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This article presents a novel framework for the multi-objective optimization of offshore re-
newable energy mooring systems using a random forest based surrogate model coupled to
a genetic algorithm. This framework is demonstrated for the optimization of the mooring
system for a floating offshore wind turbine highlighting how this approach can aid in the
strategic design decision making for real-world problems faced by the offshore renewable
energy sector. This framework utilizes validated numerical models of the mooring system
to train a surrogate model, which leads to a computationally efficient optimization routine,
allowing the search space to be more thoroughly searched. Minimizing both the cost and
cumulative fatigue damage of the mooring system, this framework presents a range of op-
timal solutions characterizing how design changes impact the trade-off between these two
competing objectives.
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1. Introduction1

As the offshore renewable energy sector progresses, it has become increasingly impor-2

tant to ensure that designs simultaneously generate the desired energy, survive in their3

energetic surroundings for their full lifetime, and remain cost effective. In the quest4

to satisfy these competing objectives, optimization techniques are now deployed in the5

design process to identify new design concepts while also aiding the system designer6

in strategic design decision-making. With progressively more offshore renewable energy7

devices exploring floating solutions, mooring systems have become one of the key sub-8

systems which impacts both the survivability of the device and its costs (Weller et al.9

2015; Thomsen et al. 2018). However, due to the computational time associated with10

the simulation of mooring systems it is not yet commonplace to deploy optimization11

algorithms in the design cycle. Without the use of numerical optimization methods, the12

design of mooring systems is limited to an iterative engineering design approach based13

on experience and engineering judgement. This often leads to innovative mooring designs14

not being considered, and the deployment of sub-optimal mooring designs (Johanning,15

Smith, and Wolfram 2006). In order to implement optimization techniques in complex16

engineering design problems, surrogate modelling, the use of simpler low fidelity models17

which approximate the high fidelity results at a lower computation cost, have emerged18

as an important technique to improve the computational time associated with these19
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optimization schemes (Won and Ray 2005; Voutchkov and Keane 2006; Jin 2011).20

The field of mooring optimization is a relatively nascent field which explores the optimal21

selection of mooring line materials, lengths, and diameters in order to elicit a desired22

response or minimize the cost associated with a floating system. As mooring systems23

represent an important component of offshore renewable energy devices which impact24

not only the motion dynamics of the device, and therefore how it interacts with the25

resource from which it is extracting energy, but also affects the cost of the overall system26

and governs the lifetime of the device (Weller et al. 2015). In the design of mooring27

systems, it is therefore common to select designs which minimize the cost or excursions28

subject to constraints on the tension in the lines, and the fatigue in the mooring system.29

Given this complex set of design considerations, an optimization approach and multi-30

objective optimization in particular would be appropriate in order to characterize the31

trade-offs between the competing design objectives and better inform decision making.32

Existing work in the optimal design of mooring systems has explored the geometry33

optimization of the mooring system using a genetic algorithm to minimize the response34

of the moored vessels and platforms (Carbono, Menezes, and Martha 2005; Shafieefar35

and Rezvani 2007; Ryu et al. 2007; da Fonesca Monteiro et al. 2016; Ryu et al. 2016).36

However, as these studies have focused on vessels and platforms, these may not be the37

most appropriate optimizer objectives for an offshore renewable energy device. The recent38

work by Thomsen et al. (2018) has specifically explored the optimization of mooring39

systems for a wave energy converter considering the minimization of cost, however, the40

use of single objective optimization does not fully capture the complexity of the design41

problem. Offshore renewable energy devices must be both cost effective and achieve42

a specific device response in order to effectively harness the energy sources. Work by43

the authors has, therefore, explored multi-objective optimization of mooring systems for44

renewable energy platforms in order to highlight potential design trade-offs between the45

competing objectives that a device designer would face thereby offering information to46

allow the system designers to make more informed decisions (Pillai, Thies, and Johanning47

2017, 2018b).48

The assessment of mooring system designs is generally achieved through finite element49

analysis software operating in either the time domain or frequency domain (Davidson50

and Ringwood 2017). Time domain finite element models are capable of capturing the51

dynamic behaviour of the mooring lines and therefore play an important role in the52

design process. However, in order to effectively assess the response of the mooring be-53

haviour, simulations must be executed for each operating condition and for sufficiently54

long simulations in order to adequately capture the dynamic behaviour during any oper-55

ational sea state (Thomsen, Eskilsson, and Ferri 2017). Previous work by the authors has56

highlighted the importance of utilizing time domain simulations when designing mooring57

systems for renewable energy devices as these devices are characterized by more dynamic58

motion than vessels or platforms, therefore, requiring a simulation domain which can cap-59

ture these dynamic effects and the impact that this has on the fatigue and design life of60

the mooring system. Mooring system optimization without surrogate models (Carbono,61

Menezes, and Martha 2005; Shafieefar and Rezvani 2007; Ryu et al. 2007; da Fonesca62

Monteiro et al. 2016; Ryu et al. 2016) tend to rely on frequency domain simulations63

which are significantly quicker and less computationally demanding than their time do-64

main counterparts. Frequency domain methods, however, are not as effective in capturing65

the dynamic motion and loading of mooring systems which may play an important role in66

selecting appropriate mooring designs for offshore renewable energy applications (Kwan67

and Bruen 1991; Brown and Mavrakos 1999; Pillai, Thies, and Johanning 2018a).68

For many optimization problems, the true objective function(s) are computationally69

costly. An effective approach to resolve this is to use a simpler objective function, a sur-70

rogate, which is correlated to the true objective, but computationally less expensive (For-71
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rester, Sóbester, and Keane 2008). Surrogate modelling as a general term includes any72

model which substitutes for a high fidelity model in order to reduce computational time.73

These models can therefore attempt to model the underlying science with less detail or74

can be statistical models built from results using the full model (Forrester, Sóbester,75

and Keane 2007). Traditional forms of surrogate models include decision trees, support76

vector machines, radial basis functions, and artificial neural networks, however, there77

are also now many variations and hybrid approaches (Hastie, Tibshirani, and Friedman78

2009; Forrester, Sóbester, and Keane 2008). Recent developments in the field of surrogate79

modelling in the context of optimization has explored the use of ensembles of surrogates80

to better define and characterize the search space (Forrester and Keane 2009; Forrester,81

Sóbester, and Keane 2007; Chugh et al. 2018; Shankar Bhattacharjee, Kumar Singh, and82

Ray 2016). Previous work in this field has focused on the development of generalized83

strategies which are relevant to a wide range of engineering problems, while the focus84

of the present paper is to demonstrate a specific methodology suitable to the mooring85

system design and optimization problem. The present work, therefore, focuses on the86

introduction and demonstration of the applicability of a specific methodology for this87

specific problem.88

Surrogate models built for the assessment of the motions of a moored structure and the89

tensions in the mooring lines has generally made use of artificial neural networks (de Pina90

et al. 2013, 2016; Sidarta et al. 2017). The use of surrogate models for mooring system91

assessment, has, however, not been undertaken in the context of optimizing the mooring92

system.93

This paper bridges these two areas of research implementing both a genetic algorithm94

for the geometry optimization of the mooring system of an offshore renewable energy95

platform while utilizing a surrogate model built using a machine learning technique96

in order to reduce the computational complexity of the optimizer evaluation function97

through a functional approximation architecture. The developed framework represents98

a pragmatic approach to the design of mooring systems offering a system designer the99

potential to make more informed decisions regarding the design of the mooring system.100

Though the optimization and surrogate models deployed are not on their own novel, their101

integration into a unified framework for the present mooring system design framework102

represents a novel implementation which is shown to aid the design process and marks103

an improvement on the present standard approaches.104

In the design of mooring systems there are several objectives which are often consid-105

ered including the cost of the mooring system, the tension in the lines relative to the106

minimum breaking load (MBL), the excursions of the floating body, or the cumulative107

fatigue damage. For the presented case study, the optimization routine seeks to minimize108

the cumulative lifetime fatigue damage in the mooring system and the material cost of109

the mooring system. These have been selected as they represent two important design110

criteria for mooring systems and especially for offshore renewable energy developers. Due111

to increasing challenges in many-objective optimization, the present implementation is112

as a bi-objective problem, though extensions including further objectives can be explored113

within the framework in the future in order to simultaneously consider additional objec-114

tives during the design process.115

2. Mooring System Optimization Problem116

The problem addressed in the present article explores the geometry optimization of117

a mooring system for an offshore renewable energy device. Offshore renewable energy118

devices extract energy from natural fluxes which cause some device motion relative to119

this natural flux, be it the blades of a wind turbine relative to the wind, a tidal turbine’s120
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rotor relative to the tidal current, or a wave energy device’s active surface relative to121

the sea surface elevation. As a result of this, floating renewable energy devices, must122

ensure that their mooring systems are designed achieving the desired behaviour while at123

the same time not adversely impacting the reliability or cost of the overall system. The124

optimal design of mooring systems must therefore consider the site at which a device125

is being deployed, the specific device characteristics, the mooring system itself, and the126

interactions between these elements.127

For each of the mooring lines considered in the system, the optimization routine selects128

the position of the mooring line anchor, the length of the mooring line, the material of129

each section of the mooring line, and the diameter of each section of the mooring line.130

These decision variables are given in table 1. The optimization routine does not explicitly131

select the number of mooring lines, but takes this as an input.132

Table 1.: Description of Decision Variables

Variable Description Variable Type

xl,i length of section i of line l Continuous
yl,i construction of section i of line l Integer
αl anchor horizontal position for line l Continuous
θl anchor angle for line l Continuous

Though the mooring system is defined using only a few variables for each line, this133

formulation is efficient in capturing the elements of interest to a mooring designer and can134

be used to characterize the mooring system for any floating body. In the present work,135

each line has been limited to consisting of maximum of three sections which can differ in136

diameter, material, or both. This limit has been selected in part as this represents the137

maximum number of sections often utilized for offshore renewable energy devices, and it138

allows a significant degree of flexibility to the optimization process. Given the flexibility139

of the framework, should a designer wish to consider a greater degree of flexibility in the140

designs then additional sections can easily be considered.141

While the variables describing the section lengths and anchor position are continuous142

variables, the line type is a categorical representing which of the predefined line types is143

to be deployed. A detailed description of the constraints, and restrictions on the decision144

variables follows in section 2.3.145

2.1 Cumulative Fatigue Damage146

Engineering design must consider different failure modes in order to ensure that the147

design is fit for purpose. This includes the ultimate limit state (ULS) which considers148

the maximum extreme loads that the system must withstand, as well as the fatigue limit149

state (FLS) which considers the possible failure as a result of repeated cyclic loading150

at levels below the ULS (Schijve 2009). Offshore renewable energy devices seek to be151

deployed for a period up to 25 years which therefore requires reliable systems which can152

ensure device survival over this lifetime. The first objective explored in this optimization153

problem is therefore the fatigue damage in the mooring system. The fatigue damage is154

assessed using simulated tension time-series for each proposed mooring system for each155

of the anticipated sea states at the installation site. From this, rainflow counting of the156

tension cycles is done at each point along the lengths of the mooring lines.157

Rainflow counting is a methodology used to evaluate fatigue damage for load cycles of158

varying amplitude. This method operates by identifying and counting the stress ranges159

corresponding to individual hysteresis loops. This is then used in combination with S-N160
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or T-N curves which define the number of stress (S-N) or tension (T-N) cycles at a specific161

amplitude required for the material to reach failure. The Palmgren-Miner rule, shown162

in eq. (1), allows the individual contribution of each stress cycle to be summed in order163

to compute the cumulative fatigue damage (Rychlik 1987; Amzallag et al. 1994; Schijve164

2009; Thies et al. 2014). The lifetime fatigue damage of the mooring lines is established165

by carrying out these calculations for each sea state that is expected at the site, and166

scaling the fatigue contributions based on the relative occurrence of the sea states over167

the operational lifetime of the device.168

D(t) =
∑
tk<t

1

N(S)
=

1

K

∑
tk<t

(S)β (1)

where D(t) is the fatigue damage, N(S) is the number of cycles during time t, and S169

denotes the stress amplitudes established in the rainflow cycle count. The parameters K170

and β describe the fatigue properties of the material and are given by the S-N and T-N171

curves.172

The cumulative fatigue damage, Dc is then given by:

Dc =
∑
s∈S

Ds ×
T

τd
× P (s) (2)

where s represents a sea state from S, the set of sea states which are simulated, T is173

the operational lifetime of the mooring system, τd is the simulation duration, and P (s)174

is the probability of occurrence associated with sea state s. For each mooring line, the175

cumulative fatigue is computed at each point along the mooring line in order to consider176

the possible failure anywhere along the line and not exclusively at the fairleads. Though177

the highest tensions are experienced at the fairleads, the fatigue damage may be higher178

elsewhere in the system and it is important to consider the possible failure at any position179

along the mooring lines.180

The objective, the minimization of the cumulative fatigue damage is explicitly given181

in eq. (4a) in the full problem formulation.182

2.2 Material Cost183

As cost effective solutions are sought, the second objective explored in the mooring design184

problem is the minimization of the material cost of the mooring lines. This is computed as185

a sum over the mooring lines by multiplying the unit cost of each line type (combination of186

material and diameter i.e. MBL) with the length of the line type deployed in the mooring187

system. In this way, this metric does not include any consideration of the anchors, and188

in fact the time-domain simulations do not affect this objective. This objective, the189

material cost of the mooring system, is, however, necessary as it represents a key metric190

that developers must consider when designing and deploying their mooring systems. The191

mooring system cost is computed using eq. (3) and the objective is given in eq. (4b) in192

the problem formulation.193

Cl =
∑
l∈L

εm∑
i=1

c(yl,i) · xl,i (3)
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2.3 Constraints194

In order to accurately model the design problem it is important to include constraints195

which limit the search space to feasible solutions and represent the real engineering196

limitations on the decision variables. Since the decision variables include the line speci-197

fications for each line as well as the anchor positions for each line’s anchor, the genome198

is a mixture of various types.199

The anchors are defined to be no further than 2500 m away from the floating body, and200

anchor lines are set to be within 30◦ of the original orientation defined in the simulation201

model (eqs. (4c) and (4d)). Specific constraints on the anchor positions will be site and202

project specific and these values have been selected for the present case study to illustrate203

the capabilities of the tool. The minimization of the mooring line costs will naturally try204

to limit the mooring footprint by bringing anchors in closer to the floating body, so this205

upper limit acts to aid the convergence of the optimizer. It is important to note that the206

present coupling to OrcaFlex does not simulate or model the anchors or any dynamics207

at the anchoring point and they are assumed to be a fixed point to the seabed.208

Equation (4e) defines the length of mooring line to be the sum of the line segments209

and constrains this to be greater than zero to ensure that a mooring line is present while210

eq. (4f) imposes a constraint that the length of a mooring line cannot exceed the sum211

of the water depth and the horizontal distance to the anchor in order to ensure that the212

mooring line is not unrealistically long. Equation (4g) limits the tension along the length213

of the mooring line such that the minimum breaking load (MBL) of the line type at every214

location of the line is not exceeded. This constraint can optionally include Fs as a safety215

factor. Equation (4h) ensures that the line type for each line segment of each mooring216

line is one of those considered in the implementation of the optimization problem. Finally217

eqs. (4i) and (4j) define a set of points along each mooring line that are in contact with218

seabed during the dynamic simulation and limits these to chain constructions.219

2.4 Problem Formulation220

Given the decision variables, objectives, and constraints as described above, the full221

optimization problem can be formulated as follows:222

min f1(x) = max

(∑
s∈S

(Dc (xl, yl, αl, θl, s) · P (s))

)
∀l ∈ L (4a)

min f2(x) =
∑
l∈L

εm∑
i=1

c(yl,i) · xl,i (4b)

s.t. αl ≤ 2500 ∀l ∈ L (4c)

θl ≤ φl ± 30◦ ∀l ∈ L (4d)

Ll =

εm∑
i=0

xi ≥ 0 ∀l ∈ L (4e)

Ll =

εm∑
i=0

xi ≤ αl + h ∀l ∈ L (4f)

tl,a ≤ MBLl,a × Fs ∀l ∈ L; (4g)

∀a ∈]0, Ll];
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∀s ∈ S

yl,a ∈ A ∀l ∈ L; (4h)

∀a ∈]0, Ll];

Gl = {i|vl,a ≤ 0} ∀l ∈ L; (4i)

∀a ∈]0, Ll]

yl,i ∈ C ∀l ∈ L; (4j)

∀i ∈ Gl

where f1 is the first objective function representing the cumulative fatigue damage, f2223

is the cost objective, xl is the decision variables for the section lengths of mooring line224

l, yl is the decision variables for the section constructions of mooring line l, αl is the225

decision variables for the horizontal distance between the platform and mooring line l’s226

anchor, and θl is the decision variable for the angle between the platform and mooring227

line l’s anchor. L, S, A and C are the sets representing all the mooring lines, the sea228

states to examine, the available line constructions, and the line constructions which are229

chain respectively. The remaining variables in the above formulation are: s a sea state230

from the set of sea states, d the cumulative fatigue damage, P (s) the probability of231

occurrence for sea state s, c(yl,i) the unit cost of a mooring line construction, φl the232

initial orientation of mooring line l, MBLl,a the minimum breaking load at position a233

along line l, Fs the factor of safety on the mooring line tensions, a a position along the234

line, Gl the set of nodes along each mooring line which are in contact with the seabed,235

vl,i the minimum vertical distance between the seabed and node i along mooring line l236

during the simulation, and h is the water depth.237

In this formulation f1 and f2 can be evaluated using any relevant model, be it the full238

dynamic simulations using OrcaFlex or the surrogate model detailed in section 3.2. In239

this way, either method takes the same input features (i.e. the genome) and provides the240

estimates of the cumulative fatigue damage and material cost (i.e. the output features).241

3. Solution Approach242

3.1 Process Overview243

Optimization algorithms are methods which seek to identify the best possible solution244

from those available. To do this, they make use of a search algorithm to explore the245

possible decision variable values with respect to some objective functions (Burke and246

Kendall 2013). For real-world problems, it is often challenging to accurately formulate247

these evaluation functions such that the intra-relationships between the decision variables248

are captured in a time-efficient manner (Jin 2005, 2011). To overcome this, optimization249

of real-world problems can opt to replace the complex evaluation function with a simpler,250

less expensive approximate model: a surrogate model. For these surrogate models to be251

of use, they need to be able to capture the trends of the full evaluation function, so252

that on a relative basis, the results of the surrogate optimization problem can inform the253

original problem.254

For the mooring optimization problem, the full time-domain simulations are run using255

OrcaFlex, an industry standard software package for the time domain analysis of off-256

shore structures. This software package is capable of modelling the tension in mooring257

lines involving multiple members and materials, as well as the excursions of the moored258

body (Thomsen, Eskilsson, and Ferri 2017). Using these full time domain simulations,259
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the surrogate model is built and trained, allowing proposed mooring systems during the260

optimization process to be assessed without the use of the full time-domain simulations.261

The overall methodology is pictured in fig. 1 and makes use of both a multi-objective262

genetic algorithm, as well as the machine learning based surrogate model.263

Figure 1.: Optimization process using a random forest surrogate model. The steps related
to the surrogate model are highlighted in light green boxes, while the core steps of the
genetic algorithm are shown in blue.

Machine learning techniques operate according to the principles illustrated in fig. 2 and264

are generally divided into classification and regression problems. In the case of a classi-265

fication problem, the output feature represents the classes that the input elements are266

grouped into, while for a regression problem the output features represent the quantities267
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Random Forest
Classifier

Mooring
Configuration

Sea State

Constraint
Satisfaction

Input Features Output Features
Machine Learning

Technique

(a) Classifier

Random Forest
Regressor

Mooring
Configuration

Sea State

Cumulative  
Fatigue Damage

Material Cost

Input Features Output Features
Machine Learning

Technique

(b) Regressor

Figure 2.: Overview of machine learning estimators. Note that the number of input and
output features are not necessarily related, though generally, there are fewer output
features than there are input features. For the case of a classifier, the output features
represent the classes to which each individual belongs while in the case of regression, the
output features represent the values of interest.

of interest. Machine learning algorithms are often thought of as black boxes which seek to268

correlate the outputs features to the inputs features without simulating or modelling the269

underlying physics or engineering principles, but are purely statistical models. For any270

machine learning strategy, a training set, a set of inputs and outputs, is used to calibrate271

the black box model in order to build these statistical relationships. Machine learning272

techniques in general, therefore, work best with large training datasets from which the273

statistical correlations can be built. Furthermore, machine learning algorithms such as a274

neural network or random forest work best when they are interpolating between values275

on the training set rather than extrapolating. These algorithms therefore require that the276

training set cover the extent of the search space thereby allowing interpolation. Some277

machine learning algorithms such as random forests are capable of extrapolating output278

features, however, at a cost in accuracy.279

In the present implementation, the input features to the machine learning technique280

are the decision variables of the optimization problem and the output features are the281

evaluated objective functions and the mooring system’s satisfaction of the constraints.282

In this scheme, the surrogate model first estimates if the proposed solution will satisfy283

or violate the constraints, in the event that the model predicts that the constraints will284

be satisfied, the second phase of the surrogate estimates the objective function values.285

In effect, this surrogate model therefore, uses a classifier to determine the constraint286
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satisfaction component of the problem and then a regression method to determine the287

objective function values. OrcaFlex is therefore only used when training and retraining288

the learning algorithm and is no longer directly tied to the evaluation functions for the289

optimization. The full deployed procedure is shown in fig. 1 with the creation of the290

surrogate model highlighted in green. This new methodology follows five basic steps:291

(1) Build a training set of possible mooring systems;292

(2) Evaluate the training set using the original full time domain simulation-based eval-293

uation function;294

(3) Use result from OrcaFlex model to train the surrogate model;295

(4) Use surrogate model to perform optimization using NSGA-II;296

(5) Retrain the surrogate as required.297

A non-dominated sorting genetic algorithm II (NSGA-II) is used to optimize over298

multiple objective functions. This method and the full methodology deployed in this299

study are described in greater detail in section 3.3. Particular care has been taken to300

avoid premature convergence issues by accurately and consistently implementing both301

the crossover and mutation operators.302

3.2 Random Forest303

Random forests represent an ensemble learning method that can be used for either classi-304

fication or regression. In either application, random forests work by constructing several305

decision trees each from a subset of the training set and its features (Breiman 2001).306

A decision tree, is a basic machine learning technique in which inputs are entered and307

as the decision tree is traversed, the features are binned into smaller and smaller sets308

allowing an output to be determined based on the given input features. From a compu-309

tational perspective, decision trees are generally implemented as binary trees. Where a310

single tree may have difficulty to accurately classify or predict an output for a complex311

set of inputs, the use of many trees (i.e. a forest rather than a single tree) can overcome312

this. The trees in a random forest each use a subset of the input features and the training313

set thereby reducing the biases that may result from using a single tree (James et al.314

2013; Hastie, Tibshirani, and Friedman 2009). The procedure of a random forest is given315

in algorithm 1.316

The decision variables of the present problem include a categorical variable representing317

the line type of the mooring line sections and continuous variables for the lengths of the318

mooring lines and the anchor position. The categorical variable (yl,i) is handled in the319

surrogate model using one-hot encoding wherein the categorical variable is converted320

to a binary string in which only one bit can be a 1. Using this encoding, there is no321

assumption of natural ordering of the categories which improves performance.322

f̂ =
1

B

B∑
b=1

fb(x
′) (5)

Once the forest is constructed, subsequent input data can be run through each of the323

decision trees. The outputs of all the trees are then averaged in order to determine the324

output of the forest (eq. (5)). In machine learning, an ensemble method is any method325

that uses multiple simpler machine learning techniques in its implementation. In this326

case, the random forest uses a series of decision trees thereby operating as an ensemble327

method (Olaya-Maŕın, Mart́ınez-Capel, and Vezza 2013; Ahmad, Mourshed, and Yacine328

2017; Bagnall et al. 2016). The initial mooring designs used to train the random forest329
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Algorithm 1 Random Forest

Require: a training set consisting of input features (x) and output features (z), S :=
(x1, z1), ..., (xn, zn), features F , and number of trees in forest, B
for i = 1 to B do

draw a random sample S∗ of size n with replacement from S
while minimum node size not reached do

randomly select f features from F
select a split point among the f features
split the node into two daughter nodes

end while
add constructed tree, Ti to forest, A

end for
return A

are generated using a Monte Carlo based sampling approach. In order to increase the330

accuracy of the surrogate in particular to the regions being explored during the opti-331

mization process further mooring designs are added to the training set and the surrogate332

is retrained periodically in what is known as the growing set approach (Kourakos and333

Mantoglou 2009).334

Though artificial neural networks (ANNs) currently receive much attention in the335

research literature, there are many problem types where a random forest (RF) is better336

suited. Prior to building a model, however, it is often difficult to identify which machine337

learning approach is best suited to a problem a priori (Olaya-Maŕın, Mart́ınez-Capel,338

and Vezza 2013). Extending the ‘no free lunch theorem’ implies that though ANNs are339

effective for solving a particular problem does not demonstrate that they will efficiently340

solve all problems (Wolpert and Macready 1997; Wolpert 1995; Murphy 2012). For the341

present work, an RF has been deployed, as it is an effective technique for a wide range of342

problem types with relatively few tunable hyper parameters. This means, that from an343

implementation perspective, the RF is one of the easiest to set-up and get useful results344

from (Statnikov, Wang, and Aliferis 2008; Ahmad, Mourshed, and Yacine 2017). Though345

the RF has been deployed here, the modular nature of the method allows an alternate346

machine learning method to be implemented with minimal changes to the structure of347

the tool.348

3.3 Genetic Algorithm349

Genetic algorithms represent a family of biologically inspired population based meta-350

heuristic optimization algorithms that borrow ideas from natural evolution as observed351

in biological systems (Holland 1992). Both genetic algorithms and evolutionary algo-352

rithms in general operate on biological analogies based on evolution. As these types of353

algorithms consider a set of potential solutions each iteration rather than a single solu-354

tion, they are further classed as population-based. Evolutionary algorithms are commonly355

applied to a wide array of engineering optimization problems due to its generalized form356

which allows the same strategy to be applicable to a wide range of different problems.357

These algorithms are unable to guarantee that the true global optima is found, how-358

ever, they generally converge to a high quality solution in an acceptable runtime (Burke359

and Kendall 2013; Rao 2009; Mitchell 1998). These algorithms are therefore only imple-360

mented when the size of the search space or the complexity in the objective space make361

it infeasible to deploy traditional optimization algorithms.362

Classical optimization strategies are generally limited to continuous, differentiable ob-363

jective functions. Due to their complexity, simulation based objective functions such as364
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those relating to real-world engineering optimization problems, e.g. the mooring system365

optimization problem, are therefore better solved by heuristics and metaheuristic algo-366

rithms such as the genetic algorithm (Rao 2009). Figure 3 illustrates the relationship367

between the time complexity of an optimization problem and the selection of the correct368

solution approach. As indicated in this figure, as the complexity increases, heuristics369

and metaheuristics become the algorithms of choice as these allow solutions to be found370

within acceptable timescales without requiring full enumeration.371

Time used by exact methods

Acceptable

running time

Complexity of the formulation

(in scope and detail)

Use decomposition,

reformulation, etc...

Use heuristics/

metaheuristics

Use standard

solvers

Figure 3.: Depending on the complexity of the model at hand and the time required to
execute the optimization method, different algorithm types can be more appropriate to
the problem.

In a GA, the candidate solutions within the population are formulated such that the372

combination of the decision variables are considered a genome which defines the indi-373

vidual solutions. In keeping with the evolutionary analogy, each solution is assigned a374

fitness by the evaluation functions with higher fitness values resulting in a higher prob-375

ability of contributing genetic material towards new candidate solutions. Poor solutions,376

as judged by the evaluation functions, are therefore assigned lower fitness scores and377

therefore are less likely to have traits which are passed on to the next generation. The378

flowchart in fig. 1 shows the steps of a GA in blue. After selecting pairs of individuals379

among the population to reproduce (i.e. to generate new candidate solutions), the pair380

undergoes what is referred to as crossover. During crossover, the two parent solutions381

are combined in such a way that two new solutions are generated, each with approxi-382

mately 50% of their genome being defined by each parent. In order to ensure that the GA383

does not prematurely converge to a local solution, a mutation operator is used to ran-384

domly alter the child solutions. This process is repeated until the solutions converge, or385

there is insufficient diversity within the remaining population for the process to continue386

effectively.387

In the present implementation, a uniform crossover operator is deployed with a Gaus-388

sian mutation operator. Uniform crossover uses a fixed probability (50% in the present389

work) to determine which of the parents contributes a given gene to the child solutions.390

The Gaussian mutation operator uses a Gaussian distribution to alter a given gene if391

that gene is undergoing mutation (Beyer et al. 2002). Uniform crossover is selected as392

it ensures that the crossover process does not suffer from positional bias (Spears and393

Jong 1995). The Gaussian mutation operator is one of the simplest to implement, and is394

generally seen as a quick and effective means of applying mutation (Cazacu 2017). This395
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combination of operators which are commonly deployed in tandem, work as an effective396

means of ensuring that all possible solutions within the solution space are obtainable397

during the optimization process regardless of the initialization or the convergence of the398

algorithm. This helps stave off premature convergence and aids in preserving diversity399

within the population.400

In multi-objective optimization, the optimizer seeks to identify a set of solutions401

which highlight the trade-off between the competing objectives (Deb 2001). Most multi-402

objective optimization approaches combine the competing objectives in such a way that403

the problem can be treated as a single objective problem using traditional approaches,404

however, in doing so much of the problem complexity and nuance is often lost. True405

multi-objective optimization is not simply an extension of single-objective optimization,406

but requires additional considerations in order to simultaneously address the various407

competing objectives. In a true non-trivial multi-objective optimization problem with408

conflicting objectives, there is not a single solution which simultaneously optimizes all409

of the objectives, but a Pareto front which represents the trade-off between the compet-410

ing objectives (see fig. 4). While an optimization algorithm applied to a single-objective411

optimization problem seeks to identify a single solution representing the global optima,412

a multi-objective optimization algorithm seeks instead to identify this Pareto front of413

potentially an infinite number of solutions. In the event that the objectives do not com-414

pete, but are rather complimentary, then a Pareto front will not be realized, as from the415

optimizer perspective, the problem reduces to a single objective problem.416

Figure 4.: Illustration of a Pareto front with dominated and non-dominated solutions for
a case of two objectives both of which are to be minimized. The non-dominated solutions
(red circles) are explicitly better in at least one objective and no worse in the others.
For example in this figure solutions A and B lie on the Pareto front, while solution C
is dominated by other solutions on the Pareto front and therefore not a member of the
non-dominated set.

NSGA-II developed by Deb (2001); Deb and Pratap (2002) is a multi-objective genetic417
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algorithm (MOGA) which uses a sorting algorithm to identify fronts of non-dominated418

solutions. NSGA-II is similar to the canonical GA, but differs by using a sorting algo-419

rithm to identify fronts of non-dominated solutions which is combined with a diversity420

preservation measure referred to as the crowding distance. The non-dominated fronts421

are ranked for use in a tournament selection in which the crowding distance is used as422

a tie breaker in the event that the two individuals in the tournament have the same423

non-dominated front (Deb 2001; Deb and Pratap 2002; Burke and Kendall 2013; Brown-424

lee 2011). From here, standard crossover and mutation operations are used. The full425

NSGA-II methodology is well described in Deb and Pratap (2002) and Deb (2001). In426

the present implementation of NSGA-II, the parameters given in table 2 are used. In427

this implementation there are two crossover and mutation rates applied. The first set,428

those for the entire genome reflect the probability that the individual is subjected to429

crossover or mutation respectively while the second set, those for an individual gene (i.e.430

decision variable), reflect the probability, given that crossover or mutation occurs, that431

an individual decision variable is crossed-over or mutated.432

Table 2.: Genetic Algorithm Parameters

Parameter Value

Population Size 200
Number of Generations 50
Crossover Operator Uniform
Mutation Operator Gaussian
Probability of Crossover (Genome) 0.9
Probability of Crossover (Gene) 0.5
Probability of Mutation (Genome) 0.1
Probability of Mutation (Gene) 0.05
Elitism Implicit to NSGA-II

The parameters used in the present implementation which are given in table 2 have433

been selected using a combination of recommendations from Grefenstette (1986); Deb434

and Pratap (2002) and from preliminary tuning of the algorithm. The current parameters435

are found to work well for the present problem, and as they are in line with general rules436

of thumb for GA parameters will likely be suitable for a wide range of problems, however,437

the parameters will be impacted by the specific problem at hand and should be tuned438

for the specific implementation of and problem instance.439

3.4 Anomaly Detection and Retraining the Surrogate Model440

In order to ensure that the surrogate model remains relevant to the region of the search441

space being explored by the optimizer, additional solutions are added to the training set442

(growing set approach) and the model is periodically retrained (Kourakos and Mantoglou443

2009; Ong, Nair, and Keane 2003). Often, retraining of surrogates is done to augment the444

training set with solutions in the area of interest (i.e. near the Pareto front) in order to445

improve the quality of solutions in this region of the search space. Alternatively, however,446

retraining can be done to improve the surrogate’s performance more evenly across the447

entire search space by using samples across the space when growing the training set. In448

the present work, increasing the size of the training set was done with two goals in mind:449

1) increasing the surrogate’s accuracy across the entire search space and 2) increasing450

the applicability of the surrogate by adding designs to the mooring system to ensure that451

the surrogate is always interpolating and not extrapolating.452
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Following each generation of the GA, the solutions estimated by the surrogate model453

are analysed using a local outlier factor (LOF) method which identifies potential outliers454

in a dataset based on a local density measure (Breunig et al. 2000; Chandola, Banerjee,455

and Kumar 2009). LOF is a proximity-based anomaly detection algorithm which oper-456

ates by comparing the local deviation of a sample with respect to its neighbours (Breunig457

et al. 2000). LOF operates by comparing the distance between a sample and its nearest458

neighbours in order to establish a density, samples which have substantially lower densi-459

ties than their neighbours are classed as outliers. In this case, the density is defined by a460

local reachability density (lrd) of a point. The reachability distance (dr) and the lrd are461

given by eqs. (6) and (7) respectively.462

dr(p, o) = max[dk(o), d(p, o)] (6)

lrd(p) =

∑
o∈N (p)

dr(p, o)

|N (p)|
(7)

These metrics are then combined to compute the LOF of a sample:463

LOF (p) =

∑
o∈N (p)

lrd(o)

lrd(p)

|N (p)|
(8)

where dk(o) is the distance from o to its k-th nearest neighbour, d(p, o) is the true464

distance between p and o, N (p) is the set of nearest neighbours to p, dr represents the465

reachability distance. LOF values of approximately 1 indicate that a sample is comparable466

to its neighbours while values below 1 represent inliers, and values above 1 represent the467

outliers.468

Individuals which are classed as potential outliers are added to the training set and469

the surrogate model is retrained. In this way, as the GA proceeds, the training set from470

which the surrogate model is built continues to grow and covers an increasing portion471

of the search space. This ensures that the surrogate model is interpolating rather than472

extrapolating thereby reducing potential errors. Though the surrogate will still struggle473

with outliers, and solutions surrounding the limits of the surrogate, the use of retraining474

should keep these475

Furthermore, every five generations 10% of the population is selected at random for476

inclusion in the training set, ensuring that not only are the extent of the model improving477

through the inclusion of outliers, but the surrogate also improves across the entire search478

space. A random subset of the population rather than those closest to the Pareto front479

are selected as this ensures that the surrogate has an equal probability of improving480

throughout the search space rather than intensifying the search only in one particular481

region of the space potentially leading to premature convergence to a local solution.482

Retraining the model in this way comes at increased computational expense as ad-483

ditional solutions must be assessed using OrcaFlex and the training itself must also be484

completed at regular intervals. A preliminary sensitivity study in the development stages485

of this methodology found that without the retraining, the final solutions were infe-486

rior unless a much larger initial training set was used. The net computational cost to487
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achieve solutions of similar quality was therefore similar, however, using the retraining488

allowed the algorithm to adaptively select solutions to include in the training set thereby489

providing the maximum gain.490

4. Case Study491

4.1 Case Description492

Continuing with the case study used for Pillai, Thies, and Johanning (2017, 2018b), the493

Offshore Code Comparison and Collaboration Continuation (OC4) semi-submersible de-494

signed for offshore wind turbines is modelled for deployment at Wave Hub. The OC4495

semi-submersible is defined in Robertson, Jonkman, and Masciola (2014) and the hydro-496

dynamic data is distributed as part of NREL’s FAST software package. A schematic of497

the OC4 semi-submersible is shown in fig. 5. The conditions at Wave Hub are defined by498

long term measurements in Pitt, Saulter, and Smith (2006) and shown in table 4. Using499

extracts from the DTOcean Database, a range of chains and polyester ropes between500

24 mm to 200 mm were provided to the OrcaFlex model and the optimizer (see table 3).501

These represent the materials and sizes likely to be deployed for offshore renewable energy502

applications (JRC Ocean 2016; Weller et al. 2014).503

Table 3.: Available Line Types – Data from JRC Ocean (2016)

Material Diameter MBL Mass Axial Stiffness Cost
[mm] [MN] [kg m−1] [MN] [£m−1]

Chain 24 0.48 12.36 58.18 23.80
Chain 32 0.83 22.18 103.42 42.70
Chain 84 5.16 154.55 712.66 201.48
Chain 105 7.70 240.00 1113.53 312.89
Chain 152 14.43 480.00 2333.50 625.78
Chain 200 24.98 876.00 4040.00 920.11
Polyester 52 0.83 2.06 Variable 15.24
Polyester 104 3.07 7.30 Variable 54.02
Polyester 152 6.36 15.20 Variable 103.36
Polyester 192 10.10 24.08 Variable 156.52

Table 4.: Wave scatter table for Wave Hub site (Pitt, Saulter, and Smith 2006)

Wave Period, Tz [s]
4 6 8 10 12

S
ig

.
w

a
v
e

h
e
ig

h
t,

H
s

[m
]

6.5 - - 9 - -
5.5 - - 62 27 -
4.5 - 9 114 27 -
3.5 - 280 298 27 -
2.5 96 1253 298 27 -
1.5 1813 1945 298 35 9
0.5 1436 693 18 - -

To demonstrate the capabilities of this optimization framework, relatively small train-504

ing sets of 500 feasible mooring designs and approximately 2000 infeasible mooring de-505
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Figure 5.: DeepCwind floating wind system used as part of the Offshore Code Comparison
Collaboration Continuation (OC4) project (Robertson, Jonkman, and Masciola 2014).

signs were used to train the classification and regression forests. Based on Oshiro, Perez,506

and Baranauskas (2012) the forests were designed to contain between 64 and 128 trees.507

A standard cross-validated grid search was deployed to determine the optimal number508

of trees in the forest on each occasion that the random forest was trained (Rao 2009;509

Müller and Guido 2016). In general, the greater the number of trees in the forest, the510

better the quality of the fit, however, this comes at an increase in the processing time511

required to construct the random forest estimator and to use the forest to estimate. Sen-512

sitivity studies into the number of trees in a random forest have found that for a range of513

problems, implementing beyond 128 trees offers diminishing returns Oshiro, Perez, and514

Baranauskas (2012).515

4.2 Results516

The final generation of feasible solutions from execution of the surrogate-model based517

multi-objective genetic algorithm are shown in fig. 6 with solutions of interest highlighted.518

These solutions of interest, the minimum cumulative fatigue damage, minimum cost,519

and a compromise solution are described in tables 5 to 7 respectively. Figure 7 explores520

the knee of this curve showing the solutions which simultaneously best minimize both521

solutions representing an equal priority between the two objectives.522

Following 50 generations of the optimization, the surrogate models had classification523

ROC AUC of 0.862 and an outright accuracy of 0.998. The regression model had an R2
524

of 0.915. These results indicate that through the use of this hybrid surrogate model for525

constraint satisfaction and for output feature values achieves high accuracy.526

Though metrics such as the mean averaged error (MAE) and root mean squared error527
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Figure 6.: Feasible solutions following final generation of optimization showing the trade-
off between the mooring system cost and the cumulative fatigue damage; minimum cost
and minimum fatigue solutions highlighted.
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Figure 7.: Focus on solutions at the knee of the trade-off curve after the final generation
of the optimization, highlighting the wide range of cost levels for any given fatigue.

(RMSE) are commonly used, we use the root mean square logarithmic error (RMSLE)528

here. The RMSLE is given by eq. (9).529

18



July 27, 2018 Engineering Optimization 20180627-MooringOptimizationML˙v3

Table 5.: Numerical result - minimum fatigue damage

Line Anchor
distance [m]

Anchor
direction [◦]

Line length
[m]

Line type

1 122 242 119 192 mm polyester
1 32 32 mm chain
2 379 10 340 32 mm chain
3 358 121 338 192 mm polyester
3 17 200 mm chain

Table 6.: Numerical result - minimum cost

Line Anchor
distance [m]

Anchor
direction [◦]

Line length
[m]

Line type

1 120 239 13 152 mm polyester
1 159 24 mm chain
2 172 353 208 24 mm chain
2 25 32 mm chain
3 200 119 254 24 mm chain

Table 7.: Numerical result - knee

Line Anchor
distance [m]

Anchor
direction [◦]

Line length
[m]

Line type

1 183 239 18 152 mm polyester
1 212 24 mm chain
2 172 358 236 24 mm chain
3 200 135 252 24 mm chain

RMSLE =

√√√√ 1

n

n∑
i=1

[
ln(hi + 1)− ln(ĥi + 1)

]2
(9)

where there n samples, hi is the true value of sample i and ĥi is the predicted value530

of sample i using the surrogate model. The RMSLE differs from the RMSE in that the531

RMSLE applies the natural logarithm to both the predicted and true values prior to532

computing the root mean square error. This is done to balance the impact of both big533

and small predictive errors. Especially given the different scales on which the output534

features operate, it was felt that using the MAE or RMSE would cause any errors in535

the cost estimate to dominate the error function and therefore give a biased measure536

of the error. The RMSLE avoids this and allows the error to convey greater meaning537

on the performance of the surrogate. Even in the event that all the output features are538

normalized to similar scales, the RMSLE still has the advantage over the MAE and539

RMSE in that it is not biased by the sizes of the error.540
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Table 8.: Surrogate Model RMSLE

Output Feature RMSLE

Line 1 Cumulative Fatigue 0.60
Line 2 Cumulative Fatigue 2.91
Line 3 Cumulatiev Fatigue 1.26
Cost 1.88
Overall 1.87

4.3 Comparison to Direct Optimization541

The surrogate assisted optimization methodology developed in this paper seeks to offer542

an improved means of optimizing the mooring designs of offshore renewable energy de-543

vices. In order to demonstrate the value of this approach, a comparison against direct544

optimization using NSGA-II has been completed.545

The final Pareto front from executing the surrogate assisted optimization routine as546

described above is shown again against the results following 9 generations of direct opti-547

mization. Unfortunately, due to the increased computational complexity incurred when548

executing the direct optimization, it was not possible to execute the optimization for the549

same number of generations in a sensible time scale. From these results, it can be seen550

that in a fraction of the time (see table 9); the surrogate model can evaluate significantly551

more mooring systems, identifying a superior Pareto front. Furthermore, the best solu-552

tions with respect to the fatigue damage are an order of magnitude lower when using553

the surrogate assisted model as a result of the more complete optimization that can be554

achieved for a given computational effort. As the surrogate assisted solutions dominate555

the direct optimization results, with respect to aiding decision making, the surrogate556

assisted results will be of greater value.557
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Figure 8.: Comparison of feasible solutions identified by direct optimization and surrogate
assisted optimization routines.
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Table 9.: Time Complexity of Surrogate Model

Relative Time

Surrogate (No-Retraining) 1
Surrogate (With Retraining) 17
Direct Optimization 1938

5. Discussion558

The presented work has detailed a new time efficient approach for the multi-objective559

optimization of mooring systems for renewable energy systems. This implementation of560

a trained random forest to replace the time-intensive time-domain simulations generally561

used in the design process reduces the average time required to evaluate a single mooring562

design (including time spent retraining the surrogate) from 692.2 s to 6.1 s running on an563

Intel Xeon E5440 rated at 2.83 GHz with 16 GB RAM representing a time reduction on564

the order of 114. This is a marked improvement over the traditional design approaches565

especially considering the high level of accuracy in both the classifier’s ability to identify566

if solutions are compliant with respect to the constraints, and the regressor’s ability to567

determine the cost and cumulative fatigue damage. In fact, without implementation of568

the surrogate assisted framework, a direct NSGA-II based optimization routine exceeds569

30 h in evaluating and evolving each generation of solutions while the surrogate assisted570

framework requires on average approximately 15 min.571

In fig. 6, the minimum cost solution and minimum fatigue solution are both highlighted.572

These solutions represent the extents of the Pareto front and can be thought of as the573

solutions to the single objective optimization problems along either of these objectives.574

From the shape of the curve it is apparent that the two objectives are indeed competing,575

however, there are a high density of solutions near the knee of the curve that may576

potentially represent a good compromise solution between the two extremes. In fact,577

though the minimum cost solution coincides with the maximum fatigue damage solution,578

there are many solutions of similar cost values at significantly lower fatigue levels.579

Figure 7 highlights the solutions of the final population located at the knee of the580

Pareto front. This figure shows more solutions than just the Pareto front highlighting581

that there is a wide range of cost levels for a given fatigue level. This is important582

information for a decision maker as it indicates that the overall cost of the mooring583

system can be changed, however, if the high fatigue lines or components are not altered,584

it may not impact the overall cumulative fatigue damage.585

The result described in table 5 minimizes the fatigue loading by increasing the length586

of the heavily loaded line, line 2, utilizing a long catenary chain thereby reducing the587

fatigue damage by reducing the tension experienced relative to the MBL. Furthermore,588

compared to the lower cost solutions, greater lengths of polyester are used throughout589

the mooring system and a much larger mooring footprint is required as a result of the590

longer catenary moorings.591

Exploring the other extreme, the minimization of the system’s material cost as shown592

in table 6 reduces the use of polyester lines in favour of chain constructions. Further-593

more, the mooring lines are shorter, and anchors moved closer to the platform for a594

smaller footprint. Though this significantly reduces the cost, the fatigue levels are also595

significantly increased.596

The ‘compromise’ solution detailed in table 7 represents an attempt at trying to balance597

the two objectives. In this case, the knee of the curve is targeted trying to find a solution598

which most equally balances the two objectives. This solution similar to the low cost599

solution, however, makes use mooring lines in order to reduce the fatigue with limited600
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impact in cost. If the relevant mooring system designer had a different prioritization of601

the objectives, then an alternate design from the non-dominated front would prove to be602

more important, however, this is specific to the relative importance of the objectives to603

the mooring system designer.604

Though the RF has been deployed to develop the present surrogate, the present frame-605

work can be used in future work to benchmark different machine learning algorithms for606

this specific application allowing the most suitable surrogate to be deployed.607

6. Conclusion608

The results presented indicate that for the present case study, the surrogate assisted609

optimization methodology is an effective means of mapping the design space and subse-610

quently of optimizing the mooring system with a reduction of the time required on the611

order of 114 times. The surrogate model can in this case accurately estimate the features612

of interest to sufficient accuracy to provide useful information to the optimization pro-613

cess. The use of two separate models, one for the classification of solutions as feasible or614

infeasible had an outright accuracy of 0.998 indicating high reliability of the classifier.615

The use of both a classifier and a regression model ensures that the regression is only616

done for valid solutions, and the deployment of an anomaly detection algorithm helps in617

the identification of outliers which should be added to the training set to improve the618

performance of the surrogate. This works to orient the surrogate so that it has a relevant619

scope for interpolation and is not forced to extrapolate predictions which has helped the620

regression model achieve an RMSLE across all output features of 1.87.621

The multi-objective approach implemented here does not identify a single optima for622

the given problem, but aids in decision making by presenting the trade-off between623

competing objectives. The results from using this methodology must then be assessed by624

a decision maker in order to determine where along the proposed Pareto front they wish625

to operate. The case study presented therefore only presents a series of solutions which626

from an optimization perspective are of equal value.627

Though a large training set is used and significant time is required to generate this628

training set, once this information is compiled for a given device and site, the optimization629

process simply augments to this. As a result, though there could be further improvements630

with regards to the time efficiency of the overall procedure, the present methodology631

does demonstrate how a random forest based surrogate model could be integrated with632

a genetic algorithm in order to aid in the design and optimization of mooring systems633

for floating offshore renewable energy devices.634

Future work using this framework can directly aid in the design of mooring systems for635

prototype devices considering deployment at test facilities such as FaBTest, WaveHub,636

or EMEC. Furthermore it can be used to explore the impact of novel mooring line637

materials which have been designed for offshore renewable energy applications. It should638

also be noted, that the results presented here represent the outputs from a single run639

in order to establish the capabilities and applicability of the developed methodology.640

Given the reduction in computational time through the deployment of this methodology641

it is reasonable to expect that when utilizing this methodology for real design problems642

multiple runs or a larger population size are used in order to avoid any seeding bias of643

both the GA and the surrogate’s training set.644

Nomenclature645

Dc Cumulative fatigue damage646
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Dc Cumulative fatigue damage647

Dt Fatigue damage during time t648

Fs Factor of safety649

K Material fatigue parameter derived from S-N or T-N curve650

LOF Local outlier factor651

MBLl,a Minimum breaking load at position a along mooring line l652

N(S) Number of stress cycles653

P (s) Probability of occurrence of sea state s654

S Stress amplitudes established in the rainflow cycle count655

T Expected operational lifetime of the mooring system656

αl The decision variables for the horizontal distance between the platform and the657

anchor attached to mooring line l658

β Material fatigue parameter derived from S-N or T-N curve659

ĥi Estimated value of sample i660

A The set of available line constructions661

C The set of available chains (a subset of A)662

Gl The set of nodes along mooring line l that are in contact with the seabed during663

the dynamic simulation664

L The set of mooring lines665

N (p) Set of nearest neighbours to p666

S The set of sea states667

φl Initial heading of mooring line l668

τd Simulation duration669

θl The decision variables representing the angle between the platform and the anchor670

attached to mooring line l671

c(yl,i) Unit cost of a mooring line construction672

d True distance between two points673

dk Distance to k-th nearest neighbour674

dr Reachability distance675

f1 Cumulative fatigue damage objective function676

f2 Material cost objective function677

hi True value of sample i678

lrd Local reachability distance679

n Number of samples680

s A specific sea state in set S681

vl,a The minimum vertical distance between position a along mooring line l and the682

seabed683

xl The decision variables relating to the section lengths in mooring line l684

yl The decision variables relating to the material of each section in mooring line l685

z Target output features686
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