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Abstract 

Cooperative behaviour among unrelated individuals is an evolutionary paradox. 

Research suggests that an individual’s propensity to cooperate and its response 

to experiencing cooperation or defection from its social environment consistently 

varies among individuals and as a function of external factors. The biological and 

psychological underpinnings of such behavioural variation remain unknown; they 

can, however, provide more insight into the evolution and maintenance of 

cooperation among non-kin. This thesis explores the proximate effects of 

experiences of cooperation or defection from the social environment, as well as 

possible proximate drivers of cooperative behaviour, using the Trinidadian guppy 

(Poecilia reticulata) as a study system. 

Firstly, the behavioural rules underpinning an individual’s decision to cooperate 

or not with unfamiliar individuals in the presence of specific or non-specific 

information were explored. When fish had information about their social partner’s 

cooperativeness, they behaved in a manner consistent with direct reciprocity, 

copying their partner’s last move. When paired with an ostensibly novel partner, 

a different, or at least additional, behavioural rule seemed to be employed.  

In order to help understand the drivers of individual variation in cooperative 

behaviour, phenotypic selection on cooperativeness was carried out over three 

filial generations, resulting in fish of high cooperativeness (HC) and low 

cooperativeness (LC). The divergence of individual cooperativeness observed 

between the two phenotypic selection lines suggests that cooperative behaviour 

in the context of predator inspection is at least in part heritable. Cooperative 

behaviour of F3 fish was found not to correlate with boldness or exploratory 
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behaviour; HC and LC fish did, however, differ in some aspects of sociability and 

agonistic behaviour. Possible proximate neuromodulatory mechanisms 

underlying these differences in cooperativeness were also explored, focusing on 

brain expression patterns for the isotocin receptor (itr) gene in F3 females. HC 

females were found to have higher mid-section itr expression levels than LC 

females. 

Finally, I explored the effects of experiencing cooperation or defection on 

monoaminergic neurotransmission, which is thought to instantiate the effects of 

such experiences on the individual’s internal state. My findings suggest that 

experiencing cooperation or defection from the social environment affects internal 

state; this phenomenon may be crucial for the appropriate adjustment of the 

behavioural response to such experiences, and for the emergence of behavioural 

rules such as generalised reciprocity. 

Taken together these results suggest that neuromodulatory mechanisms are 

pivotal for the perception of stimuli from the social environment in the tested 

cooperative context and that variation in cooperative behaviour may be 

underpinned by individual differences in the structural properties of such systems. 

They also provide insight into how behavioural input may affect the behavioural 

response to such experiences, and ultimately how such mechanisms may lead 

to the evolution and maintenance of cooperation.  
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1.1 Introduction 

Across taxonomic groups and levels of organisation individuals pay a cost so that 

others can benefit. The evolution and maintenance of such cooperative behaviour 

poses a paradox to the traditional theory of natural selection; whereas kin 

selection satisfactorily explains cooperation among related individuals, the 

mechanisms maintaining cooperation among unrelated individuals still remain 

largely unclear (Clutton-Brock, 2009; Soares et al., 2010). One common 

suggestion is that individuals suffer temporary net costs due to exchanging 

resources or services when providing assistance – these costs, however, are 

exceeded by subsequent benefits when they receive assistance from individuals 

they have previously helped (direct reciprocity: individual A helps individual B, 

and consequently individual B helps individual A), from others who have been 

helped by that individual (downstream indirect reciprocity: individual A helps 

individual B – individual A is consequently more likely to receive help from 

individual C), or by others who have received help from any other individual in the 

population (generalised reciprocity: individual A helps individual B, who, in turn, 

helps individual C); that is, when cooperative behaviour is reciprocated (Hamilton 

& Axelrod, 1981; Nowak & Roch, 2007; Trivers, 1971). Along this vein, there have 

been several attempts for a theoretical explanation of the role of conditional 

cooperation in the evolution and maintenance of cooperation. 

For conditional cooperation to occur individuals have to navigate their 

social environment and change their behaviour (such as the decision to 

cooperate with another individual) according to the current social information; 

these responses can be fixed action patterns prompted by an environmental 

stimulus in a deterministic manner (Taborsky & Oliveira, 2012). However, with 
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increasing environmental variability the need for adaptive modification of 

behaviour according to the current context and past experiences is necessary. In 

fact, the constant assessment of an individual’s social environment is pivotal to 

the appropriate modification of its own behaviour, in order to optimise its response 

and profit from the opportunities offered by the social environment – a concept 

known as ‘social competence’. This framework implies adaptive variation to the 

response to the same social stimuli depending on the additional social 

information, and has been shown to affect the performance of a range of different 

social behaviours, including cooperative interactions (Bshary & Oliveira, 2015; 

Taborsky & Oliveira, 2012). 

Animals are thought to choose the optimal behavioural response to a given 

situation from several alternatives based on a subjective value based on them 

(Rangel, Camerer, & Montague, 2008). A key step of this value-based decision-

making is the computation of a representation of the decision problem, where 

internal and external states, as well as possible lines of action, are identified. 

Exploring the neuropsychological mechanisms mediating changes in internal 

state will be, in this sense, fundamental in order to understand how social stimuli, 

such as experiencing cooperation or defection, affect an individual’s behavioural 

output. 

Several studies have shown that the propensity of individuals to cooperate 

and their response to experiencing cooperation or defection from their social 

environment varies within and among individuals and as a function of external 

factors. The biological and psychological underpinnings of this behavioural 

variation remain largely unknown, but can help us understand the drivers that 

maintain cooperation, particularly among non-kin. In the introduction to this thesis 
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I will examine the behavioural components of cooperative behaviour, as well as 

the proximate mechanisms involved in their regulation. Firstly, I will consider the 

cognitive underpinnings of conditional cooperation and their role in widely used 

frameworks, such as direct reciprocity, that aim to explain the evolutionary 

paradox of cooperative behaviour. I will then explore the proximate 

neuropsychological mechanisms implicated in social decision-making, and thus 

possibly affecting the level of cooperative investment made by individuals. Finally, 

I will introduce the study system used here, the Trinidadian guppy (Poecilia 

reticulata), and discuss cooperation in the context of predator inspection and the 

factors affecting the expression of cooperative behaviour in this species. 

1.2 Cognitive underpinnings of conditional cooperation in social animals 

There are many theoretical attempts at explaining the basis of an individual’s 

decision to cooperate or not. Within the conceptual framework of social 

competence, animals are constantly monitoring their social environment and 

adjust their behaviour on the basis of both the current information and past 

experiences (Taborsky & Oliveira, 2012). In this sense, the decision to offer or 

withhold assistance is going to be conditional to the information available to the 

individual. Social competence implies variation in the expression of social 

behaviour according to social stimuli and additional social information; this 

variation should be adaptive, enabling organisms to optimise their behavioural 

output and profit from the opportunities offered by their social environment 

(Taborsky & Oliveira, 2012). Crucially, social competence requires competent 

identification and assessment of relevant environmental stimuli; motivational and 

attentional mechanisms are therefore expected to be coupled with learning rules 

that lead to behavioural adjustment (Lotem & Halpern, 2012). In this sense, 
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behavioural flexibility will depend on cognitive abilities [the acquisition, retention 

and use of information (Brosnan, Salwiczek, & Bshary, 2010)] that allow 

individuals to adapt their behaviour according to specific situations in a variable 

world. 

Cognitive abilities enhancing social competence may have undergone 

strong selection and contributed to the evolutionary emergence of the enlarged 

(relatively to body-size) neocortices of birds, primates, cetaceans and other 

cooperative vertebrates [the Machiavellian Intelligence hypothesis (Whiten & 

Byrne, 1988) and the Social Brain Hypothesis (Dunbar, 1998; Dunbar & Shultz, 

2007; Emery, Clayton, & Frith, 2007)]. Nonetheless, the ubiquity of cooperation 

in nature implies that both cooperation and defection do not require advanced 

cognition and can be achieved through simple means; consequently, one cannot 

simply infer cognitive complexity from the emergence of cooperation alone 

(Brosnan et al., 2010).  

One way in which cognition may be important for at least some forms of 

cooperation is the facilitation of coordination between partners (Brosnan et al., 

2010) – in fact, for some the definition of cooperation relies not on the fitness 

consequences, but on the fact that individuals ‘act together’ (Noë, 2006; 

Taborsky, 2007).  Coordinated action is particularly important in the context of 

cooperative hunting in both invertebrates and vertebrates, but its cognitive 

requirements differ between taxa: in eusocial insects coordination seems to be a 

product of recruitment and anatomical or age-related specialisation, whereas in 

vertebrate intraspecific collaborative hunting [observed in only a handful of 

species, such as chimpanzees (Pan troglodytes) (Boesch, 1994) and dolphins 

(Tursiops truncatus) (Gazda, Connor, Edgar, & Cox, 2005)] individuals need to 
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be able to perform a variety of behaviours and simultaneously keep track of 

others’ actions and adapt their behaviour accordingly (Brosnan et al., 2010). The 

complexity of collaborative hunting in fish has so far been restricted to the 

interspecific context [for example between groupers (Plectropomus pessuliferus) 

and giant moray eels (Gymnothorax javanicus) (Bshary, Hohner, Ait-el-Djoudi, & 

Fricke, 2006)] and seems similar to collaboration in eusocial species, with each 

partner assuming the role defined over the course of selection (Brosnan et al., 

2010). 

Cognition may also help the individual make appropriate decisions 

concerning the best behavioural option in each situation – that is, to decide the 

optimal level of cooperative investment for a given situation. The choice of the 

appropriate behavioural response in this context would require the processing of 

information such as the current internal state or the partner’s behaviour during 

past interactions. An actor’s current internal state is immediately affected by its 

partner’s behaviour – hence responding to current information is more 

straightforward than delayed response (Brosnan et al., 2010). If there is an 

interval between discrete interactions, the partner’s last move is less likely to 

affect the actor’s state; in this case the individual’s behavioural decision should 

be based on some form of memory, either an explicit memory of the interaction, 

or an emotional reaction to it (Brosnan & de Waal, 2002). Moreover, the 

modification of current behaviour based on information from previous specific 

interactions assumes individual recognition – an ability that is widespread across 

vertebrates, including guppies (Bhat & Magurran, 2006; Griffiths, 2003; Griffiths 

& Magurran, 1997a) – and the ability to process and memorise past interactions 
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with specific individuals (book-keeping) (Stevens & Hauser, 2004; Voelkl, 2015), 

making this process more cognitively demanding. 

Another problem posed by delays between investment and compensation 

is temporal discounting. Cooperative acts involve a decrease in the immediate 

payoff of the cooperating individual and an increase in the immediate payoff of 

recipient of helping behaviour (“investment”, see Bshary & Bronstein, 2011). In 

this context, individuals may choose a smaller immediate reward in order to 

maintain future benefits (“delayed gratification”, see Brosnan et al., 2010). 

Studies show that both humans (e.g. Stevens & Hauser, 2004) and non-human 

animals [including African parrots (Psittacus erithacus) (Vick, Bovet, & Anderson, 

2010), blue jays (Cyanocitta cristata) (Stephens & Anderson, 2001), rats (Rattus 

norvegicus) (Green, Myerson, Holt, Slevin, & Estle, 2004; Reynolds, de Wit, & 

Richards, 2002), pigeons (Columba livia domestica) (Green et al., 2004), 

Siamese fighting fish (Betta splendens) (Shapiro & Jensen, 2009)] discount the 

future as a hyperbolic function of time (Shadmehr, Orban de Xivry, Xu-Wilson, & 

Shih, 2010) and often prefer smaller immediate rewards over larger but 

temporally distant ones. 

One possible mechanism for overcoming this is mental time travelling: the 

ability to mentally ‘re-live’ past experiences and ‘pre-live’ future ones (Boyer, 

2008; Suddendorf & Corballis, 2007), which enables the individual to compare 

current options and possible future outcomes and rewards. Semantic memory 

(access to remembered facts) and episodic memory (memory of personal 

experiences and specific events) are prerequisite cognitive components for 

mental time travelling. Some argue that animals are not capable of mental time 

travelling (Suddendorf, 2013; Suddendorf & Corballis, 2007), since they seem to 
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fail the criteria for episodic memory or episodic foresight (Suddendorf, Addis, & 

Corballis, 2009). However, there is evidence for future planning in some animal 

species, for example, the western scrub-jay (Aphelocoma californica), which has 

been shown to preferentially cache food according to a future motivational state 

(Raby, Alexis, Dickinson, & Clayton, 2007), suggesting that its neurophysiological 

underpinnings might not be unique to humans (Corballis, 2013). 

Another factor that may increase the level of complexity is the number of 

interacting partners. Group-living species are taking part in both pair and group 

interactions, and behaviour in each condition is likely to be affected by behaviour 

in the other (Connor, 2010). An increased number of interactants will be more 

demanding, both in terms of cognition and in memory, since individuals will have 

to assess the behaviour of all partners simultaneously in order to appropriately 

respond in paired interactions with them (Brosnan et al., 2010); in fact, in guppies, 

there is evidence suggesting a cognitive constraint on the number of individuals 

a single fish can recognise, which is relatively small given the number of 

individuals they are likely to interact with on any given day  (Griffiths & Magurran, 

1997b). To make an appropriate choice, an individual would gain the most by 

being able to assess the quality of these potential partners, taking into account 

any deception signals, as well as recognise and memorise aspects of past 

interactions to form the basis of long-lasting relationships (Soares et al., 2010). 

Individuals should adjust their strategy depending on the context and modify their 

behaviour. This has been termed 'cooperative behavioural competence', and has 

been suggested to involve the individual’s ability to assess partner quality and 

honesty/deception signals, recognise, remember and categorise past interaction 

partners, in order to build long-lasting relationships and adjust the level of 
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investment based on the context, by applying different strategies (Soares et al., 

2010). 

Whereas cognitive complexity can potentially increase an individual’s 

ability to monitor the cooperative propensity of its social environment and adapt 

its behavioural output accordingly, it is likely that individuals might base these 

decisions on simple rules (heuristics) that do not require high cognitive capacity. 

One of the mechanisms proposed for facilitating continued cooperation between 

unrelated individuals is upstream indirect (generalised) reciprocity, which might 

be described by the simple rule ‘help anyone if you have received help by 

someone’. It has been proposed that the proximate mechanism underlying 

generalised reciprocity involves changes of the individual’s 

physiological/neurological state (Barta, McNamara, Huszar, & Taborsky, 2011; 

Bartlett & DeSteno, 2006; Rutte & Taborsky, 2007). Under this framework there 

are no requirements for individual recognition, complex cognitive abilities or 

extended memory capacities, except for the recognition of receiving help in the 

past (Taborsky & Taborsky, 2015) and it can therefore potentially support 

cooperation in a variety of organisms that do not fulfil the criteria for more 

‘advanced’ types of reciprocity [such as direct and indirect reciprocity – see Barta 

et al. (2011)]. Nowak and Roch (2007) showed that generalised reciprocity is 

unlikely to evolve unless it is linked to a mechanism ensuring assortment of 

reciprocating individuals. Recently, however, it was suggested that even in the 

absence of phenotypic assortment, upstream indirect reciprocity can spread and 

become evolutionary stable in a population if individuals interact only with a small 

subset of the population, and not randomly (Pfeiffer, Rutte, Killingback, Taborsky, 

& Bonhoeffer, 2005; van Doorn & Taborsky, 2012; Voelkl, 2015). To date, 
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generalised reciprocity has been experimentally shown in rats (Rutte & Taborsky, 

2007), capuchin monkeys (Cebus apella) (Leimgruber et al., 2014) and humans 

(Bartlett & DeSteno, 2006); however, it is expected that it is more widespread, 

due to its mechanistic simplicity (Taborsky & Taborsky, 2015).  

It should be noted that different types of reciprocity (direct, downstream 

indirect and generalised) are not necessarily mutually exclusive, and that they 

can act simultaneously in a complementary way. Rutte and Taborsky (2008) used 

an instrumental experimental task to see whether, in Norway rats, direct 

reciprocity would result in a higher cooperative propensity than generalised 

reciprocity and found evidence for the prevalence of direct reciprocity. That, in 

conjunction with data from one of their previous studies, suggests that Norway 

rats use individual-specific (Rutte & Taborsky, 2008) and unspecific (Rutte & 

Taborsky, 2007) information when deciding to provide help to a conspecific: if 

there is specific information about the past behaviour of a specific individual, this 

will be used, but in the absence of such information, non-specific information 

(such as receiving help from another individual in the past) will still be preferable 

to no information. On this basis, Rutte and Taborsky (2008) propose a 

‘hierarchical information hypothesis’, where cooperative behaviour towards a 

known partner is not affected by anonymous experience, since individual-specific 

information is more pertinent, but in the absence of such information, generalised 

reciprocity should be employed. 

Recently, there has been support for another social heuristic that can 

increase cooperators’ likelihood of interacting with other cooperators as opposed 

to defector, the Walk Away model (Aktipis, 2004). The roots of this model lie in 

contingent movement: the cooperator moves through space and interacts with 
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encountered individuals; if the partner cooperates, then the individual stays in the 

same patch, but if the partner defects, the individual leaves, thus updating its 

social environment. This model seems to result in behavioural assortment both 

in dyadic (Aktipis, 2004) and group (Aktipis, 2011) settings, leading to greater 

group stability and generating positive selection for cooperation (Aktipis, 2011). 

There is evidence for a strategy resembling Walk Away in humans from 

experimental economic games and it is reasonable to hypothesise that 

conditional movement as a response to social conditions might be present in non-

humans and result in selection for cooperative traits (Aktipis, 2011). 

1.3 Proximate mechanisms underlying decision-making 

1.3.1 Changes in internal state as a response to environmental cues 

According to value-based decision-making, animals choose the optimal 

behavioural response to a specific situation, such as the decision to cooperate or 

not with their social partners, from a set of alternatives on the basis of a subjective 

value ascribed to them (Rangel et al., 2008). The process of value-based 

decision-making includes 5 different stages, as described by Rangel and 

colleagues (2008). First, a representation of the decision problem is computed, 

where internal and external states are identified alongside possible lines of action. 

Different actions are then assigned values that are reliable predictors of the 

outcome (negative or positive) of each action (valuation). These values are 

compared, allowing the animal to make an appropriate choice (action selection). 

After the implementation of the decision, its outcome is evaluated, and the 

feedback from this evaluation may be used to inform future decisions (learning). 

In order, therefore, to understand the downstream effects of experiencing 

cooperation or defection from the social environment and the proximate drivers 
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of cooperative behaviour, the neuropsychological mechanisms mediating 

changes in internal state should be explored. 

Environmental stimuli (as well as stimuli intrinsic to the organism) result in 

the expression of organismic states that may or may not be consciously 

experienced (Anderson & Adolphs, 2014; Cerqueira et al., 2017; LeDoux, 2012). 

These states are generated by the value (potential impact on fitness) ascribed to 

the stimulus, and affect the adaptive response to threats and opportunities posed 

by the environment, therefore representing the individual’s experience of reward 

and threat, in a manner similar to human core affect states (Mendl, Burman, & 

Paul, 2010). In humans, core affect is thought to be represented along two 

dimensions – valence (positive/negative) and arousal (high/low) – aiding the 

conceptualisation of subjective emotional experiences (Barrett, Henzi, & Rendall, 

2007). Mendl and colleagues (2010) proposed the extension of this model to non-

human animals, with an axis defining a reward acquisition system and one 

defining a punishment avoidance system.  

Individuals navigate their social and physical environment, continuously 

assessing it and encoding environmental cues. When these cues 

deterministically predict an optimal response, they prompt fixed action patterns in 

a heuristic manner. With increasing environmental complexity, however, such as 

a dynamic social environment with numerous possible social partners, single 

environmental cues are unable to predict appropriate responses, and the 

evolution of mechanisms of cognitive appraisal is predicted (Fawcett et al., 2014; 

McNamara, Fawcett, & Houston, 2013). Cognitive theories of emotion suggest 

that the valence and salience of environmental stimuli are evaluated using a set 

of checks such as intrinsic valence, familiarity, violation of expectations, 
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prediction error and capacity for control (Paul, Harding, & Mendl, 2005). The 

coping mechanisms available are also assessed (Faustino, Oliveira, & Oliveira, 

2015; Paul et al., 2005). This process results in a change of the animal’s internal 

(core affect-like) state as a response to its environment (Cerqueira et al., 2017), 

which can, in turn, affect its behavioural output. 

1.3.2 The neural substrate of social competence and neuromodulation 

The neural substrate of social behaviour is thought to be a set of areas known as 

the ‘Social Behaviour Network’ (SBN); the SBN was first identified in mammals 

(Newman, 1999) but was later expanded to reptiles, birds and teleosts, after the 

identification of the putative homologous areas for each node in a variety of taxa 

and classes (O’Connell & Hofmann, 2011). Under this framework, specific brain 

areas that contain sex steroid hormone receptors and are reciprocally connected, 

form a neural circuit that plays a major role in the regulation of several forms of 

social behaviour. The SBN comprises the lateral septum (LS), preoptic area 

(POA), ventromedial hypothalamus (VMH), anterior hypothalamus (AH),  

periaqueductal gray/central gray (PAG/CG), medial amygdala (meAMY) and bed 

nucleus of the stria terminalis (BNST) (meAMY and BNST jointly form the 

extended amygdala) (Newman, 1999) in mammals, and the homologous 

structures in other classes (Goodson & Kingsbury, 2013; O’Connell & Hofmann, 

2011, 2012).  These neuronal structures are thought to be the core of the social 

brain, but not its whole – other areas such as the basal forebrain reward system 

[including the mesolimbic reward system: striatum (Str), nucleus accumbens 

(NAcc), ventral pallidum (VP), basolateral amygdala (blAMY), hippocampus 

(HIP), ventral tegmental area (VTA), LS and BNST/meAMY], associated with the 

evaluation of stimulus salience via dopaminergic signalling, are relevant for social 
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behaviour as well, forming, alongside the SBN, the ‘Social Decision-Making 

Network’ (SDMN) (Bshary, Gingins, & Vail, 2014; O’Connell & Hofmann, 2012; 

Soares et al., 2010). Here it should be noted that in humans, non-human primates 

and rodents, the neural substrate for stimulus appraisal and core affect-like states 

is thought to be the mesolimbic reward system for reward acquisition (Berridge & 

Kringelbach, 2013, 2015), and the amygdala for punishment avoidance (LeDoux, 

2012; Mendl et al., 2010). Information encoded in the SDMN is distributed in a 

dynamic fashion: any given behaviour is characterised by the overall activation 

of the different nodes across the network, rather than the activity of one sole node 

(Goodson, 2005). This provides the individual with a repertoire of behaviours, but 

also is a source of variation for the behaviour at an individual, intraspecific and 

interspecific level (Soares et al., 2010). 

The response of the neural network to a stimulus can be modified, through 

biochemical switching, by the presence of ‘neuromodulators’ which affect a 

neuron’s functional properties by binding to membrane receptors; 

neuromodulator function is thought to affect several neural circuits in a constant 

‘tuning’ of an animal’s behaviour (Sørensen, Johansen, & Øverli, 2013). 

Monoamine neurotransmitters such as dopamine (DA), norepinephrine (NE) and 

serotonin (5-HT), as well as the nonapeptides arginine vasopressin (AVP) and 

oxytocin (OT) are well-known neuromodulators; steroid hormones can also be 

considered as neuromodulators, due to the presence of steroid hormone 

membrane receptors in the brain (Orchinik, 1998; Orchinik, Murray, & Moore, 

1991; Prager & Johnson, 2009). 
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1.3.2.1 Monoamine neurotransmitters 

Monoamine neurotransmitters are involved in the modulation of a variety of 

behaviours and physiological functions. Dopaminergic neurotransmission is 

involved in associative learning (Messias, Paula, Grutter, Bshary, & Soares, 

2016; Soares, Cardoso, Malato, & Messias, 2017), attention (Schultz, 2007), 

reward and risk assessment, and has also been implicated in anticipatory 

responses to stimuli associated with reward (Berridge & Robinson, 1998), 

through a role in the perception of outcome valence (Salamone & Correa, 2012; 

Schultz, 1998). Serotonergic activity has a documented role in mammalian stress 

responses (Chaouloff, 2000), mood, emotion and fear (Hensler, 2010), sleep 

(Ursin, 2002) and pain (Bardin, 2011). Norepinephrine is implicated in a variety 

of functions including arousal and attention, memory, the processing of stimuli 

associated with reward (Bush, Caparosa, Gekker, & LeDoux, 2010; Murchison, 

Schutsky, Jin, & Thomas, 2011; Ramos & Arnsten, 2007; Sørensen et al., 2013), 

and plays a critical role in rapid responses to environmental stimuli, through the 

modification of neuronal connectivity and excitability (O’Donnell, Zeppenfeld, 

McConnell, Pena, & Nedergaard, 2012; Sørensen et al., 2013). Social 

interactions, and in particular social stress, have been shown to have a strong 

effect on monoaminergic neurotransmission in fish and other vertebrates 

(Winberg & Nilsson, 1993; Winberg & Thörnqvist, 2016). For example, serotonin 

plays an inhibitory role in aggression in teleosts (Höglund et al., 2005; Summers 

& Winberg, 2006; Winberg, Øverli, & Lepage, 2001); dopamine has also been 

implicated in teleostean agonistic interactions (Dahlbom, Backström, Lundstedt-

Enkel, & Winberg, 2012; Winberg, Nilsson, & Olsen, 1991). 
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Crucially, monoaminergic neurotransmission has been demonstrated to 

affect decision-making in the context of cooperative behaviour. For instance, 

pharmacological disruption of dopamine neurotransmission in cleaner wrasses 

has been shown to lead to increased negotiation behaviour towards ‘client’ reef 

fish, as indicated by the frequency of initiation of interactions and tactile 

stimulation by the cleaner wrasse – a behaviour typically occurring for 

reconciliation after cheating (Messias, Paula, Grutter, Bshary, & Soares, 2016). 

In the same context of heterospecific cooperation between cleaner wrasses and 

client reef fish, enhancement of serotonergic activity led to increased motivation 

in cleaner wrasses to engage in cleaning behaviour and tactile stimulation; 

conversely, disruption of serotonergic activity led to a decrease in the cleansers’ 

levels of cheating, and, consistently with the well documented role of serotonin in 

aggression, to increased aggression towards smaller conspecifics (Paula, 

Messias, Grutter, Bshary, & Soares, 2015). These effects were probably 

mediated by the modification of appraisal, information acquisition and response 

to client-derived stimuli, through manipulation of the perception of danger 

(Soares, Paula, & Bshary, 2016). Contrary to dopamine and serotonin, the role 

of norepinephrine in cooperative behaviour still remains unexplored. 

1.3.2.2 Nonapeptides 

Nonapeptides, a family of neuropeptides with nine amino acid residues, also have 

neuromodulatory actions. The nonapeptide family is evolutionarily conserved and 

can be traced through invertebrates, including members in virtually all vertebrate 

taxa. The vertebrate nonapeptide class has two members: arginine vasopressin 

[arginine vasotocin (AVT) for non-mammalian vertebrates], and oxytocin-like 

nonapeptides [isotocin (IT) in fish, mesotocin (MT) in lungfish and non-eutherian 
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tetrapods, oxytocin (OT) in eutherian mammals] (Insel, 2010; also, see Urano & 

Ando, 2011). Nonapeptides are thought to alter the valence and salience of social 

stimuli, affecting social behaviour (see Ross & Young, 2009; Soares et al., 2010) 

and thus play a role in the modification of an individual’s behaviour as a response 

to stimuli from its social environment – i.e. its social competence. 

The nonapeptide innervation of the mammalian brain suggests that AVP and OT 

may affect basic emotional mechanisms modulating social approach and 

aversion: OT acting on hindbrain parasympathetic systems and promoting 

prosocial behaviour, and AVP acting on sympathetic pathways associated with 

social withdrawal and aggression (Porges, 2001). Indeed, nonapeptides play an 

important role in the modulation of social and reproductive behaviour in several 

phylogenetically distant taxa. In mammals, nonapeptides have been shown to 

affect social recognition (for a review see Choleris, Clipperton-Allen, Phan, & 

Kavaliers, 2009), aggression in Syrian hamsters (Mesocricetus auratus) (Albers, 

Dean, Karom, Smith, & Huhman, 2006), parental care in female rats (e.g. 

Pedersen, Ascher, Monroe, & Prange, 1982), and pair bonding in prairie voles 

(Microtus ochrogaster) (Cho, DeVries, Williams, & Carter, 1999; Insel & Hulihan, 

1995; Williams, Insel, Harbaugh, & Carter, 1994; Winslow, Hastings, Carter, 

Harbaugh, & Insel, 1993). IT and AVT, the teleost homologues of nonapeptides, 

have been demonstrated to have similar roles, affecting social approach and 

affiliative behaviour [zebrafish (Danio rerio): Braida et al. (2012); Neolamprologus 

pulcher: Reddon et al. (2015; 2014); goldfish (Carassius auratus): Thompson & 

Walton (2004)], shoaling behaviour in zebrafish (Langen, Lindeyer, Reader, & 

Swaney, 2015), pair bond formation in the monogamous convict cichlid 

(Amatiltania nigrofasciata) (Oldfield & Hofmann, 2011), and parental care [African 
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cichlid (Astrotilapia burtoni): Huffman et al. (2012); convict cichlid: O’Connell, 

Matthews, & Hofmann (2012)]. 

The role of nonapeptides in cooperative behaviour has mainly been 

studied in the context of reciprocity or the exchange of commodities (Taborsky & 

Taborsky, 2015); to date, evidence is limited to just humans and cleaner wrasses. 

In humans, activation of the OT and AVP systems has been reported to increase 

trust (Domes, Heinrichs, Michel, Berger, & Herpertz, 2007), empathy (Guastella, 

Mitchell, & Dadds, 2008; Rodrigues, Saslow, Garcia, John, & Keltner, 2009), and 

generosity (Zak, Kurzban, & Matzner, 2005; Zak, Stanton, & Ahmadi, 2007). 

Intranasal OT and AVP administration in men playing an iterated Prisoner’s 

Dilemma game resulted in increased cooperative behaviour, with OT increasing 

the rate of cooperation following unreciprocated cooperation in the previous 

round, and AVP increasing cooperation after experiencing cooperation in the 

previous round (Rilling et al., 2012). Similarly, Kosfield and colleagues (2005) 

reported that intranasally administered OT increased cooperative behaviour in 

humans playing economic games only when players were playing against 

another human, but not against a computer, suggesting that OT increases 

interpersonal trust. However, nonapeptides do not uniformly promote 

cooperation: for instance, OT administration in humans with borderline 

personality disorder has been shown to decrease cooperative behaviour in the 

Prisoner’s Dilemma game (Bartz, Simeon, et al., 2011). Contrary to the effects of 

AVP on men, AVT administration has been demonstrated to result in a decrease 

in the cooperative behaviour of cleaners (Cardoso, Bshary, et al., 2015; Soares, 

Bshary, Mendonça, Grutter, & Oliveira, 2012). 
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Despite the remarkable conservation of the structural properties of 

nonapeptide systems, their behavioural effects are thought to be highly species-

specific (Insel & Young, 2000). Brain expression patterns for nonapeptide 

receptors, more specifically the arginine vasopressin receptor 1A (V1aR – one of 

the three major receptor types for AVP) and the oxytocin receptor (OTR) are 

associated with interspecific and intraspecific variation in social behaviour both in 

humans and non-human animals (Chen et al., 2011; Donaldson & Young, 2008; 

Francis, Champagne, & Meaney, 2001; Hammock & Young, 2005; Insel & 

Shapiro, 1992; Lim et al., 2004; Ophir, Wolff, & Phelps, 2008; Phelps, Okhovat, 

& Berrio, 2017; Tost et al., 2010, 2011; Waller et al., 2016; Young, Nilsen, 

Waymire, MacGregor, & Insel, 1999). Microsatellite polymorphisms of the genes 

for mammalian nonapeptide receptors (OTR, coding the OT receptor, and 

AVPR1a coding the V1aR receptor) are thought to alter the pattern of 

nonapeptide receptor gene expression in a cell-specific manner, thus regulating 

various aspects of social behaviour and contributing to phenotypic variation in 

behaviour (Hammock & Young, 2005). Experimental work suggests that 

nonapeptide receptor polymorphisms contribute to individual differences in 

human cooperative behaviour: for example, specific microsatellite 

polymorphisms of the AVPR1a gene, associated with the length of the promoter 

region and post-mortem hippocampal AVPR1a mRNA levels, have been linked 

to both altruism in economic games and self-reported altruism (Knafo et al., 

2008). OTR polymorphisms have also been implicated in individual variation in 

cooperative behaviour in humans, as specific variants have been implicated in 

the modulation of intranasally administered OT on the cooperative behaviour of 

humans playing an iterated Prisoner’s Dilemma game (Feng et al., 2015). It is 
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possible that the genes coding nonapeptide receptors influence the structure and 

function of brain regions implicated in cooperative behaviour, thus underlying 

cooperative phenotypes (Haas, Anderson, & Smith, 2013). 

1.3.2.3 Neuromodulation of social decision-making 

A considerable body of work demonstrates that neuromodulators (monoamine 

neurotransmitters and nonapeptides) are crucial to the appraisal of stimuli from 

the social environment and the modification of behavioural responses to them. 

Although discussed separately above, these are not two discrete systems; 

empirical evidence suggests that neurotransmitter and nonapeptide systems are 

interacting with one another. OTRs are present in key areas of the mesolimbic 

reward system, where their stimulation, in particular within the VTA and NAcc, 

can affect motivated behaviour (for a review see Love, 2014). Based on these 

interactions between oxytocinergic and dopaminergic systems, a large number 

of studies proposes that the regulatory effects of OT on behavioural responses 

to social stimuli is at least in part mediated by its ability to increase the salience 

of these stimuli (Averbeck, 2010; Bartz, Zaki, Bolger, & Ochsner, 2011; Burkett & 

Young, 2012; Gordon, Martin, Feldman, & Leckman, 2011; Love, 2014; Shamay-

Tsoory et al., 2009). However, OT effects are sometimes valence-specific (Kemp 

& Guastella, 2011): for example, Guastella and colleagues (2008) demonstrated 

that, in humans, OT enhances memory for happy faces compared to angry or 

sad, while Gamer and colleagues (2010) reported a suppression in amygdalar 

activation for fearful faces but increased activity for happy faces. Love (2014) 

suggests that OT may both enhance motivational salience attributions towards 

social cues and alter their motivational value, with different dopaminergic 

neuronal populations encoding the motivational salience and the motivational 
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value of a given social stimulus (Bromberg-Martin, Matsumoto, & Hikosaka, 

2010). Serotonergic systems are also functionally closely linked to nonapeptide 

systems. Jørgensen and colleagues (2003) reported that, in male rats, serotonin 

administration resulted in AVP and OT release. The authors also identified the 

specific 5-HT receptors responsible for serotonin-induced AVP and OT secretion 

(Jørgensen et al., 2003). 

Neuromodulators are key to the appropriate behavioural response to 

environmental stimuli, such as the experience of cooperation or defection from 

one’s social environment. As the individual receives and appraises social stimuli, 

their valence and salience are encoded, resulting in changes in its internal (core 

affect-like) state. Given the close functional relationship between these two 

neuromodulatory systems, as well as the documented role of nonapeptide 

receptor expression patterns on intraspecific behavioural variability, it is possible 

that this differential nonapeptide receptor expression contributes to individual 

variation in the perception of social stimuli, as well as the behavioural response 

to them. 

1.3.3 The Trinidadian guppy study system 

The Trinidadian guppy (Poecilia reticulata) is one of the most widely distributed 

tropical fish; it originates from the island of Trinidad and is thought to be the most 

abundant freshwater fish species there, occupying a wide range of habitats 

including freshwater streams, sewage drains and even some brackish habitats 

(Magurran, 2005). However, the value of this study system mainly stems from its 

evolutionary history: the particular river system configuration of Trinidad 

combined with a short generation time resulted in clear and interpretable 

population differentiation in a variety of adaptive traits. Different localities offer 
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different habitats, both in terms of topology and abiotic conditions, as well as the 

presence and identity of potential predators. These characteristics, in conjunction 

with the high level of documentation (Magurran, 2005) and the ability to house 

and breed in a laboratory setting, make the Trinidadian guppy an ideal, tractable 

system for the study of behavioural ecology. 

Guppies [alongside numerous other fish, including mosquitofish 

(Gambusia affinis), sticklebacks (Gasterosteus aculeatus), bluegill sunfish 

(Lepomis macrochirus) and gobies (Gobiidae) – for an overview see Pitcher 

(1991)] cooperate with shoalmates during predator inspection, a behaviour in 

which an individual (or a small group of individuals) leaves the shoal to swim 

toward a potential predator, and then returns to the shoal (Allan & Pitcher, 1986). 

Predator inspection can be performed by singletons, pairs, or small groups of 

fish, with larger groups providing more safety due to the dilution of risk (Külling & 

Milinski, 1992; Milinski, Lüthi, Eggler, & Parker, 1997; Pitcher, 1991), and its main 

function seems to be to gather information about potential threats and predators 

in the vicinity (Magurran & Girling, 1986; Magurran & Higham, 1988; Milinski et 

al., 1997; Pitcher, 1991). When individuals return from an inspection bout, the 

behaviour of the rest of the shoal changes in response to inspector’s behaviour, 

reflecting the perceived level of threat (Allan & Pitcher, 1986); therefore the 

information gathered benefits all shoal members, irrespective of whether they 

inspected or not. 

Trinidadian guppy populations are highly dynamic, composed of a number 

of shoals that are constantly aggregating and splitting, forming a typical fission-

fusion system (Krause & Ruxton, 2002). In the wild, guppy shoals are usually 

small (2-20 fish) and encounter each other approximately every 14 seconds 
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(Croft, Arrowsmith, et al., 2003), during which, the transfer of individuals may be 

substantial (Barber & Wright, 2001). In spite of this very dynamic social 

environment, guppies, in particular females, express preferences for specific 

individuals in the population that can be quantified in a population social network 

as dyadic ties that are stronger than expected if individuals were to associate 

randomly (Croft et al., 2005; Croft, Krause, & James, 2004). Overall, the social 

structure of all guppy populations sampled to date demonstrates that social 

associations are heterogeneous and non-random (Croft et al., 2005, 2004) and 

are likely to be based, in part, on individual recognition. Griffiths and Magurran 

(1997a) showed that in female guppies familiarity and preference towards familiar 

conspecifics is expressed after 12 days of interactions between the experimental 

individuals; furthermore, this preference is retained for a minimum period of 5 

weeks and may confer behavioural changes, such as better performance in 

exploration assays (Bhat & Magurran, 2006).  

Individual recognition is cognitively demanding, and in guppies it seems 

the ability to identify familiar individuals decreases as the shoal size increases 

(Griffiths & Magurran, 1997a). One mechanism for overcoming this constraint is 

condition-dependent recognition, in which the individual learns and remembers 

specific cues to quickly recognise previously encountered individuals (Griffiths, 

2003).  Guppies have been shown to preferentially associate with the most 

cooperative of two inspection partners in encounters taking place over 4 hours 

after the inspection assay (Dugatkin & Alfieri, 1991a), therefore learning to 

discriminate between two specific individuals based on their cooperative 

behaviour during predator inspection (Griffiths, 2003). Another condition-

dependent recognition mechanism expressed in guppies is familiarity based on 
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olfactory habitat cues, which can denote a similar habitat exploitation history 

(Ward, Hart, & Krause, 2004). 

To date, cooperative behaviour during predator inspection in fish has been 

mainly studied under the framework of direct reciprocity and Tit-for-tat strategies 

(Dugatkin, 1988; Dugatkin & Alfieri, 1991b; Külling & Milinski, 1992; Milinski, 

1987, 1990; Milinski & Boltshauser, 1995; Milinski, Kulling, & Kettler, 1990; 

Milinski, Pfluger, Külling, & Kettler, 1990); however, these experiments have been 

heavily criticised (Lazarus & Metcalfe, 1990; Masters & Waite, 1990; Reboreda 

& Kacelnik, 1990), mainly on the basis of methodological issues (for a review see 

Pitcher, 1991). Whereas it seems that in pairs of inspecting fish the cooperative 

effort shown by each individual is conditional on past experiences with this 

specific individual (which may be recognised on the basis of condition-dependent 

cues, see Dugatkin & Alfieri, 1991a), this is a simplistic approach that does not 

take into consideration the complex and dynamic social environment of this 

species. Cooperative behaviour during predator inspection in guppies has been 

shown to be affected by the behaviour of current inspection partners and, in some 

populations, by the behaviour of previous partners across successive cooperative 

interactions (Edenbrow et al., 2017). Edenbrow and colleagues (2017) measured 

indirect genetic effects (IGEs) during predator inspection across eight populations 

of wild-caught Trinidadian guppies, and found that although the behaviour of the 

current partner had the largest effect on the cooperativeness of focal individuals, 

fish from some high predation populations showed carryover effects across social 

partners. Other factors have also been shown to affect the propensity of individual 

guppies to cooperate during predator inspection, including sex (Magurran & 

Nowak, 1991; Seghers, 1973), familiarity (Croft, Arrowsmith, et al., 2003; 



- 44 - 
 

Magurran, Seghers, Shaw, & Carvalho, 1994), habitat (Magurran & Seghers, 

1990; Seghers, 1973), and the social environment (Croft et al., 2006, 2009; 

Piyapong et al., 2010), as well as the interactions between these factors. 

Several studies indicate that the main differences in antipredator 

behaviour between different guppy populations are inherited and do not depend 

on previous experience of predators or exposure to other threats (Magurran, 

2005; Magurran & Seghers, 1990; O’Steen, Cullum, & Bennett, 2002; Seghers, 

1974). O’Steen and colleagues (2002) looked at the differences in the escape 

behaviour of high- and low- predation risk populations of guppies within a stream; 

they also compared the performance of F2 descendants of ancestral and 

introduced populations (the introduced populations were originally from different 

locales and were introduced in these areas 15-20 years before the collection of 

these samples). Their results show that guppies which co-occur with the 

predators used (Crenicichla alta) are more efficient at avoiding them. The 

performance of the introduced populations was therefore predicted by their 

geography and not their ancestry (Magurran, 2005). Interestingly, they found that 

the qualitative difference between the introduced and the ancestral populations 

was still present in the F2 generation, thus providing evidence that population 

differences (at least in escape ability) had a genetic basis, and can evolve rapidly 

(in the 15-20 years since the introduction, which is approximately 26-36 

generations, see Magurran, 2005). 

Another result from the study by O'Steen et al. (2002) is that the survival 

of guppies from the high-predation habitat was moderated in the F2 generation. 

This suggests that the behaviour of the introduced fish had not yet reached the 

optimum for this specific habitat, and that the magnitude of this response is 
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influenced by phenotypic effects, such as learning (Magurran, 2005). These 

results support previous studies by  Magurran and Seghers (1994) and Seghers 

and colleagues (1995), who observed that both predator inspection and schooling 

behaviour of guppies introduced in the Upper Aripo and Middle Aripo river 

reflected what would be expected for this type of environment, and not their 

ancestral behavioural phenotype. Furthermore, when offspring of fish originating 

from these different populations were raised under laboratory conditions, the 

differences were alleviated: both the introduced and the ancestral population 

behaved in a similar manner. 

Taken together, these results show that whereas there is a genetic 

component of antipredator behaviour, environmental effects play an important 

role in shaping it. One possible explanation is that a shift in predatory pressure 

selects first on phenotypic plasticity: flexibility in the individual’s behaviour allows 

for appropriate responses, without the necessity for a costly (in terms of energy 

and time) defensive system (Magurran, 2005). 

There have been some attempts to study the effect of cooperation on real-

world social networks in Trinidadian guppies. Croft and colleagues (2006) 

observed a positive correlation between the associative strength of pairwise 

interactions in the social network and the inspection strength of the corresponding 

pair during predator inspection, proposing that the networks of persistent pairwise 

associations in wild populations might indeed be cooperative networks, and thus 

might be used to predict the patterns of cooperation. A later study by Thomas et 

al. (2008), however, found that defection does not result in a change of the social 

network structure of experimentally housed, wild-caught fish. As the authors 

proposed, this might stem from a variety of reasons: for instance, predator 
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inspection might be only one out of many factors that influences social 

interactions, in particular the benefits of familiarity.  

Central to the study of the evolution of cooperative behaviour, are patterns 

of association amongst individuals. Stable partnerships between two individuals, 

such as the ones based on the inspection strength of guppies, may confer 

numerous benefits on the individuals involved, including information on the 

behaviour of each individual during previous interactions, and familiarity (Croft, 

Krause, Couzin, & Pitcher, 2003). Even in highly fluid networks, such as those 

comprising guppy populations, stable associations like these can increase group 

stability, thus promoting the evolution of reciprocity (Croft, Krause, et al., 2003). 

In fact, guppy shoals are not randomly formed, but ‘have females at their core’ 

(Griffiths & Magurran, 1998; Magurran, 2005), and persistent pairwise 

associations are observed mainly between females (Croft et al., 2006; Croft, 

Edenbrow, & Darden, 2015; Croft et al., 2004). Theoretical work converges on 

the conclusion that assortment between cooperators is a crucial requirement for 

the evolution of cooperation among non-kin; by assorting on the basis of 

cooperative propensities, clusters of cooperators are thought to have greater 

fitness than defectors in the same population (Aktipis, 2008; Croft et al., 2015; 

Fletcher & Doebeli, 2009; Nowak & Roch, 2007). A study by Croft and colleagues 

(2009) provided evidence for non-random mixing of guppies in a social network, 

on the basis of their behavioural traits. More specifically, the authors found that 

the social network was positively assorted by predator inspection behaviour. A 

recent study by Brask and colleagues (in prep.) found that guppies occupying 

habitats with high, but not low, predation rates were positively assorted by 

cooperativeness. In this assorted network of a high predation population, 
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individuals of both high and low cooperativeness were found to have stronger 

social ties with others of a similar cooperative phenotype. The same study found 

that assortment in females was the result of individuals of the same cooperative 

phenotype being more likely to be connected, and having stronger social ties with 

one another than expected, whereas assortment in males was the result of tie 

presence, but not tie strength (Brask et al., in prep.). 

The roles of the various forms of reciprocity and the drivers of assortment 

by behavioural traits in the guppy system remain largely unclear. It is possible 

that a social heuristic such as the walk away strategy (Aktipis, 2004) may promote 

cooperation through increasing the change of repeated interactions between 

highly cooperative individuals (Santos & Pacheco, 2006). In this case, guppy 

movement might be contingent on the internal state of the individual after 

experiencing cooperation or defection, thus, capturing the immediate effects of 

such an experience may provide more insight in the mechanisms underpinning 

the evolution and maintenance of cooperation in this system. 

1.3.4 Aim of the thesis / Chapter overview 

As already stated, the evolution and maintenance of cooperative behaviour 

amongst unrelated individuals remains an evolutionary paradox. Several studies 

have shown that the propensity of individuals to cooperate and their response to 

experiencing cooperation or defection in their social environment varies within 

and among individuals and as a function of external factors. The biological and 

psychological underpinnings of this behavioural variation remain largely 

unknown, but can help us understand the drivers that maintain cooperation, 

particularly among non-kin. This thesis aims to explore the proximate 

mechanisms underlying experiencing cooperation or defection from one’s social 
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environment and how these may consequently affect the behavioural responses 

to such experiences, using the Trinidadian guppy as a model system, and 

ultimately provide insight to the mechanisms underpinning the evolution and 

maintenance of cooperation in a dynamic social environment. 

Chapter 2 

Predator inspection in fish has mainly been explained using direct reciprocity or 

Tit-for-tat strategies (Dugatkin, 1988; Dugatkin & Alfieri, 1991b; Külling & Milinski, 

1992; Milinski, 1987, 1990; Milinski & Boltshauser, 1995; Milinski, Kulling, & 

Kettler, 1990; Milinski, Pfluger, Külling, & Kettler, 1990), while alternative 

frameworks have been largely overlooked. Frameworks such as direct reciprocity 

require high cognitive capacities, such as individual recognition, that are rare in 

taxonomic groups compared to the ubiquity of cooperation in nature; it is therefore 

likely that individuals base their decision to cooperate on simple rules (heuristics) 

that have no high cognitive requirements (Taborsky & Taborsky, 2015). One such 

possibility is upstream indirect (or generalised), where individuals who have 

received help by someone in the past are going to offer help to anyone in the 

future (Pfeiffer, Rutte, Killingback, Taborsky, & Bonhoeffer, 2005). This has been 

proposed to be mediated by changes in the individual’s physiological or 

neurological state after experiencing cooperation, which affect subsequent 

cooperative behaviour (Barta, McNamara, Huszar, & Taborsky, 2011; Bartlett & 

DeSteno, 2006; Rutte & Taborsky, 2007). Direct and generalised reciprocity are 

not necessarily mutually exclusive, but can occur in a complementary way (Croft, 

Edenbrow, & Darden, 2015). For instance, research suggests that Norway rats 

employ both types of reciprocity, depending on whether they have specific or non-

specific information about their partner’s cooperative propensity (Rutte & 



- 49 - 
 

Taborsky, 2008): in the presence of information about the past behaviour of an 

individual, this will be used; however, in the absence of such information, non-

specific information such as having received assistance from someone in the past 

will still be preferable to no information. This ‘hierarchical information hypothesis’ 

suggests that individual-specific information is prioritised over anonymous 

information, due to its accuracy; however, when such information is absent, non-

specific information should be used (Rutte & Taborsky, 2008). Literature suggests 

that cooperative behaviour in pairs of inspecting fish is contingent on past 

experiences with this specific partner, as well as the level of cooperative 

investment of the current partner (Edenbrow et al., 2017). Additionally, past 

experiences during cooperative interactions involving predator inspection have 

been shown to have carryover effects across social partners in some guppy 

populations (Edenbrow et al., 2017). In Chapter 2, I use condition-dependent 

discrimination to explore how specific and non-specific information about the 

cooperative levels of a population affect cooperativeness during cooperative 

interactions involving predator inspection. 

Chapter 3 

Theoretical work suggests that some form of assortment, such as assortment by 

cooperativeness, that affects the likelihood of individuals interacting with others 

of a similar cooperative phenotype is critical for the emergence and maintenance 

of cooperation in a population (Aktipis, 2008, 2011; Croft, Edenbrow, & Darden, 

2015; Eshel & Cavalli-Sforza, 1982; Fletcher & Doebeli, 2009; Nowak, Tarnita, & 

Antal, 2010; Wilson & Dugatkin, 1997). Such assortment has been observed in 

real-world social networks of guppies in high, but not low, predation habitats 

(Brask et al., in prep.); however, its underlying mechanisms remain unclear. It is 
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possible that this assortment is a by-product of assortment by other behavioural 

traits which affect space use, such as differences in boldness, or the probability 

that individuals of a specific cooperative phenotype co-occur in a shoal (Croft et 

al., 2015). In Chapter 3, I explore the behavioural correlates of cooperative 

phenotypes. To this end, I used fish that I selectively bred for high 

cooperativeness and low cooperativeness over three filial generations to 

generate two phenotypic selection lines. Descendants of these lines underwent 

a series of behavioural assays, in order to explore any consistent behavioural 

differences between cooperative phenotypes that might act as passive drivers of 

population assortment by cooperativeness. 

Chapter 4 

Individual differences in cooperative phenotypes are consistent (Bergmüller, 

Schürch, & Hamilton, 2010) and widespread in animals (e.g. Arnold, Goldizen, & 

Owens, 2005; Bergmüller & Taborsky, 2007; Charmantier, Keyser, & Promislow, 

2007; Schürch & Heg, 2010a; Schürch, Rothenberger, & Heg, 2010). Research 

suggests that nonapeptide receptor polymorphisms are linked to individual 

differences in human cooperative behaviour (see Haas, Anderson, & Smith, 

2013), probably through differences in the brain distribution of nonapeptide 

receptors (Haas et al., 2013; Knafo et al., 2008). In Chapter 4, I used the 

phenotypic selection lines described above, to explore the role of nonapeptide 

receptor distribution in the guppy brain in variation in cooperative behaviour, 

aiming to provide insight into the proximate mechanisms underlying cooperative 

phenotypes in this species. 

Chapter 5 
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Crucial to an individual’s decision to cooperate or not is the perception and 

appraisal of stimuli from their social environment. Chapter 5 explores the 

immediate effects of experiencing cooperation or defection during predator 

exposure on brain monoamines, aiming to understand how these experiences 

may affect an individual’s internal state, and therefore its subsequent behavioural 

output. 

Chapter 6 

Chapter 6 takes the form of a general discussion of the findings and looks towards 

avenues for future research. 

1.3.5 Ethics 

Fish were checked for signs of ill health or abnormal behaviour on a daily basis. 

All behavioural assays, marking and breeding protocols were undertaken under 

a U.K. Home Office project licence held by Professor Darren Croft (30/3308). All 

regulated procedures were carried out under a U.K. Home Office personal licence 

held by the candidate (I002BDF3F). No adverse effects of behavioural 

assays/marking were observed, and marking mortality was under 1%. Following 

predator exposure, fish that were not sampled and were not used for breeding in 

the phenotypic selection lines were euthanised using Tricaine methanesulfonate 

(MS222), in accordance with U.K. Home Office regulation (Schedule 1). Where 

brain samples were collected, fish were euthanised by rapid cooling, using an ice 

slurry of temperature lower than 4oC; the rapid death and simultaneous cooling 

of the brain facilitate the preservation of monoamine content, as monoamine 

neurotransmitters exhibit fast production and decay (Purves & Williams, 2001). 

While not listed under Schedule 1, euthanasia by rapid cooling has been 
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demonstrated to be more humane than common chemical methods for small 

tropical fish, and is characterised by fewer signs of distress, shorter latency to 

death and 0% recovery rates (Blessing, Marshall, & Balcombe, 2010; Wilson, 

Bunte, & Carty, 2009).  
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Abstract 

Cooperation among unrelated individuals is considered an evolutionary paradox. 

One suggestion is that reciprocation of cooperative behaviour leads to 

subsequent benefits that exceed the fitness costs of cooperating. Direct 

reciprocity suggests that the decision of an individual to cooperate is based on 

past experiences with a known partner; however, in the absence of specific 

information about the cooperative propensity of one’s current partner, non-

specific experiences of cooperation or defection may still affect the individual’s 

behaviour. Past research demonstrates that animals may use specific and non-

specific information about their partner’s cooperative propensity in a hierarchical 

manner. Here I use the Trinidadian guppy (Poecilia reticulata) to explore how past 

experiences during cooperative interactions in the context of predator inspection 

affect an individual’s subsequent cooperative behaviour. Guppies experienced 

cooperation or defection from their social partners during predator inspection and 

were subsequently allowed to inspect a predator for a second time, after a 2-hour 

time interval, paired with cooperating partners originating from either the same or 

a different stimulus shoal as the first inspection. The cooperativeness of the focal 

fish was recorded during both inspections. My results indicate that when fish are 

provided with information about the cooperative propensity of their social 

partners, they copy their partner’s last move, consistent with a Tit-for-tat strategy. 

When individuals had experienced defection in the first round, they were more 

cooperative with unfamiliar inspection partners during their second inspection 

than with fish that were ostensibly the same, again consistent with a tit-for-tat 

strategy (cooperate on the first move). Intriguingly, when partnered with 

unfamiliar fish during the second inspection, fish that had experienced 
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cooperation during the first exposure appeared to be less cooperative than those 

that had experienced defection during the first exposure. My findings suggest that 

in the presence of specific information about partners’ cooperative propensity, 

Trinidadian guppies employ a strategy resembling Tit-for-tat; in the absence of 

such information, a different behavioural rule may be employed in addition, in 

particular when previous partners defected. My results suggest that further work 

is needed to explore alternative frameworks underlying the decision to cooperate 

with unfamiliar individuals. 

2.1 Introduction 

During cooperative interactions cooperating individuals suffer temporary costs so 

that their partners can benefit, posing a paradox to the traditional theory of natural 

selection. Whereas cooperation between related individuals can be explained by 

kin selection (Hamilton, 1964), the mechanisms driving the evolution and 

maintenance of cooperation among non-kin remains largely unclear (Clutton-

Brock, 2009). One hypothesis is that if cooperative behaviour is reciprocated, 

subsequent benefits will exceed the temporary net costs suffered by cooperating 

individuals due to the exchange of resources or services (Hamilton & Axelrod, 

1981; Nowak & Roch, 2007; Trivers, 1971). Game-theoretic approaches to 

reciprocal cooperative interactions have produced a plethora of models where 

individuals may receive help from others they have previously assisted (direct 

reciprocity) (Trivers, 1971), from others who have been helped by that individual 

(downstream indirect reciprocity) (Nowak & Sigmund, 1998), or from others that 

have received help by any other individual in the population (upstream indirect, 

or generalised, reciprocity) (Pfeiffer, Rutte, Killingback, Taborsky, & Bonhoeffer, 

2005). 
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Direct reciprocity has been used to explain interactions across contexts 

and taxa (for reviews see Brosnan, Salwiczek, & Bshary, 2010; Stevens, 

Cushman, Hauser, & Lincoln Stevens, 2005); however, its cognitive 

requirements, such as the ability to overcome temporal discounting, are rarely 

met in non-human animals (Brosnan et al., 2010; Stevens et al., 2005). The 

modification of behaviour according to past interactions with a specific individual 

necessary for direct reciprocity assumes individual recognition – an ability 

widespread across vertebrates – and the ability to process and memorise past 

interactions with specific individuals (book keeping) (Stevens & Hauser, 2004; 

Voelkl, 2015). The number of interacting partners is likely to increase the level of 

complexity, as in group-living species individuals are taking part in both pair and 

group interactions, and behaviour in each context is likely to be affected by 

behaviour in the other (Connor, 2010). Increasing numbers of interactants will 

increase both cognitive and memory demands, as individuals will have to assess 

the behaviour of all partners simultaneously in order to appropriately respond in 

paired interactions with them (Brosnan et al., 2010) – in fact, there is evidence 

suggesting a cognitive constraint on the number of individuals that female 

Trinidadian guppies (Poecilia reticulata) can recognise (Griffiths & Magurran, 

1997b).  

Given the cognitive capacities required by frameworks such as direct 

reciprocity, and their rarity in taxonomic groups compared to the ubiquity of 

cooperation in nature, it is likely that individuals base their decision to cooperate 

or not on simple rules (heuristics) that do not require high cognitive capacity. One 

common suggestion is that individuals who have received help by someone in 

the past are going to offer help to any other individual in the future – a framework 
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termed upstream indirect (generalised) reciprocity (Pfeiffer et al., 2005). It has 

been proposed that receiving help changes the individual’s physiological or 

neurological state, affecting its behaviour and acting as a proximate mechanism 

underlying generalised reciprocity (Barta, McNamara, Huszar, & Taborsky, 2011; 

Bartlett & DeSteno, 2006; Rutte & Taborsky, 2007). Generalised reciprocity has 

no requirements for individual recognition or extended memory capacities other 

than remembering having received help in the past (Taborsky & Taborsky, 2015), 

and can therefore explain cooperation in organisms that do not fill the criteria for 

the more “advanced” types of reciprocity (Barta et al., 2011). Theoretical work 

suggests that generalised reciprocity is unlikely to evolve unless it is linked to a 

mechanism ensuring assortment of reciprocating individuals (Nowak & Roch, 

2007); however, even in the absence of phenotypic assortment, it can spread and 

become evolutionarily stable in a population where individuals interact non-

randomly and only with a small subset of the population (Pfeiffer et al., 2005; van 

Doorn & Taborsky, 2011; Voelkl, 2015). To date, generalised reciprocity has been 

experimentally shown in Norway rats (Rattus norvegicus) (Rutte & Taborsky, 

2007), dogs (Canis familiaris) (Gfrerer & Taborsky, 2017), capuchin monkeys 

(Cebus apella) (Leimgruber et al., 2014), and humans (Bartlett & DeSteno, 2006); 

nonetheless it is expected that it is more widespread, due to its mechanistic 

simplicity (Taborsky & Taborsky, 2015). 

Different types of reciprocity (direct, downstream indirect and generalised) 

are not necessarily mutually exclusive, and can act simultaneously in a 

complementary way (Croft, Edenbrow, & Darden, 2015). For example, Norway 

rats have been shown to employ both direct and generalised reciprocity, 

depending on whether they have access to both individual-specific and unspecific 



- 58 - 
 

information (Rutte & Taborsky, 2008): if there is information about the past 

behaviour of an individual, this will be used – in the absence of such information, 

non-specific information (such as receiving assistance from a different individual 

in the past) will still be preferable to no information. According to this “hierarchical 

information hypothesis”, cooperative behaviour is not affected by anonymous 

experience (i.e. experience which is not ascribed to a specific individual), since 

individual-specific information is more accurate; in the absence of such 

information, non-specific information should be used (Rutte & Taborsky, 2008). 

This study uses the Trinidadian guppy as a model system to explore how 

past experiences during cooperative interactions shape an individual’s 

subsequent behaviour. Guppies cooperate during predator inspection – a 

behaviour in which a singleton, or a small number of fish, leave the relative safety 

of the shoal to approach a potential predator or other threat in the vicinity and 

collect information about the level of threat posed; they then return to the shoal 

where this information is transmitted (Allan & Pitcher, 1986; Magurran & Seghers, 

1994; Pitcher, Green, & Magurran, 1986). This paradigm is considered a model 

for the study of cooperative behaviour (Milinski, 1987), as larger inspection 

groups provide more safety due to the dilution of risk (Milinski, 1987; Milinski, 

Lüthi, Eggler, & Parker, 1997; Pitcher, 1991), but ultimately all shoal members 

benefit from the information collected, irrespective of whether they performed an 

inspection themselves.  

Cooperative behaviour during predator inspection has been studied mainly 

under the framework of direct reciprocity and Tit-for-tat strategies (Dugatkin, 

1988; Dugatkin & Alfieri, 1991b; Külling & Milinski, 1992; Milinski, 1987, 1990; 

Milinski & Boltshauser, 1995; Milinski, Kulling, & Kettler, 1990; Milinski, Pfluger, 
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Külling, & Kettler, 1990); however, these experiments have been heavily criticised 

(Lazarus & Metcalfe, 1990; Masters & Waite, 1990; Reboreda & Kacelnik, 1990; 

Stevens, Cushman, Hauser, & Lincoln Stevens, 2005), mainly on the basis of 

methodological issues (for a review see Pitcher, 1991). The literature to date 

suggests that in pairs of inspecting fish the cooperative investment of each 

individual is conditional on past experiences with this specific partner (which may 

be recognised on the basis of condition-dependent cues, see Dugatkin & Alfieri, 

1991b), as well as the partner’s current behaviour during the inspection 

(Edenbrow et al., 2017). Furthermore, past experiences during predator 

inspection have been shown to have carryover effects in subsequent interactions 

with previously non-encountered partners: Edenbrow and colleagues (2017) 

found that in some guppy populations, experiencing cooperation by a partner can 

have long-lasting effects on an individual’s behaviour in subsequent successive 

cooperative interactions. Most studies looking at cooperation during predator 

inspection have focused on direct reciprocity; however, little is known regarding 

the possible involvement of other types of reciprocity in this paradigm. Here I use 

condition-dependent discrimination to explore the effect of specific and non-

specific information about the cooperative propensity of a shoalmate on an 

individual’s cooperative effort during subsequent cooperative interactions. I 

predict that when fish have individual-specific information about a partner’s 

cooperative behaviour, they will adjust their cooperative investment according to 

past interactions – that is, cooperate after experiencing cooperation and defect 

after experiencing defection. In the absence of specific information about the 

current partner’s cooperativeness, individuals should still utilise anonymous 

information, such as having received help by different partners in the past, 
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consistently with the hierarchical information hypothesis; more specifically, 

individuals are predicted to respond to cooperation by a past partner by 

cooperating towards a novel partner. Past experiences of cooperation by a 

specific partner are expected to lead to a higher increase in cooperative 

behaviour than anonymous past experiences of cooperation, consistently with the 

hierarchical information hypothesis (Rutte & Taborsky, 2008). 

2.2 Materials and Methods 

2.2.1 Study subjects 

For this study I tested 96 (48 female and 48 male) sexually mature Trinidadian 

guppies, 3rd generation descendants of wild-caught fish from a high predation site 

of the Guanapo River (10°36'44N, 61°15'48W) on the island of Trinidad. The fish 

were housed in mixed-sex tanks in the University of Exeter, Department of 

Psychology fish laboratory facilities (12h light: 12 hour dark cycle). Fish were fed 

with commercial flake and live food twice a day and were kept in constant room 

temperature of 25oC. 

Stimulus shoals consisting of Trinidadian guppies descended from wild-

caught fish from a high predation site of the Aripo River (10°39′27N, 61°13′34W) 

in 2008 were collected from mixed-generation pools in the University of Exeter, 

Department of Psychology fish laboratory facilities, and housed in groups of 125 

fish (100 females and 25 males per tank). Stimulus shoal diet was manipulated 

to generate odour cues that would allow focal individuals to differentiate between 

encountered shoals of fish (see Ward, Hart, & Krause, 2004): half of the stimulus 

fish were fed commercial frozen bloodworm, while the other half were fed 

commercial frozen Daphnia sp. Focal fish had no experience of either of these 

diets prior to their first behavioural assay. 
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2.2.2 Behavioural assay 

To assess the cooperativeness of individuals, I used a standard predator 

inspection assay (Figure 2.1). Individuals were placed in a customised tank with 

two inspection lanes divided by clear Perspex. Inspections were run 

simultaneously in both lanes to increase time efficiency. Each inspection lane 

had a predator compartment in one end, with a clear Perspex divider that allowed 

for the transmission of visual cues, and a stimulus shoal compartment on the 

other end, divided by perforated clear Perspex, to allow for transmission of both 

olfactory and visual cues. A small plastic plant was placed in front of the stimulus 

shoal compartment, to provide refuge for the focal fish. One side of each 

inspection lane was lined either with a mirror to simulate a cooperative partner, 

or an opaque surface to simulate defection by social partners. This paradigm has 

been demonstrated to elicit a score of individual cooperativeness that matches 

cooperativeness in a live partner scenario (Brask et al, in prep), and can therefore 

be used to provide a standardised inspection partner for focal fish. 

 

Figure 2.1. The experimental set up used for predator inspection, with two identical lanes 

per tank. S: stimulus shoal compartment; P: predator compartment. Cooperation was 

simulated with the use of a mirror placed alongside the inspection lane (represented by 
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the light blue line); defection was simulated with an opaque surface (the mirror was 

removed). Both lanes were used simultaneously (but with different experimental 

conditions) for logistic reasons. During video analysis, each inspection lane was divided 

in 11 equidistant zones (grey lines). 

Instead of using live predators as inspection stimuli, I used two types of 

realistic predator models resembling two types of predators commonly found in 

high predation habitats (Crenicichla frenata and Andinoacara pulcher). Predator 

models have been widely used for inspection assays in the literature (e.g. 

Dugatkin & Godin, 1992; Magurran & Girling, 1986; Magurran & Seghers, 1994) 

and have been shown to elicit an anti-predator response, whilst offering 

standardised predator behaviour. All focal individuals were given the opportunity 

to inspect a predator stimulus twice (120 minutes between inspections); for each 

inspection, a different type of model was used, to reduce the chance that 

behaviour during the second inspection would not be affected by information 

gathered during the first inspection (C. frenata model: total  length 12cm; A. 

pulcher model: total length 10cm). The order of presentation of predator models 

was balanced. 

A stimulus shoal consisting of 4 same-sex, size-matched conspecifics, not 

previously encountered by focal fish, was introduced in the stimulus shoal 

compartment and was left for 20 minutes, to allow for the accumulation of 

olfactory cues. The focal individual was then placed in the testing compartment, 

and was left for 10 minutes to acclimatise. During this period, the focal fish had 

visual and olfactory access to the stimulus shoal. At the end of the 10-minute 

period the focal fish was gently herded to the refuge area and a visual barrier was 

lifted, revealing the predator model and signifying the start of the trial. The 

experimental trial lasted for 5 minutes; at its end the focal fish was removed from 
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the tank and placed in a holding tank for 2 hours where it had visual, but not 

olfactory access to other fish. The same procedure was followed for the second 

inspection event, and here the focal individual was paired with new stimulus fish 

with either the same or different global odour cues (thus ostensibly simulating the 

same or a different shoal). During the first inspection, focal fish experienced either 

cooperation or defection; during the second inspection, all fish experienced 

cooperation from their social partners. 

Both inspections were video recorded and analysed blind to treatment by 

two observers using Solomon Coder software (Péter, 2011). Each of the 

inspection lanes was divided in 11 zones (5 cm legth per zone) (see Figure 2.1), 

and the time spent in each zone was recorded. The latency to leave the refuge 

area and frequency of transitions between zones were also measured. 

2.2.3 Statistical analysis 

The average zone that fish occupied during each behavioural trial after leaving 

the refuge area for the first time was calculated as a measure of cooperativeness 

and then analysed by fitting Generalised Linear Models in the ‘nlme’ v3.1-131 

package (Pinheiro, Bates, DebRoy, & Sarkar, 2014). All statistical analyses were 

carried out in R v3.2 (R Core R Development Core Team, 2015). The average 

zones occupied by focal fish during each predator inspection trial (first and 

second) were analysed separately. For the first inspection the full model included 

Sex (Male/Female) + Social Environment (Cooperation/Defection) + Sex*Social 

Environment. For the analysis of the average zone occupied during the second 

inspection the current Social Group (Same as Exposure 1/Different from 

Exposure 1) and its interactions with Sex and Social Environment were also 

included in the full model. I used backwards step elimination of non-significant 
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interactions for model simplification (Crawley, 2012; Zuur, Ieno, Walker, Saveliev, 

& Smith, 2009), with Chi-square tests to find the best model. The error distribution 

and link function for every model was chosen to obtain the lowest residual 

deviance and Akaike information criterion (AIC) value (Thomas, Vaughan, & 

Lello, 2013). The error distributions and link functions used were Gamma (link= 

log) for average zone during the first inspection, and Gaussian for the second 

inspection. Post hoc analyses on significant interaction terms of the Generalised 

Linear Models were carried out in the ‘lsmeans’ v2.20-23 package (Lenth, 2016): 

pairwise least squares contrasts after Tukey adjustment for multiple comparisons 

were carried out for each level of the fixed factors. 

2.3 Results 

2.3.1 Average zone during first inspection 

The cooperativeness of focal fish during the first predator inspection was found 

to be affected by the social environment (experience of cooperation or defection) 

that the focal fish experienced [F(1,82)=3.939, p=0.050 (Table 2.1): in the 

presence of a simulated cooperative partner, fish assumed on average a closer 

position to the predator than fish experiencing defection by their social partners 

(Figure 2.2). I also found an effect of sex [F(1,82)=6.579, p=0.012] (Table 2.1), 

with females being more cooperative than males (Figure 2.2). I did not find an 

interaction between these two factors. 



- 65 - 
 

 

Figure 2.2. Effects of the social environment (cooperation or defection) and sex on the 

cooperativeness of the focal fish during first inspection event. The boxes represent the 

interquartile range (25th and 75th quartiles), and the horizontal lines represent the 

medians. The upper whisker extends to the largest value no further than 1.5 times the 

interquartile range (1.5*IQR), while the lower whisker extends to the smallest value 

within 1.5 times the interquartile range (Tukey boxplot). The dots represent outlying 

values. Descriptive statistics are represented in this way in all boxplots across this 

thesis.  Fish that experienced cooperation assumed in average a closer position to the 

predator, and across conditions, females were more cooperative than males. * p < 

0.05. 
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Table 2.1. Marginal effects of sex and social environment (cooperation/defection) on 

the cooperativeness during the first predator inspection event. GLM after removal of 

non-significant interactions. Statistically significant factors are shown in bold. 

  Estimate 
Standard 

error 
df t-value 

p-

value 

Intercept  1.651 0.110 82 15.061 <0.001 

Sex Female 0 - 82 - - 

 Male -0.337 0.131 82 -2.573 0.012 

Soc. Env. Cooperation 0 - 82 - - 

 Defection -0.262 0.132 82 -1.995 0.050 

2.3.2 Average zone during second inspection 

The cooperative behaviour of focal fish during the second inspection was found 

to depend on both whether they were paired with fish with the same or different 

global odour cues as the first inspection and on whether they had experienced 

cooperation or defection during the first inspection [Social Group x Social 

Environment: F(1,84)=4.721, p=0.033] (Figure 2.3) (Table 2.2). Post hoc analysis 

did not show statistically significant differences in paired comparisons (Table 2.3), 

indicating a cumulative effect best interpreted from the graph. The strongest 

effect however seemed to be a difference in cooperativeness during the second 

inspection event between fish that were paired with a stimulus shoal emitting 

novel odour cues: fish that had experienced cooperation by their previous social 

partners tended to be less cooperative with novel social partners than those that 

had experienced defection. I found no effect of sex. 
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Figure 2.3. Effects of past experience (cooperation or defection) and social group 

(same or different) on the average zone occupied by focal fish during the second 

exposure. I found a significant interaction between the two factors. * p < 0.05. 
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Table 2.2. Marginal effects of sex, current social group (same/different), and social 

environment (cooperation/defection) during the first predator inspection event on the 

cooperativeness during the second predator inspection event. GLM after removal of 

non-significant interactions. Statistically significant factors are shown in bold. 

  Estimate 
Standard 

error 
df 

Test 

statistic 
p-value 

Intercept  3.437 0.490 84 7.017 <0.001 

Sex Female 0 - 84 - - 

 Male 0.331 0.457 84 0.725 0.471 

Soc. Group Different 0 - 84 - - 

 Same 0.929 0.627 84 1.481 0.142 

Soc. Env. Cooperation 0 - 84 - - 

 Defection 1.282 0.662 84 1.937 0.056 

Soc. Group x  

Soc. Env. 

Different - 

Cooperation 

0 - 84 - - 

 Same - 

Defection 

-1.991 0.917 84 -2.173 0.033 

 

 

Table 2.3. Planned contrasts analysis for the ‘Social Group*Social Environment’ 

interaction on the cooperativeness during the second predator inspection event. 

Pairwise least squares means comparisons after Tukey adjustment for multiple 

comparisons. Statistically significant contrasts are shown in bold. 

Contrast Estimate 
Standard 

error 
df z-ratio p-value 

Diff. Coop. – Same Coop. -0.929 0.627 84 -1.481 0.139 

Diff. Coop. – Diff. Def. -1.282 0.662 84 -1.937 0.053 

Same Coop. – Same Def. 0.709 0.634 84 1.119 0.263 

Same Def. – Same Def. 1.062 0.669 84 1.589 0.112 
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2.4 Discussion 

My results demonstrate that in predator naïve Trinidadian guppies, the outcome 

of cooperative interactions affected the cooperativeness expressed in 

subsequent interactions. Importantly, the level of cooperativeness expressed by 

individuals was dependent on the identity of social partners (same or novel): 

when paired with social partners that were ostensibly the same as previously, 

then a previous experience of cooperation resulted in the greatest 

cooperativeness and a previous experience of defection resulted in the least 

cooperativeness compared to pairings with novel social partners. Intriguingly, 

focal fish were most cooperative overall when paired with a novel shoal after 

experiencing defection. I also found that during predator inspection female 

guppies were more cooperative than males and that inspecting with a cooperative 

partner (mirror image), led to greater cooperativeness during the inspection. 

Cooperative behaviour during predator inspection has been studied mainly 

under the framework of direct reciprocity, with a large number of studies 

suggesting that fish are employing Tit-for-tat-like strategies during an iterated 

prisoner’s dilemma game (Dugatkin, 1988; Dugatkin & Alfieri, 1991b; Külling & 

Milinski, 1992; Milinski, 1987, 1990; Milinski & Boltshauser, 1995; Milinski, 

Kulling, & Kettler, 1990; Milinski, Pfluger, Külling, & Kettler, 1990). In a Tit-for-tat 

strategy individuals start a new game by cooperating on the first move, and copy 

their partner’s last move in subsequent encounters (Hamilton & Axelrod, 1981). 

My results suggest that individuals were employing this strategy to some extent: 

during the second predator inspection, fish paired with a familiar shoal (i.e. with 

stimulus fish originating from the same population as the stimulus fish in the first 

inspection) copied their social partner’s last move, defecting after experiencing 
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defection, and cooperating after experiencing cooperation. However, the 

behaviour of individuals on their first move towards a novel partner is less clear. 

When individuals were paired with novel social partners during the second 

predator inspection event, their behaviour was dependent on their experience 

with ostensibly different social partners during the first inspection – they exhibited 

a clear cooperative first move if their earlier partners had defected, but, less so if 

they had cooperated. This is somewhat counter intuitive, but suggests in the least 

that they do not “generalise” defection and employ, also here, something that 

resembles a Tit-for-tat strategy (cooperate on the first move). 

In the absence of specific information about the individual cooperative 

propensity of one’s partner, utilising non-specific information, such as having 

received help by someone else in the past, might still be preferable to no 

information at all (Rutte & Taborsky, 2008). If generalised reciprocity is taking 

place in cooperative behaviour during predator inspection, one would expect that 

when paired with an unfamiliar shoal during predator exposure, fish that had 

experienced cooperation during the first exposure would be more cooperative 

than the ones that had experienced defection. Indeed a carryover effect of 

previous interactions approximating generalised reciprocity in some cases has 

been reported by Edenbrow and colleagues (2017). In the current study, the 

finding that individuals in the cooperation condition during the first inspection were 

less cooperative in the second inspection towards an unfamiliar shoal than those 

in the defection condition suggests that further work is needed to interpret this 

result. Alternatively, it could be that individuals are moderating the overall risk 

taken across the two inspection events and thus invest more overall in the second 

inspection when experiencing defection during the first event (these fish did not 
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approach the predator as closely in the first inspection event). If this is the case, 

it may not be appropriate to compare across conditions (cooperation versus 

defection in the first inspection), but only within conditions. In this latter case, we 

can see that if generalised reciprocity is occurring in the tested population, then 

the effect on behaviour is not as strong as direct reciprocity: after experiencing 

cooperation, fish that were ostensibly interacting with the same social partners 

were more cooperative than fish interacting with novel social partners. 

My finding that experiencing cooperation from one’s social environment 

leads to increased cooperative behaviour by the focal individual supports past 

research in small freshwater fish demonstrating that, during predator exposure, 

simulating cooperation by a social partner with the use of a mirror leads to closer 

predator approach, and thus more cooperative behaviour (guppies: Dugatkin, 

1988; three-spined sticklebacks: Milinski, 1987). Furthermore, females were 

found to be more cooperative than males, which is consistent with previous 

studies (e.g. Russell, Kelley, Graves, & Magurran, 2004) that report similar sex 

differences. Crucially, despite the sex difference in cooperativeness observed 

during the first predator inspection event, I detected no sex effect on the 

cooperativeness during the second predator inspection event. This may be 

indicating that the effect of experiences during past cooperative interactions 

differs between male and female guppies. Past research shows that female 

guppies prefer associating with familiar female conspecifics, and they are 

commonly viewed as the core of the shoal (Griffiths & Magurran, 1998). Female 

guppies, both in the lab and in the wild, have been demonstrated to form pairwise 

associations that persist over time (Croft et al., 2006; Croft, Krause, & James, 

2004), and to preferentially engage in predator inspection with others with whom 
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they have strong social ties (Croft et al., 2006). In comparison, male guppies 

demonstrate higher emigration rates and overall mobility than females (Croft, 

Albanese, et al., 2003a) – such mobility is expected to limit the potential for the 

formation of persistent pairwise associations between males (Griffiths & 

Magurran, 1998). Furthermore, male guppies have been demonstrated to move 

more between shoals than females, suggesting lower shoal fidelity (Croft, 

Arrowsmith, et al., 2003). Given these sex differences in social behaviour and 

association patterns, females may be more likely to rely on direct reciprocity 

during predator inspection, as they repeatedly interact with specific individuals, 

while, on the other hand, males may be expected to rely more on strategies that 

do not depend on memory of interactions with a specific individual, such as 

generalised reciprocity. 

This study found that guppies may employ different behavioural rules 

depending on the type of information (specific or non-specific) they have about 

their shoalmates’ cooperative behaviour. In the presence of specific information 

about the cooperative propensity of a social partner, guppies were found to copy 

their partner’s last behaviour, consistent with direct reciprocity. In the absence of 

partner-specific cues, individuals seemed to employ a different, or at least 

additional, strategy. To date, only a small number of studies has looked at the 

carryover effects of past experiences during cooperative interactions on 

cooperative propensity towards previously non-encountered partners (e.g. 

Edenbrow et al., 2017); this study builds on past findings by exploring the use of 

specific and non-specific information during cooperative decision-making. During 

cooperative interactions in the context of predator inspection, guppies seem to 

use information obtained from past experiences differentially according to their 
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specificity to the current context. It is possible that past experiences lead to 

changes in the individual’s physiological/neurological state that, in turn, affect its 

behavioural output; however, the exact mechanism mediating these effects 

remains unclear. Future research focusing on generalised reciprocity and 

alternative frameworks explaining the maintenance of cooperation in this species 

will provide much needed insight to the decision-making processes and 

evolutionary pathways underlying cooperation across taxa. 
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Abstract 
 

The evolution and maintenance of cooperation among unrelated individuals 

remains an evolutionary conundrum. Theoretical work suggests that positive 

assortment of interactions amongst cooperators, or at least of cooperative 

behaviour, is a key requirement for non-kin cooperation to persist. Empirical work 

in humans, dolphins (Tursiops truncatus) and Trinidadian guppies (Poecilia 

reticulata) demonstrates that assortment by individual cooperativeness can be 

found in real world populations and thus supports theoretical predictions. 

Currently, however, very little is known about how such assortment is generated. 

Mechanisms underlying positive assortment can be based on active partner 

choice, with individuals preferentially associating with those that exhibit similar 

levels of cooperativeness; it is possible, nevertheless, that this assortment is a 

by-product of assortment by other phenotypic traits and is therefore driven 

passively. Here, using the Trinidadian guppy as a model system, I explore the 

possibility that cooperative phenotypes are associated with other behavioural 

traits that could potentially drive passive mechanisms of assortment by individual 

cooperativeness. In this study, I selectively bred guppies for high and low 

cooperative propensity over three generations. I then assessed a suite of 

behaviours, to see whether behavioural traits that could potentially drive social 

association patterns differ among highly cooperative and non-cooperative fish. 

Phenotypic selection on cooperativeness over three filial generations resulted in 

pronounced differences in cooperativeness between the two lines in both males 

and females. When I assayed the lines for boldness, exploratory tendency, 

aggressiveness and sociability I did not find any behavioural trait differences 

between the selection lines in females. In contrast, I found that males from the 
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line selected for low cooperativeness were more aggressive and less prone to 

sampling their social environment than males selected for high cooperativeness. 

Aggression is an important component of sociality and could potentially have a 

role in driving social network structure in this species. My results suggest that in 

male, but not female, Trinidadian guppies, differences in behavioural traits may 

potentially passively drive assortment by associated behaviours, such as 

cooperation. 

3.1 Introduction 

The evolution and maintenance of cooperation among unrelated individuals is an 

evolutionary conundrum (e.g. Hammerstein, 2003), as cooperative individuals 

pay fitness costs so that others can benefit. Theoretical work suggests that some 

form of assortment, for example assortment by cooperative phenotype such that 

cooperators are more likely to interact with one another than with defectors, is 

crucial for the emergence and maintenance of cooperation in a population 

(Aktipis, 2008, 2011; Croft et al., 2015; Eshel & Cavalli-Sforza, 1982; Fletcher & 

Doebeli, 2009; Nowak et al., 2010; Wilson & Dugatkin, 1997). When cooperators 

have a heightened tendency to interact with one another, they avoid or reduce 

exploitation by free riders and gain higher fitness payoffs than defectors (Aktipis, 

2008, 2011; Fletcher & Doebeli, 2009; Nowak et al., 2010; Pepper & Smuts, 

2002). A small number of empirical studies have emerged recently providing 

evidence that real-world social networks are indeed assorted by individual 

cooperative propensity. For instance, social networks of the Hadza, a population 

of hunter-gatherers in Tanzania have been found to be positively assorted by 

individual cooperativeness in a public goods game, with individuals showing 

similar levels of cooperative behaviour being more likely to associate with one 
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another (Apicella, Marlowe, Fowler, & Christakis, 2012). Similarly, in a study 

looking at a  free-ranging bottlenose dolphin (Tursiops truncatus) population, 

social ties were found to be the strongest between cooperative individuals; in fact, 

clusters in the social network comprised almost exclusively either cooperators or 

non-cooperators (Daura-Jorge, Cantor, Ingram, Lusseau, & Simões-Lopes, 

2012). Finally, real-world social networks of Trinidadian guppies (Poecilia 

reticulata) in a high predation, but not a low predation habitat have been shown 

to be assorted by individual cooperative propensity (Brask et al., in prep.). 

Despite the evidence for assortment by cooperative behaviour in real-

world populations, the mechanisms generating this assortment remain largely 

unclear. There is a plethora of proposed mechanisms for generating assortment 

by cooperation that may act alone or together (for a review of theoretical 

propositions see Croft et al., 2015). Mechanisms of assortment can be roughly 

divided into active (driven by decisions made on the basis of cooperative 

experiences) and passive (by–product of other behavioural drivers). Active 

mechanisms can include, for example, individual preferences for associating with 

others based on their cooperative traits (e.g. Eshel & Cavalli-Sforza, 1982; Wilson 

& Dugatkin, 1997). Positive assortment of cooperators via passive mechanisms 

may occur when individuals with different cooperative phenotypes occupy 

different habitats or differ in other behaviours. For example, passive assortment 

of cooperators has been demonstrated using a simulation modelling approach 

where food preferences drive spatial movement and resulting social associations 

(Pepper & Smuts, 2002), but has not yet received empirical support. 

It is well documented that in populations of gregarious animal species, 

individuals are often non-randomly assorted on the basis of phenotypic traits such 
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as sex, size or age, as a result of active preferences for similar phenotypes 

(Krause & Ruxton, 2002; Ruckstuhl, Clutton-Brock, & Neuhaus, 2005), but other 

traits are also likely to play a role in assortative interactions. Physiological traits 

such as metabolism, locomotor performance and escape ability influence the 

likelihood of specific individuals interacting due to correlated characteristics such 

as activity, habitat or forage preferences (for a recent review see Killen, Marras, 

Nadler, & Domenici, 2017). Behavioural traits or phenotypes that are associated 

with cooperativeness could similarly drive associations based on these 

phenotypes and thus positive assortment by cooperativeness as a by-product 

(Croft et al., 2015). Traits that affect space use are very likely to affect association 

patterns. For example, Trinidadian guppies exhibit positive assortment by a 

number of characteristics including habitat use (Wilson et al., 2014); bolder 

individuals may be more likely to enter high-risk habitats, such as deeper water 

(Croft et al., 2006), resulting in positive assortment of phenotypically similar 

individuals. There is some empirical evidence suggesting that boldness affects 

both the frequency and strength of social associations in three-spined 

sticklebacks (Gastersteus aculeatus): bold individuals have less frequent but 

more uniformly distributed interactions than shy fish, which form longer-lasting 

associations with only a small number of other individuals (Pike, Samanta, 

Lindström, & Royle, 2008). Exploratory behaviour is also expected to both affect 

space use, and be a prime target for natural selection (Réale, Reader, Sol, 

McDougall, & Dingemanse, 2007). Differences in exploratory behaviour in the 

great tit (Parus major) have been shown to correlate with social phenotypes: 

slow-exploring individuals have few but strong associations with other individuals, 

that persist over relatively long periods of time, whereas fast-exploring individuals 



- 79 - 
 

form more but weaker and relatively short-lived social associations (Aplin et al., 

2013). Crucially, males were found to be positively assorted by personality type 

(slow/fast explorers); no such assortment was observed in females (Aplin et al., 

2013). Social association patterns may also be affected by social traits: for 

instance, sociability – an individual’s response to the presence of conspecifics 

(Réale et al., 2007) – could affect assortment simply by changing the probability 

that individuals will occur in a social group (Croft et al., 2015). Similarly, 

aggressive behaviour is likely to have an impact on the heterogeneity of social 

ties across a network, as non-aggressive individuals may avoid associating with 

aggressive ones (Aplin et al., 2013). Cooperation and aggression are thought to 

be on different ends of the spectrum of social behaviour; in fact, it has been 

suggested that extremely aggressive and/or uncooperative individuals are 

cheaters exploiting social peace (Bergmüller, Schürch, & Hamilton, 2010). 

There is mounting evidence for repeatable differences among individuals 

in their cooperative propensity from a range of taxonomic groups (e.g. Bergmüller 

et al., 2010; Bergmüller & Taborsky, 2007; Charmantier, Keyser, & Promislow, 

2007; Schürch & Heg, 2010a) (also Brask et al in prep.). To the best of my 

knowledge, however, the question of how cooperation co-varies with other 

phenotypic traits that could potentially drive passive assortment by 

cooperativeness, such as the ones mentioned above, has not been explored.  

Here, I use the Trinidadian guppy to examine the extent to which there are 

behavioural traits associated with a cooperative phenotype that could potentially 

drive assortment by cooperativeness in real-world networks via passive 

mechanisms. Guppies cooperate in the context of predator inspection, a 

behaviour in which an individual or a small group of individuals leaves the relative 
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safety of the shoal to approach a potential threat in the vicinity, inspect it, and 

gather information on the level of threat posed that is then transmitted to the rest 

of the shoal (Dugatkin, 1988; Dugatkin & Alfieri, 1991b; Milinski, 1987; Pitcher, 

Green, & Magurran, 1986). Recent work has demonstrated that cooperative 

phenotypes exist in wild populations and that there is evidence for positive social 

network assortment of cooperators that is not driven by associations based on 

sex or morphology (size) (Brask et al., in prep.). This supports earlier work (Croft 

et al., 2009) and provides strong evidence for its ubiquity in populations where 

there is strong selective pressure on indivduals in cooperative contexts (high 

predation risk habitats). Nonetheless, it is not known whether this assortment is 

the result of active or passive mechanisms. Past studies have reported a positive 

correlation between the association strength of pairwise interactions in wild guppy 

social networks and the inspection strength of the corresponding pairs during 

predator inspection, suggesting that networks of persistent pairwise associations 

in wild populations may in fact be cooperative networks (Croft et al., 2006). 

Conversely, defection has been shown not to result in a change of the social 

network structure in guppies (Thomas et al., 2008). Thomas and colleagues 

(2008) propose that the preferential association between cooperators observed 

by Croft and colleagues (2006) may be a by-product of assortment by other 

characteristics. It is possible that the observed assortment by individual 

cooperative propensity is a result of passive assortment by behavioural traits, 

such as gregariousness or boldness, that might directly or indirectly affect the 

probability of cooperative individuals occurring together in a shoal. To explore this 

possibility, I performed a series of behavioural assays to examine whether 

descendants of highly cooperative and non-cooperative fish selectively bred over 
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3 generations showed consistent behavioural differences which might act as 

passive drivers of population assortment by individual cooperative propensity.   

3.2 Materials and Methods 

3.2.1 Study subjects 

3.2.1.1 Phenotypic selection lines: breeding fish for high and low 

cooperativeness 

3.2.1.1.1 Generation F0 

I set up two breeding lines (2 replicates per line with 15 breeding pairs per 

replicate) using sexually mature female and male guppies (generation F0) 

selected from a population of 240 individuals tested for their cooperative 

propensity (see below, Figure 3.1). These fish were descendants of wild caught 

fish originating from a high predation site of the river Aripo on the island of 

Trinidad. The fish were housed in tanks at the University of Exeter, Department 

of Psychology fish laboratory facilities (12h light: 12h dark cycle). Fish were fed 

with commercial flake and live food (Artemia sp) once a day and were kept in 

constant room temperature of 25oC. At the first sign of sexual maturation 

(gonopodium formation), males were removed from the original housing tanks to 

male-only tanks, to ensure that females remained virgin. 

Upon reaching sexual maturity, fish were tested once for their cooperative 

propensity using a predator inspection assay in a custom-made arena. The assay 

was based on those previously used for this species (e.g. De Santi, Sovrano, 

Bisazza, & Vallortigara, 2001; Dugatkin, 1992; Dugatkin & Alfieri, 1991a), but with 

the addition of a robotic element (see below). The aim of such an assay is to 

measure the behaviour of focal individuals when given the opportunity to inspect 
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a predator in partnership with an inspection partner. The arena consisted of two 

inspection lanes divided by clear Perspex. At the end of each inspection lane 

there was a predator compartment, separated by clear Perspex that allowed for 

the transmission of visual but not olfactory cues (Figure 3.1A). A live predator 

was placed in the predator compartment. I used live pike cichlids [Crenincichla 

alta, a congenic species of C. frenata, a major predator of Trinidadian guppies in 

the wild – see Coleman & Kutty (2001) in Magurran (2005), and Weadick, Loew, 

Rodd, & Chang  (2012)]. A small plastic plant was placed at the other end of the 

inspection lane, to provide a refuge for the focal fish. The most widely used 

approach for simulating  inspection partners is by placing a mirror (or mirrors) in 

the inspection lane so focal fish can inspect with their mirror image (e.g. De Santi, 

Sovrano, Bisazza, & Vallortigara, 2001; Dugatkin, 1988; Dugatkin & Alfieri, 

1991b; Milinski, 1987). This approach has the caveat of a fish’s measured 

response being limited to distance and temporal measures relative to the 

predator, but not to the inspection partner. For instance, measures related to 

propensity to overtake an inspecting partner (which occurs in live-partner 

inspections) are possible. Instead of using a mirror, I therefore simulated an 

inspection partner whose behaviour could be standardized using a realistic 

robotic model guppy, Robofish. This model was made of resin poured into silicone 

moulds of dead guppies. Colouration and other morphological features were 

achieved with the application of temporary tattoos onto the resin models (Inkwear, 

UK). Robofish was placed in one of the inspection lanes and followed a 

movement pattern that mimicked an inspecting fish, with the use of magnets 

moved by a stepper motor and pulley system as inspired by Faria and colleagues 

(2010) (Figure 3.1B). 
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Figure 3.1. Top (A) and side (B) view of the experimental setup for the predator 

inspection assay. A: I used a standard predator inspection tank (80x31x60 cm) with two 

inspection lanes divided by clear Perspex. Live predators were placed in a predator 

compartment (right) that allowed for the transmission of visual cues. Cooperation was 

simulated with Robofish (bottom lane) that always assumed the same distance from 

the predator (broken line). The time the focal fish (top lane) spent ahead of Robofish 

was used to calculate the ratio of time spent leading. B: Robofish was mounted on a 

glass rod and was moved with the use of two magnets, one inside and one underneath 

the tank. The magnet underneath the tank was attached to a timing belt and was 

moved with the use of a pulley (p) and a stepper motor (s). 

 

The focal individual was placed in the inspection lane, with no visual 

access to the predator, and was given 10 minutes to acclimate. During this period, 
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Robofish was behind the refuge of the other inspection lane and out of view of 

the focal fish. At the end of the acclimation period, the focal individual was gently 

herded with a hand net to the refuge area, and the opaque barrier obstructing 

visual access to the predator was lifted. This signified the start of the experimental 

trial. At the start of the trial, Robofish made an initial advance towards the predator 

(recruitment step) of 5 cm. Once the focal fish was recruited (left the refuge), 

Robofish continued the full movement pattern toward the predator (10 cm then 

10 sec stop and so on until reaching the end of the lane); if the focal individual 

was not recruited within 1 minute of the completion of the recruitment step, 

Robofish continued the inspection movement pattern regardless. The trial ended 

after 5 minutes of exposure, at which time the focal individual was placed in an 

individual housing tank with visual access to 3 conspecifics. 

All trials were video recorded and videos were then coded using the 

Noldus Observer XT 10 (Wageningen, The Netherlands) software. I calculated 

cooperativeness as the amount of time during the inspection trial that a focal fish 

spent in the lead position (closest to the predator relative to Robofish, the position 

with the higher risk of predation, see Milinski, Lüthi, Eggler, & Parker, 1997) 

relative to the time the focal would be expected to spend in that part of the tank 

by chance alone if it were to use space directly proportional to its size (area) 

(“time spent leading”). A ratio of time spent leading value of 1 would therefore 

correspond to the amount of time spent leading expected by chance; values >1 

correspond to more time spent leading than expected by chance alone, while 

values <1 correspond to less time spent leading than expected by chance. 

Inspecting individuals who showed the highest and lowest cooperative 

tendencies (30 males and 30 females per phenotypic selection line) were 
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selected and randomly placed into breeding pairs housed in 23x40x28.5 cm tanks 

in a flow-through circulation system. Individuals who did not leave the refuge area 

were excluded from the selection process and further data analysis, as in these 

cases it was unclear whether this was due to shyness or failure to detect the 

predator, rather than a non-cooperative phenotype. Similarly, individuals that 

exhibited freezing behaviour in close proximity to the predator for extended 

periods of time (>60 seconds per bout of inspection) were excluded from the 

selection process and further data analysis, as this resulted in increased values 

of ratio of time spent leading but was not indicative of cooperative behaviour.  

3.2.1.1.2 Generations F1 and F2 

 

The offspring of each breeding pair were housed in sibling groups in which a 

clear, perforated Perspex barrier was placed to separate males and females as 

they neared sexual maturity (see above). The barriers allowed visual and 

olfactory communication, but no physical contact. A month after sexual 

maturation, all the offspring from each breeding pair (generation F1) were tested 

using the same predator inspection assay described above. The 60 most and 

least cooperative inspecting males and females were selected and randomly 

paired (after the application of the criteria for inclusion in the selection process 

stated above), generating the F2 generation (again 15 breeding pairs per 

phenotypic selection line per replicate) (Figure 3.2). The same process was 

followed once more, resulting in the breeding pairs that produced the F3 

generation. The first F3 generation broods underwent the same behavioural 

assay, with the most and least cooperative individuals being selected and 

randomly paired, to produce the 4th filial generation, while the second broods 

were reared for testing (see below).  
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3.2.1.2 Test subjects (Generation F3) 

Generation F3 second broods [generation F3(II)] were removed from their rearing 

tanks upon reaching sexual maturity, as described above. Fish were then tagged 

with Visible Implant Elastomer (VIE; Northwest Marine Technology, USA), to 

allow for individual identification (Croft, Arrowsmith, et al., 2003), and placed in 

housing tanks containing individuals from different broods (but of the same 

selection line) in a sex ratio of 5 females: 3 males, to control for the effect of the 

social environment on behaviour. VIE has been shown not to affect social 

behaviour in this species (Croft, Arrowsmith, et al., 2003). Fish were housed in 

this manner for 95 days post tagging. At the end of this period, 12 males and 12 

females from each selection line, originating from separate tanks, went through 

5 behavioural assays exploring behavioural traits that may be associated with 

their cooperative phenotype. Each fish was tested once per day, with a 24-hour 

period between the assays. The order of presentation of assays was randomised, 

to avoid any bias generated by possible carryover effects of previous tests on the 

behaviour during subsequent assays (Bell, 2013).
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Figure 3.2. Overview of the breeding design for the phenotypic selection lines. Each filial generation (F1-3) comprised 60 breeding pairs (30 HC 

and 30 LC).  Forty-eight males and females from second broods of the F3 generation [generation F3(II)] underwent behavioural testing for  

phenotypic boldness, exploratory tendency, aggressiveness, sociability and sociability following predator exposure.
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3.2.2 Behavioural assays 

3.2.2.1 Boldness 

Individual boldness was measured using an aerial predation simulation paradigm (e.g. 

Heathcote, Darden, Franks, Ramnarine, & Croft, 2017; Piyapong et al., 2010). 

Individuals were placed in a modified tank (12x19 cm), a part of which (12x8.5 cm) 

was sectioned by plastic mesh (drop area). Focal fish were given 10 minutes to 

acclimate. At the end of the acclimation period, when the fish were not expressing any 

escape behaviour such as erratic swimming or freezing, a weight was dropped in the 

drop area of the tank; the weight was tethered so that it broke the surface of the water 

but did not reach the bottom of the tank. Fish were then given a maximum of 5 minutes 

to resume normal swimming activity after the simulation of the aerial predation event. 

All trials were video recorded, and the latency to resume normal activity was recorded. 

3.2.2.2 Exploratory tendency 

To measure exploratory tendency, I used an experimental setup similar to that of 

Chapman et al. (2010). An exploration tank with 5 corridors and a refuge area was 

used (Figure 3.3). The focal fish was placed in the refuge area for 3 minutes. At the 

end of this acclimation period, an opaque barrier that was obstructing access to the 

rest of the tank was lifted, and the focal individual was free to explore the area for 12 

minutes. All trials were carried out under low light conditions, and the tank was backlit 

using an infrared LED array to facilitate tracking of movement. All trials were video 

recorded and videos were analysed using the Noldus Observer XT 10 (Wageningen, 

The Netherlands) software. For the video analysis, the experimental arena was divided 

in 13 zones, not including the refuge area, and the total number of zones visited was 

recorded for each fish. I also calculated an exploration rate as the number of zones 

visited /duration of the test (seconds) after entering zone 2*100, which meant that 
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individuals only received an exploration score greater than zero if they ventured into a 

part of the arena that could not be viewed from the refuge area. 

 

Figure 3.3. Experimental setup for the exploration assay. The tank consisted of 5 parallel 

corridors, divided in 13 zones and the refuge area. The number of zones visited was used to 

calculate the rate of exploration for each fish. 

 

3.2.2.3 Aggressiveness 

To measure aggression towards unfamiliar individuals, two size-matched, same-sex 

conspecifics, unfamiliar with each other and the focal fish, were used. The stimulus 

and focal fish were introduced in a tank (12x19 cm), with a food patch placed in a clear 

cylinder. To habituate the fish to feeding from a food patch on the bottom of the tank, 

all fish were fed with commercial freeze-dried bloodworm from food patches placed on 

the bottom of their home tanks for 14 days prior to the start of the experimental period. 

After 5 minutes of acclimation, the clear cylinder was lifted and the fish were free to 

feed for 10 minutes. Trials were video recorded and aggressive interactions were 
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coded using the Noldus Observer XT 10 (Wageningen, The Netherlands) software. To 

identify aggressive interactions, I used the ethogram by Seghers and Magurran 

(1991). In summary, the aggressive behaviours scored were nipping, nudging, rapid 

approaching or chasing, circling or parallel swimming, tail beating and patch 

monopoly. The direction of these behaviours (whether they were initiated by or toward 

the focal fish) was also recorded. 

3.2.2.4 Sociability 

Sociability towards unfamiliar individuals was measured. Three stimulus shoals 

consisting of 3 same-sex, fish unfamiliar to the focal were placed in clear cylinders 

(8cm diameter), in a square tank. Surrounding each stimulus shoal were 2 shoaling 

zones [inner zone (12cm diameter) and outer zone (14 cm diameter)] (Figure 3.4). The 

focal individual was introduced in a clear cylinder, and left for 5 minutes to acclimate. 

After the acclimation period, the cylinder was lifted and the focal fish was left free to 

swim and shoal with the stimulus shoals for 25 minutes. Each trial was video recorded 

and videos were analysed using the Noldus Observer XT 10 (Wageningen, The 

Netherlands) software. Guppy social networks are characterised by high levels of 

fission-fusion over short time scales, with shoal encounters occurring on average 

every 14s (Croft, Arrowsmith, et al., 2003). It is possible, therefore, that the number of 

shoal changes reflects the frequency with which an individual samples their social 

environment. The behavioural measures recorded were time spent in social isolation, 

time spent in each shoaling zone, and the number of transitions between different 

stimulus shoals. 
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Figure 3.4. Experimental setup for measuring shoaling tendency. The numbered circles mark 

the position of the stimulus shoals. The dotted circles denote the two shoaling areas (inner 

and outer). S marks the point of introduction of the focal individual in the experimental arena. 

 

3.2.2.5 Sociability following predator exposure 

Shoaling is thought to be a mechanism of decreasing risk of predation: larger shoals 

of inspecting fish are thought to provide more safety because of their increased ability 

to detect predators (the “many eyes” hypothesis - see Roberts, 1996 for a review of 

the empirical evidence supporting it), increased predator avoidance (Krause & Ruxton, 

2002), and the dilution of risk (Pitcher, 1986). Guppy populations under high predation 

risk show higher shoaling tendency and form more cohesive shoals than those under 
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relaxed predation regimes (Endler, 1995; Seghers, 1973). As shoaling acts to reduce 

risk of predation, and the evolutionary response to intensive predation is increased 

shoaling tendency, one would expect more risk-sensitive individuals to increase their 

shoaling tendency when the perceived risk of predation is high. Sociability following 

predator exposure was measured using a modified tank with 2 stimulus shoal 

compartments, and a choice compartment (Figure 3.5). Three size-matched, same-

sex conspecifics, not previously encountered by the focal fish were placed in each 

stimulus shoal compartment, and were left for 5 minutes to acclimatise. The focal 

individual was then placed in the choice compartment, and was left for 10 minutes to 

acclimatise. At the end of this period, an opaque barrier obstructing visual access to a 

realistic predator model was lifted, and the stimulus fish was exposed to this model 

predator for 1 minute. At the end of the exposure, the barrier was lowered again, once 

more obstructing visual access to the predator, and the behaviour of the focal fish was 

video recorded for 10 minutes. All videos were analysed using the Noldus Observer 

XT 10 (Wageningen, The Netherlands) software. The behavioural measures recorded 

were time spent in close proximity (within 2 body lengths) to each of the stimulus 

shoals. 

Some of the behavioural assays (aggressiveness, sociability and sociability 

following predator exposure) described above required the use of stimulus fish. These 

consisted of Trinidadian guppies sampled from mixed-generation descendants of wild 

caught fish originating from the same sampling site on the Aripo river of Trinidad as 

the F0 generation fish. Stimulus fish were housed in groups of 125 fish (100 females 

and 25 males), and were fed on the same diet (commercial flake, freeze-dried 

bloodworm and live food) as the groups of focal individuals, to avoid any confounding 

effects of different odour cues related to habitat exploitation (Ward & Hart, 2003). 
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Figure 3.5. Experimental setup for the assay of shoaling tendencies after predator exposure. 

The focal fish is at the left, with one stimulus shoal on either side. On the right is the predator 

model. 

 

3.2.2.6 Cooperativeness validation 

To validate the behavioural divergence measured in the phenotypic selection lines, 

each focal fish underwent the same predator inspection assay as the previous 

generations of the phenotypic selection lines, 10 days after their last behavioural 

assay. I calculated the ratio of time an individual spent leading (i.e. in front of Robofish) 

as described above, which is indicative of individual cooperative propensity. 

3.2.3 Statistical analysis 

All statistical analyses were carried out in R v 3.2 (R Core Team, 2014). To test the 

effect of the phenotypic selection process on the fish of the filial generations 

(generations F1 – F3) I analysed the ratio of time spent leading by fitting linear mixed 

effects models (LME) in the ‘nlme’ v 3.1-127 package (Pinheiro, Bates, DebRoy, & 

Sarkar, 2014). The model included Line (High/Low Cooperators) +Sex (male/female) 
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+ Generation (F1-F3) + Line*Sex + Line*Generation + Sex*Generation. Replicate and 

Brood were introduced as nested random effects (Replicate/Brood) with random 

intercepts. My initial analysis showed that the response variable was heteroskedastic, 

with different variance structures for the different levels of each fixed factor; to 

overcome this, I used different variance structures for each level of each fixed factor 

(Zuur, Ieno, Walker, Saveliev, & Smith, 2009). Fish that did not leave the refuge area, 

and therefore did not perform a predator inspection, were excluded from the analysis. 

The effect of the cooperative phenotype on the behavioural measures assessed 

by the tests performed on subsequent broods of F3 fish [generation F3(II)] was 

analysed by fitting linear mixed effects models in the ‘nlme’ v 3.1-127 package 

(Pinheiro et al., 2014). In many instances I observed heteroscedasticity of the 

response variable, which was resolved by adjusting the variance structure of the model 

(Zuur et al., 2009). To examine the effect of the cooperative phenotype on the 

percentage of area explored in the exploratory tendency assay (exploration index), I 

used generalised linear mixed effects models (family=beta, link=logit) in the 

‘glmmADMB’ package v 12 (Skaug, Fournier, Nielsen, Magnusson, & Bolker, 2011). 

In all cases the model included Line (High/Low Cooperators) + Sex (Male/Female) + 

standard body length (calculated as a z-score separately for males and females) + 

Line*Sex. When analysing sociability post predator exposure, I included the social 

tendency measured in the sociability assay, in order to control for any differences in 

overall sociability (pre-predator exposure). Models had random intercepts and 

included Replicate as a random effect. Latency to resume normal swimming during 

simulated aerial predation was analysed using survival analysis (Jahn-Eimermacher, 

Lasarzik, & Raber, 2011) using the ‘survival’ v 2.37-7 R package (Therneau & Lumley, 

2017). I used a Cox’s proportional hazards model on the response variable 
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(censored=1). The ‘frailty’ function (gamma distribution) was used to add ‘Replicate’ 

as a random effect in the model. 

3.3 Results 

3.3.1 Phenotypic selection on cooperative behaviour 

The ratio of time spent leading across three filial generations (F1-F3) was found to be 

affected by the interaction between the generation and the phenotypic selection line 

[‘Generation*Line’: F(2,125)= 3.684, p=0.028)] (Figure 3.6). Planned comparisons 

between High and Low Cooperators, averaged across sex, were carried out for each 

generation: these showed no difference in F1 [t(2,794)=-1.366, p=0.172]. The two 

phenotypic selection lines started diverging in generation F2, with High Cooperators 

(HC) spending more time ahead of Robofish (thus assuming higher risk) than Low 

Cooperators (LC) [t(2,125)=-3.163, p=0.002]; this difference was more pronounced in 

generation F3 [t(2,125)=-6.423, p<0.001] (Figure 3.6). There was an overall trend for 

an interaction of sex and generation [‘Sex*Generation: F(2,794)= 2.761, p=0.064)]; 

this trend, however, did not reach statistical significance. I found no effects of 

‘Line*Sex’ or ‘Sex’ on the ratio of time individuals spent leading (Table 3.1).  
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Figure 3.6.Ratio of time spent leading across the parental (F0) and three filial generations. I 

found significant difference between HC (dark blue) and LC (light blue) fish in generations F2 

and F3. * p < 0.05; *** p < 0.001. 
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Table 3.1 Marginal effects of Line, Sex and Generation on the ratio of time spent leading. 

LME with no model selection. Statistically significant factors are shown in bold. 

  Estimate 
Standard 

error 
df t value 

p 

value 

Intercept  0.526 0.065 794 8.080 <0.001 

Line HC 0 -  - - 

 LC -0.072 0.069 794 -1.037 0.300 

Sex Females 0 - 794 - - 

 Males 0.038 0.063 794 0.608 0.543 

Generation F1 0 - 125 - - 

 F2 -0.200 0.072 125 -2.777 0.006 

 F3 -0.157 0.068 125 -2.305 0.023 

Line*Generation HC – F1 0 - 125 - - 

 LC – F2 -0.080 0.085 125 -0.926 0.356 

 LC – F3 -0.206 0.081 125 -2.551 0.012 

Sex*Generation Females – F1 0 - 794 - - 

 Males – F2 0.073 0.068 794 1.087 0.278 

 Males – F3 -0.039 0.062 794 -0.620 0.535 

Line*Sex HC – Female 0 - 794 - - 

 LC – Male  -0.039 0.046 794 -0.838 0.402 

       

       

3.3.2 Behavioural phenotypes of generation F3 (II) 

3.3.2.1 Boldness 

Latency to resume normal activity was found to be affected by sex [for overall model: 

LRT1,4.84= 17.97, p=0.003], with males resuming normal activity faster (thus being 

bolder) than females [χ2
1= 6.15, p=0.013, male odds of resuming normal activity were 

2.2395 times that of females (95% CI: 1.1840 to 4.236)] (Figure 3.7). I found no 

significant effects of ‘Line’ or the ‘Line*Sex’ interaction. Standard body length (z-scores 

calculated separately for males and females) had no significant effect on latency to 

resume normal swimming activity. Replicate (included in the model as a frailty 

function) was also found to affect boldness after aerial predation simulation (χ2
0.8 = 

5.09, p=0.019), with individuals of Replicate 1 (frailty: 1.226; 95% CI: 0.727 to 2.067) 
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being faster to resume normal activity than those of Replicate 2 (frailty: 0.774; 95% CI: 

0.444 to 1.350) across sex and cooperative phenotypes. 

 

Figure 3.7. Proportion of fish exhibiting freezing behaviour during a simulated aerial 

predation. Across phenotypic selection lines, males (blue dotted line) were faster to resume 

their normal activity than females (red line). The grey areas show 95% confidence intervals. 

3.3.2.2 Exploratory tendency 

3.3.2.2.1 Rate of exploration 

I found a significant effect of ‘Sex’ (F(1,77)=6.232, p=0.015) on the rate of exploration 

[(number of zones explored/time)*100], with males being faster explorers than females 

in both phenotypic selection lines (Figure 3.8). HC and LC fish did not differ in their 

rate of exploration. I found no significant effect of standard body length or ‘Line*Sex’ 

interaction (Table 3.2). 
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Figure 3.8. Sex differences in the rate of exploration [100*(zones explored)/time]. Across 

phenotypic selection lines, males (blue) were faster explorers than females (red). * p < 0.05. 

 

3.3.2.2.2 Rate of zone transitions 

The exploratory style (i.e. the rate of exploration) of the tested fish is likely to be 

affected by their overall general activity. My experimental design did not permit me to 

measure general activity of focal individuals in their home tanks. I analysed the rate of 

zone transitions (number of zone transitions/time after entering zone 2) during the 

exploration assay, which is indicative of their overall swimming speed. I found no 

significant effects of ‘Line’, ‘Sex’ or standard body length on the rate of transitions 

between zones (Figure 3.9). I also found no significant ‘Line*Sex’ interaction (Table 

3.2). 
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Figure 3.9. Rate of zone transitions (proxy for swimming speed) during the exploration 

assay. I found no effects of sex or the phenotypic selection line of origin (males: blue; 

females: red). 
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Table 3.2. Marginal effects of Line, Sex and standard body length on the rate of exploration 

and the rate of zone transitions during exploration. GLMM with no model selection. 

Statistically significant factors are shown in bold. 

Measure   Estimate 
Standard 

error 
df t value 

p 

value 

Rate of 

exploration 

Intercept  1.424 0.269 77 5.29445 <0.001 

Line HC 0 - 77 - - 

  LC -0.103 0.307 77 -0.335 0.739 

 Sex Females 0 - 77 - - 

  Males 1.462 0.586 77 2.496 0.015 

 Standard 

length (z-

score) 

 0.085 0.125 77 0.681 0.498 

 Line*Sex HC – 

Female 
0 - 77 - - 

  LC –  

Male 
-1.011 0.673 77 -1.502 0.137 

Rate of 

zone 

transitions 

Intercept  0.113 0.024 78 4.596 <0.001 

 Line HC 0 - 78 - - 

  LC -2.895*10-4 0.035 78 -0.008 0.993 

 Sex Females 0 - 78 - - 

  Males 0.057 0.034 78 1.653 0.102 

 Standard 

length (z-

score) 

 -0.010 0.012 78 -0.814 0.418 

 Line*Sex HC – 

Female 
0 - 78 - - 

 
 

LC –  

Male  
-0.022 0.048 78 -0.463 0.644 

 

 
       

3.3.2.3  Aggressiveness 

The rate of aggressive interactions initiated by the focal individual was affected by an 

interaction between its sex and the phenotypic selection line from which it originated 

[‘Line*Sex’: F(1,84)= 7.274, p=0.009] (Table 3.3). Post hoc analysis revealed that LC 
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males were more aggressive than all other experimental groups (Figure 3.10) (Table 

3.4). The rate of aggressive interactions directed from stimulus fish to focal fish was 

found to be independent of both the sex and size of the focal fish and its cooperative 

phenotype (Figure 3.11) (Table 3.3). Standard body length had no effect on the rate 

of aggressive interactions initiated by focal fish. 

 

Figure 3.10. Differences in the rate of aggressive interactions initiated between males (blue) 

and females (red) of the two phenotypic selection lines. LC males showed higher aggression 

rates than any of the other experimental groups. * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Table 3.3. Marginal effects of Line, Sex and standard body length on the rate of aggressive 

interactions initiated and received by the focal fish. LME with no model selection. Statistically 

significant factors are shown in bold. 

Measure   Estimate 
Standard 

error 
df t value 

p 

value 

Rate of 

aggressive 

interactions 

initiated 

Intercept  4.924*10-3 9.677*10-3 84 5.08554 <0.001 

Line 

HC 0 - 84 - - 

  
LC -2.208*10-3 1.383*10-3 84 

-

1.59664 
0.114 

 Sex Females 0 - 84 - - 

  Males 9.893*10-5 2.945*10-3 84 0.03354 0.973 

 Standard 

length (z-

score) 

 1.767*10-6 6.626*10-4 84 0.00267 0.998 

 Line*Sex HC – 

Female 
0 - 84 - - 

 
 

LC –  

Male  
1.110*10-2 4.064*10-3 84 2.69701 0.009 

Rate of 

aggressive 

interactions 

received 

Intercept  6.578*10-3 1.825*10-3 84 3.60359 <0.001 

Line 

HC 0 - 84 - - 

  LC 1.205*10-3 3.927*10-3 84 0.30688 0.815 

 Sex Females 0 - 84 - - 

  Males   84   

 Standard 

length (z-

score) 

 1.037*10-3 1.057*10-3 84 0.98093 0.329 

 Line*Sex HC – 

Female 
0 - 84 - - 

 
 

LC – 

Male  
3.780*10-3 5.329*10-3 84 0.70928 0.480 
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Table 3.4. Post hoc analysis for the ‘Sex*Line’ interaction on the rate of aggressive 

interactions initiated. Pairwise least squares means comparisons. Statistically significant 

contrasts are shown in bold. 

Contrast Estimate 
Standard 

error 
z value p value 

Males HC – Females HC 9.922*10-5 2.381*10-3 0.042 0.999 

Females LC – Females HC -3.691*10-5 1.438*10-3 -1.536 0.397 

Males LC – Females HC 8.852*10-3 2.789*10-3 3.174 0.007 

Females LC – Males HC -4.683*10-4 2.492*10-3 -0.926 0.779 

Males LC – Males HC 8.753*10-3 3.453*10-3 2.535 0.049 

Males LC – Females LC 9.221*10-3 2.885*10-3 3.834 <0.001 

 

 

Figure 3.11. Rate of aggressive interactions received by the focal individual. I found no effect 

of sex (males: blue; females: red) or of phenotypic selection line. 
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3.3.2.4 Sociability 

3.3.2.4.1 Time spent in social isolation and time spent shoaling 

Across phenotypic selection lines, males were found to spend a greater proportion of 

their time in social isolation than females (‘Sex’: F(1,86)=5.490, p=0.021) (Figure 3.12) 

(Table 3.5). I found no effects of ‘Line’ or an interaction between the phenotypic 

selection line and sex. Out of the time spent shoaling, I found no sex differences on 

the use of the two shoaling areas (inner and outer shoaling area). There was a trend 

for HC fish to spend more time shoaling in close proximity to the stimulus shoals than 

LC fish (Figure 3.13); this trend, however, did not reach statistical significance 

[F(1,86)=-1.733, p=0.087]. I found no interaction between sex and phenotypic 

selection line. Standard body length (z-scores calculated separately for each sex) did 

not affect time spent in any of the zones (Table 3.5). 
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Figure 3.12. Mean proportion of time spent in social isolation during the shoaling assay 

(averaged across individuals). Across phenotypic selection lines, males (blue) spent less 

time shoaling than females (red). Error bars represent standard error. * p < 0.05. 
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Table 3.5. Marginal effects of Line, Sex and standard body length on the proportion of time 

spent shoaling, and the proportion of time shoaling spent in the inner shoaling area. LME 

with no model selection. Statistically significant factors are shown in bold. 

Measure   Estimate 
Standard 

error 
df t value p value 

Time spent 

in social 

isolation 

(%) 

Intercept  0.504 0.023 86 21.767 <0.001 

 Line HC 0 - 86 - - 

  LC 0.051 0.032 86 1.600 0.113 

 Sex Females 0 - 86 - - 

  Males 0.074 0.032 86 2.343 0.021 

 

Standard 

length (z-

score) 

 -0.003 0.012 86 -0.276 0.784 

 
Line*Sex HC – 

Female 
0 - 86 - - 

  
LC –  

Male  
0.058 0.045 86 1.289 0.201 

Shoaling 

time spent 

in inner 

shoaling 

area (%) 

Intercept  0.531 0.032 86 16.796 <0.001 

 Line HC 0 - 86 - - 

  LC -0.048 0.028 86 -1.733 0.087 

 Sex Females 0 - 86 - - 

  Males -0.014 0.027 86 0.504 0.616 

 

Standard 

length (z-

score) 

 -0.003 0.010 86 0.286 0.776 

 
Line*Sex HC – 

Female 
0 - 86 - - 

  
LC –  

Male  
-0.039 0.039 86 1.002 0.319 
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Figure 3.13. Mean proportion of shoaling time spent in the area of close proximity to the 

stimulus shoals. I found no effects of sex or phenotypic selection line (males: blue; females: 

red). Error bars represent standard error. 

 

3.3.2.4.2 Number of transitions between stimulus shoals 

The number of transitions between stimulus shoals is used as a proxy for the extent 

to which individuals are sampling their social environment, moving between stimulus 

shoals. I found an interaction between behavioural phenotype and sex [‘Line*Sex’: 

F(1,85)=14.357, p<0.001] (Table 3.6). Post hoc analysis showed that LC males made 

fewer transitions between stimulus shoals than any other experimental group. LC 

females made significantly more transitions between shoals than males descending 

from either phenotypic selection line (Table 3.7) (Figure 3.14). 
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Table 3.6. Marginal effects of Line, Sex and standard body length on the number of 

transitions between stimulus shoals. LME with no model selection. Statistically significant 

factors are shown in bold. 

  Estimate 
Standard 

error 
df t value p value 

Intercept  61.134 2.438 85 25.100 <0.001 

Line HC 0 - 85 - - 

 LC 7.422 3.570 85 2.079 0.041 

Sex Females 0 - 85 - - 

 Males -3.609 3.494 85 -1.033 0.305 

Line*Sex HC – Female 0 - 85 - - 

 LC – Male  -19.049 5.027 85 -3.789 <0.001 

       

       

 

Figure 3.14. Number of transitions between stimulus shoals during the shoaling assay. I 

found a significant interaction between sex (males: blue; females: red) and cooperative 

phenotype. * p < 0.05; ** p< 0.01; *** p < 0.001. 
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Table 3.7. Post hoc analysis for the ‘Sex*Line’ interaction on number of stimulus shoal 

changes during the shoaling assay. Pairwise least squares means comparisons. Statistically 

significant contrasts are shown in bold. 

Contrast Estimate 
Standard 

error 
z value p value 

Females HC – Females LC -7.722 3.570 -2.079 0.168 

Females HC – Males HC 3.609 3.494 1.033 0.731 

Females HC – Males LC 15.237 3.491 4.365 <0.001 

Females LC – Males HC 11.031 3.620 3.047 0.016 

Females LC – Males LC 22.658 3.607 6.282 <0.001 

Males HC – Males LC 11.628 3.550 3.275 0.008 

 

3.3.2.5 Shoaling behaviour post predator exposure 

The proportion of time fish spent shoaling after predator exposure did not differ 

between fish descending from different phenotypic selection lines, or between males 

and females (Figure 3.15). I also found no interaction between these two factors. 

Social tendency (recorded during the sociability assay) had no effect on the sociability 

after predator exposure (Table 3.8). 

Table 3.8. Marginal effects of Line, Sex and standard body length on the proportion of time 

spent shoaling after predator exposure. LME with no model selection. Statistically significant 

factors are shown in bold. 

  Estimate 
Standard 

error 
df t value p value 

Intercept  0.593 0.097 80 6.109 <0.001 

Line HC 0 - 80 - - 

 LC -0.015 0.061 80 -0.240 0.811 

Sex Females 0 - 80 - - 

 Males -0.050 0.063 80 -0.793 0.431 

Standard length 

(z-scores) 
 -0.185 0.023 80 -0.794 0.430 

Social tendency  0.133 0.184 80 0.722 0.472 

Line*Sex HC – Female 0 - 80 - - 

 LC – Male  0.101 0.091 80 1.106 0.272 
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Figure 3.15. Proportion of time spent shoaling after predator exposure. I found no 

differences between males (blue) and females (red) in either of the phenotypic selection 

lines. 

 

3.3.2.6 Cooperativeness validation 

I found significant effects of ‘Line’ (F(1,82)=4.438, p=0.038), and ‘Sex’ (F(1,82)=5.962, 

p=0.017) on the ratio of time individuals spent leading during predator exposure. HC 

fish spent significantly more time ahead of Robofish – thus displaying higher levels of 

cooperativeness – than LC fish (Figure 3.16). Males had higher ratios of time leading 

than females across cooperative phenotypes (Figure 3.16). I found no significant 

interaction between ‘Line’ and ‘Sex’ (Table 3.9), or a significant effect of standard body 

length (calculated as z-scores, separately for each sex) on cooperative propensity. 
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Figure 3.16. Ratio of time spent leading (ahead of Robofish) for the subsequent broods of 

the F3 generation. Across phenotypic selection lines, males (blue) were more cooperative 

than females (red). HC fish were more cooperative than LC fish. * p < 0.05. 

Table 3.9. Marginal effects of Line, Sex and standard body length on the ratio of time spent 

leading (ahead of Robofish) for subsequent F3 broods. LME with no model selection. 

Statistically significant factors are shown in bold. 

  Estimate 
Standard 

error 
df t value p value 

Intercept  0.384 0.060 82 6.403 <0.001 

Line HC 0 - 82 - - 

 LC -0.173 0.082 82 -2.107 0.038 

Sex Females 0 - 82 - - 

 Males 0.380 0.156 82 2.442 0.017 

Standard 

length (z-

scores) 

 -0.018 0.039 82 -0.463 0.645 

Line*Sex HC – Female 0 - 82 - - 

 LC – Male  0.249 0.213 82 -1.166 0.247 
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3.4 Discussion 

Previous work has demonstrated that positive assortment by cooperative phenotype 

occurs in human, dolphin and Trinidadian guppy social networks; however, the 

mechanisms underpinning this assortment have yet to be empirically assessed. This 

study aimed to examine whether Trinidadian guppies bred for their cooperativeness 

exhibit distinct behavioural traits that could contribute to a passive mechanism of 

positive assortment by cooperative phenotype. More specifically, I examined whether 

phenotypic boldness, exploratory tendency, aggressiveness and sociability were 

differentially expressed in fish selected for high and for low cooperativeness. 

Phenotypic selection on cooperative behaviour for three filial generations resulted in 

consistent differences in cooperative behaviour between the two lines, and fish of the 

third filial generation were assayed in a battery of behavioural tests. Fish of high and 

low cooperativeness did not differ in boldness or exploratory tendency, but I found 

evidence of differences between the lines in aggressive behaviour and in some 

aspects of shoaling behaviour. To my knowledge this is the first study to select on 

cooperative behaviour and also to empirically test whether there are other 

characteristic behavioural traits that diverge as a function of divergence in 

cooperativeness. 

Phenotypic selection on cooperative behaviour resulted in behavioural 

divergence between two selection lines, generating fish of high cooperativeness and 

low cooperativeness. Divergence in behaviour appeared very rapidly in the selection 

process: fish in the HC and LC line showed no differences in cooperativeness in 

generation F1; however, they showed differentiation in generation F2, which was 

maintained and intensified in generation F3. Anti-predator behaviour in the Trinidadian 

guppy has been shown to have at least some heritable component – escape behaviour 
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in this species has genetic underpinnings and can evolve very rapidly (Magurran, 

2005; O’Steen, Cullum, & Bennett, 2002). Anti-predator behaviour in the European 

minnow (Esox lucius) has been demonstrated to be inherited, but also be modified by 

early life experiences (Magurran, 1990). To date, there are no studies explicitly looking 

at the heritable component of cooperative behaviour in the Trinidadian guppy. My 

study was not designed to look at the heritability of cooperative behaviour; it does 

however demonstrate an effect of the selection process on behaviour. More work is 

needed to explore the mechanisms underlying this phenomenon. 

Individual boldness has been shown to affect social tie heterogeneity in real-

world social networks (Pike et al., 2008). Behavioural traits such as boldness and 

exploratory tendency are likely to affect space use and thus the probability of specific 

individuals associating with one another – for example, bolder guppies may be more 

prone to entering habitats where the risk of predation is higher, such as deeper water 

(Croft et al., 2006). I found no evidence that either exploratory behaviour or boldness 

differed among HC and LC fish, suggesting that such traits cannot contribute to 

passive assortment by cooperativeness. These results also suggest that differences 

in cooperativeness during predator inspection in guppies cannot be attributed merely 

to differences in boldness or tendency to explore the environment. 

Sociability can also result in passive assortment, by affecting the probability of 

individuals co-occurring in a shoal (Croft et al., 2015). HC and LC fish did not differ in 

their shoaling tendency (measured as proportion of time spent in social isolation and 

in closest proximity to a shoal); however, they differed in the amount of sampling of 

the social environment they carried out (number of transitions between stimulus 

shoals). LC males showed the lowest level of sampling of their social environment, 

while LC females tended toward the highest level (higher than both LC and HC males, 
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but not HC females). My results suggest that differences in sociability are unlikely to 

result in population assortment by cooperative propensity; nevertheless, males and 

females of different cooperative phenotypes differ in some aspects of their social 

behaviour. How this may affect population assortment remains unclear; it is, however, 

possible that the fewer transitions between shoals made by less cooperative males 

would affect the number and homogeneity of their social ties to other individuals. It is 

likely that males of low cooperativeness occupy more peripheral positions in the social 

network. 

Shoaling is thought to be a mechanism of decreasing risk of predation, with 

larger shoals of inspecting fish providing more safety (Pitcher, 1991). High 

evolutionary pressure of predation correlates with higher shoaling tendency and 

increased shoal cohesion (Endler, 1995; Seghers, 1973). More risk-sensitive 

individuals are therefore expected to increase their shoaling tendency when the 

perceived risk of predation is high.  When the shoaling behaviour of HC and LC fish 

was assessed following predator exposure, and controlling for differences in overall 

shoaling tendencies, I found that fish originating from the two phenotypic selection 

lines did not differ in their sociability. This suggests that differences in the cooperative 

propensity between HC and LC fish cannot, therefore, be attributed to differences in 

risk aversion, or their sociability under heightened risk perception. 

Shoaling behaviour has been demonstrated to be inversely correlated with 

aggression in guppies (Seghers & Magurran, 1991). The same study by Seghers and 

Magurran showed that populations originating from relaxed predation regimes (that 

typically show lower shoaling tendencies – Seghers, 1973) were more aggressive than 

fish from high predation habitats. For cooperative behaviour to occur, individuals need 

to show a predisposition for prosocial behaviour, approaching conspecifics and 
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tolerating their presence (Soares et al., 2010); in this sense, prosocial behaviour is 

likely to be inversely related to agonistic behaviours such as aggression. Along this 

vein, I would expect non-cooperative fish to demonstrate more aggression. I found 

that LC males exhibited higher levels of aggression initiated near a food patch than 

any other experimental group, while the rate of aggressive interactions directed to 

them remained the same. Overall, my findings suggest that different levels of 

aggression may result in passive assortment of males in a guppy population; it is, 

however, unlikely that this behavioural trait affects the assortment of females. It is 

possible that less aggressive individuals are actively avoiding more aggressive ones, 

thus modifying their social environment (see Aplin et al., 2013). Why the same was 

not observed in LC females remains unclear. To my knowledge, there are no studies 

explicitly comparing aggression between male and female guppies; however, Seghers 

and Magurran (1991) predict that female guppies would be less aggressive than 

males, given their increased shoaling tendency compared to males (also corroborated 

in this study) and the inverse relationship between sociability and aggressiveness they 

found. 

Highly cooperative and non-cooperative fish were found not to differ in asocial 

behavioural traits, such as exploration and boldness. I also found no differences in 

their social tendency, both in general and under increased perceived risk of predation. 

My results suggest, however, that non-cooperative males and females differ in the way 

they sample their social environment. I also found that males (but not females) of 

different cooperative phenotypes differ in the levels of aggression displayed. After 

studying behaviour under 5 different behavioural contexts, I found no evidence of 

behavioural differences that could result in population assortment by individual 

cooperative propensity in females. The differences in aggression and sampling of the 
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social environment between males of the two phenotypic selection lines suggest that 

these traits merit further exploration as possible contributors to a passive driver 

underlying population assortment by cooperativeness in males. Sex differences in 

guppy social behaviour have been well documented (e.g. Griffiths & Magurran, 1998; 

Harris, Ramnarine, Smith, & Pettersson, 2010; Piyapong et al., 2010). A recent study 

by Brask et al., (in prep.) suggests that the nature of population assortment by 

cooperative propensity differs between sexes, with assortment in females being the 

result of individuals of similar cooperativeness being more connected and having 

stronger ties with one another, while males were assorted only by tie presence and 

not tie strength. It is possible that the mechanisms underpinning assortment by 

individual cooperative propensity are sex-dependent in this species. 

In the absence of passive assortment by behavioural traits such as the ones 

studied here, the positive assortment by cooperativeness observed in real-world 

networks can be the result of active mechanisms, where individuals are actively 

choosing to associate with specific partners based on their cooperative behaviour (e.g. 

Dugatkin & Alfieri, 1991a; Eshel & Cavalli-Sforza, 1982; Fehl, van der Post, & 

Semmann, 2011; Khoo, Fu, & Pauls, 2016). Studies have invoked mechanisms such 

as reputation-based partner choice (for example Barclay, 2016; Fu, Hauert, Nowak, & 

Wang, 2008; Noë & Hammerstein, 1994), or observation and memorisation of others’ 

behaviour (e.g. Cox, Slockin, & Steele, 1999) to increase resistance to cheating. 

However, due to the substantial cognitive demands of individual recognition and 

memory of past experiences with specific individuals (book-keeping), it seems unlikely 

that these mechanisms apply to many non-human species. In recent years, theoretical 

and empirical support has been gathering for the role of social heuristics in actively 

driving assortment without the need for high levels of information processing (Aktipis, 
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2004, 2008, 2011; Bear & Rand, 2016; Hutchinson & Gigerenzer, 2005). For example, 

Aktipis (2004, 2011) demonstrated that a simple strategy where individuals ‘Walk 

Away’ from their current social partners when experiencing defection above a certain 

threshold could lead to positive assortment by cooperative phenotype. As I did not find 

evidence for a passive mechanism underpinned by phenotypic differences that could 

explain assortment by cooperativeness in female guppies, it is possible that the 

assortment documented is driven by active choice based on cooperative experiences. 

A large body of theoretical work and an increasing body of empirical work 

stresses the importance of population assortment as a route for the evolution and 

maintenance of cooperation among unrelated individuals. Here I show that, in some 

cases, assortment by cooperativeness can possibly be supported by social 

association patterns driven by other behavioural traits, such as aggression and some 

social tendencies. More work is needed to elucidate the mechanisms, both passive 

and active, underpinning assortment by cooperation in real-life social groups.   
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Abstract 

Cooperative behaviour is considered a highly complex social behaviour with 

comprising components ranging from prosocial behaviour to partner choice. 

Nonapeptides are thought to be key regulators of sociality, and have been implicated 

in the modulation of cooperative behaviour. The functional properties of nonapeptide 

systems appear to play a crucial role in the variation of social behaviour within a 

species, and research suggests that, at least in humans, individual differences in 

cooperative behaviour are linked to nonapeptide receptor polymorphisms that might 

affect the brain expression patterns for these receptors. However, it is still unclear 

whether nonapeptide receptor brain expression patterns differ between individuals 

with different cooperative phenotypes in non-human animals. This study uses the 

Trinidadian guppy (Poecilia reticulata) to explore the relationship between individual 

cooperative phenotype and nonapeptide receptor gene expression in the brain. The 

brains of female guppies, F3 descendants of fish that underwent phenotypic selection 

for high and low individual cooperative propensity during a predator inspection assay, 

were sampled, and the relative expression of the isotocin receptor (itr) gene was 

quantified. Fish that descended from a highly cooperative lineage showed higher 

relative itr expression in the mid-section than those descending from low cooperation 

lineage (1.2*10-2 fold change). These findings suggest that in Trinidadian guppies, 

individual cooperative behaviour is linked to itr gene expression levels in the brain, 

providing insight into the proximate mechanisms underlying cooperative behaviour. 

4.1 Introduction 

Across phylogenetic taxa and levels of organisation individuals exhibit cooperative 

behaviour, suffering fitness costs to provide a benefit to others (Bshary & Oliveira, 

2015; Clutton-Brock, 2009; Taborsky, Frommen, & Riehl, 2016). This behaviour, when 
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directed toward non-kin, presents an evolutionary conundrum that has intrigued 

scientific fields since it was first highlighted by Darwin (Clutton-Brock, 2009). A key 

aspect of understanding cooperative behaviour and its evolution is understanding the 

proximate mechanisms underpinning it (Taborsky & Taborsky, 2015). Currently, the 

proximate mechanisms regulating cooperative behaviour both at the species- and the 

individual-level are unclear; they are, however, likely to be closely linked to those 

modulating aspects of social behaviour that are central to cooperation (Soares et al., 

2010). Cooperation can be a highly complex social behaviour, as outlined by Soares 

and colleagues (2010), who propose that cooperative behaviour has several 

prerequisites (‘building blocks’), ranging from prosocial behaviour and social 

recognition to temporal discounting and partner choice. Prosocial behaviour is a 

particularly important component of many forms of cooperation, as individuals need to 

be predisposed to affiliating with potential social partners and tolerate their presence 

(Soares et al., 2010). Equally important is an individual’s ability to assess their social 

environment and evaluate the behaviour of their social partners (Soares et al., 2010), 

especially if the individual is able to alter their level of cooperative investment 

according to that of their current partners (Bshary & Oliveira, 2015). Traits such as 

attention and responsiveness to social cues are key to these behavioural adjustments.  

It is thus likely that there is no universal regulator of cooperative behaviour across the 

taxonomic groups in which it is observed, but rather a collection of complex 

assemblages of biological drivers, each of which depends to a greater or lesser extent 

on each of the building blocks and the environmental (including social) contexts in 

which cooperation occurs within each species or even population. 

Amongst the most important regulators of social behaviour – at least in 

mammals – are nonapeptides and their associated receptors. Nonapeptides are an 
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evolutionarily conserved family of neuropeptides; they can be phylogenetically traced 

through invertebrates and include members in virtually all vertebrate taxa (Insel, 2010). 

The vertebrate nonapeptide class has two members: arginine vasopressin (AVP) 

[arginine vasotocin (AVT) for non-mammalian vertebrates], and oxytocin-like 

nonapeptides [isotocin (IT) in fish, mesotocin (MT) in lungfish and non-eutherian 

tetrapods, oxytocin (OT) in eutherian mammals] (Insel, 2010; also see Urano & Ando, 

2011). They are involved in the modulation of social and reproductive behaviour in 

several phylogenetically distant taxa, and are perhaps best studied in mammals where 

they have been strongly implicated in a wide range of social behaviours, including 

parental care in female rats (Rattus norvegicus) (e.g. Pedersen, Ascher, Monroe, & 

Prange, 1982), pair bonding in prairie voles (Microtus ochrogaster) (Cho, DeVries, 

Williams, & Carter, 1999; Insel & Hulihan, 1995; Williams, Insel, Harbaugh, & Carter, 

1994; Winslow, Hastings, Carter, Harbaugh, & Insel, 1993), social recognition (for a 

review see Choleris, Clipperton-Allen, Phan, & Kavaliers, 2009), and aggression in 

Syrian hamsters (Mesocricetus auratus) (Albers, Dean, Karom, Smith, & Huhman, 

2006). Similar roles have been demonstrated for the teleost homologues of 

nonapeptides, IT and AVT, in shoaling behaviour in zebrafish (Danio rerio) (Langen, 

Lindeyer, Reader, & Swaney, 2015), social approach and affiliative behaviour 

[zebrafish: Braida et al. (2012); Neolamprologus pulcher: Reddon et al. (2015; 2014); 

goldfish (Carassius auratus): Thompson & Walton (2004)], pair bond formation in the 

monogamous convict cichlid (Amatiltania nigrofasciata) (Oldfield & Hofmann, 2011), 

and parental care [African cichlid (Astrotilapia burtoni): Huffman et al. (2012); convict 

cichlid: O’Connell, Matthews, & Hofmann (2012)]. 

Despite the obvious conservation of nonapeptide systems and their role in 

social behaviour through the vertebrate lineage, it seems that their specific functions 
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and effects diverge in different taxa (Taborsky & Taborsky, 2015) and can be highly 

species-specific (Insel & Young, 2000). These differences have also been observed 

in the context of cooperative behaviour, although to our knowledge evidence is limited 

to just a few study systems: humans and cleaner wrasse (family Labridae). Rilling et 

al. (2012) studied the effect of intranasal OT and AVP administration in men playing 

an iterated Prisoner’s Dilemma game, and found that both nonapeptides increased 

cooperative behaviour. More specifically, OT administration increased the rate of 

cooperation following unreciprocated cooperation in the previous round when 

compared with AVP, while AVP administration increased cooperative responses after 

a cooperative gesture by the partner compared to OT (Rilling et al., 2012). This effect 

is not universal in humans – nonapeptides do not uniformly promote cooperation. For 

example, OT administration in humans with borderline personality disorder has been 

shown to lead to a decrease in the rate of cooperative responses in a variation of the 

Prisoner’s Dilemma game (Bartz, Simeon, et al., 2011). Furthermore, the specific 

effects of intranasally administered OT and AVP on human cooperative behaviour are 

sex-specific: for instance, AVP administration increased reciprocation of cooperative 

behaviour in men, but did not have such an effect in women (Rilling et al., 2014). 

Contrary to what has been observed in human men, AVT administration in the Indo-

pacific bluestreak wrasse (Labroides dimidiatus) has been demonstrated to lead to a 

decrease in the cooperative behaviour of cleaners (Cardoso, Paitio, Oliveira, Bshary, 

& Soares, 2015; Soares, Bshary, Mendonça, Grutter, & Oliveira, 2012). The 

importance of each prosocial component of cooperation and the underlying 

psychology of these components will of course be very likely to differ greatly across 

these two study systems and to contribute to such a disparate difference. These 

building blocks of cooperation are probably best studied in humans where, for 
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example, intranasal OT administration and higher circulating OT levels have been 

documented to have a positive effect on emotions or psychological states that most 

likely support cooperative behaviour [empathy (as measured by the ability to infer the 

mental state of others from social cues) (Domes, Heinrichs, Michel, Berger, & 

Herpertz, 2007); interpersonal communication and social approach behaviour 

(Guastella, Mitchell, & Dadds, 2008); perception of trust and its reciprocation (Zak, 

Kurzban, & Matzner, 2005); generosity (Zak, Stanton, & Ahmadi, 2007)]. To date, our 

understanding of the role of nonapeptide systems in the expression of cooperative 

behaviour is fragmentary, as there are few tractable study systems with intraspecific 

cooperation, where within-species variation of cooperative behaviour, its components 

and underlying biological drivers can easily be investigated in a social framework. 

A promising approach for understanding the role of nonapeptide systems in 

driving behaviour is mapping the patterning of distribution and expression of 

nonapeptide receptors in the brain alongside variation in cooperative behaviour. 

Documenting these patterns across and within species can increase our insight into 

the mechanisms regulating overall social behaviours, and in particular those that make 

up the ‘building blocks’ of cooperation. For example, monogamous male prairie and 

pine (Microtus pinetorum) voles exhibit selective mate preference induced by mating, 

paternal care and selective aggression towards conspecifics, unlike solitary and 

promiscuous meadow (Microtus pennsylvanicus) and montane voles (Microtus 

montanus), and research indicates that these behavioural differences correlate with 

differences between these species in brain expression patterns for the arginine 

vasopressin receptor 1A (V1aR – one of the three major receptor types for arginine 

vasopressin) (Donaldson & Young, 2008; Lim et al., 2004; Young, Nilsen, Waymire, 

MacGregor, & Insel, 1999). Similar differences have been observed for the oxytocin 
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receptor (OTR) (Insel & Shapiro, 1992). Differences in nonapeptide receptor brain 

distribution have also been linked to variation in social behaviour within species, and 

a large body of work suggests that polymorphisms of the genes for mammalian 

nonapeptide receptors (OTR, coding the oxytocin receptor, and AVPR1a, coding the 

type V1aR receptors) predict various aspects of social behaviour (Chen et al., 2011; 

Tost et al., 2010, 2011; Waller et al., 2016). It may be that microsatellite 

polymorphisms generate phenotypic variation in behaviour by altering the pattern of 

nonapeptide receptor gene expression in a cell-specific manner rather than changing 

the overall levels of expression across the brain (Hammock & Young, 2005). For 

instance, specific avpr1a microsatellite polymorphisms in the 5’ regulatory region of 

the gene are associated with differences in the AVP binding sites in the brain of male 

prairie voles (Hammock & Young, 2005). In primates, OTR and AVPR1a 

polymorphisms predict individual differences in several aspects of social behaviour, 

often in a sex-specific manner. Polymorphisms of the gene for the V1aR, in particular 

a deletion in a sequence in the 5’ flanking region of the AVPR1a commonly known as 

DupB, have been linked to sociability in chimpanzees (Pan troglodytes) – specific 

alleles of the AVPR1a promoter region, particularly the presence of DupB, are 

positively associated with sociability (Staes et al., 2015). Polymorphisms in this region 

also have been shown to affect performance in socio-cognitive learning in this species, 

with individuals with at least one DupB allele performing better and being more 

responsive to social communicative cues than those homozygous for the DupB 

deletion (Hopkins et al., 2015).  

Experimental work also points to an important role of nonapeptide receptor 

polymorphisms in human prosocial behaviour. For example, specific OTR 

polymorphisms have been linked to social (face) recognition (Skuse et al., 2014), and 
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polymorphisms of both nonapeptide receptor genes have been implicated in pair 

bonding (measured by assessing current romantic relationships), acting in a sex-

specific manner (Walum et al., 2008, 2012). Tost et al. (2010) found that amygdalar 

activation and interregional coupling during the processing of emotionally salient social 

cues was affected by the presence of specific alleles of the OTR; they also reported 

that genotype affected structural alteration in key oxytocinergic brain regions such as 

the hypothalamus (see also Tost et al., 2011). Supporting this, specific OTR alleles 

have been linked to amygdalar reactivity to angry facial expressions and overall self-

reported antisocial behaviour in men (Waller et al., 2016). Loth and colleagues (2014) 

reported that a specific OTR variant (rs237915) modulated brain responsiveness 

(measured as ventral striatal activity) to social cues and responses to stressful life 

events in adolescents. Other OTR polymorphisms have been linked to physiological 

and dispositional stress reactivity (Rodrigues, Saslow, Garcia, John, & Keltner, 2009), 

as well as the effectiveness of positive social interaction during stressful experiences 

(Chen et al., 2011). Finally, individual differences in empathy (Rodrigues et al., 2009) 

and theory of mind (Lucht et al., 2013) have also been linked to specific OTR alleles. 

Most of the studies to date have focused on genetic differences in nonapeptide 

receptors; however, recent studies demonstrate that nonapeptide receptors (at least 

OTR) may affect social behaviour through epigenetic regulation (Baker et al., 2017). 

Individual differences in the level of cooperative investment are widespread in 

animals (e.g. Arnold, Goldizen, & Owens, 2005; Bergmüller & Taborsky, 2007; 

Charmantier, Keyser, & Promislow, 2007; Schürch & Heg, 2010a; Schürch, 

Rothenberger, & Heg, 2010), and are consistent to the point that individual 

cooperativeness is considered to be part of a behavioural syndrome (Bergmüller, 

Schürch, & Hamilton, 2010). Research suggests that individual differences in 
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cooperative behaviour in humans are linked to nonapeptide receptor polymorphisms 

[for a review on the role of OTR in cooperation in humans, see Haas, Anderson, & 

Smith (2013)]. Experimental evidence suggests that V1aR contributes to individual 

differences in cooperative behaviour in humans, as specific microsatellite 

polymorphisms associated with the length of the promoter region of the AVPR1a gene 

have been linked to both altruism in economic games, and self-reported altruism 

(Knafo et al., 2008). The same study found an association between AVPR1a variants 

and post-mortem hippocampal AVPR1a mRNA levels, suggesting that the behavioural 

differences observed might be underpinned by differences in the distribution of 

nonapeptide receptors (Knafo et al., 2008). OTR polymorphisms have also been 

demonstrated to play a role in the individual variation in cooperative behaviour, with 

specific variants (such as rs53576) modulating the effects of intranasally administered 

OT on the cooperative propensity of humans playing an iterated Prisoner’s Dilemma 

game, in a sex specific manner (Feng et al., 2015). It is possible that the OTR gene 

influences the structure and function of brain regions associated with cooperation, thus 

underlying individual cooperative phenotypes (Haas et al., 2013). 

Nonapeptide receptor brain expression patterns are thought to be an important 

contributor to individual variation of prosocial and cooperative behaviour in humans 

(Feng et al., 2015; Knafo et al., 2008), and possibly modulate the effects of 

extraneously administered nonapeptides (Feng et al., 2015). While nonapeptide 

systems have been implicated in the regulation of heterospecific cooperative 

behaviour between cleaner wrasse and client reef fish (Mendonça, Soares, Bshary, & 

Oliveira, 2013; Soares, Bshary, Mendonça, Grutter, & Oliveira, 2012; Triki, Bshary, 

Grutter, & Ros, 2017), their role in intraspecific cooperation in teleosts still remains 

unclear. Past research using teleosts has focused on the effects of the facilitation or 



- 128 - 
 

the inhibition of nonapeptide activity on heterospecific cooperative behaviour; 

however, the link between nonapeptide receptor expression patterns and individual 

cooperativeness has not yet been explored (for an exception see Mendonça et al., 

2013, who looked at differences in AVT neuronal phenotype between phylogenetically 

closely related wrasses). 

This study uses the Trinidadian guppy (Poecilia reticulata) to explore the 

relationship between cooperative phenotype and isotocin receptor expression, in order 

to shed light on the mechanisms underlying individual variation in cooperative 

behaviour in this species. Guppies cooperate in the context of predator inspection, a 

behaviour in which an individual or a small number of fish leave the safety of the shoal 

or other refuge to approach and assess a potential threat in their vicinity; after 

information about the level of threat posed is collected, inspecting fish return to the 

shoal, where this information is transmitted (Allan & Pitcher, 1986; Magurran & 

Seghers, 1994; Pitcher, Green, & Magurran, 1986). Predator inspection is considered 

a model for the study of cooperative behaviour (Milinski, 1987), as all shoal members 

benefit from the information collected, irrespective of whether they inspected 

themselves; however, due to the dilution of risk, larger inspection groups provide more 

safety (Milinski, 1987; Milinski, Lüthi, Eggler, & Parker, 1997; Pitcher, 1991). Guppies 

demonstrate consistent individual differences in their cooperative propensity (Budaev, 

1997; Dugatkin & Alfieri, 1991b) (also Brask et al., in prep.); however, the proximate 

mechanisms underlying this behavioural variation remain unclear. Here, I use female 

guppies descending from fish that underwent phenotypic selection on individual 

cooperative propensity over three filial generations to explore the relationship between 

individual cooperative phenotype and brain isotocin receptor gene expression levels. 
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I expect to find that cooperativeness will have a positive relationship with isotocin gene 

receptor expression. 

4.2 Materials and Methods 

4.2.1 Study subjects 

Forty eight female, sexually mature, Trinidadian guppies, descendants of wild-caught 

fish originating from a high predation site of the Aripo River on the island of Trinidad 

(10o40’N, 61o14’W) were used for this assay. Fish were 3rd generation offspring of 

phenotypic selection lines bred to exhibit high and low individual cooperative 

propensities (High/Low Cooperation behavioural phenotypic selection lines – see 

Chapter 3). Broods were collected post partuition, and upon reaching sexual maturity 

were anesthetised using tricaine methasulfonate (MS-222, Sigma Aldrich) and tagged 

with Visible Elastomer Implant (VIE, Northwest Marine Technology) in two out of four 

dorsal positions to allow for individual identification (Croft, Albanese, et al., 2003b). 

Fish were housed in tanks containing individuals originating from different broods of 

the same phenotypic selection line (sex ratio: 5 females:3 males) in the aquarium 

facilities of the Department of Psychology of the University of Exeter (UK) (12h light:12 

dark cycle). Fish were fed with commercial flake and live food (Artemia sp) twice a day 

and were kept in constant room temperature (25oC). Animals remained in these 

housing conditions for 138 days post tagging prior to sampling. During this time the 

fish underwent a battery of 5 behavioural assays (days 95-100) (shoaling behaviour 

with novel conspecifics, exploratory style, aggressive behaviour towards unfamiliar 

conspecifics, boldness in the context of aerial predation simulation, and shoaling 

behaviour after predator exposure) in conjunction with another study (Chapter 3). On 

day 128 the cooperative propensity of each line was validated using a predator 

inspection assay (see Chapter 3) (Figure 4.1). 
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Figure 4.1. Schematic representation of the experiences of fish preceding tissue sampling. 

4.2.2 Sample collection 

Fish were sampled 10 days after their last behavioural trial. One focal female from 

each tank (12 females per phenotypic selection line in 2 replicates) was euthanised 

using ice slurry (maximum temperature of 4oC). The brain was then removed and 

dissected in 3 sections: fore-section (telencephalon, habenula and preoptic area, 

excluding olfactory bulbs), mid-section (including the optic tectum and the 

hypothalamus) and hind-section (including the cerebellum and the medulla oblongata) 

(see Figure 4.2) (Fischer, Westrick, Hartsough, & Hoke, 2018). Each brain section was 

stored in a sterile 1.5 ml Eppendorf tube and instantly frozen at -80oC within 3 minutes 

of euthanasia; samples remained in these conditions until use. The standard length 

(SL) of each individual was measured at the time of sampling. 
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Figure 4.2. Dorsal view of the brain of a female guppy. The black lines denote the brain 

section borders. f: fore-section; m: mid-section; h: hind-section 

4.2.3 Analysis of gene expression by quantitative real-time PCR 

Total RNA was extracted from tissue samples using RNeasy Micro Kit (Qiagen), 

including on-column treatment with RNase-free DNase (Qiagen) according to the 

manufacturer’s instructions. Total RNA concentration was estimated using the 

absorbance at 260 nm (NanoDrop 1000, Thermo Fischer Scientific, Wilmington, DE) 

and the RNA purity was verified using the A260nm/A280nm ratios, which were greater than 

1.8 for all samples used in downstream reactions, and the A260nm/230nm ratios, which 

were greater than 1.7 for all samples used in downstream reactions. First strand cDNA 

was performed using M-MLV Reverse Transcriptase (Promega), with a mix of random 
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hexamers (Eurofins Genomics) (10μΜ) and deoxynucleotide triphosphates (Promega) 

(10mM), using a 96-well PCR machine (MasterCycler, Eppendorf, Mississauga, ON). 

Primers specific for isotocin receptor (itr) and rpl8 (housekeeping gene) were 

designed using Beacon Designer 3.0 (Premier Biosoft International, Palo Alto, CA) 

and purchased from Eurofins Genomics (itr: 5’-GGTGGGAGAGCCTGTGG-3’/ 5’-

GGTTCGGTGAGAAGTGTGG-3’; rpl8: 5’-GGAAAGGTGCTGCTAAACTC-3’/ 5’-

GGGTCGTGGATGATGTC-3’, sense and antisense respectively). Primer-pair 

annealing temperatures were optimised for real-time PCR using a temperature 

gradient programme. The linearity and real-time PCR amplification efficiency (E: 

E=10(-1/slope)) of each pair of primers was determined by running real-time PCR 

amplifications on a 10-fold dilution series of guppy mid-section cDNA from pooled, 

randomly selected samples (samples 5, 16 and 38); standard curves were calculated 

referring the threshold cycle (Ct: the PCR cycle where fluorescence increased above 

background levels) to the logarithm of the cDNA dilution (Filby & Tyler, 2005). 

Real-time PCR was performed using the i-Cycler iQ Real-time Detection 

System (Bio-Rad Laboratories, Inc., Hercules, CA). Samples were amplified in 

triplicate using 96-well optical plates (Fischer Scientific) in a 15 μl reaction volume, 

containing 1.5 μl cDNA, 7.5 μl iTaq Universal SYBR green mix (Bio-Rad), 5.25 μl of 

HPLC-grade water (Fisher Scientific) and 0.375 μl of each appropriate primer. Taq 

polymerase was activated by an initial denaturation step at 95oC for 15 minutes, 

followed by 45 cycles of denaturation at 95oC for 10 seconds and annealing at 58oC 

(rpl8) or 60oC (itr) for 45 seconds, followed by melt curve analysis. Template-minus 

negative controls were run for each plate. A guppy mid-section cDNA mix of three 

samples was repeatedly quantified on each plate to ensure intra- and inter-assay 

variability (Filby & Tyler, 2005). 
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To quantify differences in RNA abundance between samples, isotocin receptor 

expression values were normalised to ribosomal protein l8 (rpl8), a housekeeping 

gene found to be consistently expressed in brain tissue in previous studies (Filby & 

Tyler, 2007; Jaramillo et al., 2017). Relative expression levels of the itr were 

determined with the arithmetic comparative method [2-ΔΔCt  (Livak & Schmittgen, 

2001)] which corrects for differences in PCR amplification efficiency between the 

target and housekeeping gene (Soong, Ruschoff, & Tabiti, 2000); results were 

expressed as relative expression ratios (RE), according to the formula below (Filby & 

Taylor, 2005) : 

RE= (E rpl8Ct rpl8/(E itr)Ct itr 

Expression levels for the reference gene, rpl8, were not found to differ between 

HC and LC fish (data not shown). 

4.2.4 Statistical analysis 

Isotocin relative expression was analysed separately for each brain section. Results 

from hind-section samples are not presented, as over 60% of the samples were not 

analysed due to low RNA quality (A260nm/A280nm ratios < 1.8). All analyses were carried 

out in R v3.2 (R Development Core Team, 2015). Relative itr gene expression for the 

mid-section was analysed by fitting Generalised Linear Mixed Models in the ‘lme4’ 

v1.1-10 package (Bates, Maechler, Bolker, & Walker, 2014). The error distribution 

(inverse Gaussian) and link function (identity) for statistical models was chosen to 

obtain the lowest residual deviance and Akaike information criterion (AIC) value 

(Thomas, Vaughan, & Lello, 2013). Fore-section itr expression was analysed using 

beta regression in the ‘glmmADMB’ v0.8 package (Skaug et al., 2011). Beta 

regression allows statistical modelling of continuous, non-transformed data that is 
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restricted to the unit interval (0,1) to model percentages and proportions (Ferrari & 

Cribari-Neto, 2004; Stieb, Carleton, Cortesi, Marshall, & Salzburger, 2016). The global 

model included Line (High Cooperators/Low Cooperators) + Standard length (mm) as 

fixed factors, and Replicate (1/2) as a random effect with a random intercept. 

Preliminary analysis showed that standard length did not vary between HC and LC 

fish. 

4.3 Results 

4.3.1 Fore-section 

I found no significant differences in the relative expression of the isotocin receptor (itr) 

gene between fish originating from the two phenotypic selection lines (High/Low 

Cooperators) in the fore-section (Figure 4.3). High Cooperators tended to show higher 

expression of the itr than Low Cooperators; however, this trend did not reach statistical 

significance [p=0.066; generalised linear mixed effects models (GLMM); N=29] (Table 

4.1). The size of the fish (standard body length) was found not to affect itr relative 

expression. 
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Figure 4.3. Relative expression of the itr gene) in the fore-section of fish descending from the 

phenotypic selection lines. Fish originating from very cooperative lineage tended to have 

higher itr expression levels than those descending from non cooperative lineage; however, 

this difference did not reach statistical significance. 

 

4.3.2 Mid-section 

The selection line of origin was found to have an effect on itr relative expression 

(Figure 4.4). More specifically, offspring of highly cooperative fish showed higher itr 

relative expression than those originating from the Low Cooperation phenotypic 

selection line (p= 0.016; GLMM; N=44) (Table 4.1). The size of the fish (standard body 

length) was found to have no effect on itr relative expression. 
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Figure 4.4.Mid-section relative expression for the itr. F3 High Cooperators (left) had higher 

mid-section itr expression levels than F3 Low Cooperators (right). * p < 0.05. 

Table 4.1. Differences in itr relative gene expression between the two phenotypic selection 

lines (High/Low Cooperators) in fore-section and mid-section. Global GLMM with no model 

selection. Statistically significant factors are shown in bold. 

Brain 

section 
  Estimate 

Standard 

error 
t value p value 

Fore-

section Intercept 
 

-0.935 
2.065 -0.45 0.651 

 Line HC 0 - - - 

  LC -0.715 0.384 -1.87 0.062 

 Standard length  0.166 0.861 0.19 0.847 

       

Mid-

section Intercept 
 

0.028520 
0.0043200 6.602 <0.001 

 Line HC 0 - - - 

  LC -0.011607 0.0033759 -3.438 <0.001 

 Standard length  0.0009784 0.0021688 0.451 0.652 
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4.4 Discussion 

The aim of this study was to explore the relationship between cooperative behavioural 

phenotype and isotocin receptor gene expression in the brain of female Trinidadian 

guppies. My results show that the propensity to cooperate is linked to expression 

levels of the gene for the isotocin receptor in certain brain areas. Descendants of fish 

that underwent phenotypic selection for increased individual cooperative propensity 

over 3 filial generations had higher itr expression levels in the mid-section than those 

originating from fish selected for low cooperativeness. A similar, but non-significant, 

trend was found for itr expression in the fore-section. To my knowledge, this is the first 

study exploring nonapeptide receptor distribution patterns in the brain of Trinidadian 

guppies and their relationship to cooperative behavioural phenotypes, increasing our 

understanding of the regulatory mechanisms underlying individual differences in 

cooperative behaviour. 

My results support the documented role of nonapeptide receptor brain 

expression patterns in intraspecific behavioural variation. For example, differences in 

brain expression patterns of the Otr gene have been associated with individual 

differences in maternal behaviour in rats (Rattus norvegicus) (Francis, Champagne, & 

Meaney, 2001). Several studies on the prairie vole model system have shown that 

individual differences in brain expression patterns of the avpr1a in males are linked to 

space use, sexual fidelity, and general socio-behavioural traits (Hammock & Young, 

2005; Ophir, Wolff, & Phelps, 2008). In teleosts, evidence of the role of nonapeptide 

receptors in intraspecific behavioural variation is available for only a small number of 

species: for instance, nonapeptide receptor gene expression patterns have been 

shown to differ between individuals and relate to social status and aggression in the 
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Amargosa river pupfish (Cyprinodon nevadensis amargosae) (Lema, Sanders, & 

Walti, 2015). In oval butterflyfish (Chaetodon lunulatus), expression of the itr and 

avpr1a in the lateral septum-like region (Vv/Vl) was shown to differ between females 

that had developed pair bonds and solitary females, suggesting this might be a 

mechanism underlying pair bond formation in this species (Nowicki, Pratchett, Walker, 

Coker, & O’Connell, 2017). 

A large body of work suggests that polymorphisms of the mammalian OTR and 

AVPR1a predict individual differences in performance in various aspects of social 

behaviour, including overall prosocial behaviour (e.g. Waller et al., 2016), social cue 

salience (Tost et al., 2010, 2011), and the effect of social support during stressful 

events (Chen et al., 2011). In humans, AVPR1a microsatellite polymorphisms have 

been linked to altruism in economic games (Knafo et al., 2008), while OTR 

polymorphisms have been associated with individual differences in empathy and 

theory of mind (Lucht et al., 2013; Rodrigues, Saslow, Garcia, John, & Keltner, 2009); 

they also play a role in the modulation of the effects of exogenous OT on individual 

cooperative propensity (Feng et al., 2015). Microsatellite polymorphisms in regulatory 

regions of the genes coding nonapeptide receptors may generate phenotypic variation 

by altering the pattern of nonapeptide receptor gene expression across the brain 

(Hammock & Young, 2005); it is therefore possible that the individual variation in social 

and cooperative behaviour associated with nonapeptide receptor polymorphisms is a 

result of differences in the expression levels of these receptors in the brain. Despite 

the well documented role of polymorphisms in humans and other mammals, 

polymorphisms of the teleost isotocin and arginine vasotocin receptor genes have not 

yet been studied; future research in this area is much needed and will provide insight 

to the evolution of mechanisms underlying the regulation of prosocial behaviour. 
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Nonapeptide production and release sites are highly conserved across and 

within phylogenetic taxa. In all vertebrates, OT- and AVP-like peptides are produced 

in neuronal populations in the preoptic area (POA) and anterior hypothalamus (AH) 

(Goodson, 2008). In teleost fish, IT and AVT production takes place predominantly in 

the POA (Goodson, 2008), despite the identification of other small AVT cell 

populations (Batten, Cambre, Moons, & Vandesande, 1990; Goodson, Evans, & Bass, 

2003; Holmgvist & Ekström, 1995). Conversely, nonapeptide receptor distribution is 

highly variable and species-specific, with pronounced differences between closely 

related species (e.g. Goodson, Evans, & Wang, 2006; Insel & Fernald, 2004), which 

is most likely what generates the functional diversity of this peptide family (Goodson, 

2008). Nonapeptide receptor distribution in the brain of the Trinidadian guppy has not 

yet been characterised. I found high levels of itr expression in the fore-section, 

consistent with the overall key role of the POA in nonapeptide signalling. However, I 

found no significant difference between the two phenotypic selection lines in fore-

section itr expression levels, suggesting that any behavioural differentiation between 

the two phenotypic selection lines mediated by IT mainly involves IT binding sites in 

the mid-section. 

Social behaviour is largely regulated by a set of reciprocally connected nodes 

in the brain, commonly known as the ‘Social Behaviour Network’ (SBN) (Newman, 

1999). The SBN comprises the lateral septum (LS), preoptic area (POA), ventromedial 

hypothalamus (VMH), anterior hypothalamus (AH),  periaqueductal gray/central gray 

(PAG/CG), medial amygdala (meAMY) and bed nucleus of the stria terminalis (BNST) 

(meAMY and BNST jointly form the extended amygdala) in mammals, and their 

homologous structures in other classes (Goodson & Kingsbury, 2013; O’Connell & 

Hofmann, 2011, 2012). The SBN, together with the nuclei forming the basal forebrain 
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reward system [hippocampus, basolateral amygdala, ventral tegmental area (VTA) 

and the striatum and nucleus accumbens] constitute the Social Decision-Making 

Network (SDMN) (O’Connell & Hofmann, 2011, 2012). Several of the nodes of the 

SDMN, more specifically the PAG, the ventral tuberal nucleus (vTn – the teleostean 

homologue of the AH), the anterior tuberal nucleus (aTn – homologous to the VMH) 

and the posterium tuberculum (TPp – homologous to the VTA) are located within the 

mid-section (Bshary, Gingins, & Vail, 2014; also see Fischer et al., 2018, which 

includes the brain atlas for the Trinidadian guppy). Given the centrality of these nodes 

to the regulation of social behaviours (e.g. Bshary et al., 2014; Goodson, 2005, 2008) 

such as the ones that are thought to be important components of cooperative 

behaviour (Soares et al., 2010), the difference in mid-section itr expression between 

highly cooperative and less cooperative female guppies is perhaps not surprising. This 

study, however, did not aim to detect brain nodes that are involved in the regulation of 

cooperative behaviour; further work is needed to identify the exact brain areas where 

itr expression is differentiated between individuals of different levels of cooperative 

behaviour to provide this insight. 

Through the manipulation of activation of nonapeptide systems and the 

documentation of their properties, a number of studies have shown that, in teleosts, 

nonapeptides are involved in the regulation of a variety of social behaviours that fall 

within the building blocks of cooperation. For instance, nonapeptides have been 

demonstrated to play a role in teleost prosocial behaviour, such as shoaling (Langen, 

Lindeyer, Reader, & Swaney, 2015), social approach, and affiliative behaviour (Braida 

et al., 2012; Reddon et al., 2015; Reddon, Voisin, O’Connor, & Balshine, 2014; 

Thompson & Walton, 2004). Nonapeptides have also been implicated in social status 

and agonistic behaviour in teleosts (Lema, Sanders, & Walti, 2015). Given the 
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centrality of nonapeptides in the regulation of various aspects of social behaviour, and 

the composite nature of cooperative behaviour, it is possible that the observed 

difference between mid-section itr expression levels of highly cooperative and less 

cooperative fish is the result of behavioural differences in other social contexts 

affecting the expression of cooperative behaviour. However, the prosocial and 

agonistic behaviour of the fish sampled was measured in conjunction with another 

study (see Chapter 3) prior to sampling, and there I found no difference between highly 

cooperative and less cooperative females in either sociability or aggressiveness. 

Additional studies are needed to elucidate this further. Nonapeptide systems are also 

involved in a variety of physiological pathways, including osmoregulation, stress 

response and circadian rhythms (e.g. Balment, Lu, Weybourne, & Warne, 2006; 

Kleszczyńska et al., 2006; Lema, 2010; Martos-Sitcha, Fuentes, Mancera, & Martínez-

Rodríguez, 2014; Rodríguez-Illamola, Patiño, Soengas, Ceinos, & Míguez, 2011). It is 

possible that the observed mid-section itr expression differences reflect physiological 

differences between the two phenotypic selection lines; however, this is unlikely, as 

all fish were housed under the same conditions and had the same experiences prior 

to sampling. 

The involvement of nonapeptides in prosocial behaviour is well documented; 

however, the magnitude and direction of their effects remain highly species- and 

context- specific (Taborsky & Taborsky, 2015). Still, in documenting effects across 

taxa we may be able to gain insight into what makes cooperation different in different 

systems and what the key social components (building blocks) of cooperation are in 

these systems. OT-like and AVP-like peptides have been implicated in altruistic and 

cooperative behaviour in humans (Feng et al., 2015; Knafo et al., 2008; Rilling et al., 

2012) and other vertebrates (e.g. bluehead wrasse: Cardoso, Bshary, et al., 2015), 
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while nonapeptide receptor distribution has been linked to inter- and intra-species 

behavioural variability (e.g. Hammock & Young, 2005; Lema et al., 2015; Ophir et al., 

2008). Here, I show for the first time that, in Trinidadian guppies, individual 

cooperativeness is linked to itr gene expression levels in the brain, providing insight to 

the proximate mechanisms underlying individual differences in the propensity to 

cooperate and more generally, underlying cooperative behaviour. 
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Abstract 

Brain monoamine neurotransmitters such as dopamine and serotonin play an 

important role in stress responses, social stress and social interactions in fish and 

other vertebrates. They have also been implicated in heterospecific cooperative 

behaviour, and are thought to be reflective of the internal state underlying an 

individual’s response to stimuli from their social and physical environment. The aim of 

this study was to explore the immediate effects of social experience of conspecifics 

during predator exposure in a cooperative context on brain monoamines. I tested 

female Trinidadian guppies (Poecilia reticulata) in a predator inspection paradigm, 

manipulating whether or not social partners ostensibly cooperated or defected during 

inspection. I quantified the concentration of dopamine, norepinephrine, serotonin and 

their metabolites in the fore, mid and hind brain sections of the fish immediately after 

the exposure. My results indicate that the activity of the dopaminergic and serotonergic 

systems differ with treatment in specific brain sections; these different 

neurotransmission profiles exerted by experiencing cooperation or defection are likely 

to be of importance in the expression and regulation of downstream behaviours. This 

is the first study to provide insight into the neural systems involved in cooperative 

interactions in this species, and furthers our understanding of the mechanistic 

underpinnings of variation in behavioural responses to cooperation. 

5.1 Introduction 

In highly complex and dynamic environments, individuals continuously perform 

evaluation checks of attributes of their physical and social environment, such as 

intrinsic valence, novelty, and violation of expectations, to evaluate the valence 

(positive/negative) and salience (high/low) of environmental stimuli and the resources, 

or coping mechanisms, available to the individual for dealing with them (Faustino, 
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Oliveira, & Oliveira, 2015; Kosfeld, Heinrichs, Zak, Fischbacher, & Fehr, 2005). This 

appraisal consequently affects the animal’s internal state as a response to their 

perceived environment (Cerqueira et al., 2017), and can affect the individual’s 

behavioural output. In humans, these two attributes, i.e. stimulus valence and 

salience, have been proposed to underlie core affect (i.e. emotional states) (Barrett, 

Henzi, & Rendall, 2007; Russell, 2003). Mendl and colleagues (2010) proposed the 

extension of emotion-like states to animals, outlining two main axes – reward 

acquisition and punishment avoidance. In humans, non-human primates, and rodents 

the neural substrate for reward acquisition is thought to be the mesolimbic reward 

system (the prefrontal cortex and specific nuclei, such as the nucleus accumbens, 

located in the ventral striatum) (Berridge & Kringelbach, 2013, 2015), while 

punishment avoidance has been linked to the amygdala (LeDoux, 2012; Mendl et al., 

2010). 

To make ecologically relevant decisions in a highly variable environment, 

animals need to constantly assess their social environment and modify their behaviour 

according to the current context and past experiences (Taborsky & Oliveira, 2012). 

Adaptive variation of the response to the same social stimuli depending on additional 

social information is essential, in this sense, for optimal use of the opportunities offered 

by the social environment – a concept known as social competence, and shown to 

affect the performance of a range of different social behaviours, including cooperative 

interactions (Bshary & Oliveira, 2015; Taborsky & Oliveira, 2012). Theories of value-

based decision-making propose that animals choose the optimal behavioural 

response to a given stimulus from a set of alternative behaviours based on a subjective 

value ascribed to them (Rangel, Camerer, & Montague, 2008). According to Rangel 

and colleagues (2008), the first step in this decision-making process is the 
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computation of a representation of the problem, in which internal and external states 

are identified, together with possible lines of action; these actions are then assigned 

values that are reliable prediction of the outcomes (positive or negative). The selection 

of the appropriate behavioural response is made after the comparison of these values. 

The neural substrate of social competence is thought to be the Social Decision-Making 

Network (SDMN): a set of areas first identified in the mammalian brain (Newman, 

1999), but later expanded to reptiles, birds and teleosts (O’Connell & Hofmann, 2011), 

which are reciprocally connected and play a major role in the regulation of social 

behaviour (Newman, 1999). Given the rapidity of behavioural responses to social 

stimuli, mechanisms underlying social competence are expected to rely on 

biochemical switching of existing neural networks rather than structural changes in 

neural circuits (Zupanc & Lamprecht, 2000). Any given behaviour is characterised by 

the overall activation of the different nodes of the SDMN (Goodson, 2005), providing 

the individual with a repertoire of behaviours – as well as behavioural variation at an 

individual, intraspecific, and interspecific level (Soares et al., 2010). The response of 

the neural network to any given stimulus can be modified through “biochemical 

switching”, by the presence of neuromodulators, such as neuropeptides and 

monoamines, which affect a neuron’s functional properties by binding to membrane 

receptors (Sørensen, Johansen, & Øverli, 2013; Teles, Dahlbom, Winberg, & Oliveira, 

2013), in a constant fine-tuning of the animal’s behaviour.  

Monoamine neurotransmitters, such as dopamine (DA), norepinephrine (NE) 

and serotonin (5-HT), have been shown to modulate numerous behaviours and 

physiological functions. Dopaminergic systems are involved in reward and risk 

assessment and anticipatory responses to stimuli associated with reward (Berridge & 

Robinson, 1998) through their role in the categorisation of actions as appetitive or 
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aversive (Salamone & Correa, 2012; Schultz, 1998), associative learning (Messias, 

Santos, Pinto, & Soares, 2016), and attention (Schultz, 2007). In mammals, 

serotonergic activity has been implicated in a variety of behaviours and physiological 

functions, such as stress responses (Chaouloff, 2000), mood, emotion and fear 

(Hensler, 2010), sleep (Ursin, 2002), and pain (Bardin, 2011). Norepinephrine also 

plays an important role in the modulation of a variety of behavioural functions and 

processes in mammals, including arousal and attention, memory, the processing of 

stimuli associated with reward (Bush, Caparosa, Gekker, & LeDoux, 2010; Murchison, 

Schutsky, Jin, & Thomas, 2011; Ramos & Arnsten, 2007; Sørensen et al., 2013), and, 

through the alteration of neuronal connectivity and excitability, is critical for the rapid 

response to environmental changes (O’Donnell, Zeppenfeld, McConnell, Pena, & 

Nedergaard, 2012; Sørensen et al., 2013).  

Social interaction and social stress have been shown to strongly modify 

monoaminergic neurotransmission in fish and other vertebrates (Winberg & Nilsson, 

1993; Winberg & Thörnqvist, 2016). More specifically, serotonin is involved in 

mammalian social stress responses (e.g. Canli & Lesch, 2007), and has been 

proposed to have an inhibitory role in aggression in teleosts (Höglund et al., 2005; 

Summers & Winberg, 2006; Winberg, Øverli, & Lepage, 2001), while dopamine has 

also been shown to be affected by agonistic interactions in teleosts (Dahlbom, 

Backström, Lundstedt-Enkel, & Winberg, 2012; Winberg, Nilsson, & Olsen, 1991). 

Dopaminergic signaling has been demonstrated to affect decision-making processes 

in the context of heterospecific cooperation: Messias and colleagues (2016) 

pharmacologically disrupted dopamine neurotransmission in Indo-Pacific bluestreak 

cleaner wrasses (Labroides dimidiatus), and observed an increase in negotiation 

behaviour (as indicated by the levels of initiation of interactions and  tactile stimulation) 
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towards the client fish partners – a behaviour that usually occurs for reconciliation after 

cheating. Serotonin is also involved in heterospecific cooperation in the context of 

cleaning interactions between the cleaner wrasse and heterospecific client reef fish, 

probably through the modification of the appraisal, information acquisition and 

response to client-derived stimuli, via manipulation of the perception of danger (Paula, 

Messias, Grutter, Bshary, & Soares, 2015; Soares, Paula, & Bshary, 2016). The 

behavioural and physiological role of norepinephrine in the teleost brain remains 

largely unclear (Sørensen, Johansen, & Øverli, 2013) (but see Höglund, Balm, & 

Winberg, 2000 for an exception), and to my knowledge, there are no studies looking 

at the involvement of norepinephric systems in cooperative behaviour. 

The well-documented centrality of monoaminergic neurotransmission in various 

behavioural functions such as the ones described above may be indicative of their 

involvement in the social decision-making process associated with cooperation; 

however, to date, their role in teleost cooperation has only been studied in the context 

of heterospecific cooperation between cleaner wrasse and client reef fish. 

Furthermore, past research has focused on the manipulation of monoaminergic 

neurotransmission systems, through systemic administration of monoamine receptor 

agonists and antagonists, and its effects in aspects of behaviours specific to these 

cooperative interactions. The response of these systems to experiencing cooperation 

or defection from the social environment still remains unclear; consequently we have 

only a limited understanding of the processes triggered by these experiences and their 

downstream effects. 

Here, I use the Trinidadian guppy (Poecilia reticulata) as a model system to test 

how the behaviour of an individual’s social partners during a cooperative interaction 

affects brain neurotransmission in females. Guppies cooperate during predator 
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inspection, a behaviour in which a small group of fish leave the relative safety of the 

shoal or other refuge to approach a potential predator and assess the level of threat 

posed; they then return to the shoal and transmit this information (Allan & Pitcher, 

1986; Magurran & Seghers, 1994; Pitcher, Green, & Magurran, 1986). Predator 

inspection is considered a model for the study of cooperation (Milinski, 1987), as all 

shoal members benefit from the information gathered, irrespective of whether they 

inspected or not. 

Research suggests that monoamine neurotransmitters are involved in several 

processes underlying stimulus appraisal and therefore core affect or emotion-like 

states, including reward and prediction error, motivation, arousal, brain affect 

emotional bias, and emotional memory (e.g. Glimcher, 2011; Hensler, 2010; LeDoux, 

2012; Salamone & Correa, 2012; Salamone, Correa, Mingote, Weber, & Farrar, 2006; 

Schultz, 1998, 2010). I therefore predict that the experience of a cooperative partner 

will elicit a very different pattern of monoaminergic transmission in the brain of 

inspecting fish than the experience of a defecting partner, indicative of changes in 

internal state that may mediate the downstream effects of experiencing cooperation or 

defection. Given the centrality of the monoaminergic systems in responses to social 

and predator stimuli in teleosts, investigating these in the context of cooperation during 

predator inspection could be key to understanding the proximate psychological 

mechanisms underpinning conditional cooperation in this species and provide insight 

to the mechanisms underlying cooperation among non-kin. 

5.2 Materials and Methods 

5.2.1 Study subjects 

One hundred and twenty juvenile (sexually immature) Trinidadian guppies, 

descendants of wild-caught fish from a high predation site of the Aripo river on the 
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island of Trinidad (10°39′27N, 61°13′34W), were collected from mixed-generation 

pools in the University of Exeter, Department of Psychology fish laboratory facilities 

for rearing in a standardized environment [tank dimensions: 80x30x40 cm; 12h light: 

12h dark cycle]. The fish were fed with commercial flake and live food twice a day and 

were kept in a constant room temperature of 25oC. Upon reaching sexual maturity 52 

females were tested. Stimulus fish originated from the same population and were kept 

in the same in the same conditions as focal fish. 

Instead of using live predators as inspection stimuli, I used realistic predator 

models of Crenicichla frenata (total length: 12cm), a common predator of adult guppies 

in the wild. Predator models are widely used for predator inspection studies in the 

literature (Dugatkin & Godin, 1992; Magurran & Girling, 1986; Magurran & Seghers, 

1994) because they elicit an anti-predator response and offer standardised predator 

behaviour, thus eradicating confounds introduced by variation in the behaviour of live 

predator stimuli. 

5.2.2 Behavioural assay 

A standard predator inspection tank was used for this assay (Figure 5.1). This consists 

of two inspection lanes, divided by clear Perspex. Each inspection lane had a predator 

compartment in one end, with a clear Perspex divider that allowed for transmission of 

visual but not olfactory cues, and a stimulus shoal compartment on the other end, 

which allowed for transmission of both visual and olfactory cues.  
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Figure 5.1. The experimental setup used for the behavioural assay. S: stimulus shoal 

compartment, perforated to allow for olfactory cue transmission. A: refuge area. B: area of 

close proximity to the predator. P: predator compartment. A focal individual was placed in 

each of the inspection lanes. A mirror was placed lengthwise to simulate cooperation (light 

blue line); defection was simulated by an opaque partition. Both inspection lanes were used 

in parallel but independently, for increased time efficiency. 

To simulate cooperation by social partners, one side of each inspection lane 

was lined with either a mirror; defection was simulated with an opaque surface. Each 

focal individual was assigned to either an experimental or a control condition, each 

with two treatments (4 treatments in total): exposure to a model predator with the 

presence of an inspection partner (experimental - cooperation), exposure to a model 

predator without a partner (experimental - defection), exposure to a familiar object 

(plastic aquarium plant) with an inspection partner (control - cooperation) and 

exposure to a familiar object without the presence of a partner (control - defection). 

A stimulus shoal consisting of 4 size-matched female conspecifics, not 

previously encountered by focal fish, was introduced in the stimulus shoal 
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compartment. After a 20-minute time period, which allowed for the accumulation of 

olfactory cues as well as the acclimation of the stimulus shoal, a focal fish was 

introduced in the testing compartment and was left for 10 minutes to acclimatise. The 

focal fish had visual and olfactory access to the stimulus shoal throughout this period. 

At the end of the 10 minutes, when the focal fish entered the refuge area of its own 

accord, two visual barriers were lifted, uncovering the mirror (or an opaque surface for 

the defection groups) and the predator model (or a plastic plant for the control groups). 

This signified the start of the 5-minute long experimental trial, during which the focal 

individual was free to inspect the inspection stimulus. The trial ended after one 

inspection (which was defined as the fish approaching the predator compartment to a 

distance smaller than 22 cm and then returning to the refuge area), or after the 5-

minute period if no inspection occurred. At the end of the trial, focal fish were removed 

from the tank, and rapidly euthanised using ice slurry (maximum temperature of 4oC). 

The brain was subsequently removed and dissected into 3 regions: fore-section 

(telencephalon, habenula and preoptic area, excluding the olfactory bulbs), mid-

section (including the optic tectum and the hypothalamus) and hind-section (including 

the cerebellum and the medulla oblongata) (Figure 5.2). Each brain sample was stored 

in a 1.5 ml Eppendorf tube and instantly frozen at -80oC within 3 minutes of euthanasia. 
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Figure 5.2. Dorsal view of the brain of a female guppy. The black lines denote the brain 

section borders. f: fore-section; m: mid-section; h: hind-section 

5.2.3 Analysis of brain monoamine and protein content 

Brain levels of 5-HT (serotonin) and its metabolite 5-HIAA (5-hydroxyindoleacetic 

acid), DA (dopamine) and DA metabolites DOPAC (3,4-dihydroxyphenylacetic acid) 

and HVA (homovanillic acid), as well as NE (norepinephrine) were analysed using high 

performance liquid chromatography with electrochemical detection (HPLC-EC), using 

the same protocol as Thörnqvist, Höglund, and Winberg  (2015). In brief, the frozen 

sectioned brain samples were homogenised in 4% (w/v) ice-cold perchloric acid, 

containing 10ng/ml 3,4-dihydroxybenzylamine (DHBA, internal standard), with the use 
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of a Sonifier cell distributor B-30 (Branson Ultrasonic, Danbury, CT, USA) and were 

subsequently centrifuged at 21,000 g for 10 minutes at 4oC. The supernatant was used 

for HPLC-EC in order to analyse the monoamine content of the samples, while the 

pellet was stored at -20oC for analysis of the protein content. The HPLC-EC system 

consisted of a solvent delivery system model 582 (ESA, Bedford, MA, USA), an 

autoinjector Midas type 830 (Spark Holland, Emmen, The Netherlands), a reverse 

phase column (Reprosil-Pur C18-AQ 3 μm, 100x4 mm column, Dr Maisch HPLC 

GmbH, Ammerburch-Entrigen, Germany) kept at 40oC and an ESA 5200 Coulochem 

II EC detector (ESA, Bedford, MA, USA) with two electrodes at reducing and oxidising 

potentials of -40 and +320 mV. In order to oxidise any contaminants, a guarding 

electrode with a potential of +450 mV was employed before the analytical electrodes. 

The mobile phase consisted of 75 mmol/l sodium phosphate, 1.4 mmol/l sodium ocyl 

sulphate and 10 μmol/l Ethylenediaminetetraacetic acid (EDTA) in deionised water 

containing 7% acetonitrile (pH 3.1, using phosphoric acid). The monoamine content of 

each sample was quantified by comparison with standard solutions of known 

concentrations. Correction for recovery was made with the use of DHBA as the internal 

standard, with the use of the HPLC software Clarity™ (DataEpex Ltd, Prague, Czech 

Republic). For normalisation of brain monoamine levels, the concentration of total 

protein in the brain sample was used. 

To assess protein content, the pellets of the centrifuged, homogenised brain 

sections were diluted in 100 μl of Tris(hydroxymethyl)aminomethane (Tris) buffer, 

using a Sonifier cell distributor B-30 (Branson Ultrasonic) to ensure full dilution of the 

pellet. A QuBit 2.0 Fluorometer (InVitrogen, Carlsbad, CA) was used to analyse the 

protein concentration, by measuring absorbance at 280nm. The concentration of 

monoamines and their metabolites was expressed as ng per mg of protein (Bell, 
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Backström, Huntingford, Pottinger, & Winberg, 2007). The ratio of the concentration 

of the metabolite to that of the parent monoamine in the tissue was used for all 

subsequent analyses, as it is found to be a good indicator of neural activity [higher 

metabolite-to-monoamine ratios show increased release and turnover rates of the 

corresponding neurotransmitters (Shannon, Gunnet, & Moore, 1986)]. The turnover 

ratio of norepinephrine could not be calculated because of technical difficulties at 

detecting its metabolites with the methodology used. 

The analysis of brain monoamines and protein content took place at the 

Department of Neuroscience of the University of Uppsala (Biomedical Center). 

5.2.4 Statistical analysis 

Whole brain monoamine turnover rates (concentration of metabolite/concentration of 

parent monoamine) were analysed by fitting linear models for 3,4-

Dihydroxyphenylacetic acid/ dopamine (DOPAC/DA) and 5-Hydroxyindoleacetic acid/ 

serotonin (5-HIAA/5-HT) turnover ratios, after logarithmic transformation.  

Homovanillic acid/ dopamine (HVA/DA) turnover rates were analysed using beta 

regression in the 'betareg' v3.0-5 package (Cribari-Neto & Zeileis, 2010). Beta 

regression allows statistical modelling of continuous, restricted to the unit interval (0,1), 

non-transformed data (Ferrari & Cribari-Neto, 2004). Monoamine turnover rates were 

also analysed separately for every brain section (linear models for the logarithm of 

DOPAC/DA and 5-HIAA/5-HT turnover rates; beta regression for HVA/DA rates). All 

statistical analyses were carried out in R v3.2 (R Core Team 2014). In all cases the 

full model included Standard body length + Distance of closest approach during 

inspection + Duration of inspection + Social Environment (Cooperation/Defection) + 

Inspection stimulus (Control/Predator) + Social Environment* Inspection stimulus. 
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5.3 Results 

5.3.1 Whole brain monoamine turnover rates 

Across the whole of the brain, log-transformed DOPAC/DA ratios tended to be affected 

by the interaction of the social environment (cooperation/defection) and the type of 

inspection stimulus [two way interaction: F(1,39)=3.495, p=0.069] (Figure 5.3A); this 

trend, however, did not reach statistical significance (Table 5.1). A similar trend was 

observed for log transformed 5-HIAA/5-HT ratios (Figure 5.3B) (Table 5.2). Whole 

brain serotonin metabolism (after log transformation) was found to depend on the 

social experience during the behavioural trial (Figure 5.3B), with fish experiencing 

cooperation showing lower 5-HIAA/5-HT ratios than those experiencing defection 

[F(1,38]=7.355, p=0.010]. HVA/DA ratios were found to be independent of these 

factors (Figure 5.4) (Table 5.1). Standard body length, distance of closest approach to 

the predator compartment and duration of the inspection were found to have no effect 

on whole brain monoamine turnover rates (Table 5.1). 
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Table 5.1. Marginal effects of standard body length, distance of closest approach to the 

predator compartment, duration of inspection, social environment and inspection stimulus on 

whole brain neurotransmitter turnover rates (DOPAC/DA and 5-HIAA/5-HT after log 

transformation; HVA on non-transformed data). Statistically significant factors are shown in 

bold. 

Mono-

amine 
  Estimate 

Standard 

error 
df 

Test 

statistic 
p-value 

DOPAC/ 

DA  

Intercept  1.512 0.870 39 1.738 0.090 

 Standard body 

length 

 -0.419 0.361 39 -1.162 0.253 

 Distance of 

closest 

approach 

 0.002 0.005 39 0.465 0.645 

 Duration of 

inspection 

 -6.880*10-

4 

0.002 39 -0.376 0.709 

 Soc. Env. Cooperation 0 - 39 - - 

  Defection 0.279 0.218 39 1.284 0.207 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 39 - - 

  Predator 0.141 0.218 39 0.646 0.522 

 Soc. Env. x 

Insp. stimulus 

Cooperation 

- Control 

0 - 39 - - 

  Defection - 

Predator 

-0.588 0.315 39 -1.869 0.069 

HVA/DA Intercept  -1.263 0.292 32 -4.328 <0.001 

 Standard body 

length 

 0.092 0.125 32 0.734 0.463 

 Distance of 

closest 

approach 

 -0.002 0.002 32 -1.508 0.132 

 Duration of 

inspection 

 -6.113*10-

4 

6.577*10-4 32 -0.929 0.353 

 Soc. Env. Cooperation 0 - 32 - - 

  Defection 0.081 0.069 32 1.164 0.245 
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(Table 5.1 cont.) 

Mono-

amine 
  Estimate 

Standard 

error 
df 

Test 

statistic 
p-value 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 32 - - 

  Predator 0.106 0.071 32 1.492 0.136 

 Soc. Env. x 

Insp. stimulus 

Cooperation 

- Control 

0 - 32 - - 

  Defection - 

Predator 

-0.059 0.104 32 -0.571 0.568 

5-HIAA/ 

5-HT 

Intercept  -1.353 0.416 38 -3.254 0.002 

 Standard body 

length 

 0.130 0.173 38 0.751 0.457 

 Distance of 

closest 

approach 

 -4.453*10-

4 

0.002 38 -0.170 0.866 

 Duration of 

inspection 

 7.544*10-4 8.946*10-4 38 0.843 0.404 

 Soc. Env. Cooperation 0 - 38 - - 

  Defection 0.286 0.106 38 2.712 0.010 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 38 - - 

  Predator 0.061 0.107 38 0.573 0.570 

 Soc. Env. x 

Insp. stimulus 

Cooperation 

- Control 

0 - 38 - - 

  Defection - 

Predator 

-0.290 0.154 38 -1.874 0.069 
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Figure 5.3. Effects of cooperation or defection during predator inspection in log-transformed 

whole brain monoamine metabolism (A: DOPAC/DA; B: 5-HIAA/5-HT). Back-transformed 

estimated marginal means and 95% confidence intervals. Experiencing 

cooperation/defection affected whole brain serotonin turnover rates (C) when fish were 

exposed to either a plant (light blue) or a model predator (grey).** p=0.01. 
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Figure 5.4. Experiencing cooperation or defection during predator inspection (light blue: 

exposure to a plastic plant; grey: exposure to a predator) had no effects on whole brain 

HVA/DA metabolism rates. 

5.3.2 Monoamine turnover rates per brain section 

5.3.2.1 Dopamine turnover rate 

I found no significant effect of predator presence and/or experience of cooperation on 

the logarithm of the DOPAC/DA rate in the fore-section and mid-section of fish (Figure 

5.5A & B) (Table 5.2). Hind-section DOPAC/DA ratios were affected by the interaction 

of social experience (cooperation/defection) and type of inspection stimulus [two-way 

interaction: F(1,41)=5.207, p=0.028]. Post hoc analysis showed that in the absence of 

a cooperating social partner, being exposed to a predator led to lower DOPAC/DA 

ratios than being exposed to a plastic plant (Figure 5.5C) (Table 5.3). Standard body 
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length, distance of closest approach to the predator and inspection duration had no 

effect on the DA to DOPAC metabolism rates in any of the brain sections (Table 5.2). 

Table 5.2. Marginal effects of standard body length, distance of closest approach to the 

predator compartment, duration of inspection, social environment and inspection stimulus on 

the log-transformed DOPAC/DA ratio in the fore-section, mid-section and hind-section. 

Statistically significant factors are shown in bold. 

Brain 

section 
  Estimate 

Standard 

error 
df t-value p-value 

Fore-

section  

Intercept  0.512 1.107 45 0.463 0.646 

 Standard 

body length 

 -0.525 0.456 45 -1.152 0.255 

 Distance of 

closest 

approach 

 0.007 0.006 45 1.066 0.292 

 Duration of 

inspection 

 -8.062*10-

4 

0.002 45 -0.323 0.748 

 Soc. Env. Cooperation 0 - 45 - - 

  Defection 0.264 0.278 45 0.954 0.345 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 45 - - 

  Predator 0.193 0.283 45 0.682 0.498 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 45 - - 

  Defection - 

Predator 

-0.590 0.405 45 -1.457 0.152 

Mid-

section 

Intercept  -0.174 0.845 42 -0.206 0.838 

 Standard 

body length 

 -0.237 0.353 42 -1.163 0.506 

 Distance of 

closest 

approach 

 0.005 0.005 42 1.160 0.251 

 Duration of 

inspection 

 8.079*10-4 0.002 42 0.463 0.646 
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(Table 5.2 cont.) 

Brain 

section 
  Estimate 

Standard 

error 
df t-value p-value 

 Soc. Env. Cooperation 0 - 42 - - 

  Defection 0.279 0.212 42 1.317 0.195 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 42 - - 

  Predator 0.062 0.215 42 0.289 0.774 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 42 - - 

  Defection - 

Predator 

-0.330 0.308 42 -1.072 0.290 

Hind-

section 

Intercept  -0.415 0.154 41 -0.478 0.635 

 Standard 

body length 

 -0.062 0.352 41 -0.175 0.862 

 Distance of 

closest 

approach 

 0.002 0.005 41 0.437 0.664 

 Duration of 

inspection 

 8.478*10-4 0.001 41 0.582 0.563 

 Soc. Env. Cooperation 0 - 41 - - 

  Defection 0.197 0.219 41 0.897 0.375 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 41 - - 

  Predator -0.040 0.210 41 -0.192 0.849 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 41 - - 

  Defection - 

Predator 

-0.729 0.319 41 -2.282 0.028 
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Figure 5.5. The effect of experiencing cooperation or defection during predator (dark grey) exposure or exposure to a plastic plant (light blue) 

on the log transformed DOPAC/DA ratios in the fore-section (A), mid-section (B), and hind-section (C) of Trinidadian guppies. Back-

transformed estimated marginal means and 95% confidence intervals. DOPAC/DA ratios in the hind-section of fish (C) experiencing defection 

were lower when exposed to a predator than when exposed to a plastic plant. * p < 0.05.
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Table 5.3. Post hoc analysis for the ‘Social Environment x Inspection stimulus type’ 

interaction on the logarithm of the hind-section DOPAC/DA ratio. Pairwise least squares 

means comparisons. Statistically significant contrasts are shown in bold. 

Contrast Estimate 
Standard 

error 
df t-value p-value 

Coop. Control – Def. Control -0.197 0.219 41 -0.897 0.806 

Coop. Control – Coop. Predator 0.040 0.210 41 0.192 0.998 

Coop. Control – Def. Predator 0.572 0.235 41 2.439 0.085 

Def. Control – Coop. Predator 0.237 0.219 41 1.082 0.702 

Def. Control – Def. Predator 0.769 0.239 41 3.218 0.013 

Coop. Predator – Def. Predator 0.532 0.236 41 2.255 0.125 

 

DA to HVA turnover rates were found to be independent of inspection stimulus 

type and the experience of cooperation or defection in the fore-section and mid-section 

of the tested fish (Figure 5.6A & B). However, fish that had experienced cooperation 

by their social environment during the behavioural assay showed lower hind-section 

HVA/DA rates than those in the defection treatment [χ2(1,38)=4.772, p=0.029] (Figure 

5.6C). Inspection duration tended to have an effect on HVA/DA ratios in the fore-

section, with fish performing longer inspections having lower HVA to DA metabolism 

rates; this trend, however, did not reach statistical significance [χ2(1, 42)=3.414, 

p=0.065] (Table 5.4). I also found a non-significant trend for distance of closest 

approach to the predator compartment to affect HVA/DA rates in the hind-section [χ2(1, 

38)=3.000, p=0.083), with fish approaching the predator compartment more closely 

showing lower HVA/DA ratios. Standard body length did not affect HVA/DA ratios in 

any of the brain sections (Table 5.4).
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Figure 5.6. HVA/DA ratios in the fore-section (A), mid-section (B), and hind-section (C). Predator exposure (dark grey) had no effect on the log-

transformed dopamine metabolism to HVA when compared to exposure to a plastic plant (light blue). Experiencing cooperation/defection led to 

differences in the rate of metabolism of DA to HVA in the hind-section (C). * p < 0.05.
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Table 5.4. Marginal effects of distance of standard body length, closest approach to the 

predator compartment, inspection duration, social environment and inspection stimulus on 

the HVA/DA ratio in the fore-section, mid-section and hind-section. Statistically significant 

factors are shown in bold. 

Brain 

section 
  Estimate 

Standard 

error 
df z-value p- value 

Fore-

section  

Intercept  -1.799 0.261 42 -6.896 <0.001 

 Standard 

body length 

 0.172 0.107 42 1.601 0.109 

 Distance of 

closest 

approach 

 0.001 0.001 42 0.774 0.439 

 Duration of 

inspection 

 -0.001 5.993*10-4 42 -1.848 0.065 

 Soc. Env. Cooperation 0 - 42 - - 

  Defection -0.042 0.067 42 -0.636 0.525 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 42 - - 

  Predator 0.058 0.065 42 0.889 0.374 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 42 - - 

  Defection - 

Predator 

0.128 0.095 44 1.348 0.178 

        

Mid-

section 

Intercept  -1.524 0.286 39 -5.320 <0.001 

 Standard 

body length 

 -0.055 0.121 39 -0.459 0.647 

 Distance of 

closest 

approach 

 -0.001 0.002 39 -0.971 0.331 

 Duration of 

inspection 

 4.561*10-4 6.674*10-4 39 0.683 0.494 

 Soc. Env. Cooperation 0 - 39 - - 
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(Table 5.4 cont.) 

Brain 

section 
  Estimate 

Standard 

error 
df z-value p- value 

  Defection 0.038 0.069 39 0.554 0.580 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 39 - - 

  Predator 0.042 0.071 39 0.590 0.555 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 39 - - 

  Defection - 

Predator 

-0.089 0.104 39 -0.858 0.391 

Hind-

section 

Intercept  -1.278 0.278 38 -4.602 <0.001 

 Standard 

body length 

 0.017 0.115 38 0.152 0.880 

 Distance of 

closest 

approach 

 -0.003 0.002 38 -1.732 0.083 

 Duration of 

inspection 

 -7.362*10-

4 

4.632*10-4 38 -1.589 0.112 

 Soc. Env. Cooperation 0 - 38 - - 

  Defection 0.049 0.068 38 2.184 0.029 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 38 - - 

  Predator 0.049 0.068 38 0.711 0.477 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 38 - - 

  Defection - 

Predator 

-0.140 0.100 38 -1.399 0.162 

5.3.2.2 Serotonin turnover rate 

Fore-section log-transformed serotonin turnover rates (5-HIAA/5-HT) were affected by 

the interaction between the social environment during predator inspection 
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(experiencing cooperation or defection) and the type of inspection stimulus [two-way 

interaction: F(1,43)=4.301, p=0.044] (Figure 5.7A) (Table 5.5). Post hoc analysis did 

not show statistically significant differences between pairs (Table 5.6). Experiencing 

cooperation or defection had a significant effect on log transformed serotonin turnover 

rates in the hind-section [F(1,41)=7.410, p=0.009], with fish experiencing defection 

showing higher 5-HIAA/5-HT ratios than those experiencing cooperation (Figure 5.7C) 

(Table 5.5). Mid-section serotonin turnover was independent of these factors (Figure 

5.7B). Standard body length, distance of closest approach to the predator 

compartment and duration of inspection had no effect in serotonin metabolism in any 

of the brain sections studied (Table 5.5). 

Table 5.5. Marginal effects of standard body length, distance of closest approach to the 

predator compartment, duration of predator inspection, social environment and inspection 

stimulus on the log-transformed serotonin turnover rate (5-HIAA/5-HT) in the fore-section, 

mid-section and hind-section. Statistically significant factors are shown in bold. 

Brain 

section 
  Estimate 

Standard 

error 
df z-value 

p 

value 

Fore-

section  

Intercept  -2.421 0.505 43 -4.789 <0.001 

 Standard 

body length 

 0.061 0.208 43 0.294 0.770 

 Distance of 

closest 

approach 

 -0.004 0.003 43 -0.442 0.661 

 Duration of 

inspection 

 0.001 0.001 43 1.082 0.286 

 Soc. Env. Cooperation 0 - 43 - - 

  Defection 0.306 0.129 43 2.358 0.023 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 43 - - 

  Predator 0.205 0.133 43 1.539 0.131 
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(Table 5.5 cont.) 

Brain 

section 
  Estimate 

Standard 

error 
df z-value 

p 

value 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 43 - - 

  Defection - 

Predator 

-0.392 0.189 43 -2.074 0.044 

        

Mid-

section 

Intercept  -2.005 4.837*10-1 43 -4.146 <0.001 

 Standard 

body length 

 -9.418*10-

3 

2.032*10-1 43 -0.046 0.963 

 Distance of 

closest 

approach 

 -8.066*10-

5 

2.623*10-5 43 -0.031 0.976 

 Duration of 

inspection 

 1.413*10-3 1.004*10-3 43 1.407 0.166 

 Soc. Env. Cooperation 0 - 43 - - 

  Defection 1.913*10-1 1.196*10-1 43 1.600 0.117 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 43 - - 

  Predator 3.528*10-2 1.215*10-1 43 0.290 0.773 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 43 - - 

  Defection - 

Predator 

-2.514*10-

1 

1.758*10-1 43 -1.430 0.160 

Hind-

section 

Intercept  -2.439 0.498 41 -4.897 <0.001 

 Standard 

body length 

 0.079 0.203 41 0.391 0.698 

 Distance of 

closest 

approach 

 -1.269*10-

3 

2.813*10-3 41 -0.451 0.654 

 Duration of 

inspection 

 1.972*10-6 8.357*10-4 41 0.002 0.998 
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(Table 5.5 cont.) 

Brain 

section 
  Estimate 

Standard 

error 
df z-value 

p 

value 

 Soc. Env. Cooperation 0 - 41 - - 

  Defection 0.343 0.126 41 2.722 0.009 

 Inspection 

stimulus 

Control 

(plastic plant) 

0 - 41 - - 

  Predator 0.142 0.121 41 1.175 0.247 

 Soc. Env. x 

Insp. 

stimulus 

Cooperation 

- Control 

0 - 41 - - 

  Defection - 

Predator 

-0.283 0.183 41 -1.544 0.130 

 

Table 5.6. Post hoc analysis for the ‘Social Environment x Inspection stimulus type’ 

interaction on the logarithm of the fore-section 5-HIAA/5-HT ratio. Pairwise least squares 

means comparisons after Tukey adjustment for multiple comparisons. Statistically significant 

contrasts are shown in bold. 

Contrast Estimate 
Standard 

error 
df t-value p-value 

Coop. Control – Def. Control -0.305 0.129 43 -2.359 0.101 

Coop. Control – Coop. Predator -0.205 0.133 43 -1.539 0.424 

Coop. Control – Def. Predator -0.118 0.136 43 -0.863 0.824 

Def. Control – Coop. Predator 0.101 0.134 43 0.749 0.877 

Def. Control – Def. Predator 0.188 0.136 43 1.379 0.519 

Coop. Predator – Def. Predator 0.087 0.140 43 0.622 0.924 
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Figure 5.7. Serotonin metabolism rates (5-HIAA/5-HT) in the fore-section (A), mid-section (B), and hind-section (C) of guppies. Back-

transformed estimated marginal means and 95% confidence intervals. Fish which experienced cooperation had lower hind-section 5-HIAA/5-

HT ratios than those which experienced defection. I found a significant interaction between social experience (cooperation/defection) and 

inspection stimulus (light blue: plastic plant; grey: model predator) in the fore-section. * p < 0.05; ** p < 0.01. 
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5.4 Discussion 

My results show that the behaviour of an individual’s social partners during a 

cooperative interaction involving predator inspection affects dopaminergic and 

serotonergic neurotransmission in the hind-section of female Trinidadian 

guppies. Fore-section serotonergic activity was also found to be affected; 

conversely, I found no effects of experiencing cooperation or defection during 

inspection of a predator or a plastic plant in mid-section neurotransmission rates. 

To the best of my knowledge, this study provides the first insight to the role of 

brain monoaminergic neurotransmission systems in the experience of 

cooperative interactions during predator inspection, and increases our 

understanding of the neural pathways potentially underlying conditional 

cooperative behaviour among non-kin. 

DA signalling has been implicated in reward and risk assessment (e.g. 

Schultz, 2010) and dopaminergic activity has been shown to play a role in the 

expression of cooperative behaviour in teleost fishes. For example, Messias and 

colleagues (2016) found that disruption of dopamine neurotransmission in 

bluestreak cleaner wrasse resulted in increased cooperative effort, as shown by 

the increased frequency of costly behaviours usually linked to reconciliation after 

cheating client reef fish. I found that the effect of predator inspection on 

DOPAC/DA turnover rates was modified by the presence of a cooperative 

partner: when fish experienced defection from their social environment, predator 

inspection led to decreased hind-section DOPAC/DA turnover rates compared to 

inspection of a familiar object. Larger groups of inspecting fish provide safety due 

to the dilution of risk (Pitcher, 1986), as well as their increased ability to detect 

and avoid predators (Krause & Ruxton, 2002; Roberts, 1996); consequently, the 
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presence of a cooperative partner during predator inspection is expected to 

decrease the risk of predation for each inspecting fish. It is therefore possible that 

I only found an effect of predator exposure on fish experiencing defection 

because they perceive the highest level of predation risk compared to the other 

experimental groups. This result suggests that experiencing defection during 

predator inspection induces a more negative emotion-like state than experiencing 

cooperation. 

Rates of DA metabolism to HVA in the hind-section were affected by the 

presence of a cooperative partner, with fish experiencing defection from their 

social environment showing increased HVA/DA rates compared to those 

experiencing cooperation. DA can be metabolised to either DOPAC after 

deamination by monoamine oxidase, or to 3-methoxy-tyramine (3-MT) after 

methylation by catechol-O-methyl transferase (COMT); both metabolites can be 

further converted to HVA, with the importance of each pathway being species-

dependent (Sørensen, Johansen, & Øverli, 2013). The effects of experiencing 

cooperation or defection on hind-section HVA/DA ratios are thus time-dependent 

and difficult to interpret independently of DOPAC/DA rates. This is supported by 

the strong trend for duration of inspection to affect HVA/DA ratios in the hind-

section, suggesting that the time elapsed between the start of the inspection and 

tissue sampling is of importance in this context.  

Although I was not able to detect differences between any of the 

experimental groups in my pairwise comparisons, I observed an effect of the 

interaction of inspection stimulus type and the social environment (experience of 

cooperation or defection) on fore-section 5-HIAA/5-HT ratios, suggesting that the 
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serotonergic system is involved in the experience of cooperation or defection in 

this context. Serotonin has been implicated in heterospecific cooperation 

between bluestreak cleaner wrasse and client reef fish: exogenous 5-HT 

administration has been demonstrated to increase the level of tactile stimulation 

(appeasement) cleaner wrasses provide to client fish (Paula, Messias, Grutter, 

Bshary, & Soares, 2015) – an effect probably mediated by an increased 

perception of danger posed by the client fish (Soares, Paula, & Bshary, 2016). 

The serotonergic system also has a well-documented role in stress responses 

(Johnsson, Winberg, & Sloman, 2006; Winberg & Nilsson, 1993), with 

serotonergic activity increasing as a result of predator exposure (Bell, Backström, 

Huntingford, Pottinger, & Winberg, 2007; Winberg, Myrberg, & Nilsson, 1993). 

Given that shoaling acts as a mechanism of reducing risk of predation (Krause & 

Ruxton, 2002; Pitcher, 1986), it is possible the differences observed in fore-

section serotonergic activity reflect differences in risk perception due to the 

presence or absence of conspecifics during exposure to a predator or a plastic 

plant. The presence of conspecifics has been demonstrated to down-regulate 

responses to a detected threat – a phenomenon known as social buffering (e.g. 

Edgar et al., 2015; Faustino, Tacão-Monteiro, & Oliveira, 2017; Hennessy, 

Kaiser, & Sachser, 2009; Smith & Wang, 2014). It is possible that social buffering 

occurs in larger inspection shoals, reducing the stress of approaching and 

inspecting a potential predator. Research points to the lateral amygdala (LA), the 

central amygdala (CeA) and the hypothalamic paraventricular nucleus (PVN) (da 

Costa, Leigh, Man, & Kendrick, 2004; Fuzzo et al., 2015; Kiyokawa, Honda, 

Takeuchi, & Mori, 2014; Takahashi et al., 2013) as the neural substrate of social 

buffering in mammals; in teleosts, social buffering has been demonstrated to 
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involve the medial part of the dorsal telencephalon (Dm – the teleostean 

homologue of the basolateral amygdala), the suppracommissural part of the 

ventral pallium (Vs – homologous to the extended amygdala) and the preoptic 

area (POA) (Faustino et al., 2017). As the Dm, Vs, and POA are located within 

the fore-section (Bshary, Gingins, & Vail, 2014; also see Fischer, Westrick, 

Hartsough, & Hoke, 2018, which includes the brain atlas for the Trinidadian 

guppy), it is possible that the differences in fore-section serotonergic activity 

observed here reflect the effect of social buffering on risk perception, where the 

presence of conspecifics (i.e. the experience of cooperation) induces a positive 

emotion-like state, that is moderated by the type of inspection stimulus (i.e. 

threatening or benign). This finding is in accordance with the well documented 

role of the serotonergic system in stress (e.g. Johnsson et al., 2006; Winberg & 

Nilsson, 1993) and the increased risk of predation undertaken by lone inspectors 

(Milinski, Lüthi, Eggler, & Parker, 1997). 

Contrary to the fore-section, serotonergic activity in the hind-section was 

affected only by the presence of a cooperative inspection partner, irrespective of 

the type of inspection stimulus. A similar effect was observed in whole brain 

serotonin metabolism rates, as fish experiencing defection from their social 

environment showed increased serotonergic activity compared to those 

experiencing cooperation, irrespective of the inspection stimulus. Hind-section 

serotonergic activity has been linked to agonistic behaviour in teleosts (see 

Winberg & Nilsson, 1993; Winberg & Thörnqvist, 2016), and in particular the 

formation of dominance hierarchies (Winberg, Nilsson, & Olsen, 1991, 1992); it 

is therefore likely that serotonin neurotransmission in this brain section plays a 

role in the encoding of social stimuli across behavioural contexts.  
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Here, I show for the first time that dopaminergic neurotransmission plays 

a role in predator inspection behaviour in female Trinidadian guppies. Both 

predator exposure and the behaviour of an individual’s partner during inspection 

affected the activation of the dopaminergic and serotonergic systems; these 

activation patterns differed among brain sections. Given the involvement of 

dopamine neurotransmission in a wide array of behaviours and physiological 

functions, such as prediction error and associative learning, there are a number 

of possible mechanisms underlying the effects found in this study. The different 

neurotransmission patterns observed here as a result of experiencing 

cooperation or defection by one's social environment may be indicative of the 

effect of these experiences on the individual's internal or affective state, and are 

thus likely to modify its behavioural response to these experiences. These results 

are a first step in elucidating the proximate mechanisms underpinning decision-

making during cooperative interactions in the context of predator inspection, as 

well as following on from these interactions. 
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6.1 Introduction 

Theoretical frameworks of decision-making outline how physiological 

mechanisms involved in neural biochemical ‘switching’, such as neuromodulatory 

systems, are fundamental to the appropriate adjustment of behaviour to stimuli 

from the social environment (Soares et al., 2010; Sørensen, Johansen, & Øverli, 

2013; Teles, Dahlbom, Winberg, & Oliveira, 2013). Such systems are thought to 

reflect the effect of these stimuli on the individual’s internal state, which drives its 

subsequent behaviour, and ultimately underlie behavioural rules defining 

cooperative behaviour. A large body of work suggests that variation in the 

structural properties of neuromodulation systems (such as nonapeptide receptor 

brain distribution patterns) are also a source of intraspecific behavioural variation, 

and may therefore play a role in individual variation in the response to a given 

stimulus. However, to date, little is known about how these systems interact to 

adjust the behavioural response to specific experiences within and between 

individuals outside of humans, and more specifically, their role in cooperative 

interactions. 

This thesis explored the proximate effects of social experiences in 

cooperative contexts as well as possible proximate drivers of cooperative 

behaviour itself, using the Trinidadian guppy (Poecilia reticulata) as a study 

system. Two approaches were used: one that included the diversity of 

cooperative phenotypes found in wild type guppies descending from a population 

experiencing high predation risk, and one that involved phenotypic selection on 

cooperative behaviour over three filial generations to ask questions specific to the 

cooperative propensity of individuals. Firstly, I focused on the behavioural rules 

that underpin the decision to cooperate or not with an unfamiliar individual, based 
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on specific or non-specific information regarding past cooperative interactions. I 

also explored behavioural correlates of cooperativeness, in an effort to 

understand whether they could potentially contribute to driving association 

patterns between individuals of the same cooperative phenotype. I then looked 

at proximate biological mechanisms of variation in individual behaviour, focusing 

on brain expression patterns for the isotocin receptor. Finally, I looked at how 

experiencing cooperative versus defecting social partners influences an 

individual’s monoamine neurotransmission profile, thought to be indicative of the 

changes in its internal state. 

6.2 Summary of key findings 

The study of cooperative behaviour in the context of predator inspection has 

mainly focused around Tit-for-tat-like strategies (Dugatkin, 1988; Dugatkin & 

Alfieri, 1991b; Külling & Milinski, 1992; Milinski, 1987, 1990; Milinski & 

Boltshauser, 1995; Milinski, Kulling, & Kettler, 1990; Milinski, Pfluger, Külling, & 

Kettler, 1990; see also Pitcher, 1991), and other possibilities have rarely been 

explored. Whereas it seems that in pairs of inspecting fish past experiences with 

a social partner affect the level of cooperative effort in subsequent interactions, 

carry-over effects of past experiences with different partners can also be 

important (Edenbrow et al., 2017). Furthermore, little is known about the possible 

involvement of other types of reciprocity. Chapter 2 explored the use of specific 

and non-specific information regarding a social partner’s cooperativeness in 

subsequent cooperative interactions. When individuals had specific information 

about their partner’s cooperativeness, they behaved in a manner consistent with 

direct reciprocity. Conversely, when paired with a novel, cooperating partner, 
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having experienced defection previously led to greater cooperativeness than 

having experienced cooperation previously (Chapter 2). 

Individual differences in cooperativeness are widespread across animals 

(e.g. Arnold, Goldizen, & Owens, 2005; Bergmüller & Taborsky, 2007; 

Charmantier et al., 2007; Schürch & Heg, 2010b; Schürch, Rothenberger, & Heg, 

2010), and consistent to the point of being considered part of a behavioural 

syndrome (Bergmüller et al., 2010). One of the aims of this thesis was to explore 

the drivers of such intraspecific variation in cooperative behaviour, and I 

measured the nonapeptide receptor expression in the brain of offspring of the 

phenotypic selection lines I had generated. Isotocin receptor (itr) brain expression 

differed between descendants of highly cooperative and non-cooperative fish, 

with fish descending from highly cooperative individuals (HC) exhibiting higher itr 

abundance in the mid-section compared to fish of non-cooperative lineage (LC) 

(Chapter 4). This is in line with research suggesting that, in humans, individual 

propensity to cooperate is associated with nonapeptide receptor polymorphisms 

affecting nonapeptide receptor distribution in the brain (Feng et al., 2015; Knafo 

et al., 2008). 

Past research suggests that antipredator behaviour in the guppy has at 

least an inherited component (Magurran, 2005; O’Steen et al., 2002). Phenotypic 

selection on cooperative behaviour resulted in early divergence between the two 

selection lines (generation F2), and was maintained and intensified in the next 

generation (F3) (Chapter 3). This, in conjunction with the differences in itr brain 

expression observed between fish of high and low cooperativeness (Chapter 4), 

indicates that cooperative behaviour during predator inspection has indeed an 
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inherited component. This study was not designed to look at the heritability of 

cooperative behaviour during predator inspection; the mechanism underlying 

vertical transmission of such behaviour still remains unclear. Future work should 

explore whether this effect is genetic or epigenetic. 

Cooperative behaviour can be highly complex, and often thought to be 

comprising several components (‘building blocks’), ranging from prosocial 

behaviour and social recognition to partner choice (Soares et al., 2010). Given 

the well-documented role of nonapeptide receptors on social behaviour, it is likely 

that the difference in itr mid-section expression between female descendants of 

highly cooperative and non cooperative fish (Chapter 4) affects other aspects of 

social behaviour as well. Fish of the two phenotypic selection lines were not found 

to differ in overall shoaling tendency; there were, however, differences in some 

aspects of their social behaviour. More specifically, HC and LC fish differed in the 

amount of sampling of the social environment carried out, with LC males showing 

the lowest rate of sampling of the social environment, and LC females tending 

towards the highest (Chapter 3). Aggressiveness was also found to differ 

between the two phenotypic selection lines, with LC males exhibiting higher levels 

of aggression than any other experimental group (Chapter 3). Interestingly, non-

social behavioural traits, such as exploratory tendency and boldness did not differ 

between the two phenotypic selection lines, suggesting that while differences in 

cooperative behaviour during predator inspection may be associated with social 

traits, such as aggressiveness, they cannot be merely attributed to differences in 

boldness or exploratory tendency. 
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 Cognitive theories of emotion propose that when environmental stimuli are 

detected, they are evaluated with a set of checks including intrinsic valence, 

violation of expectations and capacity for control, alongside the coping 

mechanisms available to the organism (Faustino, Oliveira, & Oliveira, 2015; Paul, 

Harding, & Mendl, 2005), in a process resulting in a change of the animal’s 

internal state (core affect) (Cerqueira et al., 2017), and potentially its subsequent 

behavioural output, as a response to its environment. Monoamine 

neurotransmitters, through their well-documented involvement in the processing 

of stimuli associated with reward (e.g. Berridge & Robinson, 1998; Ramos & 

Arnsten, 2007; Salamone & Correa, 2012; Sørensen, Johansen, & Øverli, 2013), 

are thought to be key in this process. The level of cooperative investment of an 

individual’s social partner during predator inspection was found to affect 

serotonergic and dopaminergic neurotransmission in certain brain sections 

(Chapter 5). Given the role of dopamine and serotonin in appraisal of reward 

(Berridge & Robinson, 1998; Salamone & Correa, 2012; Sørensen et al., 2013), 

risk perception (Soares, Paula, & Bshary, 2016), emotion and fear (Hensler, 

2010), it is possible that these differences reflect changes in internal state as a 

result of such experiences. Crucially, these changes in internal state may affect 

subsequent behaviour, i.e. the behavioural response to the experience 

generating the internal state. 

6.3 Routes to the evolution and maintenance of cooperation 

6.3.1 Mechanisms underlying cooperative decision-making 

Key to understanding the mechanisms underlying the evolution and maintenance 

of cooperation is an understanding of the behavioural decisions made by 
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interacting individuals – perhaps best elucidated by exploring the proximate 

mechanisms underpinning an individual’s decision over the level of cooperative 

effort provided in a given situation (Taborsky & Taborsky, 2015). My findings 

suggest that experiences of cooperation or defection result in changes in internal 

state (core affect), as reflected by the differences in monoamine 

neurotransmission in some brain sections (Chapter 5). It is often proposed that it 

is these effects of social experiences on emotion-like states that underlie 

behaviours consistent with frameworks such as generalized reciprocity (Brosnan, 

Salwiczek, & Bshary, 2010). For instance, the positive emotion-like state elicited 

by experiencing cooperation from a specific individual may affect subsequent 

cooperative behaviour towards the same (direct reciprocity), or a different 

(generalised reciprocity) individual. This notion is largely supported by the fact 

that experiencing cooperation or defection from a simulated social partner 

affected the level of cooperative investment in subsequent cooperative 

interactions (Chapter 2). Interestingly, the direction of this effect depended on 

whether focal individuals were paired with ostensibly the same or novel social 

partners, suggesting that the adjustment of behaviour according to the 

individual’s internal state may be context-specific.  

The effect of past experiences on subsequent behaviour through changes 

in internal states may be of particular importance for social heuristics, such as the 

Walk Away framework (Aktipis, 2004), as it is easy to imagine a scenario where 

experiencing defection from one’s social environment may elicit a negative 

emotion-like state, in turn resulting in the individual ‘walking away’ from their 

current social partners, thus updating its social environment. Crucially, such a 
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mechanism can result in positive assortment of cooperators (Aktipis, 2011) – a 

prerequisite for the evolution and maintenance of cooperation in social groups.  

Neuromodulation is critical to the adaptive variation of the behavioural 

response to social stimuli according to the information available (Soares et al., 

2010; Teles, Dahlbom, Winberg, & Oliveira, 2013) and the two main 

neuromodulatory systems, monoamine neurotransmitters and nonapeptides, are 

functionally interconnected (see Jørgensen, Riis, Knigge, Kjaer, & Warberg, 

2003; Love, 2014). Empirical evidence demonstrates that nonapeptide receptor 

distribution is implicated in individual variation of human cooperative behaviour 

(Feng et al., 2015; Knafo et al., 2008), and that nonapeptides play a role in 

interspecific cooperation in teleosts (Messias, Santos, Pinto, & Soares, 2016; 

Paula, Messias, Grutter, Bshary, & Soares, 2015). My findings demonstrate that, 

in Trinidadian guppies, there is a link between individual cooperativeness and 

brain gene expression of the isotocin receptor (Chapter 4). Neurotransmitter and 

nonapeptide systems are not functionally separate; for instance, OTRs are 

abundant in key areas of the mesolimbic reward system, where their stimulation 

is thought to affect motivated behaviour (see Love, 2014). It has been suggested 

that OT may enhance motivational salience attributions to social cues, thus 

altering their motivational value (Bromberg-Martin, Matsumoto, & Hikosaka, 

2010; Love, 2014). A close functional link between serotonergic and nonapeptide 

systems has also been observed, with serotonin administration resulting in AVP 

and OT secretion in male rats (Rattus norvegicus) (Jørgensen, Riis, Knigge, 

Kjaer, & Warberg, 2003). Given this functional interaction between nonapeptide 

and neurotransmission systems in brain areas that are thought to be key to 

stimulus appraisal, such as the ventral tegmental area and the nucleus 
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accumbens, it is possible that nonapeptide receptor brain expression patterns 

affect the processing of social stimuli: either their input (i.e. their salience and 

valence), thus regulating the effect of social experiences of cooperation or 

defection on internal states, or their downstream effects, i.e. the behavioural 

output of the individual (Figure 6.1). 

 

Figure 6.1. Conceptual diagram of the key components of drivers of behaviour in 

cooperative contexts and ultimately the routes to the evolution and maintenance of 

cooperation proposed in this thesis. A. Cooperative decision-making (purple box): An 

individual’s social experiences of cooperation or defection affect its internal state, and 

thus its subsequent behaviour (i.e. the decision to cooperate or not). This process may 

be affected by individual variation in nonapeptide receptor expression in the brain. B. 

Individual behavioural variation and association patterns between individuals (green 

box): Individual variation in brain nonapeptide receptor expression may result in 
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variation in behavioural traits, including individual cooperativeness. These behavioural 

differences can, as a result, affect the association patterns between individuals in a 

group, either by active or passive mechanisms; this, in turn, is expected to affect the 

likelihood of an individual experiencing cooperation or defection from its social 

environment. 

6.3.2 Individual behavioural variation and its effects on association patterns 

between individuals 

Cooperation can be a highly complex social behaviour; Soares and colleagues 

(2010) propose that cooperative behaviour has numerous prerequisites, including 

prosocial behaviour and partner choice. Prosociality is of particular importance 

for cooperative behaviours that involve direct interaction between individuals, as 

the predisposition to affiliate with potential partners and tolerate their presence is 

essential for the expression of such cooperative behaviour (Soares et al., 2010). 

Likewise, for individuals to cooperate strategically or at least conditionally, traits 

facilitating the assessment of the social environment and the evaluation of the 

behaviour of potential partners, attention and responsiveness to social cues, are 

expected to be of equal importance. It is therefore likely that such behavioural 

traits are associated with individual cooperativeness in a plethora of cooperative 

contexts. I found that highly cooperative fish differed from less cooperative fish in 

some aspects of social behaviour and in aggressiveness (Chapter 3). More 

specifically, despite no difference between the two phenotypic selection lines in 

overall shoaling tendency, I found a difference in the manner of sampling of the 

social environment. Additionally, I found that LC males were more aggressive 

than both LC females and HC males and females. Both social approach and 

affiliative behaviour and aggression in teleosts have been shown to be largely 

regulated by nonapeptides (Braida et al., 2012; Langen, Lindeyer, Reader, & 
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Swaney, 2015; Reddon et al., 2015; Reddon, Voisin, O’Connor, & Balshine, 

2014). Given, therefore, the difference between the mid-section expression levels 

for the itr gene between HC and LC females (Chapter 4), it is likely that these 

differences in nonapeptide receptor brain distribution underlie individual variation 

in social behaviour across contexts. Overall, the results point toward a more 

generally prosocial phenotype in the HC compared to LC fish. 

Theoretical work suggests that association patterns between individuals 

are pivotal for the evolution and maintenance of cooperation in a population 

(Aktipis, 2008, 2011; Croft et al., 2015; Eshel & Cavalli-Sforza, 1982; Fletcher & 

Doebeli, 2009; Nowak et al., 2010; Wilson & Dugatkin, 1997): population 

assortment by cooperativeness is thought to result in increased likelihood of 

cooperators interacting with one another, thus avoiding exploitation by free riders 

and gaining higher fitness pay-offs than defectors (Aktipis, 2008, 2011; Fletcher 

& Doebeli, 2009; Nowak et al., 2010; Pepper & Smuts, 2002). Such assortment 

has been observed in real-world social networks of guppies in high predation, but 

not low predation, habitats (Brask et al., in prep.); however, its drivers remain 

unclear. One possibility is that such assortment is a by-product of assortment by 

other behavioural traits that affect the likelihood of two individuals occurring in the 

same shoal, or the homogeneity of social ties (Croft et al., 2015). Traits that affect 

space use, such as exploratory tendency and boldness, if correlated with 

individual cooperativeness, will result in passive population assortment by 

cooperative propensity. HC and LC fish exhibited similar levels of exploratory 

tendency and boldness, suggesting it is unlikely that the assortment by 

cooperation observed in wild guppy populations is a result of passive assortment 

by either of these traits. On the contrary, the implications of the differences 



 

- 188 - 
 

observed in some aspects of social behaviour and aggression between the two 

phenotypic selection lines for the homogeneity of social ties in guppy populations 

are unclear. It is possible, for example, that less aggressive individuals avoid 

more aggressive ones, thus modifying their social environment (see Aplin et al., 

2013). My findings suggest that such an effect could be observed in male, but not 

female, guppies. 

Overall, this thesis showed that isotocin receptor brain expression patterns 

play a role in a guppy’s propensity to cooperate. Highly cooperative and less 

cooperative individuals were found to differ in some aspects of social and 

agonistic behaviour; it is possible that these differences are also underpinned by 

differences in nonapeptide receptor brain expression. Crucially, these 

behavioural differences may affect association patterns between individuals, 

playing a role in the population assortment by cooperativeness observed in real-

world populations. Irrespective of whether generated by passive or active 

assortment mechanisms, such assortment is expected to affect the individual’s 

social experiences (i.e. its likelihood of experiencing cooperation or defection 

from its social environment) (Figure 6.1). Given the heritable component of 

cooperative behaviour during predator inspection observed in this thesis, such 

assortment is also expected to affect the vertical transmission of this trait. 

6.4 Avenues for future research 

To date, little is known about the mechanisms underpinning the evolution and 

maintenance of cooperation. Theoretical work and empirical studies provide 

support for the involvement of mechanisms of neuromodulation in some models 

of heterospecific cooperation (Messias, Santos, Pinto, & Soares, 2016; Paula, 
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Messias, Grutter, Bshary, & Soares, 2015), as well as implicating nonapeptides 

and their receptors in cooperation in humans (Feng et al., 2015; Knafo et al., 

2008; Rilling et al., 2012, 2014). This thesis used the Trinidadian guppy, a 

tractable study system for investigating intraspecific cooperative behaviour, in an 

endeavor to provide insight into the proximate mechanisms underlying within-

species cooperative behaviour. This section will discuss ideas and thoughts that 

would progress this work further. 

6.4.1 Understanding the effects of internal states on behavioural output 

One of the key aims of this thesis was to explore the neuropsychological effects 

of experiencing cooperation or defection from one’s social environment. This 

work involved understanding the effects of such experiences on an individual’s 

internal state; the next step would entail measuring their downstream effects on 

behavioural responses. Evidence from heterospecific cooperation between 

cleaner wrasse (Labroides dimidiatus) and client reef fish suggests that disruption 

and/or stimulation of dopaminergic and serotonergic neurotransmission has 

pronounced effects on the cleaners’ cooperative behaviour (Messias, Paula, 

Grutter, Bshary, & Soares, 2016; Paula et al., 2015; Soares, Paula, & Bshary, 

2016). Given the effects of experiences of cooperation and defection on 

dopaminergic and serotonergic neurotransmission (Chapter 5), it would be 

interesting to study the effects of facilitation and disruption of neurotransmitter 

activity on the expression of cooperative behaviour, with the use of dopamine and 

serotonin agonists and antagonists. Dopamine disruption in the cleaner wrasse 

has been shown to increase the rate of initiation of interactions with client fish, as 

well as the level of tactile stimulation provided to them – two types of interactions 

typically occurring for reconciliation after cheating (Messias, Paula, et al., 2016); 
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it is therefore possible that disruption of dopaminergic activity in the guppy would 

result in increased levels of cooperative investment. The effects of manipulation 

of the serotonergic system are more difficult to predict, given the involvement of 

serotonin in both cooperative (Paula et al., 2015) and aggressive behaviour 

(Höglund et al., 2005; Summers & Winberg, 2006; Winberg, Øverli, & Lepage, 

2001) in teleosts. Serotonin administration in cleaner wrasse has been shown to 

increase cooperative behaviour, while disruption of serotonergic activity has been 

shown to result in a decrease in cleaners’ cheating behaviour, and increased 

aggression towards smaller conspecifics (Paula, Messias, Grutter, Bshary, & 

Soares, 2015). Given the well documented role of serotonin in perception of 

danger (see Soares, Paula, & Bshary, 2016), it is possible that serotonin 

administration will result in an overall decrease of predator inspection behaviour. 

Consistently with the inhibitory role of serotonin in aggression in teleosts 

(Höglund et al., 2005; Summers & Winberg, 2006; Winberg, Øverli, & Lepage, 

2001), disruption of serotonergic activity is expected to result in increased 

aggression towards shoalmates, which may also, in turn, lead to decreased levels 

of cooperative behaviour. 

The findings of this thesis can also be extended to other teleost study 

systems. For instance, in the well-documented system of heterospecific 

cooperation between cleaner wrasse and client reef fish, cleaner wrasses may 

be operating in pairs of a male and the largest female in his harem (Robertson, 

1972); such pairs of cleaners are thought to provide better service than 

singletons, mainly due to the fact that smaller females behave more cooperatively 

than their large male partners (Bshary, Grutter, Willener, & Leimar, 2008). Bshary 

and colleagues (2008) also found that cooperative behaviour during cleaning 



 

- 191 - 
 

interactions performed by singletons did not differ between males and females. 

While studies facilitating or disrupting monoaminergic neurotransmission have 

looked at the behavioural effects of such manipulations on behaviours, such as 

aggression, directed towards conspecifics (e.g. Paula, Messias, Grutter, Bshary, 

& Soares, 2015), it would be interesting to explore the response of such 

neurotransmission systems to experiencing cooperation or defection from the 

conspecific social partner during pair inspections. 

6.4.2 Understanding the basis of individual differences in cooperative 

behaviour 

A main focus of this thesis was on understanding the basis of individual variation 

of cooperative behaviour through the generation of phenotypic selection lines for 

highly cooperative and less cooperative fish. The difference in mid-section itr 

expression between HC and LC females observed in Chapter 4 is consistent with 

the involvement of oxytocin-like nonapeptides in cooperation and overall social 

behaviour. There is still much to gain from exploring nonapeptide expression 

patterns in males and arginine vasotocin receptor (avpr1a) brain gene expression 

in both sexes. Given the sex-specific nature of nonapeptide effects (De Vries, 

2008; De Vries & Panzica, 2006), and in particular the involvement of AVT in 

aggressive behaviour (Lema & Nevitt, 2004; Lema, Sanders, & Walti, 2015; 

Santangelo & Bass, 2006; Semsar, Kandel, & Godwin, 2001), studying avpr1a 

brain expression patterns in HC and LC fish, particularly in males, may provide 

more insight into the mechanisms underlying the various social components of 

cooperative behaviour. AVT has been demonstrated to play a role in 

heterospecific cooperation in the cleaner wrasse-client reef fish study system, 

where administration of AVT antagonists has been shown to increase the rate of 
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interactions initiated by the cleaners and their levels of cheating (Soares, Bshary, 

Mendonça, Grutter, & Oliveira, 2012). Conversely, AVT administration has been 

also reported to decrease cooperative behaviour in cleaner wrasse (Cardoso, 

Paitio, Oliveira, Bshary, & Soares, 2015). It is thus difficult to make predictions 

about the levels of expression for the avpr1a between HC and LC fish. AVT has 

been shown to facilitate aggression in male beaugregory damselfish (Stegastes 

leucostictus) through the avpr1a (Santangelo & Bass, 2006). In the Amargosa 

river pupfish (Cyprinodon nevadensis amargosae), arginine vasotocin receptor 

2a (avpr2a), but not avrp1a, expression levels in the telencephalon have been 

shown to positively correlate with individual differences in aggression (Lema et 

al., 2015). It is therefore likely, given the higher aggressiveness of LC males 

observed in Chapter 3, that these fish will show higher avpr1a expression levels 

than HC males. 

My findings suggest that cooperative behaviour in the context of predator 

inspection has at least a heritable component. The aim of the current study was 

not to look at the heritability of such behaviour; as a result, the mechanism 

underlying such transmission is unclear. Exploring whether this effect is genetic 

or epigenetic will shed light into the evolutionary processes underlying 

cooperation. Along the same vein, comparing nonapeptide receptor expression 

patterns between populations originating from high and low predation habitats 

may also further our understanding of the effects of evolutionary pressures on 

cooperative behaviour. 

Although explored separately in the thesis, the two main neuromodulatory 

systems, monoamine neurotransmitters and nonapeptides, are functionally 
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connected and interact with one another (Jørgensen, Riis, Knigge, Kjaer, & 

Warberg, 2003; also see Love, 2014). Dopamine and serotonin have both been 

implicated in the appraisal and processing of stimuli associated with reward 

(Berridge & Robinson, 1998; Bush, Caparosa, Gekker, & LeDoux, 2010; Ramos 

& Arnsten, 2007; Salamone & Correa, 2012; Schultz, 2007, 2010; Sørensen, 

Johansen, & Øverli, 2013), while it is often suggested that the regulatory effects 

of oxytocin-like nonapeptides on behavioral responses to social stimuli are largely 

mediated by their ability to increase stimulus salience (Averbeck, 2010; Bartz, 

Zaki, Bolger, & Ochsner, 2011; Burkett & Young, 2012; Gordon, Martin, Feldman, 

& Leckman, 2011; Love, 2014; Shamay-Tsoory et al., 2009). Exploring the effects 

of experiencing cooperation or defection on neurotransmission in HC and LC fish 

would provide insight into how nonapeptide receptor patterns of expression 

affects the changes in internal state after social experiences, and thus into how 

individuals of variable cooperativeness perceive a given social stimulus. 

Association patterns between individuals are a focal point in the study of 

the evolution and maintenance of cooperation. Chapter 3 alluded to behaviours 

that may affect space use or the homogeneity and distribution of social ties 

between individuals, and consequently result in passive assortment by individual 

cooperativeness. Real-world social networks of Trinidadian guppies in a high 

predation, but not a low predation habitat have been demonstrated to be 

positively assorted by individual cooperative propensity (Brask et al., in prep.). 

Analysis of social networks comprising descendants of the highly cooperative and 

non cooperative phenotypic selection lines, as well as of social networks of just 

HC or LC fish, would further our understanding of how this assortment is 

generated in populations in the wild. Given the assortment of real world guppy 
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populations by individual cooperativeness, it is expected that in populations 

comprising fish from both phenotypic selection lines, HC and LC fish will 

predominantly associate with others originating from the same phenotypic 

selection line. Furthermore, LC males are expected to have fewer associations 

with other individuals, due to their high aggressiveness and low rates of sampling 

their social environment (as demonstrated by the low number of changes 

between stimulus shoals in Chapter 3). 

6.4.3 Alternative frameworks explaining cooperation during predator 

inspection 

Past research exploring predator inspection in guppies and other teleosts has 

focused on the possible role of direct reciprocity and Tit-for-tat-like strategies 

(Dugatkin, 1988; Dugatkin & Alfieri, 1991b; Külling & Milinski, 1992; Milinski, 

1987, 1990; Milinski & Boltshauser, 1995; Milinski, Kulling, & Kettler, 1990; 

Milinski, Pfluger, Külling, & Kettler, 1990), despite criticisms of such experiments 

(Lazarus & Metcalfe, 1990; Masters & Waite, 1990; Reboreda & Kacelnik, 1990), 

stemming mainly from methodological issues (for a review see Pitcher, 1991). I 

found that experiencing cooperation or defection affects cooperative behaviour in 

subsequent cooperative interactions with ostensibly the same individual in a 

manner consistent with direct reciprocity, with individuals copying their partner’s 

behaviour during the previous interaction (Chapter 2). When paired with 

ostensibly different social partners, however, fish exhibited the opposite pattern 

of behavioural responses – cooperating more after experiencing defection 

compared to after experiencing cooperation. This study could be enhanced to 

more conclusively compare the effects of individual-specific and non-specific 

information about a social partner’s cooperative behaviour – that is, to use a 
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paradigm where we are sure of the nature of the information the fish are using 

(individual versus global recognition information). My findings do indicate, 

however, that in encounters with novel social partners, Trinidadian guppies do 

not employ generalised reciprocity, as this framework would predict that focal fish 

would cooperate more with a novel partner after experiencing cooperation in the 

previous round compared to fish that experienced defection in the first round – 

something that was not observed (Chapter 2). The addition of control groups that 

experience defection in the second round of predator inspection would help to 

disentangle the effect of the behaviour of the simulated social partner in the 

second round from the effect of experiencing cooperation or defection in past 

interactions, thus increasing our understanding of the behavioural rules employed 

in such encounters. These findings highlight the importance of considering 

frameworks other than direct reciprocity to understand the basis of an individual’s 

decision to cooperate or not. Furthermore, the possible involvement of social 

heuristics such as the Walk Away strategy should also be considered. 

6.5 Final summary and conclusions 

This thesis aimed to explore the proximate mechanisms underlying cooperation 

in dynamic social environments, using the Trinidadian guppy as a model system. 

Experiences of cooperation or defection from one’s social environment were 

found to affect monoaminergic neurotransmission in certain brain sections, 

instantiating the effects of such experiences on the individual’s internal (core 

affect) state. These changes in internal state are thought to be crucial for 

appropriate behavioural adjustment during cooperative interactions.  
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Phenotypic selection on individual cooperative propensity over three filial 

generations resulted in divergence of cooperative behaviour, suggesting that 

cooperative behaviour during predator inspection is at least in part heritable. 

Isotocin receptor brain expression patterns were found to differ between female 

descendants of the two phenotypic selection lines, with HC fish showing higher 

mid-section itr expression levels than LC individuals. Given the close functional 

interaction between monoamine neurotransmitter and nonapeptide systems, 

such differences in nonapeptide receptor expression patterns between fish of 

different cooperative phenotype may affect the processing of social stimuli – 

either their input, and consequently their effects on internal state, or their 

downstream effects, and therefore the behavioural response to such stimuli. HC 

and LC fish were also found to differ in some aspects of social and agonistic 

behaviour; more specifically, LC males were found to be more aggressive than 

LC females or HC fish of either sex. Interestingly, whereas the two phenotypic 

selection lines did not differ in overall shoaling tendency, they differed in the way 

in which they sampled their social environment. Exploratory tendency and 

boldness did not differ between HC and LC fish, suggesting that their difference 

in cooperative propensity cannot merely be attributed to these traits. Consistent 

differences in behavioural traits such as aggression may affect the association 

patterns and homogeneity of social ties between individuals, thus contributing to 

the assortment by individual cooperativeness observed in real-world Trinidadian 

guppy populations. 

Finally, I explored the behavioural rules underlying the decision to 

cooperate when specific and non-specific information regarding the cooperative 

propensity of an inspection partner is provided, and found that when paired with 
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ostensibly the same partner, the individual’s behaviour is consistent with direct 

reciprocity. Conversely, if paired with an ostensibly novel partner, a different 

behavioural rule, inconsistent with reciprocal altruism, is employed. 

Understanding the neuropsychological mechanisms underlying 

cooperative decision-making will provide useful insight into the evolutionary 

conundrum of cooperation among unrelated individuals. This thesis uses a 

tractable system and a multileveled approach to increase our understanding of 

how behavioural inputs, such as experiences of cooperation or defection, affect 

an organism’s behavioural output, and ultimately how such mechanisms may 

lead to the evolution and maintenance of cooperation.  
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