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Abstract 

The dynamic behaviour of pile foundations embedded in a horizontally stratified soil 

profile is investigated using the Cone method, which applies only for shallow 

foundations. In this paper dynamic impedance functions have been generated for several 

cases using an enhanced cone frustum approach which deals with the drawback of 

negative damping in the current approach. The frequency domain approach can be 

implemented in systems modelled using the spectral elements. Comparison with the 

coupled Finite Element-Boundary Element (FE-BE) method shows a good correlation 

with the proposed method which does not use transformation to the wave-number 

domain. 
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Introduction 

In industrial facilities which consist of a number of sensitive machines, if any item of 

equipment malfunctions due to excessive vibration or settlement of the foundations, a 

substantial effect on the overall performance of the facility could be catastrophic 

[Chowdhury & Dasgupta, 2009]. Therefore if proper attention is not paid to the design 

of foundations, consequences could be quite far reaching and serious in nature.  

The strength-of-materials approach using cones [Wolf, 1994] to model foundations 

embedded in infinite soil media leads to physical insight with conceptual clarity. The 

treatment of foundations embedded in half-space using Cone models has been initialised 

by Meek & Wolf [1994] and has been performed using a stack of embedded disks 

covering the volume of the foundation. The development of the Cone models for 

layered media in foundation vibration engineering has encountered different phases but 

two main types of approach exist in all these phases. 

The first type is characterised by the concept of one-dimensional wave propagation in 

cone segments with reflections and refractions occurring at material interfaces in 

multiple-layered half-space where it is possible to track the reflection and refraction of 

each incident wave sequentially and determine the resulting wave pattern up to a certain 

stage by superposition [Wolf & Preisig, 2003]. There are limitations to this type of 

approach, particularly related to the depth of the disk embedded in the soil profile. It is 

argued [Wolf & Deeks, 2004a] that for an embedment that is an order of magnitude 

larger than the radius of the disk such as a pile foundation, modifications of the 

flexibilities have to be performed to use Cone models.  

The second type of analysis is introduced by Wolf & Meek [1994b] to study the 

vibrations of a foundation on the surface of or embedded in a layered half-space, based 

on the so-called backbone cone which is generated by specifying the cone frustums 
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through which the wave propagation takes place. The layered half-space is divided into 

slices where rigid disks are confining segments of cone frustums at top and bottom 

while free boundaries are assigned to the remaining parts of the slices beyond the cone 

frustums with reflections only occurring within these free boundaries. After assemblage, 

the dynamic-stiffness matrix of the multiple-layered half-space is obtained, which can 

be used to calculate the dynamic-stiffness matrix of the foundation. Although this 

procedure (called cone frustums) is generally applicable, there is a possibility that the 

radiation damping can become negative, which is physically impossible. A similar 

approach, based on a modified cone frustum method, is outlined by Jaya & Prasad 

[2002] to study the dynamic behaviour of foundations embedded in a layered half-space 

in which the boundaries of soil slices beyond the cone frustums are not assumed free 

and the reflections within the slices depend on the soil properties of each slice and the 

two slices overlying and underlying it using an effective reflection coefficient. The 

same concept is extended for pile foundations later [Jaya & Prasad, 2004]. However this 

modified model is mainly based on the work of Meek [1995] which handles a 

foundation embedded in a dynamic system consisting of a layer with half-spaces on top 

and bottom. This case is not relevant to the general layered profiles comprising multiple 

soil layers overlying each other. Also the results of this modified model for pile 

foundations have not been compared to the original one of Wolf & Meek [1994b] in 

layered profiles. Furthermore the problem of negative damping in the dynamic stiffness 

matrices of cone frustums has not been addressed in the modified model. 

An enhanced model based on the cone frustum approach of Wolf & Meek [1994b] is 

presented in this paper and is compared to the original cone frustum approach, the 

conventional Novak’s method and also to the coupled Finite Element-Boundary 

Element method. The main drawback of cone frustum approaches, yielding negative 

damping, is treated by setting the negative values of damping to zero. Among the 
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current available Cone methods for modelling pile foundations in layered profiles, the 

proposed enhanced model is less demanding than other ones in terms of computational 

cost since no tracking of wave propagation is required and no reflection coefficients are 

calculated to carry out the analysis. The following section gives an overview of the 

Cone model used in the enhanced model. It is worth mentioning that only compressible 

soil with Poisson’s ratio less than 1/3 is addressed in this paper. 

Overview of Cone Model 

Linear behaviour of the site is assumed, hence the soil is assumed to remain linearly 

elastic with hysteretic material damping during dynamic excitation. Figure 1 shows the 

soil below a loaded disk, modelled as a truncated rod (bar) with its area varying as in a 

cone which is called an initial cone with outward wave propagation [Wolf, 1998]. The 

height of the cone’s apex is denoted 0z  and 0 0/z r  is defined as the aspect ratio. This 

ratio, which defines the opening angle of the cone, only depends on the Poisson’s ratio 

  of the soil layer through which the resulting wave travels, and the degree of freedom 

considered. Table 1 [Wolf, 1994] gives the values of aspect ratios for different types of 

motion in terms of the Poisson’s ratio  , dilatational wave velocity pc and shear wave 

velocity sc . 

To model an embedded foundation, the interior soil region is viewed as a stack of rigid 

disks separated by soil layers as shown in Figure 2 where a pile foundation embedded in 

a layered half-space is modelled by the corresponding disks at interfaces. This will lead 

to the dynamic stiffness of the pile foundation as will be demonstrated later. 

In order to obtain good accuracy in all cone approaches, the soil region should be 

discretised in such a way that the thickness of any soil slice should not exceed one tenth 

of the shortest wavelength   of the propagating waves. The maximum vertical distance 



5 
 

e  between two neighbouring disks, as shown in Figure 2, should satisfy the rule: 

[Wolf & Deeks, 2004a] 

max10 5

c
e

 


  
         

(1.1) 

where max  represents the highest frequency the dynamic model will experience and c  

is the relevant wave velocity (dilatational for vertical and rocking motions or shear for 

horizontal and torsional motions). 

The vertical degree of freedom of a disk overlying or embedded in a layered half-space 

will be addressed for the following demonstration. All other degrees of freedom 

including horizontal, rocking and torsional can be handled analogously. The concept 

consists of first specifying the so-called backbone cone of the profile, which determines 

the radii of the disks at the upper and lower interfaces of each cone frustum as shown in 

Figure 3. Discretization of the soil layers into the necessary number of slices will follow 

to define the final geometry of the backbone cone. The dynamic stiffness matrices of all 

the cone frustum segments are then calculated and subsequently assembled together 

with the underlying half-space to form the dynamic stiffness matrix of the 

corresponding backbone cone.  Applying a unit load at the disk and solving for the 

displacement amplitudes at all disks leads to a column in the flexibility matrix [ ( )]fG   

of the free field (or virgin half-space). This procedure is repeated for all disks and their 

corresponding backbone cones as illustrated in Figure 4 to obtain all columns of 

[ ( )]fG  . The following sections provide the necessary equations of the method under 

the translational and rotational motions. 
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Translational motion 

The dynamic stiffness of a single cone modelling an incident wave induced by a disk 

load of radius 1r  on a half-space is given by: [Wolf & Meek, 1994b] 

0
1 1( ) 1

z
S K i

c

    
 

, 
        

(1.2) 
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(1.3) 

where 1K is the static translational stiffness coefficient of the cone modelling the 

incident wave, c  is the relevant wave velocity,   is the load circular frequency and   

is the soil density. 

Also the dynamic stiffness of a single cone modelling the reflected wave of the same 

disk load at a disk of radius 2r  at the lower interface of the cone frustum segment 

presented in Figure 4 is given by: [Wolf & Meek, 1994b] 
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where 2K  is the static translational stiffness coefficient of the cone modelling the 

reflected wave and t  is the thickness of the cone frustum segment. 

The layered half-space is divided into slices where rigid disks are confining segments of 

cone frustums at top and bottom while free boundaries are assigned to the remaining 

parts of the slices beyond the cone frustums with reflections only occurring within these 

free boundaries as observed in Figure 4. The forces acting on the top and bottom disks 

and their corresponding displacements are related as: 
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(1.6) 

The dynamic stiffness matrix of the cone frustum segment [ ( )]S  , which has been 

shaded in Figure 4, is given by: [Wolf & Meek, 1994b] 
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(1.7) 

where 11 12 21 22( ), ( ), ( ), ( )T T T T     are functions representing wave reflections within 

the soil slice and can be calculated as shown in Appendix 1. 

There will be some negative complex values in the dynamic stiffness matrix of each 

cone frustum segment as reported by some authors [Pradhan et al., 2004; Wolf & 

Preisig, 2003]. These values will be set to zero in this paper because it is not physically 

possible to have negative values for the complex parts of the stiffness matrices. 

Rotational motion 

Similarly to the translational motion, the dynamic stiffness of a soil cone segment 

modelling an incident wave induced by a moment load acting on a disk of radius 1r  on a 

half-space is given by: [Wolf & Meek, 1994b] 
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Also the dynamic stiffness of a single cone modelling the reflected wave of the same 

moment load at a disk of radius 2r  at the lower interface of the cone frustum segment is 

given by: [Wolf & Meek, 1994b] 
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where 1K  and 2K  are the static rotational stiffness coefficients of the cones 

modelling the incident and reflected waves, 
4

0
0 4

r
I


 and pc c for rocking motion, 

4
0

0 2

r
I


  and sc c for torsional motion with 0 1r r  for 1K and 0 2r r  for 2K . 

The moments acting on the top and bottom disks and their corresponding rotations are 

related as:  
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(1.12) 

The dynamic stiffness matrix of the cone frustum segment [ ( )]S   can be calculated 

similarly to the translational motion equation and the relevant transfer functions are 

given in Appendix 1. 

Dynamic Stiffness of the Soil-Pile System 

The dynamic stiffness matrix [ ( )]fS   of the free field, which is the inverse of the 

flexibility matrix [ ( )]fG  , is discretised in the nodes corresponding to the rigid disks. 

The following approach was proposed by Wolf [1994] for piles embedded in a 
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homogeneous half-space and it is extended to a layered half-space in this paper based on 

the previously detailed approach.  

Replacing the soil region by the pile material results in a dynamic stiffness matrix 

[ ( )]fS   with the same discretisation but different properties of the pile and soil, 

which can be calculated using the relevant equation from the following: 

2 2[ ( )] [ ] [ ] [ ]f
hr h rS K M I          for horizontal and rocking motions,

 
(1.13) 

2[ ( )] [ ] [ ]f
v vS K M       for vertical motion,

      
(1.14) 

2[ ( )] [ ] [ ]f
t tS K I       for torsional motion,

      
(1.15) 

where: 

[ ]hrK , [ ]vK , [ ]tK  are the matrices of differences in the static horizontal and 

rocking, vertical and torsional stiffness properties respectively of pile and soil solid 

cylinders within the length t . 

[ ]hM , [ ]vM  are the matrices of differences in the mass properties of pile and soil 

solid cylinders for the horizontal and vertical motions respectively. 

[ ]rI , [ ]tI  are the matrices of differences in the mass moment of inertia and the polar 

mass moment of inertia respectively of the pile and soil solid cylinders. 

All matrices are discretised at the disk positions, similar to [ ( )]fS   and are given in 

Appendix 2. 

Since the horizontal and rocking motions of a single pile are coupled when handling the 

lateral motion, both displacements and rotations should be considered in the horizontal 

direction as shown in Appendix 2, where the first and third columns of [ ]hrK  

correspond to lateral displacements while the second and fourth columns correspond to 



10 
 

rotations. However there is no coupling in the vertical and torsional directions and only 

vertical displacements and torsional rotations are considered in the matrices [ ]vK  and 

[ ]tK  respectively as shown in Appendix 2. 

Then the force–displacement relationship of the pile foundation can be established as: 

 ( ) [ ( )] [ ( )] ( )f fP S S u     
       

(1.16) 

where the sum [ ( )] [ ( )]f fS S    represents the dynamic stiffness matrix of the pile 

embedded in soil discretised in all nodes corresponding to the disks. The inverse of this 

matrix represents the dynamic flexibility matrix [ ( )]G   of the coupled soil-pile system. 

The reciprocal of the first element in the flexibility matrix is the frequency-dependent 

dynamic stiffness of the pile’s head ( )pS   and it takes the form: 

( ) ( ) ( )p p pS k i c    
        

(1.17) 

where the real part ( )pk   is the dynamic stiffness coefficient and the imaginary part 

( )pc   is the damping coefficient.  

The soil damping can be considered by using the correspondence principle which 

defines the complex wave velocities as follows: [Wolf, 1985] 

* 1 2s sc c i 
         

(1.18) 

* 1 2p pc c i 
         

(1.19) 

where * *,s pc c are the complex shear and dilatational wave velocities respectively and   

is the soil hysteretic damping ratio. 

The following section will investigate a numerical example of a pile foundation 

embedded in different soil profiles using the proposed enhanced method and other ones 

for comparison.  
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Numerical Example 

A pile foundation that has a radius of 0.3 m and a length of 20 m is embedded in the 

four different soil profiles shown in Figure  3.5 and denoted P1, P2, P3 and P4. The ratio 

of modulus of elasticity of the pile to that of the bottom half-space, / 100pE E  , 

Poisson’s ratio 0.3   for all layers, the ratio of mass density of pile to that of the soil 

layers / 1.25p    and the soil hysteretic damping ratio 5%   for all layers. The 

results of the enhanced cone frustum method, which will be referred to as ‘Enhanced CF  

model’ are compared with the original cone frustum model which in turn will be 

referred to as  ‘CF model’. A reference model, obtained from the coupled Finite 

Element-Boundary Element method, using the Elasto-Dynamics Toolbox (EDT) is also 

used. EDT is a MATLAB toolbox used to model wave propagation in layered soils 

based on the Boundary Element method [Schevenels et al., 2008]. It allows to calculate 

the forced response of the soil due to a disk load (i.e. the flexibility functions), which 

can be used to calculate the foundation impedance functions [Schevenels et al., 2009]. 

The same procedure explained before is used to calculate the dynamic stiffness and 

damping coefficients of the pile foundation using EDT. The solution obtained using 

EDT will be referred to as ‘FE-BE model’ since it couples the stiffness of the finite pile 

elements with the stiffness of the boundary elements of the soil profile. 

Another conventional approach to the impedance functions of pile foundations, 

developed by Novak and his co-workers [Novak & Aboul-Ella, 1978] is also checked 

and compared with the three analytical methods. This approach is based on the dynamic 

soil reactions in the relevant degree of freedom [Novak et al., 1978] using viscoelastic 

materials with hysteretic damping.  

Figures 3.6, 3.7, 3.8, 3.9, 3.10 and 3.11 show the horizontal, vertical and rocking 

stiffness and damping coefficients of the pile foundation embedded in the four soil 
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profiles using the FE-BE model, CF model, enhanced CF model and Novak’s model. 

The simulations show that the correlation between the enhanced CF model and the FE-

BE model, which is considered as the exact solution in Elasto-Dynamics [Wolf & 

Deeks, 2004a], is very good in all degrees of freedom and is always better than both 

Novak’s model and CF model. However both CF models and Novak’s model 

overestimate the damping coefficient over the low frequency range (<5 Hz) in the 

translational degrees of freedom. One reason for this phenomenon in CF models is the 

rigidity of the disks that are flexible in the FE-BE models. Nevertheless the enhanced 

CF model provides a better agreement in overall values compared with the FE-BE 

model. The impact of cancelling negative damping in the enhanced CF model can be 

observed in the stiffness coefficients of the pile foundation embedded in the four soil 

profiles where the correlation with the FE-BE model becomes better than the original 

CF model, especially in the layered profiles. 

Figure 6 and Figure 7 show that the very top layer determines the value of the 

horizontal stiffness coefficient regardless of the underlying layers and as a result the 

piles in profiles P3 and P4 have mostly similar stiffness coefficients. Moreover the 

horizontal stiffness coefficient changes proportionally with the variation of the stiffness 

of the top layer. This observation is less evident in the vertical direction as shown in 

Figure 8 and Figure 9 where all the soil layers contribute to the value of the stiffness 

coefficient. Consequently the pile in profile P4 is stiffer than the pile in profile P3 in the 

vertical direction since its lower half is embedded in the full strength half-space. Also 

the rocking degree of freedom is much influenced by the properties of the top layers as 

shown in Figure 10 and Figure 11 and hence the piles in profiles P3 and P4 have close 

stiffness and damping coefficients. 
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Conclusions 

The dynamic behaviour of pile foundations embedded in a horizontally stratified soil 

profile has been investigated in this paper using an enhanced cone frustum model to 

evaluate their dynamic impedance functions for different configurations of layered 

profiles. Compared to the current cone frustum approach, the proposed enhanced 

approach has treated the main drawback of getting negative radiation damping in the 

current one. 

It has been shown that the dynamic stiffness and damping coefficients obtained from the 

enhanced cone frustum model of pile foundation embedded in layered profiles correlate 

very well with the coupled Finite Element-Boundary Element method for all degrees of 

freedom over the whole considered frequency range. This correlation is better than the 

current cone frustum model and Novak’s model, particularly in the layered profiles. In 

general the proposed Cone model shows a good agreement with the FE-BE method for 

pile foundations embedded in layered profiles. 

Another advantage of the proposed Cone model is that the transformation to the wave-

number domain is not necessary, compared with the analysis in the Boundary Element 

method. Also no tracking of wave propagation is required to perform the analysis. 

Therefore it is significantly less demanding than all previous methods in terms of 

computational cost. Moreover the Cone model provides a clear physical insight of the 

propagation process and describes the free field motion first and then accounts for any 

embedded part in the soil medium. This feature makes it possible to study the soil-

foundation interaction problem under any source of excitation whether it is acting on the 

surface of the profile or is propagating from a seismic source. The analysis is limited to 

small amplitudes of strain since only the linear properties of soil layers were used 

throughout the proposed procedure. 
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 Appendix 1 

Transfer functions in translational motion [Wolf & Meek, 1994b]: 
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Transfer functions in rotational motion
 
[Wolf & Meek, 1994b]: 
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Appendix 2 
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E is the difference in the modulus of elasticity of the pile and soil. 

t  is the soil segment thickness. 

M  is the difference in mass of the pile and soil solid cylinders. 

rI  is the difference in the mass moment of inertia of the pile and soil solid cylinders 

within the length t . 

, ,A I J are the cross section area, the moment of inertia and the torsion constant of the 

pile respectively. 

G is the difference in the shear modulus of the pile and soil. 

tI  is the difference in the polar mass moment of inertia of the pile and soil solid 

cylinders within the length t .  
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Figure 1 – Cone model of a loaded disk overlying a half-space 

Figure 2 – Stack of disks to model an embedded foundation 

Figure 3 – Backbone cone consisting of cone frustums with varying aspect ratios in a 

layered half-space. a) Surface disk, b) Embedded disk [Wolf & Meek, 1994b] 

Figure 4 – Cone frustum segment with free surfaces and two disks showing the wave 

pattern under a vertical load 

Figure 5 – Pile foundation embedded in four different soil profiles P1, P2, P3 and P4 

Figure 6 – Horizontal stiffness and damping coefficients of the pile foundation in 

profiles P1 and P2 

Figure 7 – Horizontal stiffness and damping coefficients of the pile foundation in 

profiles P3 and P4 

Figure 8 – Vertical stiffness and damping coefficients of the pile foundation in profiles 

P1 and P2 

Figure 9 – Vertical stiffness and damping coefficients of the pile foundation in profiles 

P3 and P4 

Figure 10 – Rocking stiffness and damping coefficients of the pile foundation in profiles 

P1 and P2 

Figure 11 – Rocking stiffness and damping coefficients of the pile foundation in profiles 

P3 and P4 
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Table 1 – Aspect ratios for different types of motion [Wolf, 1994] 

 Horizontal 

motion 

Vertical motion Rocking motion Torsional 

motion 

Aspect 

Ratio 
(2 )

8

   
2

(1 )
4

p

s

c

c

 
 

  
 

 
2

9
(1 )

32
p

s

c

c

 
 

  
 

 
9

32


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Figure 1 – Cone model of a loaded disk overlying a half-space 

 

Figure 2 – Stack of disks to model an embedded foundation 
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Figure 3 – Backbone cone consisting of cone frustums with varying aspect ratios in a 
layered half-space. a) Surface disk, b) Embedded disk [Wolf & Meek, 1994b] 

 

 

Figure 4 – Cone frustum segment with free surfaces and two disks showing the wave 
pattern under a vertical load 
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Figure 5 – Pile foundation embedded in four different soil profiles P1, P2, P3 and P4 
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Figure 6 – Horizontal stiffness and damping coefficients of the pile foundation in 
profiles P1 and P2 

 

Figure 7 – Horizontal stiffness and damping coefficients of the pile foundation in 
profiles P3 and P4 
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Figure 8 – Vertical stiffness and damping coefficients of the pile foundation in profiles 
P1 and P2 

 

Figure 9 – Vertical stiffness and damping coefficients of the pile foundation in profiles 
P3 and P4 
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Figure 10 – Rocking stiffness and damping coefficients of the pile foundation in profiles 
P1 and P2 

 

Figure 11 – Rocking stiffness and damping coefficients of the pile foundation in profiles 
P3 and P4 
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