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A baroclinic instability test case is used to compare the Lagrangian conservation
properties of three versions of a semi-implicit semi-Lagrangian dynamical core: one
using a height based vertical coordinate and two using a Lagrangian vertical coordinate.
The Lagrangian coordinate versions differ in the choice of target levels to which
model levels are reset after each step—the first uses the initial model level heights
while the second uses quasi-Lagrangian target levels. A range of diagnostics related to
Lagrangian conservation are computed, including global entropy, unavailable energy,
cross-isentrope mass flux, and consistency of potential temperature and potential
vorticity with passive tracers and parcel trajectories. The global entropy, unavailable
energy, and cross-isentrope fluxes do not suggest any clear advantage or disadvantage
from the use of a Lagrangian vertical coordinate, though the cross-isentrope flux reveals
a flaw in the formulation of the remapping of potential temperature in the Lagrangian
coordinate model at the top boundary. The use of a Lagrangian vertical coordinate with
quasi-Lagrangian target levels improves the consistency among potential temperature
as a dynamical variable, potential temperature as a tracer and potential temperature
on Lagrangian particle trajectories. It also improves consistency between a potential
vorticity tracer and potential vorticity on Lagrangian particle trajectories. However,
it degrades the consistency between model and tracer potential vorticity, as well as
between model potential vorticity and potential vorticity on Lagrangian trajectories.
This degradation appears to be related to the slopes of model levels, which are greater

in the version with quasi-Lagrangian target levels.
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1. Introduction

Throughout much of the atmosphere a number of important quantities are approximately conserved following the motion of air
arcels. These quantities include specific entropy, potential temperature or equivalent potential temperature, composition (total specific

idity and other long-lived chemical constituents), and potential vorticity. Accurate numerical simulation of the atmosphere requires

&

se Lagrangian conservation properties to be accurately captured by the numerical model. See Kavci¢ and Thuburn (2018) (hereafter

l

t I) and references therein and also section 3 below for further discussion.

t has often been argued (again see Part | and references therein) that the Lagrangian conservation properties of a numerical model

1C

be improved by the use of a Lagrangian or quasi-Lagrangian vertical coordinate. However, when comparisons are made between

!

agrangian-coordinate model and a model with a more conventional (e.g. pressure based or height based) vertical coordinate, it

isjoften the case that the formulations of the entire dynamical cores are very different, not just the type of vertical coordinate (e.g.

r

Johnson et al. 2000; Rasch et al. 2006; Whitehead et al. 2015). This, then, makes any differences in the results difficult to attribute

solely to the different vertical coordinates. It would be very desirable to have a ‘clean’ comparison, in which the only significant

A

iference between models is the vertical coordinate, and other aspects of the formulation are as similar as possible.
Such a clean comparison was carried out by Mahowald et al. (2002) for a chemical transport model. They found that Lagrangian

servation properties such as age of air in the lower stratosphere were indeed better captured with an isentropic vertical coordinate

d

n with a hybrid-pressure coordinate. Zhu and Schneider (1997) and Webster ef al. (1999) made clean comparisons of general
ciiculation models using a hybrid-isentropic coordinate and a hybrid-pressure coordinate. They found some notable improvements in

the global circulation with the hybrid-isentropic coordinate, particularly a reduced cold bias in the winter polar lower stratosphere. More

e

recently, Lauritzen et al. (2014) investigated the conservation of the global axial angular momentum (AAM) in NCAR’s Community

osphere Model Spectral Element (CAM-SE) dynamical core. They observed that using a Lagrangian vertical coordinate instead

)

f the fixed Eulerian (hybrid-sigma) coordinate did not change the global AAM conservation properties of CAM-SE. However, those
dies did not directly evaluate the Lagrangian conservation properties in the comparisons.

The present paper compares the Lagrangian conservation properties of three versions of a dynamical core, one using a height based

CC

ordinate (abbreviated to HB below) and the others using a Lagrangian vertical coordinate (abbreviated to LVC), but which are

otherwise as similar as possible. All three versions use semi-implicit semi-Lagrangian integration schemes on a longitude-latitude

¢

spherical C-grid with a Charney-Phillips vertical staggering. The HB version uses numerical methods almost identical to those of the
DGame dynamical core (Wood et al. 2014) used for operational forecasting at the Met Office. The LVC versions use the same

erical methods or analogous numerical methods where possible.

A

To prevent the folding over of model levels, the LVC model versions reset the model level heights at the end of each time step to
certain ‘target levels’ and prognostic fields are remapped to these new heights. The two LVC versions differ in their choice of target
levels: the first (LVC-RO) uses the initial level heights, which are the same as those used in the HB version; the second (LVC-QL) uses
quasi-Lagrangian target levels, chosen to follow isentropes on small horizontal scales away from boundaries and to follow the initial
height levels on large horizontal scales. These two versions are compared in order to test the hypothesis that frequent remapping to levels
at fixed heights might introduce errors that are comparable to those associated with vertical transport in a height based coordinate and
so reduce or remove any benefits of a Lagrangian vertical coordinate. The details of the numerical methods, including the specification

of the tdigetattviel i gnotditedsbhenpysigbr relmigipsngsdiebds to target levels, are presented in Part L.
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The HB and LVC versions of the dynamical core are tested on a standard baroclinic instability test case; some details are presented
in section 2 below. The flow field generated is sufficiently complex to exercise the numerics of the dynamical core, involving horizontal
and vertical transport, the formation of coherent synoptic-scale vortices through a wrapping up process, and the formation of sharp
fronts. A range of Lagrangian diagnostics are computed for each version. The diagnostics are motivated and described in section 3.

The results are presented and discussed in section 4 and the conclusions are summarized in section 5.

2. Test case and model setup

dynamical core is nonhydrostatic and does not make the shallow atmosphere approximation. Therefore we use the baroclinic

¢

tability test case proposed by Ullrich er al. (2014), which is suitable for such models.

l

Except for the addition of the Lagrangian diagnostics discussed below, the model setup is the same as described in Part I. The

C

izontal resolution is 192 x 96 grid points, corresponding to a grid size of 1.88° in longitude and latitude, or about 209 km at the

]

ator. The upper boundary is a rigid lid at D = 30 km altitude, and 30 model levels are used, initially distributed in height as

[

gested by Ullrich er al. (2014). The time step is 1200s. A slight off-centring o = 0.51 is used in the semi-implicit scheme, and

the nested iterative quasi-Newton solver uses 4 outer iterations and 1 inner iteration per time step. As described in Part 1, the solution

L

procedure follows the approach from Section 5 of Wood ef al. (2014) with two main adaptations. The first is in the definition of

Helmbholtz coefficients (compare Wood et al. (2014) Appendix D with Part I Appendix B). The second is in the choice of solver for the

A

Imholtz problem (vertical line relaxation combined with a horizontal geometric multigrid method).
For the LVC-QL version the parameters defining the target levels are the same as in Part I. Both LVC versions use conservative
abolic spline remapping to remap mass to target levels, and simple cubic interpolation with a limiter to remap € (option M-6; in

notation of Part I) as this was the only option found to be stable for both LVC-R0 and LVC-QL configurations out to 15 days.

ed

Lagrangian diagnostics

range of diagnostics are used to evaluate the Lagrangian conservation properties of the three model versions.

pt

3 ntropy

Qﬂsewaﬁon of specific entropy following fluid parcels implies that the global integral of entropy should be conserved. The global
efitropy budget places an important constraint on the climate system (e.g. Goody 2000). It has even been hypothesized that the climate

stem might adjust so as to maximize its entropy production (e.g. Paltridge 1975; Ozawa et al. 2003). Excessive production of entropy
d been proposed as a possible cause for systematic cold pole problems in climate models (Johnson 1997). Woollings and Thuburn
06) diagnosed the entropy sources associated with numerics and scale-selective dissipation in a spectral hydrostatic primitive
equation dynamical core during a baroclinic wave life cycle. They found a global average entropy source of around 0.5 mWm 2K,

ich was a residual between a larger source due to temperature diffusion and an entropy sink associated with numerical dispersion

and Gibbs errors. Locally near fronts sources and sinks were much larger, of the order of several Wm 2K .

Here the global entropy S is diagnosed as

Sch/ plnddv, @))]
Vv

where ¢, is the specific heat capacity of air at constant pressure, p is density, and 6 is potential temperature, with the integral
approximated as a sum over all model grid cells. In the LVC model versions p and 6 are stored at cell centres, so the calculation
is straightforward. For the HB version € is stored at the lower and upper faces of grid cells, so it is linearly interpolated to cell centres

to calculhie thileritrmoyectiepyalopyright. All rights reserved.
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3.2.  Mass below isentropes

In adiabatic flow potential temperature € is materially conserved. This implies that the mass contained below any given surface of

constant § remains constant. Conservation of the mass below every 6 surface implies conservation of all moments of the 6 distribution

/ pO™ dv )

@ any exponent m, as well as the entropy &, as noted above.
In realistic flows, fluxes of air and trace constituents across isentropic surfaces are strongly constrained by diabatic heating.
Mcurately modelling such fluxes is essential for capturing the global atmospheric circulation and transport (e.g. Holton et al. 1995),

@ spurious fluxes due to numerical errors can lead to systematic biases (e.g. Gregory and West 2002; Hardiman et al. 2015).

The ability of the three dynamical core versions to preserve the mass below isentropes is evaluated by computing the mass below

Hhosen set of isentropes at every step during the 15 day test case. The mass below a given  surface, 6 = @ say, is computed by
Hmming the masses in those cells that have # < 6. To reduce ‘quantization’ error and ensure a smoother evolution of the diagnostics,
H expressed as a vertical linear function of mass in each grid cell, giving 6 as a piecewise linear function of mass in each column; in
s way fractional cells are counted when the range of 6 in the cell encompasses 8. For the HB ENDGame, constructing the piecewise
linear fit is straightforward, since @ is stored at the lower and upper faces of grid cells. For the LVC ENDGame, 6 is stored at cell
centres. In this case the piecewise linear fit is constructed to be continuous at the lower and upper faces of cells and to minimize the
changes in vertical gradient of # through the column.
ﬁor the results shown below, 201 isentropes are used with a uniform 3 K spacing for § between 210 K and 810 K.

@. Unavailable energy

The unavailable energy is defined to be the internal plus potential energy™ that the atmosphere would have if it were adiabatically
Q rrapged so as to minimize the internal plus potential energy (Lorenz 1955). It can be shown that the minimizing state is in hydrostatic
lance and stably stratified, with 6 surfaces horizontal (e.g. Tailleux 2013). Since, by definition, that internal plus potential energy
not be reduced further by adiabatic motions, none of it is available for conversion to kinetic energy.

Qﬁecause the unavailable energy is defined in terms of an adiabatic rearrangement of the current atmospheric state, it is determined
y the distribution of 6 as a function of mass, or, equivalently the distribution of mass as a function of §. Consequently, the unavailable
( e}rgy, as well as the total energy, is conserved in adiabatic flow. The total energy is dominated by the unavailable energy, with the
aypilable energy (total minus unavailable) of the order of 500 times smaller (Peixoto and Oort 1992). Thus, a small relative error in the

conservation of unavailable energy could represent a non-negligible fraction of the climate system energy budget.

f the atmosphere can be assumed to be hydrostatic and the global distribution of @ is known on pressure surfaces then, under
some reasonable approximations, the available internal plus potential energy can be estimated in terms of the variance of 6 on pressure
surfaces (Lorenz 1955). The unavailable energy is then the total internal plus potential energy minus the available internal plus potential
energy. Here, however, we are looking for small changes in the unavailable energy, so such simplifying approximations cannot be made.
In particular, the current model state cannot be taken to be hydrostatic, even though the energy minimizing state is. Finding this energy

minimizing state is the most difficult part of the calculation. We must take as given data the mass distribution of 6, expressed as the

masses below a large set of § surfaces, and directly compute the state that minimizes the internal plus potential energy while preserving

*When the hydrostatic and shallow atmosphere approximations are made the potential energy is proportional to the internal energy, and their sum is often referred to as
the potentlHiismntzylSiagroteateddbyeitpyrightoitlatightswesersiedthe distinction between potential and internal energy.
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that mass distribution of #. An additional complication is the presence of a rigid lid. The calculation of the energy-minimizing state
proceeds as follows.

Let ék +1/2:k=0,...,nbe the set of § surfaces used to compute this diagnostic, and let My, /o be the mass below each of these
surfaces, calculated as in section 3.2. The range of # must be sufficiently wide so that M s2 =0and M, ./, is the mass of the
entire model atmosphere. The task is to determine the distance from Earth’s centre ry,; /5 of each theta surface such that the resulting
state is in hydrostatic balance. The boundary conditions are r; /2 = Tmin, where 7y 1S the minimum 7 on the bottom boundary, and
Tn41/2 = Tmin + D.

discrete approximation to hydrostatic balance is

le

II —1I P -
k41 k + k41 k -0, 3)
Tk+1 — Tk Tk+1 — Tk

Iii1/2 = cpbiia)2

ere I 11/ is the hydrostatic imbalance at level k + 1 /2. Here, the Exner pressure I is given by

Kk/(1—K)
I, = (RP—’“"’“) , )

Poo

ere R is the gas constant for dry air, & = R/cp and poo = 10° Pa is a constant reference pressure. The potential temperature at
integer levels 6, is obtained by linear interpolation in height between GA,C,1 /2 and §k+1 /2 and the density py, is obtained from
~ M2 — My )2

= , &)
g Vivrz2 = Vie1/2

ere Vi1 12 is the volume of the model domain below r = ry, 1 /». When the domain bottom boundary is flat, as it is here, Vj 11 /5
given simply by

Vk+1/2 = 471'(7‘2_’_1/2 — T13nin)/3 . (6)

re generally, if there is orography, V}, |, /, must be obtained by

Vit1/2 = /dA max ((’"2+1/2 - TsSurf)/3,0) ; (7

cepted Artic

ere dA is the element of area on the unit sphere and rg,.r is the value of r at the Earth’s surface at that horizontal location.

Fimally r at integer levels is given by rj, = (9(7",6,1/2 +rpqry2) — (Tp_gye + rk+3/2)) /16 or, near the top and bottom boundaries, by

¢

= (rg—1/2 + Try1/2)/2, and @y, is the geopotential evaluated at r = ry.
hus, given an estimate for the values of rj ¢ /2> the imbalance at each level can be calculated. We wish to determine the 7, /2

t solve the system of coupled nonlinear equations

A

I]C+1/2:0’ k:1,7n_1 (8)

The system is solved by an approximate Newton method. The Jacobian of the system is dominated by the dependence of IT;, on py
and the dependence of py on V.., /». Retaining only these terms in the Jacobian leads to a tridiagonal problem for the Newton update.
Convergence of the approximate Newton method is slow unless a good first guess is provided, so 25 iterations are used. The method
may also fail to converge if only a very small but non-zero mass is contained below some 6 surface, so if this condition is detected the

layer inTdirestiiote is pnetegedd byi dophic ghneAdboghbts reserved.



Lagrangian Vertical Coordinate ENDGame II 6

It was found that to compute accurate and noise-free estimates of the unavailable energy a large number of 6 surfaces were needed.
As the available energy is about 500 times smaller than the unavailable energy, the relative error in the available energy will be ~ 500
times greater. To observe the non-conservation error in available energy its relative error needs to be small enough, which requires a
relative error of order 10> in unavailable energy. The calculation of unavailable energy converges at roughly first order in the number
of 6 layers used. For the results shown below the unavailable energy was computed using 1001 6 surfaces uniformly distributed between

the minimum and maximum 6 in the domain.

3¥. Potential vorticity

le

ential vorticity is materially conserved in adiabatic and frictionless flow, and is approximately materially conserved throughout
ch of the real atmosphere on time scales of a few days. Potential vorticity is dynamically important because it controls the balanced,

ortical, component of the atmospheric flow, which dominates the evolution on synoptic scales (Hoskins et al. 1985). Mixing of

16

potential vorticity can lead to the formation of sharp gradients, which may then act as transport barriers (e.g. MclIntyre and Palmer

L

84; Holton et al. 1995). There is also a tendency for long-lived constituents to become correlated with each other and with potential

I

ticity, which can be useful for diagnosing transport and mixing from observations and models (e.g. Newman et al. 1988). See also

discussion in Whitehead et al. (2015) and Saffin et al. (2016).

Here the full form of the Ertel’s potential vorticity is calculated:

A

Q=>—, 9)

d

where ¢ =V x u+ 2Q is the absolute vorticity vector, with € the Earth’s angular velocity vector. The hydrostatic and shallow

osphere approximations, which are often made in diagnosing potential vorticity from models or analyses, are not made here.

~

n the staggered grid used by the model, the three components of V x u are most naturally calculated at different grid locations;

{

e same is true for the components of V6. Therefore, some averaging is unavoidable in order to calculate the full potential vorticity.

ditional terms that arise from converting gradients along model levels to gradients at constant height (‘bent terms’, see Part I

P

ation (8)) also introduce averaging. To minimize the effects of this averaging, the potential vorticity is calculated at the natural

C

rtical vorticity points of the C-grid, that is, at points staggered in the north-south direction relative to  and in the east-west direction

rglative to v. In this way the contribution involving the vertical vorticity, which usually dominates the potential vorticity, experiences

¢

he least averaging.

t is worth noting that, because the bottom boundary is flat in the Ullrich et al. (2014) test case used here, the bent terms will vanish

C

the HB model version and will generally be very small for the LVC-RO version. Therefore the LVC-QL version is expected to be

most strongly affected by the averaging of the bent terms.

A

3.5. Tracers

Johnson et al. (2000, 2002) noted that the equivalent potential temperature fe is approximately materially conserved even in the
presence of condensation and evaporation. In most atmospheric models 6. is not directly predicted, but is a derived quantity obtained
from other, predicted, quantities such as € and specific humidity. Johnson et al. (2000, 2002) therefore proposed a test of numerical
models in which the evolution of the derived quantity e is compared with the evolution of a passive tracer initialized with the same
distribution as #e. They argued that agreement between 6 and the corresponding tracer would be a valuable check on the consistency

betwee iffieticleticprofeoredrity @ipgrigladall rights reserved.
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In a similar way, potential vorticity is a derived quantity in most atmospheric models. Whitehead et al. (2015) proposed an analogous
test in which the evolution of potential vorticity is compared with the evolution of a tracer initialized to have the same distribution. See
the discussion in Johnson et al. (2000, 2002); Whitehead et al. (2015) regarding the advantages of such consistency.

Here, two tracers were included in the test case for the three dynamical core versions. The first one was initialized to equal potential
temperature: 7y = #; the second one was initialized to equal potential vorticity: Tpy = Q. After the initial time the tracer mixing ratio

is materially conserved:
DT,
Dt

DTpyv
Dt

=0, =0 (10)

@e tracers are stored at the cell-centre pressure points in all three model versions. They are advected using a semi-Lagrangian advection
Meme with cubic Lagrange interpolation. This is very similar to advection of the other model prognostic variables; however, in contrast
Qhe treatment of the dynamical 6, the tracer advection does not use a limiter to prevent overshoots in the interpolation. In the LVC

0

del versions the tracers are vertically remapped to target levels at the end of each time step using using cubic Lagrange interpolation

' (s!e Part 1), again without any limiter.

% 3.f Air parcel trajectories

nson et al. (2000, 2002); Whitehead et al. (2015) proposed comparing derived model fields that should be materially conserved
with tracers stored on the model grid and advected by an Eulerian transport scheme. An alternative way to estimate the evolution of
a materially conserved quantity is to compute purely Lagrangian air parcel trajectories. Each parcel may carry a number of labels
carresponding to the materially conserved quantities of interest, for example the initial potential vorticity. At subsequent times the
ential vorticity label may be compared with the potential vorticity derived from model prognostic fields and interpolated to the
rcel’s current location. Agreement between the two calculations gives another test of consistency between different calculations of
grangian conservation.
Hﬂere we combine this trajectory idea with the passive tracer idea of Johnson et al. (2000, 2002); Whitehead et al. (2015) by making
hree-way comparison between (i) directly predicted or derived model dynamical fields interpolated to the air parcel location,
Qsive tracers interpolated to the air parcel location, and (iii) air parcel trajectory labels.
Uor each model version a set of 44310 air parcels trajectories was computed during the 15 day integration. The trajectory starting
oints were distributed uniformly over the Northern Hemisphere on each model level at the heights of the pressure points. The
ectories were stepped forward using a Crank-Nicolson scheme using the same At = 1200 s as the main model integration, and
ing linear interpolation in space to determine the departure point and arrival point velocity. Thus, the calculation is similar to that
d to compute the trajectories in the semi-Lagrangian advection scheme; the key differences are that here the departure point rather
n the arrival point is known, and neither the arrival point nor the departure point can be assumed to coincide with a grid point. The
work of McDonald (1986) and McDonald and Bates (1987) shows that a similar centred-in-time trajectory calculation using bilinear
interpolation of velocities in space gives good accuracy.
Each trajectory carries two labels: its initial potential temperature and its initial potential vorticity, both obtained by interpolating to

the trajectory starting point. At regular intervals, six values are output for each trajectory:

—

the initial value of 6;

N

the current value of € interpolated to the trajectory location;

e

the current value of T} interpolated to the trajectory location;

b

the initial value of Q);

e

tibicartett ivploect ddymapathteditoighe teagectdry location;
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Figure 1. Fractional change in mass for the three model versions: HB (solid line);

Change in entropy

15

LVC-RO (dashed line); LVC-QL (dotted line).
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Figure 2. Change in entropy per unit mass (Jkg 1K ~1) for the three model versions: HB (solid line); LVC-RO (dashed line); LVC-QL (dotted line).

Article

6. the current value of Tpy interpolated to the trajectory location.

near interpolation is used to interpolate fields to the trajectory location; this is sufficiently accurate since the errors do not accumulate

I time.

Results and discussion

ed

[

roclinic instability is triggered by a perturbation in the initial conditions. The disturbance remains linear and grows roughly

\

ponentially for the first few days, becoming noticeable in surface plots around day 6. Subsequently the disturbance becomes strongly

par and wraps up into a series of cyclones and anticyclones. Sharp surface fronts begin to form around day 8, and the flow

cohtinues to become more complex and turbulent up to the end of the run at day 15. See Ullrich et al. (2014) and Part I for more

¢

etails.

1. Entropy

CC,

igure 7 of Part I shows the fractional change in total entropy over the 15 days of the test for a number of configurations of the
amical core. For the three versions tested here the total entropy in fact decreases, by about 1.5 x 10~* for the HB and LVC-QL

sion and by about 0.5 x 10~ for the LVC-RO version. However, these entropy losses are dominated by the imperfect conservation

A,

of mass; this is clear from Figure 1, which shows the fractional change in mass for the three dynamical core versions. Interestingly
the conservation of mass is noticeably better for the LVC-RO version than for either the HB or LVC-QL versions, and this pattern also
holds for the other remapping options tested in Part I (see their Figure 6). It is not clear why this is the case.

To compensate for the imperfect mass conservation, Figure 2 shows the change in the entropy per unit mass for the three model
versions. To put these values in context, a typical global mean value for the entropy per unit mass is 5.8 x 103 Jkg 7K. For the
LVC-QL version there is a small but non-zero change at the end of the first time step. This coincides with a significant change in model
level locations from near their initial heights to their QL target levels when remapping first occurs. Subsequently all three versions

show a Thighttioksivfrenicepppeopynighnds heliweerrdays 8 and 10, followed by a systematic increase.
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ure 3. Mass flux across ¢ surfaces accumulated over the 15 day integration for HB (solid), LVC-R0 (dashed), and LVC-QL (dotted) model versions. A mass loss below
a given 0 surface is plotted as a positive value to indicate an upward cross-isentrope flux.

I

or comparison with Woollings and Thuburn (2006), the rates of change of entropy over the last seven days, expressed in appropriate

units, are 0.35 mWm 2K~ for HB, 0.72 mWm 2K~ for LVC-RO, and 1.14 mWm 2K~ for LVC-QL. These are certainly

A

comparable to the values of around 0.5 mWm 2K ! found by Woollings and Thuburn, despite the use of very different numerical

thods and dissipation mechanisms, and a somewhat different test case.

Mass below isentropes

ed

{

e time evolution of the mass below a set of 201 isentropes was diagnosed, as described in section 3.2. A convenient way to visualize

results is to interpret the change in mass below an isentrope as a mass flux across that isentrope, with a decrease in the mass below

P

onding to an upward flux. The results for the three dynamical core versions are shown in Figure 3.

here is an important caveat to the interpretation of the mass change as a mass flux when the total model mass is not conserved.

C

us, the non-zero mass changes for isentropes in the range 400 K < 6 < 600 K are indicative of imperfect mass conservation at lower

C

tudes rather than a lack of Lagrangian conservation in the stratosphere.

2

nterestingly, all three model versions show an upward mass flux of around 7 to 9 kg m™* across isentropes around 260 K to 270 K.

C

ere is a smaller downward mass flux across higher isentropes, around 290 K for the HB and LVC-RO versions and around 310 K for

LVC-QL version. The timing of these fluxes, which become significant from day 8 onwards, as well as their location in #-space,
is consistent with the idea that they are associated with numerical diffusion related to the formation of sharp fronts near the Earth’s
surface. These results may be compared with those of Woollings and Thuburn (2006), who found a significant downward flux, rather

larger in amplitude, across @ surfaces around 290 K to 300 K.

Expressed as a mass flux per unit time, assumed to occur over the last seven days of the integration, the peak cross-isentrope mass

2571 This is quite small compared to estimates of the real atmosphere cross-isentrope

flux found here is around 1.5 x 107° kg m™
mass flux near the Earth’s surface of around 10~% kgm =25~ (e.g. Juckes 2001). However, when the HB version was initialised with
an initial perturbation in both hemispheres and run for 30 days, giving a more realistic population of weather systems, we found the
peak cross-isentrope mass flux per unit time to be comparable to the real atmosphere (around 1.6 x 10~% kg m™2s~! over the last 15

days). This article is protected by copyright. All rights reserved.
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Figure 4. Fractional change in unavailable internal energy and unavailable potential energy per unit mass for HB (solid), LVC-RO (dashed), LVC-QL (dotted) dynamical
versions.

t1,

Both LVC versions show a downward peak in the cross isentrope flux around 640 K. This corresponds to the uppermost level in

I

model; the highest value of # in the domain is approximately 679 K. Calculating the mass below isentropes both before and after
apping shows that this downward flux is associated with the remapping of the 6 field, which reduces to a linear interpolation or

exfrapolation in the uppermost model layer. Further tests (not shown) indicate that the feature is sensitive to the limiter used with the

A

remapping of €. The limiter is applied even when the remapped 6 is extrapolated at the top of the model, effectively imposing a constant

ther than linear) extrapolation.

3. Unavailable energy

ed

s for entropy, the changes in unavailable energy are dominated by the imperfect conservation of mass. Therefore in Figure 4 we

L

ow the fractional change over time of the unavailable energy per unit mass, decomposed into internal energy and potential energy

tributions, for the three dynamical core versions. The relative changes are small, a few times 107°, and are of similar magnitude

P

o three versions. The small jump in the time series for the LVC-RO version around day 14.5 is associated with the merging of

igéntropic layers needed to ensure convergence of the calculation of the minimum energy state, as discussed in section 3.3.

Consistent evolution of potential temperature

CE

ure 5 shows scatter plots of § versus initial 8, T versus initial 6, and T versus 6 at the trajectory locations at day 15 for the three

&

medel versions (as defined in Subsection 3.6, “initial §” denotes the label carried by a Lagrangian parcel interpolated to the starting
point of the parcel trajectory). The plots are restricted to the range 6 < 350 K because at higher 6 values the dynamics remains very

imple and, with one exception noted below, the correlations are extremely good.

A,

Imperfect correlations between 6 and initial € and between Ty and initial # are clearly visible. The scatter appears to be reduced
slightly for the LVC-QL version compared with the HB and LVC-RO versions, and this is borne out by the root mean square differences
shown in Table 1. Note also that the magnitude of the root mean square differences is quite small, around 1-1.5 K; the vast majority of
points on the scatter plots do lie very close to the diagonal.

The scatter is much smaller for the T versus 6 scatter plots than for the other scatter plots. This is to be expected, since the two
fields are predicted using very similar algorithms. The agreement is not perfect because (i) the advection of 6 uses a simple limiter to
prevent overshoots whereas the advection of Ty does not; (ii) 6 is updated along with the density and wind fields as part of the iterative

nonline@hid ynaetei capreodvied (weedparight wibrighss Fpseswegdated after the dynamical step once the winds are known; (iii) in the HB version
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re 5. Scatter plots comparing 6, Ty, and initial 6, (K) sampled at the trajectory locations at day 15. Left column: HB version; centre column: LVC-RO version; right
umn LVC-QL version. Only trajectories with initial # < 350 K are shown.

~—

is stored at the same locations as w, staggered vertically with respect to Ty. Again, the scatter is reduced slightly for the LVC-QL

compared with the other versions (Table 1).

le 1. Root mean square differences between different pairs of potential temperature variables at day 15, for parcels with initial < 350 K. In the table, 0p
cates initial 6. The units are in K.

‘ ) Height-based  LVC (RO) LVC(QL)
0-09 1.50 1.56 1.08

To-00 1.31 1.41 0.99
To-0 0.36 0.34 0.22

he three quantities 6, Ty and initial § are generally very well correlated for § > 350 K. The exception is at the very top of the model,
ere the LVC versions, particularly the LVC-RO version, have some significant scatter. Figure 6 shows Ty versus 6 for the full model
domain at day 15 for the LVC-RO version. This and other diagnostics show that the errors at the top of the model are primarily in the

field, which shows a drift to lower values. This error is consistent with the spurious cross-isentrope descent near the model top noted

in section 4.2, associated with the application of the limiter in the remapping of 6.

4.5. Consistent evolution of potential vorticity

Scatter plots comparing @, Tpv, and initial () behave differently at different altitudes (as defined in Subsection 3.6, “initial " denotes
the label carried by a Lagrangian parcel interpolated to the starting point of the parcel trajectory). Figure 7 shows the scatter plots for

those trajdstotics ivhomtearitinl dbpydpbatadthightd6@d&ueihere is clearly greater scatter for the LVC model versions, particularly LVC-RO0,
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re 7. Scatter plots of potential vorticity Q, potential-vorticity-like tracer Tpv, and initial potential vorticity, sampled at the trajectory locations at day 15. Left column:
version; centre column: LVC-RO version; right column LVC-QL version. Only trajectories with initial > 360 K are shown. The units are 10~ kg K m2s !,

¢CC

n for the HB version, with the greatest errors apparently in () itself rather than Tpy or initial (). Examining different ranges of

ws that the large scatter occurs for & > 600 K. This is also where the LVC model versions have significant errors in their treatment

A

of 6 (sections 4.2, 4.4), suggesting that the potential vorticity errors might be a direct result of the 6 errors. To test this hypothesis @
was recomputed using T} in place of 6 in (9). The scatter was greatly reduced, confirming the hypothesis.

Figure 8 shows the potential vorticity scatter plots for those trajectories with initial § between 315 K and 360 K. For the Tpy
versus initial ) scatter plots the scatter appears to be somewhat reduced for the LVC-QL version compared with the HB and LVC-R0O
versions. This impression is confirmed by the root mean square differences (Table 2). On the other hand, for @ versus initial () and
Tpvy versus @ the LVC-QL version shows increased scatter compared with the other versions, particularly for large values of Q. A
plausible explanation for this increased scatter is the contribution to () from bent terms, which, as noted in section 3.4, are greatest in

the LV (@larvietsiopron tarcbyfEopyeig ity Al eiglgingserveds. Figure 9 shows a scatter plot of | — Tpy| versus the slope of model levels at
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15 for the same set of trajectories for the LVC-QL version. The best fit line to the data has a gradient 0.225 x 103 kg K m?s~

13

re 8. Scatter plots of potential vorticity @, potential-vorticity-like tracer Tpv, and initial potential vorticity, sampled at the trajectory locations at day 15. Left
version; centre column: LVC-RO version; right column: LVC-QL version. Only trajectories with 315 K < # < 360 K initially are shown. The units are

L and

e correlation coefficient is 0.498, indicating that there is indeed a link between model level slopes and the degradation of Lagrangian

le 2. Root mean square differences between different pairs of potential vorticity variables for parcels with 315 K < ¢ < 360 K. The units are in
6 ke K 2.1
gKms™*.

To directly visualize the comparison between ) and Tpy, Figure 10 shows maps of both quantities on the 330 K isentrope at day 12

for the three dynamical core versions. The main point to note is that, at this model resolution and this time range, the agreement between

@ and Tpvy is very good. In fact, the differences between the three versions are noticeably larger than the difference between @ and

Tpv for any given version. The differences between ) and Tpvy do grow gradually at later times.

The most striking departures from perfect correlations in the potential vorticity variables occur for those trajectories with initial

less thafh3ksticle Kigrutected shoopyriplet. Aphrighessaseiikdcatter plots at day 15 for parcels with initial 6 less than 315 K for the three
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ure 9. Scatter plot of |Q — Tpv| versus model level slope, sampled at the trajectory locations at day 15 for the LVC-QL version. Only trajectories with

Eigure 10. Longitude-latitude maps of @ (left) and T+ (right) on the 330 K isentrope at day 12. Top: HB version; middle: LVC-RO version; bottom: LVC-QL version.

contour interval is 0.5 x 10~ % kg K m%s !,

HB

QL

Acce

PV

PV

Figure 11. Scatter plots of potential-vorticity-like tracer Tpy versus potential vorticity @, sampled at the trajectory locations at day 15. Left: HB version; centre: LVC-R0

version; right: LVC-QL version. Only trajectories with initial § < 315 K are shown.

dynamical core versions. For all three versions, some parcels with small values of Tpy have acquired very large values of @, indicating

large Lagrangian non-conservation of Q.

Longitude-latitude maps of @) and Ty on the 300 K isentrope at day 15 (Figure 12) show that these large (Q values appear along a

narrow Bhaindrbiclicprotebtedtb$@dpymig2260 fighgitesdevadd around 15° to 30° latitude. Comparison with maps of surface 6 (Figure 13)
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Figure 12. Longitude-latitude maps of potential vorticity @ and corresponding tracer Tpy on the 300 K isentrope at day 15. Top: HB version; middle: LVC-RO version;
om: LVC-QL version. The contour interval is 0.5 x 107¢ kg K mZs™?.

Article

ws that the large @) values occur very close to the grounding line of the 300 K isentrope and mainly in the region of strong surface

d

nts.

igure 14 shows @ and Tpy on an equator-to-pole vertical slice at 150° at day 15 for the HB version. A downward intrusion of

C

1gh potential vorticity values from the stratosphere into the troposphere is captured in both fields, indicating a tropopause fold (e.g.

{

olton et al. 1995). The large @ values on the 300 K isentrope are clearly visible at 20° latitude (compare Figure 12). There are also

fge values between 40° and 60° latitude, which occur at lower @ values, around 260 K. At this time these large values of Q are

confined to the lowest 2 km of the atmosphere.

revious studies of frontal formation have shown that the appearance of such large values of @) near surface fronts is to be

¢

ected (e.g. Whitehead et al. 2015). In quasi-geostrophic theory the effect of surface variations in 6 can be interpreted in terms

G

a surface J-function contribution to the potential vorticity (Bretherton 1966). The idea generalizes to semi-geostrophic theory

(8¢. Cullen and Purser 1984) and to the primitive equations (Schneider et al. 2003). In the semi-geostrophic theory of frontal

C

ormation a discontinuity in the surface 6 can form in finite time (Hoskins and Bretherton 1972); when the Lagrangian form of the
equations is solved for later times the surface front extends into the fluid interior as the surface potential vorticity J-function is
liffed (Cullen and Purser 1984). Large potential vorticity values also appear as fronts form in Eulerian primitive equation models
(e.g. Nakamura and Held 1989), though here numerical diffusion is thought to play a role in lifting the potential vorticity d-function
and spreading it to the grid scale. A similar phenomenon occurs in numerical simulations of wake formation for flow past mountains
(Schneider et al. 2003).

With these previous studies in mind, the appearance of large values of @) near the Earth’s surface, as seen in Figures 11, 12, and
14, should not be interpreted as a failure of Lagrangian conservation in any of the dynamical core versions. Rather, it appears to be a
legitimate finite-resolution approximate representation of adiabatic frictionless front formation. Note, by the way, that the tracer Tpvy
cannot be thought of as having a surface J-function contribution, so we should not expect to see the appearance of large values of Tpy

at the sUsceticierissprond taddgech pyrighc hAViatighss aeseseed .
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re 13. Surface ¢ at day 15 for HB version (top), LVC-RO version (middle) and LVC-QL version (bottom). The contour values range from 250 K to 310 K in steps of
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Figure 14. North-south vertical slice at 150° longitude day 15 showing Q and T+ for the HB version. The contour interval is 0.5 x 1076 kg K m?s ™.

Acce

5. Conclusions

Using a standard baroclinic instability test case, we have compared the Lagrangian conservation properties of three versions of a
nonhydrostatic global dynamical core: one using a height based vertical coordinate (HB), one using a Lagrangian vertical coordinate
with resetting of levels after every step to their initial heights (LVC-R0), and one using a Lagrangian vertical coordinate with resetting of
levels after every step to quasi-Lagrangian target levels (LVC-QL). The three versions use very similar semi-implicit semi-Lagrangian
numerical methods based on those used in ENDGame (Wood et al. 2014), so that the effects of the Lagrangian vertical coordinate can

be isolaThk asticledn bycascpdssyhdapyright. All rights reserved.
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None of the dynamical core versions is inherently mass conserving, and all three show a fractional mass loss of order 10~* over the
15 days of the test case. The mass loss for the LVC-RO version is about one third of that for the HB and LVC-QL versions; the reasons
for this difference are not clear. Changes in global integrals of entropy and unavailable energy are dominated by the change in mass.
The fractional changes in the entropy per unit mass and in the unavailable energy per unit mass are of the order of a few times 10>,

and none of the dynamical core versions is clearly better or worse than the others.

All three dynamical core versions show an upward mass flux of around 7 to 9 kg m 2 across isentropes around 260 K to 270 K, and
a smaller downward mass flux across slightly higher isentropes. It is likely that these fluxes are associated with numerical diffusion

sharp 6 gradients at fronts. The magnitude of these low altitude fluxes is similar in the three model versions, and no model version

¢

is clearly better or worse than the others. In the LVC model versions there are errors associated with the application of a limiter at the

p model level in the remapping of 6; these errors show up as a spurious downward mass flux across isentropes around 600 to 650 K.

cl

ally, the diagnosis of cross-isentrope mass fluxes is somewhat obscured by the lack of exact mass conservation in the dynamical

i

catter plots comparing 6, initial 6, and Ty show some small but clear improvements in the consistency between these variables for

!

the¢ LVC-QL version compared with the HB and LVC-RO versions. An exception to this occurs at the top model level, where the errors

indremapping 6 noted above degrade the scatter plots for the LVC versions.

These errors in remapping 6 at the top level also degrade the potential vorticity scatter plots for parcels near the model top for the

At

C model versions, particularly the LVC-RO version. For parcels in the range 315 K < 6 < 350 K all three model versions show very
good consistency between ) and Tpy . The consistency between Tpy and initial @ is improved for the LVC-QL version compared

h the HB and LVC-RO versions. On the other hand, the consistency between @ and initial @) and between Tpy and @ is degraded

d

r the LVC-QL version. A likely cause of this degradation is the contribution to the diagnosed potential vorticity ) from bent terms,
ich involves significant averaging and therefore reduced accuracy. This contribution is much greater in the LVC-QL model version,

ich has significant model level slopes, than in the HB and LVC-R0 model versions.

te

For fluid parcels close to the surface (f < 315 K) there is a strong Lagrangian source of potential vorticity in the vicinity of surface

n all three model versions. This source is consistent with previous numerical simulations of frontal formation and with theoretical

P

as involving the lifting of a surface potential vorticity d-function into the fluid interior. It should not be interpreted as a failure of

C

grangian conservation in the models.

n summary, in Part | and the present paper (Part 1I) we have used a standard baroclinic instability test case to make a clean

C

omparison between versions of a dynamical core using a height based vertical coordinate and using a Lagrangian vertical coordinate

C

with otherwise almost identical numerical methods. Part I shows that the Lagrangian vertical coordinate versions are considerably
aper computationally than the height coordinate version, and have comparable or even slightly better global conservation properties.

However, the Lagrangian vertical coordinate versions are less robust, even when a range of mitigating measures are taken. Part IT shows,

A

some diagnostics, a small but clear improvement in the consistency between dynamical quantities, tracers, and trajectories for the
Lagrangian vertical coordinate version with quasi-Lagrangian target levels. An exception to this, however, is that potential vorticity

appears to be calculated less accurately because of its greater model level slope.
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