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Abstract 
Less than half of the original two million square kilometers of the Cerrado vegetation 
remains standing, and there are still many uncertainties as to how to conserve and prior- 
itize remaining areas effectively. A key limitation is the continuing lack of geographically- 
extensive evaluation of ecosystem-level properties across the biome. Here we sought to 
address this gap by comparing the woody vegetation of the typical cerrado of the Cer- 
rado–Amazonia Transition with that of the core area of the Cerrado in terms of both tree 
diversity and vegetation biomass. We used 21 one-hectare plots in the transition and 18 in 
the core to compare key structural parameters (tree height, basal area, and above-ground 
biomass), and diversity metrics between the regions. We also evaluated the effects of tem- 



 

 

perature and precipitation on biomass, as well as explored the species diversity versus bio- 
mass relationship. We found, for the first time, both that the typical cerrado at the transition 
holds substantially more biomass than at the core, and that higher temperature and greater 
precipitation can explain this difference. By contrast, plot-level alpha diversity was almost 
identical in the two regions. Finally, contrary to some theoretical expectations, we found no 
positive relationship between species diversity and biomass for the Cerrado woody vegeta- 
tion. This has implications for the development of effective conservation measures, given 
that areas with high biomass and importance for the compensation of greenhouse gas 
emis- sions are often not those with the greatest diversity. 
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Introduction 

As many as two hundred studies recognize the South American Cerrado savannas as a 
global center of diversity, largely on the basis of its 12,000-plant species which include 
many endemics (e.g. Mendonça et al. 2008; Brazilian Flora 2016). A likely driver of this 
high species richness is the heterogeneity of landscapes found within this region (Felfili   
et al. 2005a; Mendonça et al. 2008). While the importance of this biodiversity has been 
recognized for at least two decades (e.g., Ratter et al. 1997; Silva and Bates 2002; Klink 
and Machado 2005; Kier et al. 2005; Silva et al. 2006; BFG 2015), the importance of the 
Cerrado for ecosystem services such as carbon storage and hence climate mitigation is less 
appreciated (Grace et al. 2006), and the number and size of conservation units are still 
insufficient to avoid biodiversity losses (Françoso et al. 2015). In addition to establishing  
a more complete network of conservation areas covering the whole region, Bridgewater   
et al. (2004) also recommended a complementary regional focus to guarantee the adequate  

protection of geographical variations in species. Less than half the two million square 
kilometers originally occupied by the Cerrado are now intact (Sano et al. 2010; Lahsen    
et al. 2016); thus, understanding the distribution of remaining species diversity and carbon 
stocks within this region represents an urgent challenge for its conservation. 

Most biodiversity and ecosystem ecology work in the Cerrado has focused on the core 
region, often relatively close to major population and academic centers such as Brasília 
(Federal District). The greatest research deficits lie well to the north and west of here 
(Miranda et al. 2014). In particular, while an extensive and complex transition exists 
between the Cerrado and the Amazon Forest (Ratter et al. 1973; Marimon et al. 2006, 
2014), no study has yet compared the transitional vegetation with that of the core region 
using the standardized, fixed-area and quantitative inventory protocols required for a robust 
analysis of most ecosystem properties. Indeed, there has been little large-scale evaluation 
of structural ecosystem-level properties at all across the Cerrado. In particular, for the key 
parameters of tree size, basal area and biomass—and hence above-ground carbon stor- 
age—the only studies we are aware of that included transition zone sites were based on 
only one or two sites. Yet, taking the published evidence together (Felfili et al. 1992; Cas- 
tro and Kauffman 1998; Marimon-Junior and Haridasan 2005; Kunz et al. 2009; Marimon 
et al. 2014), it appears that the trees of the savanna formations in the Cerrado–Amazonia 
Transition might have greater basal area or biomass than similar formations in the core 
region of the Cerrado. Understanding how above-ground biomass varies among different 
areas of Cerrado and how this parameter responds to environmental and geographic factors 
will help reduce uncertainties in estimating carbon stocks and may contribute to greater 
reliability in conservation policies formulation. Forest biomass, for example, may be partly 
driven by climatic factors, such as precipitation and temperature (Silvertown et al. 1994; 
Larjavaara and Muller-Landau 2011), and topography, through its effects on water table 
levels (Fonseca and Silva Júnior 2004). Yet, this correlation may sometimes be weak and 
dependent on vegetation type (Stegen et al. 2011), while for the Cerrado core region the 
above-ground biomass of typical cerrado species may even be negatively correlated with 
precipitation (Miranda et al. 2014). 

More generally, there are reasons to expect transition and core regions to differ eco- 
logically beyond considerations of mean climate conditions. For  example,  the  transi- 
tion can have suboptimal environmental conditions relative to the core of the adjacent 
ecosystems, potentially reducing species richness (van der Maarel 1990). For similar 
reasons, the center-periphery hypothesis predicts that, due to harsher environmental 



 

 

conditions, peripheral populations should be smaller, less abundant and more frag- 
mented, resulting in reduced demographic performance and genetic variation (Pironon     
et al. 2016). This would lead to the communities at the core being more stable and struc- 
turally distinct, while the more unstable and fluctuating environments at the transition 
select for species and genotypes able to tolerate more variable conditions (Hardie and 
Hutchings 2010). Alternatively, Kark and van Rensburg (2006) suggested that precisely 
because populations in transitional regions are likely to include a wide range of taxa 
adapted to environmental instability, this would in fact result in them having greater 
species richness, and the potential to become centers for speciation. 

These intriguing but conflicting viewpoints emphasize the potential existence of 
different patterns of diversity within the same biome, which need to be considered to 
develop effective conservation measures. In the specific case of the Cerrado, the picture 
remains unclear with respect to large-scale diversity patterns. Some studies have sug- 
gested that the core region of the Cerrado has relatively high species richness, due to its 
proximity to the center of species dispersal, whereas more peripheral regions are likely    
to be poorer in species despite the influence of adjacent biomes (Eiten 1972; Fernandes 
and Bezerra 1990; Rizzini 1997; Castro et al. 1999). However, others have taken the   
view that the Cerrado–Amazonia Transition should have greater species richness than   
the core region, driven by their proximity to Amazonia (Ratter et al. 1973,  2003; Felfili   
et al. 2002; Marimon et al. 2006, 2014). In parallel to the gap in Cerrado center–periph- 
ery studies noted above, what has been lacking so far is an evaluation of basic patterns    
of tree diversity using adequately replicated and fully standardized quantitative invento- 
ries across the biome. 

While a better understanding of the distribution of plant diversity and biomass, and their 
environmental drivers across the Cerrado is necessary for adequate conservation planning, 
evaluating the diversity–biomass relationship itself is also important, both for the mitiga- 
tion of climate change and for biodiversity conservation. A positive diversity–biomass rela- 
tionship would indicate useful synergies between the goals of biodiversity protection and 
climate protection, while a negative one implies that difficult trade-offs become necessary 
(Gardner et al. 2012). Several experimental studies elsewhere show that enhanced plant 
diversity can promote higher productivity and biomass, via mechanisms that include niche 
partitioning and species interactions that allow diverse communities to exploit resources 
more efficiently (e.g. Cardinale et al. 2012; Ruiz-Benito et al. 2014). However, within 
savanna ecosystems the covariation between ecosystem diversity and carbon properties    
is largely unstudied. Therefore, whether such mechanisms and relationships matter in the 
Cerrado, and any possible implications for conservation strategies, remains unknown. 

Here, to help address these uncertainties in the geographical pattern, environmental 
drivers, and potential associations between Cerrado diversity and biomass, we conduct a 
large-scale analysis of these properties using distributed and standardized fixed-area quan- 
titative ecological sampling plots. First, we investigate whether or not the structure and 
diversity of arboreal vegetation of the typical cerrado physiognomy (sensu Ribeiro and 
Walter 2008, a mixed arboreal-shrub vegetation with cover up to 50%) varies significantly 
between the Cerrado–Amazonia Transition and the core region. We then set out to evaluate 
the effects of potential climate drivers on typical cerrado structure, and the potential inter- 
action between biomass and diversity. Our working hypotheses are (i) that the typical cer- 
rado vegetation of the Cerrado–Amazonia Transition has greater basal area, biomass, and 
species diversity than at the core region, (ii) that biomass is influenced by climatic factors, 
such as precipitation and temperature, and (iii) that biomass is positively associated with 
diversity, independently of the potential influences of climate on biomass. 



 

 

Materials and methods 

Study areas 
 

We used data from standardized floristic and  phytosociological  surveys  conducted  
across the central portion of  the Cerrado (core  area—CA)  and  the Cerrado–Amazo-  
nia Transition (TR), i.e., the ecotone between the two largest biomes in South America 
(Fig. 1, Table S1). We  used a zone of 150 km from the line that delimits the Cerrado    
and Amazonia to define the TR (IBGE 2004; Ivanauskas et al. 2008). We analyzed data 
from 39 permanent one-hectare plots installed in typical cerrado (cerrado stricto sensu) 
vegetation, 21 located in the TR and 18 in the CA (Fig. 1). We established plots in con- 
servation units or in legal reserves of private properties in the Brazilian Federal District 
(CA), the Brazilian states of Mato Grosso (TR),  Tocantins  (CA),  Bahia  (CA),  Goiás 
and Minas Gerais (CA), and in the Noel Kempff National Park in Bolivia (TR) (Fig. 1; 
Table S1). At each site, we selected the largest and best-preserved remnants of natural 
vegetation, within which we established plots randomly. In these areas, mean annual 
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Fig.	1	Geographic location of 39 one-hectare plots of typical cerrado in the core area of the Cerrado (brown 
circles) and at the Cerrado–Amazonia Transition (green circles) in South America. Shading indicates the 
ranges of Cerrado and Amazonia. Lines represent country boundaries. (Color figure online) 
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precipitation varied almost twofold from 1043 to 1951 mm, and mean temperatures also 
ranged widely, from 19.3 to 26.9 °C (WorldClim 1.4; Hijmans et al. 2005). 

 
Data collection 

 
We identified and measured the diameter and total height of all woody plants with a diam- 
eter of at least 10 cm at a height of 30 cm from the ground, following standard protocols 
used in the Amazon forest (Phillips et al. 2010) and Cerrado (Felfili et al. 2005b). We iden- 
tified species through comparison with voucher material available in herbaria, and consul- 
tation with specialists. The nomenclature was based on APG III (2009) and we confirmed 
the species names and synonymies using the Brazilian Flora (2016), with the flora package 
in the R environment (R Core Team 2018). We deposited botanical specimens in the per- 
manent collections of Herbário NX (UNEMAT—Nova Xavantina campus, MT), Herbário 
UB (University of Brasília), Herbário IBGE (Brazilian Institute of Geography and Sta- 
tistics), Herbário CEN (Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF) and 
Herbario del Oriente Boliviano (USZ). 

For each plot we calculated tree density (individuals/ha), mean tree height (m), mean 
tree diameter (cm), total basal area (m2 ha−1) and total above-ground biomass (Mg ha−1), 
which were used as structural parameters of the vegetation. We estimated tree height from 
tree diameter for 10 of the TR plots using the model: 

H = a × 
.
1 − e−b×D 

Σ
, 

where a, b and c are parameters of model and D is the tree diameter (Feldpausch et al. 
2012). To assess the adequacy of this model, we compared height measurements from 
3657 trees collected in the field with their estimated heights. The correlation between the 
field data and estimated heights was significant (r = 0.59, p < 0.01). We calculated above- 
ground biomass (hereafter biomass) from tree diameter using the Schumacher-Hall model: 

Y = þ0Dþ1 Hþ2 s, 
where β0, β1, β2 are model parameters, D is tree diameter (at 30 cm from the ground), H   
is tree height and ε is the random error term (Schumacher and Hall 1933), with parameter 
values developed specifically for species of the typical cerrado physiognomy (β0 = 0.03047, 
β1 = 2.27159, β2 = 0.89748; Rezende et al. 2006). 

For each plot, we calculated species richness, Shannon information index (H′) (Shannon 
1948), Fisher’s log series α (Fisher et al. 1943) and Pielou’s evenness (J′) (Pielou 1969), 
which were used as diversity parameters (Magurran 2004). We also calculated, for each 
plot, the species richness rarefied to the same number of individuals in the smallest sample, 
i.e., 169 individuals based on the plot with the smallest number of trees (Hurlbert 1971). 
All diversity parameters were calculated with the package vegan (Oksanen et al. 2017). 

 
Statistical analyses 

 
To evaluate associations within structural and diversity parameters, we used the Pearson 
correlation coefficient. We assessed differences between CA and TR in structural and 
diversity parameters of the vegetation using boxplots and t-tests and, when such differences 
existed, we used Bayesian model averaging to identify the most important predictors of the 
two regions. In this analysis, structural and diversity parameters were used as explanatory 
variables and region (CA and TR) as the response variable. Bayesian model averaging, 



 

 

an extension of the usual Bayesian inference methods, models both parameter and model 
uncertainty using Bayes’ theorem to produce parameter and model posteriors and, thus, 
allows for model selection by full enumeration of the model space when the number of 
predictors is not large (Hoeting et al. 1999; Fragoso et al. 2018). We conducted Bayesian 
model averaging with the BMS package (Zeugner and Feldkircher 2015). 

To assess differences in the total (regional) pool of species between CA and TR, we 
built individual-based and sample-based species accumulation curves (Gotelli and Colwell 
2001). Further, to account for unseen species in our collection of sampled plots, we used 
abundance-based and incidence-based non-parametric estimators of species richness (Col- 
well and Coddington 1994; O’Hara 2005). Abundance-based estimators (Chao1 and ACE) 
were applied to the total counts of species in each region (CA vs. TR), while incidence- 
based estimators (Chao, Jacknife1, Jacknife2 and Bootstrap) were applied to the species 
frequencies in the plots for each region. Species accumulation curves and non-parametric 
estimators were calculated with the vegan package (Oksanen et al. 2017). 

To investigate the relationships between biomass, diversity and climate, we used a mod- 
ification of Bayesian model averaging to address model uncertainty in the presence of spa- 
tial autocorrelation, due to the inherent spatial dependencies among the observations (Leg- 
endre 1993). In this analysis, the spatial dependencies among observations are removed 
through a semiparametric spatial filtering approach based on selected eigenvectors 
extracted from the spatial weight matrix (Tiefelsdorf and Griffith 2007). Considering the 
important effects that uncertainty in the type of spatial weight matrix (neighborhood rela- 
tionships) can have on model parameter estimates, the spatial Bayesian model averaging 
method addresses both the uncertainty over model specification and the uncertainty regard- 
ing the choice of neighborhood relationships in the spatial regression model (Cuaresma 
and Feldkircher 2013). We implemented spatial Bayesian model averaging using package 
spatBMS (Feldkircher 2010), using 106 iterations, 105 burn-in draws, the reversible-jump 
model-sampler algorithm, and default settings for the other parameters. We used eight dif- 
ferent spatial weight matrices—k nearest-neighbors (k = 1, 2, 4 and 6), Delaunay’s triangu- 
lation, Gabriel graph, relative neighbor graph, and sphere of influence graph—built with 
package spdep (Bivand et al. 2013, Bivand and Piras 2015). To assess the adequacy of the 
spatial filtering, we compared P-values of the Moran’s I (Moran 1950a, b) test for spatial 
autocorrelation obtained from the 100 best models versus 100 ordinary least-squares mod- 
els using the same predictors. 

In the spatial Bayesian model averaging analysis, we used biomass as the response, 
and diversity and climate parameters as predictors. Prior to analysis, we selected diver- 
sity parameters based on a variance inflation factor (VIF) maximum threshold score of      
4 (Quinn and Keough 2002), using package usdm (Naimi et al. 2014). This resulted in 
only species richness and Pielou’s evenness being retained for analysis (results not shown). 
Further, we incorporated tree density and the distance from each plot to the line separat- 
ing Amazonia from the Cerrado (IBGE 2004) as additional predictors, to control for any 
effects these parameters might have on biomass. We also ran a bivariate regression for both 
regions combined (CA and TR) to evaluate the relationship between biomass and climate 
parameters. The climate parameters consisted of temperature and precipitation, obtained 
from WorldClim 1.4, with a resolution of 30 s (Hijmans et al. 2005) and edited in the raster 
package (R Core Team 2018). 

One TR plot (TR16—Table S1), located within a protected area, had exceptionally  
high biomass (outlier) possibly due to the long-term protection from disturbances such as 
fire. The vegetation in this area is becoming denser and shifting from a savanna-like into   
a woodland physiognomy (Morandi et al. 2016), even though the habitat is still clearly 



 

 

consistent with that of the typical cerrado (Marimon-Junior and Haridasan 2005; Marimon 
et al. 2014). We retained this plot because it demonstrates the importance and effect of the 
establishment of protected areas but, to avoid potentially undesirable effects, we removed it 
from all regression analyses involving biomass. 

 
Results 

Vegetation structure 
 

Summaries of vegetation structure parameters from each plot are in Table S2. Overall, the 
strongest correlations were between tree basal area versus biomass, followed by density 
versus biomass (Fig. S1). Tree height and total biomass were significantly higher in TR 
plots (Table 1, Fig. S2). There were no differences between CA and TR plots in tree den- 
sity, diameter and basal area (Table 1, Fig. S2). Bayesian model averaging indicated that, 
by and large, tree height was the best predictor of CA and TR plots: it had the largest 
standardized coefficient, with a 95% credibility interval that did not include zero, and the 
largest posterior inclusion probability (Table 2). Further, in all models containing height its 
coefficient was positive, indicating larger values in the TR, and the top model, including 
just height, concentrated 26% of the posterior model probabilities (Fig. 2). The remaining 
predictors had much lower standardized coefficients and posterior inclusion probabilities. 
The second-best model, including height and diameter, concentrated an additional 21% of 
the posterior model probabilities, with the contribution of remaining models being much 
smaller (Fig. 2). In all but one model containing diameter, its coefficient was negative. Bio- 
mass, which had the second largest standardized coefficient, behaved similarly with a nega- 
tive coefficient in all but one model (Table 2, Fig. 2). This indicates that, after accounting 
for differences in height, tree diameter and biomass are smaller in TR plots. 

 
 
Table	1	Summary statistics of vegetation structure and diversity parameters for 39 one-hectare plots of typ- 
ical cerrado in the core region of the Cerrado and at the Cerrado–Amazonia transition 

 

Parameter Core area (n = 18) Transition (n = 21) t p 

Vegetation structure     

Density (individuals ha−1) 304.3 ± 71.7 355.5 ± 152.3 − 1.372 0.181 
Height (m) 4.5 ± 0.5 5.8 ± 0.5 − 8.454 < 0.001 
Diameter (cm) 14.4 ± 0.7 14.9 ± 1.6 − 1.155 0.258 
Basal area (m2 ha−1) 5.6 ± 1.7 6.9 ± 3.1 − 1.590 0.122 
Above-ground biomass (Mg ha−1) 20.4 ± 6.5 32.4 ± 16.5 − 3.052 0.005 

Vegetation diversity     
Species richness 45.6 ± 11.4 45.6 ± 12.0 − 0.004 0.997 
Rarefied species richness 37.4 ± 7.3 37.0 ± 8.3 0.162 0.872 
Shannon information index (H′) 3.0 ± 0.4 3.1 ± 0.4 − 0.945 0.351 
Fisher’s log-series α 15.3 ± 4.5 14.4 ± 4.3 0.641 0.525 
Pielou’s evenness (J′) 0.80 ± 0.07 0.83 ± 0.05 − 1.606 0.117 

Values indicate mean± one standard deviation and t test statistics. Tree height and diameter represent plot 
means, whereas basal area and above-ground biomass represent plot totals. n number of plots sampled 



 

 

Table	2	Bayesian model averaging of vegetation structure parameters for 39 one-hectare plots of typical 
cerrado in the core region of the Cerrado and at the Cerrado–Amazonia transition 

 

Parameter PIP PostMean PostSD CondPosSign 95% PostCI 

Height (m) 1.000 0.874 0.161 1.000 0.3691 to 0.7576 
Diameter (cm) 0.386 − 0.067 0.129 0.067 − 0.1642 to 0.0798 
Density (individuals ha−1) 0.301 0.094 0.222 1.000 − 0.0005 to 0.0038 
Above-ground biomass (Mg ha−1) 0.274 − 0.142 0.395 0.136 − 0.0743 to 0.0088 
Basal area (m2 ha−1) 0.235 0.035 0.365 0.520 − 0.1935 to 0.3599 

PIP posterior inclusion probabilities, i.e., sum of posterior model probabilities for all models wherein a 
predictor was included, PostMean standardized coefficients averaged over all models, PostSD standard 
deviations of standardized coefficients, CondPosSign sign certainty, i.e., posterior probability of a positive 
coefficient expected value conditional on inclusion, 95% PostCI 95% credibility interval of the posterior 
probability distribution. Tree height and diameter represent plot means, whereas basal area and above- 
ground biomass represent plot totals 
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Fig.	2	Bayesian model averaging of vegetation structure parameters for 39 one-hectare plots of typical cer- 
rado in the core region of the Cerrado and at the Cerrado–Amazonia transition. The Y-axis contains the 
predictors of core versus transition plots, while the X-axis is scaled by the posterior model probabilities. 
Colors indicate predictor inclusion in each of the 32 models assessed (the full set of possible models). Posi- 
tive coefficients are indicated by blue, negative coefficients by red, and white indicates non-inclusion of the 
respective predictor. (Color figure online) 



 

 

Vegetation diversity 
 

We recorded 233 species in all plots combined, with 177 in the CA plots and 172 in the 
TR plots. Summaries of vegetation diversity parameters from each plot are in Table S2. 
The individual-based and  sample-based  species  accumulation  curves  indicated  that  
the CA has a larger species pool than the TR (Fig. 3). Likewise, all abundance-based     
and incidence-based non-parametric estimators indicated larger species richness in the  
CA (Table S3). Except for Pielou’s evenness (J′), the correlations between all diversity 
parameters were high (Fig. S3). There were no differences between CA and TR plots       
in tree diversity parameters (Table 1, Fig. S4). Overall, these results indicate higher 
regional diversity in the CA, but no differences in local (plot) diversity between CA and 
TR. 

 
 
 
 
 
Fig.	3	Individual-based (top) and 
sample-based (bottom) species 
accumulation curves for trees 
from 39 one-hectare plots of 
typical cerrado in the core region 
of the Cerrado and at the Cer- 
rado–Amazonia transition. The 
continuous lines represent the 
mean and the shaded areas the 
95% confidence interval 
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Table	 3	 Spatial Bayesian model averaging of tree above-ground biomass versus diversity and climate 
parameters for 39 one-hectare plots of typical cerrado in the core region of the Cerrado and at the Cerrado– 
Amazonia transition 

 

Parameter PIP PostMean PostSD CondPosSign 95% PostCI 

Density (individuals ha−1) 1.000 0.697 0.111 1.000 0.4914 to 0.9210 
Species richness 0.462 − 0.133 0.171 0.000 − 0.5038 to 0.0910 
Pielou’s evenness (J′) 0.273 0.037 0.084 0.916 − 0.0628 to 0.2583 
Temperature (°C) 0.198 0.026 0.079 1.000 − 0.1237 to 0.2532 
Precipitation (mm) 0.174 0.009 0.052 0.816 − 0.1109 to 0.1772 
Distance to transition boundary (km) 0.148 0.002 0.057 0.485 − 0.1660 to 0.2192 

PIP posterior inclusion probabilities, i.e., sum of posterior model probabilities for all models wherein a 
predictor was included, PostMean standardized coefficients averaged over all models, PostSD standard 
deviations of standardized coefficients, CondPosSign sign certainty, i.e., posterior probability of a positive 
coefficient expected value conditional on inclusion, 95% PostCI 95% credibility interval of the posterior 
probability distribution. Above-ground biomass represents plot totals. Distance to transition boundary rep- 
resents linear distance from each plot to the line separating Amazonia from the Cerrado (IBGE 2004) 

 
 

Relationships between biomass, diversity and climate 
 

The spatial Bayesian model averaging analysis indicated that the spatial weight matrix 
based on the Gabriel graph had the highest posterior model probability (48.3%). By and 
large, tree density was the single best predictor of plot biomass: it had the largest standard- 
ized coefficient, with a 95% credibility interval that did not include zero, and the largest 
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Fig.	4	Spatial Bayesian model averaging of tree above-ground biomass, diversity and climate parameters 
for 39 one-hectare plots of typical cerrado in the core region of the Cerrado and at the Cerrado–Amazonia 
transition. Above-ground biomass represents plot totals. Distance to transition boundary represents linear 
distance from each plot to the line separating Amazonia from the Cerrado (IBGE 2004). The Y-axis con- 
tains the predictors of total tree above-ground biomass in plots, while the X-axis is scaled by the posterior 
model probabilities. Colors indicate predictor inclusion in each of the 32 models assessed. Positive coeffi- 
cients are indicated by blue, negative coefficients by red, and white indicates non-inclusion of the respective 
predictor. (Color figure online) 
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posterior inclusion probability (Table 3). In all models containing density, its coefficient 
was positive and the top model, including just density, concentrated 21% of the posterior 
model probabilities (Fig. 4). The remaining predictors had much lower standardized coeffi- 
cients and posterior inclusion probabilities. The second-best model, including density, rich- 
ness, and evenness, concentrated an additional 17% of the posterior model probabilities, 
with the contribution of remaining models being much smaller (Fig. 4a). In all models 
containing species richness, the second-best predictor, its coefficient was negative (Table 3, 
Fig. 4a). The importance of the remaining predictors was much smaller. The incorporation 
of eigenvectors in the analysis successfully removed the spatial autocorrelation from the 
regression residuals (Fig. 4b). Summing up, the results indicate that after accounting for 
differences in density, species richness and biomass tend to be negatively correlated in the 
study plots. The results of bivariate regression indicated that, when evaluated separately, 
temperature is a good positive predictor of the biomass (r2 = 0.21, p < 0.01; Fig. S5). 

 
Discussion 

 
We found that plots in typical cerrado vegetation of the Cerrado–Amazonia Transition 
(TR) had much greater biomass (58% more) than those of the core area (CA) of the Cer- 
rado. By contrast, species richness and diversity are similar between the TR and CA. We 
also find that for typical cerrado trees there is no systematic relationship between species 
diversity and biomass. Thus, our first hypothesis, which suggested that the cerrados of the 
TR have greater tree size and ecosystem biomass and greater species diversity than the  
CA cerrados, was partly corroborated, given that only the structural variables differed as 
predicted. Our second hypothesis was supported, given that the climatic variables predict 
biomass. The species diversity–biomass relationship was weak and, if anything, negative, 
meaning that the third hypothesis was rejected. These findings are discussed in more detail 
below, together with an assessment of the implications for conservation. 

 

Structure 

The biomass and tree height in typical cerrado plots in the transition (TR) were all sig- 
nificantly greater than those recorded in the core area (CA) and in previous studies spread 
in the Cerrado biome (Castro and Kauffman 1998; Vale and Felfili 2005; Rezende et al. 
2006; Paiva et al. 2011; Miranda et al. 2014). Several small-scale (1 hectare) local stud- 
ies in single sites within the TR had already indicated that the cerrados of this zone may 
have greater basal area than those of the more central regions of the Cerrado biome (Felfili 
et al. 2002; Marimon-Junior and Haridasan 2005; Kunz et al. 2009; Marimon et al. 2014). 
However, this is the first time that a biome-scale study, which compares different regions 
directly with multiple, replicated plots, has detected such a pattern. The factors that affect 
the variation in biomass are discussed below. 

From a conservation perspective, the clear structural differences between TR and CA 
cerrados are a new find, which has important implications. While the vegetation is defined 
as typical cerrado (Ribeiro and Walter 2008) in both cases, the unique structural character- 
istics found in each region should be considered for the development of habitat manage- 
ment practices. In other words, a conservation unit that protects typical cerrado in the core 
area will likely not be representative of the same physiognomy in the Cerrado–Amazonia 



 

 

Transition. This reinforces the position of Primack and Rodrigues (2001), who argued that 
conservation units should encompass physiognomies that are representative of environ- 
ments on a wide geographic scale. In the specific case of the Cerrado–Amazonia Transi- 
tion, the region also coincides with that of the ‘arc of deforestation’ (Fearnside 2005; Mari- 
mon et al. 2014), where the landscape is dominated by agricultural frontiers, reinforcing 
the urgent need for the establishment of conservation units in this big region. In this con- 
text, the maintenance of private reserves is also an important strategy to conserve portions 
of cerrado along its wide geographic distribution. 

The maps available on the site of the Mato Grosso State Environment Secretariat 
(SEMA: http://www.sema.mt.gov.br/) show that the unique state conservation unit of the 
TR that include Cerrado vegetation are all part of Mortes-Araguaia river basin, which is 
subject to seasonal flooding (Marimon et al. 2015). In the Araguaia State Park for example, 
the predominant physiognomy is the murundus grassland, in which patches of typical cer- 
rado are found only on the higher terrain, which is free of seasonal flooding. Throughout 
the state there is no fully protected area within a 200 km distance of the established limit 
between the Cerrado and Amazon biomes (IBGE 2016) in which the predominant vegeta- 
tion is typical cerrado not subject to seasonal flooding (SEMA 2016). Given that TR cerra- 
dos are structurally different from those found in the CA, it is important to establish typical 
cerrado conservation units within the non-flooded areas of the TR. 

 
 

Species diversity 
 

While several previous studies have indicated that the typical cerrados of the TR have 
greater species diversity per unit area (alpha diversity) than those of the core area (Felfili 
et al. 2002; Ratter et al. 2003; Bridgewater et al. 2004), this was clearly not the case in   
our study in which well replicated, quantitative ecological sampling was conducted across 
both TR and CA. We conclude that tree species diversity does not vary notably between 
the central and outer regions of the Cerrado, even in the TR, where the contribution of the 
Amazonian flora increases (Eiten 1972; Ratter et al. 1973, 2003; Castro et al. 1999; Felfili 
et al. 2002; Bridgewater et al. 2004; Marimon-Junior and Haridasan 2005). 

In a recent study it was stated that there is a greater overlap of species in the central por- 
tion of the Cerrado, which is reflected in higher species richness in the core area than in the 
border (Françoso et al. 2016). However, that study may have been influenced by sampling 
gaps, as the TR was under-represented. In addition, the above study was based on binary 
presence-absence data, which may not be sufficiently robust given that population size is an 
important aspect of species diversity, and a fundamental parameter for the development of 
conservation measures (Felfili et al. 2005a; Mews et al. 2014). 

While our results indicate that alpha diversity did not vary between the CA and TR, 
there is a suggestion that beta diversity was higher in the CA, possibly due to the more sta- 
ble climate in this area (Werneck et al. 2012) which would be reflected in increased niche 
specialization (Moldenke 1975). Even so, neither our study nor previous work using differ- 
ent methods (Eiten 1972; Fernandes and Bezerra 1990; Rizzini 1997; Castro et al. 1999) 
strongly suggests that the TR is relatively species-poor or less diverse than the central area 
of the Cerrado. Marimon et al. (2014) observed that the vegetation of the transition zone, 
in addition to being hyperdynamic, is in disequilibrium, and Werneck et al. (2012) sug- 
gested that the lower diversity in the transition zone may reflect this instability. However, 
the instability normally observed in ecotones (e.g. van der Maarel 1990; Werneck et al. 



 

 

2012; Pironon et al. 2016) does not appear to have affected tree species richness and diver- 
sity in the TR. For all these reasons, it is essential to consider both the TR and CA when 
designing conservation units, to guarantee the preservation of intrinsic vegetation prop- 
erties of each region. As agricultural frontiers are still rapidly advancing within the TR 
(Marimon et al. 2014), the complete absence of conservation units in typical cerrados is a 
significant concern. 

 

Determinants of biomass variation 

In our study, tree density was the most important predictor of biomass variation. In other 
studies, precipitation and temperature were determinants of biomass in South African 
savannas (Scholes et al. 2002). In contrast with our results, however, Miranda et al. (2014) 
found a negative correlation between biomass and precipitation levels, albeit in an analy- 
sis in which the TR was under-represented. Moreover, none studies referred here has used 
density as predictor of biomass. 

Miranda et al. (2014) however suggest that biomass was greater in areas with reduced 
seasonality, which may also be relevant to the present study, given that TR cerrados are 
located in a region where the mean annual precipitation (1659 mm) is approximately     
200 mm (14%—Table S1) higher than that in the CA (1446 mm), and seasonality is less 
pronounced (Keller-Filho et al. 2005; Alvares et al. 2013). This reinforces the effect of its 
proximity to the Amazon Forest (Felfili et al. 2002; Marimon-Junior and Haridasan 2005; 
Torello-Raventos et al. 2013), which may impact tree growth. Additionally, if we consider 
the results of the bivariate regression models, temperature and precipitation have a direct 
effect on biomass, with the TR contributing most to this tendency. 

 

Diversity–biomass relationships and implications for conservation 
 

We observed no positive diversity versus biomass relationship across all plots. It is nota- 
ble that the lack of correlation between biomass and diversity metrics remains despite the 
fact that only biomass is associated with temperature and to precipitation, and this clearly 
argues against their being a positive effect of tree species diversity on carbon storage within 
the Cerrado. It is interesting to note that these findings parallel a recent report from across 
the tropical moist forest biome (i.e., Amazonia, Africa, Southeast Asia), for  which there  
is also no detectable relationship between community diversity and carbon storage except 
at the very smallest scales (0.04 ha) (Sullivan et al. 2017). Torello-Raventos et al. (2013), 
analyzing the structural and floristic data from three continents, observed that there is not 
necessarily a congruence between floristic and structural groupings for vegetation types in 
the forest-savanna transition zone. Therefore, to the extent that positive diversity-function 
mechanisms and relationships might exist, within the two largest tropical biomes on Earth 
they do no translate into a significant effect on carbon storage. 

As a practical consequence, it cannot be assumed that efforts made to conserve the 
diversity of typical cerrado will have clear co-benefits (cf. Day et al. 2013) for climate 
protection, since the areas with higher diversity do not necessarily coincide with those with 
highest biomass. According to Gardner et al. (2012), when this relationship is inverse or 
nonexistent, as in the case of the Cerrado, then decisions on the conservation of carbon 
stocks or species diversity will imply difficult trade-offs for institutions responsible for the 



 

 

conservation of biodiversity and the reduction of greenhouse gases. For the Cerrado the 
implications seem clear—it is necessary to carefully design a biome-wide conservation 
network that can protect both high levels of species diversity and also store large stocks of 
carbon, and not assume that protection for one purpose automatically guarantees the other. 
As we have already argued, there is clearly now a deeply concerning gap in the protec- 
tion of TR cerrado. Furthermore, the similar tree species richness and diversity observed in 
the typical cerrado of the CA and TR, together with the greater tree heights and biomass in 
the TR, are consistent with the notion that populations of transition zones may be better 
adapted to environmental instability and impacts, and would be more capable of persisting 
through periods of climate change (Kark and van Rensburg 2006), were they to survive 
direct removal as part of Brazil’s agricultural revolution. While the high environmental 
heterogeneity of the Cerrado (Felfili et al. 2005a; Mendonça et al. 2008; BFG 2015) can- 
not be overlooked in the planning of the network of conservation units (Bridgewater et al. 
2004), it is clearly vital to increase protection of the TR, threatened as it is by intense 
anthropogenic pressures that may provoke the disappearance of this unique and valuable 
environment. 
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Table S1 Codes and location of typical cerrado plots analyzed in the core region of the Cerrado (CA) and at the Cerrado-Amazonia transition 
(TR). The abbreviations for plot codes follow the www.forestplots.net database. Elev = elevation (m); Temp = mean annual temperature (ºC); 
Prec = annual precipitation (mm); Long, Lat: longitude and latitude (decimal degrees). DF = Federal District, and States: BA = Bahia, GO = 
Goiás, MT = Mato Grosso, MG = Minas Gerais, TO = Tocantins, SC = Santa Cruz. 

 
Plot Code Municipality State-Country Source Elev Temp Prec Long, Lat 
CA01 AGE-01 Brasília DF-Brazil Felfili et al. (2004) 884 21.5 1396 -15.517, -47.617 
CA02 ATP-01 Alto Paraíso de Goiás GO-Brazil Felfili et al. (2004) 760 23.3 1682 -14.000, -47.333 
CA05 CE-76 Campos Altos MG-Brazil Françoso et al. (2016) 1189 19.3 1548 -19.630, -46.266 
CA06 CRR-01 Correntina BA-Brazil Felfili et al. (2004) 723 24.0 1043 -13.517, -45.367 
CA07 FNI-01 Cristalina GO-Brazil Munhoz et al. unpublished data 907 21.5 1300 -16.512, -47.552 
CA08 GNS-01 Goianésia GO-Brazil Felfili et al. (2004) 656 24.1 1426 -15.267, -48.667 
CA09 GSV-01 Formoso MG-Brazil Felfili et al. (2004) 744 23.1 1181 -15.167, -45.750 
CA10 LST-01 Cristalina GO-Brazil Munhoz et al. unpublished data 1103 21.0 1366 -16.726, -47.688 
CA11 MAN-01 Campos Lindos TO-Brazil Haidar et al. (2013) 523 24.9 1648 -11.430, -47.698 
CA12 PAL-01 Aurora do Tocantins TO-Brazil Haidar et al. (2013) 525 25.8 1628 -12.700, -46.340 
CA13 PCV-01 Alto Paraíso de Goiás GO-Brazil Felfili et al. (2004) 810 23.8 1693 -13.833, -47.400 
CA14 PNT-01 Planaltina DF-Brazil Munhoz et al. unpublished data 975 21.8 1429 -15.601, -47.659 
CA15 PRT-01 Paracatu MG-Brazil Felfili et al. (2004) 611 23.4 1274 -17.000, -46.750 
CA16 PTC-01 Patrocínio MG-Brazil Felfili et al. (2004) 933 21.9 1473 -18.783, -46.333 
CA17 RDV-01 São Desidério BA-Brazil Felfili et al. (2004) 826 24.2 1617 -12.750, -45.941 
CA18 SON-01 Mateiros TO-Brazil Haidar et al. (2013) 538 24.8 1372 -10.599, -46.574 
CA19 SRM-01 Minaçu GO-Brazil Walter et al. unpublished data 398 25.6 1492 -13.567, -48.233 
CA20 TOC-02 Palmeirópolis TO-Brazil Haidar et al. (2013) 694 24.3 1653 -13.001, -48.534 
TR01 AGB-01 Água Boa MT-Brazil Felfili et al. (2002) 287 25.5 1529 -13.833, -52.000 
TR02 CNR-01 Canarana MT-Brazil Felfili et al. unpublished data 352 25.2 1589 -13.250, -51.833 
TR03 FAG-01 Sorriso MT-Brazil Lima et al. unpublished data 367 25.0 1895 -12.459, -55.723 
TR04 FAP-01 Cocalinho MT-Brazil Lima et al. unpublished data 237 26.1 1543 -14.049, -51.452 
TR05 FAR-03 Nova Xavantina-MT MT-Brazil Lima et al. unpublished data 273 25.5 1510 -14.600, -51.933 
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TR06 FFY-01 Campo Verde MT-Brazil Lima et al. unpublished data 624 22.4 1706 -15.363, -55.191 
TR07 FGR-01 Campo Novo do Parecis MT-Brazil Lima et al. unpublished data 474 24.0 1951 -13.701, -57.599 
TR08 FPC-01 Lucas do Rio Verde MT-Brazil Lima et al. unpublished data 354 25.0 1841 -13.150, -55.646 
TR09 FRF-01 Santa Rita do Trivelato MT-Brazil Lima et al. unpublished data 338 24.2 1700 -13.867, -55.077 
TR10 FRI-01 Água Boa MT-Brazil Lima et al. unpublished data 346 25.1 1505 -14.264, -52.381 
TR11 FRP-02 São Félix do Araguaia MT-Brazil Marimon et al. unpublished data 251 26.8 1657 -11.240, -51.690 
TR12 FRX-01 Nova Nazaré MT-Brazil Lima et al. unpublished data 291 25.9 1542 -13.874, -51.661 
TR13 FSJ-01 Querência MT-Brazil Marimon et al. unpublished data 335 25.0 1600 -13.145, -52.252 
TR14 GAU-03 Gaúcha do Norte MT-Brazil Marimon et al. unpublished data 336 24.4 1685 -13.478, -53.353 
TR15 LFB-03 Parque Nacional Noel Kempff SC-Bolivia Torello-Raventos et al. (2013) 463 24.0 1439 -14.600, -60.849 
TR16 NXV-01 Nova Xavantina MT-Brazil Marimon-Jr and Haridasan (2005) 312 24.9 1508 -14.708, -52.352 
TR17 POA-02 Porto Alegre do Norte MT-Brazil Marimon et al. unpublished data 288 26.7 1766 -10.796, -51.822 
TR18 SAT-02 Santa Terezinha MT-Brazil Marimon et al. unpublished data 216 26.9 1830 -10.399, -50.642 
TR19 SMT-01 Ribeirão Cascalheira MT-Brazil Torello-Raventos et al. (2013) 332 25.8 1603 -12.819, -51.770 
TR20 SMT-03 Ribeirão Cascalheira MT-Brazil Torello-Raventos et al. (2013) 316 25.9 1599 -12.835, -51.766 
TR21 SOR-01 Sorriso MT-Brazil Marimon et al. unpublished data 386 25.0 1841 -12.804, -55.976 
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Table S2 Structural and diversity parameters for 39 one-hectare plots of typical cerrado in 
the core region of the Cerrado (CA) and at the Cerrado-Amazonia transition (TR). N = tree 
density; D = mean tree diameter (cm); H = mean tree height (m); BA = total tree basal area 
(m².ha-1); AGB = above-ground biomass (Mg.ha-1); S = species richness; H’= Shannon 
information index; a = Fisher’s log-series alpha; J’ = Pielou’s evenness. 
Plot N D H BA AGB S H’ a J’ 
CA01 362 14.4 4.6 6.6 25.2 44 3.1 13.2 0.81 
CA02 198 13.9 4.9 3.3 12.4 46 3.2 18.8 0.85 
CA05 350 14.5 4.8 6.3 25.2 37 2.9 10.5 0.81 
CA06 215 14.5 4.7 4.0 15.3 42 3.3 16.0 0.88 
CA07 308 13.7 4.0 4.9 15.8 30 2.0 8.2 0.59 
CA08 350 13.7 4.6 5.6 19.1 55 3.3 18.3 0.82 
CA09 274 16.0 4.6 6.4 25.3 45 3.2 15.3 0.83 
CA10 294 14.3 3.4 5.4 16.5 31 2.2 8.7 0.65 
CA11 324 15.2 5.2 6.8 31.1 57 3.4 20.2 0.84 
CA12 437 14.9 3.7 8.4 24.9 69 3.4 23.1 0.81 
CA13 353 14.1 5.0 6.1 25.2 60 3.3 20.8 0.80 
CA14 351 14.6 3.7 6.6 21.0 41 2.9 12.0 0.79 
CA15 226 14.0 5.1 3.9 16.1 40 2.9 14.1 0.79 
CA16 179 13.4 4.2 2.8 8.9 34 3.0 12.8 0.84 
CA17 236 13.8 5.2 3.8 15.0 35 3.0 11.5 0.83 
CA18 315 14.3 4.1 5.5 17.2 38 2.9 11.7 0.78 
CA19 300 14.5 4.5 5.5 19.7 54 3.3 19.2 0.83 
CA20 406 16.0 4.2 9.2 33.5 61 3.3 19.9 0.81 
TR01 302 13.7 4.8 4.9 17.2 49 3.3 16.6 0.84 
TR02 389 13.5 5.2 6.0 23.2 63 3.6 21.3 0.87 
TR03 251 13.0 5.5 3.6 15.1 42 3.0 14.5 0.81 
TR04 276 15.7 6.1 5.9 28.2 37 2.7 11.7 0.74 
TR05 360 15.7 6.0 8.3 45.7 56 3.5 18.9 0.87 
TR06 323 13.8 5.7 5.2 21.9 54 3.6 18.6 0.89 
TR07 330 13.0 5.5 4.7 19.4 54 3.5 18.6 0.87 
TR08 355 12.7 5.4 4.7 18.2 59 3.4 20.2 0.84 
TR09 301 13.8 5.7 4.9 21.1 48 3.1 16.1 0.81 
TR10 303 15.1 5.9 6.2 31.5 33 2.6 9.5 0.74 
TR11 258 15.5 6.2 5.3 25.2 32 2.8 9.7 0.81 
TR12 342 15.0 5.9 6.9 34.3 57 3.7 19.6 0.91 
TR13 269 14.9 5.5 5.1 23.3 32 2.7 9.6 0.79 
TR14 328 15.7 6.4 6.9 34.3 32 2.7 8.8 0.77 
TR15 276 12.6 5.4 3.7 14.1 29 2.7 8.3 0.81 
TR16 978 14.3 6.0 17.5 82.1 73 3.7 18.3 0.87 
TR17 353 17.4 6.4 9.1 47.1 40 3.2 11.6 0.86 
TR18 374 17.0 6.2 9.6 50.3 37 3.1 10.4 0.86 
TR19 401 17.2 6.9 10.2 55.6 46 3.0 13.4 0.78 
TR20 245 17.9 6.0 6.8 34.1 42 3.2 14.6 0.86 
TR21 451 15.0 6.0 8.5 38.1 42 3.1 11.3 0.82 
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Table S3 Observed species richness and abundance-based and incidence-based non- 
parametric richness estimators for tree species from 39 one-hectare plots of typical cerrado in 
the core region of the Cerrado and at the Cerrado-Amazonia transition. Values indicate 
estimate ± one standard error. n: number of plots. ACE: abundance coverage estimator. 
Jack1: first-order jackknife. Jack2: second-order jackknife. Boot: bootstrap. 
Estimator Core area (n = 18) Transition (n = 21) Total (n= 39) 

Observed    

Richness 177 172 233 

Abundance-based    

Chao1 200.9 ± 11.7 186.1 ± 7.8 256.3 ± 11.0 

ACE 200.9 ± 6.9 191.2 ± 6.9 255.6 ± 7.7 

Incidence-based    

Chao 232.1 ± 20.0 198.7 ± 10.7 273.9 ± 14.5 

Jack1 228.0 ± 15.9 213.0 ± 12.2 286.6 ± 12.0 

Jack2 255.1 223.5 305.5 

Boot 200.1 ± 8.8 192.0 ± 6.9 258.8 ± 7.1 
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Captions of the Supplementary Figures. The Figures come down in the same sequence of 
captions. 

 
 

Figure S1 Correlation map between structural parameters for the 39 areas of typical cerrado 
in the core area and Cerrado-Amazonia Transition 

 
 

Figure S2 Comparison of the structural parameters between the plots of the core area of the 

Cerrado (brown box) and Transition (green box) 

 

Figure S3 Correlation map between diversity metrics for the 39 areas of typical cerrado in 
the core area and Cerrado-Amazonia Transition 

 
 

Figure S4 Comparison of the diversity parameters between the plots of the core area of the 

Cerrado (brown box) and Transition (green box) 

 

Figure S5 Bivariate regression among biomass and climate predictors for 39 plots of typical 
cerrado in core area of Cerrado biome (brown box) and in the Cerrado-Amazonia transition 
(green box) 
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