group. This technique has

6



1. Preliminaries

been used in [JN16b] to prove special cases of the non-abelian Brumer-Stark conjecture.

See [Nic17a] for a survey of results in this direction.

In [Nic11], A. Nickel showed that for a finite group G and a prime number p, the denom-

inator ideal of the group ring H(Z[G]) is dense in H(Zp[G]). In [JN13], H. Johnston and

A. Nickel gave several bounds for the denominator ideal in terms of the central conductor

of Λ into a maximal order containing Λ. They also showed that H(Zp[G]) is the centre

of Zp[G] when G is a finite group and p is a prime number such that p does not divide

the order of the commutator subgroup of G. In [JN16a] and [JN18], the same authors

introduced and developed the notion of an N -hybrid p-adic group ring and computed the

denominator ideal for such a ring. In particular, they showed that if G is a Frobenius

group then for every prime number p not dividing the order of its Frobenius complement

N , the group ring Zp[G] is N -hybrid. In [JN13] and [JN16a], they provided explicit bounds

for H(Zp[G]) for certain pairs of groups G and prime numbers p.

In the rest of the present chapter, we will provide a brief introduction to Fitting in-

variants and we will introduce notation and key results used throughout the thesis. In

Chapter 2, we will generalise an idea from [Nic11, Lemma 1.4] to show that a local-global

principle holds for denominator ideals. In Chapter 3, we will provide bounds for the de-

nominator ideal of Λ in terms of the structure of Λ, thereby generalising the bounds given

in [JN13]. In Chapter 4, we will compute the structure of certain group rings; this may be

read independently of the rest of the thesis. Finally in Chapter 5, we will use the struc-

tural information found in Chapter 4 and the bounds for the denominator ideals found in

Chapter 3 to compute the denominator ideal explicitly for group rings over finite p-groups

with commutator subgroup of order p.

Notation and conventions. Throughout this thesis all rings will be assumed to have

an identity element and all modules will be assumed to be right modules unless otherwise

stated. We fix the following notation.

A× is the group of units of a ring A.

Z(A) is the centre of a ring A.

IrrF (G) is the set of F -valued irreducible characters of a finite group G, where F is a field.

Mm×m(R) is the ring of m×m matrices with entries in a ring R.

detF (H) is the determinant of a matrix H ∈ Mm×m(F ), where F is a field (sometimes

the subscript F may be omitted if it is clear from context).

chF (H) is the characteristic polynomial of a matrix H ∈ Mm×m(F ), where F is a field

(the subscript F will never be omitted, to avoid confusion with a related term).

Z>0 is the set of positive integers.

Z≥0 is the set of non-negative integers.

Fq is the finite field of order q, where q is a prime power.

Qp is the p-adic numbers, where p is a prime number.

Zp is the p-adic integers, where p is a prime number.

Z(p) is the integers localised at the prime number p.

Mp is the localisation of an R-module M at the prime ideal p of R, where R is an integrally

closed Noetherian domain.
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1. Preliminaries

M̂p is the completion of an R-module M at the prime ideal p of R, where R is an integrally

closed Noetherian domain.

Z(G) is the centre of a group G.

[g, h] is the commutator ghg−1h−1 of elements g, h in a group G.

[G,A] is the subgroup of a group G generated by the commutators [g, a] for g ∈ G and

a ∈ A, where A is a subgroup of G.

G′ is the commutator subgroup, [G,G], of a group G.

Cn is the cyclic group of order n for some n ∈ Z>0.

D2n is the dihedral group of order 2n for some n ∈ Z>0.

Aff(q) is the affine group Fq o F×q , where q is a prime power (defined in Example 3.6.6).

1.2 Fitting ideals

Let R be a commutative ring, let M1 and M2 be free R-modules of rank b and a, respec-

tively, with a ≤ b and let h : M1 → M2 be an R-module homomorphism. By choosing

bases of the free R-modules M1 and M2, we may identify h with a b×a matrix. We define

Sa(h) to be the set of a× a submatrices of h.

Definition 1.2.1. Let R be a commutative ring, let M be a finitely presented R-module

and let

Rb
h−→ Ra −→M −→ 0

be a presentation for M , for some a, b ∈ Z>0. (By writing the free R-modules as Rb and

Ra we are implicitly including the choice of bases in the presentation h.) We define the

Fitting ideal of M to be

FitR(M) =

〈det(H) | H ∈ Sa(h)〉R if a ≤ b,

0 if a > b.

By [Nor76, Theorem 3.1], FitR(M) is independent of the choice of presentation h. Thus

FitR(M) is well-defined.

A key reason for the interest in Fitting ideals is the following result.

Theorem 1.2.2. Let R be a commutative ring. If M is a finitely presented R-module

then

FitR(M) ⊂ AnnR(M).

Proof. The proof given here is inspired by [Nic10, Theorem 4.2]. Let

Rb
h−−→ Ra −→M −→ 0

be a presentation for M . If a > b, we note that

FitR(M) = 0 ⊂ AnnR(M),

proving the result. Otherwise, when a ≤ b, let H ∈ Sa(h) and let H∗ ∈ Ma×a(R) be the

adjugate matrix of H. We note that multiplication by H∗ yields a map Ra → Ra and that
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1. Preliminaries

HH∗ = det(H)Ia, where Ia is the a×a identity matrix. Therefore, there is a commutative

diagram with exact rows:

Ra Ra coker(H) 0

Ra Ra coker(H) 0.

H

H∗
det(H) det(H)

H

This shows that multiplication by det(H) is the zero map on coker(H). Since coker(H)

surjects onto M , we see that det(H) ∈ AnnR(M). As H ∈ Sa(h) was arbitrary, we see

that

FitR(M) ⊂ AnnR(M).

The Fitting ideal satisfies certain useful properties. Following [Nic17b, Lemma 1.8], we

now list some of these properties.

Lemma 1.2.3. Let R be a commutative ring, and let M1, M2 and M3 be finitely presented

R-modules.

(i) If there is a surjection π : M1 →M2 then FitR(M1) ⊆ FitR(M2).

(ii) If M2 = M1 ⊕M3 then

FitR(M1) FitR(M3) = FitR(M2).

(iii) If M1 →M2 →M3 → 0 is an exact sequence then

FitR(M1) FitR(M3) ⊆ FitR(M2).

Proof. For a proof of part (i), let

Rb
h−→ Ra

π1−→M1 → 0

be a presentation of M1. Then one may construct a finite presentation of M2 given by

Rb+b
′ (h,∗)−−−→ Ra

π◦π1−−−→M2 → 0,

where (h, ∗) is the map h extended possibly with extra relations; this proves part (i).

Part (ii) follows directly from [Nor76, Exercise 3.3]. Part (iii) follows from [Nor76, Exer-

cise 3.2] on short exact sequences and part (i).

Example 1.2.4. Let R be a commutative ring. Let I1, . . . , In be ideals of R. Then

FitR(
⊕n

k=1R/Ik) =
∏n
k=1 Ik. This follows from [Nor76, Exercise 3.4].

1.3 Semisimple algebras

We recall the definition of semisimple rings and modules from [CR81].

Definition 1.3.1. Let A be a ring. A right A-module M is called simple if M 6= 0 and

the only submodules of M are 0 and M .

9



1. Preliminaries

Proposition 1.3.2. Let M be a right A-module over an arbitrary ring A. The following

statements are equivalent.

(i) M =
⊕

i∈IMi for some family, {Mi}i∈I , of simple submodules of M .

(ii) M =
∑

j∈JMj for some family, {Mj}j∈J , of simple submodules of M .

(iii) For every submodule M ′ ⊂M , there exists a submodule M ′′ ⊂M such that

M = M ′ ⊕M ′′.

Proof. A proof of this is given in [CR62, Theorem 15.3].

Definition 1.3.3. Let A be a ring. A right A-module M satisfying the equivalent condi-

tions of Proposition 1.3.2 is called semisimple.

Proposition 1.3.4. Let A be a ring. The following conditions on A are equivalent.

(i) Every right A-module is semisimple.

(ii) Every finitely generated right A-module is semisimple.

(iii) The ring A viewed as a right A-module over itself is semisimple and is a direct sum

A = L1 ⊕ · · · ⊕ Lm of a finite number of minimal right ideals {L1, . . . , Lm} of A.

Proof. A proof of this is given in [CR81, Proposition 3.15].

Definition 1.3.5. A ring A is called semisimple if A satisfies the equivalent conditions of

Proposition 1.3.4.

Remark 1.3.6. This definition of a semisimple ring differs from that found in [Rei75,

Section 6a] which defines a semisimple ring to be a ring A such that the Jacobson radical

rad(A) of A is 0. If A is an Artinian ring then, by [CR81, Theorem 5.18], A is semisimple

if and only if rad(A) = 0. In fact, using Theorem 1.3.12 below, A is semisimple if and

only if A is Artinian and rad(A) = 0. Hence, semisimple rings (as defined here) are both

Noetherian and Artinian.

Motivation for Definition 1.3.5 comes from group algebras and Theorem 1.3.8 below.

Definition 1.3.7. Let R be a ring and let G be a finite group. The group ring R[G] is

defined to be the free R-module

R[G] =
⊕
g∈G

Rg

with multiplication given by∑
g∈G

agg

(∑
h∈G

bhh

)
=
∑
g,h∈G

agbh(gh),

for some ag, bh ∈ R.

Theorem 1.3.8 (Maschke’s Theorem). Let F be a field and let G be a finite group. If

either char(F ) = 0 or char(F ) - |G| then the group algebra F [G] is a semisimple ring.

Proof. A sketch proof is given in [CR81, Theorem 3.14].

10



1. Preliminaries

Definition 1.3.9. A ring A is called simple if A has no proper non-zero two-sided ideals.

Definition 1.3.10. Let F be a field and let A be a F -algebra. We call A a central simple

F -algebra if A is a simple ring, A is finite dimensional over F and Z(A) = F .

We now recall the definition of a homogeneous component of a semisimple module

from [CR81, Definition 3.21].

Definition 1.3.11. Let M be a semisimple right A-module and let {Mi}i∈I be a set of

representatives of the isomorphism classes of simple right A-submodules of M . For i ∈ I,

let

Hi =
∑
P∼=Mi
P⊂Mi

P.

The submodules {Hi}i∈I are called the homogeneous components of M .

Theorem 1.3.12 (Wedderburn’s Decomposition Theorem). If A is a semisimple ring,

then the number of homogeneous components {Ai} of A as a right A-module is finite and

A is their direct sum:

A = A1 ⊕ · · · ⊕Am.

Each homogeneous component Ai is a two-sided ideal in A and AiAi′ = 0 if i 6= i′.

Moreover, each Ai is a simple Artinian ring.

Proof. A proof of this is given in [CR81, Theorem 3.22].

Remark 1.3.13. By [CR81, Proposition 3.24], every simple Artinian ring is semisimple.

Thus if A = A1 × · · · ×Am where each Ai is a simple Artinian ring then A is semisimple.

This shows that the definition of a semisimple ring is independent of taking right or left

modules in the definition.

Definition 1.3.14. When A is a semisimple ring we will call the decomposition

A = A1 × · · · ×Am

into simple Artinian rings the Wedderburn decomposition of A.

1.4 Idempotents

In order to talk about the decomposition of a semisimple ring into components it is useful

to introduce the concept of an idempotent.

Definition 1.4.1. Let A be a ring. An element e ∈ A is called an idempotent in A if

e2 = e.

Example 1.4.2. If A is a ring then 02 = 0 so 0 is an idempotent in A. If A has an identity

element 1A then 12
A = 1A and so 1A is an idempotent in A.

Example 1.4.3. Let F be a field. Let A = M2×2(F ). Then A is a semisimple F -algebra

and the matrix e = ( 1 0
0 0 ) is an idempotent in A.

11



1. Preliminaries

Definition 1.4.4. Let A be a ring. Non-zero idempotents e1 and e2 in A are called

orthogonal if e1e2 = 0. A set {ei} of idempotents in A is called a set of orthogonal

idempotents in A if the idempotents are pairwise orthogonal.

Definition 1.4.5. A idempotent e in A is called primitive if eA is a simple A-module. In

other words, e 6= 0 and if e = e′ + e′′ for some idempotents e′, e′′ in A then either e′ or e′′

is 0.

Definition 1.4.6. Let A be a ring. A central idempotent in A is an idempotent e in A

such that e ∈ Z(A).

Example 1.4.7. Let A be a ring. We note that 0 and 1A are central idempotents in A.

Example 1.4.8. Let F be a field of characteristic 0 and let G be a finite group. If H is

a subgroup of G then eH := 1
|H| TrH (where TrH :=

∑
h∈H h) is an idempotent of F [G]

called the trace idempotent associated to H. If H is a normal subgroup of G then eH is

a central idempotent in F [G].

Let G′ be the commutator subgroup of G. Then eG′ is the ‘largest’ central idempotent of

F [G] such that eG′F [G] is a commutative ring. More precisely, if e is a central idempotent

of F [G] such that eF [G] is a commutative ring then eeG′ = e. This follows because G′

is the minimal normal subgroup of G such that G/G′ is commutative. We will generalise

this concept to other semisimple algebras in Definition 3.5.1.

Definition 1.4.9. A central idempotent e in A is called primitive if e 6= 0 and e = e′+ e′′

(for some central idempotents e′, e′′ ∈ A) implies either e′ = 0 or e′′ = 0.

Example 1.4.10. Let F be a field of characteristic 0 and let G be a finite group. Recall

that IrrF (G) is the set of F -valued irreducible characters of G. If χ ∈ IrrF (G) then

eχ := χ(1)
|G|
∑

g∈G χ(g−1)g is a primitive central idempotent of F [G] called the idempotent

associated to χ.

Remark 1.4.11. Let A be a semisimple ring and let A = A1×· · ·×Am be the Wedderburn

decomposition of A. Then ei = 1Ai is a primitive central idempotent in A. Conversely,

if e is a primitive central idempotent in A then eA is a simple ring contained in A so

eA = Ai and e = ei for some i ∈ {1, . . . ,m}. Furthermore, the set {e1, . . . , em} is a set

of orthogonal idempotents in A. We also see that e1, . . . , em are the primitive (central)

idempotents in Z(A) and we see that Z(eiA) = eiZ(A).

Let e be a central idempotent in A. We see that e =
∑m

i=0 eei =
∑

i∈I ei for some

subset I of {1, . . . ,m}. Thus

Z(eA) =
∏
i∈I

Z(eiA) =
∏
i∈I

eiZ(A) = eZ(A).
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1. Preliminaries

1.5 Tensor products

Let A be a ring and let M be a right A-module and let N be a left module. Recall the

definition of the tensor product M ⊗A N from [CR81, Section 2B].

Lemma 1.5.1. Let A be a ring. Let M , M1 and M2 be right A-modules and let N , N1

and N2 be left A-modules. Then

(i) if f : M1 →M2 and g : N1 → N2 are A-module homomorphism then there is a unique

group homomorphism f ⊗ g : M1 ⊗A N1 →M2 ⊗A N2 such that

f ⊗ g(m1 ⊗m2) = f(m1)⊗ g(m2)

for m1 ∈M1 and m2 ∈M2,

(ii) there are canonical isomorphisms A⊗A N ∼= N and M ⊗A A ∼= M , and

(iii) there are canonical isomorphisms

(M1 ⊕M2)⊗A N ∼= (M1 ⊗A N)⊕ (M2 ⊗A N)

and

M ⊗A (N1 ⊕N2) ∼= (M ⊗A N1)⊕ (M ⊗A N2).

Proof. For proofs of (i), (ii) and (iii) see [CR62, Theorems 12.10, 12.12 and 12.14], respec-

tively.

Lemma 1.5.2. Let A and B be rings. Let L be a right A-module, let M be an (A,B)-

bimodule and let N be a left B-module. Then there is an isomorphism of abelian groups

(L⊗AM)⊗B N ∼= L⊗A (M ⊗B N),

given by the formula (l ⊗m)⊗ n 7→ l ⊗ (m⊗ n) for l ∈ L, m ∈M and n ∈ N .

Proof. A proof of this is given in [CR62, Theorem 12.15].

Definition 1.5.3. Let R be a commutative ring and let A and B be R-algebras. Then

A⊗R B is an R-algebra with multiplication given by

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2 ⊗ b1b2).

Example 1.5.4. Let R be a commutative ring, and let B be an R-algebra. Then there

is an R-algebra isomorphism

Mn×n(R)⊗R B
∼=−−→Mn×n(B),

given on the R-spanning set {(rij)1≤i,j≤n ⊗ b | rij ∈ R, b ∈ B} by

(rij)1≤i,j≤n ⊗ b 7−→ (rijb)1≤i,j≤n.

By Lemma 1.5.1(iii) the map is a bijection and it is easy to directly check that this map

is an R-algebra homomorphism.
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Example 1.5.5. Let R be a commutative ring, let S be a commutative R-algebra and let

G be a finite group. Then there is an R-algebra isomorphism

S ⊗R R[G]
∼=−−→ S[G],

given on the R-spanning set {s⊗ g | s ∈ S, g ∈ G} of S ⊗R R[G] by

s⊗ g 7−→ sg.

By Lemma 1.5.1(iii) the map is a bijection and it is easy to directly check that this map

is an R-algebra homomorphism.

Example 1.5.6. Let R be a commutative ring and let G and H be finite groups. Then

there is an R-algebra isomorphism

R[G]⊗R R[H]
∼=−−→ R[G×H],

given on the R-basis {g ⊗ h | g ∈ G, h ∈ H} of R[G]⊗R R[H] by

g ⊗ h 7−→ (g, h).

By Lemma 1.5.1(iii) the map is a bijection and it is easy to directly check that this map

is an R-algebra homomorphism.

1.6 Reduced norms

The start of this section will closely follow [CR81, Section 7D], although we will cite [Rei75]

for proofs. Let F be a field and let V be a finite dimensional F -vector space. Some useful

tools in the study of linear maps are the concepts of the characteristic polynomial and

determinant. For a linear map H ∈ EndF (V ) we write chF (H) for the characteristic

polynomial of H and detF (H) for the determinant of H. We will use the same notation

for the characteristic polynomial and determinant of a matrix in Mn×n(F ).

Let A be a finite dimensional F -algebra and let H ∈ A. We obtain a linear map

HL : A −→ A

given by left multiplication by H. We will write

chA/F (H) = chF (HL) and NA/F (H) = detF (HL).

Note that the subscript of chA/F is important to distinguish from the usual characteristic

polynomial when A is a matrix ring over F . We note that NA/F (−H) is the constant

coefficient of chA/F (H).

Consider (for now) the central simple F -algebra A = Mn×n(F ). An element H ∈ A
is already a matrix so we may take the determinant and characteristic polynomial of H

directly, without the extra work of considering H as a linear map A → A. With this

14
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notation, by [Rei75, Theorem 9.5], we see that

chA/F (H) = (chF (H))n

and

NA/F (H) = (detF (H))n.

This shows that chF and detF are in some sense ‘finer versions’ of NA/F and chA/F ,

respectively. We define the reduced characteristic polynomial of H ∈ A to be

rchA/F (H) = chF (H)

and the reduced norm to be

nrA/F (H) = detF (H).

Remark 1.6.1. We note that nrA/F (−H) is the constant coefficient of the reduced char-

acteristic polynomial of H. In other words

rchA/F (H)(X) = Xn + · · ·+ (−1)n nrA/F (H).

More generally, let A be any central simple F -algebra. By [Rei75, Theorems 7.4

and 7.15] there is a separable field extension E of F such that there is an E-algebra

isomorphism f : A⊗F E → Mn×n(E) for some n ∈ Z>0. We call E a splitting field for A

over F (we will generalise this notion further in Definition 1.8.7). The reduced character-

istic polynomial is defined to be

rchA/F (H) = chE(f(H ⊗F 1E))

and the reduced norm is defined to be

nrA/F (H) = detE(f(H ⊗F 1E)).

The definitions of the reduced characteristic polynomial and reduced norm may appear

to depend on the choice of E-algebra isomorphism f : A ⊗F E → Mn×n(E). However,

if h : A ⊗F E → Mn×n(E) is any other E-algebra isomorphism, then fh−1 is an E-

algebra automorphism of Mn×n(E) and thus is inner by the Skolem-Noether Theorem

(see [Rei75, Corollary 7.23]). In particular, there exists a matrix T ∈ GLn(E) such that

f(H ⊗F 1E) = Th(H ⊗F 1E)T−1. Thus the characteristic polynomials of f(H ⊗F 1E)

and h(H ⊗F 1E) are the same; similarly for the determinants. Therefore the reduced

characteristic polynomial and reduced norm do not depend on the choice of E-algebra

isomorphism A⊗F E →Mn×n(E).

By [Rei75, Theorem 9.3], rch(H) lies in F [X] and is independent of the choice of

splitting field E. Using Remark 1.6.1, we see that

rchA/F (H)(X) = Xn + · · ·+ (−1)n nrA/F (H).

Hence nrA/F (H) lies in F and is independent of the choice of splitting field E.

15
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When defining the reduced characteristic polynomial and reduced norm for an arbitrary

(not necessarily central) simple F -algebra A we diverge from the definition given in [CR81,

Section 7D] or [Rei75, Definition 9.13]. The definitions of the reduced characteristic poly-

nomial and reduced norm given by Curtis and Reiner produce elements of F [X] and F ,

respectively, whereas we are more interested in producing elements of Z(A)[X] and Z(A).

Suppose that A is a simple F -algebra. We note that Z(A) is a finite field extension of F and

A is a central simple Z(A)-algebra. Thus we can and do define the reduced characteristic

polynomial and reduced norm of an element H ∈ A as follows

rchA(H) = rchA/Z(A)(H) and nrA(H) = nrA/Z(A)(H).

We will often drop the A in the notation when it is clear from context.

We are now in a position to define the reduced characteristic polynomial and reduced

norm for elements of a finite dimensional semisimple F -algebra A. Since A is finite di-

mensional semisimple, it may be written as a product

A =

t∏
i=1

Ai,

where the Ai are simple F -algebras. Hence any element H ∈ A can be viewed as a tuple

H = (H1, . . . ,Ht), where Hi ∈ Ai. We defined the reduced characteristic polynomial and

reduced norm componentwise,

rchA(H) = (rchA1(H1), . . . , rchAt(Ht))

and

nrA(H) = (nrA1(H1), . . . ,nrAt(Ht)) .

Again we will often drop the A in the notation when it is clear from context.

Remark 1.6.2. Using Remark 1.6.1, we see that nrA(−H) is the constant coefficient of

the reduced characteristic polynomial of H.

It is important to note that the reduced characteristic polynomial of an element of A

need not be monic, as illustrated by the following example.

Example 1.6.3. Let F be a field and consider the F -algebra F ×M2×2(F ). The reduced

characteristic polynomial of 0 ∈ F×M2×2 is e2X
2+e1X, where e1 is the central idempotent

corresponding to the F component and e2 is the central idempotent corresponding to the

M2×2(F ) component.

Remark 1.6.4. Since the definition of the reduced norm of elements of a finite dimen-

sional semisimple algebra is built from the definition of the determinant for matrices over

a field, to prove properties of the reduced norm it often suffices to prove them for determi-

nants. In a similar way, to prove properties of the reduced characteristic polynomial of a

finite dimensional semisimple algebra it often suffices to prove them for the characteristic

polynomial of matrices over a field.
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Remark 1.6.5. The reduced characteristic polynomial and reduced norm of a finite di-

mensional semisimple algebra do not depend on the choices of splitting fields for the simple

components because they do not depend on the choice of splitting field in the central simple

algebra case.

Lemma 1.6.6. Let F be a field and let A be a finite dimensional semisimple F -algebra.

If H ∈ A then

rch(H)(X) = nr(1A ⊗F X −H ⊗F 1F (X)),

where the reduced norm is considered in the finite dimensional semisimple F (X)-algebra

A⊗F F (X) and both sides of the equality are considered as polynomials over X.

Proof. We give a proof in the case that A is a matrix ring over a field. From this one can

deduce the more general case by unravelling the definitions; this is a long but straightfor-

ward exercise.

Let E be a field and let n ∈ Z>0. If H ∈ Mn×n(E) then the definition of the charac-

teristic polynomial of the matrix H is

chF (H) = (−1)n detF (X)(H −XIn)

= detF (X)(−In) detF (X)(H −XIn)

= detF (X)(XIn −H),

where In in the n× n identity matrix in Mn×n(E).

Lemma 1.6.6 allows us to deduce properties of the reduced characteristic polynomial

from properties of the reduced norm.

Lemma 1.6.7. Let F be a field and let A, B be finite dimensional semisimple F -algebras.

If ϕ : A→ B is an F -algebra isomorphism then for H ∈ A we have

rchB(ϕ(H)) = ϕ(rchA(H))

and

nrB(ϕ(H)) = ϕ(nrA(H)),

where ϕ acts on the coefficients of the reduced characteristic polynomial.

Proof. Since the reduced norm is defined componentwise, Lemma 1.6.6 shows that the

proof may reduced to the case that A and B are simple F -algebras. Let ϕ : A→ B be an

isomorphism of simple F -algebras. Let E be a field extension of Z(A) that is a splitting

field for A over Z(A). Viewing E as a field extension of Z(B) via ϕ|Z(A), the isomorphism

ϕ extends to an E-algebra isomorphism

ϕE : A⊗Z(A) E −→ B ⊗Z(B) E.

In particular, E may be viewed as a splitting field for B over Z(B). Let H ∈ A. Then

nrA(H) = detE(H ⊗ 1E). Since the reduced norm does not depend on the choice of

E-algebra isomorphism A⊗Z(A) E →Mn×n(E), by applying ϕ we see that

ϕ(nrA(H)) = ϕE(detE(H ⊗ 1E)) = detE(ϕE(H ⊗ 1E)) = nrB(ϕ(H)),

17
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where the second equality follows because ϕE is an E-algebra homomorphism.

1.7 Generalised adjoints

Definition 1.7.1. Let F be a field and let A be a finite dimensional semisimple F -algebra.

For H ∈ A write

rchA(H)(X) =
N∑
j=0

ajX
j

and define the generalised adjoint of H to be

H∗ = −nrA(−1A)
N∑
j=1

ajH
j−1 ∈ A.

Lemma 1.7.2. Let F be a field and let A = Mn×n(F ) be a central simple F -algebra.

If H ∈ Mn×n(F ) then the generalised adjoint of H in A is precisely the adjugate of the

matrix H in A.

Proof. A proof for this may be found in [Gan98, Section IV.4.3].

The reduced characteristic polynomial of H has constant term nrA(−H). This obser-

vation leads to the following result.

Lemma 1.7.3. Let F be a field and let A be a finite dimensional semisimple F -algebra.

If H ∈ A then

HH∗ = H∗H = nrA(H)1A.

Proof. Suppose that A is a matrix ring over a field. If H ∈ A then

HH∗ − nrA(H)1A = H∗H − nrA(H)1A = −nrA(−1A) rchA(H)(H) = 0,

where the last equality follows from the Cayley-Hamilton Theorem (see [Gan98, Theo-

rem IV.2]). This concludes the proof in this case. The more general case follows from this

by unravelling the definitions; this is a long but straightforward exercise.

Remark 1.7.4. By Lemma 1.7.3, if H ∈ GLn(A) then H∗ = nr(H)H−1.

Remark 1.7.5. We may write the finite dimensional semisimple algebra A as a product

of simple F -algebras A =
∏t
i=1Ai. Write H = (H1, . . . ,Ht) where Hi ∈ Ai and write

rchAi(Hi) =
∑mi

j=0 αi,jX
j , where m2

i = degZ(Ai)(Ai). Using that the definition of the

reduced characteristic polynomial is built up from the definition on simple F -algebras, we

see that

H∗ = (H∗1 , . . . ,H
∗
t ), where H∗i = (−1)mi+1

mi∑
j=1

αi,jH
j−1
i .

Here we have used that nrA(−1A) = ((−1A1)m1 , . . . , (−1At)
mt). Therefore the definition

of generalised adjoint given here agrees with the definition in [JN13, Section 3.6].
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Example 1.7.6. Let F be a field. We recall the example of an F -algebra F ×M2×2(F )

from Remark 1.6.3, in which we noted that

rch(0) = e2X
2 + e1X,

where e1 is the central idempotent corresponding to the F component and e2 is the central

idempotent corresponding to the M2×2(F ) component. In this case we note that the

generalised adjoint of 0 in F ×M2×2(F ) is e1.

Remark 1.7.7. Using an idea from the proof of [JN13, Proposition 4.4], we shall now

show that Example 1.7.6 is a special case of a more general result. Let F be a field

and let A be a finite dimensional semisimple F -algebra. Using Theorem 1.3.12, write

A =
∏t
i=1Ai where the Ai are simple F -algebras. Using [Rei75, Theorem 7.4], there are

F -algebra isomorphisms Ai ∼= Mni×ni(Di), where Di is a division ring over F with Schur

index si. Let H = 0 ∈ A. We may write H = (H1, . . . ,Ht), where Hi = 0 ∈ Ai. We

see that the reduced characteristic polynomial of Hi is fi(X) = Xnisi . Hence H∗i = hi(0)

where hi(X) = Xnisi−1. In other words,

H∗i =

1Ai if nisi = 1,

0Ai otherwise.

We observe that the ring Ai is commutative if and only if nisi = 1. Therefore 0∗ = H∗ is

the ‘largest’ central idempotent e of A such that eA is commutative. We will make this

notion more precise in Definition 3.5.1.

Theorem 1.7.8. Let F be a field and let A be a finite dimensional semisimple F -algebra.

Then the following results hold.

(i) If B is a finite dimensional semisimple F -algebra and ϕ : A → B is an F -algebra

isomorphism then

(ϕ(H))∗ = ϕ(H∗).

(ii) Suppose that B is a commutative finite dimensional semisimple E-algebra where E is

a field extension of F such that A⊗F B is finite dimensional semisimple E-algebra.

If H ∈ A then, in A⊗F B, we have

(H ⊗ 1B)∗ = H∗ ⊗ 1B.

(iii) If H1 ∈Mn×n(A) and H2 ∈Mm×m(A) then(
H1 0

0 H2

)∗
=

(
nr(H2)H∗1 0

0 nr(H1)H∗2

)
∈M(n+m)×(n+m)(A).

(iv) If H1, H2 ∈ A then (H1H2)∗ = H∗2H
∗
1 .

Remark 1.7.9. The hypothesis that A⊗F B is finite dimensional semisimple E-algebra

in part (ii) is due to us only having defined the generalised adjoint for finite dimensional

semisimple E-algebras.
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Proof of Theorem 1.7.8. Using Lemma 1.6.7 (which tells us that the reduced characteristic

polynomial is preserved by the isomorphism ϕ) and the definition of the generalised adjoint

(Definition 1.7.1), we see that (i) holds.

We will give a proof of (ii), (iii) and (iv) in the case that A is a matrix ring over a field;

in this setting, by Lemma 1.7.2, the generalised adjoint is the same as the adjugate matrix.

These properties are well known for adjugates of matrices over a field and the proofs are

routine (though we will provide a proof below for the convenience of the reader). From

this one can deduce the more general case by unravelling the definitions; this is a long but

straightforward exercise.

Let H ∈ Mn×n(F ) for some n ∈ Z>0. It is clear that the matrix of cofactors of

the matrix H is the same as the matrix of cofactors of H ⊗ 1B viewed as a matrix in

Mn×n(F )⊗F B ∼= Mn×n(B). Therefore, using Lemma 1.7.2 and (i) we see that

H∗ ⊗ 1B = (H ⊗ 1B)∗

and so (ii) holds.

Showing that (iii) holds may be done directly; however here we will provide a more

topological proof. The proofs of (iii) and (iv) given here are inspired by the topological

proof of the Cayley-Hamilton Theorem.

Note that, by (ii), it suffices to show (iii) and (iv) when F is an algebraically closed

field. For n ∈ Z>0, we may identify Mn×n(F ) with the affine variety An2

F by sending the

(i, j)-entry of a matrix in Mn×n(F ) to the (i− 1)n+ j-coordinate of An2

F . By [Har77, Ex-

ample 1.4.1], affine space over an algebraically closed field is irreducible in the topological

sense (that is, non-empty open subsets are dense). Let I be the set of invertible matrices

in Mn×n(F ). We see that I is the preimage of the open set F \ {0} under the determinant

map (which is continuous because it is a polynomial map in the coefficients of the matrix)

and so we see that I is a open subset of Mn×n(F ). We also note that I is non-empty so

it is a dense subset of Mn×n(F ).

Let n1, n2 ∈ Z>0. Let

ϕ : Mn1×n1(F )×Mn2×n2(F )→M(n1+n2)×(n1+n2)(F )

be the map given by

ϕ(H1, H2) =

(
H1 0

0 H2

)∗
−

(
det(H2)H∗1 0

0 det(H1)H∗2

)

for H1 ∈Mn1×n1(F ) and H2 ∈Mn2×n2(F ). Then ϕ is a polynomial map in the entries of

the matrices H1 and H2 and so (after identifying the matrix rings with affine varieties) ϕ

is a continuous map. Let Ii be the set of invertible elements in Mni×ni(F ) for i = 1, 2. For

H1 ∈ I1 and H2 ∈ I2, we see that
(
H1 0
0 H2

)
∈M(n1+n2)×(n1+n2)(F ) is an invertible matrix
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and so (
H1 0

0 H2

)∗
= det(H1) det(H2)

(
H1 0

0 H2

)−1

=

(
det(H1) det(H2)H−1

1 0

0 det(H1) det(H2)H−1
2

)

=

(
det(H2)H∗1 0

0 det(H1)H∗2

)
.

Therefore ϕ is a continuous map which is the zero map on the dense subset I1 × I2 of

Mn1×n1(F )×Mn2×n2(F ). Hence ϕ is the zero map and so (iii) holds.

Let

ϕ : Mn×n(F )×Mn×n(F )→Mn×n(F )

be the map given by ϕ(H1, H2) = (H1H2)∗ −H∗2H∗1 . Then ϕ is a polynomial map in the

entries of the matrices H1 and H2 and so (after identifying the matrix rings with affine

varieties) ϕ is a continuous map. Let I be the set of invertible matrices in Mn×n(F ). For

H1, H2 ∈ I, we have

(H1H2)∗ = det(H1H2)(H1H2)−1

= det(H2)H−1
2 det(H1)H−1

1

= H∗2H
∗
1 ,

where the second equality follows because the determinant is multiplicative and has image

in F . Therefore ϕ is a continuous map which is the zero map on the dense subset I × I of

Mn×n(F )×Mn×n(F ). Hence ϕ is the zero map and so (iv) holds.

1.8 Separable algebras

Maschke’s Theorem (Theorem 1.3.8) can be rephrased as saying that if G is a finite group,

F is a field and either char(F ) = 0 or char(F ) - |G|, then for every field extension E of

F the group algebra E[G] ∼= E ⊗F F [G] is a semisimple E-algebra. This leads us to the

following theorem/definition.

Theorem 1.8.1. Let F be a field and let A be a finite dimensional F -algebra. Then the

following statements are equivalent.

(i) The ring A⊗FE is a semisimple E-algebra for every field extension E of F (including

F itself).

(ii) There exists a finite separable field extension E of F such that A ⊗F E is a direct

product of full matrix algebras over E.

(iii) The ring A is a semisimple F -algebra such that the centre of each simple component

of A is a separable field extension of F .

Proof. A proof of this is given in [Rei75, Theorem 7.18] (note that (iii) is given as the

definition of a separable algebra in this reference). Another proof is given in [CR81,
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Lemmas 7.2 and 7.3] (note that (i) is given as the definition of a separable algebra in this

reference).

Definition 1.8.2. Let F be a field. An F -algebra A is called separable if A is a finite

dimensional F -algebra and A satisfies the equivalent conditions of Theorem 1.8.1.

Remark 1.8.3. This definition of a separable F -algebra is equivalent to the definitions

given in [Rei75, Section 7c] and [CR81, Definition 7.1].

Example 1.8.4. Let F be a field and let G be a finite group. If the characteristic of F

is zero or does not divide the order of G then Maschke’s Theorem (Theorem 1.3.8) shows

that F [G] is a separable F -algebra.

Example 1.8.5. If F is a field of characteristic 0 then, by Wedderburn’s Decomposition

Theorem (Theorem 1.3.12) and Theorem 1.8.1(ii), every finite dimensional semisimple

F -algebra is separable.

Example 1.8.6. Let F be a field and let A be a finite dimensional central simple F -

algebra. By [Rei75, Theorems 7.4 and 7.15], there is a finite separable field extension

E of F such that A ⊗F E is isomorphic to a matrix ring over E (this was noted after

Remark 1.6.1, where we called E a splitting field for A). In particular, this shows that

Theorem 1.8.1(ii) holds. Hence finite dimensional central simple algebras are separable.

For general finite dimensional separable algebras splitting fields are defined in a slightly

different way.

Definition 1.8.7. Let F be a field and let A be a separable F -algebra. As in [CR81,

Definition 7.12] a splitting field of A over F is a field extension E of F such that every

simple A⊗F E-module is absolutely simple. (An A⊗F E-module M is absolutely simple

if M ⊗E K is a simple A⊗F K-module for every field extension K of E.)

Remark 1.8.8. Let F be a field and let A be a separable F -algebra. By [CR81, Theo-

rems 3.34 and 3.43], E is a splitting field for A over F if and only if A ⊗F E is a direct

product of full matrix algebras over E. In particular, by Theorem 1.8.1(ii) a finite dimen-

sional F -algebra A is separable if and only if there exists a finite separable field extension

E of F such that E is a splitting field for A over F . This also shows that, in the case

of central simple algebras, Definition 1.8.7 agrees the definition of splitting fields given in

Section 1.6.

Remark 1.8.9. Let F be a field and let A be a separable F -algebra. Remark 1.8.8

shows that a splitting field for a separable F -algebra A is (in some sense) a ‘simultaneous

splitting field’ for all of the homogeneous components of A. To be more precise, let A be

a separable F -algebra and let E be a splitting field for A over F . Let A =
∏m
i=1Ai be the

Wedderburn decomposition of A into simple F -algebras. Then A⊗F E =
∏m
i=1(Ai⊗F E).

By [CR81, Corollary 7.6], Li := Z(Ai) is a finite separable field extension of F . Since

Ai, Li and E are (F,Li)-bimodules, Lemma 1.5.2 shows that there exists an F -algebra

isomorphism

Ai ⊗F E ∼= Ai ⊗Li (Li ⊗F E).

22



1. Preliminaries

By [Rei75, Theorem 7.16], we see that Li ⊗F E is a product of fields. Therefore, us-

ing [Rei75, Theorem 7.6] and considering the homogeneous components of Li ⊗F E, we

see that Ai ⊗F E is a semisimple algebra with centre Li ⊗F E. Moreover, since E is a

splitting field for A, we see that Ai ⊗F E is a product of matrix rings over E. Therefore

Li ⊗F E is isomorphic to a finite direct product of copies of E. Hence the field Li can be

viewed as a subfield of E and Ai ⊗Li E is isomorphic to a matrix ring over E (in other

words, E is a splitting field for the central simple Li-algebra Ai).

Remark 1.8.10. Let F be a field and let A be a separable F -algebra. Computing the

reduced characteristic polynomial and reduced norm in A is done over the simple com-

ponents of Ai. In light of Remark 1.8.9, if E is a splitting field for A then E is also a

splitting field for each simple component Ai of A. It would be convenient if computing the

reduced characteristic polynomial and reduced norm could be done over A ⊗F E rather

than needing to consider the centres of each simple component. This is indeed the case

by Remark 1.8.9 together with the following lemma.

Lemma 1.8.11. Let F be a field and let A be a separable simple F -algebra with centre L.

Let E be a splitting field for A over F . If H ∈ A then in A⊗F E we have

rch(H)⊗ 1E = rch(H ⊗ 1E)

and

nr(H)⊗ 1E = nr(H ⊗ 1E).

Proof. We note that, using the argument in Remark 1.8.9, there is an F -algebra isomor-

phisms

A⊗F E ∼= Mn×n(L⊗F E),

for some n ∈ Z>0. Furthermore, by Lemma 1.5.2, there are F -algebra isomorphisms

A⊗F E ∼= (L⊗F A)⊗L E ∼= L⊗F (A⊗L E).

Hence we see that there is a commutative diagram

A Z(A)

A⊗L E Mn×n(E) E

A⊗F E Mn×n(L⊗F E) L⊗F E.

nrA

−⊗1E −⊗L1E

∼=

1L⊗−

detE

1L⊗− 1L⊗F−

∼= detL⊗FE

(1.1)

Let H be an element of A. The element nrA(H) ⊗ 1E corresponds to computing the

determinant in A⊗LE and then embedding into L⊗F E and the element nrA⊗FE(H⊗1E)

corresponds to computing the determinant in A⊗F E directly. We note that because the

reduced norm is invariant under F -algebra isomorphisms (by Lemma 1.6.7), it does not
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matter whether we take determinant over L⊗F E or break into simple algebras and then

take determinants over E. Therefore, the commutative diagram (1.1) shows that

nr(H)⊗ 1E = nr(H ⊗ 1E).

The result for reduced characteristic polynomials follows from the result on reduced

norms and Lemma 1.6.6 (which tells us that the reduced characteristic polynomial of an

element of A can be seen as the reduced norm of an element in A⊗F F (X)).

1.9 Lattices and orders

This section follows [Rei75, Section 8].

Definition 1.9.1. Let R be a Noetherian integral domain with field of fractions F and

let V be a finite dimensional F -vector space. A full R-lattice in V is a finitely generated

R-submodule M of V such that

FM :=

{
n∑
i=1

αimi

∣∣∣∣∣ n ∈ Z>0, αi ∈ F,mi ∈M

}
= V.

Remark 1.9.2. Let R be a Noetherian integral domain with field of fractions F . Every

finite dimensional F -vector space V contains a full R-lattice. In particular, if v1, . . . , vd is

an F -basis for V then M =
∑d

i=1Rvi is a full R-lattice in V .

Example 1.9.3. Let R be a Noetherian integral domain with field of fractions F and let

G be a finite group. Then R[G] is a full R-lattice in F [G].

Lattices over a Dedekind domain satisfy the following local-global principle.

Theorem 1.9.4. Let R be a Dedekind domain with field of fractions F , let V be a finite

dimensional F -vector space and let M be an R-lattice in V . View M and its localisations

{Mp} as embedded in the F -vector space V . Then

M =
⋂
p

Mp,

where p ranges over all maximal ideals of R.

Proof. For a proof see [Rei75, Theorem 4.21].

Definition 1.9.5. Let R be a Noetherian integral domain with field of fractions F and let

A be finite dimensional F -algebra. An R-order in A is a subring Λ of A (with the same

identity element) that is also a full R-lattice in A.

Remark 1.9.6. Let R be a Noetherian integral domain with field of fractions F . We

note that R-orders are Noetherian rings as they are finitely generated R-modules over the

Noetherian ring R.

Examples 1.9.7. Let R be a Noetherian integral domain with field of fractions F .

(i) The R-algebra Λ = Mn×n(R) is an R-order in Mn×n(F ).
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(ii) If R is a Dedekind domain and L is a finite separable extension of F then the integral

closure of R in L is an R-order in L.

(iii) If G is a finite group then R[G] is an R-order in F [G].

Lemma 1.9.8. Let R be a Noetherian integral domain with field of fractions F , let A be

a finite dimensional F -algebra and let Λ be an R-order in A. If e is a central idempotent

of A then

(i) Z(eΛ) = (eΛ) ∩ Z(A),

(ii) eZ(Λ) ⊂ Z(eΛ) and

(iii) Z(eΛ) ∩ Z(Λ) = eZ(Λ) ∩ Z(Λ).

Proof. Since e ∈ Z(A) and Λ is an R-order in A, we see that eZ(Λ) ⊂ (eΛ) ∩ Z(A) and

Z(eΛ) ⊂ (eΛ)∩Z(A). Since eΛ ⊂ A, an element of A which commutes with every element

in A commutes with every element in eΛ and so we see that (eΛ) ∩ Z(A) ⊂ Z(eΛ). This

proves (i) and (ii). Let x ∈ Z(eΛ) ∩ Z(Λ). Since x ∈ eΛ and x ∈ Z(Λ), we see that

x = ex ∈ eZ(Λ). Therefore,

Z(eΛ) ∩ Z(Λ) ⊂ eZ(Λ) ∩ Z(Λ).

Now (iii) follows from (ii).

Example 1.9.9. It is not necessarily true that eZ(Λ) = Z(eΛ). For example let p be a

prime number and let A = Q×Q×M2×2(Q). Let e1 = (1, 0, ( 0 0
0 0 )), e2 = (0, 1, ( 0 0

0 0 )) and

e3 = (0, 0, ( 1 0
0 1 )) be the primitive central idempotents of A. Let Γ = Z × Z ×M2×2(Z)

and let e′3 = (0, 0, ( 1 0
0 0 )) ∈ Γ. Then Γ is a maximal Z-order in A and e′3 is a primitive

idempotent in e3A. Let

Λ = 1Γ · Z+ (e1 + e′3) · Z+ pΓ = (e1 + e′3) · Z+ (e2 + e3 − e′3) · Z+ pΓ.

It is clear that Λ is a Z-lattice in A and since

1Γ · Z · (e1 + e′3) · Z = (e1 + e′3) · Z and (e1 + e′3) · Z · pΓ ⊂ pΓ,

we see that Λ is as Z-order in A. Finally, it is clear that

(e1 + e2)Z(Λ) = (e1 + e2) · Z+ p(e1 + e2) · Z(Γ) ( e1 · Z+ e2 · Z = Z((e1 + e2)Λ).

Corollary 1.9.10. Let R be a Noetherian integral domain with field of fractions F , let A

be a finite dimensional F -algebra and let Λ be an R-order in A. Let x ∈ Z(Λ) and let e

be the sum of the central primitive central idempotents ei of A such that eix 6= 0. Then

xZ(eΛ) = xΛ ∩ Z(A).

Proof. From the definition of the idempotent e we see that ex = x ∈ (eZ(A))× and so

xeZ(A) = eZ(A). Therefore we see that

xΛ ∩ Z(A) = xeΛ ∩ eZ(A) = x(eΛ ∩ eZ(A)) = xZ(eΛ),

where the last equality follows from Lemma 1.9.8(i) for the R-order eΛ in eA (and using

the fact that eZ(A) = Z(eA)).

25



1. Preliminaries

Remark 1.9.11. Let R be a Noetherian integral domain with field of fractions F and let

A be a finite dimensional F -algebra. Let M be any full R-lattice in A. We define the left

order of M to be

Ol(M) = {x ∈ A | xM ⊂M}.

We define the right order of M to be

Or(M) = {x ∈ A |Mx ⊂M}.

It is relatively easy to verify that these are indeed R-orders in A (see the discussion

after [Rei75, Definition 8.1]). Hence every finite dimensional F -algebra A contains an

R-order (because every such A contains an R-lattice).

Definition 1.9.12. Let R be a Noetherian integral domain with field of fractions F and

let A be a finite dimensional F -algebra. An R-order in A is called maximal if it is not

properly contained in any other R-order in A.

Example 1.9.13. Let R be an integrally closed Noetherian domain with field of frac-

tions F and let m ∈ Z>0. By [Rei75, Theorem 8.7], Mm×m(R) is a maximal R-order in

Mm×m(F ).

Conversely, when R is a principal ideal domain the following result holds.

Lemma 1.9.14. Let R be a principal ideal domain with field of fractions F . If m ∈ Z>0

and Λ is a maximal order in Mm×m(F ) then Λ ∼= Mm×m(R).

Proof. As R is a principal ideal domain, it is integrally closed so the unique maximal

R-order in F is R. Let m ∈ Z>0. By [Rei75, Corollary 27.6], any maximal R-order Λ in

Mm×m(F ) is isomorphic to an R-algebra

Λ ∼=


R · · · R J−1

...
. . .

...
...

R · · · R J−1

J · · · J R

 ,

where J is a non-zero fractional ideal of R. However, as R is a principal ideal domain,

the ideal J is principal; that is, J = aR for some a ∈ R. Therefore there is an R-algebra

isomorphism 
R · · · R J−1

...
. . .

...
...

R · · · R J−1

J · · · J R

 −→Mm×m(R)

x 7−→ TxT−1,
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where

T =



a 0 · · · 0

0 a
...

. . .
...

a 0

0 · · · 0 1


and the inverse of T is taken in Mm×m(F ). Therefore there is an R-algebra isomorphism

Λ ∼= Mm×m(R).

Remark 1.9.15. Let R be an integrally closed Noetherian integral domain with field of

fractions F and let A be a finite dimensional F -algebra. Without the hypothesis that A is

a separable F -algebra, it may happen that there are no maximal R-orders in A. In fact,

when the Jacobson radical of A is not 0, the discussion in [Rei75, pg. 128] shows that there

are no maximal orders in A.

Theorem 1.9.16. Let R be an integrally closed Noetherian domain with field of fractions

F and let A be a separable F -algebra. If Λ is any R-order in A then there is a maximal

R-order in A containing Λ.

Proof. For a proof see [Rei75, Corollary 10.4].

Lemma 1.9.17. Let R be an integrally closed Noetherian domain with field of fractions

F . Let A be a finite dimensional semisimple F -algebra and let Λ be a maximal R-order in

A. If H ∈ Λ then rchA(H) has coefficients in Z(Λ) and nrA(H) ∈ Z(Λ).

Proof. Let H ∈ Λ. As A is a finite dimensional semisimple F -algebra we may write

A =
∏t
i=1Ai, where each Ai is a simple F -algebra. As Λ is a maximal R-order in A there

is a corresponding decomposition Λ =
∏t
i=1 Λi, where each Λi is a maximal R-order in

Ai. Thus H = (H1, . . . ,Ht) ∈
∏t
i=1 Λi. For each i ∈ {1, . . . , t} we note that Z(Λi) is a

maximal R-order in Z(Ai), so Z(Λi) is an integrally closed Noetherian domain and we note

that Ai is separable over Z(Ai). Hence, by [Rei75, Theorem 10.1], for each i ∈ {1, . . . , t}
the coefficients of rchAi(Hi) lie in Z(Λi). Therefore

rchA(H) = (rchA1(H1), . . . , rchAt(Ht)),

has coefficients in
∏t
i=1 Z(Λi) = Z(Λ). This together with the fact that nrA(H) is the

constant coefficient of rchA(−H) shows that nrA(H) ∈ Z(Λ).

Lemma 1.9.18. Let R be a integrally closed Noetherian domain with field of fractions

F . Let A be a commutative finite dimensional F -algebra and let S be an R-order in A.

Let V be a finite dimensional F -vector space and let M be an R-lattice in V . If M is a

flat R-module then we may identify V with a subset of V ⊗F A via the map x 7→ x ⊗ 1A

and under this identification M = (M ⊗R S) ∩ V . In particular, this holds when R is a

Dedekind domain.
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Proof. Noting that R = S ∩ F (because R is integrally closed), [Bou89, Chapter I §2.6

Lemma 7] shows that M = (M ⊗R S) ∩ V . If R is a Dedekind domain then every torsion

free module is flat; in particular, every R-lattice M is flat and M = (M ⊗R S) ∩ V .

Remark 1.9.19. Let E be a finite field extension of F . If S is the integral closure of

R in E then [AM69, Proposition 5.12] shows that FS = E (see Definition 1.9.1 for the

definition of FS) and so S is an R-order in E. Hence we may view Λ⊗R S as a subset of

A⊗F E.

Corollary 1.9.20. Let R be an integrally closed Noetherian domain. Let A be a finite

dimensional F -vector space and let Λ be an R-order in A. Let B be a commutative finite

dimensional F -algebra and let S be an R-order in B. If Λ is flat as an R-module then

Z(Λ) = Z(Λ⊗R S) ∩ Z(A). In particular, this holds when R is a Dedekind domain.

Proof. Using Lemma 1.9.18, we see that Λ = (Λ ⊗R S) ∩ A. Let x ∈ Z(Λ ⊗R S) ∩ Z(A)

and let y ∈ (Λ ⊗R S) ∩ A. Since Λ = (Λ ⊗R S) ∩ A and Z(Λ) ⊂ Z(A), we have xy = yx.

Therefore as y ∈ (Λ⊗R S)∩A was arbitrary, we see that x ∈ Z((Λ⊗R S)∩A). Thus since

x ∈ Z(Λ⊗R S) ∩ Z(A) was arbitrary, we see that

Z(Λ⊗R S) ∩ Z(A) ⊂ Z((Λ⊗R S) ∩A).

But Z((Λ⊗R S) ∩A) = Z(Λ) ⊂ Z(Λ⊗R S) ∩ Z(A) because S is commutative.

1.10 Denominator ideals and auxiliary rings

We now define some auxiliary rings that will be used in the construction of Fitting invari-

ants.

Definition 1.10.1. Let R be a Noetherian integral domain with field of fractions F . Let

A be a finite dimensional semisimple F -algebra and let Λ be an R-order in A. We define

U(Λ) to be the Z(Λ)-submodule of Z(A) given by

U(Λ) = 〈nr(H) | H ∈ GLb(Λ), ∀b ∈ Z>0〉Z(Λ).

It is clear that U(Λ) is an R-algebra.

Remark 1.10.2. If R is a local ring then, by [CR81, Proposition 5.28(ii)], Λ is semilocal.

Hence, by [CR87, Theorem 40.31], the map Λ× → K1(Λ) is surjective. Furthermore, the

diagram

Λ× K1(Λ)

Z(A)

nr
nr

commutes. Therefore, nr(Λ×) = nr(K1(A)) = nr(GLb(Λ)) for all b ∈ Z>0. Hence we see

that

U(Λ) = 〈nr(H) | H ∈ Λ×〉Z(Λ).
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Definition 1.10.3. Let R be a Noetherian integral domain with field of fractions F . Let

A be a finite dimensional semisimple F -algebra and let Λ be an R-order in A. We define

I(Λ) to be the Z(Λ)-submodule of Z(A) given by

I(Λ) = 〈nr(H) | H ∈Mb×b(Λ),∀b ∈ Z>0〉Z(Λ).

It is clear that I(Λ) is an R-algebra.

Remark 1.10.4. It is clear that Z(Λ) ⊂ U(Λ) ⊂ I(Λ) ⊂ Z(A).

Remark 1.10.5. Let R be an integrally closed Noetherian domain with field of fractions

F . Let A be a separable F algebra and let Λ be an R-order in A. Suppose that Λ′ is a

maximal R-order in A containing Λ (this exists by Theorem 1.9.16). With these hypothesis

U(Λ) ⊂ I(Λ) ⊂ Z(Λ′) ⊂ Z(A). Therefore, using that R is Noetherian, U(Λ) and I(Λ) are

R-orders in Z(A).

Remark 1.10.6. Let m ∈ Z>0. It is clear from the definitions that

U(Mm×m(Λ)) ⊂ U(Λ) and I(Mm×m(Λ)) ⊂ I(Λ).

The reverse inclusions also hold. For n ∈ Z>0 and H ∈Mn×n(Λ), we see that

nrMmn×mn(Λ)

(
H 0

0 I(m−1)n

)
= nrMn×n(Λ)(H),

where I(m−1)n is the identity matrix in M(m−1)n×(m−1)n(Λ). Hence

U(Mm×m(Λ)) = U(Λ) and I(Mm×m(Λ)) = I(Λ).

We now recall the definition of the denominator ideal from [JN13, Section 3.6].

Definition 1.10.7. Let R be a Noetherian integral domain with field of fractions F . Let

A be a finite dimensional semisimple F -algebra and let Λ be an R-order in A. We define

the denominator ideal of Λ to be

H(Λ) = {x ∈ Z(Λ) | xH∗ ∈Mn×n(Λ), ∀H ∈Mn×n(Λ), ∀n ∈ Z>0}.

It is clear that H(Λ) is an ideal of Z(Λ).

Remark 1.10.8. Let R be an integrally closed Noetherian domain with field of fractions

F . Let A be a separable F algebra and let Λ be an R-order in A. Suppose that Λ′ is a

maximal R-order in A containing Λ (this exists by Theorem 1.9.16). With these hypothesis

H(Λ) is contained in Z(Λ′). Therefore, using that R is Noetherian, H(Λ) is an R-lattice

in Z(A).

The following lemma was stated but not proven in [JN13, Section 3.6].

Lemma 1.10.9. Let R be a Noetherian integral domain with field of fractions F . Let A

be a finite dimensional semisimple F -algebra and let Λ be an R-order in A. Then H(Λ)

is an ideal of I(Λ).

29



1. Preliminaries

Proof. Let x ∈ H(Λ), let n,m ∈ Z>0, let H1 ∈Mn×n(Λ), let H2 ∈Mm×m(Λ) and consider

the matrix

H ′ =

(
H2 0

0 H1

)
∈M(n+m)×(n+m)(Λ).

Using Theorem 1.7.8(iii), we see that

H ′
∗

=

(
nr(H1)H∗2 0

0 nr(H2)H∗1

)
,

and, from the definition of H(Λ), we see that xH ′∗ ∈M(n+m)×(n+m)(Λ). In particular, we

see that

x nr(H1)H∗2 ∈Mm×m(Λ).

Hence, as m ∈ Z>0 and H2 ∈ Mm×m(Λ) were arbitrary, we see that x nr(H1) ∈ H(Λ).

Therefore, since x ∈ H(Λ), n ∈ Z>0 and H1 ∈ Mn×n(Λ) were arbitrary and H(Λ) is an

ideal of Z(Λ), we see that H(Λ) is an ideal of I(Λ).

Lemma 1.10.10. Let R be a Noetherian integral domain with field of fractions F . Let

A be a finite dimensional semisimple F -algebra and let Λ be an R-order in A. Then

H(Λ) = H (Mm×m(Λ)) for all m ∈ Z>0.

Proof. Let m ∈ Z>0. Using that Mn×n(Mm×m(Λ)) ∼= Mnm×nm(Λ), it is clear that

H(Λ) ⊂ H(Mm×m(Λ)).

We note that there is a Z(Λ)-algebra isomorphism

ϕ : Mm×m (Mn×n(Λ))→Mn×n (Mm×m(Λ)) .

Let n ∈ Z>0 and let H ∈Mn×n(Λ). Consider the matrix

H ′ =

(
H 0

0 I(m−1)n

)
∈Mm×m (Mn×n(Λ)) ,

where I(m−1)n is the identity matrix in Mn(m−1)×n(m−1)(Λ). Theorem 1.7.8(iii) shows that

H ′∗ =

(
H 0

0 I(m−1)n

)∗
=

(
H∗ 0

0 nr(H)I(m−1)n

)
.

Now let x ∈ H (Mm×m(Λ)). By Theorem 1.7.8(i), we see that

ϕ(xH ′∗) = xϕ(H ′)
∗ ∈Mn×n (Mm×m(Λ)) .

Hence, applying ϕ−1, we see that

xH ′∗ ∈Mm×m (Mn×n(Λ)) .

In particular, we see that xH∗ ∈Mn×n(Λ). As n ∈ Z>0 and H ∈Mn×n(Λ) were arbitrary,

we have shown that x ∈ H(Λ). Therefore, as x ∈ H(Mm×m(Λ)) was arbitrary, we have
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shown that

H(Λ) ⊃ H (Mm×m(Λ)) .

1.11 Non-commutative Fitting invariants

Let R be a Noetherian integral domain with field of fractions F . Let A be a finite dimen-

sional semisimple F -algebra, let Λ be an R-order in A and let M be a finitely presented

Λ-module. A näıve approach to generalising the definition of Fitting ideal to the non-

commutative ring Λ is to make the same definitions as in the commutative case using the

reduced norm in place of the determinant. More precisely, let

Λb
h−→ Λa −→M −→ 0

be a presentation for M and assume (for now) that a ≤ b. (Note that we have implicitly

chosen a basis for Λa and Λb when choosing the presentation h.) We may identify h with

a b × a matrix with entries in Λ. One might define the Fitting invariant of M to be the

Z(Λ)-ideal

〈nr(H) | H ∈ Sa(h)〉Z(Λ),

where Sa(h) is the set of a×a submatrices of h. Unfortunately, there are several problems

with this approach.

The first problem is that a different choice of basis for Λa in the presentation h yields

a new presentation h′ for M whose matrix differs from that of H by left multiplication

by an element of GLa(Λ). Over the commutative ring R the determinant gives a map

GLa(R) → R×, so the Fitting ideal of M over R does not depend on the choice of basis

of Ra. Unfortunately, without stricter conditions on Λ, the reduced norm of an element

in GLa(Λ) may not lie in Z(Λ)× or even in Z(Λ). Thus the ideal of Z(Λ) generated by the

reduced norms of submatrices of h may depend of the choice of basis for Λa.

There are two approaches to fixing this problem. The first approach (taken in [Nic10,

Definition 3.1]) is to define the Fitting invariant of a presentation to be an equivalence

class of ideals of Z(Λ). This has its advantages but as our goal is going to be computing

annihilators, a weaker idea suffices. The second approach (taken in [JN13, Section 3.5])

is to instead consider ideals of the slightly larger ring U(Λ). In Remark 1.11.3, we will

explain why no information about annihilators is lost when considering ideals over U(Λ).

Definition 1.11.1. Let R be a Noetherian integral domain with field of fractions F . Let

A be a finite dimensional semisimple F -algebra, let Λ be an R-order in A and let M be a

finitely presented Λ-module with presentation

Λb
h−→ Λa −→M −→ 0,

where a, b ∈ Z>0. We identify h with a b × a matrix with entries in Λ. We define the

Fitting invariant of the presentation h to be the U(Λ)-ideal

FitΛ(h) =

〈nr(H) | H ∈ Sa(h)〉U(Λ) if a ≤ b,

0 if a > b,

31



1. Preliminaries

where Sa(h) is the set of a× a submatrices of h. We will call FitΛ(h) a Fitting invariant

of M .

We note that nr(GLa(Λ)) ⊂ U(Λ) so the Fitting invariant does not depend on the choice

of basis for Λa. However, the Fitting invariant does depend on the choice of presentation.

In Definition 1.11.5, we will give a definition which does not depend on the choice of

presentation.

One of the aims in generalising the definition of the zeroth Fitting ideal to non-

commutative rings is to give an analogue of Theorem 1.2.2. In particular, we wish to

show that there is a relation between a Fitting invariant of a module and the annihilator

of that module over Z(Λ). Expecting this relation to be as simple as the commutative

case is unrealistic as the Fitting invariant is not even an ideal of Z(Λ). However, for a

presentation h : Λb → Λa of M , there is still a relation between FitΛ(h) and AnnZ(Λ)(M).

This is given in [Nic10, Theorem 4.2] or [JN13, Theorem 3.3] and is reproduced below.

Theorem 1.11.2. Let R be a Noetherian integral domain with field of fractions F . Let

A be a finite dimensional semisimple F -algebra, let Λ be an R-order in A and let M be a

finitely presented Λ-module. If

Λb
h−−→ Λa −→M −→ 0

is a presentation for M then

H(Λ) · FitΛ(h) ⊂ AnnZ(Λ)(M).

Proof. The proof given here is inspired by [Nic10, Theorem 4.2]. When a > b, we note

that

H(Λ) · FitΛ(h) = H(Λ) · 0 = 0 ⊂ AnnZ(Λ)(M),

proving the result. Otherwise, when a ≤ b, let H ∈ Sa(h) and let x ∈ H(Λ). We see that

xH∗ ∈Ma×a(Λ) so multiplication by xH∗ gives a map Λa → Λa. Using Lemma 1.7.3, we

see that HH∗ = nr(H)Ia, where Ia is the identity matrix in Ma×a(Λ). Therefore we have

the following commutative diagram with exact rows:

Λa Λa coker(H) 0

Λa Λa coker(H) 0.

H

xH∗
xnr(H) xnr(H)

H

This shows that multiplication by x nr(H) is the zero map on coker(H). Thus, as coker(H)

surjects onto M , we see that x nr(H) ∈ AnnZ(Λ)(M). As H ∈ Sa(h) and x ∈ H(Λ) were

arbitrary, we see that

H(Λ) · FitΛ(h) ⊂ AnnZ(Λ)(M).

Remark 1.11.3. By Lemma 1.10.9, H(Λ) is an ideal of I(Λ). Recalling that U(Λ) ⊂ I(Λ)

and using Theorem 1.11.2, we see that

H(Λ) · U(Λ) · FitΛ(h) = H(Λ) · FitΛ(h) ⊂ AnnZ(Λ)(M),
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so information about the Z(Λ)-annihilator of M is not lost when considering the Fitting

invariant as an ideal of U(Λ).

Remark 1.11.4. In [JN13, Section 3.5], R is required to be an integrally closed complete

Noetherian local domain and A is required to be a separable F -algebra. Under these

stronger conditions one can give a definition of the Fitting invariant that does not depend

on the choice of presentation for M .

Let R be an integrally closed complete Noetherian local domain with field of fractions

F . Let A be a separable F -algebra, let Λ be an R-order in A and let M be a finitely

generated Λ-module. With these assumptions on R we see that M is a finitely presented

Λ-module (see [Nic10, Section 2]).

Let h1 : Λb1 → Λa1 and h2 : Λb2 → Λa2 be presentations of M (for a1, a2, b1, b2 ∈ Z>0).

As R is a complete local ring [Nic10, Theorem 3.2] applies, so the discussion immediately

preceding [Nic10, Definition 3.3] shows that there is a presentation h : Λb → Λa of M (for

a, b ∈ Z>0) such that FitΛ(h) contains both FitΛ(h1) and FitΛ(h2). Hence inclusion turns

the set of Fitting invariants of M into a directed set (that is, inclusion is a partial ordering

and every pair of elements has an upper bound).

Using that R is an integrally closed Noetherian domain and that A is a separable

F -algebra, by Theorem 1.9.16, there is a maximal R-order Λ′ in A containing Λ. If

h : Λb → Λa is any presentation of M then, from the definition of the Fitting invariant,

FitΛ(h) ⊂ U(Λ). Also, by Lemma 1.9.17, U(Λ) ⊂ Z(Λ′). In particular, every Fitting

invariant of M is an R-module contained within the finitely generated R-module Z(Λ′).

Therefore, as R is Noetherian, there is a (unique) maximal element of the set of Fitting

invariants of M .

Definition 1.11.5. Let R be an integrally closed complete Noetherian local domain with

field of fractions F . Let A be a separable F -algebra, let Λ be an R-order in A and let M

be a finitely generated Λ-module. We define Fitmax
Λ (M) to be the Fitting invariant of M

maximal with respect to inclusion among all the Fitting invariants of M .

We note that Fitmax
Λ (M) is a Fitting invariant of M , so by Theorem 1.11.2, an analogue

of Theorem 1.2.2 holds.

Theorem 1.11.6. Let R be an integrally closed complete Noetherian local domain with

field of fractions F . Let A be a separable F -algebra and let Λ be an R-order in A. If M

is a finitely generated Λ-module then

H(Λ) · Fitmax
Λ (M) ⊂ AnnZ(Λ)(M).

Analogues of Lemma 1.2.3(i) and (iii) also hold (see Lemma 1.11.9). To give an analogue

of Lemma 1.2.3(ii), we first must define a quadratic presentation.

Definition 1.11.7. Let R be an integrally closed complete Noetherian local domain with

field of fractions F . Let A be a separable F -algebra and let Λ be an R-order in A. Let

M be a finitely presented Λ-module. We say that M admits a quadratic presentation h if

there is a presentation

Λa
h−−→ Λa −→M −→ 0
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of M .

Remark 1.11.8. Let R be a discrete valuation ring and let G be a finite group. A result

of Swan [CR81, Theorem 32.1] may be used to show that every finitely generated R-torsion

R[G]-module of projective dimension at most 1 admits a quadratic presentation.

Lemma 1.11.9. Let R be an integrally closed complete Noetherian local domain with field

of fractions F . Let A be a separable F -algebra and let Λ be an R-order in A. Let M , M1,

M2 and M3 be finitely presented Λ-modules.

(i) If there is a surjection M1 →M2 then Fitmax
Λ (M1) ⊆ Fitmax

Λ (M2).

(ii) If M1 →M2 →M3 → 0 is an exact sequence then

Fitmax
Λ (M1) Fitmax

Λ (M3) ⊆ Fitmax
Λ (M2).

(iii) If 0 → M1 → M2 → M3 → 0 is a short exact sequence, and M1 and M3 admit

quadratic presentations, then M2 admits a quadratic presentation and

Fitmax
Λ (M1) Fitmax

Λ (M3) = Fitmax
Λ (M2).

(iv) The Fitting invariant Fitmax
Λ (M) is an ideal of I(Λ).

(v) If M admits a quadratic presentation h then Fitmax
Λ (M) = FitΛ(h).

(vi) If e ∈ A is a central idempotent then eFitmax
Λ (M) = FiteΛ(eΛ⊗Λ M).

(vii) Let e be the sum of all primitive central idempotents ei of A such that eiFM 6= 0.

Then Fitmax
Λ (M) = eFitmax

Λ (M) = FiteΛ(eΛ⊗Λ M).

Proof. For a proof of this see [JN13, Theorem 3.1 and Equation 3.5]. The proof of (v)

from this will also require the use of (iv).

34



2 The local-global principle for

denominator ideals

2.1 Introduction

In this chapter we show that the denominator ideal of an order over a Dedekind domain

may be computed locally. The argument presented here generalises the proof of [Nic11,

Lemma 1.4] which shows that if G is a finite group thenH(Z[G]) is dense inH(Zp[G]) under

the p-adic topology (see Example 2.2.3). The results presented in the present chapter are

independent of the rest of the thesis and may be skipped on the first reading.

2.2 Lattices and valuations

Definition 2.2.1. Let R be a Dedekind domain with field of fractions F and let p be a

non-zero prime ideal of R. Let V be a finite dimensional F -vector space and let M be a

full R-lattice in V . We define a valuation vMp on x ∈ V by

vMp(x) =

max{n ∈ Z | x ∈ pnMp} if x 6= 0,

+∞ if x = 0,

where Mp is the localisation of M at p. In particular, we see that

Mp = {x ∈ V | vMp(x) ≥ 0}.

Example 2.2.2. Let R be a Dedekind domain with field of fractions F and let p be a

non-zero prime ideal of R. Then vRp is the valuation on R induced by p, normalised such

that vRp(r) = 1 for r ∈ p \ p2. Throughout this chapter we will denote this valuation by

vp (omitting R from the notation).

Example 2.2.3. Let G be a finite group and let p be a prime number. We take R = Zp
in the above definition with ideal p = pZp and we consider the Zp-lattice M = Zp[G] in

V = Qp[G]. The valuation vZp[G] on Qp[G] is the same as the p-adic valuation on Qp[G]

defined before [Nic11, Lemma 1.4]. In particular, given an element x =
∑

g∈G agg ∈ Qp[G]

(for some ag ∈ Qp) we have

vZp[G](x) = min
g∈G
{vp(ag)},

where vp is the usual p-adic valuation onQp. One way to prove this is to apply Lemma 2.2.4

below.
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Lemma 2.2.4. Let R be a Dedekind domain with field of fractions F . Let p be a non-zero

prime ideal of R. Let V and V ′ be finite dimensional F -vector spaces, and let M and M ′

be full R-lattices in V and V ′, respectively. If (x, x′) ∈ V ⊕ V ′ then

vMp⊕M ′p(x, x′) = min(vMp(x), vM ′p(x′)).

Proof. Given n ∈ Z, we see that

(x, x′) ∈ pn(Mp ⊕Mp)⇐⇒ x ∈ pnMp and x′ ∈ pnM ′p.

Therefore, for (x, x′) ∈ V ⊕ V ′ we have

vMp⊕M ′p(x, x′) = min
(
vMp(x), vM ′p(x′)

)
.

Lemma 2.2.5. Let R be a Dedekind domain with field of fractions F . Let p be a non-zero

prime ideal of R. Let V be a finite dimensional F -vector space and let M be a full R-lattice

in V .

(i) If x ∈ V and f ∈ F then vMp(fx) = vp(f) + vMp(x) (using the convention that

∞+∞ =∞+ n = n+∞ =∞ for any n ∈ Z).

(ii) If x, y ∈ V then vMp(x + y) ≥ min(vMp(x), vMp(y)). In particular, addition is con-

tinuous with respect to the topology on V induced by vMp.

Proof. Let x ∈ V and let f ∈ F . Note that if x = 0 or f = 0 then (i) follows easily from

our conventions on infinity, so in the following we will assume that x 6= 0 and f 6= 0. We

may write x = em for some m ∈Mp \ pMp and e ∈ F× and we note that vMp(x) = vp(e).

Similarly we see that vMp(fx) = vp(fe). Therefore, using standard properties of valuations

(see [FT93, Equation II(2.1.a)]), we see that

vMp(fx) = vp(fe) = vp(f) + vp(e) = vp(f) + vMp(x).

This proves (i).

Let x, y ∈ V . Given n,m ∈ Z, if x ∈ pnMp and y ∈ pmMp then x + y ∈ pmin(n,m)Mp

since p is an ideal of R. Therefore, for x, y ∈ V , we see that

vMp(x+ y) ≥ min(vMp(x), vMp(y))

(here we use the convention that +∞ is larger than every integer to deduce the cases when

x or y is zero). Now endow V with the topology induced by vMp . The following argument

(to show that addition is continuous) is standard but is included for the convenience of the

reader. Let (x1, y1) ∈ V ×V and let N ∈ Z. If (x2, y2) ∈ V ×V such that vMp(x1−x2) > N

and vMp(y1 − y2) > N , then

vMp(x1 + y1 − (x2 + y2)) = vMp(x1 − x2 + y1 − y2)

≥ min(vMp(x1 − x2), vMp(y1 − y2))

> N.

This proves that addition in V is continuous, completing the proof of (ii).
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Lemma 2.2.6. Let R be a Dedekind domain with field of fractions F . Let p be a non-zero

prime ideal of R. Let V be a finite dimensional F -vector space, and let M and M ′ be

full R-lattices in V . Then the topologies on V induced by vMp and vM ′p are the same. In

particular, there exists N ∈ Z such that x ∈ V and vM ′p(x) > N implies x ∈Mp.

Proof. Since M and M ′ are full R-lattices in V there exist non-zero r, r′ ∈ R such that

rM ⊂ M ′ and r′M ′ ⊂ M . Let x ∈ V . If x = 0 then vMp(x) = ∞ = vM ′p(x). Otherwise,

when x 6= 0 we see that

rx ∈ rpvMp (x)Mp ⊂ pvMp (x)M ′p.

Thus, by Lemma 2.2.5(i),

vp(r) + vM ′p(x) = vM ′p(rx) ≥ vMp(x).

In a similar manner, we see that vp(r
′) + vMp(x) ≥ vM ′p(x). Since x ∈ V was arbitrary, we

conclude that the topologies on V induced by vMp and vM ′p are the same.

Lemma 2.2.7. Let R be a Dedekind domain with field of fractions F . Let p be a non-

zero prime ideal of R. Let V be a finite dimensional F -vector space and let M be a full

R-lattice in V . Suppose that V ′ is a subspace of V and let M ′ = V ′ ∩M . If x ∈ V ′ then

vM ′p(x) = vMp(x). In particular, endowing V and V ′ with the topologies induced by vMp

and vM ′p respectively, we see that V ′ has the subspace topology.

Proof. Localising at p, we may assume without loss of generality that R is a discrete

valuation ring. Since R is a discrete valuation ring, M = Mp, M
′ = M ′p and p = πR for

some π ∈ R.

Let x ∈ V ′. Since M ′ ⊂M , we have x ∈ pvM′ (x)M ′ ⊂ pvM′ (x)M and so vM ′(x) ≤ vM (x).

We also see that x ∈ pvM (x)M , so x = πvM (x)y for some y ∈ M , but y = xπ−vM (x) ∈ V ′

because π ∈ R. Thus y ∈ V ′ ∩M = M ′ and we see that x ∈ pvM (x)M ′ meaning that

vM ′(x) ≥ vM (x). Therefore, we see that vM ′(x) = vM (x).

Lemma 2.2.8. Let R be a Dedekind domain with field of fractions F . Let p be a non-zero

prime ideal of R. Let A be a finite dimensional semisimple F -algebra and let Λ be an

R-order in A. If x, y ∈ A then

vΛp(xy) ≥ vΛp(x) + vΛp(y).

In particular, (non-commutative) polynomials with coefficients and variables in A are con-

tinuous with respect to the topology induced by vΛp.

Proof. Given n,m ∈ Z, if x ∈ pnΛp and y ∈ pmΛp then xy ∈ pn+mΛp (as p ⊂ Z(A)).

Hence, for x, y ∈ A, we see that vΛp(xy) ≥ vΛp(x) + vΛp(y).

Now endow A with the topology induced by vΛp . The following argument (to show that

multiplication is continuous) is standard but is included for the convenience of the reader.

Let (x1, y1) ∈ A × A and let N ∈ Z. Let M = max
(
N − vΛp(x1), N − vΛp(y1), N/2

)
. If
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(x2, y2) ∈ A×A such that vΛp(x1 − x2) > M and vΛp(y1 − y2) > M , then

vΛp(x1y1 − x2y2) = vΛp(x1(y1 − y2) + (x1 − x2)y2)

≥ min(vΛp(x1(y1 − y2)), vΛp((x1 − x2)y2))

≥ min(vΛp(x1) + vΛp(y1 − y2), vΛp(x1 − x2) + vΛp(y2))

= min(vΛp(x1) + vΛp(y1 − y2), vΛp(x1 − x2) + vΛp(y1 + (y2 − y1)))

≥ min(vΛp(x1) + vΛp(y1 − y2), vΛp(x1 − x2) + vΛp(y1),

vΛp(x1 − x2) + vΛp(y2 − y1))

> min(vΛp(x1) +N − vΛp(x1), N − vΛp(y1) + vΛp(y1), N/2 +N/2)

= N.

Hence multiplication in A is continuous. Therefore, using Lemma 2.2.5(ii) (which shows

that addition in A is continuous), we see that (non-commutative) polynomials with coef-

ficients and variables in A are continuous.

2.3 Continuity of the reduced norm and generalised adjoint

Lemma 2.3.1. Let R be a Dedekind domain with field of fractions F . Let p be a non-zero

prime ideal of R. Let A be a separable F -algebra and let Λ be an R-order in A. Endow A

with the topology induced by vΛp and endow Z(A) with the subspace topology. Then

(i) the reduced norm nr: A→ Z(A) is continuous and

(ii) the generalised adjoint map ·∗ : A→ A is continuous.

Proof. We will first show that it suffices to prove the result when A is a matrix ring over

a field, where the proof is relatively straightforward.

If Λ′ is a maximal R-order in A containing Λ (this exists by Theorem 1.9.16) then, by

Lemma 2.2.6, the topologies on A induced by Λ and Λ′ are equivalent. Hence without loss

of generality we may assume that Λ is a maximal R-order in A. If A has decomposition

A =
∏t
i=1Ai into simple algebras Ai then Λ has decomposition Λ =

⊕t
i=1 Λi, where each

Λi is a maximal order in Ai. Recall that the reduced norm and generalised adjoint may

be defined componentwise and, using Lemma 2.2.4, we see that for

x = (x1, . . . , xt) ∈ A =
t∏
i=1

Ai

we have vΛp(x) = mini(vΛi,p(xi)). Therefore, it suffices to prove the result when A is a

simple F -algebra.

Recall that the reduced norm and generalised adjoint in the simple F -algebra A are

defined after tensoring over the centre of A by a splitting field for A. Let E be finite

field extension of Z(A) such that E is a splitting field for A over Z(A); in particular,

A⊗Z(A)E ∼= Mn×n(E) for some n ∈ Z>0. Let S be the integral closure of R in E. Since Λ

is a maximal R-order in A, we see that Z(Λ) is the integral closure of R in the field Z(A)

so Z(Λ) is a Dedekind domain. Thus, by Lemma 1.9.18, we see that Λ = (Λ⊗Z(Λ) S)∩A.

Hence, by Lemma 2.2.7, for x ∈ A we have vΛp(x) = v(Λ⊗Z(Λ)S)
p
(x ⊗ 1). Therefore, after
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replacing Λ with Λ⊗Z(Λ)S and A with A⊗Z(A)E, without loss of generality we may assume

that Λ is an R-order contained in the simple F -algebra A = Mn×n(E).

Recall from Lemma 2.2.8 that (non-commutative) polynomials in A are continuous.

Let H ∈ A = Mn×n(E). Write

rch(H)(X) =

N∑
i=0

ai(H)Xi,

for some N ∈ Z>0, some a1(H), . . . , aN (H) ∈ Z(A) ∼= E and some indeterminate X.

The coefficients a1(H), . . . , aN (H) are polynomials in the entries of H when viewed as a

matrix in Mn×n(E). Let Eij ∈ Mn×n(E) be the matrix with 1 in the (i, j)-entry and

zero everywhere else. We note that
∑n

i=1EkiHEil ∈ Z(A) is the (l, k)-entry of the matrix

H. Therefore, we see that each ai(H) is given by a (non-commutative) polynomial in A.

Since a0(−H) = nr(H), we see that the reduced norm is continuous. We also note that

H∗ =
∑N

i=1 ai(H)H i−1; in particular, H∗ is given by a (non-commutative) polynomial in

A. Hence the generalised adjoint map is continuous.

2.4 The local-global principle for denominator ideals

Lemma 2.4.1. Let R be a Dedekind domain with field of fractions F . Let A be a separable

F -algebra and let Λ be an R-order in A. Let p be a non-zero prime ideal of R. Then

H(Λ)p = H(Λp) and Ĥ(Λ)p = H(Λ̂p) for each non-zero prime ideal p of R, where M̂p is

the completion of the R-module M at p.

Proof. Recall the valuation vΛp given in Definition 2.2.1. From Lemma 2.2.7, for every

b ∈ Z>0 we have vMb×b(Λp)|A = vΛp , where A is viewed as a subset of Mb×b(A) via the

diagonal embedding. With this in mind, to simplify notation we will write vΛp instead of

vMb×b(Λp).

Firstly, we show that H(Λ)p ⊂ H(Λp). Let b ∈ Z>0 and let H ∈Mb×b(Λp). Recall from

Lemma 2.3.1(ii) that the generalised adjoint map ·∗ : Mb×b(A) → Mb×b(A) is continuous

with respect to the topology induced by vΛp . In particular, there exists N ∈ Z such that

if H ′ ∈Mb×b(Λp) and vΛp(H −H ′) ≥ N , then H∗ − (H ′)∗ ∈Mb×b(Λp).

Let x ∈ H(Λ). Since Λ is dense in Λp, there is H ′ ∈Mb×b(Λ) such that vp(H−H ′) ≥ N .

Therefore, as x ∈ H(Λ) ⊂ Z(Λ), we see that

xH∗ = x(H ′)
∗

+ x(H∗ − (H ′)
∗
) ∈Mb×b(Λp).

Hence, because H ∈Mb×b(Λp) and b ∈ Z>0 were arbitrary, we see that x ∈ H(Λp). Thus,

as x ∈ H(Λ) was arbitrary, we see that H(Λ) ⊂ H(Λp). Therefore, since H(Λp) is an

Rp-module, we see that H(Λ)p ⊂ H(Λp). We note that an identical arguments shows that

Ĥ(Λ)p ⊂ H(Λ̂p).

We now show that H(Λp) ⊂ H(Λ)p. We do this following a similar argument to that

presented in the proof of [Nic11, Lemma 1.4]. Recall that H(Λ) is a full R-lattice in Z(A)

contained in Z(Λ); in particular, there exists r ∈ R such that rZ(Λ) ⊂ H(Λ). Since R is a

Dedekind domain, we may write rR = apm for some ideal a of R coprime to p and some
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m ∈ Z≥0. Let a ∈ a \ p (in particular, a ∈ R×p ). Then for each non-zero prime ideal q 6= p

of R we have aH∗ ∈Mb×b(Λq), for all H ∈Mb×b(Λ) and for all b ∈ Z>0.

We know that H(Λ)p and H(Λp) are full Rp-lattices in Z(A) contained in Z(Λp). Thus

there exists N ∈ Z such that if x ∈ Z(A) and vΛp(x) ≥ N , then x belongs to both H(Λ)p
and H(Λp).

Let y ∈ H(Λp). Since Z(Λ) is dense in Z(Λp), there is x ∈ Z(Λ) such that vΛp(x−y) ≥ N .

Let b ∈ Z>0 and let H ∈Mb×b(Λ). We see that

xH∗ = yH∗ + (x− y)H∗ ∈Mb×b(Λp),

where (x − y)H∗ ∈ Mb×b(Λp) follows because vΛp(x − y) ≥ N . Since a ∈ a \ p ⊂ R and

x ∈ H(Λp) ⊂ Z(Λp), we see that

axH∗ ∈Mb×b(Λq)

for all non-zero prime ideals q of R. Since R is a Dedekind domain, using Theorem 1.9.4,

we see that

Mb×b(Λ) =
⋂
q

Mb×b(Λq),

where q runs through all non-zero prime ideals of R. Hence, as H ∈Mb×b(Λ) and b ∈ Z>0

were arbitrary, we see that ax ∈ H(Λ). Therefore, we see that x = a−1(ax) ∈ H(Λ)p
because a ∈ R×p . Thus because vΛp(y− x) ≥ N , we have y ∈ H(Λ)p. Since y ∈ H(Λp) was

arbitrary, we see that H(Λp) ⊂ H(Λ)p.

To conclude that H(Λ̂p) ⊂ Ĥ(Λ)p a similar argument may be used. However, in place

of Theorem 1.9.4 one can use [Rei75, Theorem 5.3(i)] to deduce that

Mb×b(Λ) = Mb×b(A) ∩
⋂
q

Mb×b(Λ̂q),

where q runs through all non-zero prime ideals of R.

Remark 2.4.2. In the proof thatH(Λp) ⊂ H(Λ)p above, if we assume that vΛp(a−1) ≥ N
then

vΛp(ax− y) ≥ min(vΛp(x(a− 1)), vΛp(x− y)) ≥ N.

This can be used to show that H(Λ) is dense in H(Λp) (see the proof of [Nic11, Lemma 1.4]

for more details).

Remark 2.4.3. There is a slightly simpler argument to show that H(Λp) ⊂ H(Λ)p (avoid-

ing the approximation step). The key difference is in how one produces x ∈ Z(Λ): when

y ∈ Z(Λp) there exists s ∈ R \ p ⊂ R×p such that x = sy ∈ Z(Λ). This does not hold for

y ∈ Z(Λ̂p).

Theorem 2.4.4. Let R be a Dedekind domain with field of fractions F . Let A be a

separable F -algebra and let Λ be an R-order in A. Then

H(Λ) =
⋂
p

H(Λp) = Z(A) ∩
⋂
p

H(Λ̂p),
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where p ranges through all the non-zero prime ideals of R.

Proof. By Remark 1.10.8, H(Λ) is a full R-lattice in Z(A). By Theorem 1.9.4 and [Rei75,

Theorem 5.3(i)], we see that

H(Λ) =
⋂
p

H(Λ)p = Z(A) ∩
⋂
p

Ĥ(Λ)p.

The result now follows from Lemma 2.4.1.
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3 Computing denominator ideals

3.1 Introduction

In this chapter we will discuss methods for computing denominator ideals. Let R be

a Noetherian integral domain with field of fractions F . Let A be a finite dimensional

semisimple F -algebra and let Λ be an R-order in A. We recall that the denominator ideal

of Λ is the set

H(Λ) := {x ∈ Z(Λ) | xH∗ ∈Mb×b(Λ),∀H ∈Mb×b(Λ), ∀b ∈ Z>0}.

Firstly, in section 3.2 we will explain how denominator ideals behave with respect to

extension and restriction of scalars. The bounds found in this section may not be sharp;

a counterexample is given in Section 3.10.

Next we will discuss several methods of producing ‘lower bounds’ for the denomina-

tor ideal of Λ. The following lemma is a slight generalisation [JN13, Corollary 6.2 and

Proposition 6.3]; one of the main goals of this chapter is to generalise this further.

Lemma 3.1.1. Let R be an integrally closed Noetherian domain with field of fractions F .

Let A be a separable F -algebra and let Λ be an R-order in A. If Λ′ is a maximal R-order

in A containing Λ then

(i) F(Λ′,Λ) ⊂ H(Λ) and

(ii) F(Z(Λ′),Z(Λ)) ⊂ H(Λ),

where F(Λ′,Λ) denotes the central conductor of Λ′ into Λ (see Definition 3.3.1).

Proof. When R is an integrally closed complete Noetherian local domain proofs of (i) and

(ii) are given in [JN13, Corollary 6.2 and Proposition 6.3], respectively. These proofs still

work when R is an integrally closed Noetherian domain. The key point of these proofs is

that the generalised adjoint of an element of the maximal order Λ′ lies in Λ′.

In Section 3.4 (in particular, in Theorem 3.4.1), we will generalise the idea from

Lemma 3.1.1. In Section 3.5 (in particular, in Theorem 3.5.3), we will use Theorem 3.4.1

to provide an explicit decomposition of the denominator ideal of Λ in terms of the ‘com-

mutative part’ of Λ. In Section 3.6, we will talk about how these results specialise to group

rings and give some examples.

The results after Section 3.6 will not be required later in the thesis, though variations on

the techniques used here will be used later in Chapter 5. In Section 3.7, we will generalise

Theorem 3.4.1 to slightly improve on the ‘lower bound’ achieved when there is more than

one ring involved. One limitation to the application of Theorem 3.4.1 is that it precludes

division rings in the Wedderburn decomposition of A; we will show that this limitation

may be removed in Section 3.8. Finally in Section 3.9, we will use Theorem 3.5.3 along
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with some general information about central idempotents in A to produce an upper bound

for the denominator ideal of Λ.

3.2 Extension and restriction of scalars

Lemma 3.2.1. Let R be a Dedekind domain with field of fractions F , let A be a sepa-

rable F -algebra and let Λ be an R-order in A. Suppose that B is a commutative finite

dimensional semisimple F -algebra such that A⊗F B is semisimple. If Γ is an R-order in

B then, under the natural identifications, we have

H (Λ⊗R Γ) ∩ Z(A) ⊂ H(Λ).

Remark 3.2.2. We do not always have equality in Lemma 3.2.1; the reverse inclusion

H (Λ⊗R Γ) ∩ Z(A) ⊃ H(Λ)

does not hold in general. In Section 3.10 we will produce a counterexample to this state-

ment when Γ is the integral closure of R in some finite field extension E of F .

Proof of Lemma 3.2.1. Let x ∈ H (Λ⊗R Γ) ∩ Z(A). Corollary 1.9.20 shows that

x ∈ Z(Λ⊗R Γ) ∩ Z(A) = Z(Λ).

Let n ∈ Z>0 and let H ∈Mn×n(Λ). Theorem 1.7.8(ii) shows that

x(H∗ ⊗ 1Γ) = x(H ⊗ 1Γ)∗ ∈Mn×n(Λ⊗R Γ).

As H∗ ∈Mn×n(A) and x ∈ Z(A), we see that

xH∗ ∈Mn×n(Λ⊗R Γ) ∩Mn×n(A) = Mn×n(Λ),

where the equality of R-orders follows by Lemma 1.9.18. As n ∈ Z>0 and H ∈ Mn×n(Λ)

were arbitrary, we see that x ∈ H(Λ).

Lemma 3.2.3. Let R be an integrally closed Noetherian domain with field of fractions F ,

let A be a separable F -algebra and let Λ be an R-order in A. Let B be a commutative finite

dimensional semisimple F -algebra. If Γ is an R-order in B which is free as an R-module

then

H(Λ⊗R Γ) ⊂ H(Λ)⊗R Γ.

Proof. The conditions that B is a commutative finite dimensional semisimple F -algebra

and that A is a separable F -algebra ensure that A⊗F B is a finite dimensional semisimple

F -algebra (an argument similar to Remark 1.8.9 can be used to prove this). Thus the

denominator ideal of Λ⊗R Γ is defined.

Let n ∈ Z>0. There is a natural identification of rings

Mn×n(Λ⊗R Γ) = Mn×n(Λ)⊗R Γ.
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Let {r1, . . . , rd} be an R-basis for Γ.

Now let x ∈ H(Λ⊗RΓ) ⊂ Z(Λ)⊗RΓ. Then x may be written uniquely as
∑d

j=1 xj⊗rj ,
where xj ∈ Z(Λ). If we can show that xj ∈ H(Λ) for every j then x ∈ H(Λ)⊗R Γ, which

in turn shows that

H(Λ⊗R Γ) ⊂ H(Λ)⊗R Γ.

With this in mind, let H ∈Mn×n(Λ). We see that

H ⊗ 1 ∈Mn×n(Λ⊗R Γ).

Since Γ is free as an R-module it is a flat R-module. Hence Λ ⊗R Γ can be viewed as a

submodule of A⊗F B and, using Lemma 1.9.18, under the identification of A as a subset of

A⊗FB we see that Λ = A∩(Λ⊗RΓ). Now Theorem 1.7.8(ii) shows that (H ⊗ 1)∗ = H∗⊗1

and so

x(H∗ ⊗ 1) = x(H ⊗ 1)∗ ∈Mn×n(Λ⊗R Γ)

because x ∈ H(Λ⊗RΓ). As {r1, . . . , rd} is an R-basis for Γ and x(H∗⊗1) ∈Mn×n(Λ)⊗RΓ,

we see that x(H∗ ⊗ 1) may be written uniquely as

x(H∗ ⊗ 1) =

d∑
j=1

hj ⊗ rj ,

where hj ∈Mn×n(Λ). However,

x(H∗ ⊗ 1) =
d∑
j=1

xjH
∗ ⊗ rj ,

so we see that xjH
∗ = hj ∈Mn×n(Λ). As H ∈Mn×n(Λ) and n ∈ Z>0 were arbitrary, we

have shown that xj ∈ H(Λ).

3.3 Central conductors

For the convenience of the reader, we now introduce the notion of the left, right and central

conductor and talk about some of their properties. These are useful tools for comparing

two rings. We have already seen the central conductor in Lemma 3.1.1. The central

conductor will appear in other theorems on bounds for denominator ideals.

Definition 3.3.1. Let A be a ring. Let Λ and Γ be rings contained in A with the same

addition and multiplication operation but not necessarily the same multiplicative identity.

We define

(Γ,Λ)l = {x ∈ Γ | xΓ ⊂ Λ} = largest right Γ-module in Λ,

(Γ,Λ)r = {x ∈ Γ | Γx ⊂ Λ} = largest left Γ-module in Λ.

We call (Γ,Λ)l the left conductor of Γ into Λ and (Γ,Λ)r the right conductor of Γ into Λ.

The central conductor of Γ into Λ is defined to be

F(Γ,Λ) = (Γ,Λ)l ∩ Z(Γ) = {x ∈ Z(Γ) | xΓ ⊂ Λ}.
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When Γ and Λ are both commutative these definitions coincide and we call them all

the conductor of Γ into Λ.

Remark 3.3.2. This is more general than the definition of conductors in [CR81, Defini-

tion 27.2], which is restricted to rings Λ and Γ such that Λ is a subring of Γ.

It is useful to consider how central conductors interact with central idempotents.

Lemma 3.3.3. Let A be a commutative ring. Let Λ and Γ be rings contained in A with the

same addition and multiplication as A but not necessarily the same multiplicative identity.

If 1Γ = f1 + · · · + fk is a decomposition of unity as a sum of (central) idempotents of Γ

then

F(Γ,Λ) =

k⊕
i=1

F(fiΓ,Λ).

Proof. Let I =
∑k

i=1F(fiΓ,Λ). It is clear that I ⊂ Λ and that I is a Γ-module so

I ⊂ F(Γ,Λ).

Let x be an element of F(Γ,Λ). For each fi, we see that fix ∈ F(fiΓ,Λ), because fi is a

central idempotent of Γ. Thus x = x1Γ = f1x+ · · ·+fkx ∈ I. Hence, because x ∈ F(Γ,Λ)

was arbitrary, we see that F(Γ,Λ) ⊂ I.

Lemma 3.3.4. Let R be an integrally closed Noetherian domain with field of fractions F ,

let A be a commutative separable F -algebra and let Λ be an R-order in A. If f is a central

idempotent in A then

F(fΛ,Λ) = fΛ ∩ Λ.

Proof. Let I = fΛ ∩ Λ. From the definition of the central conductor we see that

F(fΛ,Λ) = {x ∈ fΛ | x · fΛ ⊂ Λ} ⊂ fΛ ∩ Λ = I.

Let x ∈ I. Since x ∈ fΛ and f is a central idempotent, we see that x = fx. Given y ∈ fΛ,

we see that y = fa = af for some a ∈ Λ, so yx = afx = ax ∈ Λ. Therefore, as x ∈ I was

arbitrary, we see that I ⊂ F(fΛ,Λ).

Lemma 3.3.5. Let R be a Dedekind domain with field of fractions F , let A be a separable

F -algebra and let Λ and Γ be R-orders in A. If E is a finite field extension of F and S is

the integral closure of R in E, then under the natural identifications we have

F(Γ⊗R S,Λ⊗R S) ∩ Z(A) = F(Γ,Λ).

Proof. Let x ∈ F(Γ⊗R S,Λ⊗R S) ∩ Z(A). We see that

x ∈ Z(Γ⊗R S) ∩ Z(A) = Z(Γ),

where the equality follows from Corollary 1.9.20. Thus x(Γ ⊗R S) ⊂ Λ ⊗R S. For y ∈ Γ,

since x ∈ F(Γ ⊗R S,Λ ⊗R S), we see that xy ∈ Λ ⊗R S and, since x ∈ Z(A), we see that
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xy ∈ A; thus xy ∈ (Λ⊗R S) ∩A = Λ (by Lemma 1.9.18). Hence, we see that xΓ ⊂ Λ and

so x ∈ F(Γ,Λ). Since x ∈ F(Γ⊗R S,Λ⊗R S) ∩ Z(A) was arbitrary, we see that

F(Γ⊗R S,Λ⊗R S) ∩ Z(A) ⊂ F(Γ,Λ).

Let x ∈ F(Γ,Λ). We see that x ∈ Z(Γ) ⊂ Z(Γ⊗RS) such that xΓ ⊂ Λ. Let y ∈ Γ⊗RS.

We may write y =
∑

i yi ⊗ si for some yi ∈ Γ and si ∈ S, so

xy =
∑
i

xyi ⊗ si ∈ Λ⊗R S.

Since y ∈ Γ⊗R S was arbitrary, we see that x(Γ⊗R S) ⊂ Λ⊗R S. Since x ∈ Z(Γ) ⊂ Z(A),

we see that x ∈ F(Γ⊗R S,Λ⊗R S) ∩ Z(A). Since x ∈ F(Γ,Λ) was arbitrary, we see that

F(Γ,Λ) ⊂ F(Γ⊗R S,Λ⊗R S) ∩ Z(A).

3.4 Lower bounds of denominator ideals

In certain situations it is possible to compute a ‘lower bound’ for parts of the denominator

ideal.

Theorem 3.4.1. Let R be an integrally closed Noetherian domain with field of fractions F ,

let A be a separable F -algebra, let Λ be an R-order in A and let f be a central idempotent

of A. Suppose that Γ is an R-order in fA isomorphic to a matrix ring over a commutative

ring. If fΛ ⊂ Γ then

F(Z(Γ),Z(Λ)) ⊂ H(Λ).

Remark 3.4.2. Theorem 3.4.1 deals with a single central idempotent. We may consider a

decomposition of unity into central idempotents to achieve a more concise result. Suppose

that Γ is an R-order in A containing a decomposition of unity 1Γ = f1+· · ·+fk into central

idempotents in Γ such that each fiΓ is isomorphic to a matrix ring over a commutative

ring. If Λ ⊂ Γ then, using Lemma 3.3.3, we see that

F(Z(Γ),Z(Λ)) =

k⊕
i=1

F(Z(fiΓ),Z(Λ)) ⊂ H(Λ).

Proof of Theorem 3.4.1. We follow the proof of [JN13, Proposition 6.3]. Let b ∈ Z>0. As

Γ is isomorphic to a matrix ring over a commutative ring, so is Mb×b(Γ). Hence, using

that the reduced characteristic polynomial does not depend on the choice of embedding as

a matrix ring we see that the reduced characteristic polynomial of any element of Mb×b(Γ)

has coefficients in Z(Γ).

Let H ∈Mb×b(Λ). We see that

fH ∈Mb×b(fΛ) ⊂Mb×b(Γ),
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so the reduced characteristic polynomial of fH has coefficients in Z(Γ). Hence, from the

definition of the generalised adjoint (Definition 1.7.1) and Theorem 1.7.8(i), we see that

(fH)∗ =

m∑
i=0

αi(fH)i,

where m ∈ Z>0 and αi ∈ Z(Γ).

Let x ∈ F(Z(Γ),Z(Λ)). As x ∈ Γ ⊂ fA, we see that x = fx = xf and so

xH∗ = xfH∗ = x(fH)∗ = x

m∑
i=0

αi(fH)i =

m∑
i=0

xfαiH
i =

m∑
i=0

xαiH
i.

Since αi ∈ Z(Γ) and x ∈ F(Z(Γ),Z(Λ)) we see that xH∗ lies in Mb×b(Λ). As b ∈ Z>0

and H ∈ Mb×b(Λ) were arbitrary, we see that x ∈ H(Λ). Since x ∈ F(Z(Γ),Z(Λ)) was

arbitrary, we have proven that

F(Z(Γ),Z(Λ)) ⊂ H(Λ).

Remark 3.4.3. We note that Γ ⊂ fA being a matrix ring over a commutative ring

precludes division rings in the Wedderburn decomposition of fA when applying Theo-

rem 3.4.1. In Theorem 3.8.2, we will see that when R is a Dedekind domain this restriction

may be weakened.

In the case that Z(Γ) = Z(fΛ), using Lemma 3.3.4 (for the R-order Z(Λ) in Z(A)), we

see that

F(Z(fΛ),Z(Λ)) = Z(fΛ) ∩ Z(Λ),

leading us to the following corollary.

Corollary 3.4.4. Let R be an integrally closed Noetherian domain with field of fractions

F , let A be a separable F -algebra, let Λ be an R-order in A and let f be a central idempotent

of A. If there is an injective R-algebra homomorphism fΛ ↪→Mn×n(Z(fΛ)) which restricts

to the canonical identification on centres and induces an isomorphism of F -algebras after

extending scalars, then Z(fΛ) ∩ Z(Λ) ⊂ H(Λ).

Proof. Applying the functor −⊗R F to the map fΛ ↪→Mn×n(Z(fΛ)) yields an F -algebra

isomorphism

fA ∼= fΛ⊗R F ∼= Mn×n(Z(fΛ))⊗R F.

The preimage of Mn×n(Z(fΛ)) in fA ∼= fΛ⊗RF is isomorphic to a matrix ring over Z(fΛ)

which contains fΛ. Hence by Theorem 3.4.1 we have

F(Z(fΛ),Z(Λ)) ⊂ H(Λ)

and, using Lemma 3.3.4 (for the R-order Z(Λ) in Z(A)), we see that

F(Z(fΛ),Z(Λ)) = Z(fΛ) ∩ Z(Λ).

When R is a principal ideal domain we can use this to deduce a special case of

Lemma 3.1.1(ii).
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Corollary 3.4.5. Let R be a principal ideal domain with field of fractions F , let A be a

separable F -algebra, let Λ be an R-order in A and let f be a central idempotent of A. If

(i) fA ∼= Mn×n(Z(fA)) for some n ∈ Z>0 and

(ii) Z(fΛ) is a maximal R-order in Z(fA),

then

Z(fΛ) ∩ Z(Λ) ⊂ H(Λ).

Proof. The fact that there is a ring homomorphism fΛ ↪→ Mn×n(Z(fΛ)) follows from

Lemma 1.9.14 (which shows that up to isomorphism the only maximal R-order in Mn×n(F )

is Mn×n(R)). This map induces an isomorphism of F -algebras after extending scalars by

hypothesis (i). Thus the result follows from Corollary 3.4.4.

3.5 The commutative part of the denominator ideal

It is possible to decompose the denominator ideal of an order into the direct sum of a

‘commutative part’ and a ‘non-commutative part’. We will do this in Theorem 3.5.3

below. To produce this decomposition we make the following definition.

Definition 3.5.1. Let F be a field and let A be a separable F -algebra. The maximal

level-1 idempotent of A is the central idempotent e of A given by the sum of all primitive

central idempotents ei of A such that eiA is commutative. (We sometimes omit “of A”

if A is clear from the context.) In other words, e is the ‘largest’ central idempotent of A

such that eA is commutative.

We will further generalise the idea of Definition 3.5.1 to maximal level-m idempotents

in Definition 3.9.2, for some m ∈ Z>0.

Example 3.5.2. Let F be a field of characteristic 0 and let G be a finite group. Then

eG′ (the central idempotent in F [G] associated to the commutator subgroup of G) is the

maximal level-1 idempotent of F [G] (see Example 1.4.8).

Let e be the maximal level-1 idempotent of A. Since eA is commutative we may apply

Corollary 3.4.4 to obtain a lower bound for the denominator ideal of Λ. In fact, we may

improve upon Corollary 3.4.4 as follows.

Theorem 3.5.3. Let R be an integrally closed Noetherian domain with field of fractions

F , let A be a separable F -algebra and let Λ be an R-order in A. If e is the maximal level-1

idempotent of A then

H(Λ) = (eΛ ∩ Λ)⊕ (1− e)H(Λ).

In particular, we see that (1− e)H(Λ) ⊂ H(Λ).

Remark 3.5.4. When there are no primitive central idempotents ei such that eiA is

commutative, Theorem 3.5.3 is the tautology

H(Λ) = H(Λ).
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Proof of Theorem 3.5.3. From the definition of e we see that eA and eΛ are commutative.

Thus by Corollary 3.4.4 we see that

eΛ ∩ Λ ⊂ H(Λ). (3.1)

Since eΛ is commutative, Lemma 1.9.8 may be used to show eΛ ∩ Λ = Z(eΛ) ∩ Z(Λ).

By Remark 1.7.7, we see that 0∗ = e. In particular, if x ∈ H(Λ) then xe ∈ Λ. Since

H(Λ) ⊂ Z(Λ) ⊂ Λ, we see that xe ∈ eΛ ∩ Λ. Hence we have shown that

eH(Λ) ⊂ eΛ ∩ Λ. (3.2)

We now show that H(Λ) may be written as a direct sum. Let x ∈ H(Λ). By (3.1)

and (3.2), we see that xe ∈ eH(Λ) ⊂ eΛ ∩ Λ ⊂ H(Λ). As H(Λ) is closed under addition,

we have (1 − e)x = x − ex ∈ H(Λ). Using that e is a central idempotent of A, we have

(eΛ ∩ Λ) ∩ (1− e)H(Λ) = {0}. Since x ∈ H(Λ) was arbitrary, we have shown that

H(Λ) = (eΛ ∩ Λ)⊕ (1− e)H(Λ).

3.6 Denominator ideals of group rings

Let G be a finite group and let F be a field. For simplicity, in this section we will

assume that the characteristic of F is 0. However, almost all of the results still hold

when F is a field characteristic p, for some prime number p not dividing the order of

G. This assumption ensures that the trace idempotents associated to subgroups of G

exist in F [G] (see Example 1.4.8 for the characteristic 0 case). In Chapters 4 and 5, we

will also assume that our fields have characteristic 0 for similar reasons. One additional

advantage of assuming that F has characteristic 0 is that any finitely generated semisimple

F -algebra A is necessarily a separable F -algebra (which is one of the conditions in [Rei75,

Corollary 10.4] used to prove the existence of maximal orders in A).

Lemma 3.6.1. Let R be an integrally closed Noetherian domain with field of fractions F

of characteristic 0 and let G be a finite group with normal subgroup N . If eN is the trace

idempotent associated to N in F [G] then

eNR[G] ∩R[G] = TrN R[G]

and

(1− eN )R[G] ∩R[G] =
∑
n∈N

(1− n)R[G].

In particular, if G′ is the commutator subgroup of G then

eG′R[G] ∩R[G] = TrG′ R[G].

Proof. To prove the first assertion we follow the idea in the proof of [JN13, Proposi-

tion 6.11]. Let h1, . . . , hr be a set of representatives in G of the quotient group G�N ; then
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{eNh1, . . . , eNhr} is an R-basis for eNR[G]. Write N = {n1, . . . , ns}; then G = {nihj}i,j
is an R-basis for R[G]. Let x ∈ eNR[G]. Then we may write

x =

r∑
k=0

λkeNhk =

r∑
k=0

λk
|N |

s∑
i=0

nihk,

for some λk ∈ R. Hence we see that x ∈ R[G] if and only if |N | divides each λk if and only if

x ∈ TrN R[G]. Since x ∈ eNR[G] was arbitrary, it follows that eNR[G]∩R[G] = TrN R[G].

To prove the second assertion we note that (1− eN )R[N ]∩R[N ] is precisely the kernel

of the augmentation map

R[N ] −→ R∑
n∈N

ann 7−→
∑
n∈N

an.

In particular, (1− eN )R[N ]∩R[N ] is the augmentation ideal of R[N ]. Hence, by [Web16,

Proposition 6.3.3(2)], we see that

(1− eN )R[N ] ∩R[N ] =
∑
n∈N

(1− n)R[N ].

We may view R[N ] as an R-subalgebra of R[G] and we see that R[G] is a free as an R[N ]-

module; in particular, R[G] is a flat R[N ]-module. Therefore, using [Bou89, Chapter I §2.6

Lemma 7] (note that the rings in the referenced lemma are not necessarily commutative),

we see that

(1− eN )R[G] ∩R[G] = ((1− eN )R[N ] ∩R[N ])⊗R[N ] R[G]

=

(∑
n∈N

(1− n)R[N ]

)
⊗R[N ] R[G]

=
∑
n∈N

(1− n)R[G].

Corollary 3.6.2. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and let G be a finite group with commutator subgroup G′. Then

H(R[G]) = TrG′ R[G]⊕ (1− eG′)H(R[G]).

Proof. We note that eG′ is the maximal level-1 idempotent of F [G] (see Definition 3.5.1).

Hence Lemma 3.6.1 and Theorem 3.5.3 prove the claim.

When Z((1− eG′)R[G]) is maximal we obtain a finer result.

Corollary 3.6.3. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and let G be a finite group with commutator subgroup G′. Suppose

that Z((1− eG′)R[G]) is a maximal R-order in Z((1− eG′)F [G]). Then

H(R[G]) = TrG′ R[G]⊕ (Z((1− eG′)R[G]) ∩ Z(R[G])) .
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Proof. From Corollary 3.6.2 we have

H(R[G]) = TrG′ R[G]⊕ (1− eG′)H(R[G]).

Thus, as H(R[G]) ⊂ Z(R[G]), we see that

(1− eG′)H(R[G]) ⊂ Z((1− eG′)R[G]) ∩ Z(R[G]).

As Z((1 − eG′)R[G]) is a maximal R-order in Z((1 − eG′)F [G]), using Lemmas 3.1.1(ii)

and 3.3.4 we see that

Z((1− eG′)R[G]) ∩ Z(R[G]) ⊂ H(R[G]).

Therefore, we have shown that

H(R[G]) = TrG′ R[G]⊕ (Z((1− eG′)R[G]) ∩ Z(R[G])) .

For certain group rings it is possible to compute the denominator ideal explicitly.

Example 3.6.4. Let p be an odd prime number, let G be either of the non-abelian groups

of order p3 and let Z be the centre of G. Then Z is isomorphic to Cp, the cyclic group of

order p (otherwise G/Z would be cyclic and G would be abelian) and Z is the commutator

subgroup of G (as Z is the smallest normal subgroup of G such that G/Z is abelian). Then

e := eZ is the maximal level-1 idempotent of Q[G]. Let z ∈ G be a generator of Z.

One can show that (1− e)Q[G] ∼= Mp×p(Q(ζ)) where ζ is a primitive p-th root of unity.

(There are several ways of proving this, one of which is using the character table of G

along with a dimension counting argument. The character table of G is computed in

[JL01, Theorem 26.6].)

The element (1− e)z ∈ Z((1− e)Z[G]) is a p-th root of unity because 1− e is a central

idempotent and zp = 1. Moreover, (1 − e)z is a primitive p-th root of unity because

(1− e)z = z − e 6= 1− e. Hence there is a Z-algebra homomorphism

ϕ : Z[ζ] −→ Z((1− e)Z[G])

ζi 7−→ (1− e)zi.

Since this map is injective and Z[ζ] is a maximal Z-order in Q(ζ), it is surjective and so

is a Z-algebra isomorphism.

Therefore we see that Z((1 − e)Z[G]) is a maximal Z-order in Z((1 − e)Q[G]) ∼= Q(ζ).

Thus, by Corollary 3.6.3 we have

H(Z[G]) = TrG′ Z[G]⊕ (Z((1− e)Z[G]) ∩ Z(Z[G])) .

By Lemma 3.6.1 we see that

(1− e)Z[G] ∩ Z[G] =

p−1∑
i=0

(1− zi)Z[G] = (1− z)Z[G],
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where the last equality follows because (1− zi) = (1− z)
∑i−1

j=0 z
j . Therefore, we conclude

that

Z((1− e)Z[G]) ∩ Z(Z[G]) = ((1− e)Z[G] ∩ Z[G]) ∩ Z(Q[G])

= (1− z)Z[G] ∩ Z(Q[G])

= (1− z)Z((1− e)Z[G]),

where first equality follows from Lemma 1.9.8 and the last equality follows by Corol-

lary 1.9.10. Therefore we see that

H(Z[G]) = TrZ Z[G]⊕ (1− z)Z((1− e)Z[G]).

In Example 5.1.1 and Remark 5.1.3 we will generalise this to compute H(R[G]) where R

is an integrally closed Noetherian domain with field of fractions F of characteristic 0.

Example 3.6.5. Let p be an odd prime number and let

G = D2p = 〈x, y | xp = y2 = 1, yxy−1 = x−1〉

be the dihedral group of order 2p. Then 〈x〉 is the commutator subgroup of G and e := e〈x〉

is the maximal level-1 idempotent of Q[G]. Moreover, it can be shown that {x, x−1} is a

conjugacy class in G.

It is known that (1 − e)Q[G] ∼= M2×2(Q(ζ + ζ−1)) where ζ is a primitive p-th root

of unity. (There are several ways of proving this, one of which is using the character

table of G along with a dimension counting argument. It is also computed more explicitly

in [CR81, Example 7.39].)

The element (1− e)x is a p-th root of unity because 1− e is a central idempotent and

xp = 1. Moreover, (1−e)x is a primitive p-th roof of unity because (1−e)x = x−e 6= 1−e.
The element (1 − e)(x + x−1) ∈ (1 − e)Z[G] is central as {x, x−1} is a conjugacy class in

G. Hence there is a Z-algebra homomorphism

ϕ : Z[ζ + ζ−1] −→ Z((1− e)Z[G])

ζi + ζ−i 7−→ (1− e)(xi + x−i).

Since this map is injective and Z[ζ+ζ−1] is a maximal Z-order in Q(ζ+ζ−1), it is surjective

and so is a Z-algebra isomorphism. Therefore, by Corollary 3.6.3, we have

H(Z[G]) = TrG′ Z[G]⊕ (Z((1− e)Z[G]) ∩ Z(Z[G])) .

Let m = (2− (ζ + ζ−1))Z[ζ + ζ−1] be the unique prime ideal over p in Z[ζ + ζ−1]. It is

clear that

ϕ(m) = (1− e)(2− (x+ x−1))Z((1− e)Z[G])

is a maximal ideal in Z((1− e)Z[G]). Noting that ex = e = ex−1, we see that

(1− e)
(
2− (x+ x−1)

)
=
(
2− (x+ x−1)

)
.
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This shows that

ϕ(m) = (2− (x+ x−1))Z((1− e)Z[G]) ⊂ Z((1− e)Z[G]) ∩ Z(Z[G]).

As (1− e) /∈ Z(Z[G]), we see that

Z((1− e)Z[G]) ∩ Z(Z[G]) 6= Z((1− e)Z[G]).

Since the ideal ϕ(m) is maximal, we have shown that

Z((1− e)Z[G]) ∩ Z(Z[G]) = (2− (x+ x−1))Z((1− e)Z[G]).

Therefore we see that

H(Z[G]) = TrG′ Z[G]⊕ (2− (x+ x−1))Z((1− e)Z[G]).

Example 3.6.6. Let p be a prime number, let q = pn for some n ∈ Z>0, let

G = Aff(q) = Fq o F×q

be the group of affine transformations on Fq and let G′ be the commutator subgroup of

G. Then G′ = Fq ∼= (Cp)
n and |G′| = q. We also see that e := eG′ is the maximal level-1

idempotent of Z[G].

One can show that (1− e)Q[G] ∼= M(q−1)×(q−1)(Q). (There are several ways of proving

this, one of which is using the character table of G along with a dimension counting

argument.)

As Z is the only Z-order in Q, we see that Z((1− e)Z[G]) ∼= Z is a maximal Z-order in

Z((1− e)Q[G]) ∼= Q. Therefore, by Corollary 3.6.3, we have

H(Z[G]) = TrG′ Z[G]⊕ (Z((1− e)Z[G]) ∩ Z(Z[G])) .

Recalling that

e = eG′ =
∣∣G′∣∣−1

TrG′ = q−1 TrG′ ,

we see that q is the smallest positive integer m such that me ∈ Z(Z[G]). Because there is

a Z-algebra isomorphism Z((1− e)Z[G]) ∼= Z, we see that

Z((1− e)Z[G]) ∩ Z(Z[G]) = qZ((1− e)Z[G]).

Therefore we see that

H(Z[G]) = TrG′ Z[G]⊕ qZ((1− e)Z[G]).

Example 3.6.7. Let A be an abelian group. Let p an odd prime number and let G be

one of the following groups:

• a non-abelian group of order p3 (as in Example 3.6.4),

• D2p (as in Example 3.6.5) or
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• Aff(q), where q = pn for some n ∈ Z>0 (as in Example 3.6.6; note that this example

also extends to the case when p = 2).

We identify Z[G × A] with Z[G] ⊗Z Z[A] as in Example 1.5.6. We note that Z[A] is

commutative and, by one of Examples 3.6.4, 3.6.5 or 3.6.6, there exists Γ a Z-order in

Q[G] such that

• Γ ∼= eZ[G]⊕Mn×n(Z((1−e)Z[G])) where e := eG′ is the maximal level-1 idempotent

of Q[G] and

• H(Z[G]) = F(Z(Γ),Z(Z[G])),

so, by Remark 3.4.2, we see that

F(Z(Γ⊗Z Z[A]),Z(Z[G]⊗Z Z[A])) ⊂ H(Z[G]⊗Z Z[A]).

By Lemma 3.2.3, we see that

H(Z[G]⊗Z Z[A]) ⊂ H(Z[G])⊗Z Z[A] = F(Z(Γ),Z(Z[G]))⊗Z Z[A].

Now let x⊗ y ∈ F(Z(Γ),Z(Z[G]))⊗Z Z[A]. We have xZ(Γ) ⊂ Z(Z[G]) so

(x⊗ y)(Z(Γ)⊗Z Z[A]) ⊂ Z(Z[G])⊗Z Z[A].

Therefore, as x⊗ y ∈ F(Z(Γ),Z(Z[G]))⊗Z Z[A] was arbitrary, we see that

F(Z(Γ),Z(Z[G]))⊗Z Z[A] ⊂ F(Z(Γ)⊗Z Z[A],Z(Z[G])⊗Z Z[A]).

Hence, after identifying Z[G×A] with Z[G]⊗Z Z[A], we see that

H(Z[G×A]) = H(Z[G]⊗Z Z[A])

= H(Z[G])⊗Z Z[A]

= (eZ[G×A] ∩ Z[G×A])⊕ (Z((1− e)Z[G×A]) ∩ Z(Z[G×A])).

3.7 Lower bounds of denominator ideals using multiple

rings

The remaining results in this chapter will not be used later in the thesis, but still may be

useful in computing denominator ideals.

Let R be an integrally closed Noetherian domain with field of fractions F . Let A be

a separable F -algebra, let Λ be an R-order in A and let f be a central idempotent of A

such that fA is isomorphic to a matrix ring over a commutative ring. One limitation of

Theorem 3.4.1 is that there may be many R-orders Γ in fA containing fΛ subject to the

condition that Γ is isomorphic to a matrix ring over a commutative ring. Unfortunately,

there is no guarantee that there exists a minimal R-order Γ in fA containing fΛ which

is a matrix ring over a commutative ring. This is because the intersection of two matrix

rings over commutative rings is not necessarily a matrix ring over a commutative ring. To

address this problem, we adapt the proof of Theorem 3.4.1 to a situation where there are

multiple R-orders Γ containing Λ.
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Theorem 3.7.1. Let R be an integrally closed Noetherian domain with field of fractions F .

Let A be a separable F -algebra, let Λ be an R-order in A and let f be a central idempotent

of A. If G is a collection of R-orders in fA such that each Γ ∈ G is isomorphic to a matrix

ring over a commutative ring and fΛ ⊂ Γ, then we have

F

(⋂
Γ∈G

Z(Γ),Z(Λ)

)
⊂ H(Λ).

Proof. Given b ∈ Z>0 and an element H ∈ Mb×b(Λ), the first part of the proof of The-

orem 3.4.1 shows that rch(H) has coefficients in Z(Γ) for each Γ ∈ G. Therefore, by the

second part of the proof of Theorem 3.4.1, we see that

F

(⋂
Γ∈G

Z(Γ),Z(Λ)

)
⊂ H(Λ).

3.8 Lower bounds of denominator ideals using extension of

scalars

Let R be an integrally closed Noetherian domain with field of fractions F . Let A be a

separable F -algebra, let Λ be an R-order in A and let f be a central idempotent of A. In

Theorem 3.4.1 we assumed that there existed an R-order Γ in fA containing fΛ which is

isomorphic to a matrix ring over a commutative ring. In Remark 3.4.3, we noted that the

condition that Γ is a matrix ring over a commutative ring precludes division rings in the

Wedderburn decomposition of fA. One reason that this assumption is needed is to ensure

that the degrees of all the matrix rings in the Wedderburn decomposition of fA are the

same. To adapt for when there may be division rings in the Wedderburn decomposition

we will need take Schur indices into account. This leads us to the following definition.

Definition 3.8.1. Let F be a field, let A be a separable F -algebra and let m ∈ Z>0. A

central idempotent f in A has level-m if there exists a finite field extension E of F such

that fA⊗F E is isomorphic to the matrix ring Mm×m(Z(fA⊗F E)). In this case we call

f a level-m idempotent of A (or just a level idempotent of A for short). (We sometimes

omit “of A” if A is clear from the context.) It should be noted that by transitivity of

tensor products it suffices to check this when E is a splitting field of A.

Equivalently, a central idempotent f in A has level-m if for all primitive central idem-

potents ei of A such that eif = ei we have nisi = m, where eiA ∼= Mni×ni(Di) with Di a

division ring over K with Schur index si.

We are now in a position to strengthen Theorem 3.7.1 to allow for division rings.

Theorem 3.8.2. Let R be a Dedekind domain with field of fractions F , let A be a separable

F -algebra, let Λ be an R-order in A and let f be a level idempotent of A. Suppose that G
is a collection of R-orders in fA and for each Γ ∈ G there exists a finite field extension

EΓ of F such that Γ⊗R SΓ is isomorphic to a matrix ring over a commutative ring, where

SΓ is the integral closure of R in EΓ. If fΛ ⊂ Γ for each Γ ∈ G then we have

F

(⋂
Γ∈G

Z(Γ),Z(Λ)

)
⊂ H(Λ).
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Proof. Let E be the compositum of all the EΓ and let S be the integral closure of R in

E. (Note that E may not be a finite field extension of F .) It is clear that each Γ ⊗R S
is a matrix ring over a commutative ring because each Γ ⊗R SΓ is a matrix ring over a

commutative ring. We see that

F

(⋂
Γ∈G

Z(Γ),Z(Λ)

)
= F

(⋂
Γ∈G

Z(Γ⊗R S),Z(Λ⊗R S)

)
∩ Z(A), (3.3)

⊂ H (Λ⊗R S) ∩ Z(A), (3.4)

⊂ H(Λ), (3.5)

where

• equation (3.3) follows from Lemma 3.3.5,

• equation (3.4) follows from applying Theorem 3.7.1 to fΛ⊗R S ⊂ Γ⊗R S and

• equation (3.5) follows by applying Lemma 3.2.1.

3.9 Upper bounds of denominator ideals

Let R be a Noetherian integral domain with field of fractions F . Let A be a separable

F -algebra and let Λ be an R-order in A. We recall from Lemma 1.10.9 that H(Λ) is an

ideal of the ring

I(Λ) := 〈nr(H) | ∀H ∈Mb×b(Λ),∀b ∈ Z>0〉Z(Λ).

This immediately gives us the following ‘upper bound’ for the denominator ideal of Λ,

remarked upon in [JN13, Remark 6.5].

Lemma 3.9.1. Let R be a Noetherian integral domain with field of fractions F . Let A be

a separable F -algebra and let Λ be an R-order in A. Then I(Λ)H(Λ) ⊂ Z(Λ) and so

H(Λ) ⊂ F(I(Λ),Z(Λ)).

Unfortunately, it is not clear that I(Λ) is any easier to compute than H(Λ). An

alternative way of obtaining an upper bound for the denominator ideal is Theorem 3.5.3.

This shows that

H(Λ) = (eΛ ∩ Λ)⊕ (1− e)H(Λ),

where e is the maximal level-1 idempotent of A. Hence using the fact that H(Λ) ⊂ Z(Λ)

and Lemma 1.9.8(iii), we see that

eH(Λ) ⊂ Z(eΛ) ∩ Z(Λ) and (1− e)H(Λ) ⊂ Z((1− e)Λ) ∩ Z(Λ), (3.6)

Now assume that R is a discrete valuation ring (note that this assumption may be

weakened using the local-global principle in Theorem 2.4.4). In this section we will gen-

eralise the ‘upper bounds’ in (3.6) to certain other central idempotents of A. In order to

do this it is sometimes useful to isolate the level-m part of A, for example the maximal

level-1 idempotent of A. With this in mind we make the following definition.
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Definition 3.9.2. Let F be a field, let A be a separable F -algebra and let m ∈ Z>0. The

maximal level-m idempotent of A is the sum of all the primitive level-m idempotents of

A or zero if there are no primitive level-m idempotents. These are called maximal level

idempotents of A for short. (We sometimes omit “of A” if A is clear from context.)

Maximal level idempotents of A can be used to compute reduced norms of elements of

Z(A).

Proposition 3.9.3. Let F be a field and let A be a separable F -algebra. Let f1, . . . , fd

be the non-zero maximal level idempotents of A with levels m1, . . . ,md, respectively. If

x ∈ Z(A) then

nr(x) =

d∑
i=1

(fix)mi .

Proof. Let E be a splitting field for A over F . Then

(A⊗F E) =

d∏
i=1

fi(A⊗F E),

where fi(A⊗F E) ∼= Mmi×mi(
∏ni
j=1E) for some non-zero ni ∈ Z>0. Let x ∈ Z(A) and let

(x1, . . . , xd) be the image of x in
∏d
i=1Mmi×mi(

∏ni
j=1E). The determinant of this element

is

det (x1, . . . , xd) · 1A⊗FE = (x1
m1 , . . . , xd

md) .

Thus, by the definition of the reduced norm, we have

nr(x) =
d∑
i=1

(fix)mi .

Corollary 3.9.4. Let F be a field and let A be a separable F -algebra. Let f1, . . . , fd

be the non-zero maximal level idempotents of A with levels m1, . . . ,md, respectively. If

H ∈ Z(A)× then

H∗ =
d∑
i=1

(Hfi)
mi−1.

Proof. If H ∈ Z(A)× then

H∗ = nr(H)H−1 =

d∑
i=1

(Hfi)
mi−1,

where the first equality comes from Remark 1.7.4 and the last equality is Proposition 3.9.3.

Let R be a discrete valuation ring with field of fractions F , let A be a separable F -

algebra and let Λ be an R-order in A. We now give a sketch of a method of producing an

‘upper bound’ for the denominator ideal of Λ which we will develop into Theorem 3.9.5

below. The homomorphism R ↪→ Z(Λ): r 7→ 1Λr restricts to a group homomorphism

R× ↪→ Z(Λ)×. Let r ∈ R×. The generalised adjoint of 1Λr ∈ Z(Λ)× may be computed

explicitly. Furthermore, by the definition of H(Λ) we see that (1Λr)
∗H(Λ) ⊂ Λ (and, since
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(1Λr)
∗ ∈ Z(A), we have (1Λr)

∗H(Λ) ⊂ Z(Λ)). Therefore, for each r ∈ R×, we have an

‘upper bound’ for H(Λ) given by

H(Λ) ⊂ {x ∈ Z(Λ) | (1Λr)
∗x ∈ Z(Λ)}.

With a few more restrictions on R and A, and considering more elements of R we may

produce a better ‘upper bound’ for H(Λ).

Theorem 3.9.5. Let R be a discrete valuation ring with field of fractions F and residue

field k, let A be a separable F -algebra and let Λ be an R-order in A. Let e be the maximal

level-1 idempotent of A (we note that e may be 0) and let f1, . . . , fd be all the non-zero

maximal level idempotents of (1 − e)A with levels m1, . . . ,md > 1, respectively. If there

exists g ∈ k× such that gmi = gmj ⇐⇒ i = j, then for all i ∈ {1, . . . , d} we have

fiH(Λ) ⊂ Z(fiΛ) ∩ Z(Λ).

In particular, this holds when k is an infinite field.

Before we prove Theorem 3.9.5 we first need a result on bases of free modules.

Proposition 3.9.6. Let R be a commutative local ring, with residue field k and let u ∈ R
with image g ∈ k×. Let d ∈ Z>0 and m1, . . . ,md ∈ Z>0. If gmi = gmj ⇐⇒ i = j then the

set

X := {xi = (uim1 , uim2 , . . . , uimd) | i ∈ {0, . . . , d− 1}}

is a basis for the free R-module Rd.

Proof. Consider the matrix M with columns given by x0, . . . , xd−1; in particular, the

(i, j)-entry of M is x(i−1)mj . This is a Vandermonde matrix and so has determinant

det(M) =
∏

1≤i<j≤d
(umi − umj ).

Since u ∈ R has image g ∈ k× and gmi − gmj ∈ k× for 1 ≤ i < j ≤ d, we see that

det(M) ∈ R×. Hence x0, . . . , xd−1 is an R-basis for the free R-module Rd.

We are now in a position to prove Theorem 3.9.5.

Proof of Theorem 3.9.5. Suppose g ∈ k× has the property that gmi = gmj ⇐⇒ i = j. Let

u be a lift of g in R. In order to conclude that

fjH(Λ) ⊂ Z(fjΛ) ∩ Z(Λ)

for j = 1, . . . , d, we will show that if x ∈ Z(Λ) and x(1Λu
i)
∗ ∈ Λ for i = 0, . . . , d− 1 then

fjx ∈ Z(Λ).

We begin by considering the R-module map

ϕ : Rd −→ Z(A)

(y1, . . . , yd) 7−→
d∑
j=1

fjyj .
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This has the property that if ej ∈ Rd is the j-th standard basis vector then

ϕ(ej) = fj .

If i ∈ {0, . . . , d− 1} then, by Corollary 3.9.4, we see that

(1Λu
i)
∗

= e+
d∑
j=1

fju
i(mj−1),

where e is the maximal level-1 idempotent of A, and so

(1− e)(1Λu
i)
∗

= (1− e)

e+

d∑
j=1

fju
i(mj−1)


=

d∑
j=1

fju
i(mj−1)

= ϕ
(
ui(m1−1), . . . , ui(md−1)

)
.

Since gmi = gmj ⇐⇒ i = j and u is a lift of g in R, Proposition 3.9.6 shows that the

set {(
ui(m1−1), . . . , ui(md−1)

) ∣∣∣ i ∈ {0, . . . , d− 1}
}

is a basis of Rd. In particular, for each j ∈ {1, . . . , d} there exist a0, . . . , ad−1 ∈ R such

that

ej =
d−1∑
i=0

ai

(
ui(m1−1), . . . , ui(md−1)

)
and so

fj = ϕ(ej)

= ϕ

(
d−1∑
i=0

ai

(
ui(m1−1), . . . , ui(md−1)

))

=

d−1∑
i=0

(1− e)ai(1Λu
i)
∗
.

Let j ∈ {1, . . . , d}. Let x ∈ fjH(Λ). Then x = fjy for some y ∈ H(Λ). Theorem 3.5.3

shows that

(1− e)H(Λ) ⊂ H(Λ),

so (1− e)y ∈ H(Λ). Therefore, we see that (1− e)y(1Λu
i)
∗ ∈ Λ for all i ∈ {0, . . . , d− 1}.

Hence,

fjy =
d−1∑
i=0

(1− e)aiy(1Λu
i)
∗ ∈ Λ.

We know that y and fj are central, so x = fjy ∈ Z(Λ). As H(Λ) ⊂ Z(Λ), we see that

x ∈ fjZ(Λ). Therefore x ∈ fjZ(Λ)∩Z(Λ) and, because x ∈ fjH(Λ) was arbitrary, we have

shown that

fjH(Λ) ⊂ fjZ(Λ) ∩ Z(Λ) = Z(fjΛ) ∩ Z(Λ),
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where the last equality is Lemma 1.9.8(iii).

To show the last claim of Theorem 3.9.5 (when k is an infinite field the result always

holds) we split into two cases. First, suppose that k is an algebraic extension of Fp for

some prime number p. Since k is an infinite field, the group k× contains elements with

arbitrarily large orders. In particular, k× contains an element g with order greater than

max{m1, . . . ,md} which must satisfy

gmi = gmj ⇐⇒ mi = mj ⇐⇒ i = j.

Otherwise, suppose that k is not an algebraic extension of Fp. In this case k contains an

element g of infinite order which must satisfy

gmi = gmj ⇐⇒ mi = mj ⇐⇒ i = j.

(There are actually two possibilities when k is not an algebraic extension of Fp for some

prime number p. First, if the characteristic of k is p then k contains a transcendental

element g over Fp and g must have infinite order. Otherwise, if the characteristic of k is

0 then 2 ∈ k× is an example of an element of infinite order.)

Using Theorem 3.9.5, after a finite extension, we always have the following ‘upper

bound’ for the denominator ideal.

Corollary 3.9.7 (of Theorem 3.9.5). Let R be a discrete valuation ring with field of

fractions F , let A be a separable F -algebra and let Λ be an R-order in A. Let f be a

non-zero maximal level idempotent of A. Then there exists a finite field extension E of F

such that

fH(Λ⊗R S) ⊂ Z(fΛ⊗R S) ∩ Z(Λ⊗R S),

where S is the integral closure of R in E. In particular, if F is a complete local field with

finite residue field then E can be taken to be a finite unramified extension of F .

Proof. If f has level-1 then the result follows with E = F from Theorem 3.5.3. For the

rest of the proof we will assume that f does not have level-1.

Let k be the residue field of R. If k is an infinite field the result follows with E = F

directly from Theorem 3.9.5. Otherwise, k is a finite field. Let e be the maximal level-1

idempotent of A and let f1, . . . , fd be the non-zero maximal level idempotents of (1− e)A
with levels m1, . . . ,md respectively. Let kE be a finite extension of k such that

∣∣k×E ∣∣ > mi

for all i and let g be a primitive root of kE . Then

gmi = gmj ⇐⇒ mi = mj (mod
∣∣k×E ∣∣)⇐⇒ mi = mj ⇐⇒ i = j.

Since f does not have level-1, f = fi for some i ∈ {1, . . . , d}. Hence, by Theorem 3.9.5,

an extension E of F with residue field kE suffices.

3.10 A counterexample to equality in restriction of scalars

Let R be an Dedekind domain with field of fractions F . Let A be a separable F -algebra

and let Λ be an R-order in A. If E is a field extension of F and S is the integral closure
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of R in E then the containment

H (Λ⊗R S) ∩ Z(A) ⊂ H(Λ)

(in Lemma 3.2.1) is not necessarily an equality (we noted this in Remark 3.2.2). In this

section we will produce an R-order Λ and finite field extension E where equality does not

hold.

Let p be a prime number. Let R = Zp so F := Frac(R) = Qp, let

A = Qp ×Mp×p(Qp)×Mp2×p2(Qp)

with central idempotents f1, fp and fp2 with levels 1, p and p2, respectively and let

Γ = Zp ×Mp×p(Zp)×Mp2×p2(Zp) ⊂ A

be a maximal Zp-order in A. Define the Zp-order

Λ = 1Γ · Zp + pf1 · Zp + p2Γ ⊂ Γ ⊂ A.

Let E be the unique unramified extension of Qp of degree 2 and let S be the integral

closure of Zp in E.

Proposition 3.10.1. If Λ, A, and E are as above then

H
(
Λ⊗Zp S

)
∩ Z(A) 6⊃ H(Λ).

Proof. The idea of this proof is to show that the element

y := p(fp + fp2) = 1Γp− pf1 ∈ Z(Λ)

is in H(Λ) but not H
(
Λ⊗Zp S

)
∩ Z(A).

Claim 3.10.2.

y = p(fp + fp2) ∈ H(Λ).

Proof. We note that fp + fp2 = 1Γ − f1 so we see that

Λ = 1Γ · Zp + pf1 · Zp + p2Γ = 1Γ · Zp + p(fp + fp2) · Zp + p2Γ.

In particular, given x ∈ Γ we see that yx = p(fp + fp2)x ∈ Λ if and only if there exists

r ∈ Zp such that x ≡ (fp + fp2)r (mod pΓ).

Let n ∈ Z>0 and consider Mn×n(Λ) ⊂Mn×n(Γ). We will abuse notation by considering

f1, fp and fp2 as central idempotents of Mn×n(Γ) and by viewing Mn×n(Zp) as a subring

of Mn×n(Γ) via the Zp-algebra map Zp ↪→ Γ. Then, for x ∈Mn×n(Γ) we see that

yx ∈Mn×n(Λ)⇐⇒ x ≡ (fp + fp2)r (mod pΓ) for some r ∈Mn×n(Zp). (3.7)

We note that Mn×n(Λ) is an Zp-order contained within the maximal Zp-order Mn×n(Γ).

Let H ∈ Mn×n(Λ). By Lemma 1.9.17, H∗ ∈ Mn×n(Γ). By the criterion (3.7), showing
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that yH∗ ∈Mn×n(Λ) is equivalent to showing that

(fp + fp2)H∗ ≡ (fp + fp2)r (mod pΓ), (3.8)

for some r ∈Mn×n(Zp).
We note that reduction modulo p is a Zp-algebra homomorphism, so taking the char-

acteristic polynomial commutes with reduction modulo p. Write H for the image of H in

Mn×n

(
Γ�pΓ

)
. We note that Λ�pΓ = 1Γ�pΓ

· Zp�pZp and so H = 1
Mn×n

(
Γ�pΓ

)r for some

r ∈Mn×n(Fp). Now, using Theorem 1.7.8 parts (i) and (iii), one can show that

(f1H)∗ = f1r
∗, (fpH)∗ = fpdet(r)p−1r∗ and (fp2H)∗ = fp2det(r)p

2−1r∗.

Furthermore, as r ∈Mn×n(Fp), we see that r∗ ∈Mn×n(Fp) and det(r) ∈ Fp. Thus

det(r)p−1 =

{
1 if r ∈ GLn(Fp),
0 otherwise

}
= det(r)p

2−1;

in either case this shows that (3.8) holds, which proves that yH∗ ∈Mn×n(Λ). Therefore,

as H ∈Mn×n(Λ) and n ∈ Z>0 were arbitrary, we see that y ∈ H(Λ).

Claim 3.10.3.

y /∈ H(Λ⊗Zp S) ∩ Z(A)

Proof. Let kE be the residue field of S (the integral closure of Zp in E). Since E is the

unramified extension of Qp of degree 2, we see that kE = Fp2 . In particular, there exists

g ∈ kE such that gp 6= g. Hence Theorem 3.9.5 shows that

fpH(Λ⊗Zp S) ⊂ Z(fpΛ⊗Zp S) ∩ Z(Λ⊗Zp S).

Recall that

Λ = 1Γ · Zp + pf1 · Zp + p2Γ.

In particular,

Λ⊗Zp S = 1Γ · S + pf1 · S + p2(Γ⊗Zp S).

Hence, it is clear that

Z(fpΛ⊗Zp S) ∩ Z(Λ⊗Zp S) = p2fpS.

Recalling that y = p(fp + fp2), we see that fpy = pfp /∈ p2fpS. Therefore we see that

y /∈ H(Λ⊗Zp S).

These two claims complete the proof of Proposition 3.10.1.
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4 Integral Clifford theory and group

rings

4.1 Introduction

This chapter may be read independently of the other chapters, though the results will be

used in Chapter 5.

Let G be a finite group with normal subgroup N . Working over a characteristic 0 field

F , Clifford’s Theorem tells us that the irreducible characters of F [G] can be constructed

from the irreducible characters of F [N ] (see [CR81, Section 11B] for details when F is a

splitting field for G and is a subfield of C). This allows us to compute the structure of the

group algebra F [G] using knowledge of the group algebra F [N ] and the action of G on

F [N ]. The goal of this chapter is to generalise these ideas to working over certain group

rings R[G] where R is an integrally closed Noetherian domain.

Notation and conventions. Throughout this chapter in addition to the notation given

in Chapter 1 we will use the following notations and conventions.

• Let G be a finite group.

• Let N be a normal subgroup of G.

• Let F denote a field of characteristic 0. (The characteristic 0 hypothesis is made for

the same reason as in Section 3.6.)

• Recall that IrrF (G) is the set of F -valued irreducible characters of G. There is a

(right) action of G on IrrF (N) by conjugation: χg(n) = χ(gng−1), for χ ∈ IrrF (N),

g ∈ G and n ∈ N .

• For χ ∈ IrrF (N), let IG(χ) = {g ∈ G | χg = χ} = StabG(χ) be the inertia group of

χ in G. We note that N acts trivially on IrrF (N) so N / IG(χ).

• For a ring A, there is a (right) action of G on A[N ] by conjugation: xg = g−1xg,

where x ∈ A[N ] and g ∈ G.

• For χ ∈ IrrF (G), recall from Example 1.4.10 that eχ = χ(1)
|G|
∑

g∈G χ(g−1)g ∈ F [G]

is the primitive central idempotent associated to χ. We note that the action of G

on IrrF (N) and F [N ] are compatible in the following sense. For χ ∈ IrrF (N) and

g ∈ G, we see that eχg = egχ.

• For a central idempotent e ∈ F [N ], let IG(e) = {g ∈ G | eg = e} = StabG(e); we

call this the inertia group (or centralizer) of e in G. We note that the conjugation

action of N on Z(F [N ]) is trivial so N / IG(e). Also, for χ ∈ IrrF (N), we see that

IG(χ) = IG(eχ).
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Remark 4.1.1. As in Section 3.6, for many of the results in the present chapter the

hypothesis that the characteristic of F is 0 may be weakened. We only consider fields of

characteristic 0 for brevity.

The aim of this chapter is prove the following theorem.

Theorem 4.1.2. Let R be an integrally closed Noetherian domain and let G be a finite

group. Suppose that G = NoH and suppose that F := Frac(R) is a splitting field for N of

characteristic 0. Let χ ∈ IrrF (N) with associated primitive central idempotent eχ ∈ F [N ].

Let e =
∑

χ′∈OrbG(χ) eχ′ ∈ F [N ]. Suppose that eχ ∈ R[N ]. If χ(1) and |IG(χ)/N | are

coprime and either

(i) N is an abelian group, or

(ii) R is a principal ideal domain,

then e is a central idempotent of R[G] and

eR[G] ∼= Mkm×km(R[IG(χ)/N ]),

where k = |OrbG(χ)| and m = χ(1).

Theorem 4.1.2 generalises the following well-known result on the trace idempotent

attached to a normal subgroup.

Lemma 4.1.3. Let R be an integral domain with field of fractions F of characteristic 0.

Let G be a finite group with normal subgroup N . If e := eN ∈ F [G] is the trace idempotent

attached to N , then there is an R-algebra isomorphism eR[G] ∼= R[G/N ].

Proof. Let X be a transversal of N in G. We define the R-module homomorphism

ϕ : R[G/N ] −→ eR[G]

on G/N by ϕ(x) = ex (for x ∈ X with image x in G/N). This homomorphism is well-

defined because, for n ∈ N , we have en = e (this also shows that eR[N ] = eR). Moreover,

ϕ is an R-algebra homomorphism because e is a central idempotent in F [G].

Recalling that X is a transversal of N in G, we see that R[G] =
⊕

x∈X xR[N ] and

R[G/N ] =
⊕

x∈X xR. Hence, as e ∈ F [N ] is a central idempotent of F [G], we see that

eR[G] =
⊕
x∈X

xeR[N ] =
⊕
x∈X

exR.

Therefore, ϕ gives a bijection between R-bases of the free R-modules R[G/N ] and eR[G]

and so is an R-algebra isomorphism.

Recall the notation of Theorem 4.1.2. In particular, let R be an integrally closed

Noetherian domain and let G be a finite group. Suppose that G = N o H and suppose

that F := Frac(R) is a splitting field for N of characteristic 0. There are at least four

results related to Theorem 4.1.2 in the literature.

Firstly, in [Rog92, Theorem XIII.16], Roggenkamp proves a result similar to Theo-

rem 4.1.2 in the case that R is a complete discrete valuation ring of characteristic 0 with

residue field of characteristic p > 0 (although our result is phrased in terms of central
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idempotents of R[N ] rather than irreducible R[N ]-lattices). In [Rog92, Theorem XIII.2],

Roggenkamp improves on this result to obtain results in the case that F is a not neces-

sarily a splitting field for N . The references [Rog92, Chapter XIII] and [Rog96, Section 1]

are similar; we will cite the former though the same material may be found in the latter.

Secondly, we note that [Rog92, Theorem XIII.16] is a more general version of a result

contained within in the proof of [CR87, Theorem 46.24] which holds in the case that R is

the valuation ring of a finite extension of Qp and G = N o P where N is a cyclic group

with order prime to p and P is an abelian p-group.

Thirdly, in [Sch88a], [Sch83] and [Sch88b], Schmid shows that similar results to Theo-

rem 4.1.2 hold over a finite field and that these results may be lifted to the valuation ring

of some finite field extension of Qp. Schmid does not assume that Frac(R) is a splitting

field for N .

Finally, in [DJ83], DeMeyer and Janusz show that R[G] is a product of matrix rings

over commutative rings in the case that R is a complete local ring with residue field of

characteristic p > 0 such that p does not divide the order of the commutator subgroup of

G. The assumptions made on G and k ensure that the Brauer group of k is trivial and

k[G] is an Azumaya algebra; this, along with the assumption that R is a complete local

ring, is used to deduce that R[G] is a product of matrix rings over commutative rings.

The advantages of Theorem 4.1.2 over the other results are threefold:

• The conditions on the ring R are weaker in some respects: for example the assump-

tion that R is complete is not required at all.

• Unlike the third and fourth approach, the theorem gives an explicit description of

the structure of R[G] in terms of the structure of R[N ] for some normal subgroup

N .

• The proof of the theorem uses idempotents rather than characters or R[G]-modules

which allows partial results to be achieved when p divides the order of the commu-

tator subgroup. This will be used heavily in Chapter 5.

The idea for proving Theorem 4.1.2 presented here is to construct eR[G] directly by

using the structure of eχR[N ] and the action of G. This idea is very similar to the

proofs of first two similar results in the literature discussed above. The idea can be

thought of as a refinement of a proof of Clifford’s Theorem over a field (see the proof

of [Pas85, Theorem 6.1.9]) to work over an integrally closed Noetherian domain. The

proof of Theorem 4.1.2 will be done in two parts: part (i) (when N is an abelian group)

is proven in Theorem 4.4.1 and part (ii) (when R is a principal ideal domain) is proven in

Theorem 4.9.1.

4.2 Groups with proper inertia group

As in [Pas85, Theorem 6.1.9] the proof of Theorem 4.1.2 proceeds by first reducing to the

case IG(χ) = G. We first recall [Pas85, Lemma 6.1.6].

Lemma 4.2.1. Let Λ be a ring and let 1 = e1 + · · · + ek be a decomposition of unity

into a sum of orthogonal idempotents of Λ. Let G be a subgroup of Λ× and assume that

the action of G on {e1, . . . , ek} given by conjugation (egi = g−1eig, for i ∈ {1, . . . , k} and
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g ∈ G) is transitive. Then there is an isomorphism of rings Λ ∼= Mk×k(e1Λe1), which

induces the map

Z(Λ) −→ Z(e1Λe1)

x −→ e1xe1,

on centres.

We give the following generalisation of [Pas85, Lemma 6.1.7].

Theorem 4.2.2. Let G be a finite group with normal subgroup N . Let R be a commutative

ring and let Q be the total ring of fractions of R. Recall that G acts on Q[N ] by conjugation

(xg = g−1xg, for x ∈ Q[N ] and g ∈ G). If {e1, . . . , ek} is a G-orbit of orthogonal central

idempotents of Q[N ] then e := e1 + · · · + ek is a central idempotent of Q[G] and there is

an injection of R-algebras

eR[G] Mk×k(e1R[I]), (4.1)

where I = IG(e1). Furthermore, if e1 ∈ R[N ] then e ∈ R[G] and (4.1) is an R-algebra

isomorphism. In particular (4.1) induces an isomorphism of Q-algebras after extending

scalars.

Proof. The proof closely follows that of [Pas85, Lemma 6.1.7], although we note that the

assumption that the ei are primitive central idempotents in R[N ] has been replaced by

the assumption that the ei are orthogonal central idempotents in Q[N ].

The element e is a central idempotent of Q[N ] because the ei are orthogonal central

idempotents in Q[N ]. The action of G merely permutes the ei so the action of G fixes e.

Therefore e is central in Q[G].

Let Λ =
⊕k

i=1 eiR[G]; we view Λ as an R-algebra via multiplication in Q[G]. This

is the R-algebra generated by eR[G] and e1, . . . , ek, so Λ is a ring with identity e and

G := {eg | g ∈ G} is a subgroup of Λ×. By assumption, the action of G on {e1, . . . , ek}
by conjugation is transitive. Furthermore, e = e1 + · · ·+ ek is a decomposition of unity in

the ring Λ. Therefore, by Lemma 4.2.1, there is an isomorphism of rings

Λ ∼= Mk×k(e1Λe1),

which we note to be an R-algebra isomorphism. Moreover, we have

e1Λe1 = e1

(
k⊕
i=1

eiR[G]

)
e1 = e1R[G]e1.

It remains to identify this ring.

We note that e1R[G]e1 is the R-linear span of elements e1ge1 for g ∈ G. As the ei are

orthogonal idempotents, we see that

e1ge1 = e1(eg
−1

1 )g =

e1g if g ∈ IG(e1),

0 otherwise.
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Therefore, e1R[G]e1
∼= e1R[IG(e1)] and there is an injection of R-algebras

eR[G] Λ ∼= Mk×k(e1R[IG(e1)]).

If e1 ∈ R[N ] then, as G acts transitively on {e1, . . . , ek}, we see that ei ∈ R[N ] for

i = 1, . . . , k. Therefore, we see that e = e1 + · · ·+ ek ∈ R[G] and

eR[G] =

k⊕
i=1

eiR[G] = Λ.

Remark 4.2.3. It seems plausible that a result similar to Theorem 4.2.2 may be obtained

for crossed product orders (for the definition of crossed product orders see Definition 4.6.1).

This may be interesting to investigate further in a future project. A result related to this

idea is [BW09, Lemma 8.8], where certain crossed product orders are shown to be matrix

rings over a ‘smaller’ crossed product order.

Theorem 4.2.2 is a useful stepping stone in proving Theorem 4.1.2; however, the result

has merit in its own right. It may be used to obtain results on Frobenius groups (see

Theorem 4.3.3) and we will also build upon this theorem in Chapter 5 to deduce results

about the denominator ideals of p-groups. In order deduce results on the denominator

ideals of p-groups, we will need to know a little more about the map (4.1). The rest of

this section provides more details on this and may be skipped on the first reading if one

is not interested in the computation of denominator ideals.

Recall the notation from Theorem 4.2.2 and in addition assume that R is a Dedekind

domain with field of fractions F = Q. Let f be some central idempotent f ∈ F [G]. When

computing lower bounds for denominator ideals of R[G] in Chapter 3 (see, for example,

Theorem 3.8.2) we were interested in finding R-orders Γi in fF [G] containing fR[G] such

that each Γi was isomorphic to a matrix ring over commutative ring. We were particularly

interested in the intersection of the centres of the Γi. It is clear that Theorem 4.2.2

has applications to this. For example, if we were to suppose that I was abelian and we

considered Γ the pre-image of Mk×k(e1R[I]) in F [G] under the map

eF [G] −→Mk×k(e1F [I]), (4.2)

then Γ is an R-order in eF [G] containing eR[G] and Γ is isomorphic to a matrix ring

over the commutative ring e1R[I]. For this reason it is useful to consider the pre-image

of Z (Mk×k(e1R[I])) under the map (4.2); Corollary 4.2.4 below gives a way of computing

this pre-image.

Corollary 4.2.4. Recall the notation and results of Theorem 4.2.2. Consider the R-

algebra homomorphism

ϕ : Z(eR[G]) −→ Z(Mk×k(e1R[I]))
∼=−−→ Z(e1R[I]),

given by composition of the restriction of (4.1) to centres with the canonical isomorphism
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Z(Mk×k(e1R[I])) ∼= Z(e1R[I]). Let T be a left transversal of I in G and consider the map

ψ : Z(e1R[I]) −→ Z(eQ[G])

x 7−→
∑
h∈T

xh.

Then ϕ and ψ are injections of R-algebras and ψ is the left inverse of ϕ. Furthermore, if

e1 ∈ R[G] then ϕ and ψ are inverses of each other. In particular, this holds when R = Q.

Proof. For x ∈ Z(eR[G]), the map ϕ is given by ϕ(x) = e1xe1 = e1x (the last equality

follows because x ∈ Z(eR[G])). Therefore we see that

ψ(ϕ(x)) = ψ(e1x) =
∑
h∈T

(e1x)h =
∑
h∈T

eh1x
h =

k∑
i=1

eix = x

(here the third equality follows because x ∈ Z(eR[G])). In particular, we see that ψ is a

left inverse of ϕ. Note that if e1 ∈ R[G] then (4.1) is an isomorphism meaning that ϕ is

an isomorphism and so ψ = ϕ−1. In particular, since e1 ∈ Q[G], the map

ψ ⊗Q : Z(e1Q[I]) −→ Z(eQ[G])

is a Q-algebra isomorphism. It is clear that ψ is the composition of the injection

Z(e1R[I]) −→ Z(e1Q[I])

with the isomorphism ψ ⊗Q and so ψ is an injection of R-algebras.

4.3 Group rings of Frobenius groups

Definition 4.3.1. A Frobenius group G is a transitive permutation group on a finite set

X such that no non-trivial element fixes more than one point and at least one non-trivial

element fixes a point.

Recall the following theorem from [Gor80, Theorem 7.5].

Theorem 4.3.2 (Frobenius). Let G be a Frobenius group acting on a set X. Let H =

StabG(x) for some x ∈ X. Then the subset N of G consisting of the identity together

with those elements of G that fix no element of X form a normal subgroup of G of order

|G : H|. In particular, G = N oH.

Theorem 4.3.3. Let G = N oH be a (finite) Frobenius group and let R be a Dedekind

domain with field of fractions F of characteristic 0. Suppose that |N | is invertible in R.

Let eN ∈ F [G] be the trace idempotent attached to N . Then eN ∈ R[G] and there is an

R-algebra isomorphism

R[G] ∼= R[H]×M,

where M is a maximal R-order in (1− eN )F [G].
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Remark 4.3.4. In the case that F is a splitting field for N one may obtain a more

explicit description of the maximal R-order M using equation (4.3) of the proof below.

If in addition R is a principal ideal domain then Corollary 4.9.4 provides an explicit

description of the group ring R[G]. (Note that since G is a Frobenius group, |N | and |H|
are coprime see [CR81, Section 14A].)

Proof of Theorem 4.3.3. The trace idempotent eN := 1
|N |
∑

n∈N n attached to N lies in

R[N ] because |N | is invertible in R. Hence, using Lemma 4.1.3, there is an R-algebra

isomorphism eNR[G] ∼= R[G/N ] ∼= R[H].

Let E be a finite field extension of F such that E is a splitting field for N (for example,

by [CR81, Theorem 15.16], we can take E = F (ζk) where k is the exponent of N and

ζk is a primitive k-th root of unity). Let S be the integral closure of R in E. Let

χ be a non-trivial irreducible character of N over E. Let C = OrbG(χ) be the orbit

of χ in IrrE(N) under the action of G by conjugation: χg(n) = χ(gng−1). Note that

eχ = χ(1)
|N |
∑

n∈N χ(n−1)n ∈ S[N ] as |N | is invertible in R and so in invertible in S.

Furthermore, χ is an absolutely irreducible character of N because E is a splitting field

for N . Since N is a Frobenius group, [Isa76, Theorem 6.34(a)] and the remarks following

it show that

IG(eχ) = IG(χ) := {g ∈ G | χg = χ} = N.

Then, using Theorem 4.2.2, we see that f :=
∑

χ′∈C eχ′ is a central idempotent of S[G]

and that

fS[G] ∼= Mk×k(eχS[N ]), (4.3)

where k := |C| = |H| by the Orbit-Stabilizer Theorem.

Since S is a Dedekind domain and |N | is invertible in R ⊂ S, [Rei75, Theorem 41.1]

shows that S[N ] is a maximal S-order in E[N ]. Hence eχS[N ] is a maximal S-order in

eχE[N ]. Therefore, by [Rei75, Theorem 8.7], we see that fS[G] is a maximal S-order in

fE[G] ∼= Mk×k(eχE[N ]).

Let ∆ be the set of primitive central idempotents of E[N ]. Then
∑

δ∈∆\{eN} δ = 1−eN
and we see that (1− eN )S[G] ∼= S⊗R (1− eN )R[G] is a maximal S-order in (1− eN )E[G].

Therefore, by Lemma 4.3.5 (below), we see that (1 − eN )R[G] is a maximal R-order in

(1− eN )F [G].

Lemma 4.3.5. Let R be a Noetherian integral domain with field of fractions F , let E be

a finite field extension of F and let A be an F -algebra. Let Λ ⊂ A and S ⊂ E be R-orders

in A and E respectively. Suppose that either

1. S is a free R-module of finite rank, or

2. R is integrally closed.

If Λ⊗R S is a maximal S-order in A⊗F E, then Λ is a maximal R-order in A.

Remark 4.3.6. When R is a Dedekind domain, a stronger result than Lemma 4.3.5 may

be found in [Jan79, Theorem 7]; this includes conditions for a converse to hold.
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Proof. First suppose that S is a free R-module of finite rank. In particular, S is a faithfully

flat R-module. Let Λ be a non-maximal R-order in A. Then there exists an R-order Λ′

such that Λ ( Λ′ ⊂ A, so we have a short exact sequence of R-modules

0 −→ Λ −→ Λ′ −→ Λ′/Λ −→ 0,

where Λ′/Λ 6= 0. Since S is faithfully flat as an R-module, applying the functor − ⊗R S
gives a short exact sequence of S-modules

0 −→ Λ⊗R S −→ Λ′ ⊗R S −→ (Λ′/Λ)⊗R S −→ 0,

where (Λ′/Λ) ⊗R S 6= 0. Thus, Λ ⊗R S is a non-maximal S-order. Hence, if Λ ⊗R S is a

maximal S-order in A⊗F E then Λ is a maximal R-order in A.

Now suppose that R is an integrally closed Noetherian domain. Let Λ be a non-

maximal R-order in A. Then there exists an R-order Λ′ such that Λ ( Λ′ ⊂ A. In

particular, AnnR(Λ′/Λ) ( R. By [Bou89, Chapter VII §1.3 Theorem 2] R is a Noetherian

Krull domain so, using [Bou89, Chapter VII §1.3 Definition 3AKII], we see that R =
⋂

pRp

where p ranges through all the height 1 prime ideals of R and Rp is the localisation of R at

p. Hence there exists a height 1 prime ideal p of R such that p 6⊂ AnnR(Λ′/Λ). Localising

at p we see that Λp ( Λ′p ⊂ A. Using [Bou89, Chapter VII §1.3 Definition 3AKI], we

see that Rp is a discrete valuation ring. From this, we see that Sp is a free Rp-module

of finite rank (since E/F is a finite field extension). By the above argument, this shows

that Λp⊗Rp Sp = (Λ⊗R S)p is a non-maximal Sp-order and so, by [Rei75, Corollary 11.2],

Λ⊗R S is a non-maximal R-order. Hence, if Λ⊗R S is a maximal S-order in A⊗F E then

Λ is a maximal R-order in A.

4.4 Semidirect products by an abelian group

Before proving the full strength of Theorem 4.1.2, we first prove the special case when the

normal subgroup N is abelian.

Theorem 4.4.1. Let R be an integrally closed Noetherian domain. Let G be a finite group

with abelian normal subgroup N . Suppose that F := Frac(R) is a splitting field for N of

characteristic 0. Let χ ∈ IrrF (N) with associated primitive central idempotent eχ ∈ F [N ].

Let I = IG(eχ), let e =
∑

χ′∈OrbG(χ) eχ′ ∈ F [N ] and let k = |OrbG(χ)|. If eχ ∈ R[N ] and

I may be written as a semidirect product I = N o H, then e is a central idempotent of

R[G] and there is an R-algebra isomorphism

eR[G] ∼= Mk×k(R[H]).

Remark 4.4.2. If G = N oH then N is a normal subgroup of I and N ∩ (I ∩H) = 1 so

I = N o (H ∩ I).

Proof of Theorem 4.4.1. Since eχ ∈ R[N ], Theorem 4.2.2 shows that e is a central idem-

potent of R[G] and

eR[G] ∼= Mk×k(eχR[I]).
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Thus it suffices to show there is an R-algebra isomorphism eχR[I] ∼= R[H].

By the definition of I, the element eχ ∈ R[N ] is a central idempotent of R[I]. Hence

the R-module homomorphism

ϕ : R[H] −→ eχR[I],

defined on H by ϕ(h) = eχh, is an R-algebra homomorphism.

Since F is a splitting field (of characteristic 0) for the abelian group N and χ ∈ IrrF (N),

we see that eχF [N ] ∼= F . We note that eχR[N ] is an R-order in eχF [N ] ∼= F (R-orders

are defined because R is a Noetherian integral domain). As R is integrally closed, R is

the only R-order in F . Therefore eχR[N ] = eχR = Reχ.

Since I = N o H, we have R[I] =
⊕

h∈H hR[N ]. Hence, using that eχ is a central

idempotent of R[N ], we see that

eχR[I] =
⊕
h∈H

eχhR[N ] =
⊕
h∈H

eχhR.

Thus ϕ gives a bijection between R-bases of the free R-modules R[H] and eχR[I] and

hence is an R-algebra isomorphism.

4.5 Group cohomology and the Schur-Zassenhaus Theorem

For the convenience of the reader we will recall the definition of 2-cocycles, 2-coboundaries

and the second cohomology group. This section is inspired by [Rog92, pg. 128] although

the reader should note that here we will consider G acting on the right rather than the left.

For a more comprehensive survey of group cohomology see [Ser79, Chapter VII] or [CR81,

Sections 8B and 8C].

Definition 4.5.1. Let G be a finite group and let A be an abelian group with (right)

action of G written as ag for a ∈ A and g ∈ G. We will write the group operations of G

and A multiplicatively. Any function γ : G×G→ A satisfying

γ(x, yz)γ(y, z) = γ(xy, z)γ(x, y)z (4.4)

is called a 2-cocycle of G with values in A. Using that A is abelian, one can check that the

2-cocycles of G with values in A form an abelian group under pointwise multiplication;

this group is denoted by Z2(G,A).

Let ψ : G→ A be any function. The function σ : G×G→ A defined by

σ(x, y) = ψ(xy)−1ψ(x)yψ(y),

is called a 2-coboundary of G with values in A. Using that A is abelian, one can check

that the 2-coboundaries of G with values in A form an abelian group under pointwise

multiplication; this group is denoted byB2(G,A). Let σ be a 2-coboundary. For x, y, z ∈ G
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we see that

σ(x, yz)σ(y, z) = ψ(xyz)−1ψ(x)yzψ(yz)ψ(yz)−1ψ(y)zψ(z)

= ψ(xyz)−1ψ(x)yzψ(y)zψ(z)

σ(xy, z)σ(x, y)z = ψ(xyz)−1ψ(xy)zψ(z)(ψ(xy)−1ψ(x)yψ(y))
z

= ψ(xyz)−1ψ(xy)zψ(z)(ψ(xy)z)−1ψ(x)yzψ(y)z

= ψ(xyz)−1ψ(x)yzψ(y)zψ(z),

(4.5)

where the last equality follows because A is abelian. Therefore we see that

σ(x, yz)σ(y, z) = σ(xy, z)σ(x, y)z

and thus σ is a 2-cocycle. Hence every 2-coboundary is a 2-cocycle.

The second cohomology group of G with values in A is an abelian group defined to be

the quotient group

H2(G,A) := Z2(G,A)/B2(G,A).

The following lemma gives information on the orders of elements of the second coho-

mology group.

Lemma 4.5.2. If G is a finite group acting on an abelian group A then every element

of H2(G,A) has order dividing |G|. Furthermore, if A has finite exponent, exp(A), then

every element of H2(G,A) has order dividing exp(A).

Proof. The proof is identical to that of [CR81, Lemma 8.39].

The elements of the second cohomology group appear naturally when considering group

extensions. Consider the short exact sequence of groups

1 −→ A −→ B −→ G −→ 1, (4.6)

where A is an abelian group (note that we do not require G or B to be abelian) and we

view A as a subgroup of B. The group A can be given a structure of a G-module in the

following way. Let x ∈ G. We define the action of x on A as follows. For a lift bx ∈ B of

x, define the map

A −→A

a 7−→ax := b−1
x abx.

This action is well-defined because for any other choice of lift b′x ∈ B of x, we can write

b′x = sbx, for some s ∈ A, and so, using that A is abelian, we see that

b′x
−1
ab′x = b−1

x s−1asbx = b−1
x abx.

One might ask whether the short exact sequence (4.6) splits. Working set theoretically,

every short exact sequence splits. If f : G → B is a set theoretic splitting of (4.6) then

γ : G×G→ A, defined by

γ(x, y) = f(xy)−1f(x)f(y), (4.7)
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measures how far away the splitting f is from being a group homomorphism. (We note

that γ(x, y) lies in A, because the function B → G is a group homomorphism.) We also

note that f(x) ∈ B is a lift of x, so we have

ax = f(x)−1af(x) (4.8)

for a ∈ A. Finally if f is a group homomorphism then γ is the trivial map.

For x, y, z ∈ G, from associativity in B (and G) and using (4.8), we have

f(x)(f(y)f(z)) = f(x)(f(yz)γ(y, z))

= f(x)f(yz)γ(y, z)

= f(xyz)γ(x, yz)γ(y, z),

(f(x)f(y))f(z) = f(xy)γ(x, y)f(z)

= f(xy)f(z)f(z)−1γ(x, y)f(z)

= f(xy)f(z)γ(x, y)z

= f(xyz)γ(xy, z)γ(x, y)z.

(4.9)

In particular, γ satisfies the identity (4.4); that is

γ(x, yz)γ(y, z) = γ(xy, z)γ(x, y)z

and so is a 2-cocycle.

This argument can be reversed: if A is a G-module and γ ∈ Z2(G,A) then the set

B = G×A with multiplication given by

(g, x)(h, y) = (gh, γ(g, h)xhy),

is a group which fits in the short exact sequence

1 −→ A −→ B −→ G −→ 1,

we call B the extension of G by A corresponding to γ. We note that when γ is the trivial

map, B is the semidirect product GoA.

One might ask how the choice of set theoretic splitting f : G → B of (4.6) affects the

2-cocycle. If f ′ : G→ B is another splitting of (4.6) then ψ : G→ A, defined by

ψ(x) = f ′(x)
−1
f(x),

measures how different the two splittings f and f ′ are. (We note that ψ(x) does indeed lie

in A because the function B → G is a group homomorphism which both f and f ′ split.)

If γ and γ′ are the 2-cocycles associated to the splittings f and f ′, respectively then
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we see that

γ(x, y) = f(xy)−1f(x)f(y)

= ψ(xy)−1f ′(xy)
−1
f ′(x)ψ(x)f ′(y)ψ(y)

= ψ(xy)−1f ′(xy)
−1
f ′(x)f ′(y)ψ(x)yψ(y)

= ψ(xy)−1γ′(x, y)ψ(x)yψ(y)

= γ′(x, y)ψ(xy)−1ψ(x)yψ(y),

where the third equality follows from (4.8) and the last equality follows because A is abelian

and γ′(x, y), ψ(xy) ∈ A. In particular, γ and γ′ differ in Z2(G,A) by a 2-coboundary.

Suppose that γ and γ′ in Z2(G,A) differ by a 2-coboundary given by ψ(xy)−1ψ(x)yψ(y)

for x, y ∈ G and some function ψ : G → A. Let B and B′ be the extensions of G by A

corresponding to γ and γ′, respectively. Then there is a group isomorphism

B −→ B′

(g, x) 7−→ (g, ψ(g)x).

Note that the converse is not true: B and B′ being isomorphic extensions of G by A does

not imply that the corresponding 2-cocycles differ by a 2-coboundary.

Therefore we have shown that H2(G,A) classifies the groups B that fit into the short

exact sequence

1 −→ A −→ B −→ G −→ 1.

This classification along with Lemma 4.5.2 can be used to prove the Schur-Zassenhaus

Theorem in the case that the normal subgroup considered is abelian.

Theorem 4.5.3 (Schur-Zassenhaus). Let G be a finite group with normal subgroup N . If

|N | and |G/N | are coprime then G is isomorphic to a semidirect product of N and G/N .

Proof. Since N is a normal subgroup of G, there is a short exact sequence

1 −→ N −→ G −→ G/N −→ 1.

Assuming that N is an abelian group, the above discussion shows that the structure of G

is determined by an element of the group H2(G/N,N). Assume that |N | and |G/N | are

coprime. Then, using Lemma 4.5.2, we see that H2(G/N,N) is trivial. This means that

G must be the semidirect product of N and G/N .

A full proof (when the normal subgroup N is not necessarily abelian) can be achieved

by reducing to the case when N is abelian. See [Rob96, Theorem 9.1.2] for a complete

proof of this theorem.

4.6 Crossed product orders

We are now in a position to define crossed product orders. Let G be a finite group and let

R be a commutative ring on which G acts trivially. The idea of the construction of the

crossed product order is similar to the idea of how the second cohomology group classifies

group extensions.
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Definition 4.6.1. Let G be a finite group, let R be a commutative ring, and suppose that

G acts on R via the trivial action. Suppose that γ : G×G→ R× is a function such that

γ(x, yz)γ(y, z) = γ(xy, z)γ(x, y),

for x, y, z ∈ G (in other words, γ is a 2-cocycle). The crossed product order of R and G is

defined to be the free R-module

R ∗γ G =
⊕
x∈G

uxR,

where the symbols {ux | x ∈ G} form an R-basis for R ∗γ G. And R ∗γ G is given the

structure of an R-algebra with multiplication defined by

rux = uxr and uxuy = uxyγ(x, y), (4.10)

for x, y ∈ G and r ∈ R. Associativity of multiplication in R∗γG follows from the 2-cocycle

condition by reversing the argument in (4.9): for all x, y, z ∈ G and r, s, t ∈ R we see that

((uxr)(uys))(uzt) = (uxyγ(x, y)rs)(uzt)

= uxyzγ(xy, z)γ(x, y)rst

= uxyzγ(x, yz)γ(y, z)rst

= (uxr)(uyzγ(y, z)st)

= (uxr)((uys)(uzt)).

For more details see [Pas85, Section 1.2] or [CR81, Examples 8.33] (both these references

use the terminology “twisted group ring/algebra”).

Remark 4.6.2. If R is a Noetherian integral domain with field of fractions F of charac-

teristic 0 then R ∗γ G is an R-order in F ∗γ G. This is part of the reason for the name

crossed product order.

Remark 4.6.3. A similar definition works for crossed products orders when the action of

G on R is non-trivial.

Remark 4.6.4. If γ, γ′ ∈ Z2(G,R×) have the same image in H2(G,R×) then there exists

a function µ : G→ R× such that

γ(x, y) = γ′(x, y)µ(xy)−1µ(x)µ(y),

where x, y ∈ G. This induces an R-module isomorphism ϕ : R ∗γ G → R ∗γ′ G given by

ϕ(ux) = u′xµ(x) on the R-basis {ux | x ∈ G} and extended R-linearly. The R-module
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isomorphism ϕ is in fact an R-algebra isomorphism because for x, y ∈ G we have

ϕ(ux)ϕ(uy) = u′xµ(x)u′yµ(y)

= u′xu
′
yµ(x)µ(y)

= u′xyγ
′(x, y)µ(x)µ(y)

= u′xyµ(xy)γ′(x, y)µ(xy)−1µ(x)µ(y)

= u′xyµ(xy)γ(x, y)

= ϕ(uxyγ(x, y))

= ϕ(uxuy).

In this case we say that R ∗γ G is diagonally equivalent to R ∗γ′ G. Consequently, the

R-algebra R ∗γ G depends, up to isomorphism, only on the image of γ in H2(G,R×).

Remark 4.6.5. If γ : G×G→ R× is the trivial 2-cocycle (i.e., γ(x, y) = 1 for all x, y ∈ G)

then there is an R-algebra isomorphism R ∗γ G ∼= R[G] defined by ux 7→ x for x ∈ G.

4.7 A cohomological description of well-behaved group rings

The following lemma will play a crucial role in the rest of this section.

Lemma 4.7.1. Let Λ be a ring containing a subset

{eij ∈ Λ | i, j ∈ {1, . . . ,m}}

satisfying
∑m

i=1 eii = 1Λ and

eijers =

eis if j = r,

0 otherwise,
(4.11)

for i, j, r, s ∈ {1, . . . ,m}. If S is the centralizer of all these elements then there are ring

isomorphisms

S ∼= e11Λe11 and Λ ∼= Mm×m(S).

Proof. This is [Pas85, Lemma 6.1.5].

Remark 4.7.2. The converse to Lemma 4.7.1 is also true. That is, if Λ and S are rings

such that Λ ∼= Mm×m(S) then there exists a subset {eij ∈ Λ | i, j ∈ {1, . . . ,m}} of Λ

satisfying
∑m

i=1 eii = 1 and

eijers =

eis if j = r,

0 otherwise,

for i, j, r, s ∈ {1, . . . ,m}. For example one can take eij to be the matrix with 1 in position

i, j and 0 everywhere else.

Theorem 4.7.3. Let R be a commutative ring and let G be a finite group with normal

subgroup N . Let Q be the total ring of fractions of R. Suppose that e ∈ Q[N ] is a central

idempotent of Q[G] such that:
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I the action of G on Z(eR[N ]) is trivial,

II there is an R-algebra isomorphism eR[N ] ∼= Mm×m(C), where m ∈ Z>0 and C is a

commutative R-algebra, and

III there exists a (left) transversal X of N in G and a function ϕ : X → (eR[N ])× such

that xϕ(x) centralizes eR[N ] for all x ∈ X.

Then there is a 2-cocycle γ : G/N ×G/N → C× such that

eR[G] ∼= Mm×m(C ∗γ G/N).

Furthermore, if the inflation map on cohomology

ι : H2(G/N,C×) −→ H2(G,C×) (4.12)

is injective then the order of γ ∈ H2(G/N,C×) divides m, where γ is the image of γ in

H2(G/N,C×).

Remark 4.7.4. With a little more work Hypothesis I (saying that G acts trivially on

eR[N ]) may be removed. This requires that the definition of crossed product order is

generalised to allow for an action of the group on the coefficient ring.

Remark 4.7.5. Suppose that G may be written as a semidirect product G = N oH. (In

particular, by the Schur-Zassenhaus Theorem (see Theorem 4.5.3) this is always possible

when |N | and |G/N | are coprime.) Then the short exact sequence

1 −→ N −→ G
π−→ G/N −→ 1

splits and so there is a section θ : G/N → G such that π ◦ θ is the identity on G/N .

Moreover, θ induces a map on cohomology

θ∗ : H2(G,C×) −→ H2(G/N,C×).

and π induces π∗ = ι, the inflation map on cohomology given in (4.12). Therefore, θ∗ ◦ ι
is the identity on H2(G/N,C×) so ι is injective.

Remark 4.7.6. The 2-cocycle γ is defined explicitly in equation (4.16) in the proof below.

Proof of Theorem 4.7.3. The first part of this proof is inspired by [Rog92, Chapter XIII].

Each g ∈ G may be written uniquely as g = xn for some x ∈ X and n ∈ N . Using

this, we may extend the function ϕ : X → (eR[N ])× to a function ψ : G → (eR[N ])× by

defining

ψ(xn) = n−1ϕ(x).

Let g ∈ G; we may write g = xn for some x ∈ X and n ∈ N . Note ψ and multiplication

by elements of N are related as follows: for n′ ∈ N we have

ψ(gn′) = ψ(xnn′) = (nn′)
−1
ϕ(x) = n′

−1
n−1ϕ(x)

= n′
−1
ψ(xn) = n′

−1
ψ(g).

(4.13)
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We also see that

gψ(g) = xnψ(xn) = xnn−1ψ(x) = xψ(x),

so gψ(g) centralizes eR[N ] for all g ∈ G by hypothesis III. Recall that the action of G on

eR[N ] is given by αg = g−1αg for g ∈ G and α ∈ eR[N ]. In particular, for α ∈ eR[N ] and

g ∈ G we have

αgψ(g) = g−1αgψ(g)

= g−1gψ(g)α

= ψ(g)α.

(4.14)

We now define a function µ : G×G→ (eR[N ])× by

µ(g, h) = ψ(gh)−1ψ(h)ψ(g) = ψ(gh)−1ψ(g)hψ(h), (4.15)

for g, h ∈ G, where the second equality follows from (4.14). We note the similarities

between µ and a 2-coboundary; the difference is that (eR[N ])× is not necessarily commu-

tative. Using (4.14) and (4.15), for α ∈ eR[N ] and g, h ∈ G we note that

µ(g, h)α = ψ(gh)−1ψ(h)ψ(g)α

= ψ(gh)−1ψ(h)αgψ(g)

= ψ(gh)−1αghψ(h)ψ(g)

= αgh(gh)−1

ψ(gh)−1ψ(h)ψ(g)

= αµ(g, h).

From this, we see that µ(g, h) ∈ Z(eR[N ]) and so the image of µ is contained in Z(eR[N ])×

and there is a function µ : G×G→ Z(eR[N ])×.

We now check that µ is a 2-cocycle of G with values in Z(eR[N ])×; the proof is similar

to the proof that 2-coboundaries are 2-cocycles (see (4.5)). Given g, h, k ∈ G we see that

µ(gh, k)µ(g, h) = ψ(ghk)−1ψ(gh)kψ(k)ψ(gh)−1ψ(g)hψ(h) by (4.15)

= ψ(ghk)−1ψ(gh)k(ψ(gh)−1)
k
ψ(g)hkψ(h)kψ(k) by (4.14)

= ψ(ghk)−1ψ(g)hkψ(h)kψ(k)

= ψ(ghk)−1ψ(g)hkψ(hk)ψ(hk)−1ψ(h)kψ(k)

= µ(g, hk)µ(h, k) by (4.15).

Therefore, using hypothesis I (the action of G on C ∼= Z(eR[N ]) is trivial), µ is a 2-cocycle

of G with values in Z(eR[N ])×.

We now check that µ : G × G → Z(eR[N ])× is constant on cosets of N . For g, h ∈ G
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and n1, n2 ∈ N we have

µ(gn1, hn2) = ψ(gn1hn2)−1ψ(hn2)ψ(gn1) by (4.15)

= ψ(gh(n1)hn2)
−1
ψ(hn2)ψ(gn1)

= ψ(gh)−1nh1n2n
−1
2 ψ(h)n−1

1 ψ(g) by (4.13)

= ψ(gh)−1nh1ψ(h)en−1
1 ψ(g) as e = 1eR[N ]

= ψ(gh)−1nh1(en−1
1 )

h
ψ(h)ψ(g) by (4.14)

= ψ(gh)−1ψ(h)ψ(g) as e = 1eR[N ]

= µ(g, h) by (4.15).

Therefore, using that C ∼= Z(eR[N ]), we see that there is a 2-cocycle γ of G/N with values

in C× such that under the inflation map ι : H2(G/N,C×)→ H2(G,C×) we have ι(γ) = µ′

(where µ′ is µ composed with the isomorphism Z(eR[N ]) ∼= C and bar denotes taking the

image in the cohomology group).

Using that there is an R-algebra isomorphism eR[N ] ∼= Mm×m(C), computing reduced

norms in (4.15) we see that

µ(g, h)m = nr(µ(g, h))1eR[N ]

= nr(ψ(gh)−1) nr(ψ(g)h) nr(ψ(h))1eR[N ]

= nr(ψ(gh))−1nr(ψ(g))h nr(ψ(h))1eR[N ],

where the first equality follows from Proposition 3.9.3. Hence µ′m (where µ′ is µ composed

with the isomorphism Z(eR[N ]) ∼= C) is a 2-coboundary and so ι(γm) = 1H2(G/N,C×). If

the inflation map ι on cohomology is injective then γm = 1H2(G/N,C×), so the order of γ

in H2(G/N,C×) divides m.

The remainder of this proof follows that of [Pas85, Lemma 6.1.8]. Since there is an R-

algebra isomorphism eR[N ] ∼= Mm×m(C) (hypothesis II), Remark 4.7.2 shows that there

is a subset

U := {eij ∈ eR[N ] | i, j ∈ {1, . . . ,m}}

of eR[N ] such that
∑m

i=1 eii = e and

eijers =

eis if j = r,

0 otherwise,

for i, j, r, s ∈ {1, . . . ,m}. The set U is also a subset of eR[G] so, by Lemma 4.7.1, we have

eR[G] ∼= Mm×m(e11R[G]e11).

It remains to compute e11R[G]e11.

We may view eR[N ] as a C-algebra via the R-algebra isomorphism eR[N ] ∼= Mm×m(C).

The ring C is the ring of scalars of the matrix ring Mm×m(C) and e11 can be thought

of as a matrix with 1 in the top left hand corner and 0 everywhere else, so we see that
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e11R[N ]e11 = e11C. Because X is a (left) transversal of N in G, we see that

R[G] =
⊕
x∈X

xR[N ],

so, since e ∈ Q[N ] ∩ Z(Q[G]), we see that

eR[G] =
⊕
x∈X

xeR[N ] =
⊕
x∈X

xϕ(x)eR[N ],

where the second equality follows because ϕ(x) is a unit in eR[N ]. Therefore, as e is a

central idempotent of Q[G] such that e11e = e11 and e11 ∈ eR[N ], we see that

e11R[G]e11 =
⊕
x∈X

e11xϕ(x)eR[N ]e11

=
⊕
x∈X

xϕ(x)e11R[N ]e11

=
⊕
x∈X

xϕ(x)e11C.

where the second equality follows from hypothesis III. In particular, e11R[G]e11 is a free

C-module of rank |G/N | = |X| with basis {xϕ(x)e11 | x ∈ X}.
Again using that X is a (left) transversal of N in G, by the definition of the crossed

product order (see 4.6.1), we see that

C ∗γ G/N =
⊕
x∈X

uxNC,

where the symbols {uxN | x ∈ X} form a C-basis for C ∗γ G/N . In particular, there is an

C-module isomorphism

θ : e11R[G]e11 −→ C ∗γ G/N,

given on the C-basis {xe11 | x ∈ X} by θ(xϕ(x)e11) = uxN .

We now check that this is a ring homomorphism. Suppose that x, y, z ∈ X such that

z−1xy ∈ N . We see that

γ(xN, yN) = µ(x, y)

= ψ(zz−1xy)
−1
ψ(y)ψ(x)

= ψ(z)−1z−1xyψ(y)ψ(x)

= ψ(z)−1z−1xψ(x)yψ(y)

= ϕ(z)−1z−1xϕ(x)yϕ(y), (4.16)
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where the last line follows because x, y, z ∈ X. Therefore, we see that

θ(xϕ(x)e11)θ(yϕ(y)e11) = uxNuyN

= uzNγ(xN, yN)

= θ(zϕ(z)e11γ(xN, yN))

= θ(zϕ(z)e11ψ(z)−1z−1xψ(x)yψ(y))

= θ(xϕ(x)e11yϕ(y)e11),

where the forth equality follows from (4.16). Hence θ is a C-algebra isomorphism and so

θ is an R-algebra isomorphism.

Corollary 4.7.7. Let R be a commutative ring, let G be a finite group and let Q be the

total ring of fractions of R. Suppose that G = N o H and suppose that e ∈ Q[N ] is a

central idempotent of Q[G] satisfying hypotheses I, II and III of Theorem 4.7.3. Recall the

R-algebra C and m ∈ Z>0 from hypothesis II. If |G/N | and m are coprime then there is

an R-algebra isomorphism

eR[G] ∼= Mm×m(C[H]).

Proof. Since G = N oH, by Remark 4.7.5, the inflation map

H2(G/N,C×) −→ H2(G,C×)

is injective. Therefore, applying Theorem 4.7.3, we see that there is an R-algebra isomor-

phism

eR[G] ∼= Mm×m(C ∗γ G/N),

where γ : G/N → G/N → C× is a 2-cocycle, with image γ ∈ H2(G/N,R×) with order

dividing m. By Lemma 4.5.2, we also see that the order of γ in H2(G/N,R×) divides

|G/N |. Hence, the order of γ is 1 and, by Remarks 4.6.4 and 4.6.5, we see that C ∗γ G/N
is diagonally equivalent to C[G/N ] ∼= C[H].

4.8 Well-behaved group rings

We will first recall the hypotheses of Theorem 4.7.3 and Corollary 4.7.7. Let R be a

commutative ring with total ring of fractions Q and let G be a finite group with normal

subgroup N . Suppose that e ∈ Q[N ] is a central idempotent of Q[G] such that:

I the action of G on Z(eR[N ]) is trivial,

II there is an R-algebra isomorphism eR[N ] ∼= Mm×m(C), where m ∈ Z>0 and C is a

commutative R-algebra, and

III there exists a transversal X of N in G and a function ϕ : X → (eR[N ])× such that

xϕ(x) centralizes eR[N ] for all x ∈ X.

A natural question is: when does a central idempotent e ∈ Q[N ] satisfying these hypothe-

ses exist?

We first check that hypotheses I, II and III of Theorem 4.7.3 are compatible with the

results of Theorem 4.4.1 on groups with an abelian normal subgroup.
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Lemma 4.8.1. Let R be an integrally closed Noetherian domain with field of fractions F

of characteristic 0 and let G be a finite group with normal subgroup N . Suppose that F is

a splitting field for N and e ∈ R[N ] is a primitive central idempotent of F [N ] and lies in

Z(R[G]). If N is an abelian group then hypotheses I, II and III of Theorem 4.7.3 hold.

Proof. As F is a splitting field of characteristic 0 for the abelian group N and e is a

primitive central idempotent of F [N ], we see that eF [N ] ∼= F . We know that eR[N ] is

isomorphic to an R-order in F . Since R is integrally closed, R is the only R-order in F

and so eR[N ] ∼= R, which shows that hypotheses I and II of Theorem 4.7.3 hold. Let X

be any transversal of N in G. If α ∈ eR[N ] ∼= R then x−1αx = α for any x ∈ X because

the action of G on R is trivial. Thus hypothesis III of Theorem 4.7.3 holds.

We shall see that if the automorphism of eR[N ] induced by conjugation by an element

of G is inner, then hypothesis III of Theorem 4.7.3 holds. The Skolem-Noether Theorem is

a common way of showing that automorphisms of central simple algebras over a field are

inner. We now recall a generalised version of the Skolem-Noether Theorem from [Isa80,

Corollary 15].

Theorem 4.8.2. Let R be a unique factorisation domain. If Λ = Mm×m(R) for some

m ∈ Z>0 then every R-algebra automorphism of Λ is an inner automorphism.

Remark 4.8.3. The hypotheses of Theorem 4.8.2 can be weakened. In particular, [AG60,

Theorem 3.6] shows that result holds when R is a commutative ring such that every finitely

generated projective R-module of rank 1 is free. In particular, this holds whenever R is a

commutative local ring.

For a finite group G and commutative ring R we now provide an equivalent condition

for the idempotent associated to an irreducible character of G to live in R[G].

Lemma 4.8.4. Let R be an integrally closed Noetherian domain and let G be a finite group.

Suppose that F := Frac(R) is a splitting field for G of characteristic 0. Let χ ∈ IrrF (G).

Then eχ ∈ R[G] if and only if χ(1)
|G| ∈ R

×

Proof. Clearly
∑

g∈G χ(g−1)g ∈ R[G] so if χ(1)
|G| ∈ R

× then eχ ∈ R[G]. It remains to show

the forward direction.

For a prime ideal p of R, let Rp denote the localisation of R at p. Abusing notation we

will write p for the unique maximal ideal pp of Rp. We note that R is a Noetherian Krull

domain by [Bou89, Chapter VII §1.3 Theorem 2]. If χ(1)
|G| ∈ Rp

× for all height 1 primes

ideals p of R then, using [Bou89, Chapter VII §1.3 Definition 3AKII],
χ(1)
|G| ∈ R

×. Pick

a height 1 prime ideal p of R. We will consider two cases based on the characteristic of

Rp/p.

First suppose that Rp/p has characteristic 0. Let s ∈ Z \ {0}. Since Rp/p is a field of

characteristic 0 there exists r ∈ Rp and m ∈ p such that sr = 1 + m. The ideal p is the

Jacobson radical of Rp meaning 1 + m ∈ R×p , so s ∈ Rp
×. This holds for all s ∈ Z, so

Q× ⊂ R×p . Therefore we see that χ(1)
|G| ∈ Rp

×.

Otherwise suppose that Rp/p has characteristic p > 0. By [Bou89, Chapter VII

§1.3 Definition 3AKI] Rp is a discrete valuation ring. This part of the proof is inspired
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by [JN16a, Lemma 2.1]. An element g ∈ G is said to be p-singular if the order of g is

divisible by p. Viewing eχ := χ(1)
|G|
∑

g∈G χ(g−1)g as an idempotent in Rp[G], by [Kül94,

Proposition 5], χ(1)
|G| χ(g−1) = 0 for every p-singular element g ∈ G. (Note that [Kül94,

Proposition 5] is only stated for complete discrete valuation rings. However after consider-

ing the embedding Rp into its completion the result claimed is clear.) Hence the character

χ vanishes on p-singular elements of G. Let P be a Sylow p-subgroup of G. Then χ

vanishes on P \ {1}. Hence the multiplicity of the trivial character of P in the restriction

χP is

〈χP , 1P 〉 =
χ(1)

|P |
.

Consequently χ(1) = |P | 〈χP , 1P 〉, so vp(χ(1)) = vp(|P |) = vp(|G|) where vp is the p-

adic valuation on Rp (this can be assumed to be the same valuation as that given in

example 2.2.2). Thus χ(1)
|G| ∈ Rp

×.

This can be used to deduce information about the structure of group rings.

Lemma 4.8.5. Let R be a principal ideal domain with field of fractions F of characteristic

0 and let G be a finite group. Suppose that F is a splitting field for G and e ∈ R[G] is a

primitive central idempotent of F [G]. Then there is an R-algebra isomorphism eR[G] ∼=
Mm×m(R) for some m ∈ Z>0.

Proof. First, as F has characteristic 0 and is a splitting field for G, we see that

eF [G] ∼= Mm×m(F )

for some m ∈ Z>0, so eR[G] is isomorphic to an R-order in Mm×m(F ). Furthermore, there

is a character χ : G → F such that e = eχ and χ(1) = m. As e ∈ R[G], by Lemma 4.8.4

we see that χ(1)
|G| ∈ R

×.

Let Γ be a maximal R-order in eF [G] containing eR[G]. By Jacobinski’s central con-

ductor formula [Jac66, Theorem 3] (see also [CR81, Theorem 27.13]) we see that

eF(Γ, R[G]) = |G|m−1D−1(R/R) = R,

where D−1(R/R) = R is the inverse different of R relative to R and F(Γ, R[G]) is the

central conductor of Γ into R[G] (as defined in Definition 3.3.1). Therefore we must have

eR[G] = Γ.

Using Lemma 1.9.14, we see that

eR[G] = Γ ∼= Mm×m(R).

Using Theorem 4.8.2 and Lemma 4.8.5 we obtain a condition on R for hypotheses I, II

and III of Theorem 4.7.3 to be satisfied.

Lemma 4.8.6. Let R be a principal ideal domain with field of fractions F of characteristic

0 and let G be a finite group with normal subgroup N . Suppose that F is a splitting field
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for N and e ∈ R[N ] is a primitive central idempotent of F [N ] and lies in Z(R[G]). Then

hypotheses I, II and III of Theorem 4.7.3 hold.

Proof. Since e is a primitive central idempotent of R[N ], Lemma 4.8.5 shows that

eR[N ] ∼= Mm×m(R).

Moreover, G acts trivially on R by definition of a group ring. Therefore hypotheses I

and II of Theorem 4.7.3 are satisfied.

Let X be any transversal of N in G. We define a function ϕ : X → (eR[N ])× as follows.

For x ∈ X there is an R-automorphism

eR[N ] −→ eR[N ]

α 7−→ αx = x−1αx.

Using Theorem 4.8.2 (for the principal ideal domain R and eR[N ] ∼= Mm×m(R)), this

R-automorphism is inner. In particular, there exists βx ∈ (eR[N ])× such that

βxαβx
−1 = αx,

for all α ∈ eR[N ]. Define ϕ(x) = βx. We see that

xϕ(x)α = αxϕ(x)

for all α ∈ eR[N ] and so xϕ(x) centralizes eR[N ], showing hypothesis III of Theorem 4.7.3

holds.

4.9 Integral Clifford theory for semidirect products

Theorem 4.9.1. Let R be a principal ideal domain and let G be a finite group. Suppose

that G = N oH and suppose that F := Frac(R) is a splitting field for N of characteristic

0. Let χ ∈ IrrF (N) with associated primitive central idempotent eχ ∈ F [N ]. If eχ ∈ R[N ]

then e =
∑

χ′∈OrbG(χ) eχ′ ∈ R[N ] is a central idempotent of R[G]. Furthermore, if χ(1)

and |IG(χ)/N | are coprime then there is an R-algebra isomorphism

eR[G] ∼= Mkm×km(R[IG(χ)/N ]),

where k = |OrbG(χ)| and m = χ(1).

Remark 4.9.2. The assumptions that G is a semidirect product and that χ(1) and

|IG(χ)/N | are coprime may be removed. With this weakened hypothesis, using Theo-

rem 4.7.3, we instead deduce that

eR[G] ∼= Mkm×km(R ∗γ IG(χ)/N).

Remark 4.9.3. In certain cases the assumption in Theorem 4.9.1 that R is a principal

ideal domain may also be weakened. For example, using the notation from Theorem 4.9.1,
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if S (not necessarily a principal ideal domain) is an R-algebra then, by extension of scalars,

we see that

eS[G] ∼= S ⊗R eR[G]

∼= S ⊗RMkm×km(R[IG(χ)/N ])

∼= Mkm×km(S[IG(χ)/N ]).

Also note that in the case that N is abelian, Theorem 4.4.1 provides a version of Theo-

rem 4.9.1 where R is not a principal ideal domain.

Proof of Theorem 4.9.1. By Theorem 4.2.2, e :=
∑

χ′∈OrbG(χ) eχ′ is a central idempotent

of R[G] and there is an R-algebra isomorphism

eR[G] ∼= Mk×k(eχR[IG(χ)]).

Here we have used that IG(χ) = IG(eχ).

The field F has characteristic 0 and is a splitting field for N , and eχ is a primitive

central idempotent of R[N ]. Therefore, using Lemma 4.8.6, we see that hypotheses I, II

and III of Theorem 4.7.3 hold for the group IG(χ) with normal subgroup N and eχ ∈ R[N ].

Applying Corollary 4.7.7, there is an R-algebra isomorphism

eχR[IG(χ)] ∼= Mm×m(R[IG(χ)/N ]).

In the case that R is a principal ideal domain this gives us a generalisation of Theo-

rem 4.4.1 that works in the case that the normal subgroup is not necessarily abelian.

Corollary 4.9.4. Let R be a principal ideal domain and let G be a finite group. Suppose

that G = N o H, suppose that F := Frac(R) is a splitting field for N of characteristic

0, and suppose that |N | is invertible in R. If χ(1) and |IG(χ)/N | are coprime, for each

χ ∈ IrrF (N), then there is an R-algebra isomorphism

R[G] ∼=
∏
i

Mni×ni(R[Hi]),

for some ni ∈ Z>0 and subgroups Hi of H. In particular, this holds when either N is

abelian or |H| and |N | are coprime.

Proof. Consider IrrF (N) and recall the action of G given by χg(n) = χ(gng−1) for g ∈ G
and χ ∈ IrrF (N).

Let χ ∈ IrrF (N). As |N | is invertible in R, the associated idempotent

eχ :=
χ(1)

|N |
∑
n∈N

χ(n−1)n

is in R[N ]. By assumption χ(1) and |IG(χ)/N | are coprime. Therefore, by Theorem 4.9.1,

there is an R-algebra isomorphism

eR[G] ∼= Mkm×km(R[IG(χ)/N ]),
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where m = χ(1) and k = |OrbG(χ)|. Moreover, IG(χ)/N ≤ G/N ∼= H.

Taking the direct product over all the G-orbits in IrrF (N) completes the proof.

Remark 4.9.5. In Corollary 4.9.4 the sufficient conditions, that either N is abelian or |H|
and |N | are coprime, are not necessary. For example, consider S4, the symmetric group on

four letters, which can be written as the semidirect product of A4, the alternating group

on four letters, and C2. We note that the degrees of the irreducible complex characters of

A4 are 1, 1, 1 and 3 which are all coprime to |S4/A4| = 2. Hence we see that the hypothesis

of Corollary 4.9.4 holds, even though A4 is not abelian and |A4| = 12 is not coprime to

|S4/A4| = 2.

Remark 4.9.6. Corollary 4.9.4 recovers [Rog92, Theorem XIII.16] which holds when R is

a complete discrete valuation ring. Here we use that the Schur-Zassenhaus Theorem (see

Theorem 4.5.3) implies that when |G/N | and |N | are coprime, G is a semidirect product

N oH.

To apply Corollary 4.9.4 it is useful to have a criterion for when G is a semidirect

product.

Lemma 4.9.7. Let p be a prime number. If G is a finite group then the following are

equivalent

(i) p does not divide the order of the commutator subgroup of G,

(ii) G = N o P where P is an abelian Sylow p-subgroup of G and

(iii) G has abelian Sylow p-subgroup with a normal p-complement.

Proof. Suppose that p does not divide the order of the commutator subgroup G′ of G. Let

P be a Sylow p-subgroup of G. Then P ∩G′ = {1} so P ∼= PG′/G′ is a Sylow p-subgroup

of the abelian group G/G′. Therefore

G/G′ = PG′/G′ ×H

for some (normal) subgroup H of G/G′. Hence the set N = {g ∈ G | gG′ ∈ H} is a normal

subgroup of G such that P ∩N = {1} and G = NP (because G/G′ = (NG′/G′)(PG′/G′)).

Therefore G = N o P .

If G = N o P , where P is an abelian Sylow p-subgroup of G, then N is a normal

p-complement of P in G.

Suppose that G has abelian Sylow p-subgroup P with a normal p-complement N . Then

G/N ∼= P is abelian, meaning that G′ < N . Hence p - |G′| as p - |N |.

Remark 4.9.8. Let p be a prime number, let R be a principal ideal domain and let G be

a finite group. Suppose that G has a normal p-complement N and that |N | is invertible

in R. Suppose that F := Frac(R) is a splitting field for N of characteristic 0. Then

G = N o P for some Sylow p-subgroup P of G and, by Corollary 4.9.4,

R[G] ∼=
∏
i

Mni×ni(R[Hi]),

for some ni ∈ Z>0 and subgroups Hi of P .
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One of the corollaries to [DJ83, Theorem 1] shows that if R is a complete discrete

valuation ring with residue field of characteristic p and p - |G′| then R[G] is a direct

product of matrix rings over commutative rings. In Lemma 4.9.7 we noted that p - |G′|
if and only if G has an abelian Sylow p-subgroup P and a normal p-complement N .

Therefore, with the extra condition that F is a splitting field for N , we have produced a

more refined version of this corollary.

The following result gives a necessary and sufficient condition for the existence of a

normal p-complement.

Theorem 4.9.9 (Frobenius). A finite group G possesses a normal p-complement if and

only if one of the following conditions holds:

1. NG(H)/CG(H) is a p-group for every non-identity p-subgroup H of G,

2. NG(H) has a normal p-complement for every non-identity p-subgroup H of G,

where CG(H) is the centralizer of H in G and NG(H) is the normalizer of H in G.

Proof. For a proof of this see [Gor80, Theorem 7.4.5].

For p 6= 2, a theorem of Glauberman-Thompson [Gor80, Theorem 8.3.1] can be used

to give other sufficient conditions for G to have a normal p-complement.
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5 Computing denominator ideals using

Clifford theory

5.1 Introduction

Throughout this section we let p denote a prime number. The aim of this chapter is to

compute denominator ideals of group rings for certain finite p-groups using the results of

Chapters 3 and 4. The main idea is that knowing information about the structure of a

group ring gives us information about the denominator ideal of said group ring.

Let R be an integrally closed Noetherian domain with field of fractions F of character-

istic 0 (the characteristic 0 hypothesis may be weakened; see Section 3.6 for more details).

We will compute denominator ideals for group rings R[G] over several finite p-groups G,

culminating in Theorem 5.5.1 which computes the denominator ideal for any group ring

R[G] over a finite p-group G with commutator subgroup of order p.

As a motivating example, we first consider the non-abelian p-group of order p3 and

exponent p.

Example 5.1.1. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and fix a prime number p. Let G = (Z ×A)oB, where Z = 〈z | zp〉,
A = 〈a | ap〉, B = 〈b | bp〉 and the action of B on Z × A is given by zb = z and ab = za.

Then G is the non-abelian group of order p3 and exponent p, and G′ = Z = Z(G)

Let eZ be the trace idempotent of Z in F [G], so eZ is the maximal level-1 idempotent

of F [G]. Consider the idempotent (1 − eZ)eA in F [G]. Let G act on F [G] on the right

by conjugation. A calculation (the details of which are given in the proof of Claim 5.2.4)

shows that

E := OrbG((1− eZ)eA) = {(1− eZ)e〈zia〉 | i = 0, . . . , p− 1}

is a set of orthogonal idempotents (note that these are non-central in F [G]) and∑
e∈E

e = (1− eZ).

It is easy to check that StabG((1 − eZ)eA) ⊃ Z × A and so, using the Orbit-Stabilizer

Theorem, we see that

I := IG((1− eZ)eA) = StabG((1− eZ)eA) = Z ×A.

Therefore, by Theorem 4.2.2, there is an injection of R-algebras given by

(1− eZ)R[G] −→Mp×p((1− eZ)eAR[I]) (5.1)
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which induces an isomorphism of F -algebras after extending scalars. We will now show

that this map restricts to an isomorphism on centres.

On centres (5.1) induces the following injection of R-algebras given by the composition

ϕ : Z((1− eZ)R[G]) −→ Z (Mp×p((1− eZ)eAR[I])) ∼= (1− eZ)eAR[I],

where the isomorphism follows because I is abelian. Let x ∈ (1 − eZ)eAR[I]. By

Lemma 4.1.3, we see that eAR[I] = eAR[Z × A] ∼= R[Z] and so x = (1 − eZ)eAy for

some y ∈ R[Z]. Let T be a left transversal of I in G. We see that∑
h∈T

xh =
∑
h∈T

((1− eZ)eAy)h = (1− eZ)
∑
h∈T

eA
hy = (1− eZ)y ∈ Z((1− eZ)R[G]).

Hence, the function

ψ : (1− eZ)eAR[I] −→ Z((1− eZ)R[G])

x 7−→
∑
h∈T

xh,

is well-defined. Using Corollary 4.2.4, ψ is an injection and ψ is a left inverse of ϕ. Hence

ϕ and ψ are mutually inverse meaning that (5.1) restricts to an isomorphism on centres.

Therefore, Corollary 3.4.4 shows that

(1− eZ)H(R[G]) ⊃ Z((1− eZ)R[G]) ∩ Z(R[G]).

By Corollary 3.6.2 we have

H(R[G]) = TrZ R[G]⊕ (1− eZ)H(R[G]).

Thus, as H(R[G]) ⊂ Z(R[G]), we see that

(1− eZ)H(R[G]) ⊂ (1− eZ)Z(R[G]) ∩ Z(R[G]).

Therefore we see that

H(R[G]) = TrZ R[G]⊕ (Z((1− eZ)R[G]) ∩ Z(R[G])) .

By Lemma 3.6.1, we note that

(1− eZ)R[G] ∩R[G] =

p−1∑
i=0

(1− zi)R[G] = (1− z)R[G],

where the last equality follows because (1− zi) = (1− z)
∑i−1

j=0 z
j . Thus, we see that

Z((1− eZ)R[G]) ∩ Z(R[G]) = ((1− eZ)R[G] ∩R[G]) ∩ Z(F [G])

= (1− z)R[G] ∩ Z(F [G])

= (1− z)Z((1− eZ)R[G]),
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where the first equality follows from Lemma 1.9.8 and last equality follows by Corol-

lary 1.9.10. In particular, we see that

H(R[G]) = TrZ R[G]⊕ (1− z)Z((1− eZ)R[G]).

We note that this agrees with the computation of the denominator ideal for Z[G] in

Example 3.6.4. We also note that the subgroup A of G is not special, the same argument

applied to each subgroup 〈aib〉 < G leads to an identical result.

Remark 5.1.2. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and fix a prime number p. Let n ∈ Z>0 and let G = (Z × A) o B,

where Z = 〈z | zp〉, A = 〈a | ap〉, B = 〈b | bpn〉 and the action of B on A is given by

zb = z and ab = za. Then essentially the same argument as used in Example 5.1.1, with

the subgroup A and idempotent (1− eZ)eA, shows that

H(R[G]) = TrZ R[G]⊕ (1− z)Z((1− eZ)R[G]).

Remark 5.1.3. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and fix a prime number p. The method in Example 5.1.1 may also

be used to compute the denominator ideal of group rings over the non-abelian p-group of

order p3 and exponent p2. More explicitly, let G = AoB, where A = 〈a | ap2〉, B = 〈b | bp〉
and the action of B on A is given by ab = ap+1. Then essentially the same argument as

used in Example 5.1.1, with the subgroup B and idempotent (1− e〈ap〉)eB, shows that

H(R[G]) = TrG′ R[G]⊕ (1− ap)Z((1− eG′)R[G]).

Again, this agrees with the computation of the denominator ideal for Z[G] in Exam-

ple 3.6.4.

Recall the notation in Example 5.1.1. The argument in Example 5.1.1 can be roughly

split into three steps.

• The first step is using knowledge of the subgroups A and Z = [G,A] to show that

(1 − eZ)R[G] is contained within a p × p matrix ring over the commutative group

ring (1− eZ)eHR[Z ×A].

• The second step is showing that

Z((1− eZ)eAR[Z ×A]) = Z((1− eZ)R[G]).

• The final step is amalgamating this information and computing the denominator

ideal of R[G].

Let R be an integrally closed Noetherian domain with field of fractions F of character-

istic 0 and let G be a finite p-group. The first step will be generalised in Lemma 5.2.1,

assuming that a subgroup H < G satisfying certain properties can be found. The second

step will be generalised in Lemma 5.2.5, requiring the additional assumption that |G′| = p.

The final step will be generalised in Proposition 5.3.1 and Corollary 5.3.4 using an induc-

tion argument. In addition to requiring that |G′| = p, Proposition 5.3.1 and Corollary 5.3.4
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also require a fairly strict technical condition on the structure of G to ensure that a sub-

group H of G exists to which Lemma 5.2.1 may be applied. In Theorem 5.5.1 we remove

the technical condition on the structure of G. This will give us a method of computing

the denominator ideal of all group rings over finite p-groups with commutator subgroup

of order p.

5.2 Lemmas for induction on finite p-groups

Let R be an integrally closed Noetherian domain of characteristic 0 and let G be a finite

p-group. The idea of this section is to provide specialised versions of Theorem 4.2.2 and

Corollary 4.2.4 that may be applied to certain idempotents in the group ring R[G].

Lemma 5.2.1. Let R be an integrally closed Noetherian domain with field of fractions F

of characteristic 0, fix a prime number p and let G be a finite p-group. Let H be a subgroup

of G of order p, let

∆ = [G,H] = 〈[g, h] | g ∈ G, h ∈ H〉

and let I = IG((1 − e∆)eH). If |∆| = p then ∆ ≤ Z(G), |G : I| = p and there is an

injection of R-orders

(1− e∆)R[G] −→Mp×p((1− e∆)eHR[I]),

which induces an isomorphism of F -algebras after extending scalars.

Remark 5.2.2. The condition that |∆| = p does not always hold. Consider the group

G = (Y × Z ×AY ×AZ)oB

where Y , Z, AY , AZ and B are groups of order p generated by y, z, ay, az and b respec-

tively, and the action of B is given by [b, y] = [b, z] = 1, [b, ay] = y and [b, az] = z. We

note that B is a subgroup of order p with [G,B] = 〈y, z〉 which has order p2.

Proof of Lemma 5.2.1. We first prove that ∆ = [G,H] is contained within Z(G). Given

g1, g2 ∈ G and h ∈ H we see that

g1[g2, h]g−1
1 = g1g2hg

−1
2 h−1g−1

1 = (g1g2)h(g1g2)−1g1h
−1g−1

1

= ((g1g2)h(g1g2)−1h−1)(hg1h
−1g−1

1 ) = [g1g2, h][g1, h]−1.

In particular, this shows that ∆ = [G,H] is normal in G. Hence, by [JL01, Lemma 26.1(1)]

(which tells us that the intersection of a non-trivial normal subgroup of a finite p-group

with the centre of said p-group is non-trivial), we see that ∆ ∩ Z(G) is non-trivial. Thus,

because ∆ has prime order, we see that ∆ ≤ Z(G).

Claim 5.2.3. Fix a generator h of H. Consider the map θh : G→ ∆ given by g 7→ [g, h]

for g ∈ G. Then θh is a surjective group homomorphism.
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Proof. Given g1, g2 ∈ G we see that

[g1, h][g2, h] = g1hg1
−1h−1[g2, h] = g1[g2, h]hg1

−1h−1

= g1g2hg2
−1h−1hg1

−1h−1 = [g1g2, h],
(5.2)

where the second equality follows because ∆ ≤ Z(G). This shows that θh is a group

homomorphism. By symmetry, given g ∈ G and h1, h2 ∈ H we see that

[g, h1][g, h2] = [g, h1h2]. (5.3)

Let δ ∈ [G,H]. First, if δ = 1 then δ = [1, h]. Otherwise δ 6= 1 and there exist n ∈ Z>0,

g1, . . . , gn ∈ G, h1, . . . , hn ∈ H and k1, . . . , kn ∈ Z such that

δ =
n∏
i=1

[gi, hi]
ki .

Since h generates H, there exist m1, . . . ,mn ∈ Z>0 such that hi = hmi for i = 1, . . . , n.

Thus we see that

δ =

n∏
i=1

[gi, h
mi ]ki =

n∏
i=1

[gi, h]miki =

[
n∏
i=1

gkimii , h

]
,

where the last two equalities follow by (5.3) and (5.2), respectively. This shows that the

map θh is surjective. This completes the proof of Claim 5.2.3.

Consider the right action of G on F [G] by conjugation; in particular, for x ∈ F [G] and

g ∈ G, let xg = g−1xg. Let E = OrbG((1 − e∆)eH). Let h be a generator of H. By

Claim 5.2.3, the map θh is surjective and so, for each δ ∈ ∆, there exists bδ ∈ G such that

[bδ, h] = δ−1. In particular, a short calculation shows that (1 − e∆)ebδH = (1 − e∆)e〈δh〉.

Therefore there is a bijection

ϕ : ∆→ E

δ 7→ (1− e∆)e〈δh〉.

Claim 5.2.4. The set E is a set of (central) orthogonal idempotents in F [∆×H] and∑
e∈E

e = 1− e∆.

Proof of Claim 5.2.4. It is clear that the elements of E are idempotents in F [∆×H]. Let

δ1, δ2 ∈ ∆. We see that

Tr〈δ1h〉Tr〈δ2h〉 =

p−1∑
i,j=0

(δ1h)i(δ2h)j =

p−1∑
i,j=0

δi1δ
j
2h

i+j =

p−1∑
i,j=0

δi1δ
j−i
2 hj

=

p−1∑
i=0

(δ1δ
−1
2 )

i
Tr〈δ2h〉 =

pTr〈δ2h〉 if δ1 = δ2,

Tr∆ Tr〈δ2h〉 if δ1 6= δ2,
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where the third equality follows by relabelling j and the last equality follows because

∆ is a group of order p and so is generated by any non-identity element. Noting that

(1− e∆) Tr∆ = 0, we see that

ϕ(δ1)ϕ(δ2) =

ϕ(δ1) if δ1 = δ2,

0 if δ1 6= δ2.

This proves that the idempotents in E are orthogonal.

We now show that
∑

e∈E e = (1− e∆). We see that

∑
e∈E

e =
∑
δ∈∆

ϕ(δ) = (1− e∆)
1

p

p−1∑
i=0

∑
δ∈∆

δihi.

Since ∆ ∼= Cp, for i ∈ {0, . . . , p− 1} we see that

∑
δ∈∆

δi =

Tr∆ if i 6= 0,

|∆| = p if i = 0.

Recalling that (1− e∆) Tr∆ = 0, we see that
∑

e∈E e = (1− e∆). This completes the proof

of Claim 5.2.4.

Using Claim 5.2.4, we may apply Theorem 4.2.2 to see that there is an injection of

R-algebras

(1− e∆)R[G] −→Mp×p((1− e∆)eHR[I]),

where I = IG((1 − e∆)eH). Furthermore, we note that I = StabG((1 − e∆)eH) so by the

Orbit-Stabilizer Theorem

|G : I| = |E| = |∆| = p.

This completes the proof of Lemma 5.2.1.

Lemma 5.2.5. Let R be an integrally closed Noetherian domain with field of fractions F

of characteristic 0, fix a prime number p and let G be a finite p-group. Let H be a subgroup

of G of order p, let

∆ = [G,H] = 〈[g, h] | g ∈ G, h ∈ H〉

and let I = IG((1− e∆)eH). If ∆ and G′ have order p then the injection of R-orders

(1− e∆)R[G] −→Mp×p((1− e∆)eHR[I])

from Lemma 5.2.1 restricts to an isomorphism on centres.

Proof. It is clear that ∆ ≤ G′ so ∆ = G′. The injection of R-orders

(1− e∆)R[G] −→Mp×p((1− e∆)eHR[I])
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induces the following R-algebra homomorphism on centres

ϕ : Z((1− e∆)R[G]) −→ Z((1− e∆)eHR[I])

x 7−→ eHxeH .

Note we have used the canonical isomorphism

Z(Mp×p((1− e∆)eHR[I])) ∼= Z((1− e∆)eHR[I]).

Let b ∈ G be a lift of a generator of G/I and let T = {b0, b1, . . . , bp−1}. Using

Claim 5.2.3, a quick calculation shows that T is a left transversal of I in G. Hence,

by Corollary 4.2.4, we see that ϕ has left inverse

ψ : Z((1− e∆)eHR[I]) −→ Z((1− e∆)F [G])

x 7−→
∑
g∈T

xg.

Thus, Im(ψ) ⊃ Z((1− e∆)R[G])

Let h be a generator of H and let δ = [b, h]−1 ∈ ∆. Let CI be the set of conjugacy classes

of I. Let C ∈ CI and let TrC =
∑

g∈C g. Since I ′ ≤ G′ = ∆ ≤ Z(G), we see that either

C = g∆ for some g ∈ I or C = {g} for some g ∈ I. In the former case, (1−e∆)eH TrC = 0;

in particular, ψ((1− e∆)eH TrC) ∈ Z((1− e∆)R[G]). In the latter case, since ∆ = G′, we

see that (TrC)b = gb = δrg for some r ∈ {0, . . . , p− 1}. In particular, we see that

p−1∑
i=0

((1− e∆)eH TrC)b
i

=
1

p
(1− e∆)

p−1∑
i=0

δirg

p−1∑
j=0

δijhj

=
1

p
(1− e∆)

p−1∑
j=0

ghj
p−1∑
i=0

δi(r+j)

= (1− e∆)gh−r,

where the last equality follows because

p−1∑
i=0

δi(r+j) =

p if j = −r

Tr∆ otherwise.

Therefore, ψ((1 − e∆)eH TrC) ∈ Z((1 − e∆)R[G]). Since I ′ ≤ ∆ and H ≤ Z(I), we see

that {(1− e∆)eH TrC | C ∈ CI} is a generating set for Z((1− e∆)eHR[I]) as an R-module.

Therefore, we see that Im(ψ) ⊂ Z((1− e∆)R[G]).

Therefore, Im(ψ) = Z((1 − e∆)R[G]) and, since ψ is a left inverse to ϕ, we see that ϕ

is an isomorphism. Thus the map

(1− e∆)R[G] −→Mp×p((1− e∆)eHR[I])

restricts to an isomorphism on centres.
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5.3 Denominator ideals of group rings over certain finite

p-groups with commutator subgroup of order p

Proposition 5.3.1. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0, fix a prime number p and let G be a finite p-group. Suppose that

every element of G�Z(G) has a lift in G of order p. If the commutator subgroup of G has

order p then

(1− eG′)H(R[G]) ⊃ Z((1− eG′)R[G]) ∩ Z(R[G]).

Remark 5.3.2. The condition that every element of G�Z(G) has a lift in G of order p

is stronger than necessary. If one is interested in results on the structure of R[G] then

this condition may be weakened (for examples of this see Remarks 5.1.2 and 5.1.3) but

not removed entirely (see Example 5.3.5). For the purpose of computing denominator

ideals, we will see that this condition may be removed entirely (see Remark 5.3.7 and

Theorem 5.5.1).

Proof of Proposition 5.3.1. The idea of this proof is to show that for some n ∈ Z>0 there

is an injection of R-algebras

(1− eG′)R[G] −→Mn×n(Z((1− eG′)R[G])), (5.4)

which restricts to the canonical identification on centres and induces an isomorphism of

F -algebras after extending scalars. Then Corollary 3.4.4 gives a lower bound for H(R[G]).

For the purposes of this proof we will say that a group G satisfies the lifting condition

if every non-identity element of G�Z(G) has a lift in G of order p. To show that (5.4)

holds we will induct on the order of G�Z(G) using Lemmas 5.2.1 and 5.2.5. We will in

fact prove the following slightly stronger claim.

Claim 5.3.3. Let G be a finite p-group with |G′| ≤ p such that G satisfies the lifting

condition. Let

fG =

1 if G is abelian,

1− eG′ otherwise.

Then there exists n ∈ Z>0 and an injection of R-algebras

fGR[G] −→Mn×n(Z(fGR[G])), (5.5)

which restricts to the canonical identification on centres and induces an isomorphism of

F -algebras after extending scalars.

Proof. For the base case of the induction we note that if G is a finite p-group with∣∣∣G�Z(G)

∣∣∣ = 1 then G is abelian and (5.5) holds with n = 1. Now fix k > 1 and as-

sume that if I is a finite p-group with |I ′| ≤ p such that I satisfies the lifting condition

and
∣∣∣I�Z(I)

∣∣∣ < k, then there exists n ∈ Z>0 and an injection of R-algebras

fIR[I] −→Mn×n(Z(fIR[I])),
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which restricts to the canonical identification on centres and induces an isomorphism of

F -algebras after extending scalars.

Let G be a finite p-group with |G′| = p such that G satisfies the lifting condition and∣∣∣G�Z(G)

∣∣∣ = k. Let h be a non-identity element of G�Z(G) and pick a lift h ∈ G of h

with order p. Consider the subgroup H = 〈h〉 < G. Since h 6∈ Z(G) and G′ ∼= Cp, we see

that [H,G] = G′ ∼= Cp. Let I = IG((1 − eG′)eH). Then, using Lemma 5.2.5, there is an

injection of R-algebras

(1− eG′)R[G] −→Mp×p((1− eG′)eHR[I]) (5.6)

which restricts to an isomorphism on centres and induces an isomorphism of F -algebras

after extending scalars. Since I < G, we see that I ′ ≤ G′ and so because |G′| = p we see

that either I is abelian or I ′ = G′; in either case fI(1− eG′) = (1− eG′) = fG and |I ′| ≤ p.
Since every element of Z(G) commutes with every element of H we see that Z(G) ≤ I

and so Z(I) ≥ Z(G). Hence I�Z(I) is a quotient of I�Z(G). Let g ∈ I \ Z(I). Then

gZ(G) is a non-identity element of I�Z(G) so there exists g′ ∈ G of order p such that

gZ(G) = g′Z(G). Since Z(G) ≤ I we see that g′ ∈ I. Therefore, I satisfies the lifting

condition.

Furthermore, as I � G, we see that I�Z(G) �
G�Z(G) and so

∣∣∣I�Z(I)

∣∣∣ ≤ ∣∣∣I�Z(G)

∣∣∣ < k

(it can be shown that the first inequality is also strict but this is not needed here). Thus,

by the induction hypothesis, for some n ∈ Z>0 there is an injection of R-algebras

fIR[I] −→Mn×n(Z(fIR[I]))

which restricts to the canonical identification of centres and induces an isomorphism of

F -algebras after extending scalars.

After multiplying by the central idempotent (1− eG′)eH of F [I] (this is central by the

definition of I), we have an injection of R-algebras

(1− eG′)eHR[I] −→Mn×n(Z((1− eG′)eHR[I]))

which induces an isomorphism of F -algebras after extending scalars. The isomorphism

induced on centres from (5.6) gives an R-algebra isomorphism

Z((1− eG′)R[G]) ∼= Z((1− eG′)eHR[I]).

Thus, by (5.6), there is an injection of R-algebras

fGR[G] −→Mnp×np(Z(fGR[G]))

which restricts to the canonical identification of centres and induces an isomorphism of

F -algebras after extending scalars. This completes the proof of Claim 5.3.3

Finally, by Claim 5.3.3 and Corollary 3.4.4, we see that there is a containment

(1− eG′)H(R[G]) ⊃ Z((1− eG′)R[G]) ∩ Z(R[G]).
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This completes the proof of Proposition 5.3.1.

Corollary 5.3.4. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0, fix a prime number p and let G be a finite p-group. Suppose that

every element of G�Z(G) has a lift in G of order p. If the commutator subgroup of G has

order p then the denominator ideal of R[G] is given by

H(R[G]) = TrG′ R[G]⊕ (1− g)Z((1− eG′)R[G]),

for some generator g of G′.

Proof. By Proposition 5.3.1 we have

(1− eG′)H(R[G]) ⊃ Z((1− eG′)R[G]) ∩ Z(R[G]).

From Corollary 3.6.2 we have

H(R[G]) = TrG′ R[G]⊕ (1− eG′)H(R[G]).

Thus, as H(R[G]) ⊂ Z(R[G]), we see that

(1− eG′)H(R[G]) ⊂ (1− eG′)Z(R[G]) ∩ Z(R[G]) = Z((1− eG′)R[G]) ∩ Z(R[G]),

where the last equality is Lemma 1.9.8(iii). Therefore we see that

H(R[G]) = TrG′ R[G]⊕ (Z((1− eG′)R[G]) ∩ Z(R[G])) .

Using Lemma 3.6.1, we note that

(1− eG′)R[G] ∩R[G] =

p−1∑
i=0

(1− gi)R[G] = (1− g)R[G]

for some generator g ofG′, where the last equality follows because (1−gi) = (1−g)
∑i−1

j=0 g
j .

Therefore, we conclude that

Z((1− eG′)R[G]) ∩ Z(R[G]) = ((1− eG′)R[G] ∩R[G]) ∩ Z(F [G])

= (1− g)R[G] ∩ Z(F [G])

= (1− g)Z((1− eG′)R[G]),

where the first equality follows from Lemma 1.9.8 and last equality follows by Lemma 5.2.1

(showing that g ∈ Z(G)) and Corollary 1.9.10.

Example 5.3.5. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and fix a prime number p. Let A = 〈a | ap2〉, B = 〈b | bp2〉 and

define an action of B on A by ab = ap+1. Consider the group AoB. It is not possible to

replicate Remarks 5.1.3 and 5.1.2 for this group as every subgroup of G with order p lies in

the centre of G. This means that the method used in Example 5.1.1 does not work for the

group ring R[AoB]. Therefore, the condition that every element of G�Z(G) has a lift in
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G of order p in Corollary 5.3.4 cannot be removed entirely without further work. However

there is a trick that may be applied to compute the denominator ideal of R[Cp2 o Cp2 ].

To illustrate this trick we will consider the non-abelian group of order p3 and exponent p2

in Example 5.3.6 below.

Example 5.3.6. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and fix a prime number p. Let G = A o B, where A = 〈a | ap2〉,
B = 〈b | bp〉 and the action of B on A is given by ab = ap+1. Then G is the non-abelian

group of order p3 and exponent p2. For the purposes of this example we will pretend that

Remark 5.1.3 is not applicable and we will instead compute the denominator ideal of R[G]

using Proposition 5.3.1.

The idea is to produce a larger group G1 which satisfies the conditions of Proposi-

tion 5.3.1 and then show that there is a relation between H(R[G]) and H(R[G1]). Let

G1 = (Y × A1) o B where A1 = 〈a1 | ap1〉, Y = 〈y | yp2〉 and the action of B on Y × A1

is given by yb = y and ab1 = ypa1. We see that Y = Z(G1) and it is clear that each non-

identity element of G1�Y = 〈a1Y, bY 〉 has a lift in G1 of order p. Hence Proposition 5.3.1

shows that

(1− eZ)H(R[G1]) ⊃ Z((1− eZ)R[G1]) ∩ Z(R[G1]), (5.7)

where Z = 〈yp〉 = G′1.

We may consider G as a subgroup of G1 by identifying a = ya1. Then under this

identification Z = 〈ap〉 is the commutator subgroup of G. One can show that there is an

R-algebra isomorphism

ϕ : R[G]⊗R[Z] R[Y ] −→ R[G1].

given on the R generating set g⊗ y of R[G]⊗R[Z]R[Y ] by ϕ(g⊗ y) = gy (the proof of this

will be omitted here, for details one can see Lemma 5.4.4).

We note that R[G] is a free R[Z]-module, hence using Lemma 1.9.18, we see that

R[G] = R[G1] ∩ F [G] and, using Corollary 1.9.20, Z(R[G]) = Z(R[G1]) ∩ Z(F [G]). Hence,

by Lemma 3.2.1, we see that

H(R[G]) = H(R[G1] ∩ F [G]) ⊃ H(R[G1]) ∩ Z(F [G]). (5.8)

Putting (5.7) and (5.8) together we see that

(1− eZ)H(R[G]) ⊃ (1− eZ)H(R[G1]) ∩ Z(F [G])

⊃ (Z((1− eZ)R[G1]) ∩ Z(R[G1])) ∩ Z(F [G])

= Z((1− eZ)R[G]) ∩ Z(R[G]).

Finally, since ap is a generator for G′, using the argument from Corollary 5.3.4 we see that

H(R[G]) = TrZ R[G]⊕ (1− ap)Z((1− eZ)R[G]).

Remark 5.3.7. Fix a prime number p. Let G be a finite p-group with commutator sub-

group of order p. The method used to produce the larger groupG1 fromG in Example 5.3.6

is a central product (see Definition 5.4.1). Using central products to extend the group G
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turns out to be very powerful. It will allow us to entirely remove the awkward condition

in Corollary 5.3.4 on the lifts of elements of G�Z(G). This will be done in Theorem 5.5.1.

5.4 Central products

To make progress in generalising the idea of Example 5.3.6 we will need to introduce the

notion of the central product of groups.

Definition 5.4.1. Let G and H be finite groups and let M a finite abelian group which is

identified with a subgroup of Z(G) and a subgroup of Z(H). We define the (outer) central

product of G and H (with respect to M) to be

G ◦M H = (G×H)�D,

where D = {(m,m−1) | m ∈ M} (we note that D is normal in G × H because it is

contained within Z(G×H)) and we identify M with its image in G ◦M H.

Remark 5.4.2. The above definition of the central product may be weakened in several

ways. Firstly, a very similar definition works if there is an action of H on G. To do

this we would replace G×H with the semidirect product GoH. The construction used

still works when M is identified with a normal subgroup of G and a normal subgroup

of H (weakening the requirement that M is identified with a subgroup of Z(G) and a

subgroup of Z(H)); in this case G ◦M H is called the partial semidirect product of G and

H. See [Gor80, Section 2.5] for details.

Lemma 5.4.3. Let G and H be finite groups and let M a finite abelian group which is

identified with a subgroup of Z(G) and a subgroup of Z(H). The central product of G and

H with respect to M satisfies the following properties.

(i) The canonical maps given by the compositions

G −→ G×H −→ G ◦M H and H −→ G×H −→ G ◦M H

are injections. In this way we identify G and H with normal subgroups of G ◦M H.

(ii) Under the identification of G, H and M as subgroups of G◦MH we have M = G∩H.

(iii) We have Z(G) ◦M Z(H) = Z(G ◦M H).

(iv) We have (G ◦M H)′ = G′H ′.

Proof. For a proof of (i) and (ii) see [Gor80, Section 2.5]. Let

(g, h)D ∈ Z(G ◦M H) = Z
(
G×H�D

)
,

where D := {(m,m−1) | m ∈M} < Z(G×H). Then for each g′ ∈ G, we see that

(g′g, h)D = (g′, 1H)D(g, h)D = (g, h)D(g′, 1H)D = (gg′, h)D.

Hence, there exists m ∈ M such that g′g = gg′m and h = hm−1; in particular, m = 1 so

g′g = gg′ for each g′ ∈ G. Thus g ∈ Z(G). A similar argument shows that h ∈ Z(H).

Hence the map Z(G) × Z(H) → Z(G ◦M H) is a surjection with kernel D and the First
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Isomorphism Theorem for groups completes the proof of (iii). SinceG andH are subgroups

of G ◦M H, we must have G′H ′ < (G ◦M H)′. However, we see that

(G ◦M H)�G′H ′ =

(
(G×H)�D

)
�((G′ ×H ′)D�D

) ∼= (G×H)�(G′ ×H ′)D

and so (G ◦M H)�G′H ′ is abelian. Since the commutator subgroup of G ◦M H is the

smallest normal subgroup N such that G ◦M H�N is abelian, we have G′H ′ > (G ◦M H)′.

This proves (iv).

Let R be a commutative ring. Recall from Example 1.5.6 that for products of finite

groups G and H there is an isomorphism R[G×H] ∼= R[G]⊗R R[H]. A similar property

holds for central products.

Lemma 5.4.4. Let R be a commutative ring. Let G and H be finite groups and let M be

a finite abelian group which is identified with a subgroup of Z(G) and a subgroup of Z(H).

Then there is an isomorphism

R[G ◦M H] ∼= R[G]⊗R[M ] R[H].

Proof. The proof of this lemma is routine, but a proof is provided here for the conve-

nience of the reader. The proof used here is inspired by the mathoverflow answer [Lea18].

Consider the map

µ : R[G]×R[H] −→ R[G ◦M H]

(g, h) 7−→ (g, h)D,

whereD = {(m,m−1) | m ∈M}. We see that µ is a bilinear map and µ(gm, h) = µ(g,mh),

for g ∈ G, h ∈ H and m ∈M . In particular, since M ⊂ Z(G◦M H), we see that µ induces

a unique map

µ′ : R[G]⊗R[M ] R[H] −→ R[G ◦M H]

g ⊗ h 7−→ (g, h)D.

It is clear that µ′ is a surjection. Furthermore, in G ◦M H the elements of G and H

commute meaning that µ′ is a ring homomorphism. Finally, this map has inverse given by

R[G ◦M H] −→ R[G]⊗R[M ] R[H]

(g, h)D 7−→ g ⊗ h,

we note that, from the definition of D, this map is well defined. This proves that µ′ is a

R-algebra isomorphism.
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5.5 Denominator ideals of group rings over any finite

p-group with commutator subgroup of order p

Theorem 5.5.1. Let R be an integrally closed Noetherian domain with field of fractions F

of characteristic 0, fix a prime number p and let G be a finite p-group. If the commutator

subgroup of G has order p then the denominator ideal of R[G] is given by

H(R[G]) = TrG′ R[G]⊕ (1− g)Z((1− eG′)R[G]),

where g is a generator of G′.

Proof. The idea of this proof is to produce a larger group G1, where every non-identity ele-

ment of G1�Z(G1) has a lift in G1 of order p, in such a way that R[G1] ∼= R[G]⊗R[M1]R[B1]

for some M1 ≤ Z(G) and some abelian group B1. Then Lemma 1.9.18, Proposition 5.3.1,

and the proof of Corollary 5.3.4 may be used prove the desired result.

We will produce the group G1 in the following way. We will first show that G�Z(G)

has exponent p. Next let g be a non-identity element of G�Z(G) and let g ∈ G be any

lift of g. We see that gp ∈ Z(G). If gp has a “central p-th root” h (in other words, there

exists h ∈ Z(G) such that hp = gp) then gh−1 is a lift of g in G with order p. Therefore,

to show that an element g ∈ G�Z(G) has a lift of order p it is sufficient to show that gp

has a “central p-th root”. Unfortunately a “central p-th root” of gp may not exist. We

will use a central product to create the larger group G1 in which all the desired “central

p-th roots” exist.

Since G is a non-abelian finite p-group and G′ is a non-trivial normal subgroup of G,

the subgroup G′ ∩Z(G) is non-trivial (see [JL01, Lemma 26.1(1)]). Thus, as G′ ∼= Cp, we

see that G′ < Z(G). Let g ∈ G. For all h ∈ G, we see that

[gp, h] = [g, h]p = 1,

where the first equality follows because G′ < Z(G) (see the proof of Claim 5.2.3 for details

of this argument) and the second equality follows because G′ ∼= Cp. In particular, we see

that gp ∈ Z(G). Therefore, we see that G�Z(G) has exponent p.

For each non-identity element g ∈ G�Z(G), fix a lift g ∈ G and let G be the set of

such lifts. Consider the abelian group B =
∏
g∈G Cord(g) with generators bg such that

ord(bg) = ord(g). Let M = 〈bpg | g ∈ G〉 < B. Since the element gp is central for each

g ∈ G and ord(gp) = ord(bpg), there is a group homomorphism θ : M → Z(G) given on

the generators {bpg | g ∈ G} of M by θ(bpg) = gp. Let C = ker(θ), let B1 = B�C and

let M1 = M�C < B1. Using the First Isomorphism Theorem for groups, we identify M1

with the subgroup 〈gp | g ∈ G〉 of Z(G) via the map θ and we let G1 = G ◦M1 B1 be the

central product of G and B1 with respect to M1. By Lemma 5.4.3(i), we see that G may

be identified with a subgroup of G1.

Let g1 be a non-identity element of G1�Z(G1). Using Lemma 5.4.3(iii) and the Third

Isomorphism Theorem for groups, we see that

G1�Z(G1) =

(
(G×B1)�D1

)
�((Z(G)×B1)�D1

) ∼= (G×B1)�(Z(G)×B1)
∼= G�Z(G),
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where

D1 = 〈(m,m−1) ∈ G×B1 | m ∈M1〉.

This is the map (g, bC)D1Z(G1) 7→ gZ(G). Thus g1 = (g, b−1
g C)D1Z(G1) for some g ∈ G.

Note that, in G×B1, we have (g, b−1
g C)

p
= (gp, b−pg C) ∈ D1. Therefore, (g, b−1

g C)D1 ∈ G1

is a lift of g1 in G1 with order p. As g1 ∈ G1�Z(G1) was arbitrary, every non-identity

element of G1�Z(G1) has a lift in G1 of order p. Hence, by Proposition 5.3.1, we see that

(1− eG′1)H(R[G1]) ⊃ Z((1− eG′1)R[G1]) ∩ Z(R[G1]). (5.9)

Using Lemma 5.4.4, we see that R[G1] ∼= R[G] ⊗R[M1] R[B1]. We note that R[G]

is a free R[M1]-module; in particular, R[G] is a flat R[M1]-module. Therefore, using

Lemma 1.9.18, we see that R[G] = R[G1] ∩ F [G] and, using Corollary 1.9.20, we see that

Z(R[G]) = Z(R[G1]) ∩ Z(F [G]).

Now, using Lemma 3.2.1, we see that

H(R[G]) = H(R[G1] ∩ F [G]) ⊃ H(R[G1]) ∩ Z(F [G]). (5.10)

Using Lemma 5.4.3(iv), we see that G′ = G′1, meaning that eG′ = eG′1 . Therefore, us-

ing (5.9) and (5.10), we see that

(1−eG′)H(R[G]) ⊃
(
Z((1− eG′1)R[G1]) ∩ Z(R[G1])

)
∩Z(F [G]) = Z((1−eG′)R[G])∩Z(R[G]).

Finally, using an identical proof to Corollary 5.3.4, we see that

H(R[G]) = TrG′ R[G]⊕ (1− g)Z((1− eG′)R[G]),

where g is a generator of G′.

Remark 5.5.2. The central product G1 found in the proof of Theorem 5.5.1 is almost

certainly larger than necessary. This is because the proof makes no effort to detect when

the required “central p-th roots” already exist. It is possible that more refined structural

information of R[G] may be found by making an effort to detect the existing “central p-th

roots”. However this provides no benefit when computing denominator ideal of R[G].

Example 5.5.3. Let R be an integrally closed Noetherian domain with field of fractions

F of characteristic 0 and fix a prime number p. Let G be an extraspecial p-group, in other

words G is a finite p-group such that G′ = Z(G) = Φ(G) ∼= Cp where Φ(G) is the Frattini

subgroup of G. Then by Theorem 5.5.1, we see that

H(R[G]) = TrG′ R[G]⊕ (1− g)Z((1− eG′)R[G]),

where g is a generator of G′. By [Gor80, Theorem 5.2], for every n ∈ Z>0 there are two

extraspecial p-groups of order p2n+1; moreover, these are given by a central product of n

non-abelian p-groups of order p3.
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5.6 Where next?

Let R be an integrally closed Noetherian domain with field of fractions F of characteristic

0, let G be a finite group and let p be a prime number. A natural question to ask is:

for what groups G do similar results to Theorem 5.5.1 hold? Using the methods of this

chapter to obtain an explicit formulation for the denominator ideal for group rings R[G]

when G′ does not have order p is probably overly ambitious. However the methods in

the chapter may still be useful in obtaining ‘lower bounds’ for the denominator ideal. It

seems unlikely that the methods introduced will work for all finite groups, but there are

situations for which the arguments show more promise.

Finite p-groups G with abelian commutator subgroup. The step which appears

to go wrong is Lemma 5.2.5. It seems unlikely that there exists a subgroup H of G which

yields the desired isomorphism on centres, although some progress can be made towards

this when G′ ≤ Z(G). One potential fix for this would be to look at many subgroups H

of G and hope that after taking intersections the desired isomorphism on centres holds.

Finite p-groups G with non-abelian commutator subgroup. This runs into the

same problems as the abelian commutator subgroup case, but has the added issue that it

may be hard to find subgroups H of G such that [G,H] is contained within the centre of

G. It is not clear how to proceed if such a group cannot be found.

Finite groups with commutator subgroup of order p, for example a dihedral

group D2p (with p 6= 2). A version of Lemma 5.2.5 does not hold for dihedral groups

in general. However, there may be tricks involving central products and looking at the

intersection over many subgroups which lead to a similar result. Considering the result

on the structure of Qp[D2p] given in [CR81, Example 7.39], it seems plausible that such a

method might work.

Finite groups with normal p-complement. Here Remark 4.9.8 shows one can reduce

to considering p-groups, where hopefully denominator ideals can be computed.

Iwasawa algebras. In seems plausible that the arguments in this section could be

adapted to apply to Iwasawa algebras over certain profinite groups with commutator

subgroup of order p.
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