Accepted MS 10 July 2018

Annals of Botany

doi: 10.1093/aob/mcy127

1 The diversity and evolution of pollination systems in large plant clades:

- 2 Apocynaceae as a case study
- 3

4	Jeff Ollerton ^{1*} , Sigrid Liede-Schumann ² , Mary E. Endress ³ , Ulrich Meve ² , Andre
5	Rodrigo Rech ⁴ , Adam Shuttleworth ⁵ , Héctor A Keller ⁶ , Mark Fishbein ⁷ , Leonardo O.
6	Alvarado-Cárdenas ⁸ , Felipe W. Amorim ⁹ , Peter Bernhardt ¹⁰ , Ferhat Celep ¹¹ , Yolanda
7	Chirango ¹² , Fidel Chiriboga-Arroyo ¹³ , Laure Civeyrel ¹⁴ , Andrea Cocucci ¹⁵ , Louise
8	Cranmer ¹ , Inara Carolina da Silva-Batista ¹⁶ , Linde de Jager ¹⁷ , Mariana Scaramussa
9	Deprá ¹⁸ , Arthur Domingos-Melo ¹⁹ , Courtney Dvorsky ¹⁰ , Kayna Agostini ²⁰ , Leandro
10	Freitas ²¹ , Maria Cristina Gaglianone ¹⁸ , Leo Galetto ²² , Mike Gilbert ²³ , Ixchel
11	González-Ramirez ⁸ , Pablo Gorostiague ²⁴ , David Goyder ²³ , Leandro Hachuy-Filho ⁹ ,
12	Annemarie Heiduk ²⁵ , Aaron Howard ²⁶ , Gretchen Ionta ²⁷ , Sofia C Islas-Hernández ⁸ ,
13	Steven D Johnson ⁵ , Lize Joubert ¹⁷ , Christopher Kaiser-Bunbury ²⁸ , Susan Kephart ²⁹ ,
14	Aroonrat Kidyoo ³⁰ , Suzanne Koptur ²⁷ , Cristiana Koschnitzke ¹⁶ , Ellen Lamborn ¹ ,
15	Tatyana Livshultz ³¹ , Isabel Cristina Machado ¹⁹ , Salvador Marino ¹⁵ , Lumi Mema ³¹ ,
16	Ko Mochizuki ³² , Leonor Patrícia Cerdeira Morellato ³³ , Chediel K Mrisha ³⁴ , Eva
17	Muiruri ³⁵ , Naoyuki Nakahama ³⁶ , Viviany Teixeira Nascimento ³⁷ , Clive Nuttman ³⁸ ,
18	Paulo Eugenio Oliveira ³⁹ , Craig I Peter ⁴⁰ , Sachin Punekar ⁴¹ , Nicole Rafferty ⁴² ,
19	Alessandro Rapini ⁴³ , Zong-Xin Ren ⁴⁴ , Claudia I Rodríguez-Flores ⁴⁵ , Liliana Rosero ⁴⁶ ,
20	Shoko Sakai ³² , Marlies Sazima ⁴⁷ , Sandy-Lynn Steenhuisen ⁴⁸ , Ching-Wen Tan ²⁷ ,
21	Carolina Torres ²² , Kristian Trøjelsgaard ⁴⁹ , Atushi Ushimaru ⁵⁰ , Milene Faria Vieira ⁵¹ ,
22	Ana Pía Wiemer ⁵² Tadashi Yamashiro ⁵³ , Tarcila Nadia ⁵⁴ , Joel Queiroz ⁵⁵ and Zelma
23	Quirino ⁵⁶
24	

- ¹Faculty of Arts, Science and Technology, University of Northampton, Newton
- 28 Building, Avenue Campus, Northampton, NN2 6JD, UK
- ²Lehrstuhl für Pflanzensystematik, Universität Bayreuth, 95440 Bayreuth, Germany
- ³Department of Systematic and Evolutionary Botany, University of Zurich,
- 31 Zollikerstrasse 107, 8008 Zurich, Switzerland
- ⁴Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Curso de
- 33 Licenciatura em Educação do Campo LEC, Campus JK Diamantina, Minas Gerais,
- 34 Brazil
- ⁵School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville,
- 36 Pietermaritzburg, 3209, South Africa
- ⁶ Instituto de Botánica del Nordeste, UNNE-CONICET, Corrientes, Argentina
- ⁷Dept. of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Stillwater,
- 39 OK 74078-3013, USA
- 40 ⁸Laboratorio de Plantas Vasculares, Departamento de Biología Comparada, Facultad
- 41 de Ciencias, UNAM, Mexico
- 42 ⁹Laboratório de Ecologia da Polinização e Interações LEPI, Departamento de
- 43 Botânica, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita
- 44 Filho"- Unesp, Botucatu SP, Brazil
- 45 ¹⁰Saint Louis University, Department of Biology, Biology Extension Building, 1008
- 46 S. Spring Ave., St. Louis, MO 63103, USA
- 47 ¹¹Mehmet Akif Ersoy Mah. 269. Cad. Urankent Prestij Konutları, Demetevler, 06200,
- 48 Ankara, Turkey
- 49 ¹²Department of Biological Sciences, University of Cape Town, P/Bag X3,
- 50 Rondebosch, Cape Town, 7701, South Africa

- ¹³Ecosystem Management Group, ETH Zurich, Switzerland
- ¹⁴EDB, UMR 5174, Université de Toulouse, UPS. 118 route de Narbonne, 31062
- 53 Toulouse cedex 9, France
- 54 ¹⁵Laboratorio de Ecología Evolutiva Biología Floral, IMBIV (UNC-CONICET),
- 55 Argentina
- ¹⁶Departamento de Botânica, Museu Nacional, Universidade Federal do Rio de
- 57 Janeiro, Quinta da Boa Vista, 20940-040, Rio de Janiero, RJ, Brazil
- ¹⁷Department of Plant Sciences, Faculty of Natural and Agricultural Sciences,
- 59 University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
- 60 ¹⁸Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia,
- 61 Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes-
- 62 RJ, Brazil
- 63 ¹⁹Departamento de Botânica CB, Laboratório de Biologia Floral e Reprodutiva -
- 64 POLINIZAR, Universidade Federal de Pernambuco, Recife PE, Brazil
- 65 ²⁰Universidade Federal de São Carlos UFSCar, Centro de Ciências Agrárias, Depto.
- 66 Ciências da Natureza, Matemática e Educação, Rod. Anhanguera Km 174, 13600-
- 67 970, Araras, SP, Brazil
- 68 ²¹Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Rio de Janeiro RJ,
- 69 22460-012, Brazil
- 70 ²²Facultad de Ciencias Exactas, Fisicas y Naturales, Universidad Nacional de
- 71 Córdoba (UNC) and IMBIV (CONICET-UNC). CP 5016, Córdoba, Argentina
- 72 ²³Herbarium Royal Botanic Gardens, Kew Richmond Surrey TW9 3AB,UK
- 73 ²⁴Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias
- 74 Naturales, Universidad Nacional de Salta-CONICET. Av. Bolivia 5150, Salta,
- 75 Argentina

- 76 ²⁵Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
- ²⁶Biology Department, Franklin and Marshall College, Lancaster, PA 17604, USA
- 78 ²⁷Florida International University, 11200 S.W. 8th Street, Miami, Florida 33199, USA
- ²⁸Centre for Ecology and Conservation, University of Exeter, Penryn Campus,
- 80 Cornwall, UK
- 81 ²⁹Dept of Biology, Willamette University Salem, OR 97301, USA
- 82 ³⁰Department of Botany, Faculty of Science, Chulalongkorn University, Phayathai
- 83 road, Pathumwan, Bangkok 10330, Thailand
- 84 ³¹Department of Biodiversity Earth and Environmental Sciences and Academy of
- 85 Natural Sciences, Drexel University, Philadephia, PA 19103, USA
- 86 ³²Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga
- 87 520-2113, Japan
- 88 ³³Universidade Estadual Paulista UNESP, Instituto de Biociências, Departamento de
- 89 Botânica, Laboratório de Fenologia, Rio Claro, SP, Brazil
- 90 ³⁴Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
- 91 ³⁵School of Biological Sciences, Royal Holloway University of London, Egham,
- 92 Surrey, TW20 0EX, UK
- 93 ³⁶Graduate School of Arts and Sciences, The University of Tokyo, 3–8–1 Komaba,
- 94 Meguro-ku, Tokyo 153–8902, Japan
- 95 ³⁷Universidade do Estado da Bahia, Universidade do Estado da Bahia Campus IX.
- 96 Av. Br 242, km 18. Flamengo. 47806-972 Barreiras, BA, Brazil
- 97 ³⁸ Tropical Biology Association, The David Attenborough Building, Pembroke Street,
- 98 Cambridge CB2 3QZ, United Kingdom
- 99 ³⁹Instituto de Biologia UFU, Campus Umuarama Bloco 2D, 38405-320. Uberlândia-
- 100 MG, Brazil

- ⁴⁰Department of Botany, Rhodes University, PO Box 94, Grahamstown, 6140, South
 Africa
- ⁴¹ Biospheres, Eshwari, 52/403, Nanasaheb Peshva Marg, Near Ramna Ganpati,
- 104 Lakshminagar, Parvati, Pune 411 004, Maharashtra, India
- ⁴²Department of Evolution, Ecology, and Organismal Biology, 900 University
- 106 Avenue, University of California, Riverside, Riverside, CA 92521 USA
- ⁴³Departamento de Biologia, Universidade Estadual de Feira de Santana, Av.
- 108 Universitária s/n, Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil
- ⁴⁴Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming
- 110 Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming,
- 111 Yunnan 650201, P. R. China
- ⁴⁵Laboratorio de Ecología, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma
- 113 de México, Tlalnepantla de Baz, Estado de México, México
- ⁴⁶Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de
- 115 Colombia, Tunja, Colombia
- ⁴⁷Departamento de Biologia Vegetal, Instituto de Biologia, Caixa Postal 6109,
- 117 Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
- ⁴⁸Department of Plant Sciences, Natural and Agricultural Sciences, University of the
- 119 Free State, Qwaqwa campus, Kestell Road, Phuthaditjhaba, 9866, Republic of South
- 120 Africa
- ⁴⁹Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej
- 122 7H, 9220 Aalborg, Denmark
- ⁵⁰Graduate School of Human Development and Environment, Kobe University, 3-11
- 124 Tsurukabuto, Kobe City 657-8501, Japan

125	⁵¹ Departamento de Biologia	Vegetal, Universidade Federal	de Vicosa (UFV). Vicosa.
10	Departamente de Diologia	egotal, emitorsiadade i eachar	ue (ei), (içosu,

126 Minas Gerais, Brazil

Accepted MS 10 July 2018

- ⁵²Museo Botánico Córdoba y Cátedra de Morfología Vegetal (IMBIV-UNC-
- 128 CONICET), Córdoba, Argentina
- ⁵³Graduate School of Technology, Industrial and Social Science, Tokushima
- 130 University, 2-1 Minamijyosanjima, Tokushima 770-8513, Japan
- 131 ⁵⁴Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Recife,
- 132 Pernambuco, Brazil
- ⁵⁵Departamento de Engenharia e Meio Ambiente, Universidade Federal da Paraiba,
- 134 Rio Tinto, Paraíba, Brazil
- ⁵⁶Departamento de Educação, Universidade Federal da Paraiba, Mamnguape, Paraiba,
- 136 Brazil
- 137
- 138
- 139 **Running Head:** Diversity and evolution of pollination systems in Apocynaceae
- 140
- 141 *Corresponding author, email: jeff.ollerton@northampton.ac.uk
- 142
- 143
- 144
- 145
- 146
- 147
- 11/
- 148
- 149

150 ABSTRACT

151 **Background and aims:** Large clades of angiosperms are often characterised by 152 diverse interactions with pollinators, but how these pollination systems are structured 153 phylogenetically and biogeographically is still uncertain for most families. 154 Apocynaceae is a clade of >5300 species with a worldwide distribution. A database 155 representing >10% of species in the family was used to explore the diversity of 156 pollinators and evolutionary shifts in pollination systems across major clades and 157 regions. 158 159 Methods: The database was compiled from published and unpublished reports. Plants 160 were categorised into broad pollination systems and then subdivided to include 161 bimodal systems. These were mapped against the five major divisions of the family, 162 and against the smaller clades. Finally pollination systems were mapped onto a 163 phylogenetic reconstruction that included those species for which sequence data are 164 available, and transition rates between pollination systems calculated. 165 166 Key Results: Most Apocynaceae are insect pollinated with few records of bird 167 pollination. Almost threequarters of species are pollinated by a single higher taxon 168 (e.g. flies or moths); 7% have bimodal pollination systems, whilst the remaining c. 169 20% are insect generalists. The less phenotypically specialised flowers of the

170 Rauvolfioids are pollinated by a more restricted set of pollinators than are more

171 complex flowers within the Apocynoideae + Periplocoideae + Secamonoideae +

172 Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems

are more common than others. Some pollination systems are missing from particular

174 regions, whilst others are over-represented.

175	
176	Conclusions: Within Apocynaceae interactions with pollinators are highly structured
177	both phylogenetically and biogeographically. Variation in transition rates between
178	pollination systems suggest constraints on their evolution, whereas regional
179	differences point to environmental effects such as filtering of certain pollinators from
180	habitats. This is the most extensive analysis of its type so far attempted and gives
181	important insights into the diversity and evolution of pollination systems in large
182	clades.
183	
184	Key words: Apocynaceae, Asclepiadaceae, bimodal pollination system,
185	biogeography, fly pollination, generalisation, mutualism, phylogeny, plant-
186	pollinator interactions, pollination ecology, specialisation, stapeliads
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	INTRODUCTION
197	Interactions between plants and their pollinators are considered to have played
198	a major role in the diversification of some large angiosperm groups (Darwin, 1877;
199	Crepet, 1984; Johnson, 2006; Kay and Sargent, 2009; Vamosi and Vamosi, 2010; van

200	der Niet and Johnson, 2012; van der Niet et al., 2014). Evolutionary models of
201	reproductive isolation and adaptation to novel pollinators seem to explain species
202	diversity in some small to modest-sized clades (e.g. Smith et al., 2006; Wilson et al.,
203	2006; Whittall and Hodges, 2007; Ogutcen et al., 2017 – though see Armbruster and
204	Muchhala 2009 for a different perspective). In other cases, such as the family
205	Asteraceae, an evolutionary trend from specialist- to generalist-pollination systems
206	within a clade has been suggested (Torres and Galetto, 2002). Nevertheless, most
207	large flowering plant clades lack extensive data on pollination systems; therefore,
208	there is limited understanding of the evolutionary transitions between different types
209	of pollinators and the biogeographic patterns of those interactions with pollinators in
210	large families of flowering plants. However, Apocynaceae, one of the ten to twelve
211	largest angiosperm families (species counts for families vary according to source), is
212	geographically widespread, has a densely sampled molecular phylogeny, and has
213	abundant field data on pollinators, representing an excellent group to address such
214	topics.
215	Apocynaceae consists of at least 5350 recognized species in 378 genera
216	(Endress et al., in press). Species are distributed from tropical to temperate
217	environments in every major biome except arctic tundra, and the family is particularly
218	species rich in the dry and wet tropics (e.g. Li et al., 1995a, b; Rapini et al., 2002;
219	Rapini, 2004; Juárez-Jaimes et al., 2007; Villaseñor, 2016; Ulloa Ulloa et al., 2017).
220	Growth forms in Apocynaceae cover almost the whole spectrum of plant types,
221	including vines, scramblers, shrubs, herbs with fibrous and tuberous roots,
222	caudiciforms, epiphytes, large and small stem succulents, leaf succulents, and small
223	and large trees, though truly aquatic species are conspicuously absent (Ollerton, 1986;
224	Judd et al., 2002; Fishbein et al., 2018).

Accepted MS 10 July 2018

doi: 10.1093/aob/mcy127

225	Flowers within the family show different levels of floral synorganisation and
226	fusion of androecium and gynoecium which has allowed the appearance of specialised
227	pollination mechanisms, involving pollinaria, in different lineages. The highly
228	derived pollination mechanisms of some subfamilies, particularly the Asclepiadoideae
229	(formerly the family Asclepiadaceae), have been studied for over two centuries (e.g.
230	Sprengel, 1793; Brown, 1810; Delpino, 1867; Weale, 1871; Darwin, 1877; Corry,
231	1883; Robertson, 1886; Scott-Elliot, 1891). Moreover, two groups of Apocynaceae
232	(Rauvolfioids and Apocynoids - see Materials and Methods) have multiple species-
233	rich lineages with less derived flowers and simpler pollination mechanisms than those
234	of the "asclepiads" (Fallen, 1986). This permits comparative studies to elucidate the
235	performance consequences (in terms of pollen dispersal and receipt) of derived floral
236	morphologies (Livshultz et al., 2018) and reconstruction of flower evolution that
237	provide some a priori hypotheses for pollinator relationships (Fishbein et al., 2018).
238	The pollination ecology of Apocynaceae is highly diverse, and there have
239	been significant recent advances in our understanding of the pollination ecology of
240	some major groups and across more of its global distribution [Supplementary
241	Information 1]. However, to date there has been no attempt to quantitatively
242	synthesise what is currently known about the family as a whole. In this study we have
243	assembled a large dataset of floral visitors and pollinators for the family, and used this
244	to address the following questions: How much do we currently know about the
245	diversity of pollination systems in the family? How is that diversity partitioned
246	between the major clades of the family, and what are the evolutionary transitions
247	between the major groups of pollinators? Do these pollination systems vary
248	biogeographically?

Accepted MS 10 July 2018

Annals of Botany

doi: 10.1093/aob/mcy127

249	Answering these questions will provide an important insight into the diversity
250	and evolution of pollination systems in a large clade of flowering plants, establish the
251	ground work for more detailed future studies within the family, and provide a baseline
252	for understanding pollination diversification in other major clades of angiosperms.
253	
254	MATERIALS AND METHODS
255	Published studies of pollinators and pollination of Apocynaceae were located
256	by using keyword searches (Apocynac* or Asclepiad* and Pollinat*) of the major
257	scientific depositories (e.g. Web of Science), building on the earlier literature searches
258	of Meve and Liede (1994) and Ollerton and Liede (1997). In addition we used our
259	network of contacts to locate observations published in regional journals that are not
260	always easy to obtain (e.g. Nakahama et al., 2013) and to locate data in reports, theses
261	and dissertations, as well as data held by some of the authors of this study but so far
262	unpublished. Some of the unpublished data came from targeted field work on
263	particular groups of Apocynaceae from un(der)-studied parts of the world and from
264	citizen science projects [see Supplementary Information 1].
265	
266	Phylogenetic and taxonomic considerations
267	The five major taxonomic divisions of Apocynaceae recognised here follow
268	the most recent classifications; former subfamilies Rauvolfioideae and Apocynoideae
269	have repeatedly been shown to be paraphyletic (Livshultz et al., 2007, Straub et al.,
270	2014, Fishbein et al., 2018) and are here recognized informally as Rauvolfioids and
271	Apocynoids, respectively, following Simões et al. (2016), Morales et al. (2017) and
272	Fishbein et al. (2018). Apocynoids + Periplocoideae + Secamonoideae +

273 Asclepiadoideae (known as the APSA clade - Livshultz et al., 2007) is monophyletic,

274	and apart from a few exceptions, shares a number of reproductive morphological
275	features that demarcates the group from Rauvolfioids. Circumscription of the major
276	divisions as well as tribes and subtribes is mainly based on a number of molecular-
277	based phylogenetic reconstructions [see Supplementary Information 1].
278	
279	Database construction
280	Data on flower visitors and pollinators of species of Apocynaceae were
281	brought together into a single database that included details of the taxonomic
282	placement of the species (subfamily or major division, tribe, and subtribe, as
283	appropriate) following Endress et al. (in press). Plant names were updated as required
284	and noted in the database [Supplementary Information 2].
285	Flower visitors were accorded a code (based on Ollerton and Liede, 1997)
286	depending upon the quality of the data on their effectiveness as pollinators, as
287	follows: 0 - The plant is an obligate selfer (very uncommon in Apocynaceae); 1 -
288	Identity of the pollinator proven - visitors with pollinia/pollen attached and observed
289	to bring about pollination of a flower under natural conditions; 2 - Identity of the
290	pollinator inferred - visitors observed with pollinia/pollen attached, under natural
291	conditions; 3 - Identity of the pollinator inferred from circumstantial evidence e.g.
292	visitors observed on flowers, but evidence of picking up pollinia/pollen is missing,
293	under natural conditions; 4 - the flower visitor is a nectar or pollen thief, a herbivore,
294	a predator, or a parasite of insects in the flowers. Where pollination or visitation was
295	observed outside of the plant's natural range, the letter A was appended to the number
296	code (e.g. 2A). Where pollination or visitation was observed outside of the animal's
297	natural range, the letter B was appended to the number code (e.g. 2B). In the database
298	the code " $3(2)$ " indicates that although the data do not quite reach the standards of

299 evidence required to assign them to code 2, additional evidence (e.g. details of floral 300 phenotype) strongly supports the case for the visitors being pollinators. These were 301 treated as code 2 in the analyses. 302 Details of the higher taxonomy (e.g. order, family) of the flower visitors were 303 included, as well as the locality of the study (country) and a reference. This database 304 will be made freely available and will be regularly updated as new information 305 becomes available. It will supersede the APOPOL 306 (http://132.180.63.26/planta2/research/pollina/APO POL d.html) and ASCLEPOL 307 (http://132.180.63.26/planta2/research/pollina/as_pol_d.html) databases which 308 presently document 223 and 1562 interactions with flower visitors, respectively 309 (Ollerton and Liede 1997). 310 Pollinators were initially grouped into seven single taxon categories: (bee, 311 wasp, butterfly, moth (hawkmoth + settling moth), fly, beetle, bird) plus an insect 312 generalist category (see below). These categories were then used in our assessments 313 of the diversity of pollinators within the family and across biogeographic regions, and 314 for mapping pollination systems onto the phylogeny (see Figs. 3, 5 and 6). For other 315 analyses (see Fig. 4) species of Apocynaceae for which good data/evidence was 316 available were then categorised into broad unimodal (bee, fly, wasp, bird, etc.), 317 bimodal (e.g. bee + butterfly) and multimodal pollination systems (i.e. species 318 pollinated by more than two broad groups of animals e.g. bee + moth + wasp). In 319 several of those cases (Figs. 4, 5 and 6), we split moth into hawkmoth and settling 320 moth, referred just as moth, considering the relevance and evolutionary 321 distinctiveness of selection for hawkmoth and moth pollination. Species categorised 322 as having a multimodal pollination system were considered to be insect generalists, 323 though we acknowledge that this distinction between bimodal and multimodal is

arbitrary to some degree. Because vertebrate pollination is rare in the family we
chose to distinguish bird + insect generalist as a distinct category. A representative
selection of interactions between Apocynaceae flowers and flower visitors is shown in
Fig. 1.

328

329 Phylogenetic reconstruction and mapping of pollination systems

330 Maximum likelihood reconstruction of ancestral states and estimation of 331 evolutionary rates among states were conducted with the rayDISC function in the 332 corHmm package (Beaulieu et al., 2013) for R (R Core Team, 2017), following 333 Fishbein et al. (2018). The root state was treated as equally likely for all characters. 334 Three classes of models were fitted: all rates equal (ER), transition rates varying across all combinations of states that were equal forward and backward (SYM), and 335 336 transition rates varying across all combinations of states that differed forward and 337 backward (ARD). The best fitting model for each character was selected by likelihood 338 ratio tests, and the set of adequately fitting models was found by comparing corrected 339 Akaike Information Criterion (AICc) scores. Ancestral state reconstructions were 340 depicted on the Apocynaceae phylogeny using the plot.phylo function in the ape v. 341 4.1 package (Paradis et al., 2004) for R (R Core Team, 2017). Two data sets were 342 analysed, a "full" data set of 237 species, which included species where the identity of 343 pollination systems was suspected, but not confirmed; and a "reduced" data set of 135 344 species, for which the most confident information about pollinator type (code 1 or 2 345 as described above – see Supplementary Information 2B) was available. We note 346 that the calculated transition rates may only be accurate if diversification rates are not affected by the pollination state. However we currently do not have sufficient data to 347 348 fully test this and it is a question that must be revisited in future analyses.

349	The base phylogeny was a chronogram (branches scaled by time) estimated
350	from 21 concatenated plastid loci for 1041 species (Fishbein et al. 2018), from which
351	all species lacking pollination data were pruned using the drop.tip function in ape.
352	Both the full and the reduced data sets were analysed also on a base phylogeny in
353	which relationships along the backbone were constrained by a phylogeny of 76
354	complete Apocynaceae plastomes. Details of the data and analysis of these two
355	phylogenies, as well as the differences between them, can be found in Fishbein et al.
356	(2018).
357	Here we focus on analyses based on the plastome-constrained tree, which is
358	more congruent with most of the recently estimated Apocynaceae phylogenies
359	(Livshultz et al., 2007; Straub et al., 2014), and we present the alternative
360	reconstructions in Supplementary Information 6.
361	
362	Data visualisation
363	Data plots were made either using the package 'ggplot2' (Wickham, 2009) in
364	R (R Core Team, 2017) or Microsoft Excel. Mapping the species richness of
365	Apocynaceae and the number of species in the database with pollinator data was done
366	using ArcGIS (ESRI, 2011).
367	
368	RESULTS

369 *Quantity and quality of available data, and the diversity of pollinators within*

370 Apocynaceae

The Pollinators of Apocynaceae Database currently contains 5061 observed
interactions between pollinators and species of Apocynaceae, mainly within their
natural areas, but also on some species that have been cultivated or naturalised outside

374 of their native range [Supplementary Information 2A, 3A]. From these data, 567 375 species can be categorised into broad pollination systems which correspond to a 376 >10% sample of the family (~5350 species), with representatives from all the major 377 groups and most of the tribes and larger subtribes, though sampling is sparse or non-378 existent in some lineages [Supplementary Information 3C]. Particularly well 379 represented are some subtribes of Asclepiadeae and Ceropegieae (Asclepiadoideae), 380 and the Rauvolfioid tribes Plumerieae, Aspidospermateae, and Carisseae 381 [Supplementary Information 3B, 3C].

The geographic distribution of the data is both widespread and patchy with some countries being very well represented and others less so. In part this reflects the high diversity of Apocynaceae in those countries, but not completely, as some species rich regions are not represented in the Database (Fig. 2).

The 567 species of Apocynaceae were divided into two categories; those to which we can firmly attribute a pollination system and those where we suspect (but cannot confirm) the pollination systems [**Supplementary Information 3A**]. The following analyses have been performed using only the more restricted dataset of firm attributions, comprising 294 species.

391 The majority (73%) of species observed so far are pollinated by a single broad 392 taxonomic group of animal pollinators, including bees and wasps (Hymenoptera), 393 butterflies and moths (Lepidoptera), flies (Diptera), beetles (Coleoptera) or birds 394 (Aves). However, there are often multiple families, genera or species involved (see 395 the Specialisation and generalisation section below). Of the remainder, 19% are 396 insect generalists pollinated by at least three different major groups of pollinators 397 (with a wide diversity of animals involved in these systems, including, in addition to 398 the expected bees, butterflies, etc., groups such as ants and Hemiptera (Ollerton et al.,

399	2003; Domingos-Melo et al., 2017). A further 7% are bimodal, pollinated by two
400	distinct groups of animals [Supplementary Information 5]; only one species is
401	known to be an obligate selfer (Vincetoxicum (Tylophora) matsumurae – see
402	Yamashiro and Maki, 2005) though other species within this clade can autogamously
403	self-pollinate (Liede-Schumann et al., 2016).
404	
405	Evolutionary transitions of plant-pollinator interactions
406	At a broad systematic and pollination system scale there is a clear
407	phylogenetic structure within the Apocynaceae regarding which pollinator types are
408	used by members of the different taxa and clades (Fig. 3). Species along the earliest
409	diverging grade formed by the tribes of Rauvolfioids exploit a rather restricted set of
410	pollinators compared with the APSA clade. Beetle and wasp pollination are restricted
411	to the more derived tribes of Apocynoids and the subfamilies Periplocoideae,
412	Secamonoideae and Asclepiadoideae (Fig. 4). The use of a broad range of insects
413	("insect generalist") as well as bees, moths and butterflies as pollinators, is widely
414	distributed across the family.
415	Fly pollination, one of the distinctive features of members of the subtribe
416	Stapeliinae (Ceropegieae) and subtribe Gonolobineae (Asclepiadeae), is actually
417	widespread throughout the Periplocoideae and Asclepiadoideae, and also found in
418	some derived Apocynoids (though only together with wasps) (Fig. 4, Supplementary
419	Information 3).
420	Birds, particularly sunbirds (Nectariniidae) and hummingbirds (Trochilidae)
421	are frequent flower visitors to Apocynaceae but the degree to which they rob nectar
422	from otherwise insect-pollinated flowers is unclear. If the birds recorded as visitors to
423	flowers in the early diverging groups are legitimate pollinators then bird pollination

may have arisen several times, often bimodally with insect generalist pollination.
Within Asclepiadoideae bird pollination has been confirmed from Astephaninae
where pollinia transfer occurs on birds' tongues (Pauw, 1998). Whether this can also
occur with free pollen from Rauvolfioids or Apocynoids remains to be determined.

420

429 *Reconstructing the evolution of pollination systems*

430 Of the 294 species to which we can firmly attribute pollination systems (with 431 code 1 and 2 pollinator observations), 135 are represented in the plastid phylogeny. 432 The best fitting model for the evolution of this reduced data set analysed on the 433 plastome-constrained phylogeny selected by the hLRT was the symmetric (SYM) 434 model, though the equal-rates model (ER) was selected by the AICc [Supplementary 435 **Information 6, Suppl. Table 1**]. Because strong heterogeneity in transition rates is 436 evident [Supplementary Information 6, Suppl. Table 5], we focus interpretation on 437 the SYM model. Under this model [Supplementary Information 6, Suppl. Table 438 5], only 9 of the 28 possible pollination transitions are inferred to have non-zero rates. 439 The highest transition rates are estimated for switches between wasp and beetle 440 pollination; this rate is > 100 x greater than any other transition. The second most 441 frequent transition (at least 5 x greater than the remaining) occurs between hawkmoth 442 and settling moth pollination. All pollination types have non-zero transition rates to 443 at least two other categories, though some systems are more constrained. Transitions 444 away from beetle pollination almost always occur to wasps, and the reverse is almost 445 as pronounced. The next most restricted pollination types are butterfly, which has a 446 low rate of transition only to bee or moth, and fly pollination, which has a low rate of 447 transition to only hawkmoth or general insect pollination. These patterns are largely

Accepted MS 10 July 2018

doi: 10.1093/aob/mcy127

448	consistent with those found with the full dataset of 238 species with less stringent
449	criteria for attributing pollinators [Supplementary Information 6, Suppl. Table 3].
450	Across the Apocynaceae pollination systems have been regularly lost and
451	gained over time (Fig. 5, Supplementary Information 6). There is great lability in
452	pollinator associations within most major grades/clades. Shifts early in the
453	diversification of the family reduce certainty in reconstructing ancestral pollinators
454	throughout the Rauvolfioid grade. This is also especially apparent for the large APSA
455	clade, whose ancestor is reconstructed as equally likely to have been pollinated by
456	hawkmoths or flies, and nearly as likely to have been pollinated by settling moths or
457	bees. Bee pollination is inferred to be the ancestral state for the common ancestor of
458	Mesechiteae, Odontadenieae, and Echiteae (Apocynoid grade). Asclepiadoideae are
459	inferred to be ancestrally fly-pollinated, which is retained in the common ancestor of
460	Asclepiadeae, followed by a major shift to general insect pollination in the common
461	ancestor of Cynanchinae, Tylophorinae, and Asclepiadinae. There is an independent
462	shift to general insect pollination inferred for Oxypetalinae. The only major clade
463	with constrained pollinator associations is Marsdenieae-Ceropegieae, in which
464	ancestral fly pollination is retained in most extant species (Fig. 5, Supplementary
465	Information 6).
466	These results are, however, quite sensitive to sampling and data quality.
467	Analysis of the full data set (including species with tentative, unconfirmed
468	assignments of pollination systems) shows retention of fly pollination in
469	Asclepiadoideae further into the diversification of the subtribes, with Oxypetalinae
470	and the Cynanchinae-Tylophorinae-Asclepiadinae clade having greater probabilities
471	of being ancestrally fly-pollinated [Supplementary Information 6]. There is also
472	more ambiguity as to whether Mesechiteae-Odontadenieae-Echiteae were ancestrally

bee- or general insect-pollinated. Though these reconstructions are supported by
increased sampling, this comes at the cost of including less reliable data. Increased
sampling also suggests that the ancestral pollinators of Secamonoideae were
hawkmoths, those of Periplocoideae were flies, and Tabernaemontaneae were
butterflies or settling moths. There is also greater probability that pollinators during
the early diversification of the family were bees [Supplementary Information 6].

479

480 Biogeographic patterns of plant-pollinator interactions

481 Our data allow broad comparisons of plant-pollinator interactions for species 482 in four regions: Asia, Africa, North and Central America, and South America (Fig. 6, 483 Supplementary Information 4). Compared to the spectrum of pollinators recorded 484 for the family as a whole, some striking patterns are apparent. Fly pollination is much 485 more frequent in Africa and Asia in comparison with the Americas, though this may 486 be affected by the large amount of recent work on *Ceropegia* and its relatives (see 487 Ollerton et al., 2017 for a summary) as the large subtribe Gonolobinae, restricted to 488 the Americas, is also mainly fly pollinated (see below). In the Americas, bee and 489 insect generalist pollination are more common compared to the other regions (Fig. 6) 490 but it is notable that, in general, specialised pollination by bees is not as common as 491 one might expect given the dominance of these insects as pollinators of other plant 492 groups (Ollerton, 2017).

493 Specialised butterfly pollination from Africa, and beetle and wasp pollination
494 from North and Central America, has not yet been reported, though is suspected but
495 not confirmed for some species (see Supplementary Information 3 and 4).

There are some striking patterns of convergent evolution between distantlyrelated, biogeographically separated groups. For example, fly pollination in

498 Stapeliinae and Gonolobinae has resulted in the evolution of similar flower colours, 499 patterns, textures and odours (Fig. 7). However fly-trap pollination of the type found 500 in Ceropegia and Riocreuxia, and very large, fleshy Stapelia-like "carrion flowers' 501 are restricted to the Old World, and absent from the New World Gonolobinae. 502 Similarly moth pollination shows convergent evolution between clades and regions, 503 as for example in species of Schubertia (Asclepiadoideae: Gonolobinae) and 504 Aspidosperma (Rauvolfioids: Aspidospermateae) in South America, and 505 Dictyophleba lucida (Rauvolfioids: Willughbeieae) in Africa and Telosma cordata 506 (Asclepiadoideae: Marsdenieae) from India. 507 Levels of specialisation also tend to vary between regions, and South African 508 ecosystems are particularly well-known for high levels of specialisation (Johnson and 509 Steiner 2000, 2003), including the subfamily Asclepiadoideae (Ollerton et al., 2006). 510 Pollination systems in South African Asclepiadoideae typically involve a single 511 functional type of pollinator, and include several unusual pollination systems. 512 Specialised pollination by *Hemipepsis* spider-hunting wasps (Pompilidae: Pepsinae), 513 for example, appears to be unique to South African ecosystems and mainly involves 514 asclepiads (currently known to occur in 17 species from seven asclepiad genera; 515 Shuttleworth and Johnson, 2012). Although functionally similar spider-hunting wasps 516 visit or pollinate asclepiads in other geographic regions (Punzo, 2006; Wiemer et al., 517 2012), they represent components of much broader assemblages of pollinators and do 518 not represent the sole pollinators of these species as they do in the South African 519 systems. 520 Chafer beetles (Scarabaeidae: Cetoniinae) are another particularly important 521 group of pollinators in South African grassland ecosystems (Peter and Johnson, 2009, 522 2013; Steenhuisen and Johnson, 2012), and represent specialist pollinators for some

523 asclepiads (Ollerton et al., 2003; Shuttleworth and Johnson, 2009a). Specialised 524 pollination by chafer beetles has been confirmed in seven species from four genera, 525 but is likely to be considerably more frequent in the region. Chafer-pollinated 526 asclepiads in South Africa are mostly reliant on the beetle Atrichelaphinis tigrina but 527 Cyrtothyrea marginalis is also often involved and one species, Pachycarpus scaber, 528 appears to be specialised to this second species (Ollerton et al., 2003; Shuttleworth 529 and Johnson, 2009a). Finally, pollination by sunbirds has been established in the red-530 flowered South African Microloma sagittatum (Pauw 1998), and represents the only 531 known example of bird pollination within the subfamily Asclepiadoideae. Bird 532 pollination is particularly unusual in this instance as it involves the attachment of 533 pollinaria to the birds' tongues. The Microloma flowers involved also exhibit strong 534 convergence with other bird-pollinated flowers (red colouring and a tubular corolla; 535 Ollerton, 1998). 536 It is also interesting to note that in southern Africa (Asclepiadinae) and South 537 America (Oxypetalinae) there have been parallel shifts between wasp (Vespidae and 538 Pompilidae) and beetle pollination, particularly to flower chafers (Cetoniinae). 539 540 Specialisation and generalisation in Apocynaceae 541 Almost three-quarters of the species have unimodal pollination systems 542 involving a single major group of insects, or birds alone [Supplementary 543 Information 5]. However, within these functionally specialised (sensu Ollerton et 544 al., 2007) pollination systems, multiple species, genera or even families of insects are 545 frequently involved, making them ecologically more generalised. Pollination by a 546 single species is extremely rare in the family and its detection is limited by 547 methodological biases because the number of pollinators observed for a species

548 generally increases with sampling effort (i.e. hours of observation and number of 549 populations observed – see Ollerton *et al.*, 2003 and **Supplementary Information 1**). 550 Fewer than 10% of the species for which we have data seem to have bimodal 551 pollination systems involving two distinct groups of animals. Although the sample 552 size is limited some combinations of pollinators are more common than others, for 553 example bee + butterfly and beetle + fly, whilst other combinations have not yet been 554 recorded (Table 1). 555 The most specialised Apocynaceae studied to date are some Ceropegia spp. 556 and related stapeliads, where a single genus or species of Diptera may be the sole

557 pollinator (Ollerton *et al.*, 2009; Heiduk *et al.*, 2010, 2015, 2016, 2017), and some of

the South African asclepiads from the grasslands which are also typically pollinated

by a single species or genus of pompilid wasp or cetoniid beetle (Ollerton *et al.*, 2003;

560 Shuttleworth and Johnson, 2009*a*,*b*,*c*; see the *Biogeographic patterns* section above).

561

562 DISCUSSION

563 The evolutionary and biogeographic patterns of plant-pollinator 564 interactions evidenced in Apocynaceae show a complex interplay of constraints and 565 flexibility that we are just beginning to appreciate. Apocynaceae exploit pollen 566 vectors from most of the main animal groups known to act as pollinators (as recently 567 summarised by Ollerton, 2017) with the exception of lizards and mammals, and, with 568 some rare exceptions, birds. In addition pollination by wind and water is unknown, 569 and obligate selfing extremely rare. Mapping these pollination systems onto the 570 phylogeny of species within the Pollinators of Apocynaceae Database, and subsequent 571 ancestral state reconstruction (Fig. 5), shows that certain clades are associated with a 572 rather conservative range of pollinators, e.g. fly pollination in Stapeliinae. Other

clades are conservative with respect to the broad range of pollinators that individual
species use, e.g. insect generalist *Asclepias* species in North America (though this
may be biased by over-representation of the common, widespread species that are
more likely to be generalists). However there are also groups such as Mesechiteae
where evolutionary flexibility and frequent switches between pollination systems has
occurred.

579 The highest rate of transition on the phylogeny between pollination systems is 580 between wasp and beetle pollination, which is more than 100 times that of any of the 581 other transitions. This suggests that flowers pollinated by wasps and beetles are 582 similar in their floral phenotype and the resources they offer. This is supported by the 583 high number plants with wasp + beetle bimodal pollination (Table 1). However, the 584 most frequent bimodal pollination system is bee + butterfly, but the rate of shifts 585 between these pollinators is not high. In addition Table 1 suggests to us that there may 586 be some constraints on which bimodal interactions can evolve, perhaps due to 587 limitations of particular sensory modalities or nectar rewards, for example presence of 588 amino acids or specific ratios of sugars. One could view this as analogous to 589 Stebbins' finding that certain combinations of characters occur repeatedly in different 590 lineages, whereas other combinations are never found together, phenomena which he 591 referred to as adaptive peaks and valleys (Stebbins, 1950). It would thus be 592 interesting to disentangle what drivers and constraints determine how bimodal 593 interactions can evolve within the different clades of Apocynaceae, considering that 594 they have frequently evolved during the diversification of this plant family. Deeper 595 understanding of these patterns, and the processes underlying them, will require 596 additional detailed field data on pollinators from some of the more species-rich 597 groups. In addition, we need a better appreciation of the relationships between the

Accepted MS 10 July 2018

Annals of Botany

doi: 10.1093/aob/mcy127

floral morphologies in these clades and the diversity of pollinators, and whether there
are some morphological traits that facilitate diversification and others which prevent
it.

601 One particularly striking finding is that in the APSA clade, with more derived 602 floral phenotypes, pollination by anthophilous insects (those that depend on and are 603 highly adapted to floral resources such as bees and butterflies) is much less frequent 604 than in the Rauvolfioids. The APSA clade contains many species that are pollinated 605 by flies, wasps and beetles which are often less dependent on flowers to complete 606 their life cycles and often lack traits such as long proboscides, or pollen- or oil-607 collecting structures. This has been a successful strategy for clades such as 608 Asclepiadoideae and one explanation may be that, by exploiting groups of pollinators 609 that are less frequently used by other species, they can open up new adaptive 610 pollination niches in which there is less competition for pollinators (see also Ollerton 611 et al., 2003). It is possible that the evolution of highly aggregated and efficient pollen 612 transfer mechanisms with pollinia and translators was a key innovation that permitted 613 exploitation of these less behaviourally optimised pollinators (Livshultz et al., 2011, 614 2018).

615 There is a pattern of adding pollen vectors as the flower complexity in terms 616 of synorganisation increases (Fig. 3). The elaborate five-part "revolver" flowers and 617 the diverse gynostegial coronas are features that could favour the selection and 618 canalizing of different types of pollinators (Endress 1996, 2015; Fishbein, 2001). 619 However, in groups such as Asclepias, Cynanchinae, and Oxypetalinae it has not 620 precluded the evolution of highly generalised interactions. Generalist pollination in 621 more derived clades has also been suggested for other groups, including *Dalechampia* 622 (Armbruster and Baldwin, 1998), Asteraceae (Torres and Galetto, 2002) and Miconia

623	(de Brito et al., 2017). Further behavioural work is needed in order to determine the
624	interactions of floral elements, such as coronas, and different types and assemblages
625	of pollinators. Some of these aspects have been recently studied in genera such as
626	Mandevilla and Araujia in South America (Moré et al., 2007; Araújo et al., 2014;
627	Wiemer et al., 2012) and in southern African groups (see above). However, the
628	diversity of coronas in Apocynaceae and the range of physical and behavioural
629	characteristics of pollen vectors deserves a thorough evaluation.
630	Another important finding from our study relates to the range of pollination
631	systems within large monophyletic groups. Two of the largest subtribes/tribes within
632	Apocynaceae with 720-730 species each, are characterised by possession of one
633	(Stapeliinae) and ten (Marsdenieae) distinct pollination systems (Figs. 3, 6).
634	Stapeliinae is well represented in the Pollinators of Apocynaceae Database
635	[Supplementary Information 2 and 3A] and has diversified rapidly across Africa
636	and Asia over the last 10 million years (Bruyns et al., 2015; Fishbein et al., 2018) into
637	a species radiation that has involved only fly pollination. Previously, pollinator shifts
638	between major groups of pollinators (e.g. bird to bee) have been suggested as a
639	significant driver of plant diversification and termed the Grant-Stebbins model
640	(Johnson, 2006). This has not occurred in Stapeliinae though there is evidence for it in
641	Marsdenieae, the sister clade to Ceropegieae wherein Stapeliinae are nested.
642	However, there is nothing in the Grant-Stebbins model to preclude what may appear
643	to be "minor" shifts of pollinators (i.e. fly to fly) from playing a role in diversification
644	of large clades. The biology of Diptera is hugely varied, and this is reflected in the
645	diversity of different forms of fly pollination (Ollerton and Raguso, 2006). For
646	example in the genus Ceropegia, fly pollination can take a number of forms,
647	including deception of kleptoparasitic Diptera (Heiduk et al., 2010, 2015, 2016, 2017)

Accepted MS 10 July 2018

648

as well as mimicry of fermenting or rotting substrates (Ollerton et al., 2009) and

doi: 10.1093/aob/mcy127

649	rewarding, generalised flowers (Coombs et al., 2011). Diptera may contain several
650	functional pollinator groups and involve distinctive floral adaptations; for example,
651	some plants pollinated by fungus gnats (Mycetophilidae) exhibit similar floral traits
652	(Mochizuki and Kawakita, 2017). Therefore, "minor" shifts of pollinators may be
653	just as significant as "major" shifts for diversification, i.e. the pattern seen in
654	Stapeliinae is qualitatively similar as that seen in Marsdenieae, but at a different
655	(pollinator) phylogenetic level. There is no reason to suppose that this is confined to
656	Diptera; it may equally apply to other groups of pollinators such as bees.
657	
658	Strengths and future applications of the Pollinators of Apocynaceae Database
659	The Pollinators of Apocynaceae Database is the largest and most extensive
660	compilation of such data that has ever been assembled for a plant family of this size.
661	It contains a $>10\%$ sample of species within the family with data on flower visitors
662	and pollinators [Supplementary Information 2], with a wide phylogenetic and
663	geographical coverage. As a freely available resource, the database will in the future
664	be used to explore many other questions, for example, how evolution of complex
665	flowers, pollinaria, and rewards (or rewardlessness) has been influenced by the type
666	of pollinators that a flower attracts and exploits. Additionally, this database will serve
667	to guide efforts in the systematic collection of data in poorly studied parts of the
668	world, and for incompletely known taxa of Apocynaceae. An important future value
669	of the Pollinators of Apocynaceae Database will be to assess a number of
670	conservation issues. These include the extent to which introduced honeybees (Apis
671	mellifera) and other pollinators are affecting plant reproduction (and potentially
672	selection on floral traits) as well as the ability of introduced, invasive Apocynaceae to

co-opt native pollinators, for example the South American *Araujia sericifera* that uses
honeybees as its pollinator in South Africa (Coombs and Peter, 2010). Most plantpollinator interactions within the family present different degrees of specialisations at
ecological, functional or phenotypic levels (sensu Ollerton *et al.*, 2007). This
information could be used to inform conservation of native habitats that maintain
populations of Apocynaceae, in which their pollinators can be supported by other
plant species and nesting opportunities.

681 Conclusions

682 In this study we have shown that Apocynaceae is probably one of the best-683 studied large families from the perspective of understanding the diversity of 684 pollinators that interact with flowering plants. The pattern of evolution of pollination 685 systems within Apocynaceae shows significant phylogenetic structure, with more 686 frequent transitions between some pollinator types than others. The morphologically 687 less derived clades are pollinated by a narrower range of pollinators which is a 688 surprising finding as one might expect that more complex floral morphology would 689 restrict certain types of pollinators. There is also considerable biogeographic 690 structure to the distribution of pollination systems; some regions lack particular 691 interactions with pollinators that in other regions are extremely common. 692 It is possible that some of the patterns we are observing, especially in relation 693 to ancestral state reconstruction and rates of transition, are due to under-sampling. 694 However, in assessing pollinators of different groups within Apocynaceae as a whole, 695 we have been conservative in our attribution of pollination systems to species. 696 Inclusion of those pollination systems that we suspect are present in some clades (but 697 cannot confirm) increases the diversity of pollination systems in most clades. For

Accepted MS 10 July 2018

doi: 10.1093/aob/mcy127

698	example, bird pollination appears more frequently across the family (though always in
699	combination with insects). Otherwise this does not alter our broad conclusions for the
700	most part. Therefore, as always, the findings from this study need to be tempered
701	with the knowledge that there is limited sampling for some species in our analysis,
702	and some lineages of Apocynaceae are not represented at all. Some of these clades
703	have recently been shown to be of critical importance for understanding the evolution
704	of complex floral characters in the family, for example the Baisseeae which is sister to
705	the Secamonoideae + Asclepiadoideae (Livshultz et al., 2007; Fishbein et al., 2018).
706	Bat pollination has never been confirmed within the family; however the
707	database contains one record of unidentified Apocynaceae pollen on bats in Brazil,
708	and we are also aware of images circulating on the internet showing bats visiting
709	Apocynaceae flowers in Costa Rica. There are also intriguing flowers such as those
710	of the mass-flowering Mandevilla veraguasensis in Central America that bear some of
711	the hallmarks of specialised bat-pollinated flowers, being dull dusky purplish-brown,
712	large, funnel-shaped and pendant on relatively long pedicels (Endress pers. obs.).
713	Therefore the question of whether or not bat pollination occurs in Apocynaceae
714	deserves further study.
715	The biogeographic findings from this study indicate that the ecological context
716	in which these plants have evolved their interactions with pollinators would be an
717	interesting area to explore in more detail in the future. This could include potential
718	links between growth form, habitat type, and pollination system, as has been proposed
719	for the pollinia-bearing Secamonoideae plus Asclepiadoideae (Livshultz et al., 2011)

- and documented in Araceae (Chouteau et al., 2008). In addition, historical climate
- has been shown to affect current relationships between plants and their pollinators
- 722 (Dalsgaard *et al.*, 2013). It is therefore likely that the environmental selective forces

723	defining the plant communities in which these Apocynaceae exist have played a role
724	in the evolution and diversification of pollination systems by excluding certain types
725	of pollinators from those communities.
726	As far as we know our study is the most extensive and detailed of its kind yet
727	attempted. However, a >10% sample of species from such a large family as
728	Apocynaceae, and with a highly non-random geographical distribution of data, means
729	that there is undoubtedly still much to discover as we evaluate evolutionary pathways
730	across this diverse clade of plants.
731	
732	
733	Supplementary Information:
734	Supplementary Information 1: Additional Materials and Methods.
735	Supplementary Information 2A: Pollinators of Apocynaceae Database – all entries
736	Supplementary Information 2B: Description of the codes used to assign quality to the
737	entries in the Pollinators of Apocynaceae Database
738	Supplementary Information 2C: References for the Pollinators of Apocynaceae
739	Database
740	Supplementary Information 3A: Assignment of the Apocynaceae species to broad
741	pollination systems
742	Supplementary Information 3B: Assignment of the pollination systems to groups
743	within Apocynaceae
744	Supplementary Information 3C: Species richness within groups of Apocynaceae and
745	the number of species in each group with good pollinator data (from Supplementary
746	Information 2A)
747	Supplementary Information 3D: Groups and codes used to support Figure 7

748	Supplementary Information 4: Biogeographic assignment of species in Supplementary
749	Information 2A
750	Supplementary Information 5: Data on levels of specialisation of species of
751	Apocynaceae
752	Supplementary Information 6: Results from phylogenetic analysis of species of
753	Apocynaceae represented in the Pollinators of Apocynaceae Database
754	
755	
756	
757	
758	Acknowledgements
759	We offer grateful thanks for all of the authors of studies that we have included
760	in our database which reflects a research effort that goes back over 100 years.
761	Funding for field work to JO and his group was obtained from The British Ecological
762	Society, the Percy Sladen Memorial Fund, the Royal Society and the University of
763	Northampton. JO would like to thank the many field assistants and in-country
764	contacts who helped with data collection, species identification, accommodation and
765	field sites in Australia, Gabon, Guyana, Namibia, Tanzania, Peru and South Africa.
766	AAC, APW, LG and CT thank CONICET, FONCyT and SECyT for financial

support. LPCM thanks São Paulo Research Foundation - Fapesp (grants

768 #2013/50155-0, #2010/51307-0) and CNPq (PQ 1D Researcher) and PELD-CRSC-17

769 for financial support and Serra do Cipó National Park, Cedro Company, and Vellozia

770 Reserve for allowing field work. MS thanks Fapesp, Faepex/Unicamp/CAPES and

771 CNPq for financial support. AS, SLS, CIP, SDJ and YC thank the National Research

Foundation (NRF) of South Africa for funding; AS, SLS and YC also thank Jeremy

773	Midgley for collaborative support. AR is a CNPq Pq-1D researcher. HK wishes to
774	thank the following entomologists for identifying specimens: Alan Martin
775	(Sphingidae), Ezequiel Osvaldo Núñez Bustos (Lepidoptera), Bolívar R. Garcete-
776	Barrett (Vespidae), Helcio Gil Santana (Hemiptera), Leopoldo Álvarez and Mariano
777	Lucia (Apidae), Ayr Bello (Coleoptera), Cecilia Waichert (Pompilidae), Carolina
778	Paris (Formicidae), Woody Fitzgerald (Bibionidae). CK thanks FAPERJ, and ICSB
779	thanks CAPES, for financial support, and both are grateful to the following
780	entomologists who identified insects: Felipe Vivallo (Apidae); Fabio Prezoto
781	(Vespidae); Dalton de Souza Amorim (Diptera); Leandro Silva Barbosa (Diptera);
782	Alexandre Soares (Lepidoptera); Luiz Alves da Costa (Hemiptera); Paulo Roberto
783	Magno (Coleoptera). SP acknowledges funding support from the Science and
784	Engineering Research Board of India for systematic and ecological studies of Indian
785	Ceropegia. MCG thanks Rio de Janeiro Research Foundation - Faperj (grant E-
786	26111.271-2014) and CNPq (PQ 2 Researcher) and also thanks the following
787	entomologists for identifying specimens: Gabriel A R Melo and Brunno B Rosa
788	(Hymenoptera), Diego R Dolibaina (Lepidoptera) and Paschoal C Grossi
789	(Coleoptera).
790	
791	
792	
793	
794	LITERATURE CITED
795	
796	Araújo LDA, Quirino ZGM, Machado IC. 2014. High specialisation in the
797	pollination system of Mandevilla tenuifolia (J.C. Mikan) Woodson

798	(Apocynaceae) drives the effectiveness of butterflies as pollinators. Plant
799	<i>Biology</i> 16 : 947-955.
800	Armbruster WS, Baldwin BG. 1998. Switch from specialized to generalized
801	pollination. <i>Nature</i> 394 : 632.
802	Armbruster WS, Muchhala N. 2009. Associations between floral specialization and
803	species diversity: cause, effect, or correlation? Evolutionary Ecology 23: 159-
804	179.
805	Beaulieu JM. O'Meara BC, Donoghue MJ. 2013. Identifying hidden rate changes
806	in the evolution of a binary morphological character: the evolution of plant
807	habit in campanulid angiosperms. Systematic Biology 62: 725–737.
808	Brown R. 1810. On the Asclepiadeae, a natural order of plants separated from the
809	Apocineae of Jussieu. Pre-print of: Memoires of the Wernerian Natural
810	<i>History Society</i> 1 : 12-78. (1811).
811	Bruyns PV, Klak C, Hanáček P. 2015. Recent radiation of Brachystelma and
812	Ceropegia (Apocynaceae) across the Old World against a background of
813	climatic change. Molecular Phylogenetics and Evolution 90: 49–66.
814	Chouteau M, Gibernau M, Barabé D. 2008. Relationships between floral
815	characters, pollination mechanisms, life forms, and habitats in Araceae,
816	Botanical Journal of the Linnean Society 156: 29–42.
817	Coombs G, Peter CI. 2010. The invasive 'mothcatcher' (Araujia sericifera Brot.;
818	Asclepiadoideae) co-opts native honeybees as its primary pollinator in South
819	Africa. AoB PLANTS 2010: plq021, doi:10.1093/aobpla/plq021
820	Coombs, G, Dold AP, Peter CI. 2011. Generalized fly-pollination in Ceropegia
821	ampliata (Apocynaceae–Asclepiadoideae): the role of trapping hairs in pollen
822	export and receipt. Plant Systematics and Evolution 296: 137-148.

823	Corry TH. 1883. V. On the mode of development of the pollinium in Asclepias
824	Cornuti, Decaisne. Transactions of the Linnean Society of London 2: 75-84.
825	Crepet WL. 1984. Advanced (constant) insect pollination mechanisms: pattern of
826	evolution and implications vis-à-vis angiosperm diversity. Annals of the
827	Missouri Botanical Garden 71 : 607–630.
828	Dalsgaard B, Trøjelsgaard K, Martín González AM, et al. 2013. Historical
829	climate-change influences modularity of pollination networks. <i>Ecography</i> 36 :
830	1331–1340
831	Darwin CR. 1877. The various contrivances by which orchids are fertilised by
832	insects. London: John Murray.
833	de Brito VLG, Rech AR, Ollerton J, Sazima M. 2017. Nectar production,
834	reproductive success and the evolution of generalised pollination within a
835	specialised pollen-rewarding plant family: a case study using Miconia
836	theizans. Plant Systematics and Evolution 303: 709–718
837	Delpino F. 1867. Relazione sull'apparecchio della fecondazione nelle asclepiadee
838	aggiuntevi alcune considerazioni sulle cause finali e sulla teoria di Carlo
839	Darwin intorno all'origine delle specie. Torino.
840	Domingos-Melo A, de Lima NT, Machado IC. 2017. Complex flowers and rare
841	pollinators: Does ant pollination in Ditassa show a stable system
842	in Asclepiadoideae (Apocynaceae)? Arthropod-Plant Interactions 11: 339-
843	349.
844	Endress ME, Liede-Schumann S, Meve U. 2014. An updated classification for
845	Apocynaceae. Phytotaxa 159: 175-194.
846	Endress ME, Meve U, Middleton DJ, Liede-Schumann S. in press. Apocynaceae.
847	In: Kadereit, J.W., Bittrich V. (eds.), Flowering Plants. Eudicots. Apiales and

- 848 *Gentianales (except Rubiaceae).* Vol. XV in Kubitzki, K. (ed.) *Families and*
- 849 *Genera of Vascular Plants*. Berlin: Springer.
- 850 Endress PK. 1996. *Diversity and evolutionary biology of tropical flowers*.
- 851 Cambridge: Cambridge University Press.
- 852 Endress PK. 2015. Development and evolution of extreme synorganization in
- angiosperm flowers and diversity: a comparison of Apocynaceae and
 Orchidaceae. *Annals of Botany* 117: 749-767.
- 855 ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems
 856 Research Institute.
- 857 Fallen ME. 1986. Floral structure in the Apocynaceae: morphological, functional,
- and evolutionary aspects. *Botanische Jahrbuecher fuer Systematik,*

859 *Pflanzengeschichte, und Pflanzengeographie* **106**: 245-286.

- Fishbein M. 2001. Evolutionary innovation and diversification in the flowers of
 Asclepiadaceae. *Annals of the Missouri Botanical Garden* 88: 603-623.
- 862 Fishbein M, Livshultz T, Straub SCK, Simões AO, Boutte J, McDonnell A, Foote
- 863 **A. 2018.** Evolution on the backbone: Apocynaceae phylogenomics and new
- 864 perspectives on growth forms, flowers, and fruits. *American Journal of Botany*865 105: 495-513.
- Heiduk A, Brake I, Tolasch, *et al.* 2010. Scent chemistry and pollinator attraction in
 the deceptive trap flowers of *Ceropegia dolichophylla*. *South African Journal of Botany* 76: 762–769.
- 869 Heiduk A, Kong H, Brake I, et al. 2015. Deceptive Ceropegia dolichophylla fools
- 870 its kleptoparasitic fly pollinators with exceptional floral scent. *Frontiers in*
- 871 *Ecology and Evolution* **3**: 66.

872	Heiduk A, Brake I, von Tschirnhaus M, et al. 2016. Ceropegia sandersonii mimics
873	attacked honeybees to attract kleptoparasitic flies for pollination. Current
874	<i>Biology</i> 26 : 2787–2793.
875	Heiduk A, Brake I, von Tschirnhaus M, et al. 2017. Floral scent and pollinators of
876	Ceropegia trap flowers. Flora 232: 169-182.
877	Johnson SD. 2006. Pollinator-driven speciation in plants. In: Harder D, Barrett HC,
878	eds. Ecology and Evolution of Flowers. Oxford: Oxford University Press, 295-
879	310.
880	Johnson SD, Steiner KE. 2000. Generalization versus specialization in plant
881	pollination systems. Trends in Ecology and Evolution 15: 140-3.
882	Johnson SD, Steiner KE. 2003. Specialized pollination systems in southern Africa.
883	South African Journal of Science 99: 345-348.
884	Juárez-Jaimes V, Alvarado-Cárdenas LO, Villaseñor JL. 2007. La familia
885	Apocynaceae sensu lato en México: diversidad y distribución. Revista
886	Mexicana de Biodiversidad 78 : 459-482.
887	Judd WS, Campbell, CS, Kellogg, EA, Stevens, PF, Donoghue, MJ. 2002. Plant
888	Systematics: A phylogenetic approach, 2nd edn. Sunderland: Sinauer, 448-
889	451.
890	Kay KM, Sargent RD. 2009. The role of animal pollination in plant speciation:
891	integrating ecology, geography, and genetics. Annual Review of Ecology
892	Evolution and Systematics 40: 637–656.
893	Li PT, Gilbert MG, Stevens WD. 1995a. Asclepiadaceae. Flora of China. 16: 189–
894	270.
895	Li PT, Leeuwenberg AJM, Middleton DJ. 1995b. Apocynaceae. Flora of China 16:

896 143–188.

897	Liede-Schumann S, Khanum R, Mumtaz AS, Gherghel I, Pahlevani A. 2016.
898	Going west – A subtropical lineage (Vincetoxicum, Apocynaceae:
899	Asclepiadoideae) expanding into Europe. Molecular Phylogenetics and
900	<i>Evolution</i> 94 : 436–446.
901	Livshultz T, Middleton DJ, Endress ME, Williams JK. 2007. Phylogeny of
902	Apocynoideae and the APSA clade (Apocynaceae). Annals of the Missouri
903	Botanical Garden 94: 324–359.
904	Livshultz, T, Mead JV, Goyder DJ, Brannin M 2011. Climate niches of milkweeds
905	with plesiomorphic traits (Secamonoideae; Apocynaceae) and the milkweed
906	sister group link ancient African climates and floral evolution. American
907	Journal of Botany 98 : 1978-1988.
908	Livshultz T, Hochleitner S, Lakata E. 2018. Pollen transfer efficiency of Apocynum
909	cannabinum (Apocynaceae): a comparative perspective. Journal of
910	Pollination Ecology 22: 35-48
911	Meve U, Liede S, 1994. Floral biology and pollination in stapeliads - new results and
912	a literature review. Plant Systematics and Evolution 192: 99-116.
913	Mochizuki K, Kawakita A. 2017. Pollination by fungus gnats and associated floral
914	characteristics in five families of the Japanese flora. Annals of Botany 121:
915	651–663.
916	Morales J., Endress ME, Liede-Schumann S. 2017. Sex, drugs and pupusas:
917	Disentangling relationships in Echiteae (Apocynaceae). Taxon 66: 623-644.
918	Moré M, Sércic AN, Cocucci AA. 2007. Restriction of pollinator assemblage
919	through flower length and width in three long-tongued hawkmoth-pollinated
920	species of Mandevilla (Apocynaceae, Apocynoideae). Annals of the Missouri
921	Botanical Garden 94 : 485-504.

922	Nakahama N, Ushimaru A, Isagi Y. 2013. Reproductive traits and flower visitor
923	fauna of Vincetoxicum pycnostelma Kitag. in Nishitani area of Takarazuka
924	City, Hyogo Prefecture. Bulletin of Kansai Organization for Nature
925	<i>Conservation</i> 35 : 115-123.
926	Ogutcen E, Theriault J, King DB, Vamosi JC. 2017. Diversification rates in
927	Antirrhineae (Plantaginaceae): The contribution of range shifts and pollination
928	modes. Perspectives in Plant Ecology, Evolution and Systematics 26: 39-52.
929	Ollerton J. 1986. Adaptations to arid environments in the Asclepiadaceae. British
930	Cactus and Succulent Journal 4: 94-98.
931	Ollerton J. 1998. Sunbird surprise for syndromes. Nature 394: 726.
932	Ollerton J. 2017. Pollinator diversity: distribution, ecological function, and
933	conservation. Annual Review of Ecology, Evolution and Systematics 48: 353-
934	376.
935	Ollerton J, Liede S. 1997. Pollination systems in the Asclepiadaceae: a survey and
936	preliminary analysis. Biological Journal of the Linnean Society 62: 593-610.
937	Ollerton J, Raguso R. 2006. The sweet stench of decay. New Phytologist 172: 382-
938	385.
939	Ollerton J, Johnson SD, Cranmer L, Kellie S. 2003. The pollination ecology of an
940	assemblage of grassland asclepiads in South Africa. Annals of Botany 92: 807-
941	834.
942	Ollerton J, Johnson SD, Hingston AB. 2006. Geographical variation in diversity
943	and specificity of pollination systems. In: Waser NM, Ollerton J, eds. Plant-
944	Pollinator Interactions: from Specialization to Generalization. Chicago:
945	University of Chicago Press, 283-308.

946	Ollerton J, Killick A, Lamborn E, Watts S, Whiston M. 2007. Multiple meanings
947	and modes: on the many ways to be a generalist flower. Taxon 56: 717-728.
948	Ollerton J, Masinde S, Meve U, Picker M, Whittington A. 2009. Fly pollination in
949	Ceropegia (Apocynaceae: Asclepiadoideae): Biogeographic and phylogenetic
950	perspectives. Annals of Botany 103: 1501-1514.
951	Ollerton J, Dötterl S, Ghorpadé K, et al. 2017. Diversity of Diptera families that
952	pollinate Ceropegia (Apocynaceae) trap flowers: an update in light of new
953	data and phylogenetic analyses. Flora 234: 233-244.
954	Paradis E, Claude J, Strimmer K. 2004. APE: Analyses of Phylogenetics and
955	Evolution in R language. Bioinformatics 20: 289-290.
956	Pauw A. 1998. Pollen transfer on birds' tongues. Nature 394: 731-732.
957	Peter CI, Johnson SD. 2009. Pollination by flower chafer beetles in Eulophia ensata
958	and Eulophia welwitschii (Orchidaceae). South African Journal of Botany 75:
959	762-70.
960	Peter CI, Johnson SD. 2013. A pollinator shift explains floral divergence in an
961	orchid species complex in South Africa. Annals of Botany 113: 277-88.
962	Punzo F. 2006. Plants whose flowers are utilized by adults of Pepsis grossa Fabricius
963	(Hymenoptera: Pompilidae) as a source of nectar. Journal of Hymenoptera
964	<i>Research</i> 15: 171-176.
965	R Core Team. 2017. R: A language and environment for statistical computing. <i>R</i>
966	Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
967	project.org/.
968	Rapini A. 2004. Apocynaceae (dogbane and milkweed family). In: Smith N, Mori
969	SA, Henderson A, Stevenson DW, Head SV, eds. Flowering plants of the
970	Neotropics. Princeton: Princeton University Press, Pp. 23-26.

971	Rapini A, De Mello-Silva R, Kawasaki ML. 2002. Richness and endemism in
972	Asclepiadoideae (Apocynaceae) from the Espinhaco Range of Minas Gerais,
973	Brazil - a conservationist view. <i>Biodiversity and Conservation</i> 11 : 1733-1746.
974	Robertson, C. 1886. Notes on the mode of pollination of Asclepias. Botanical
975	<i>Gazette</i> 11 : 262-269.
976	Scott-Elliot GF. 1891. Notes on the fertilisation of South Africa and Madagascar
977	flowering plants. Annals of Botany 5: 333-405.
978	
979	Shuttleworth A, Johnson SD. 2009a. New records of insect pollinators for South
980	African asclepiads (Apocynaceae: Asclepiadoideae). South African Journal of
981	<i>Botany</i> 75: 689-698.
982	Shuttleworth A, Johnson SD. 2009b. The importance of scent and nectar filters in a
983	specialized wasp-pollination system. Functional Ecology 23: 931-940.
984	Shuttleworth A, Johnson SD. 2009c. Palp-faction: an African milkweed dismembers
985	its wasp pollinators. Environmental Entomology 38: 741-747.
986	Shuttleworth A, Johnson SD. 2012. The Hemipepsis wasp-pollination system in
987	South Africa: a comparative analysis of trait convergence in a highly
988	specialized plant guild. Botanical Journal of the Linnean Society 168: 278-99.
989	Simões AO, Kinoshita LS, Koch I, Silva MJ, Endress ME. 2016. Systematics and
990	character evolution of Vinceae (Apocynaceae). Taxon 65: 99–122.
991	Smith SDW, Ané C, Baum DA. 2006. The role of pollinator shifts in the floral
992	diversification of Iochroma (Solanaceae). Evolution 62: 793-806.
993	Sprengel CK. 1793. Das entdeckte Geheimnis der Natur im Bau und in der
994	Befruchtung der Blumen. Berlin: Friedrich Vieweg dem aeltern.

995 Stebbins GL. 1950. Variation and evolution in plants. New York and London:

996 Columbia University Press.

- 997 Steenhuisen SL, Johnson SD. 2012. Evidence for beetle pollination in the African
- 998 grassland sugarbushes (*Protea*: Proteaceae). *Plant Systematics and Evolution*999 **298:** 857-69.
- 1000 Straub, SCK, Moore MJ, Soltis PS, Soltis DE, Liston A, Livshultz T. 2014.
- 1001 Phylogenetic signal detection from an ancient rapid radiation: effects of noise
- reduction, long-branch attraction, and model selection in crown clade
- 1003 Apocynaceae. *Molecular Phylogenetics and Evolution* **80:** 169-185.
- 1004 Torres C, Galetto L. 2002. Are nectar sugar composition and corolla tube length
- 1005 related to the diversity of insects that visit Asteraceae flowers? *Plant Biology*1006 4: 360-366.
- 1007 Ulloa Ulloa, C. et al. 2017. An integrated assessment of the vascular plant species of
 1008 the Americas. *Science* 358:1614-1617.
- 1009 Vamosi JC, Vamosi SM. 2010. Key innovations within a geographical context in
- 1010 flowering plants: towards resolving Darwin's abominable mystery. *Ecology*1011 *Letters.* 13:1270–1279.
- 1012 Van der Niet T, Johnson SD. 2012. Phylogenetic evidence for pollinator-driven
- 1013 diversification of angiosperms. *Trends in Ecology and Evolution*. **27**: 353-361.
- 1014 Van der Niet T, Peakall R, Johnson SD. 2014. Pollinator-driven ecological
- 1015 speciation in plants: new evidence and future perspectives. *Annals of Botany*
- **1016 113**: 199-212.
- 1017 Villaseñor JL. 2016. Checklist of the native vascular plants of Mexico. *Revista* 1018 *Mexicana de Biodiversidad* 87: 559-902.

1019 Weale JPM. 1871. Observations on the mode in which certain specie	1019	Weale JPM. 1871	. Observations o	on the mode in	which certain	species of
--	------	-----------------	------------------	----------------	---------------	------------

- 1020 Asclepiadeae are fertilized. *Botanical Journal of the Linnean Society* 13: 481021 58.
- Whittall JB, Hodges SA. 2007. Pollinator shifts drive increasingly long nectar spurs
 in columbine flowers. *Nature* 447: 706-709.
- Wickham H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York:
 Springer.

1026 Wiemer AP, Sérsic AN, Marino S, Simões AO, Cocucci AA. 2012. Functional

1027 morphology and wasp pollination of two South American asclepiads

- 1028 (Asclepiadoideae–Apocynaceae). Annals of Botany 109:77-93.
- 1029 Wilson P, Castellanos MC, Wolfe AD, Thomson JD. 2006. Shifts between bee and
- 1030 bird pollination in Penstemons. In: Waser NM, Ollerton J, eds. *Plant*-
- 1031 *Pollinator Interactions: from Specialization to Generalization.* Chicago:
- 1032 University of Chicago, 47-68.
- 1033 Yamashiro T, Maki M. 2005. A comparative study of the reproductive character and
- 1034 genetic diversity of an autogamous *Tylophora matsumurae* and its progenitor
- 1035 Tylophora tanakae (Apocynaceae-Asclepiadoideae) Plant Systematics and
- 1036 *Evolution* **256**: 55-67.
- 1037
- 1038
- 1039
- 1040
- 1041
- 1042
- 1043

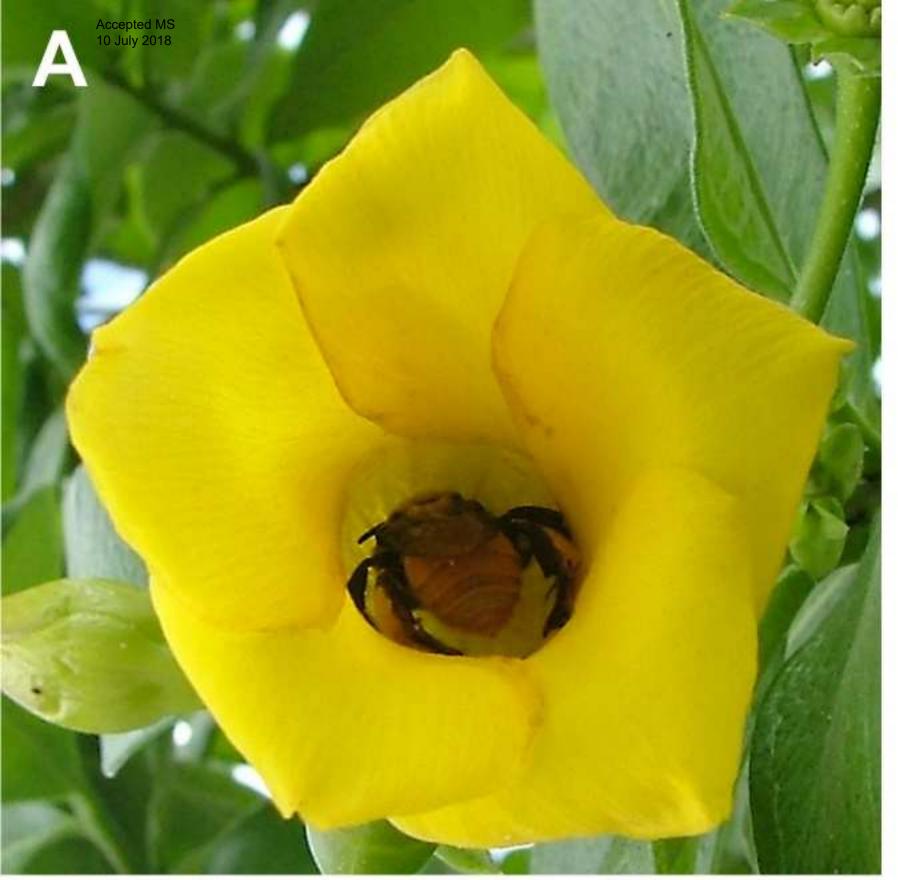
- List of figures Figure 1: Floral visitors to Apocynaceae. A, Thevetia ovata (Rauvolfioids: Plumerieae) being visited by Eulaema sp. (Hymenoptera: Apidae), Mexico (Photo: L.O. Alvarado-Cárdenas). B, Mandevilla tenuifolia (Apocynoids: Mesechiteae) being visited by Hesperiidae sp. (Lepidoptera), Brazil (Photo: F.W. Amorim). C, Mandevilla pentlandiana (Apocynoids: Mesechiteae) being visited by Chlorostilbon
 - *lucidus* (Aves: Trochilidae), Argentina (Photo: L. Galetto). D, *Prestonia coalita*
 - 1066 (Apocynoids: Echiteae) being visited by *Phoebis argante* (Lepidoptera: Pieridae),
 - 1067 Brazil (Photo: A. Rapini). E, Raphionacme procumbens (Periplocoideae) being
 - 1068 visited by Ammophila sp. (Hymenoptera: Sphecidae), South Africa (Photo: L.

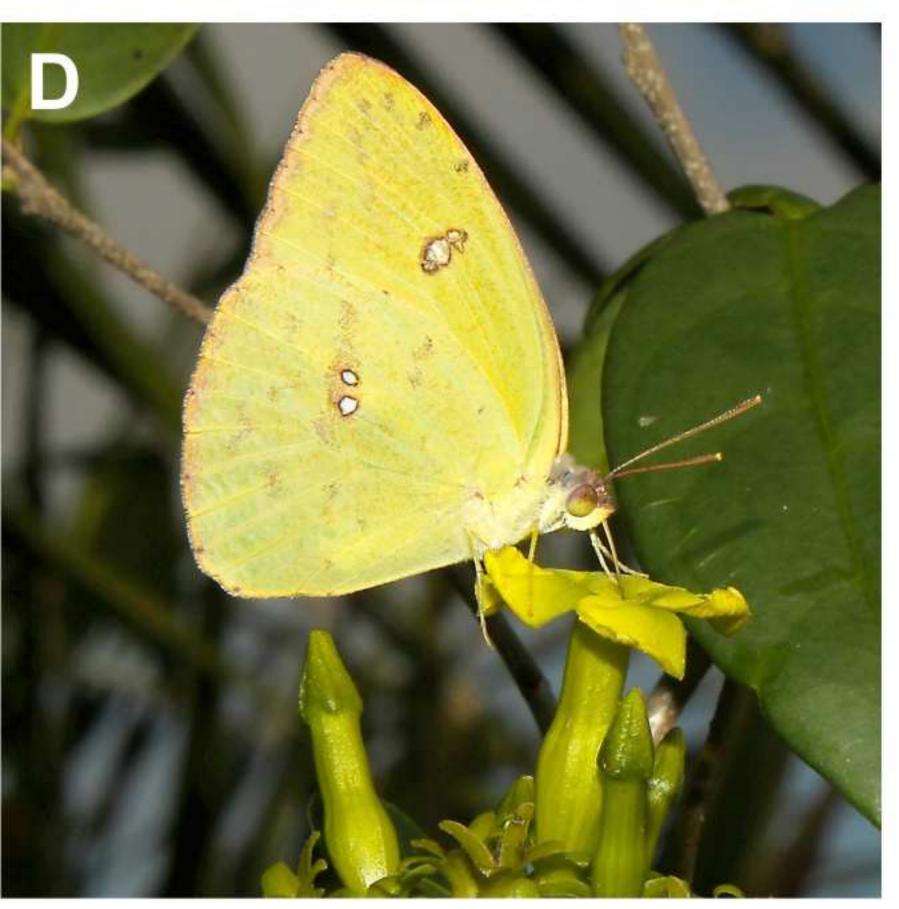
doi: 10.1093/aob/mcy127

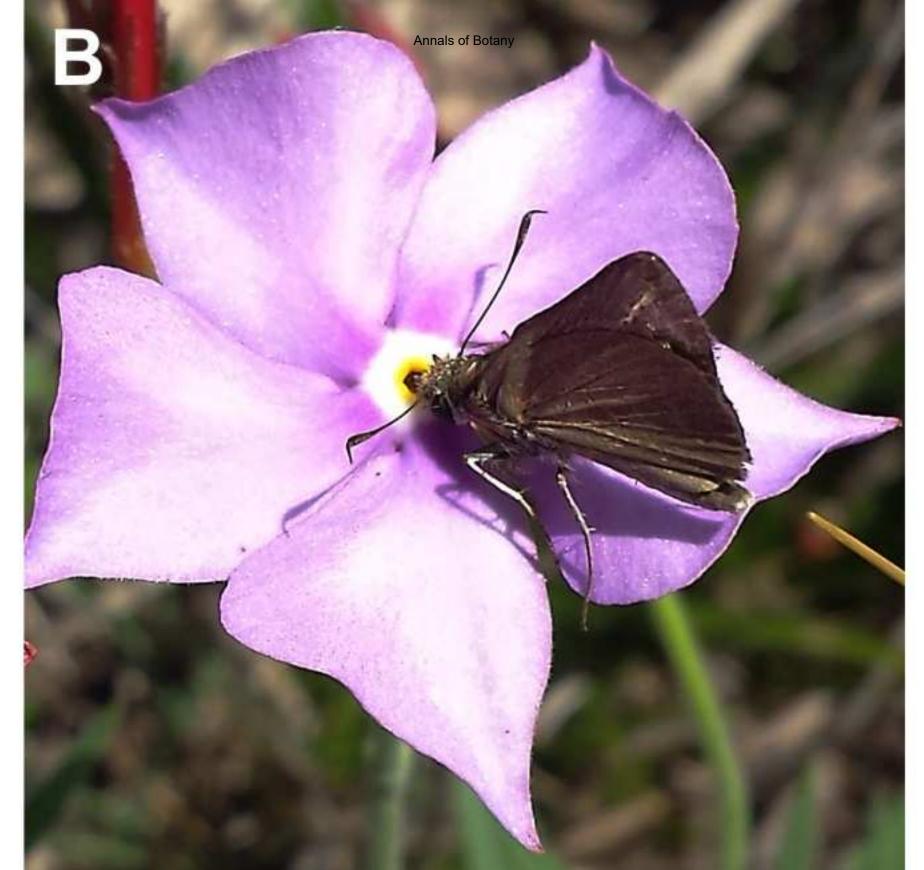
1069	Joubert). F, Secamone alpini (Secamonoideae) being visited by Apis mellifera
1070	capensis (Hymenoptera: Apidae), South Africa (Photo: A. Shuttleworth). G, Dregea
1071	sinensis (Asclepiadoideae: Marsdenieae) being visited by Apid cerana (Hymenoptera:
1072	Apidae), China (Photo: Z-X. Ren). H, Xysmalobium orbiculare (Asclepiadoideae:
1073	Asclepiadeae) being visited by Hemipepsis capensis (Hymenoptera: Pompilidae),
1074	South Africa (Photo: A. Shuttleworth). I, Macroscepis elliptica (Asclepiadoideae:
1075	Asclepiadeae) being visited by Ascalapha odorata (Lepidoptera: Noctuidae),
1076	Argentina (Photo: H. Keller). J, Orthosia virgata (Asclepiadoideae: Asclepiadeae)
1077	being visited by Lygistorrhina edwardsi (Diptera: Lygistorrhinidae), Argentina
1078	(Photo: H. Keller). K, Gonolobus grandiflorus (Asclepiadoideae: Asclepiadeae) being
1079	visited by Sarcophagidae sp. (Diptera), Mexico (Photo: L.O. Alvarado-Cárdenas). L,
1080	Asclepias incarnata (Asclepiadoideae: Asclepiadeae) being visited by Bombus
1081	griseocollis (Hymenoptera: Apidae), United States of America (Photo: N. Rafferty).
1082	
1083	Figure 2: A – Species richness of Apocynaceae mapped at a country and regional
1084	level according to availability of information and expert opinion. Exact species
1085	counts are not available for most countries and the ranges used are approximations.
1086	Note that the scale used is discontinuous; B - Geographical representation of
1087	Apocynaceae in the Pollinators of Apocynaceae Database. The colours of the
1088	countries reflect the number of species in the database with pollinator data (see the
1089	legend). Circles represent data from islands.
1090	
1091	Figure 3: Phylogenetic relationships among the major groups of Apocynaceae with

their known pollinators. Colour-intensities reflect the proportion of plant species

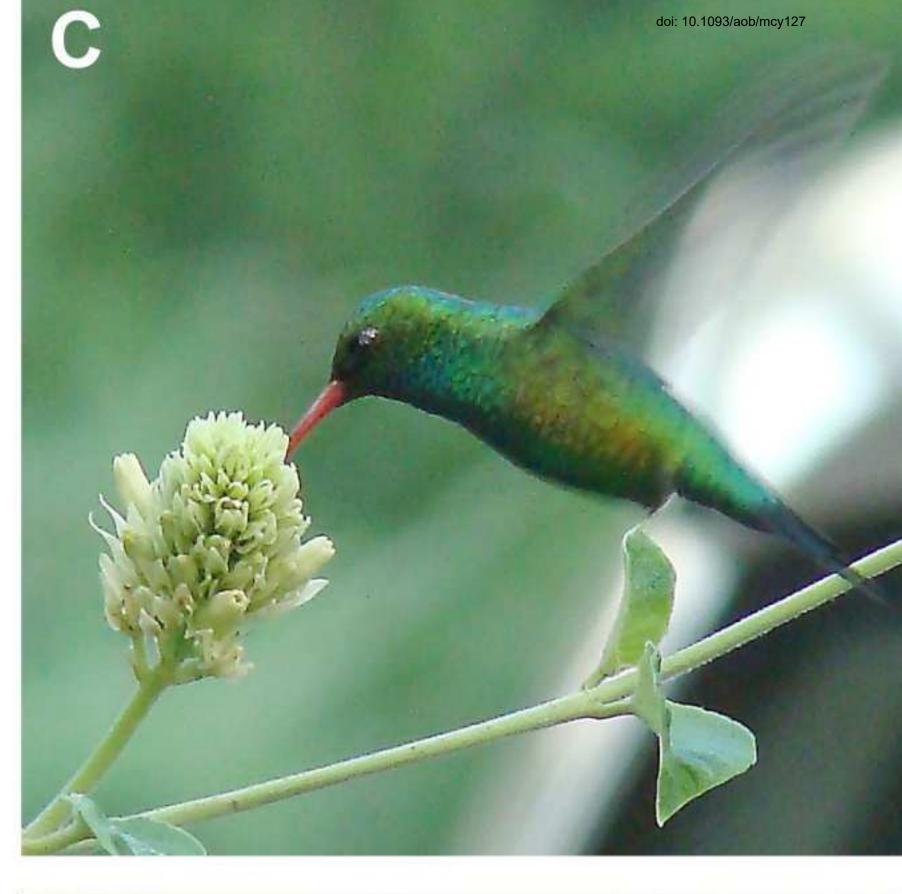
1093 within each major group that is pollinated by a given type of pollinator. Note that only

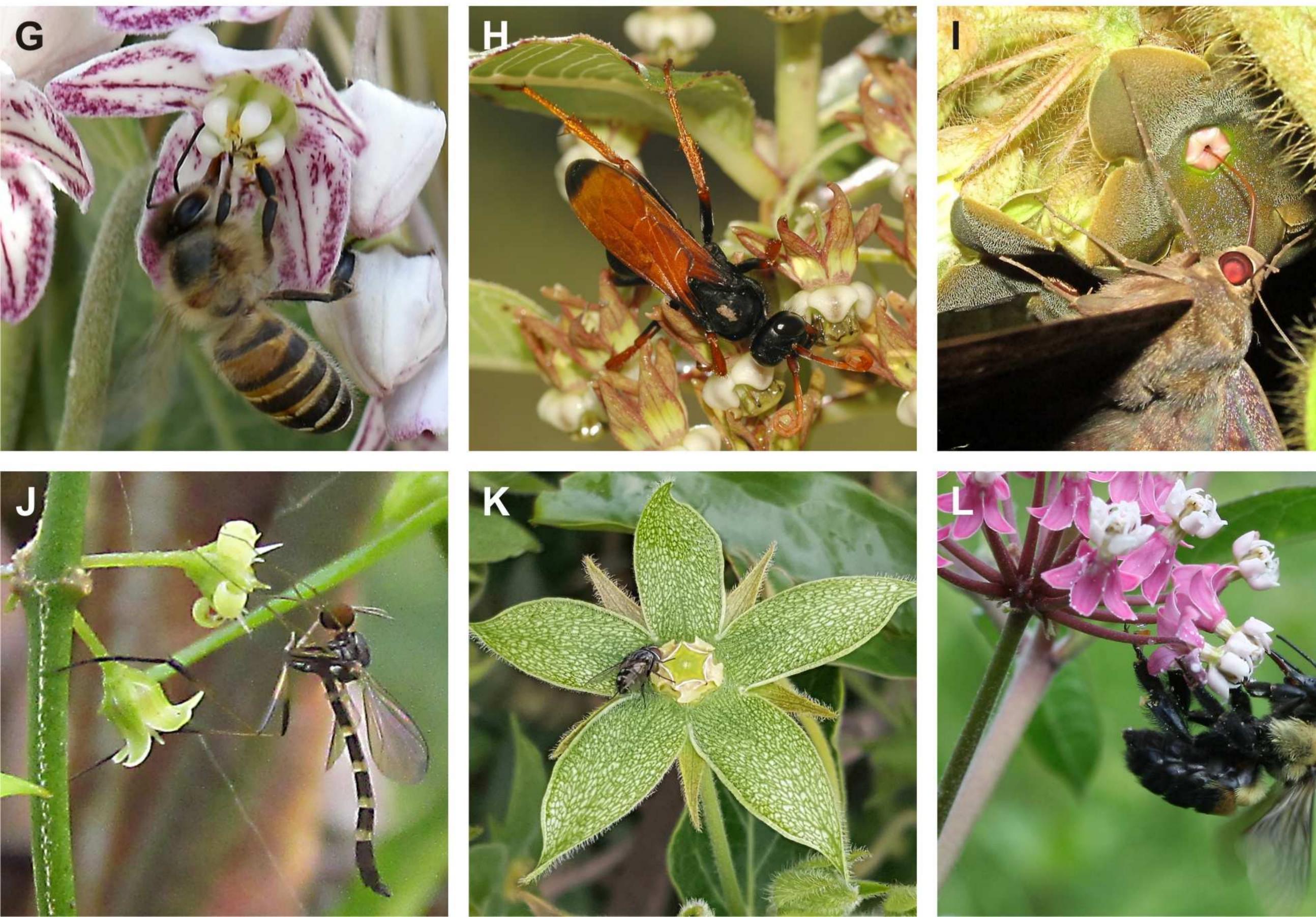

1094	confirmed pollinators have been mapped against this phylogeny with the exception of
1095	Secamonoideae where the sparsity of observations means that suspected (but not
1096	confirmed) pollinators have been mapped [Supplementary Information 3].
1097	
1098	Figure 4: Pollination systems within major divisions, tribes and subtribes of
1099	Apocynaceae. Only confirmed pollinators have been mapped against this phylogeny
1100	with the exception of Secamonoideae where the sparsity of observations means that
1101	suspected (but not confirmed) pollinators have been mapped [Supplementary
1102	Information 3 and 4]. Pollination systems have been categorised into those with
1103	only a single major group of pollinators and those with two ("bimodal"). Tribes and
1104	subtribes follow Endress et al. (2014) and are roughly ordered evolutionarily from
1105	less (top) to more (bottom) derived.
1106	
1107	Figure 5: Pollinator types mapped onto a phylogeny of Apocynaceae. Maximum
1108	likelihood estimates of ancestral states of pollinator type for the reduced data set
1109	depicted on the chronogram in Supplementary Information 6 [Suppl. Fig. 2].
1110	Pollinator types are indicated as in the legend with polymorphic states indicated by
1111	additional intermediate shades of colour. Probabilities of states at ancestral nodes are
1112	indicated by pie charts. Best-fitting evolutionary models and rates are in
1113	Supplementary Information 6 [Suppl. Tables 1, 5.] Major clades are indicated by
1114	tick marks or arrows and labelled as follows: Apocynoids-Periplocoideae-
1115	Secamonoideae-Asclepiadoideae (APSA); subfamilies: Periplocoideae (P),
1116	Secamonoideae (S), and Asclepiadoideae (A); tribes: Asclepiadeae (ad), Ceropegieae
1117	(ce), Echiteae (e), Marsdenieae (ma), Mesechiteae (ms), Plumerieae (p), and

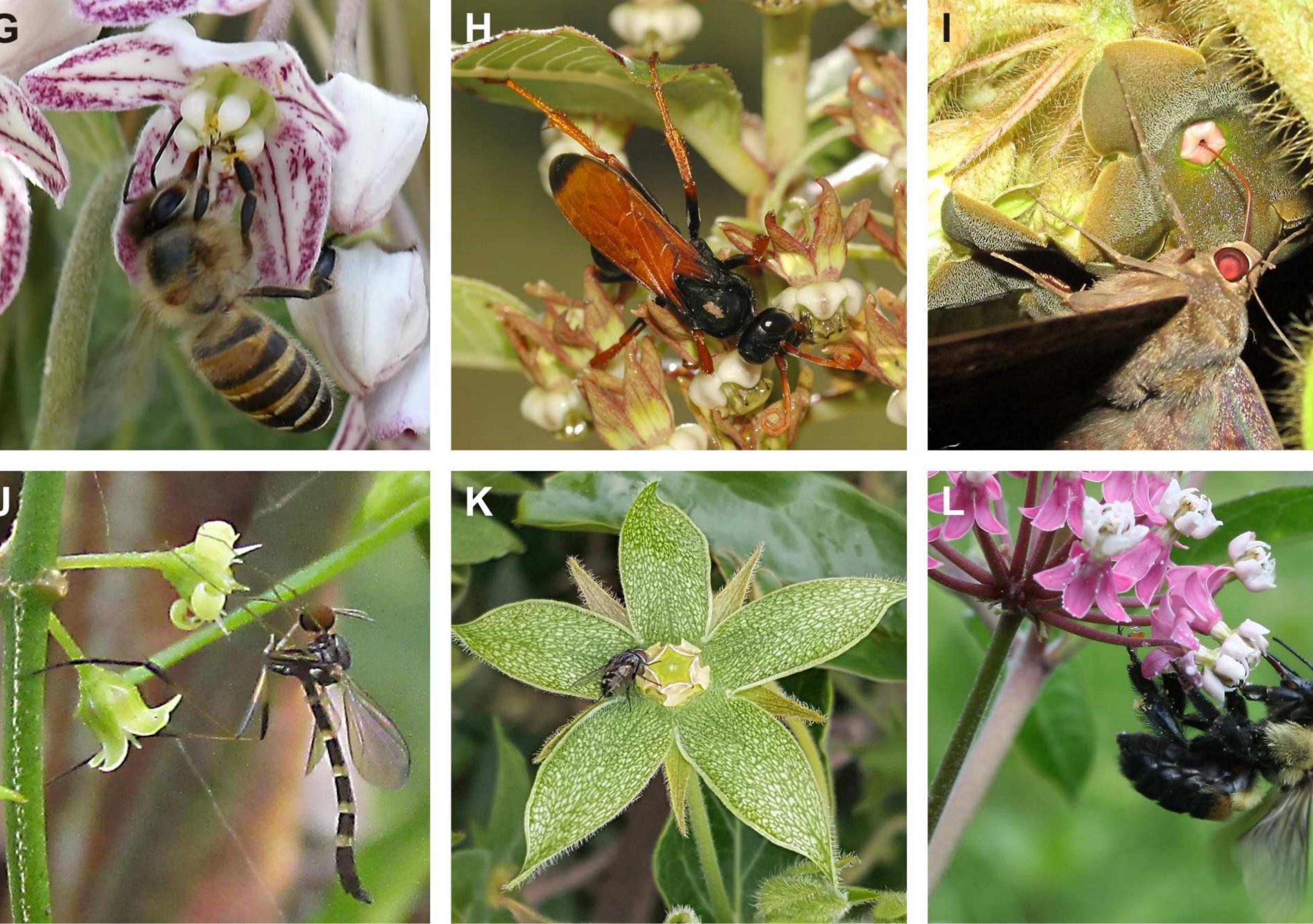

1118	Tabernaemontaneae (ta); and subtribes Asclepiadinae (an), Cynanchinae (cy),
1119	Gonolobinae (g), Metastelmatinae (mt), Oxypetalinae (o), and Tylophorinae (ty).
1120	
1121	Figure 6: Proportion of species of Apocynaceae per pollination system (above), and
1122	their geographical representativeness (below). Only those regions with large samples
1123	of Apocynaceae species are included in the comparison.
1124	
1125	Figure 7: Flowers showing characteristic traits of fly pollination in Ceropegieae (A,
1126	C, left row) and Asclepiadeae-Gonolobinae (B, D, right row). (A) Brachystelma
1127	(Ceropegia) simplex, Ivory Coast. (B) Ibatia ganglinosa, Brazil. (C) Orbea sprengeri
1128	subsp. commutata, Saudi Arabia. (D) Matelea cyclophylla, Mexico. (Photos: U.
1129	Meve).
1130	
1131	
1132	Table 1: The number of Apocynaceae species engaged in bimodal pollination

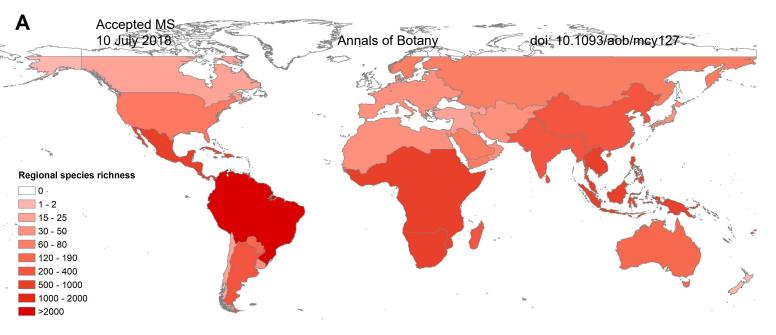

- 1133 relationships with two distinct groups of pollinators.
- 1134

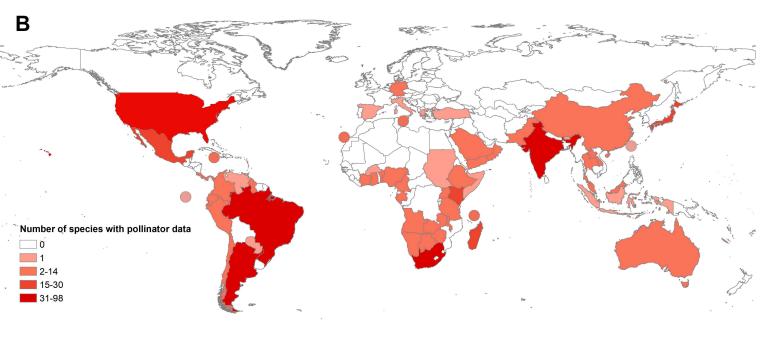
	Bee	Beetle	Butterfly	Fly	Moth +	Wasp	Insect
					Hawkmoth		generalist
Beetle	0						
Butterfly	7	0					
Fly	0	1	0				
Moth +	2	0	1	1			
Hawkmoth							
Wasp	3	6	0	2	0		

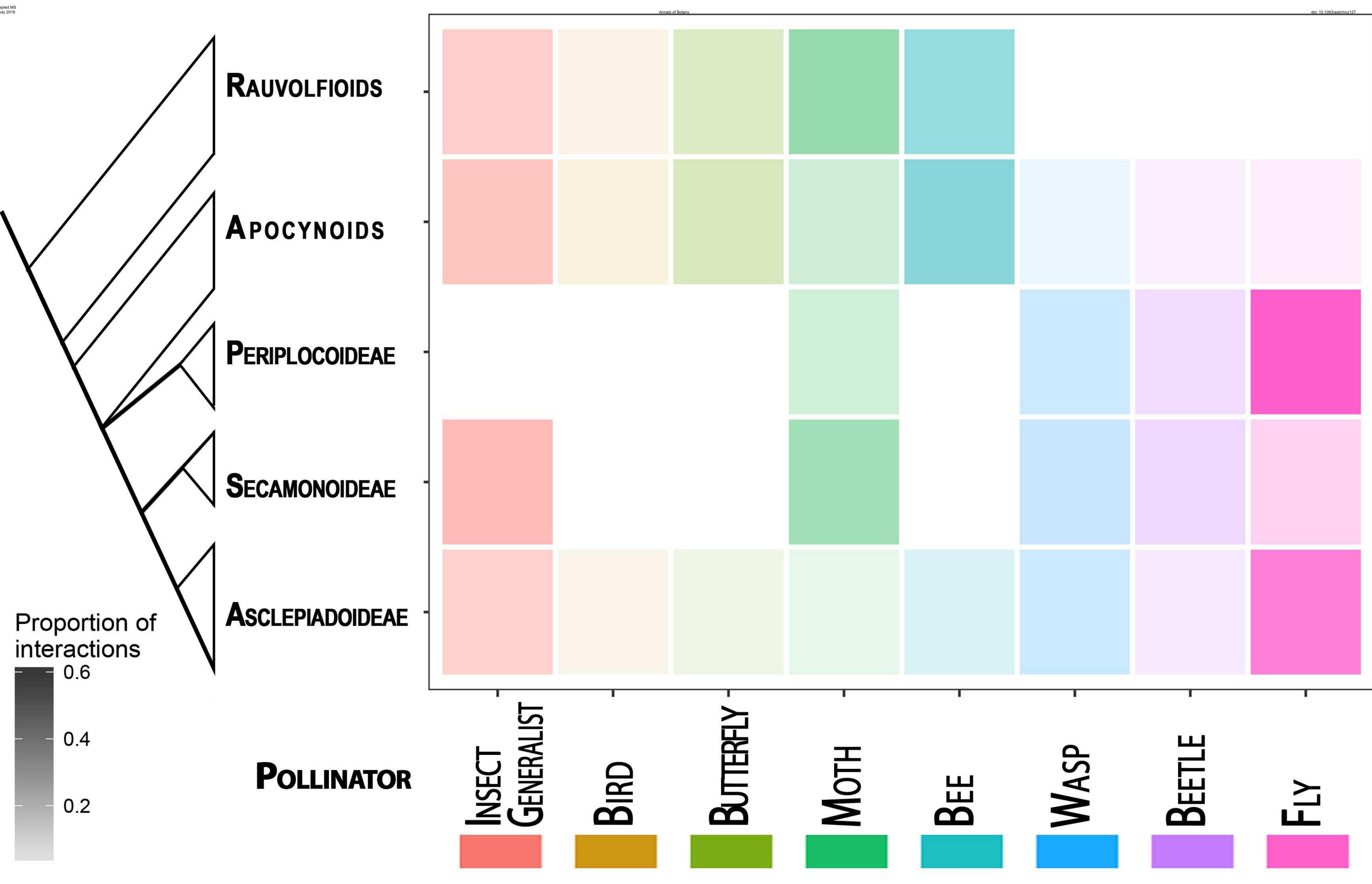

Bird 0 0 0 0 0 0 2

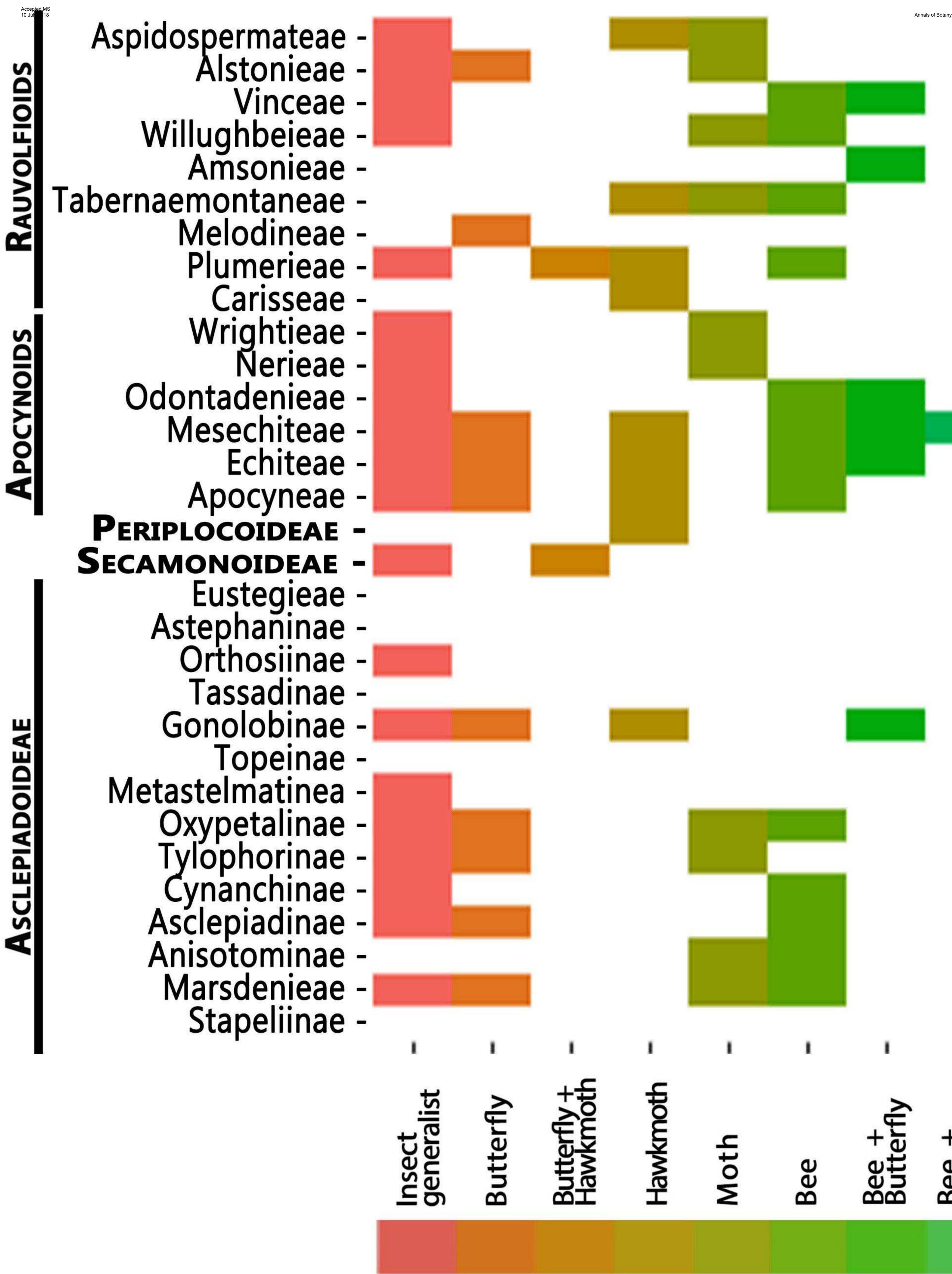


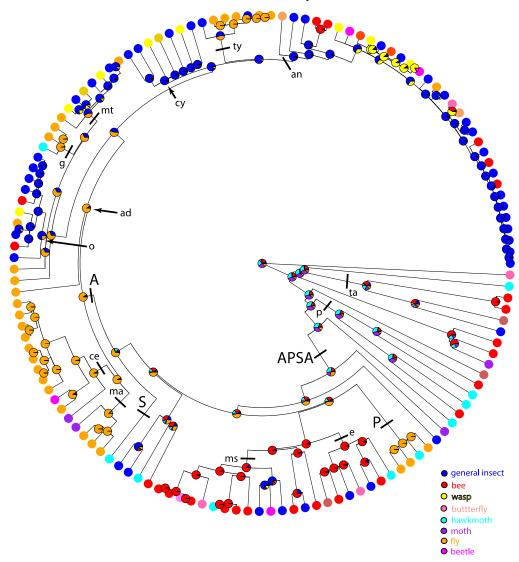


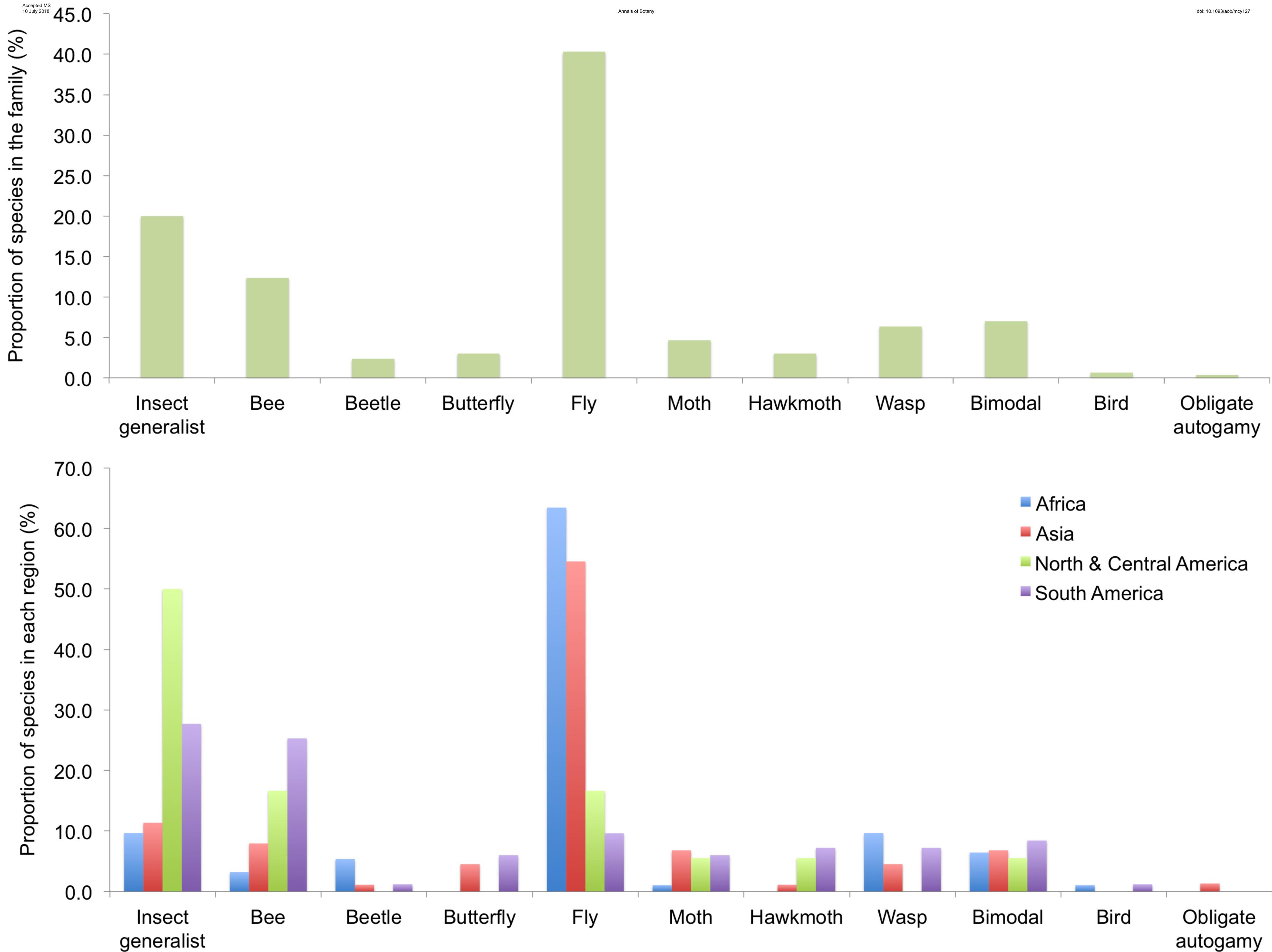


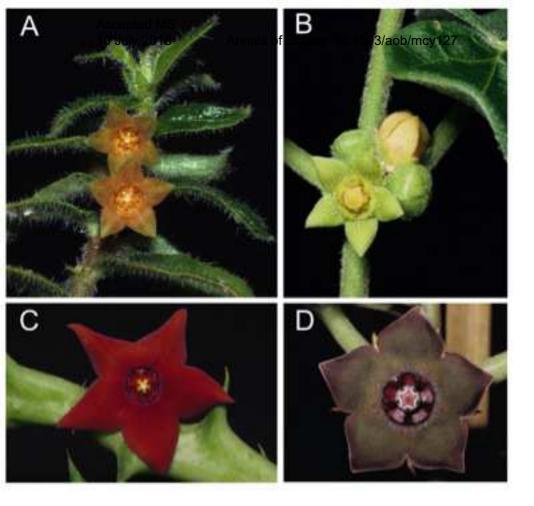









POLLINATORS


Bee + Hawkmoth -	Bee + moth	Bee + Wasp	Jasp	Beete	Beetle + Fly

Annals of Botany

