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Mimicking graphene physics with a plane hexagonal wire mesh
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A hexagonal metallic-wire mesh is fabricated and experimentally characterized to demonstrate

graphene-physics in an electromagnetic analogue. In contrast to previous studies, our structure has

a smaller ratio of out-of-plane to in-plane dimensions, more akin to real graphene. This allows for

the development of a simple analytical treatment using equivalent electric circuit theory, and we

demonstrate that the predicted dispersion curves of the supported eigenmodes agree well with those

obtained from experimental measurements. Published by AIP Publishing.
https://doi.org/10.1063/1.5026355

Many concepts from solid state physics may be applied

to electromagnetic waves propagating in periodic media.1,2

Since the pioneering works of Yablonovitch and John in

1987,3,4 artificial metallic and dielectric structures that to

some extent mimic natural materials have been created and

extensively studied in 1D, 2D, and 3D. Reflecting the anal-

ogy with solid state crystals, such structures were named

photonic crystals, sometimes also being referred to as elec-

tromagnetic crystals. Early photonic crystals were realised at

microwave frequencies,3,4 and this regime remains a good

spectral domain for studying physical phenomena that would

be more difficult to implement at higher frequencies.

In the last decade, interest in the photonics of artificial

graphene, which mimics some aspects of the electronic

behaviour of real graphene,5 has emerged.6 Because it offers

the advantage of having a much higher degree of freedom

than real graphene, such an analogue can be used to study

phenomena that are difficult or impossible to otherwise

explore. For instance, artificial graphene systems allow for

the control of the coupling between neighbouring elements

and thus manipulation of the band structure.7,8 By changing

the inter-element coupling strength, one gains control over

the dispersion gradient at the Dirac crossings, i.e., group

velocity. Pseudo-magnetic fields, another intrinsic phenome-

non of graphene, is an effect that is rather difficult to observe

as it requires the creation of non-trivial patterns of high

strain, e.g., “nanobubbles.”9 Such “nanobubbles” are gener-

ally not present in graphene films and require specific growth

conditions. In contrast, pseudo-magnetic fields can more

readily be created in artificial graphene systems either by

arranging elements into a pattern that mimics strained

“nanobubbles” or by using a specifically engineered coupling

pattern with the elements remaining at the nodes of the hex-

agonal lattice. In addition, at present, artificial lattices with

triangular symmetry are being extensively exploited as a

platform to explore the physics of topological states.10–12

In the present work, we study the band structure of

bound electromagnetic modes supported by a plane, hexago-

nal, perfectly conducting metal-mesh. In contrast to previ-

ously considered electromagnetic graphene systems,6,7,13 our

mesh has an exceedingly large ratio of in-plane to out-of-

plane dimensions (lattice constant/wire thickness�200),

which is even higher than graphene itself. This system allows

for a simple analytical treatment using electric circuit theory,

and we demonstrate its benefits in predicting and analysing

various graphene-like phenomena. We validate our model

via comparison with experimentally measured dispersion

curves of the bound electromagnetic waves at microwave

frequencies.

The sample was fabricated via conventional lithographic

techniques, with the hexagonal pattern being etched into a

19 lm-thick copper layer on a 50 lm thick dielectric substrate.

The sample comprises approximately 5000 hexagons of side

length a¼ 3 mm and wire width d¼ 1 mm (see Fig. 1).

Electromagnetic modes within the sample are excited

and detected using a pair of stripped-end coaxial cables as

near-field antennas, each connected to a port of a microwave

vector network analyser (VNA). Both antennas are placed

with their coaxial axes normal to the sample surface with the

metal tips approximately 0.5 mm away from the surface.

Source and detection antennas are positioned on opposite

sides of the sample to limit direct coupling between them.

The detecting probe is raster scanned in 2D across the sam-

ple surface with 1 mm step-spacing in both directions. The

FIG. 1. Schematic representation of the sample studied. It is a copper hexag-

onal mesh with a thickness of 19 lm on a dielectric substrate with a thick-

ness of 50 lm. The length and width of the wire interconnects are 3 mm and

1 mm, respectively. Source and detection antennas are positioned on oppo-

site sides of the sample and connected to a VNA. Red dashed arrows indi-

cate the scanning directions of the detecting probe.a)Electronic mail: y.dautova@exeter.ac.uk
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amplitude and relative phase of the local electric field (pre-

dominantly the z-component, due to the orientation of the

antenna) are measured at each spatial coordinate over a fre-

quency range of 1 to 35 GHz, in 25 MHz steps.13

A Fast Fourier Transform (FFT) is then applied to the

measured field-data in space to give a 2D map of the modes in

momentum space (kx, ky) (equi-energy contours). Combining

such curves for different frequencies produces the full mode-

dispersion.

The measured band structure of the system is plotted in

Fig. 2. As can be seen, there are linear Dirac crossings at the

corners of the Brillouin zone at K and K0 points at a fre-

quency of fD¼ 30 GHz. The frequency of the Dirac crossings

is defined by the parameters of the mesh and is dictated by

the resonance frequency of the wires as discussed below.

The structure explored in this study is a simply con-

nected hexagonal mesh formed from metallic wires. It may

also be viewed as a triangular lattice with two Y-shaped ele-

ments per unit cell (see Fig. 3), with each Y shaped element

being equivalent to a carbon atom in graphene itself.

This system supports electric currents propagating in the

wires, and so, from electric circuit theory, it is possible to

model the expected dispersion of the bound electromagnetic

waves. Consider a minimal LC model which is capable of

representing the electrodynamics of such a wire-based hex-

agonal mesh. The primary source of inductance and capaci-

tance is the self-inductance and self-capacitance of the

connectors. The currents are obviously flowing in the wires

and thereby define the inductance, and since the area of the

junctions is small, the capacitance is also defined by the

wires.

Let the voltage on each site shown in Fig. 3 be VX, where

X is the site index. For a mode with Bloch wave vector

k ¼ ðkx; kyÞ, the voltages VD0 and VE0 can be obtained from the

voltages on the sites D and E by applying respective transla-

tions as VD0 ¼ VDnkg
�
k and VE0 ¼ VEnkgk. The charges on the

nodes C, D, and E are QC ¼ CVC; QD ¼ CVD; QE ¼ CVE,

where C is the connector self-capacitance. Note that there is no

charge accumulation on the A and B sites. The charges on the

capacitors (links) C; D0, and E0 can change due to the current

flowing through each link according to the standard capacitor

current-voltage relation, C dVX

dt ¼ JY!X þ JZ!X, where

X ¼ ½C;D0;E0�, while Y and Z are the neighboring sites of X.

In turn, the currents are related to the relevant voltage drops via

Faraday’s induction law and the definition of inductance as

�L dJY!X

dt ¼ VY � VX. Sites A and B participate “passively”—

the algebraic sum of currents entering these sites is zero,

according to Kirchhoff’s law.

To simplify the system of equations, it is convenient to

introduce flux variables UX which are defined as VX¼ –dUX/dt.
These flux variables represent the line integral

Ð
A � dl taken

over the line passing through each circuit component, where A
is the vector potential. In particular, the flux across an inductor

is given by the difference in flux variables between its

terminals.

After simple transformations, one can express the cur-

rents in terms of the three flux variables. This gives the fol-

lowing equations for the sum of the currents at the points C,

D, and E:

JC ¼ 4UC � ð1þ nkg
�
kÞUD � ð1þ nkgkÞUE

� �
=3L;

JD ¼ �ð1þ n�kgkÞUC � ð1þ ðg2
kÞÞUE þ 4UD

� �
=3L;

JE ¼ �ð1þ n�kg
�
kÞUC � ð1þ ðg2

kÞ
�ÞUD þ 4UE

� �
=3L:

FIG. 2. Dispersion of the electromagnetic bound modes supported by the

wire-mesh sample, obtained by FFT of the measured near-field above the

surface. Shaded triangular areas indicate the radiative region bound within

the light cone. The inset in the red dashed frame is a zoomed view of the

area in the vicinity of the Dirac point, normalised to 1.

FIG. 3. The circuit model for reproducing the electrodynamics of a wired

honeycomb lattice. The unit cell is represented in bold. Capacitors linked by

dashed lines represent the mutual capacitance of adjacent wires, which also

needs to be taken into account to fully match the observed dispersion.
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Here, nk � ei3kxa=2; gk � ei
ffiffi
3
p

kya=2, and a is the side of the

hexagon cell. On the other hand, JX ¼ C _VX ¼ �C€UX. For a

mode with frequency x and assuming time-harmonic waves,

we can write JX ¼Cx2UX. Thus, these three equations

define an eigenvalue problem that can be easily solved to

yield the dispersion of the modes supported by the mesh.

The square of the frequency x2 is the eigenvalue to be found,

and the flux variables (or potentials) on the sites C, D, and E

form an eigenvector for each normal mode.

Let us discuss the mode dispersion that is plotted in Fig.

4. First, one can notice the presence of an unusual flat (zero

gradient) branch with the highest frequency (green line). The

origin and structure of this mode can be explained as fol-

lows: Let us assume that the flux variables UC; UD; UD0 ; UE,

and UE0 are arranged in such a way that they cancel the flux

variables UA and UB (and hence the voltages on all A and B

sites). If this is indeed the case, full decoupling should occur

as the capacitors are only connected to each other via the A

and B sites. In the configuration in which UA ¼UB ¼ 0, each

capacitor is effectively discharged to ground via the two par-

allel inductances. In other words, in the analysis of the flat-

banded mode, A and B can be replaced with a virtual ground.

This is equivalent to an array of decoupled LC-circuits, each

of inductance L/2 and capacitance C, which gives the degen-

erate resonant frequency
ffiffiffi
2
p

X0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2=LC

p
.

For the other two modes in Fig. 4, the dispersion is

obtained by diagonalizing the eigenvalue equations. This

gives

x2ðkÞ ¼ X2
0

3
36

�����2 cos

ffiffiffi
3
p

2
kya

� �
þ exp

i3

2
kxa

� ������
0
@

1
A;

where kx and ky are the components of the wave vector and a is

the side of the hexagon. Unsurprisingly, this reproduces the dis-

persion law for electrons in graphene found using the frame-

work of the tight-binding model. Similar to real graphene and

other artificial graphenes, Dirac crossings at K and K0 points

are a result of the lattice symmetry (i.e., two elements per unit

cell in the hexagonal array). Near the C-point, k! 0, and this

solution yields a linear dispersion xðkÞ ¼ X0ajkj=2. The posi-

tions of the Dirac points in the Brillouin zone are determined

by requiring that the splitting between the modes vanishes. This

condition gives K ¼ 4p=3
ffiffiffi
3
p

a; 0
� �

; K0 ¼ �4p=3
ffiffiffi
3
p

a; 0
� �

with the frequency xðKÞ ¼ X0 ¼ 1=
ffiffiffiffiffiffi
LC
p

. By expanding the

modulus in the above equation near the K-point (and similarly

near the K0-point), one can obtain the mode dispersion in the

vicinity of the Dirac points xðkÞ � X0ð16ðjk � KjaÞ=4Þ;
where the Dirac velocity is X0a/4, i.e., one half of the velocity

near the C-point.

The above presented minimal LC circuit model reproduces

both the Dirac crossing at the K-points and qualitatively the

shape of the measured dispersion curves. However, a far better

comparison between the experimental and analytical dispersion

curves is achieved by taking into account the mutual capacitance

of the wires Cmut. In this more general case, the left-hand side of

Eq. (1) is recast in a matrix form as bCðkÞx2U, where bCðkÞ is

the capacitance matrix, and U¼ (UC, UD, UE) is the vector

formed by flux variables. The right-hand side is bLðkÞU, where

the elements of the matrix bL represent inductances. Hence, the

vector formed by the flux variables must satisfy the equation

x2ðkÞbCðkÞUðkÞ ¼ bLðkÞUðkÞ: Such an equation defines a gen-

eralized eigenvalue problem. The dispersion xðkÞ is found from

the characteristic equation det½bCðkÞx2 � bLðkÞ� ¼ 0. MatricesbCðkÞ and bLðkÞ can be derived from Kirchhoff’s laws, or one

can analyze the capacitive and inductive contributions to the

energy, WE and WM. The former contribution is of the form

WE ¼ V�bCðkÞV=2, where the potentials V ¼ � _U, while the lat-

ter is WM ¼ U�bLðkÞU=2. Expressing WE and WM through the

energies stored in each of the circuit capacitors and inductors

yields expressions for the capacitance and inductance matricesbLðkÞ and bBðkÞ. This eigenvalue problem of the system with the

mutual capacitance taken into account is solved numerically.

The resulting dispersion of the first two modes is shown in Fig.

5 where it is plotted on top of the experimental data. There is

very good agreement between the modeled and measured dis-

persion curves. To obtain this match, the values of C, Cmut, and

L used in the model were first estimated from analytical approxi-

mations for the capacitance and inductance of a real, square-

FIG. 4. Dispersion relation obtained from the LC circuit model. The flat

mode (green) is an artefact of the minimal LC circuit model.

FIG. 5. Mode dispersion obtained through FFT of the experimental data

(black and white) and dispersion of the two lowest modes obtained from the

LC circuit model (color dashed lines).
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shaped wire,14,15 and then, their values were varied within

appropriate bounds until the best match with the experimental

data was achieved. The following values were used to obtain the

presented dispersion: C¼ 0.021 pF, Cmut ¼ 0.015 pF, and L¼ 2

nHn.

In conclusion, we have fabricated a simple metallic hex-

agonal mesh as a microwave-photonic-analogue to graphene

and experimentally measured the bound electromagnetic

eigenmodes it supports. We determine the dispersion of these

modes and show linear crossings at the K and K0 points of

their hexagonal Brillouin zone—mimicking the well-

celebrated Dirac cones in real graphene. We propose a simple,

analytical LC circuit capable of representing the electrody-

namics of the propagating modes. Dispersion curves calcu-

lated with this circuit model are shown to fully match the

experimental data using realistic values of the inductance and

capacitance of the wire mesh. We believe that the results of

this work will help in a wider exploration of graphene physics.

For instance, in contrast to previously reported microwave

graphene systems, the simplicity of the “hexagonal wire-mesh

graphene” allows for easy manipulation of the coupling

strength between neighboring elements by altering the cross-

section of the connectors without changing element positions.
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