
THIS PREPRINT HAS BEEN ACCEPTED FOR PUBLICATION IN THE INT. JOURNAL OF ROBUST AND NONLINEAR CONTROL

Integral sliding mode fault tolerant control allocation for a class of
affine nonlinear system

L. Chen and C. Edwards∗and H. Alwi

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.

SUMMARY

This paper develops novel fault tolerant integral sliding mode control allocation schemes for a class of
over-actuated affine nonlinear system. The proposed schemes rely on an existing baseline controller and the
objective is to retain the nominal (fault-free) closed-loop performance in the face of actuator faults/failures
by effectively utilizing actuator redundancy. The online control allocation reroutes the control effort to the
healthy actuators using knowledge of the actuator effectiveness level estimates. One of the proposed schemes
is tested in simulation using a well known high fidelity model of a large civil transport aircraft (B747) from
the literature. Good simulation results show the efficacy of the scheme.
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1. INTRODUCTION

Sliding mode control schemes have several unique properties, and these have sustained research
interest in this area since the 1960s. The most important property is its insensitivity (at least
theoretically) to matched uncertainty acting in the control input channels [1, 2, 3]. In conventional
first order sliding mode systems, the order of the closed-loop system is reduced compared to
the open-loop, by an amount equal to the number of input control signals. The reduced order
dynamics during the sliding motion are determined by the choice of sliding surface – which is a
key component of the design process. Many different approaches for the design of linear sliding
surfaces for uncertain linear systems have been developed, and the area is quite mature [2, 3]. In
conventional sliding modes the closed-loop behaviour has two quite distinguishable phases: a) the
pre-sliding phase in which the system states are driven towards the sliding surface to create a sliding
mode; b) the reduced order sliding motion that occurs once the surface is attained. Crucially the
insensitivity properties only manifest themselves once sliding has been achieved. Integral sliding
modes (ISM) were first discussed in the late 1980s and early 1990s [4, 5]. Two clear distinctions
exist between integral sliding modes and conventional first order sliding modes. Firstly, during
sliding, ISM systems retain the order of the original system – i.e. no reduction of order occurs
(although the property of insensitivity to matched uncertainty is unaffected); secondly there is no
reaching phase. Key subsequent work has refined these ideas to combat unmatched uncertainty [6],
investigated output feedback formulations [7, 8, 9] and extended these ideas to nonlinear systems
[10].

The problem of stabilization of affine nonlinear systems, using variable structure control and
sliding mode paradigms, has been widely studied in last decade (e.g. see [11, 12, 13, 14, 10, 15]).
One of the earliest works described in [11] transformed the affine nonlinear system (with high
relative degree in terms of the system outputs) into one in controllability regular form to achieve
output tracking. As argued in [11], a variable structure output feedback control law can be found
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assuming the nonlinear system is decouplable and minimum phase. The work in [12] proposed a
stable sliding mode tracking control scheme. Although various variable structure control laws were
developed to stabilize affine nonlinear systems [14, 16], the occurrence of a sliding mode was often
not exploited. Subsequent work in [17, 18, 19] deals with the design of higher-order sliding mode
controllers for a single-input single output (SISO) nonlinear affine system.

The robustness properties of ISM schemes have been exploited to deal with problems associated
with affine nonlinear systems using first order sliding concepts [4, 5] and later higher order
sliding methods [20, 21]. General ISM schemes were developed for nonlinear affine systems to
minimise the effect of the matched and unmatched uncertainty [10], generalising the results from
[6]. The work in [22] proposed a higher order ISM controller for a class of SISO affine nonlinear
systems formulated in a nonlinear block controllable form, and this approach achieved finite-time
exact compensation of unmatched perturbations with semi-global convergence features, for both
regulation and tracking. In [23], an explicit affine nonlinear model predictive control method was
combined with an ISM control approach to stabilize nonlinear systems in the presence of additive
bounded disturbances, and in [24], an affine nonlinear generalised predictive control method was
proposed. The approach includes an ISM framework and guarantees zero steady-state error for a
class of affine nonlinear systems in the presence of both matched and unmatched disturbances.
In [25], the problem of developing an ISM controller for affine nonlinear systems with input
disturbances and unknown nonlinear terms was considered using the adaptive actorcritic control
method.

In the last few decades, the subject of fault tolerant control (FTC) has been the focus of significant
attention: both theoretically and from an applications perspective (e.g. see [26, 27, 28, 29]). Many
methodologies have been explored such as control allocation (CA) [30, 31, 32, 33], physical
approaches [34], and H∞ approaches [35, 36, 37]. (However it is probably fair to say that the most
mature are based on linear system representations). During this period, the use of sliding mode
controllers as FTC schemes has also been explored [30]. It is at least intuitively clear that certain
classes of actuator faults can be modelled as a special case of matched uncertainty. Consequently, for
faults which only deteriorate the capabilities of the actuators, sliding mode controllers provide de-
facto fault tolerance. Integral Sliding Mode control laws have also been researched in this context
[38]. However in the literature, very little work has focused on fault tolerant ISM schemes for
nonlinear affine systems.

The work in [39] developed a fault tolerant ISM strategy for a class of second order affine
nonlinear systems (in a framework similar to an Euler-Lagrange representation). This work was
then extended and applied to more general nonlinear affine systems [40]. This paper develops fault-
tolerant integral sliding mode control allocation (ISM/CA) schemes for a class of nonlinear affine
systems. In particular, one version develops an ISM scheme that can be retro-fitted to an existing
controller developed using only the primary actuators, to induce robustness with respect to actuator
faults/failures, and a CA component to redistribute the control signals to healthy/fault-free actuators
based on actuator effectiveness level estimates (which are assumed to be known). To demonstrate
the efficacy of the scheme, the retro-fitted ISM/CA procedure will be applied to a longitudinal rigid
body aircraft model and evaluated using the RECOVER benchmark [41].

The main contributions of the paper are: i) fault tolerant ISM schemes developed for linear
time invariant (LTI) [42, 38] and linear parameter varying (LPV) representations [43, 44] are
extended into a more general nonlinear affine framework; ii) compared with the work in [10],
a control allocation component has been embedded to ensure fault tolerance and the dimension
of the switching function reduced; iii) one of the two design schemes developed in this paper
introduces fault tolerance by retro-fitting an integral sliding mode control signal to an existing
baseline controller in the presence of actuator faults/failures.

The structure of the paper is as follows: Section 2 describes integral sliding mode online control
allocation (ISM/CA) schemes created to cope with the presence of actuator faults/failures. In Section
3, one of the proposed ISM/CA schemes is then applied to a nonlinear longitudinal rigid aircraft
model. Concluding remarks are made in Section 4.
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2. FAULT TOLERANT ISM CONTROL FOR AFFINE NONLINEAR SYSTEMS

2.1. Preliminaries

Consider an over-actuated system subject to faults written in the form

ẋ(t) = f(x, t) + g(x)W (t)u(t) + g(x)ζm(x, t) (1)

where the state vector x(t) ∈ D ⊂ R
n where the compact region D contains the origin. It is

assumed that the vector field f(x, t) : D×R
+ → R

n is known and has at least one equilibrium
point which, without loss of generality, occurs at the origin so that f(0, t) = 0 (after a possible
coordinate shift). The signal u(t) ∈ R

m denotes the system inputs. The last term in (1) represents
matched disturbances where the signal ζm(x, t) : Rn ×R

+ �→ R
n represents an unknown vector

representing modelling uncertainties and external disturbances which is assumed to be worst-case-
norm-bounded by a known function ζ̄m(x, t). In (1), the effectiveness level matrix W (t) ∈ R

m×m

is a diagonal matrix where the diagonal terms wi(t) ∈ [0 1]. This is a common fault model in
the literature [26, 30]. Here it is assumed that a good estimate of W (t) is available from a fault
detection and diagnosis (FDD) scheme [45, 46] monitoring the system. Suppose the m columns of
g(x) : D → R

n×m are smooth vector fields and are known. Providing

ε0 ≤ wi(t) ≤ 1 for i = 1 . . .m (2)

where 0 < ε0 < 1, then W (t) is nonsingular and the problem of fault tolerant control can be
addressed, for example, using the approach in [10]. Furthermore, the associated sliding mode will
be unaffected by the faults and uncertainty because both are matched disturbances in equation (1).
The situation in which wi = 0, requiring ε0 = 0, corresponds to the case where the ith actuator
completely fails and the corresponding control signal ui does not appear in (1). In this situation,
the approach in [10] is no longer directly applicable. (It is perhaps unreasonable to expect nominal
performance to be retained in the event of the total failure of certain feedback loops). However,
especially in safety critical systems, often physical redundancy is built-in at the design stage to
mitigate potential catastrophe. The remainder of the paper considers over-actuated systems which
are represented as affine nonlinear systems. The next sections outline the class of systems to be
considered and the assumptions made. In what follows two different design approaches (with two
different sets of assumptions imposed on g(x)) will be considered.

2.2. An ISM Design Approach (Design 1)

Supposed the input distribution matrix in (1) can be factorized as

g(x) = g̃(x)N(x) (3)

where g̃(x) : D → R
n×l is smooth and full rank, and the matrixN(x) is also rank l where l < m. By

assumption the system is over-actuated and l represents the number of controlled outputs required to
ascribed to the system appropriate closed-loop performance. Note that the non-unique factorization
in (3) must be chosen to avoid an ill-conditioned N(x). Consider the following control allocation
scheme to exploit the overactuatedness of the system

u(t) = W (t)N(x)T (N(x)W (t)2N(x)T )−1v(t) (4)

where v(t) ∈ R
l represents a virtual control input. The idea is to design the virtual control v(t)

to provide appropriate closed loop performance and this signal is distributed to the real physical
actuators through (4). Provided the reductions in effectiveness of the actuators and the possibility of
total failures modelled by W (t) are such that det(N(x)W (t)2N(x)T ) �= 0, then the expression in
(4) is well defined. From (4) it can be easily shown that N(x)W (t)u(t) = v(t). Then exploiting (3),
it follows that (1) can be written as

ẋ(t) = f(x, t) + g̃(x)v(t) + g̃(x)N(x)ζm(x, t) (5)
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Ŵ

Integral
Sliding
mode

Controller

Control
allocation

Plant

fault
estimator

weighting
algorithm

Figure 1. Schematic of the Overall Control Strategy

The control law in (4) depends on W (t), i.e. it requires knowledge of the faults/failures. Assume, as
in Fig. 1, a fault diagnosis scheme is available to create an estimate of W (t) denoted by Ŵ (t).
In the ideal control law (4) replace W (t) with the estimated value Ŵ (t) so that

u(t) = Ŵ (t)N(x)T (N(x)Ŵ (t)2N(x)T )−1v(t) (6)

Whilst not a perfect estimate of W (t), suppose Ŵ (t) satisfies

W (t) = (Im −Δ(t))Ŵ (t) (7)

where Δ(t) ∈ R
m×m is a diagonal matrix where ‖Δ(t)‖ < δmax < 1. The matrix Δ(t) is related

to the accuracy of estimation, and if Δ(t) = 0 then Ŵ (t) = W (t). From (7) and noting that
W (t) ∈ [0 I], the assumption ‖Δ(t)‖ < δmax < 1 ensures the diagonal elements ŵi(t) ≥ 0 and
there can be no change in polarity.
Choose an ISM switching function for the system in (5), as proposed in [10], as

σ(x, t) = h(x)− h(x0)−
∫ t

t0

G(x)
(
f(x, τ) + g̃(x)N(x)u0(τ)

)
dτ (8)

where u0(t) is chosen so that the nominal closed loop system

ẋ(t) = f(x, t) + g̃(x)N(x)u0(t) (9)

is stable and has appropriate performance. The nonlinear function h(x) : Rn �→ R
m has the property

that

G(x) :=
∂h(x)

∂x
(10)

and satisfies
rank(G(x)g̃(x)) = l (11)

The objective is to design a control law so that σ ≡ 0 for all time, i.e. to ensure a sliding mode is
enforced on

S = {x ∈ R
n : σ(x, t) = 0} (12)

It follows from (8) that

σ̇ = G(x)g̃(x)N(x)(Im −Δ(t))Ŵ (t)u(x, t) −G(x)g̃(x)N(x)
(
u0(t)−ζm(x, t)

)
= G(x)g̃(x)v(x, t) −G(x)g̃(x)N(x)Δ(t)N(x)†v(x, t) −G(x)g̃(x)N(x)

(
u0(t)−ζm(x, t)

)
(13)

where
N(x)† = Ŵ (t)2N(x)T (N(x)Ŵ (t)2N(x)T )−1 (14)
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Note that N(x)† is a right pseudo inverse of N(x) and by assumption rank(N(x)) = l for all x ∈ D.
Consequently, since Ŵ (t) is diagonal, ‖N(x)†‖ is bounded for any x ∈ D (for details on this special
property of pseudo inverses see [47, 48]). Define

v(t) := N(x)u0(t)− ρ(x, t) (G(x)g̃(x))Tσ
‖(G(x)g̃(x))Tσ‖ (15)

where the scalar ρ(x, t) represents the modulation gain which needs to be chosen to ensure sliding
can be maintained.

Remark 2.1
The problem of calculating u0(t) to stabilize affine nonlinear systems such as those in (9) has
been widely addressed in the literature. For example, methods such as feedback linearization [49],
backstepping [50, 51], methods based on extensions of linear quadratic regulation (LQR) [52], H∞
(or L2) optimal control [53] and sliding mode control [5, 10] have all been applied.

It follows from (13) that

σT σ̇ = −ρ(x, t)σ
T G(x)g̃(x)(G(x)g̃(x))Tσ

‖(G(x)g̃(x))Tσ‖ − σTG(x)g̃(x)N(x)Δ(t)N(x)†N(x)u0

+ σTG(x)g̃(x)N(x)Δ(t)N(x)†ρ(x, t) (G(x)g̃(x))Tσ
‖(G(x)g̃(x))Tσ‖+σTG(x)g̃(x)N(x)ζm(x, t)

≤ −ρ(x, t)‖(G(x)g̃(x))T σ‖+ ‖(G(x)g̃(x))Tσ‖‖N(x)‖2‖N(x)†‖‖u0‖
+ ρ(x, t)δmax‖(G(x)g̃(x))T σ‖‖N(x)‖‖N(x)†‖+ ‖(G(x)g̃(x))T σ‖‖N(x)‖ζ̄m(x, t)

(16)

Here assuming δmax‖N(x)‖‖N(x)†‖ < 1, choose

ρ(x, t) >
‖N(x)‖2‖N(x)†‖‖u0‖+‖N(x)‖ζ̄m(x, t) + η0(x, t)

1− δmax‖N(x)‖‖N(x)†‖ (17)

where η0(x, t) > 0. Provided
δmax‖N(x)‖‖N(x)†‖ < 1 (18)

is satisfied the modulation gain ρ(x, t) is positive.

Remark 2.2
Note the contribution ‖N(x)‖‖N(x)†‖ depends on the plant model and the domain D, and the
inequality in (18) is effectively a limit on δmax which in turn places a constraint in terms of how
accurately Ŵ (t) must represent W (t).

Using the modulation gain from (17) in inequality (16) it follows

σT σ̇ ≤ −η0(x, t)
√

λmin

(
G(x)g̃(x)(G(x)g̃(x))T

)‖σ‖ (19)

Inequality (19) represents the reachability condition and guarantees sliding will be maintained
despite the occurrence of faults.

From (13), during sliding

0 = G(x)g̃(x)N(x)W (t)ueq(x, t) −G(x)g̃(x)N(x)u0(t)+G(x)g̃(x)N(x)ζm(x, t) (20)

where the equivalent control signal

ueq(t) = W (t)N(x)T (N(x)W (t)2N(x)T )−1veq(t) (21)

and veq(t) is the equivalent injection signal associated with (15). Since det(G(x)g(x)) �= 0, equation
(20) implies

N(x)W (t)ueq(t) = N(x)u0(t)−N(x)ζm(x, t) (22)

Substituting (3) into (1) yields

ẋ(t) = f(x, t) + g̃(x)N(x)W (t)u(t)+g̃(x)N(x)ζm(x, t) (23)
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then finally substituting for the equivalent control from (22) yields

ẋ(t) = f(x, t) + g̃(x)N(x)u0(t) (24)

as the dynamics of the sliding motion. From (24) it is clear nominal performance is retained by the
appropriate choice of u0(t) despite the faults and uncertainty.

2.3. A Retro-Fitting Approach (Design 2)

As an alternative, consider a retro-fitted ISM/CA scheme as shown in Fig. 2. The scheme proposed
in Fig. 2 demonstrates the integral sliding mode control signal is retro-fitted to an existing baseline
controller to introduce fault tolerance. Compared with the scheme shown in Fig. 1 where the
control law is created based on the open-loop plant with no cognizance of any existing controller,
the idea of the scheme in Fig, 2 is to use only the primary actuators in the nominal fault-free
case (based on an existing controller), and to engage the secondary (redundant) actuators only if
faults/failures occur. Now suppose g(x) from (1) has rank m for all x(t) ∈ D and the system is over-
actuated. In this subsection, suppose the control input can be written as u(t) = [uT

p uT
s ]

T ∈ R
m

where the component up ∈ R
l represents the primary control inputs and us ∈ R

m−l represent
the secondary control inputs. In this paper, it is assumed m ≥ 2l. Note that this assumption is
restrictive but in many over-actuated systems, especially safety critical systems (e.g. civil aircraft),
the extent of actuator redundancy is large†. Let the input distribution matrix from (1) be conformally
partitioned as g(x) =

[
gp(x) gs(x)

]
where gp(x) : D → R

n×l is associated with the primary
control inputs and gs(x) : D → R

n×(m−l) is associated with the secondary control inputs. For
the development which follows partition W (t) = diag(W1(t),W2(t)) where W1(t) ∈ R

l×l and
W2(t) ∈ R

(m−l)×(m−l). Here the effectiveness matrices W1(t) and W2(t) are associated with the
primary and secondary control inputs, respectively.

u0(x, t)

x(t)
PlantActuator

ISMCCA

Fault
Estimator

Weighting
Algorithm

u(t)

Ŵ (t)

Baseline Controller

FTC

Figure 2. Schematic of the Overall Control Strategy

It follows from the assumptions on g(x) that the l columns of gp(x) are linearly independent vectors
for each x(t) ∈ D. Then there exists a diffeomorphism T (x) : D → R

n such that

[
LgpT (x)

]
:=

[
0

Ẽ21(x)

]
(25)

†For example, a Boeing747 has 29 actuator/control surfaces (including the four engines) which could be potentially
manipulated independently [54, 41].
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where LgpT (x) is the Lie Derivative of T (x) with respect to gp(x) and Ẽ21(x) ∈ R
l×l with

det(Ẽ21(x)) �= 0 for all x(t) ∈ D. Details about T (x) are given in the sequel. Then it follows from
the expression in (25) [

LgT (x)
]
:=

[
0 Ẽ12(x)

Ẽ21(x) Ẽ21(x)Ẽ22(x)

]
(26)

where LgT (x) is the Lie Derivative of T (x) with respect to g(x), Ẽ12(x) ∈ R
(n−l)×(m−l) and

Ẽ22(x) ∈ R
l×(m−l).

Remark 2.3
According to Frobenius’ theorem [55], if Ξ := span{g1, . . . , gl} is involutive, where g1, . . . , gl
are the l columns of gp(x), there always exist smooth functions ψ1(x), . . . , ψn−l(x) such
that [∂ψi/∂x]gp(x) = 0 where i = 1, . . . , n− l for all x(0) ∈ D, and there also exits smooth
functions ψn−l+1(x), . . . , ψn(x) such that the diffeomorphism T (x) = [ψ1(x), . . . , ψn(x)]

T in a
neighborhood of x(0) satisfies (25).

Remark 2.4
In general, it is not straightforward to create a diffeomorphism T (x) to ensure (25). Nevertheless, the
work in [56] for example developed necessary and sufficient conditions for solving T (x) for SISO
systems and the work associated with Section 5.4 in [57] extended the conditions to multi-input
multi-output systems.

Suppose the uncertainty ζm(x, t) in (1) is only associated with the primary control channels. Then
applying the system coordinate transformation T (x) : x → z to equation (1) yields the system
representation

ż(t) = F (z, t) +

[
0 E12(z)

E21(z) E21(z)E22(z)

]
︸ ︷︷ ︸

E(z)

W (t)u(t)+

[
0

E21(z)

]
︸ ︷︷ ︸

E0(z)

ζp(z, t) (27)

where E(z) = Ẽ(x) = Ẽ(T−1(z)) for all z(t) ∈ T (D), and T (D) = {z ∈ R
n : ‖z(t)‖ < r0} where

r0 represents a positive scalar.
In (27), ζp(z, t) represents the matched uncertainty associated with the primary control channels.
The signal ζp(z, t) is assumed to be worst-case norm bounded by a known function ζ̄p(z, t). As
before the actuator fault effectiveness matrix W (t) must be estimated by some fault detection
scheme (e.g. see [26, 30]). A similar analysis to that in Section 2.2 is considered here: it is
assumed that the matrix W (t) cannot be estimated perfectly and the estimated value Ŵ (t) =

diag(Ŵ1(t), Ŵ2(t)) satisfies the relationship in (7).
Let Δ(t) = diag(Δ1(t),Δ2(t)) where Δ1(t) ∈ R

l×l and Δ2(t) ∈ R
(m−l)×(m−l) are unknown

diagonal matrices such that

max(‖Δ1(t)‖, ‖Δ2(t)‖) ≤ δmax < 1 (28)

Specifically, it follows from (7) that

W1(t) = (Il −Δ1(t))Ŵ1(t)

W2(t) = (Im−l −Δ2(t))Ŵ2(t)
(29)

Assumption 2.1
Assume there already exists a primary control law

u0(t) := K(z), K(0) = 0 (30)

that ensures the fault free closed-loop system

ż(t) = F (z, t) + E0(z)K(z) := Fc(z, t) (31)

where E0(z) is defined in (27), is asymptomatically stable for all z(0) ∈ T (D). Equation (31)
represents a nominal system with ‘ideal performance’.
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This assumption formalizes the earlier statement that ‘the system is over actuated’ since asymptotic
stability of (31) and hence (1) when W (t) = Im can be ensured using only the first l control inputs,
i.e. a control input to the healthy actuators of the form

u(t) =

[
K(z)
0

]
(32)

stabilizes the system in (1).

2.3.1. Control allocation component
A control allocation scheme will now be created based on the existing controller in (30) for the
primary surfaces. Define the physical control signals to be sent to all the actuators as

u(t) = N(z)v(t) (33)

where v(t) ∈ R
l is the virtual control and N(z) ∈ R

m×l is the control allocation matrix given by

N(z) =

[
Il

N2(z)(Il − Ŵ1(t))

]
(34)

where the component
N2(z) = E22(z)

T (E22(z)Ŵ2(t)E22(z)
T )−1 (35)

Remark 2.5
Note that E22(z) ∈ R

l×(m−l) and hence a necessary condition for E22(z)Ŵ2E22(z)
T in (35) to

be nonsingular is that m− l ≥ l. Furthermore at most m− 2l of the diagonal elements of Ŵ2 are
allowed to be zero (i.e. failed). Although it is not straightforward to judge if N(z) is full rank for
a nonlinear system, in many real engineering systems such condition has physical meaning and
the system to be controlled is designed to possess these properties at least locally to the operating
conditions. (In the example discussed later in the paper, the rank condition of N(z) is easy to verify.)

Consequently define the allowable fault/failure set as

Wε = {Ŵ = diag(Ŵ1, Ŵ2) : det(E22(z)Ŵ2E22(z)
T ) �= 0 ∀z ∈ T (D)} (36)

Substituting (33) and (29) into (27) yields

ż(t) = F (z, t) +

[
E12(z)(Im−l −Δ2)Ŵ2N2(z)(Il − Ŵ1)

E21(z)(Il −Δ1)Ŵ1 + E21(z)E22(z)(Im−l −Δ2)Ŵ2N2(z)(Il − Ŵ1)

]
v(t)

+

[
0

E21(z)

]
δp(z, t)

(37)

Using the definition of N2(z) in equation (35)

E21(z)E22(z)Ŵ2N2(z) = E21(z)E22(z)Ŵ2E22(z)
T (E22(z)Ŵ2E22(z)

T )−1

= E21(z)
(38)

Substituting (35) and (38) into (37) yields

ż(t) = F (z, t) +

[
E12(z)(Im−l −Δ2)Ŵ2E22(z)

T (E22(z)Ŵ2(t)E22(z)
T )−1(Il − Ŵ1)

E21(z)(Il −Δ1)Ŵ1 + E21(z)(Il − Ŵ1)

]
v(t)

+

[
0

E21(z)

]
δp(z, t)

= F (z, t) +

[
E12(z)(Im−l −Δ2)E22(z)

†(Il − Ŵ1)

E21(z)(Il −Δ1Ŵ1)

]
︸ ︷︷ ︸

Ew(z)

v(t)+

[
0

E21(z)

]
δp(z, t)

(39)
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where
E22(z)

† = Ŵ2E22(z)
T (E22(z)Ŵ2(t)E22(z)

T )−1 (40)

represents a weighted right pseudo inverse of E22(z).
For a given z, since Ŵ2 is diagonal, the pseudo inverse E22(z)

† is norm bounded for all z ∈ T (D)
(see [47, 48] for details). Thus

‖(Im−l −Δ2)E22(z)
†(Il − Ŵ1)(Il −Δ1Ŵ1)

−1‖ ≤ γ0 ∀z ∈ T (D), Ŵ ∈ Wε (41)

for some positive scalar γ0 since ‖Ŵ1‖ < 1.
In a fault-free situation with perfect fault estimation (Δ = 0 and Ŵ = I), equation (39) becomes

ż(t) = F (z, t) + E0(z)(v(t)+ζp(z, t)) (42)

where E0(z) is defined in (27). If the uncertainty ζp(z, t) = 0 and the virtual control v(t) in (33) is
chosen as v = u0 where u0 in turn is defined in (30), ‘ideal’ nominal performance is achieved. Also,
in a fault-free situation with perfect estimation of W (t) (i.e. Δ(t) = 0 and Ŵ1 = Il)

N(z) =

[
I
0

]
⇒ u = N(z)v =

[
u0

0

]
(43)

Thus it can be seen from (43) that only the primary actuators are used in the fault-free situation.

2.3.2. Switching function
Choose the (integral) sliding surface as

S = {z ∈ R
n : σ(z, t) = 0} (44)

where the switching function

σ(z, t) := Gz(t)−Gz(t0)−G

∫ t

0

(F (z, τ) + Eo(z)K(z))dτ (45)

where Eo(z) is defined in (27). Unlike Design 1 where the scaling matrix G(x) is varying, here
G ∈ R

l×n is fixed and as a consequence the design of the equivalent injection signal can be
simplified. The choice of design freedom G employed here is

G :=
[
0 Il

]
(46)

By selecting G as in (46), it follows

GEo(z) = E21(z) and GEw(z) = E21(z)(Il −Δ1Ŵ1) (47)

Since Δ1 and Ŵ1 are diagonal, ‖Ŵ1‖ ≤ 1 and ‖Δ1‖ < δmax < 1, it follows det(Il −Δ1Ŵ1) �= 0.
Then using the fact that E21(z) is nonsingular, GEw(z) is nonsingular.

Using (39) and (45), the derivative of the switching function is

σ̇ = GEw(z)v −GEo(z)(K(z)−ζp(z, t)) (48)

where Ew(z) is defined in (39). During sliding σ = σ̇ = 0, then exploiting the fact the gain
GEw(z) ∈ R

l×l is nonsingular, the equivalent control signal [1] required to maintain sliding is

veq = (GEw(z))
−1(GEo(z)K(z)−GEo(z)ζp(z, t))

= (Il −Δ1Ŵ1)
−1(K(z)−ζp(z, t))

(49)
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Substituting (49) into (39) yields

ż = F (z, t) +

[
E12(z)(Im−l −Δ2)E22(z)

†(Il − Ŵ1)

E21(z)(Il −Δ1Ŵ1)

]
(Il −Δ1Ŵ1)

−1(K(z)−ζp) + E0(z)ζp

= F (z, t) +

[
E12(z)(Im−l −Δ2)E22(z)

†(Il − Ŵ1)(Il −Δ1Ŵ1)
−1

0

]
(K(z)−ζp) + E0(z)ζp

+

[
0

E21(z)

]
(K(z)−ζp)

= Fc(z, t) +

[
E12(z)(Im−l −Δ2)E22(z)

†(Il − Ŵ1)(Il −Δ1Ŵ1)
−1

0

]
(K(z)−ζp)

(50)

where Fc(z, t) is defined in (31). Note when the primary actuators are all healthy with perfect
fault estimation Ŵ1 = Il and ζp(z, t) = 0, (50) reduces to ż = Fc(z, t) i.e. nominal closed-loop
performance.

2.3.3. Closed-loop stability
Define φ = (Im−l −Δ2)E22(z)

†(Il − Ŵ1)(Il −Δ1Ŵ1)
−1(K(z)−ζp(z, t)) and consider (50) as an

interconnection of two operators Σ1 : φ �→ ξ and Σ2 : ξ �→ φ given by

Σ1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż = Fc(z, t) +

[
E12(z)

0

]
︸ ︷︷ ︸

E1(z)

φ

ξ = z

(51)

Σ2 : φ = (Im−l −Δ2)E22(ξ)
†(Il −W1)(Il −Δ1Ŵ1)

−1(K(ξ)−ζp(ξ, t)) (52)

Theorem 2.1
Let γ1 be a positive scalar and assume there is a continuously differentiable, positive semidefinite
function V(z) that satisfies the inequality

∂V
∂z

Fc(z) +
1

2γ2
1

∂V
∂z

E1(z)E1(z)
T (

∂V
∂z

)T +
1

2
K(z)TK(z) ≤ 0 (53)

for all z ∈ T (D). Then if γ1γ0 < 1, where γ0 is defined in (41), the sliding motion in (50) is
asymptotically stable.

Proof
Using the assumption that K(0) = 0 and the fact that f(0, t) = 0, it is straightforward to verify
F (0, t) = Fc(0, t) = 0. Inequality (53) is known as the Hamilton-Jacobi inequality associated with
the operator Σ1 (see Theorem 5.5 in [58]). Then, for each z(0) ∈ T (D), the operator Σ1 is finite-
gain L2 stable and its L2 gain is less than or equal to γ1. From (41), the L2 gain associated with Σ2

is less than or equal to γ0 and therefore a small gain argument guarantees the asymptomatic stability
of (50) when γ1γ0 < 1.

Remark 2.6
Although solving (53) is not straightforward [58], numerical attempts (e.g. [59, 60]) have been
developed in the literature. The work in [59] tries to solve Hamilton-Jacobi inequality using the
Converse Lyapunov theorem. As argued in [60], if there exists a vector field β(z) such that

β(z)Tψ(z)†β(z)− Fc(z)
Tψ(z)†Fc(z) +K(z)TK(z) ≤ 0 (54)

where
ψ(z) =

1

γ2
1

E(z)E(z)T (55)



11

then the solution

V(z) =
∫ z

0

(−Fc(τ) ± β(τ))Tψ(τ)†dτ (56)

will satisfy (53) for z ∈ T (D).

2.3.4. Sliding mode control law
This section describes the appropriate choice of the virtual control law to maintain sliding.

Proposition 2.1
Consider the virtual control based on the integral sliding mode control law

v(t) = u0(t) + vn(t) (57)

where u0(t) is from (30) and represents the baseline controller which ensures ideal performance in
the fault free situation, and the retro-fitted component

vn(t) := −ρ(t, z) E21(z)
Tσ(t,z)

‖E21(z)Tσ(t,z)‖ (58)

where ρ(t, z) is the modulation gain. If the modulation gain is selected as

ρ(t, z) ≥ (δmax‖u0‖+ζ̄p(z, t))‖E21(z)‖+ η0
(1− δmax)‖E21(z)‖ (59)

sliding will be maintained in the presence of the actuator fault/failure represented by W (t) ∈ Wε.

Proof
Using the fact in (47) and substituting (58) into (48) yields

σ̇ = E21(z)
(
Il −Δ1Ŵ1)(K(z)− ρ(t, z) E21(z)

Tσ(t,z)
‖E21(z)Tσ(t,z)‖

)− E21(z)(K(z)−ζp(z, t))

= −E21(z)Δ1Ŵ1

(
K(z)− ρ(t, z) E21(z)

Tσ(t,z)
‖E21(z)Tσ(t,z)‖

)− E21(z)ρ(t, z)
E21(z)

Tσ(t,z)
‖E21(z)Tσ(t,z)‖+E21(z)ζp(z, t)

(60)

Clearly

σT σ̇ ≤ −ρ‖E21(z)
Tσ‖+ ‖E21(z)

Tσ‖‖Δ1‖‖u0‖+ ρ‖E21(z)
Tσ‖‖Δ1‖+‖E21(z)

Tσ‖ζ̄p(z, t)
≤ −ρ(1− ‖Δ1‖)‖E21(z)

Tσ‖+ ‖E21(z)
Tσ‖‖Δ1‖‖u0‖+‖E21(z)

Tσ‖ζ̄p(z, t)
≤ −ρ(1− δmax)‖E21(z)‖‖σ‖+ δmax‖E21(z)‖‖σ‖‖u0‖+‖E21(z)

T ‖‖σ‖ζ̄p(z, t)
(61)

By choosing the modulation gain as proposed in (59), the inequality in (61) can be written as
σT σ̇ ≤ −η0‖σ‖ which represents the standard reachability condition [1].

Substituting (57) and (58) into (33), the physical sliding mode control law yields the expression

u(t) =

[
Il

N2(z)(Il − Ŵ1(t))

] (
K(z)− ρ(t, z) E21(z)

Tσ(t,z)
‖E21(z)Tσ(t,z)‖

)
(62)

Remark 2.7
Equation (62) clearly shows the architecture of FTC scheme: the original control u0 = K(z) is
augmented with a nonlinear term to induce sliding and this control signal is distributed to the
physical actuators through the control allocation matrix N2.

Remark 2.8
It is well known that the discontinuous control law in (62) will generate chattering. In this paper,
in the case study, the discontinuous control signal is approximated by a continuous signal by
approximating the unit vector with a sigmoid function [1, 2]. An alternative way of developing
a continuous controller straightforwardly is to use higher order sliding modes (e.g. the work in
[44, 61] proposes a continuous integral sliding mode fault tolerant control allocation scheme).
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3. DESIGN EXAMPLE

This approach will now be demonstrated using a nonlinear model of the longitudinal motion of a
rigid aircraft [54, 62].

3.1. Longitudinal aircraft model

Consider

⎡
⎣ γ̇

θ̇
q̇

⎤
⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎣ 1

mVtas
(q̄SCL(x) + Tn sin(α+ σT )−mg0 cos γ)

q
1
Iy

(q̄Sc̄Cm(x) + Tnltz cosσt)

⎤
⎦

︸ ︷︷ ︸
f(x,t)

+

⎡
⎣ 0 0

0 0
1
Iy
q̄Sc̄dCm

dδe
1
Iy
q̄Sc̄dCm

dδs

⎤
⎦

︸ ︷︷ ︸
gp(x)

︸ ︷︷ ︸
gs(x)︸ ︷︷ ︸

g(x)

[
δe
δs

]
︸ ︷︷ ︸
u(t)

(63)
where the system states γ, θ, q denote flight path angle (FPA), pitch angle and pitch rate, respectively.
The system inputs δe, δs represent the elevator and horizontal stabilizer deflections respectively. The
variables Vtas, α, q̄, CL(x), Cm(x) in (63) denote true air speed, angle of attack, dynamic pressure,
the component of the lift force coefficient and the component of the pitch moment coefficient
respectively. It is assumed that an auto throttle loop exists which maintains Vtas at a constant value.
The known parameters m, g0, Iy, Tn, ltz, σT , S, c̄ represent mass, gravity, the body axis moment of
inertia, total engine thrust, the distance from the engine centre line to the fuselage reference line,
the engine inclination angle, the wing area and the wing mean aerodynamic chord respectively.
In (63), the terms dCm

dδe
and dCm

dδs
are typically available from online estimation or a lookup table.

As in [63], the vector gp(x) is associated with the primary control surface (the elevator) and the
vector gs(x) is associated with the secondary control surface (the stabilizer) which will be used
when faults/failures occur on the primary control surface.
From (63), f(0) ≈ 0 and it is easy to verify gp(x) and gs(x) are slow varying and smooth using the
data extracted from [54]. In this example, a coordinate transformation is necessary. Consequently
rewrite (63) taking into consideration the effect of actuator faults as

ż(t) = f(z, t) +

[
0 0

g21(z) g21(z)g22(z)

]
︸ ︷︷ ︸

g(z)

Wu(t) (64)

where z = x, g21(z) =
1
Iy
q̄Sc̄dCm

dδe
and g22(z) =

1
Iy
q̄Sc̄dCm

dδs
/g21(z). For this particular system,

W (t) := diag(we(t), ws(t)) where the time varying scalars we(t) and ws(t) represent the
effectiveness of the elevator (the primary actuator) and the stabilizer (the secondary actuator)
respectively. It is assumed that we(t) and ws(t) cannot be perfectly estimated. The estimated
effectiveness values of the actuators are given by Ŵ (t) := diag(ŵe(t), ŵs(t)).
Clearly from (64), the system in (63) is formulated as (27) with E12(z) = 0. Consequently, the
proposed procedure will now be applied to the longitudinal aircraft model.

3.2. Design results

In this example, the nominal inner-loop control law (u0(t) in (30)) has been created by using the
back-stepping procedure developed in [50, 51]. Specifically

u0(t) = K(z) =

(
dCm

dδe

)−1(
Iy q̇des − q̄Sc̄Cm(x) − Tnltz cosσt

q̄Sc̄

)
(65)

where

q̇des = − [
κ1κ2κ3 κ2κ3 κ3

]⎡⎣ γ − γref
θ − γref − α0

q

⎤
⎦ (66)
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and α0 is the angle of attack at a steady state condition [50]. In this example, the gains κ1, κ2, κ3

are chosen as κ1 = 1, κ2 = 0.6 and κ2 = 3 which satisfy

κ1 > −1

κ2 > 0

κ3 >

{
κ2 if κ1 ≤ 0

κ2(1 + κ1) if κ1 > 0
(67)

Notice that during the simulation, the altitude/FPA control and velocity are maintained using a
separate outer-loop controller. Furthermore, an Instrument Landing System (ILS) is used to switch
between an altitude/FPA command (in pilot commanded mode) and sideslip tracking (in automated
landing mode) [63]. In this example, only the pilot command mode is active.
In this example, the control allocation matrix N(z) is created from (34) as

N(z) =

[
1

g22(z)
T (g22(z)ŵs(t)g22(z)

T )−1(1 − ŵe(t))

]

=

[
1

(1− ŵe(t))(g22(z)ŵs(t))
−1

] (68)

because all the terms are scalars.
The switching function σ(t) is selected as

σ(t) := Gz(t)−Gz(t0)−G

∫ t

0

(
f(z, t) +

[
02×1

g21(z)

]
K(z)

)
dτ (69)

where G =
[
0 1

]
and K(z) is defined in (65).

As defined in (62), the final online ISM/CA law is given by

u(t) = N(z)
(
K(z)− ρ(t, z)

g21(z)
Tσ(t, z)

‖g21(z)Tσ(t, z)‖+δ

)
(70)

where ρ(t, z) is selected as 0.65. For implementation purposes, a ‘smooth’ approximation of the
discontinuous signal from (62) is used as shown in (70) where the smoothing factor δ is selected as
0.01.

3.3. Simulation results

In this section, the proposed (retro-fitted) scheme has been tested on the nonlinear RECOVER
benchmark model which represents a high fidelity model of a large transport aircraft (B747) and
has been used in the GARTEUR AG16 programme for the study of FTC schemes [41]. All the
simulations have been conducted at a trim altitude of 2000m, a mass of 263 tons, 25% centre
gravity, a speed of 92.6m/s and flap settings of 20deg. During the simulation, an altitude change
manoeuvre has been commanded and an elevator fault is assumed to occur from 100sec onwards.
In this paper, two simulations are presented where a loss of effectiveness (LOE) fault scenario and
an elevator lock-in-place failure scenario are considered. In the LOE fault scenario, it is assumed
that there exists a time varying estimation error in we associated with the elevator. In the lock-in-
place failure scenario, the elevator is assumed to be stuck (i.e. we = 0) at an offset position in the
presence of an imperfect fault estimation ŵe = 0.2. To demonstrate the efficacy of the scheme, the
system performance in the fault free case and in the case when faults/failures occur on the elevator
in the presence of imperfect knowledge of elevator effectiveness estimation will be compared. The
simulation results associated with the loss of effectiveness fault scenario are shown in Figs. 3-6.
Fig. 3 shows the trajectories of the aircraft states. It can be seen from Fig. 3 that the proposed
scheme can achieve good fault free (close to nominal) performance despite the elevator fault and
a time varying error in the estimate of the elevator effectiveness level. As shown in Fig. 4, the
altitude change manoeuvre is assumed to start at 50sec. Clearly, the fault free trajectories of the
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Figure 3. The trajectories of aircraft states (Loss of effectiveness)

altitude can be retained in the presence of the fault. In this paper, the elevator fault (i.e. a reduction
of elevator effectiveness level) occurred at 100sec. It can be seen from Fig. 5, both the elevator and
the stabilizer try to compensate after the occurrence of the fault. As shown in Fig. 6, the switching
functions are maintained close to zero for both the fault free and faulty cases. The effect of imperfect
estimation of the elevator effectiveness level is also shown in Fig. 6. In Fig. 6, the blue line and the
red line represent the actual effectiveness level we and its estimated value ŵe respectively. Clearly,
the estimated effectiveness level ŵe contains a time varying estimation error. Figs. 3-6 demonstrate
the efficacy of the online ISM/CA scheme.

Figs 7-10 show a comparison between the fault free case and the situation when the elevator
lock-in-place failure occurs at an offset position from 100sec onwards. In this case, the actual
effectiveness level we = 0 (because of the actuator failure), but it is assumed that ŵe = 0.2 due
to an imperfect estimation of we. The state trajectories of the aircraft are shown in Fig. 7 which
demonstrate that fault free performance can be retained despite the actuator failure and the imperfect
estimation error. From Fig. 9 it is clear that once the elevator lock-in-place failure occurs at 100sec,
the stabilizer becomes active due to a reallocation of the control signals. The switching functions,
as shown in Fig. 10, are close to zero for both the fault free and failure cases. The actual elevator
effectiveness level (blue line) and its estimate (red line) are shown in Fig. 10.

4. CONCLUSION

This paper has proposed online ISM/CA schemes for a class of overactuated nonlinear affine
systems with the objective of retaining fault-free (nominal) performance in the face of actuator faults
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Figure 4. The trajectories of aircraft altitude and true airspeed (Loss of effectiveness)
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Figure 5. Control surface deflections (Loss of effectiveness)
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Figure 6. Switching function σ(·) and elevator effectiveness level we (Loss of effectiveness)

and imperfect estimation of the actuator effectiveness levels. The paper extends earlier work based
on linear plant models to a wider class of nonlinear systems. The advantage of the proposed schemes
is that they can be integrated with existing baseline controllers thanks to the special structure of the
ISM formulation. One of the proposed schemes has been applied to a high fidelity nonlinear aircraft
simulation model. The simulation results show the efficacy of the scheme.
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Figure 7. The trajectories of aircraft states (lock-in-place)
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Figure 8. The trajectories of aircraft altitude and true airspeed (lock-in-place)
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