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SUMMARY

Host-pathogen coevolution is assumed to play a
key role in eco-evolutionary processes, including
epidemiological dynamics and the evolution of
sexual reproduction [1–4]. Despite this, direct
evidence for host-pathogen coevolution is excep-
tional [5–7], particularly in vertebrate hosts. Indeed,
although vertebrate hosts have been shown to
evolve in response to pathogens or vice versa
[8–12], there is little evidence for the necessary
reciprocal changes in the success of both antago-
nists over time [13]. Here, we generate a time-shift
experiment to demonstrate adaptive, reciprocal
changes in North American house finches (Haemo-
rhous mexicanus) and their emerging bacterial path-
ogen, Mycoplasma gallisepticum [14–16]. Our
experimental design is made possible by the exis-
tence of disease-exposed and unexposed finch
populations, which were known to exhibit equiva-
lent responses to experimental inoculation until
the recent spread of genetic resistance in the former
[14, 17]. Whereas inoculations with pathogen iso-
lates from epidemic outbreak caused comparable
sub-lethal eye swelling in hosts from exposed (here-
after adapted) and unexposed (hereafter ancestral)
populations, inoculations with isolates sampled af-
ter the spread of resistance were threefold more
likely to cause lethal symptoms in hosts from
ancestral populations. Similarly, the probability
that pathogens successfully established an infec-
tion in the primary host and, before inducing death,
transmitted to an uninfected sentinel was highest
when recent isolates were inoculated in hosts from
ancestral populations and lowest when early iso-
lates were inoculated in hosts from adapted popula-
tions. Our results demonstrate antagonistic host-
pathogen coevolution, with hosts and pathogens
displaying increased resistance and virulence in
response to each other over time.
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RESULTS AND DISCUSSION

A key challenge in testing host-pathogen coevolution lies with

measuring reciprocal changes in the success of interacting hosts

and pathogens across time, thereby ruling out parallel evolution

driven mainly by other factors, including random genetic drift

[5–7]. The most effective method for testing such reciprocal

changes in success is through a time-shift experiment, which

pairs up hosts and pathogens sampled at different time points

of their interaction [18]. Such an approach was used in an excep-

tional demonstration of coevolution in a crustacean host,

Daphnia major, and its bacterial endoparasite, Pasteuria ramosa:

on pairing revived hosts and pathogens sampled from different

layers of pond sediments (i.e., different time points in their inter-

action), pathogens from a given layer were found to be more

infective to hosts from the same layer than were pathogens

from earlier or later layers [5]. Demonstrating coevolution be-

tween vertebrate hosts and their pathogens is non-trivial,

because immobilizing hosts in time and subsequently reviving

them is impossible. One option is to capitalize on recently sepa-

rated host populations that have diverged largely as a result of

differences in exposure to a specific pathogen [14, 17]. By exper-

imentally infecting hosts from previously exposed versus unex-

posed populations with pathogens sampled from initial outbreak

and over subsequent evolutionary time, it is possible to generate

a time-shift experimental design in a vertebrate system.

Here we adopted this approach using wild-caught North

American house finches (Haemorhous mexicanus) from eastern

and western U.S. populations that have, versus have not, been

exposed to the bacterial pathogen Mycoplasma gallisepticum,

since its jump from poultry and emergence in eastern popula-

tions in 1994 [14, 19, 20]. Although exposed (eastern) and un-

exposed (western) populations are separated in space, and

we fully acknowledge that space is not time, we can use histor-

ical differences in the exposure of eastern and western popula-

tions to M. gallisepticum as a surrogate for time in this case.

First, eastern populations originated from western-caught birds

that were released into the wild relatively recently (�60

years ago) and that then rapidly spread throughout the eastern

United States [21, 22]. Second, previous experiments revealed

that (1) birds from eastern and western populations displayed

equivalent gene expression responses to inoculation with

M. gallisepticum in 2000, before resistance spread in the
e Authors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Outcome of Host-Pathogen Inter-

actions across Host Populations and over

Time

(A) Probability that hosts developed clinical symp-

toms as a function of the year of pathogen sampling

for both host population types (ancestral and

adapted). Gray triangles, ancestral host population;

dots, adapted host population. Points represent

the raw values of symptom development coded as

0 or 1.

(B) Peak clinical severity in symptomatic hosts as a

function of the year of pathogen sampling in hosts

from ancestral and adapted populations. Gray tri-

angles, ancestral host population; dots, adapted

host population. Points represent the raw values of

severity of the peak clinical symptoms (score: 0–5).

In both figures, lines are predicted from the models

(dashed, ancestral host population; solid, adapted

host population), with SEs represented by the

ribbons.
exposed eastern populations [14], and (2) these transcriptional

responses then diverged as exposed eastern populations

evolved genetic resistance (i.e., by 2007) [14]. Thus, as far as

responses to M. gallisepticum are concerned, eastern and

western finch populations were equivalent at least until 2000

(i.e., 6 years post-outbreak) but began to diverge soon after,

following widespread resistance in eastern exposed popula-

tions. This divergence was mediated through the evolution of

resistance to pathogen-induced immune suppression and the

ability to mount a protective cell-mediated immune response

[17]. Consequently, here we generated a ‘‘time-shift’’ experi-

mental design by inoculating birds from exposed (hereafter

adapted) and unexposed (hereafter ancestral) populations

with 55 bacterial isolates sampled over the course the

epidemic, from 1994 (i.e., initial outbreak), through the spread

of host resistance (i.e., by �2007) [14], to 2015 (i.e., when the

experiment was performed).

A first step in testing for coevolution is to analyze general

changes in the outcome of host-pathogen interactions measured
Current Biolog
as changes in infection severity [23, 24]. The

primary symptom ofM. gallisepticum infec-

tion in house finches is conjunctivitis, which,

when severe, causes blindness and death

in the wild through starvation or predation

[25–27]. Peak symptom severity followed a

zero-inflated distribution, with 26% (29/

112) of inoculated finches remaining

asymptomatic. Consequently, we analyzed

peak symptoms using a 2-part hurdle

model [28]. The first part tested whether

inoculation with pathogen isolates sampled

from varying time points during the

epidemic had differential effects on the

probability of the infection overall, and

whether there were differences for hosts

from adapted versus ancestral populations.

In support of pathogen evolution, we found

that the probability of hosts developing
conjunctivitis increased as a function of the year of pathogen

sampling (Figure 1A; 1st part of hurdlemodel: mixed effect logistic

regression, estimate ± SE = 0.4 ± 0.1, z = 3.5, p < 0.0005), but did

not differ significantly between hosts from adapted versus ances-

tral populations (estimate ± SE = 1.1 ± 0.7, z = 1.6, p = 0.11). The

second part of the model then tested for differences in the

severity of the infection in symptomatic hosts. In support of

both pathogen and host evolution, we found that the peak clinical

severity of symptomatic hosts also increased when inoculated

with pathogens sampled later in the epidemic (Figure 1B; 2nd

part of hurdle model: linear mixed effect model, estimate ± SE =

0.03 ± 0.01, c2 = 11.6, degrees of freedom [df] = 1, p < 0.001)

and was, as expected, significantly higher in hosts from ancestral

populations (estimate ± SE = 0.2 ± 0.1, c2 = 4.2, df = 1, p = 0.041).

Together, these results demonstrate that (1) pathogen virulence

has increased over the course of the epidemic, and (2) although

hosts from adapted and ancestral populations were similarly

likely to become infected, those from the former were subse-

quently better able to resist the infection. Further, given that hosts
y 28, 2978–2983, September 24, 2018 2979



Figure 2. Adaptive Host Evolution in Response to the Pathogen
Host fitness was estimated as the probability of maintaining eyesight as a

function of the year in which the pathogen inoculated was sampled.

M. gallisepticum kills its finch host when eye swelling is sufficiently severe that

it leads to blindness and so starvation or predation [27]. The probability that

hostsmaintained sufficient eyesight to survive declined over time (mixed effect

logistic regression, pathogen year: estimate ± SE = �0.2 ± 0.06, z = �3.3,

p = 0.001), but the degree to which it did so was less in hosts from adapted

populations (see text for statistics). Lines are predicted from the model

(dashed, ancestral host population; solid, adapted host population), with SEs

represented by the ribbons. Gray triangles (ancestral host population) and dots

(adapted host population) represent the raw values coded as 0 or 1.
from the two populations did not differ significantly in the proba-

bility of being infected but that birds from exposed eastern pop-

ulations displayed reduced symptoms,we hypothesize that resis-

tance has evolved to clear the pathogen rather than to prevent its

establishment. In support, we have previously shown that resis-

tance evolved through the ability to prevent pathogen-induced

immune suppression and mount a protective cell-mediated im-

mune response [14, 17].

Although these results display the hallmarks of coevolution,

demonstrating that this is the case requires testing whether the

observed effects have measurable consequences for metrics

of fitness in both host and pathogen. For a house finch host in-

fected with M. gallisepticum, failure to minimize conjunctival

swelling and/or to clear the infection will result in blindness,

which in the wild leads to death through starvation or predation

[25, 27]. Our metric of the fitness consequences of infection for

hosts, therefore, is whether or not they reached symptom

severity tantamount to death in the wild (see STAR Methods).

We found significant support for adaptive changes in the host

population in response to the pathogen over time. Overall,

30% (34/112) of birds developed symptoms that would have

led to death in the wild, with 70% (24/34) doing so within 2 weeks

of inoculation. Whereas hosts from adapted and ancestral pop-

ulations were both likely to maintain sight when inoculated with

pathogen isolates sampled early in the epidemic, hosts from

adapted populations were 3 times more likely to maintain sight

(and so survive in the wild) when inoculated with later isolates

than hosts from ancestral populations (Figure 2; mixed effect

logistic regression: pathogen year3 host population interaction:

estimate ± SE =�0.2 ± 0.1, z =�2.0, p = 0.048). Thus, hosts from

adapted populations were significantly less likely to develop le-

thal swelling than hosts from ancestral populations, with the
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divergence in symptom severity occurring when birds were inoc-

ulated with isolates sampled after the spread of host resistance.

These results are not easily explained by processes other

than the evolution of genetic resistance for 3 reasons. First,

we found no evidence to suggest that responses to inoculation

differed between birds sampled from urban areas versus sub-

urban parklands, which would be expected if ecology played

a significant role in our results (see STAR Methods). These re-

sults corroborate our previous findings, which showed that

body condition had no impact on responses to experimental

inoculation with M. gallisepticum [29]. Second, our results are

unlikely to be explained by maternal effects because (1) there

is no evidence that avian mothers can confer sufficiently

long-lasting protection to their offspring [30], and (2) circulating

antibodies, which they can deposit in the eggs, do not confer

protection against M. gallisepticum [31, 32], largely because

this bacterium can hide within host cells [33]. In addition,

because non-resistant birds are immuno-suppressed by

M. gallisepticum and so cannot mount a protective immune

response [17, 34, 35], any potential maternal effect would

require the prior evolution of genetic resistance. Third, we

ensured that all birds used in the experiment were captured

within 3 months post-fledging and had no prior exposure to

the pathogen, meaning that population differences cannot be

explained by secondary responses to infection [12, 36] (see

STAR Methods). Taken together, our results strongly suggest

that house finches have evolved genetic resistance in direct

response to the pathogen.

In the case of the pathogen, the finding that later isolates

induced more severe clinical symptoms (see above; Figure 1)

suggests evolutionary changes in the pathogen in response to

the host. But again, evidence for coevolution requires testing

whether these changes are adaptive. From the perspective of

the pathogen, evidence of coevolution thus requires that path-

ogen fitness varies as a function of the relative time shift between

host and pathogen, with fitness increasing when the pathogen is

sampled progressively later in the epidemic relative to the host,

and decreasing as the host is sampled progressively later in the

epidemic relative to the pathogen. For example, late pathogen

isolates (e.g., from 2015) inoculated in hosts from ancestral pop-

ulations will generate a positive time shift of +20 years and

should be most fit, whereas early pathogen isolates (e.g., from

1995) inoculated in hosts from adapted populations in 2015

will generate a negative time shift of �20 years and should be

least fit. Pathogen fitness is measured as the product of infection

duration in its current host and transmission rate to an uninfected

host, thereby approximating R0 [37, 38]. Although this estimate

accounts neither for any fluctuations in transmission probability

over the course of an infection nor for natural ecological varia-

tion, such as in host contact rate [39], it provides us with a robust

comparison of pathogen fitness among isolates under standard-

ized laboratory conditions. We considered infection duration as

the number of days over which experimentally inoculated hosts

showed sub-lethal symptoms, and transmission rate as 1

divided by the number of days taken to transmit to an uninfected

sentinel (as determined by PCR; see STAR Methods). Correla-

tion analyses suggest that infection duration (Spearman’s rank

correlation: rs = 0.16, p = 0.085) and time to transmission (Spear-

man’s rank correlation: rs = �0.24, p = 0.037) tend to vary as a



Figure 3. Adaptive Pathogen Evolution in Response to the Host

We show the probability that pathogens achieved a fitness >1 (i.e., gained

fitness; see STAR Methods) as a function of the relative time shift (in years)

between antagonists. Years were considered negative when non-contempo-

rary pathogen isolates (i.e., those sampled before 2015) were inoculated in

hosts from adapted populations, and positive when post-outbreak isolates

(i.e., obtained after 1996) were inoculated in hosts from ancestral populations.

The number of years was 0 when hosts from adapted populations were

inoculated with contemporary isolates sampled in the same year (i.e., 2015),

and when hosts from ancestral (unexposed) populations were inoculated with

isolates obtained at epidemic outbreak (i.e., at pathogen emergence in the

previously unexposed finch host). Negative values of relative time shift

therefore show the impact of host resistance on pathogen fitness, whereas

positive values show the impact of increased virulence on pathogen success.

The line is predicted from the model with the SE represented by the ribbon.

Gray dots represent the raw values of fitness coded as 0 (i.e., fitness <1) or 1

(i.e., fitness R1).
function of the relative time shift between pathogen and host,

indicating that both are likely to contribute to evolutionary

changes in pathogen fitness.

Overall, the median pathogen fitness was 2, with lower and

upper quartiles of 0 and 7, respectively. For pathogens to suc-

cessfully transmit to a secondary host and therefore gain

fitness, our measure of fitness needs to be >1 [40, 41]. Isolates

obtained a fitness value of <1 in 38% (i.e., 42/112) of birds, indi-

cating a failure to gain fitness during the experiment. In 69% of

these cases (i.e., 29/42), isolates failed to establish an infection

in the experimentally inoculated host, in 19% of cases (i.e.,

8/42) they failed to transmit to the sentinel, and in the remaining

12% of cases (i.e., 5/42) they transmitted only after inducing

death in the experimentally inoculated host. Because our

values of pathogen fitness followed a zero-altered gamma dis-

tribution (ZAG), they were analyzed using a 2-part hurdle model

[28]. In support of coevolution, we found that the probability

that pathogen fitness was R1 (i.e., the pathogen gained fitness

[40, 41]) increased as a function of the relative time shift be-

tween pathogen and host (Figure 3; 1st part of hurdle model:

mixed effect logistic regression, estimate ± SE = 0.2 ± 0.1,

z = 2.5, p = 0.012), although there was no additional effect of

the time shift on quantitative variation in fitness for those that

gained fitness (i.e., had fitness values R1) (2nd part of hurdle

model: mixed effects model with gamma errors, estimate ±

SE = 0.01 ± 0.01, c2 = 0.8, df = 1, p = 0.37). These results indi-

cate that M. gallisepticum has also evolved over the course of
the epidemic to increase its chances of gaining fitness in direct

response to changes in the house finch host.

In conclusion, we show that host resistance and pathogen

virulence have evolved adaptively in response to each other

over the course of the epidemic. These findings of antagonistic

coevolution are highly unlikely to arise by chance through

random processes such as drift. Our results have at least three

further implications. First, they corroborate our previous

demonstration that resistance has spread in house finches in

response to M. gallisepticum [14] and provide an explanation

for contrary evidence suggesting a role of host tolerance in

this system [42]. Most notably, our results suggest that

apparent evidence for tolerance is likely to be an artifact of

inoculation with an early, non-virulent 1994 isolate: inoculation

with later-epidemic isolates are required to generate the differ-

ences between ancestral and adapted populations predicted

under resistance. Second, it has been recently hypothesized

that incomplete immunity against M. gallisepticum protects

hosts against secondary infections with low virulence isolates,

thereby favoring the evolution of increasing virulence [12].

This hypothesis assumes that the selective consequences of

secondary infections are sufficiently high to drive the evolution

of pathogen virulence. Our findings that resistance has evolved

in the host population in response to infection counter this

assumption, because the selective consequences of primary

infections provide a more parsimonious explanation for viru-

lence evolution. Finally, that both host and pathogen fitness

have increased over time suggests that this coevolution is

currently driven by directional selection (i.e., arms race) rather

than by fluctuating selection [43]. Future studies will allow us

to test whether this arms race transitions into fluctuating

dynamics as the coevolutionary interaction becomes more es-

tablished [44], or whether we are seeing the initial stage of fluc-

tuating dynamics with a periodicity in excess of the duration

from outbreak to the present day (i.e., currently maximally 20

host generations). Either way, given our demonstration of

antagonist coevolution, we are now in a position to understand

more precisely the specific phenotypic and genomic changes

in both hosts and pathogens. For example, we know relatively

little about the physiological and immunological mechanisms

underlying host resistance in wild systems [17]. Similarly, the

mechanisms under selection in pathogens as resistance

spreads in their vertebrate hosts are unclear. Addressing these

issues is fundamental if we are to understand the fate and

impact of emerging infectious diseases.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Mycoplasma gallisepticum isolate 1994_1 This study N/A

Mycoplasma gallisepticum isolate 1995_1 This study N/A

Mycoplasma gallisepticum isolate 1995_2 This study N/A

Mycoplasma gallisepticum isolate 1995_3 This study N/A

Mycoplasma gallisepticum isolate 1995_4 This study N/A

Mycoplasma gallisepticum isolate 1995_5 This study N/A

Mycoplasma gallisepticum isolate 1995_6 This study N/A

Mycoplasma gallisepticum isolate 1995_7 This study N/A

Mycoplasma gallisepticum isolate 1996_1 This study N/A

Mycoplasma gallisepticum isolate 2001_1 This study N/A

Mycoplasma gallisepticum isolate 2001_2 This study N/A

Mycoplasma gallisepticum isolate 2001_3 This study N/A

Mycoplasma gallisepticum isolate 2001_4 This study N/A

Mycoplasma gallisepticum isolate 2001_5 This study N/A

Mycoplasma gallisepticum isolate 2001_6 This study N/A

Mycoplasma gallisepticum isolate 2001_7 This study N/A

Mycoplasma gallisepticum isolate 2001_8 This study N/A

Mycoplasma gallisepticum isolate 2001_9 This study N/A

Mycoplasma gallisepticum isolate 2001_10 This study N/A

Mycoplasma gallisepticum isolate 2002_1 This study N/A

Mycoplasma gallisepticum isolate 2002_2 This study N/A

Mycoplasma gallisepticum isolate 2002_3 This study N/A

Mycoplasma gallisepticum isolate 2002_4 This study N/A

Mycoplasma gallisepticum isolate 2003_1 This study N/A

Mycoplasma gallisepticum isolate 2003_2 This study N/A

Mycoplasma gallisepticum isolate 2003_3 This study N/A

Mycoplasma gallisepticum isolate 2003_4 This study N/A

Mycoplasma gallisepticum isolate 2003_5 This study N/A

Mycoplasma gallisepticum isolate 2003_6 This study N/A

Mycoplasma gallisepticum isolate 2007_1 This study N/A

Mycoplasma gallisepticum isolate 2007_2 This study N/A

Mycoplasma gallisepticum isolate 2007_3 This study N/A

Mycoplasma gallisepticum isolate 2007_4 This study N/A

Mycoplasma gallisepticum isolate 2007_5 This study N/A

Mycoplasma gallisepticum isolate 2007_6 This study N/A

Mycoplasma gallisepticum isolate 2007_7 This study N/A

Mycoplasma gallisepticum isolate 2011_1 This study N/A

Mycoplasma gallisepticum isolate 2011_2 This study N/A

Mycoplasma gallisepticum isolate 2011_3 This study N/A

Mycoplasma gallisepticum isolate 2011_4 This study N/A

Mycoplasma gallisepticum isolate 2011_5 This study N/A

Mycoplasma gallisepticum isolate 2011_6 This study N/A

Mycoplasma gallisepticum isolate 2011_7 This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mycoplasma gallisepticum isolate 2011_8 This study N/A

Mycoplasma gallisepticum isolate 2011_9 This study N/A

Mycoplasma gallisepticum isolate 2015_1 This study N/A

Mycoplasma gallisepticum isolate 2015_2 This study N/A

Mycoplasma gallisepticum isolate 2015_3 This study N/A

Mycoplasma gallisepticum isolate 2015_4 This study N/A

Mycoplasma gallisepticum isolate 2015_5 This study N/A

Mycoplasma gallisepticum isolate 2015_6 This study N/A

Mycoplasma gallisepticum isolate 2015_7 This study N/A

Mycoplasma gallisepticum isolate 2015_8 This study N/A

Mycoplasma gallisepticum isolate 2015_9 This study N/A

Mycoplasma gallisepticum isolate 2015_10 This study N/A

Chemicals, Peptides, and Recombinant Proteins

Mycoplasma gallisepticum Antigen Charles River Laboratories Catalogue # 10100760

Mycoplasma gallisepticum SPA positive serum Charles River Laboratories Catalogue # 10100703

Mycoplasma gallisepticum SPA negative serum Charles River Laboratories Catalogue # 10100511

Glycerol VWR Catalogue # BDH1172-1LP

Thallium acetate VWR Catalogue # AA11102-14

Mycoplasma broth base Sigma-Aldrich Catalogue # F6797-500G

Tryptone VWR Catalogue # 97063-386

Peptone VWR Catalogue # 61001-506

Dextrose Sigma Aldrich Catalogue # D9434-250G

CMRL 1066 media Thermofisher Catalogue # 11530037

L-Glutamine VWR Catalogue # 0131-0100

Yeast extract VWR Catalogue # 97064-368

Yeastolate VWR Catalogue # 90003-510

Fetal bovine serum VWR Catalogue # 71004-562

Phenol red 1% VWR Catalogue # RC5725-16

Penicillin G sodium salt VWR Catalogue # 97061-280

Deposited Data

Dryad Digital Repository Dryad https://doi.org/10.5061/dryad.5g5n8n2

Experimental Models: Organisms/Strains

House finches (Haemorhous mexicanus) wild-caught in

Alabama and in Arizona in 2015

This study N/A

Oligonucleotides

13R: 50 GCTTCCTTGCGGTTAGCAAC 30 Sigma Aldrich [45]

14F: 50 GAGCTAATCTGTAAAGTTGGTC 30 Sigma Aldrich [45]

Software and Algorithms

R software https://www.r-project.org [46]
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Camille

Bonneaud (c.bonneaud@exeter.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Protocols were approved by Institutional Animal Care and Use Committees (IACUC) of Auburn University (permit # PRN 2015-2721)

and of Arizona State University (permit # 15-1438R), as well as by Institutional Biological Use Authorizations to Auburn University

(# BUA 500), and the University of Exeter’s ethics committee. All birds were born within the calendar year (N = 117 males and 107

females).
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Wild house finches from populations that have never been exposed to M. gallisepticum (ancestral populations) were captured in

ecologically distinct urban areas and in suburban parks ([47, 48]; see below for rationale) in Arizona over a two-week period of the

summer 2015. Birds (N = 171; 93 males and 78 females) that had hatched in the spring 2015 were trapped, weighed and banded

with a numbered metal tag for individual identification. They were then immediately transported by car to aviaries at Arizona State

University, where they were housed for the remainder of the experiment. On arrival, we obtained a blood sample from all birds using

brachial venipuncture (60 mL of whole blood) and a choanal swab. A lack of prior infection with M. gallisepticum since hatching was

confirmed by screening blood plasma for anti-M. gallisepticum antibodies using a serum plate agglutination (SPA) assay with antigen

prepared from M. gallisepticum (Charles River Laboratories, USA) [49]. Briefly, 10 mL of plasma was added with 1 drop of

M. gallisepticum plate antigen. The plate was gently rocked to ensure complete mixing and then allowed to stand for 2 min, at which

time results were read. Positive (agglutination) and negative (no agglutination) control serum were included in each test as a refer-

ence. A lack of current infection was verified by performing endpoint PCR using M. gallisepticum-specific primers (Forward:

50 GCTTCCTTGCGGTTAGCAAC 30; Reverse: 50 GAGCTAATCTGTAAAGTTGGTC 30) on DNA extracted from choanal swabs followed

by agarose gel electrophoresis. DNA was extracted by placing the swab in 100 mL of sterile nuclease-free water at 100�C for 10 min,

followed by �20�C for 10 min, and a final centrifugation step of 13,000 rpm for 5 min. PCR conditions were 94�C for 5 min, then 35

cycles of 94�C for 30 s, 55�C for 30 s, and 72�C for 30 s, and lastly a 5-min extension at 72�C [45]. Negative results for both SPA and

PCR tests were expected as M. gallisepticum has never been documented in the area of Arizona in which sampling was

conducted [16].

During the same time period, wild house finches from populations that have been exposed to M. gallisepticum since disease

outbreak (adapted populations) were captured in urban areas and in suburban parks in Alabama (see below for rationale). Upon cap-

ture, birds (N = 131) that had hatched in the spring 2015were trapped, and similarly banded andweighed, and a blood sample (�60ul)

and a choanal swab taken for analyses. They were then immediately transported by car to aviaries at Auburn University, where they

were housed separately in the same conditions as in the aviaries in Arizona. All individuals were examined for anti-M. gallisepticum

antibodies indicating prior exposure using the serum plate agglutination assay, and their current infection status determined with the

choanal swabs [45, 49]. Birds positive for either test were released immediately, while the remaining birds (N = 53; 24 males and 29

females) underwent a 30-day quarantine period, before being transported by car to the aviary at Arizona State University. It is impor-

tant to note that we contrasted responses to inoculation by eastern exposed populations with western unexposed populations and

did not include populations exposed to the disease for varying lengths of time for 2 reasons. First, all eastern populations were

exposed toM. gallisepticumwithin 3 years of outbreak, meaning that there is little variation in exposure duration among eastern pop-

ulations [19]. Second, we cannot meaningfully inoculate birds from more recently exposed western populations with isolates

sampled from the East, given that western birds and western isolates have evolved in isolation from eastern isolates [50].

Following arrival at Arizona State University, birds from all populations were assigned to treatment groups. Each bird from an

adapted population was housed in a cage with one bird from an ancestral population in 53 randomly-assigned female-male pairs.

The remaining 118 finches from ancestral populations were housed in cages as 54 randomly-assigned female-male pairs and 5

male-male pairs. The birds were then allowed to acclimate for one month prior to experimental onset and provided with ad libitum

food andwater throughout. None of the birds displayed any sign of infectionwith other diseases and all birds were similarly treated for

infection by Trichomonas gallinae and Coccidia spp in the first few weeks of captivity.

METHOD DETAILS

All 53 birds from the adapted populations, and one bird randomly selected from each of the 59 pairs containing only birds from ances-

tral populations, were inoculated with 1 of 55 M. galliseptum isolates sampled over the course of the epidemic (N total inoculated =

112; 4 isolates were each inoculated into 2 birds from ancestral populations, and 1 isolate was inoculated into 2 birds from adapted

populations). Isolates were originally obtained from naturally infected, wild-caught house finches by swabbing the conjunctiva of a

symptomatic bird and placing the swab in SP4 growth medium containing SP4 base (final concentration in medium: 0.004% thallium

acetate, 3.5g/L Mycoplasma broth base, 1g/L tryptone, 5.35 g/L peptone, 5g/L dextrose), 5% CMRL 1066 media with 0.72 mM

L-glutamine, 5.75 g/L yeast extract, 2 g/L yeastolate, 17% fetal bovine serum, 0.002% phenol red and 1.86 g/L Penicillin G. Cultures

were placed at 37�C until evidence of growth was observed based on a change in pH (i.e., phenol red indicator changing from red to

yellow). Successful isolation of M. gallisepticum in culture was confirmed based on a lack of observable turbidity and PCR-based

testing of DNA extracted from cultures [45]. Stocks of each isolate were made by placing 500 mL of culture into 500 mL of new growth

medium containing 50%glycerol and then stored at�80�C. All isolates were obtained in Lee County, Alabama (USA), with the excep-

tion of: 1994_1 (Virginia), 1995_1 (Tennessee), 1995_2 (Georgia), 1995_3 (Kentucky), 1995_5 (Pennsylvania), 1995_6 (Missouri), and

1996_1 (Ohio). In preparation for inoculation, an aliquot of each isolate was grown in new SP4 growth media at 37�C. None of the

isolates inoculated had been passaged in culture more than 4 times [51]. They were then administered via 20 mL of culture containing

1 3 104 to 1 3 106 color changing units/mL of M. galliseptum in both eyes. The second bird of each pair was used as a sentinel to

measure transmission rate and were not subject to inoculation; all sentinels were from ancestral populations in order to measure

transmission rates to susceptible hosts [14, 17].

Wemonitored the development of clinical symptoms in the experimentally-inoculated bird by visually scoring eye lesion severity at

both eyes (0–5 scale [26]) at 3, 6, 8, 14, 21, 25, 28 and 34 days post-infection (dpi). Eye scores were based on previous definitions [26],

briefly: 0 = normal eye; 1 = pink conjunctiva, signs of watering of the eye, and slight periorbital swelling; 2 = pink conjunctiva, excess
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watering of the eye with signs of mucoid discharge and moderate periorbital swelling; 3 = red conjunctiva, excess watering with

discharge, feather loss around periorbital ring, significant swelling with irritation; 4 = red conjunctiva, excess watering with discharge,

feather matting extending below the eye, severe swelling with significant irritation; 5 = red to purple conjunctiva, extreme swelling

with eye barely visible at best, heavy feather loss and matting over entire face. The scorer had no knowledge of which birds were

in which treatment at any point during the experiment. Peak symptoms severity was then determined as themaximum score reached

by the experimentally-inoculated bird over the course of the experiment. Infection duration in the primary host was scored every

�3 days post-inoculation (dpi), and considered null when the pathogen failed to cause clinical symptoms, and lethal when symptoms

reached the score that is known to cause blindness andmortality through predation or starvation in the wild [25–27]. For hosts whose

symptoms remained sub-lethal, infection duration was estimated as the duration of the experiment + 1 day (i.e., 36 days); such an

approach will tend to under-estimate fitness differences between isolates and hence provide more conservative estimates of fitness

differences between time points. Transmission rate to the sentinel was measured by amplification of M. gallisepticum DNA from

conjunctival and tracheal swabs [45] obtained at 2, 3, 4, 5, 6, 7, 8, 11, 14, 17, 20, 23, 26, 29, 32 and 35 dpi. The experiment was

stopped at 35 dpi and all birds were euthanized as stipulated by home office licensing.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses
All statistical analyses were conducted in R 3.3.2 [46] using lme4 [52], and figures were made using ggplot2 [53]. All analyses consid-

ered the effect of host habitat at site of capture (i.e., urban areas versus suburban parklands) as a fixed effect, but this effect was

removed in all cases because it failed to improve the fit of themodel (see Host habitat effects below). Both peak symptoms and path-

ogen fitness followed zero-inflated distributions and were therefore analyzed using 2-parts hurdle models [28]. In the analysis of peak

symptoms, the hurdle model comprised amixed effect logistic regressionmodel on peak symptoms values of 0 versus non-zero with

a logit link function (part 1; N = 112 birds), followed by amixed effect GLM on the non-zero values of log-transformed peak symptoms

(part 2; N = 83 birds). In both steps, peak symptoms were fitted as the response term (0 or non-zero in the former; >0 values in the

latter), year of pathogen sampling, host population and their interaction were fitted as explanatory terms, and pathogen isolate as a

random effect. In the analysis of pathogen fitness, fitness values followed a zero-altered gamma distribution (ZAG). Part 1 therefore

used a mixed effect logistic regression with a logit link function on whether the isolate failed to gain fitness (i.e., fitness < 1) or suc-

ceeded (i.e., fitnessR 1) (N = 55 isolates in 112 birds); part 2 used a linear mixed effect model with gamma error structure and log link

function on the values of fitnessR 1 (N = 46 isolates in 70 birds) [28]. In both steps, fitness was fitted as the response term (fitness < 1

versus fitnessR 1 in the former; fitnessR 1 values in the latter), the time gap between antagonists (in years) was fitted as the explan-

atory term, and with host habitat at site of capture nested within host population and pathogen isolate as random effects. Finally,

changes in host fitness over time were analyzed using a mixed effect logistic regression with blindness (no/yes) as the dependent

variable, with the relative time-shift between pathogen and host (see above), host population and their interaction as explanatory

terms, and with pathogen isolate, its year of sampling and host habitat at site of capture were included as random effects

(N = 112 birds). All non-significant interactions were removed from the final models.

Host habitat effects
Birds were captured in ecologically distinct urban and suburban parkland habitats in both Alabama and Arizona. House finches from

more urban areas are known to be lighter and more susceptible to other infectious pathogens [47, 48]. As a consequence, if ecology

has a significant effect on patterns of host resistance, we would expect birds from urban and parkland habitats to show dissimilar

responses to inoculation. Further, if ecology represents the primary driver of differences in resistance, then we would expect re-

sponses by birds from the same habitat type to be more similar to each other, irrespective of whether they were from Alabama or

Arizona. By contrast, if resistance is genetically-determined, we would expect habitat to have no influence on our results [14, 17].

Overall, in Alabama populations, 11 birds came from urban areas and 42 birds came from two suburban parklands, while in Arizona

populations, 17 experimentally inoculated birds came from urban areas and 42 came from two suburban parklands (birds in urban

areas are less common and so harder to catch). To test for evidence of ecological impacts on our results, we included habitat type as

a 2-level factor as amain effect in all analyses (suburban park versus urban), and where possible/relevant, as an interaction term with

host population (Alabama versus Arizona) and year of pathogen sampling (see below). Z statistics are provided for logistic regression

analyses, while c2 tests denote the use of the anova function in R to compare mixed model analyses that include versus exclude

terms of interest (df are presented when >1).

First, in the analysis of peak symptoms, we found no effect of habitat on the probability that hosts developed conjunctivitis (esti-

mate = 0.1 ± 0.9, z = 0.15, p = 0.88). (Habitat effects could not be determined in interaction with host population due to failure of the

model to converge). Nor did habitat have any effect on quantitative values of peak symptoms, either as a main effect

(estimate =�0.02 ± 0.1, c2 = 0.02, p = 0.88), or in interaction with host population (c2 = 0.02, p = 0.89), or in a 3-way interaction addi-

tionally including year of pathogen sampling (c2 = 1.0, df = 3, p = 0.81). Second, habitat also failed to influence our estimate of host

survival probability (estimate = 0.7 ± 0.6, z = 1.3, p = 0.26), and we found no evidence for an interaction between habitat and host

population (z =�0.8, p = 0.40), or for a 3-way interaction additionally including year of pathogen sampling (z =�1.1, p = 0.92). Finally,

we found no evidence to suggest that pathogens gained differential fitness as a function of whether their host was from suburban

parkland or from urban areas (effect on probability of gaining fitness: estimate =�1.3 ± 1.3, z =�1.0, p = 0.32; effect on quantitative
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variation of fitness (fitnessR 1): estimate = 0.3 ± 0.2, c2 = 1.9, p = 0.17). (Tests of interaction effects with host population and year of

pathogen sampling are not relevant in these 2 analyses because neither were fitted as fixed effects in the original model; see

main text).

Together, these results have two important implications. First, they provide no evidence to suggest that ecology has an impact on

host resistance and pathogen success in this system, thus corroborating our previous findings of the role of genetic resistance in

population differences to experimental inoculation with M. gallisepticum [14, 17]. Second, by extension, our results are therefore

unlikely to be explained by any unmeasured phenotypic differences between host populations.

DATA AND SOFTWARE ACCESSIBILITY

The accession number for the data reported in this paper is Dryad Digital Repository: https://doi.org/10.5061/dryad.5g5n8n2. The

data include lists of individual hosts and bacterial isolates, year of pathogen sampling, host infection status and severity, and

estimates of host and pathogen fitness.
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