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Abstract. Although piecewise isometries (PWIs) are higher dimensional generalizations
of one dimensional interval exchange transformations (IETs), their generic dynamical prop-
erties seem to be quite different. In this paper we consider embeddings of IET dynamics into
PWI with a view to better understanding their similarities and differences. We derive some
necessary conditions for existence of such embeddings using combinatorial, topological and
measure theoretic properties of IETs. In particular, we prove that continuous embeddings
of minimal 2-IETs into orientation preserving PWIs are necessarily trivial and that any
3-PWI has at most one non-trivially continuously embedded minimal 3-IET with the same
underlying permutation. Finally, we introduce a family of 4-PWIs with apparent abundance
of invariant nonsmooth fractal curves supporting IETs, that limit to a trivial embedding of
an IET.

1. Introduction

Interval exchange transformations (IET) are bijective piecewise translations of an interval
divided into a finite partition of subintervals. Piecewise isometries (PWIs) [17, 18] are
generalizations of IETs to higher dimension where a region is split into a number of convex
sets (usually polytopes) and these are rearranged using isometries. Both IETs and PWIs
arise in a number of applications. For example, PWIs in two dimension have been found in
models used for signal processing and digital filters [5, 14, 15, 22], for Hamiltonian systems
[26, 27], for printing processes [2] or for other types of geometric dynamics [25]. PWIs exhibit
complex and diverse dynamical behaviour that is far less understood than, and quite different
from, that of IETs. There are many results that suggest generic choices of parameters for
IETs give ergodicity while many examples suggest that this is rarely the case for PWIs in
dimension two or more. In this paper, we discuss the general problem of embedding IET
dynamics within PWIs with a particular focus on the regularity of this embedding for two
dimensional PWIs.

IETs were defined by Keane [21] and studied for instance in [3, 10, 16]. Masur and Veech
[24, 28] established unique ergodicity of typical IETs while Avila and Forni [9] showed that
a typical IET is either weakly mixing or an irrational rotation. It is known that IETs (and
suspension flows over IETs with roof function of bounded variation) are not strongly mixing
[13, 20].

We define an IET as in [9] (see also [13, 21]). Let d ≥ 2 be a natural number and let
π be an irreducible permutation of {1, ..., d}, that is, such that π({1, ..., k}) 6= {1, ..., k} for
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1 ≤ k < d. Let µ ∈ Rd
+ and define

(1.1) x0 = 0, xj =

j∑
k=1

µk, 1 ≤ j ≤ d.

We consider an interval I = [x0, xd) partitioned into subintervals Ij = [xj−1, xj) for 1 ≤ j ≤ d.
An interval exchange transformation (more precisely, a d-IET on the interval I) is a pair
(I, fµ,π) where fµ,π : I → I is the bijection that rearranges Ij according to π, that is, the
interval Ij is mapped onto the π(j)-th interval. For x ∈ Ij we write fµ,π(x) = fj(x) where

(1.2) fj(x) = x+ τj,

and τj =
∑

π(k)<π(j) µk −
∑

k<j µk.

We define a two dimensional, orientation-preserving PWI as follows (see [17]). Let r ≥ 2
be a natural number, let X be a subset of R2 (which we parametrize as C) and let P =
{X0, . . . , Xr−1} for r > 1 be a finite partition of X into convex sets (or atoms), that is,⋃

0≤i<rXi = X, and Xi ∩ Xj = ∅ for i 6= j. We say (X,T ) is a piecewise isometry (more
precisely, an orientation preserving d-PWI in two dimensions) if T is such that for z ∈ Xj

we have T (z) = Tj(z) with

(1.3) Tj(z) = eiθjz + λj,

for some θj ∈ [0, 2π) and λj ∈ C, so that T is a piecewise isometric rotation or translation.
There will be a subset of points (maximal invariant set) that remain in X for all forward
iterates under T . Potentially this set could have dimension less than 2. Note that the
restriction of the atoms to the maximal invariant set need not be convex.

Many examples of PWIs have been studied in recent years; for example [11] studied a class
of piecewise rotations on the square and computed numerically box-counting dimensions,
correlation dimensions and complexity of the symbolic language produced by the system.
Adler, Kitchens and Tresser [1] investigated a specific class of nonergodic piecewise affine
maps of the torus and gave a decomposition into three invariant sets whose dynamics is
very different. They showed that the map on one of these invariant set is minimal, uniquely
ergodic and an odometer; they also demonstrated the existence of a full Lebesgue measure set
of periodic points. It was proved by Buzzi [12] that piecewise isometries have zero topological
entropy. Lowenstein and Vivaldi [23] presented a computer-assisted proof for renormalizing
a one-parameter family of piecewise isometries of a rhombus.

In general, for a given PWI it is helpful to define a partition of X into a regular and an
exceptional set [8]. If we consider the zero measure set given by the union E of all preimages
of the set of discontinuities D, then we say its closure E (which may be of positive measure)
is called the exceptional set for the map. The complement of the exceptional set is called
the regular set for the map and consists of disjoint polygons or disks that are periodically
coded by their itinerary through the atoms of the PWI. As an example, in [1] the authors
show for a particular transformation where the rotations are rational, the regular set has
full Lebesgue measure and as a consequence, the exceptional set has zero Lebesgue measure.
However as highlighted in [6] there is numerical evidence that the exceptional set may have
positive Lebesgue measure for typical PWIs. In [19], the author shows that this is the case
for certain rectangle-exchange transformations.
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(a)

(b)

Figure 1. An illustration of the action of a piecewise isometry R (see (5.5)), on the image
of a non-trivial embedding Y =

⋃4
j=1 Yj of a minimal 4-IET. (A) An invariant set Y where

each Yj for j = 1, ..., 4, is contained in a polygon. Points in each polygon are mapped
isometrically by R to a subset of the region {z ∈ C : 0.35 < Im(z) < 0.55}. (B) Image of Y
and the polygons in (A) under R.

Even when the exceptional set has positive Lebesgue measure, as noted in [8] there is
numerical evidence that Lebesgue measure on the exceptional set may not be ergodic - there
can be invariant curves that prevent trajectories from spreading across the whole of the
exceptional set. In [7], a planar PWI whose generating map is a permutation of four cones
was investigated, and coexistence of an infinite number of periodic components and of an
uncountable number of transitive components was proved. On these transitive components
it was noted that the dynamics is conjugate to a transitive interval exchange. In [4, 8],
similar maps were examined and the existence of a large number of these invariant curves,
apparently nowhere smooth, are investigated.

In this paper we consider general properties of an embedding of an IET into a PWI, and
consider conditions for this embedding to be trivial or non-trivial. Our main results are as
follows.

• In Theorem 3.4 we use combinatorial properties of IETs to prove that in order for
a PWI realize a continuous embedding of an IET with the same permutation, its
parameters must satisfy a necessary condition: the parametric connecting equation
(3.10).
• As a consequence of this, Theorem 3.6, states that all continuous embeddings of

minimal 2-IETs are trivial and Theorem 3.7 asserts that a 3-PWI has at most one
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non-trivially continuously embedded minimal 3-IET with the same underlying per-
mutation.
• Given an IET embedded into a PWI we, use the derived tangent exchange map (4.1)

to prove Theorem 4.1, which gives a necessary condition on the parameters of a PWI
such that there is a continuous embedding of an IET into that PWI.

We introduce a specific example T (5.3) of a PWI that has a trivially embedded IET on
the boundary. Considering R, a first return map under T to a subset of the phase space
we observe invariant regions bounded by invariant curves (Figure 7) and perform numerical
experiments to verify the conditions of Theorems 3.4 and 4.1. We introduce a PWI T ′

(see (5.1)) on 3 atoms that apparently exhibits a single invariant curve that is a non-trivial
embedding of a 3-IET into T ′. Using this we make specific conjectures about the nature of
non-trivial embeddings of IETs in PWIs.

This paper is organized as follows. In Section 2 we consider possible embeddings of
a transitive IET into a PWI, and make some definitions regarding their regularity. We
identify trivial cases of embedding as where the image of the embedding is either a union of
lines or of arcs of the same radius. Furthermore, we extend the Rauzy-Veech induction for
IETs to PWIs that admit continuous embeddings of IETs. In Section 3 we introduce some
combinatorial conditions on the embedding of an IET into a PWI and state a necessary
condition for existence of continuous embeddings. Using these techical tools, we prove that
only trivial embeddings of 2-IETs are possible and that a 3-PWI has at most one non-trivially
continuous embedded 3-IET with the same underlying permutation. In Section 4 we turn
to ergodic properties of the embeddings and in Theorem 4.1 give a necessary condition for
embedding in terms of average returns. In Section 5 we introduce concrete examples of PWIs
and show numerical results. We introduce a PWI on 3 atoms, illustrate some examples of
orbits for this piecewise isometry and numerically estimate the parameters of a 3-IET which
is embedded into this PWI. We also introduce a particular planar 4-PWI illustrated in
Figure 4 that is an “IET with a twist”. This transformation has a trivially embedded 2-IET
on a line that we call the baseline and arbitrarily close to this baseline there are non-trivial
rotations. The dynamics of points close to this baseline is remarkably rich. In particular,
numerical simulations suggest that the baseline is an accumulation for non-smooth invariant
curves that are non-trivial embeddings of 4-IETs in the 4-PWI. We illustrate some examples
of orbits for this piecewise isometry and show numerical evidence for abundance of periodic
orbits for certain regions of the parameters. We show that the parameters of this map
satisfy the restrictions from Theorem 3.4. We numerically verify that the condition from
Theorem 4.1 is satisfied. Section 6 is a discussion that considers some open questions and
possible generalisations of these results.

2. Symbolic, topological and differentiable embeddings

In this section we introduce some definitions of various regularity properties that charac-
terize an embedding of an IET into a PWI. The weakest of these is a symbolic embedding.
Furthermore, we extend Rauzy-Veech induction for IETs to PWIs that admit continuous
embeddings of IETs.

Consider a d-IET (I, fµ,π) which we sometimes denote by (I, f) when parameters are clear
from context. For a point x ∈ I we define the itinerary or symbolic encoding of x by the IET
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as

(2.1) i(x) = i0i1 . . . ∈ {1, ..., d}N,
where ik ∈ {1, · · · , d} is such that fk(x) ∈ Ij if and only if ik = j.

Similarly, suppose that (X,T ) is a d-PWI with atoms {Xj}dj=1. We define the itinerary of
a point z ∈ X by the PWI as

(2.2) i′(z) = i′0i
′
1... ⊂ {1, ..., d}N

where i′k ∈ {1, · · · , d} is such that T k(z) ∈ Xj if and only if i′k = j.
We now introduce some definitions that will be used throughout this paper.
An injective map h : I → X is a symbolic embedding of (I, f) into (X,T ) if h(I) ⊂ X is

an invariant set for (X,T ) and there is a numbering of the atoms such that

i′ ◦ h(x) = i(x) for all x ∈ I.
An injective map h : I → X is a piecewise continuous embedding of (I, f) into (X,T ) if

h|Ij is a homeomorphism for each j such that h(Ij) ⊂ Xj and

(2.3) h ◦ f(x) = T ◦ h(x),

for all x ∈ I. In this case note that h(I) ⊂ X is an invariant set for (X,T ).
If (I, f) has a piecewise continuous embedding h into (X,T ) then it is also a symbolic

embedding, but the converse does not necessarily hold (to see this, note that h(I) need not
be closed if it is a disconnected union of disjoint orbits). If h is a piecewise continuous
embedding that is continuous on I, we say it is a continuous embedding, otherwise we say it
is a discontinuous embedding.

We say h is a differentiable embedding if it is a piecewise continuous embedding and h|Ij
is continuously differentiable.

We characterize certain differentiable embeddings as, in some sense, trivial. A piecewise
continuous embedding of (I, f) by h into (X,T ) is a linear embedding if there are zj, vj ∈ C
such that

(2.4) h|Ij(x) = zj + vjx,

for all x ∈ I, and is an arc embedding if there are zj ∈ C, rj > 0 and aj, bj ∈ R such that

(2.5) h|Ij(x) = zj + rj exp[i(ajx+ bj)],

for all x ∈ I. We say an embedding is trivial if it is a linear embedding or an arc embedding,
otherwise it is non-trivial.

Lemma 2.1. For any d-IET (I, f) there exists a trivial continuous embedding h : I → X
of (I, f) into a d-PWI (X,T ), which can be either a linear embedding or an arc embed-
ding. Suppose in addition that (I, f) is minimal. (a) If h is a linear embedding then |vj| is
independent of j. (b) If h is an arc embedding then rj and aj are independent of j.

Proof. Assume without loss of generality that I ⊂ [0, π). Note that there exists a linear
embedding with rectangular atoms such that T (x+ iy) = f(x) + iy, and there exists an arc
embedding such that T (reiθ) = reif(θ) .

We now prove (a) and (b). Fix x ∈ Ip for some p ∈ {1, ..., d}. Since (I, f) is minimal, for

all q ∈ {1, ..., d}\{p} there is a Nq > 0 such that fNq(x) = x+ τ ∈ Iq, with τ =
∑Nq−1

k=0 τik(x).
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We begin by proving (a). Assume that h is a linear embedding of (I, f) into (X,T ) as in
(2.4). We show that |vp| = |vq|. By (1.3), (2.3) and (2.4) we have

(2.6) eiθp(zp + vpx) + λp = zq + vq(x+ τ).

Differentiating (2.6) with respect to x gives eiθqvp = vq, thus |vp| = |vq|.
We now prove (b). Assume that h is an arc embedding of (I, f) into (X,T ) as in (2.5).

We show that ap = aq and rp = rq. Combining (2.3), (2.5) and differentiating with respect
to x we get

irpap exp[i(θp + apx+ bp)] = irqaq exp[i(aqx+ aqτ + bq)],

and taking modulus gives

(2.7) rp|ap| = rq|aq|,
while the argument gives

(2.8) θp + apx+ bp = aqx+ aqτ + bq mod 2π.

Note that (2.8) holds for any x ∈ f−Nq(Iq) ∩ Ip. Since this set contains an interval, (2.8)
must hold for infinitely many values of x, hence we get ap = aq. Together with (2.7) this
shows that rp = rq, completing the proof. �

The next theorem allow us to characterize the existence of continuous or discontinuous
embeddings just in terms of the preimages of interior discontinuities of f .

Theorem 2.2. Assume that (I, f) is a d-IET with intervals Ij = [xj−1, xj) for j = 1, . . . d.
There exists a d-PWI (X,T ), such that (I, f) has a discontinuous embedding into (X,T ) if
and only if

f−1({x1, ..., xd−1}) ∩ {x0, ..., xd} 6= ∅.
Proof. Let I = I1 ∪ ... ∪ Id, with Ij = [xj−1, xj), j ∈ {1, ..., d}.

We begin by proving that if there is j′ ∈ {1, ..., d−1} such that f−1(xj′) ∈ {x0, ..., xd}, then
there exists a d-PWI (X,T ), such that (I, f) has a discontinuous embedding into (X,T ).

By Lemma 2.1 there is a continuous embedding of (I, f) by h′ into a d-PWI (X ′, T ′) with
Y ′ = h(I) ⊂ X ′ invariant set for (X ′, T ′). Note that since this embedding is trivial we can
take X ′ to be a compact set. Therefore it has a finite diameter, which we denote as |X ′|.

Set Y ′j = Y ′ ∩X ′j for j = 1, ..., d and let

Xj =

{
X ′j, if j ≤ j′,

X ′j + 2|X ′|, if j > j′,

with X = X1 ∪ ... ∪Xd. Define the maps

Tj(z) =

{
T ′j(z), if j ≤ j′,

T ′j(z − 2|X ′|) + 2|X ′|, if j > j′.

If T (z) = Tj(z), for z ∈ Xj, with j = 1, ..., d, then (X,T ) defines a d-PWI.
Define the function h : I → X as

h(x) =

{
h′(x), x < xj′ ,

h′(x) + 2|X ′|, x ≥ xj′ .
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Set Y = h(I). The map h : I → Y is bijective and it is simple to check that (I, f) has a
piecewise continuous embedding by h into (X,T ). Moreover, note that the restriction of h
to Ij is continuous for j = 1, ..., d, but h has a discontinuity at x = xj′ . Thus, the embedding
is discontinuous.

Now assume there is no xj ∈ {x1, ..., xd−1} such that f−1(xj) ∈ {x0, ..., xd} and there exists
a d-PWI (X,T ), such that (I, f) has a discontinuous embedding by h into (X,T ).

Since the restriction of h to Ij is continuous for all j = 1, ..., d, the set of discontinuities of h
must be contained in {x1, ..., xd−1}. Assume j′ ∈ {1, ..., d−1} is such that h is discontinuous
at xj′ . Let

zj′ = lim
x→x−

j′

h(x), zj′ = lim
x→x+

j′

h(x)

and l ∈ {1, ..., d} be such that xj′ ∈ f(Il). Set Y = h(I) and Yj = Xj ∩ Y for j = 1, ...d.
Then {zj′ , zj′} ⊂ T (Yl). Since f−1(xj′) /∈ {x0, ..., xd}, we have

T−1({zj′ , zj′}) ∩ {h(x0), ..., h(xd)} = ∅.
Thus there must be an l′ ∈ {1, ..., d} such that {zj′ , zj′} ⊂ Yl′ . Therefore the restriction of

h′ to Il′ must be discontinuous, contradicting h being a piecewise continuous embedding of
(I, f) into (X,T ). This completes the proof. �

We now extend Rauzy-Veech induction (see for instance [9]) for IETs to PWIs that admit
continuous embeddings of IETs. Given a d-IET fµ,π : I → I such that Id 6= f(Iπ−1(d)), we
say that f has type 0 if f(Iπ−1(d)) ⊂ Id and type 1 if Id ⊂ f(Iπ−1(d)). In both cases the largest
interval is called winner and the smallest loser.

Let I ′ be interval obtained by removing the loser from I, that is

(2.9) I ′ =

{
I\f(Iπ−1(d)), if f has type 0,

I\Id, if f has type 1.

The Rauzy-Veech induction of f is its first return map R(f) to I ′, which again is a d-IET.
We can extend this induction procedure to PWIs which admit continuous embeddings of

IETs as follows. Assume (I, f) has a continuous embedding by h into (X,T ). Define the
map S(T ) as the first return map under T to X ′, where

X ′ =

{ ⋃d−1
j=1 Xj ∪ (Xd ∩ T (Xπ−1(d))), if f has type 0,⋃d−1
j=1 Xj, if f has type 1.

(X ′,S(T )) is again a d′-PWI since it is a first return map or a PWI to a convex subset of
X. However it is now possible that d′ 6= d.

We now show that a continuous embedding of (I, f) into (X,T ) also embeds (I ′,R(f))
into (X ′,S(T )).

Theorem 2.3. Assume that a d-IET (I, f), such that Id 6= f(Iπ−1(d)), has a continuous
embedding by h into a d-PWI (X,T ). Then (I ′,R(f)) has a continuous embedding by h into
(X ′,S(T )).

Proof. We prove that for all x ∈ I ′ we have

(2.10) h ◦ R(f)(x) = S(T ) ◦ h(x).
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Assume first that f has type 0. Let I ′j = Ij for j 6= d and I ′d = Id\f(Iπ−1(d)). It is well
known (see [29]) that

(2.11) R(f)(x) =

{
f 2(x), x ∈ I ′π−1(d),

f(x), x ∈ I ′j, j 6= π−1(d).

We now show that we have

(2.12) S(T )(z) =

{
T 2(z), z ∈ h(I ′π−1(d)),

T (z), z ∈ h(I ′j), j 6= π−1(d).

Note that f(I ′j) ⊂ I ′, for j 6= π−1(d). Thus, by (2.3) we have T (h(I ′j)) ⊂ h(I ′), and we get

(2.12) for z ∈ h(I ′j) and j 6= π−1(d).

Since f(I ′π−1(d)) = f(Iπ−1(d)) 6⊂ I ′ and f 2(Iπ−1(d)′) ⊂ f(Id) ⊂ I ′, by (2.3) we have

T (h(I ′π−1(d))) = T (h(Iπ−1(d))) 6⊂ h(I ′) and T 2(h(I ′π−1(d))) ⊂ T (h(Id)) ⊂ h(I ′), and thus

we have (2.12).
Noting that x ∈ Ij if and only if h(x) ∈ h(I ′j), for j = 1, ..., d, and combining (2.3), (2.11)

and (2.12) we get (2.10).
Assume now that f has type 1. Let I ′j = Ij for 1 ≤ j < π−1(d), I ′π−1(d) = Iπ−1(d)\f−1(Id),

I ′π−1(d)+1 = f−1(Id) and I ′j = Ij−1 for π−1(d) + 1 < j ≤ d. It is clear that

(2.13) R(f)(x) =

{
f 2(x), x ∈ I ′π−1(d)+1,

f(x), x ∈ I ′j, j 6= π−1(d) + 1.

By a similar argument it can be proved that

(2.14) S(T )(z) =

{
T 2(z), z ∈ h(I ′π−1(d)+1),

T (z), z ∈ h(I ′j), j 6= π−1(d) + 1.

Since x ∈ Ij if and only if h(x) ∈ h(I ′j), for j = 1, ..., d, combining (2.3), (2.13) and (2.14)
we get (2.10). �

3. Connecting equations and continuous embeddings of 2, 3-IETs

In this section we introduce, a graph for a given permutation. We use its combinatorial
and topological properties to obtain a necessary condition for the parameters of a PWI to
be a continuous embedding of an IET into a PWI described by the same permutation.

We then prove that only trivial embeddings of 2-IETs are possible and that a 3-PWI has at
most one non-trivially continuous embedded 3-IET with the same underlying permutation.

Given an irreducible permutation π of {1, ..., d} and µ ∈ Rd
+, let fµ,π(x) : I → I denote a

minimal IET with I = I1 ∪ ...∪ Id. As before we write f = fµ,π. Recall (1.2). It is clear that
if fj(x) = x+ τj, for x ∈ Ī , and j = 1, ..., d, then f(x) = fj(x), for x ∈ Ij.

We extend π to π(0) = 0 and define f0 as the identity map in I. For j ∈ Z we write [j] = j
mod d+ 1. For xj with 0 ≤ j ≤ d as in (1.1) we have the following

(3.1) fπ−1([j])(x[π−1(j)−1]) = fπ−1([j−1])(xπ−1([j−1])),

where j = 0, ..., d. Note that as the domain of each map fj, j = 0, ..., d is the closed interval
Ī, they are defined at the endpoints xj.
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We now define a directed graph Gπ in d+ 1 vertices v0, ..., vd such that there is an edge

(3.2) vπ−1([i−1]) → vπ−1([j−1])

if π−1([j − 1]) = [π−1(i)− 1], with i, j ∈ {0, ..., d}.
The graph Gπ, as we will shortly see, identifies the end-points of adjacent intervals after

rearrangement by a d-IET with base permutation π. The next proposition characterizes the
topology of Gπ.

Proposition 3.1. Given an irreducible permutation π, the directed graph Gπ is a disjoint
union of directed cyclic subgraphs.

Proof. Since Gπ is a finite graph, it has a finite number of connected components, hence it
suffices to prove that every connected component of Gπ is a cyclic graph.

Consider a vertex vq, with q ∈ {0, ..., d}. There is a unique i0 = [π(q)+1] ∈ {0, ..., d}, such
that π−1([i0−1]) = q. Define the map η : {0, ..., d} → {0, ..., d} as η(n) = π([π−1([n−1])+1]).
Note that η is a bijection, hence i1 = η(i0) is the unique i1 ∈ {0, ..., d} satisfying

π−1([i0 − 1]) = [π−1(i1)− 1].

Thus, there is an edge vq → vπ−1([i1−1]).
We now form a sequence {ik}k∈N where i0 = [π(q1) + 1] and ik = η(ik−1), for k ≥ 1. Since

η is a bijection between finite sets {ik}k∈N, it must be a periodic sequence. If η has period
d+1, then Gπ is a cyclic graph. Otherwise, η has period p ≤ d. This implies that the vertices
vn, for n ∈ {ik}0,...,p−1 and the edges connecting them form a connected and directed cyclic
subgraph. Since the point q ∈ {0, ..., d} was chosen without loss of generality, this shows
that connected subgraphs of Gπ are cycles. This completes the proof. �

Proposition 3.2. Let (I, f) be a d-IET with respect to an irreducible permutation π. The
directed graph Gπ has an edge vp → vq if and only if

(3.3) xp = f−1
p ◦ fπ−1([π(p)+1])(xq).

Proof. Let p = π−1([i − 1]) and q = π−1([j − 1]), for some i, j ∈ {0, ..., d}. From (3.1) we
have fπ−1([i])(x[π−1(i)−1]) = fπ−1([i−1])(xπ−1([i−1])), which is equivalent to

(3.4) fπ−1([i])(xπ−1([j−1])) = fπ−1([i−1])(xπ−1([i−1])),

if and only if π−1([j − 1]) = [π−1(i)− 1], that is, if vp → vq. From (3.4) we get (3.3), which
completes the proof. �

Now assume (I, f) has a continuous embedding by h into a d-PWI (X,T ) with Y = h(I)
and Yj = Xj ∩ Y , such that T (z) = Tj(z), for z ∈ Yj, j = 1, .., d. with

(3.5) Tj(z) = eiθjz + λj, z ∈ C, j = 1, .., d.

Define T0 as the identity map in C. Let zj = h(xj), for j = 0, ..., d. Equations (3.1) are
preserved under topological conjugacy and can be written for T as

(3.6) Tπ−1([j])(z[π−1(j)−1]) = Tπ−1([j−1])(zπ−1([j−1])), j = 0, ..., d.

We call (3.6) the connecting equations. The next corollary follows from Proposition 3.2 and
from the topological conjugacy of (Y, T ) and (I, f).
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Corollary 3.3. Assume a d-IET (I, f) has a continuous embedding by h into a d-PWI
(X,T ). The directed graph Gπ has an edge vp → vq if and only if

zp = T−1
p ◦ Tπ−1([π(p)+1])(zq).

Let p0 ∈ {0, ..., d}. We define a connecting sequence {pk}k∈N for p0, with pk = qk−1,
where qk−1 is such that vpk−1

→ vqk−1
. By Proposition 3.1, the connected component of Gπ

containing vp0 must be a directed cyclic graph. Thus, {pk}k∈N is a well defined periodic
sequence with period s(p0) ≤ d+ 1.

With σ : {0, ..., d} → {0, ..., d} such that,

σ(p) = [π−1(π(p) + 1))− 1],

it is simple to see by (3.2) that pk = σ(pk−1) and hence the number of distinct orbits of σ
is equal to the number of connected components of Gπ. The map σ was first introduced by
Veech in [28].

The Rauzy-Veech induction of a d-IET (I, fµ,π) is its first return map R(fµ,π) to I ′, as
in (2.9), and is again a d-IET, thus for some µ′ ∈ Rd

+ and π′ ∈ S(d), R(fµ,π) = fµ′,π′ . The
Rauzy class (see [29]) of an irreducible permutation π ∈ S(d) is the set of all irreducible
π′ ∈ S(d) such that there exist µ, µ′ ∈ Rd

+ and n ∈ N such that Rn(fµ,π) = fµ′,π′ .
A translation surface (as defined in [9]), with genus g, is a surface with a finite number

κ of conical singularities endowed with an atlas such that coordinate changes are given by
translations in R2.

Given an IET it is possible to associate, via a suspension construction, a translation sur-
face, with g and κ depending only on the Rauzy class of the permutation of the underlying
IET (see for instance [28]). It is known (see [29]) that the number of distinct orbits of σ is
constant on each Rauzy class and determines g and κ of the associated translation surface.
In particular, for the hyperelliptic Rauzy class, that is the Rauzy class containing the per-
mutation π(j) = d + 1 − j for all j = 1, ..., d, σ has a single orbit if d is even and has two
distinct orbits if d is odd.

We define the connecting map for p0 as

Fp0(z) = T−1
p0
◦ Tπ−1([π(p0)+1]) ◦ ... ◦ T−1

ps(p0)−1
◦ Tπ−1([π(ps(p0)−1)+1])(z), z ∈ C.

It follows from Corollary 3.3 that zp0 is a fixed point of Fp0 , thus, Fp0(zp0) = zp0 . We have

(3.7)
(
eiΘπ(p0) − 1

)
zp0 + Fp0(0) = 0,

and

Θπ(p0) =

s(p0)−1∑
k=0

θπ−1([π(pk)+1]) − θpk .

Now (3.7) either imposes a restriction on h, if Θπ(p0) 6= 0, by forcing

(3.8) h(xp0) =
(
1− eiΘπ(p0)

)−1
Fp0(0),

or if Θπ(p0) = 0 it imposes a restriction on the parameters λj, θj, j = 1, ..., d, by

(3.9) Fp0(0) = 0.

Note that Fp0(0) can be seen as a sum where each term is λj times a coefficient depending
only on θ1, ..., θd.
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Denote the coefficient of λj in Fp0(0) by rj(θ1, ..., θd) for j = 1, ..., d. Note that by linearity
in λj, (3.9) can be written as

(3.10)
d∑
j=1

λjrj(θ1, ..., θd) = 0.

We call (3.10) the parametric connecting equation for p0.
In the following theorem we show that if Gπ is connected then the parameters of the PWI

satisfy the parametric connecting equation.

Theorem 3.4. Assume a d-IET (I, f) has a continuous embedding by h into a d-PWI
(X,T ). If Gπ is a connected graph, then the parameters λj, θj, j = 1, ..., d satisfy the
parametric connecting equation (3.10).

Proof. Since Gπ is a connected graph, by Proposition 3.1 it must be a directed cyclic graph.
The connecting sequence for p0 = 0 is well defined and has period d + 1. Since the map
n→ π−1([π(n) + 1]) is a bijection between finite sets we must have

Θπ(0) =
d∑

k=0

θπ−1([π(pk)+1]) −
d∑

k=0

θpk = 0.

Thus, there are functions rj(θ1, ..., θd) for j = 1, ..., d, not identically 0, satisfying (3.10). �

The following example shows two permutations, one for which the graph Gπ is disconnected
and a permutation that yields a connected Gπ and a parametric connecting equation that
can in principle allow the existence of non-trivial embeddings.

Example 3.5. Consider the permutation π = (123). It is simple to see, either by checking
directly or by noting that π is in the hyperelliptic Rauzy class for d = 3, that Gπ is not a
connected graph. The connecting sequence for 1 is constant and equal to 1, thus, from (3.7)
we get

(3.11) (ei(θ2−θ1) − 1)h(x1) + (λ2 − λ1)e−iθ1 = 0.

Consider the permutation π′ = (2)(143). It is clear that in this case Gπ′ is a connected
graph. Indeed π′ is in the hyperelliptic Rauzy class for d = 4. The connecting sequence for
0 is p = (0, 2, 3, 1, 4, ...) and we have the connecting map

F0(z) = T−1
0 ◦ T3 ◦ T−1

2 ◦ T4 ◦ T−1
3 ◦ T2 ◦ T−1

1 ◦ T0 ◦ T−1
4 ◦ T1(z).

From this we get the following parametric connecting equation

(3.12) λ1(e−iθ1−ei(θ4−θ1))+λ2(ei(θ4−θ2)−ei(θ3−θ2))+λ3(1−ei(θ4−θ2))+λ4(ei(θ3−θ2)−e−iθ1) = 0.

In Section 5 we will discuss an example of a PWI satisfying (3.12).
In the next theorem we prove that there are no non-trivial continuous embeddings of

minimal 2-interval exchange transformations into orientation preserving planar PWIs.

Theorem 3.6. A minimal 2-IET has no non-trivial continuous embedding into a 2-PWI.

Proof. Let (I, fµ,π) be a minimal 2-IET different from the identity with µ = {µ1, µ2} ∈ R2
+.

Assume there is a continuous embedding of (I, f) by h into a 2-PWI (X,T ) with partition
{X1, X2}.
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Set Y = h(I) and Yj = Y ∩Xj for j = 1, 2. There are θj ∈ [0, 2π) and λj ∈ C, such that

Tj(z) = eiθjz + λj, z ∈ C, j = 1, 2,

and the restriction of T to Y is given by

T (z) = Tj(z), z ∈ Yj, j = 1, 2.

Since f is not the identity, π = (12) and Gπ is a connected graph, the connecting sequence
for p0 = 0 is p = (0, 1, 2, ...). This gives the connecting map

F0(z) = T−1
0 ◦ T2 ◦ T−1

1 ◦ T0 ◦ T−1
2 ◦ T1(z).

By Theorem 3.4, the parameters λ1, λ2, θ1, and θ2 must satisfy the parametric connecting
equation, which can be written as

(3.13) λ1(e−θ1 − eθ2−θ1) + λ2(1− e−θ1) = 0.

Multiplying by eiθ1 , (3.13) becomes

(3.14) λ2(1− eiθ1) = λ1(1− eiθ2).
Since Tj is not the identity map (3.14) is true if either both sides equal 0 or not.
In the case that both sides are equal to zero, we have the following cases:
i) If θ1 = θ2 = 0 mod 2π, then Tj(z) = z + λj, z ∈ Yj. Since we are assuming that f

is minimal and Y is compact it follows that T has dense orbits. This implies that there is
s ∈ R such that λ1 = sλ2. For such a transformation, invariant sets must be unions of lines.
This implies that h is a trivial linear embedding.

ii) If λ1 = λ2 = 0, then Tj(z) = eiθjz, z ∈ Yj. Since we are assuming that f is minimal,
the orbits of T must be dense and in such a transformation, invariant sets must be unions
of circle arcs. This implies that h is a trivial circle arc embedding.

iii) Finally, if λj = 0 and θj = 0 mod 2π, for j = 1 or 2 then Tj is equal to the identity
and hence T can not be conjugated to a minimal IET.

In the case that both sides of equation (3.14) are different than 0, there must exist λ ∈ C
such that λj = λ(1− eiθj), j = 1, 2. This implies

Tj(z) = (z − λ)eiθj + λ

which is conjugate by L(z) = z + λ, to the map

T̃ (z) = eiθjz, z ∈ Yj − λ, j = 1, 2.

and thus h is a circle arc embedding. This completes the proof. �

In Section 5 we present some numerical results which suggest that there exist non-trivial
embeddings of d-IETs into d-PWIs, for d = 3 and d = 4.

Before proving the next theorem, recall that we are representing a permutation π ∈ S(3)
using cyclic notation.

Theorem 3.7. A 3-PWI has at most one non-trivially continuously embedded minimal 3-
IET with the same underlying permutation.

Proof. Given π ∈ S(3) and µ ∈ R3
+, assume there is a minimal 3-IET (I, fµ,π) which is

continuously embedded by h into a 3-PWI (X,T ), with partition {X1, X2, X3} and

T (z) = eiθjz + λj, z ∈ Xj.
12



Let Y = h(I). We show that (I, fµ,π) and h are either unique or that the embedding is
trivial.

Assume first that π = (123). Recall that this is the permutation π in Example 3.5. By
(3.11) we have |Θπ(j)| = |Θπ| = |θ2 − θ1| for j = 0, ..., 3.

If Θπ = 0 then θ1 = θ2, and by (3.11) we get λ1 = λ2.
Consider the 2-IET (I, fµ′,π′), where µ′ = (µ1 + µ2, µ3) and π′ is the permutation (12).

Consider the 2-PWI (X,T ′), with base partition {X ′1, X ′2}, where X ′1 = X1∪X2 and X ′2 = X3

and

T ′(z) = eiθ
′
jz + λ′j, z ∈ X ′j,

with θ′1 = θ1, θ′2 = θ3, λ′1 = λ1 and λ′2 = λ3. It is simple to see now that fµ′,π′ = fµ,π and
T ′ = T , thus by Theorem 3.6 the embedding of (I, fµ,π) must be trivial.

If Θπ 6= 0, (3.8) gives

(3.15) h(xj) =
(
1− eiΘπ(j)

)−1
Fj(0), j = 0, ..., 3.

Since Fj(0) does not depend of µ, by (3.15) we have that for any µ′ ∈ R3
+, such that (I, fµ′,π)

is minimal, any continuous embedding h′ into (X,T ) must satisfy h′(x′j) = h(xj). Since the
restriction of T to Y must be invertible and every z ∈ Y must have a dense orbit in Y this
shows that µ′ = µ and h′ = h.

We omit the proof for π = (321) as it can be done in a similar way to the previous case.
Finally, assume that π = (13)(2). Then Gπ is not a connected graph. The connecting

sequence for 1 is equal to (1, 3, ...), and from (3.7) we get

(3.16) (exp [−i(θ3 + θ1 − θ2)]− 1)h(x1) + e−iθ1
[
e−iθ3(λ2 − λ3)− λ1

]
= 0.

We have |Θπ(j)| = |Θπ| = |θ3 + θ1 − θ2| for j = 0, ..., 3.
If Θπ = 0 then by (3.16) we get

(3.17) θ2 = θ1 + θ3, λ2 = λ1e
iθ3 + λ3.

Note that I3 = fµ,π(Iπ−1(3)) if and only if µ1 = µ3. In this case we have that the restriction of
fµ,π to I2 is equal to the identity map. Since fµ,π is minimal we must have I3 6= fµ,π(Iπ−1(3)),
thus by Theorem 2.3 there is a continuous embedding of (I ′,R(fµ,π)) by h into (X ′,S(T )).

We now prove that this embedding is trivial.
Assume that fµ,π has type 1. Let Ij be as in the proof of Theorem 2.3. By (2.14) we have

(3.18) S(T )(z) =


eiθ1z + λ1, z ∈ h(I ′1),

ei(θ1+θ3)z + (λ1e
iθ3 + λ3), z ∈ h(I ′2),

eiθ2z + λ2, z ∈ h(I ′3).

Consider the 2-IET (I, fµ̃,π̃), with µ̃ = (µ1−µ3, µ2 +µ3), π̃ = (12), and the map T̃ : h(I ′)→
h(I ′) such that

T̃ (z) = eiθjz + λj, z ∈ Ỹj,
where Ỹ1 = h(I ′1) and Ỹ2 = h(I ′2 ∪ I ′3). It is simple to see now that fµ̃,π̃ = R(fµ,π) and by

(3.17) and (3.18) we have T̃ (z) = S(T (z)), for all z ∈ h(I ′). Therefore by Theorem 3.6 the
embedding of (I ′,R(fµ,π)) by h into (X ′,S(T )) must be trivial. By (2.3) we have that for
x ∈ I3 we have h(x) = eiθ1h(x − µ2 − µ3) + λ1 thus the embedding of (I, fµ,π) by h into
(X,T ) must be trivial as well.
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We omit the proof for the case when fµ,π has type 0 as it can be done in a similar case to
the previous case.

Finally, if Θπ 6= 0, by (3.8), h(xj) is determined by (3.15). Since Fj(0) does not depend of
µ, we have that for any µ′ ∈ R3

+, such that (I, fµ′,π) is minimal, any continuous embedding
h′ into (X,T ) must satisfy h′(x′j) = h(xj). Since the restriction of T to Y must be invertible
and every z ∈ Y must have a dense orbit in Y this shows that µ′ = µ and h′ = h. �

4. Ergodic condition for the existence of piecewise continuous embeddings

In this section we give a necessary condition for the existence of piecewise continuous
embeddings of uniquely ergodic IETs into planar PWIs.

Given a d-IET (I, f), let Ij and τj be as in Section 1. Suppose we have a piecewise
continuous embedding h of this map into a d-PWI (X,T ) and suppose that T (z) = Tj(z),
for z ∈ Xj with Tj(z) = eiθjz + λj.

Let S1 = R/2πZ. For x ∈ I and y ∈ S1 we define the tangent exchange map Ψ : I ×S1 →
I × S1 as the skew-product given by

(4.1) Ψ(x, y) = (f(x), y + θj(x)).

The dynamics of this map contains information on the angle of tangents of an embedding
when iterated by the underlying PWI. It will be the main technical tool to prove Theorem
4.1.

For n ∈ N we have

Ψn(x, y) = (fn(x), y + C(n)(x)),

where C(·) : Z× I → S1 is the rotational cocycle for this embedding, given by

C(0)(x) = 0, C(n)(x) = θj(x) + ...+ θj(fn−1(x)) mod 2π,

for x ∈ I, n ≥ 0, and

C(n)(x) = −C(−n)(x) mod 2π,

for n < 0, where j(x) is the piecewise constant map such that j(x) = j when x ∈ Ij.
Informally, the rotational cocycle keeps track of the angle of a line passing through a point
h(x) when iterated by T .

For x ∈ Ij we define the first return time of x by f to Ij as

nj(x) = inf{k ≥ 1 : fk(x) ∈ Ij}.
If f is minimal, then nj(x) is finite. The first return map of x by f to Ij, f

′
j : Ij → Ij is then

a well defined d-IET and is given by

(4.2) f ′j(x) = fnj(x)(x), x ∈ Ij.

For j = 1, ..., d, we define the cocycle N
(·)
j : Z× Ij → Z as

N
(0)
j (x) = 0, N

(k)
j (x) = nj (x) + nj

(
f
′

j(x)
)

+ ...+ nj

(
f
′k−1
j (x)

)
,

for x ∈ Ij and k > 0. For n < 0 we set N
(k)
j (x) = −N (−k)

j (x).
Define the sequence {p(n)}n≥1 by

p(1) = min{k ≥ 1 : fk(0) ∈ I1},
14



I3 × S1

(x3, 0)

I2 × S1

(x2, 0)

I1 × S1

(x1, 0)

(a)

Ψ(I1 × S1)

(f(x1), θ1)

Ψ(I3 × S1)

(f(x3), θ3)

Ψ(I2 × S1)

(f(x2), θ2)

(b)

Figure 2. A schematic representation of the action of a tangent exchange map Ψ, as in
(4.1), on a cylinder with π = (132). (A) The partitioned space I × S1 in three subcylinders
Ij × S1. The xj are equal to

∑
i≤j µi respectively for j = 1, 2, 3 and the points (xj, 0) are

represented. (B) The action of the map Ψ on I × S1 and on the points (xj, 0) which map to
(fµ,π(xj), θj) respectively for j = 1, 2, 3.

and
p(n) = min{k > p(n− 1) : fk(0) < fp(n−1)(0)}, n > 1.

Note that if f is minimal then fp(n)(0)→ 0, as n→ +∞. Let

mj(n) = card{fk(0) ∈ Ij : k ≤ n},
with n ∈ N, j = 1, ..., d, and

kj = min
{
k ≥ 0 : fk(0) ∈ Ij

}
.

Denote x′j = fkj(0), y′j = C(kj)(0). For n ∈ N and j = 1, ..., d, define the sequences

cj(n) = y′j + C

(
N

(n)
j (x′j)+1

)
(x′j),

and

(4.3) ej(n) =

mj(n)−1∑
k=0

exp[−icj(k)].

The sequence ej(p(n)) can be seen as a the displacement by rotation of a point h(x′j), up to
the n-th return to Xj. The limit of ej(p(n)), when n→ +∞, need not exist in general.

Consider, for j = 1, ..., d, the limiting average of the sequence ej(p(n)),

(4.4) ξj = lim
n→+∞

1

mj(p(n))
ej(p(n)).

Note that this limit need not exist in general. By Weyl’s criterion if cj(n) is uniformly
distributed mod 2π then ξj = 0. However this need not hold in general: a numerical study,
in Sections 5.1 and 5.3, presents a non-trivial example where the ξj’s are non-zero. The
following theorem shows that for a piecewise continuous embedding of a uniquely ergodic
(I, fµ,π), as long as the limit (4.4) is finite, the condition (4.6) tells us that the average of
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displacements by rotation and by translations, weighted by the lengths µj’s, must cancel out
so that orbits remain bounded.

Theorem 4.1. Assume that (I, fµ,π) is a uniquely ergodic d-IET that has a piecewise con-
tinuous embedding by h into a d-PWI (X,T ) with X ⊆ C, where

(4.5) T (z) = eiθjz + λj,

for z ∈ Xj and j = 1, .., d. If there are ξj ∈ C such that (4.4) holds, then

(4.6)
d∑
j=1

(
λj − h(0)(1− eiθj)

)
ξjµj = 0,

where we recall that µj denotes the length of the subinterval Ij, for j = 1, ..., d.

Proof. We begin by proving that there is an orientation preserving PWI (X̃, T̃ ), conjugated

by a translation to (X,T ), such that (I, fµ,π) has a piecewise continuous embedding by h̃

into (X̃, T̃ ) with h̃(0) = 0.
Let X̃ = {z ∈ C : z + h(0) ∈ X}, and q : X → X̃ be such that q(z) = z − h(0). Let

T̃ (z) = q ◦ T ◦ q−1(z),

for z ∈ X̃. The homeomorphism h̃ = q ◦ h conjugates (I, f) to (h̃(I), T̃ ), with h̃(I) ⊆ X̃

invariant for (X̃, T̃ ). Moreover, h̃(0) = q(h(0)) = 0. Note that we have

T̃ (z) = eiθ̃jz + λ̃j,

for z ∈ X̃j, where X̃j = {z ∈ C : z + h(0) ∈ Xj}, θ̃j = θj and λ̃j = λj − h(0)(1− eiθj).
We now prove that

(4.7) lim
n→+∞

d∑
j=1

λ̃jej(p(n)) = 0.

Since (I, fµ,π) has a piecewise continuous embedding by h̃ into (X̃, T̃ ), we have

(4.8) h̃(x+ τj) = eiθj h̃(x) + λ̃j,

for x ∈ Ij, j = 1, .., d. Let Ỹ = h̃(I), Ỹj = Ỹ ∩ X̃j and h̃j : Ij → Ỹj be the restriction of h̃ to
Ij. From (4.8) we get

h̃j(x) = e−iθj(h̃k(x+ τj)− λ̃j),
where x ∈ f−1

µ,π(Ik), and j = 1, .., d.
Recall the itinerary of x as in (2.1). It can be proved by induction that for x ∈ I, n ∈ N

we have

(4.9) h̃i0(x) = exp

[
−i

n−1∑
k=0

θik

]
h̃in(fnµ,π(x))−

n−1∑
k=0

λ̃ik exp

[
−i

k∑
l=0

θil

]
,

Since h̃(0) = 0, taking x = 0 in (4.9) we get

(4.10) exp

[
−i

n−1∑
k=0

θik

]
h̃in(fnµ,π(0))−

n−1∑
k=0

λ̃ik exp

[
−i

k∑
l=0

θil

]
= 0,

for n ∈ N.
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Note that h̃j : Ij → Ỹj is a homeomorphism for j = 1, ..., d. By continuity of h̃1 and (4.10)

(4.11)
∣∣∣h̃1(fp(n)

µ,π (0))− h̃1(0)
∣∣∣ =

∣∣∣∣∣∣
p(n)−1∑
k=0

λik exp

[
−i

k∑
l=0

θil

]∣∣∣∣∣∣ n→+∞−−−−→ 0.

By (4.3), (4.11) is equivalent to (4.7).
We now show that

(4.12)
d∑
j=1

λ̃jξjµj = 0.

Since (I, fµ,π) is uniquely ergodic with respect to Lebesgue measure,

(4.13) lim
n→+∞

mj(p(n))

p(n)
=
µj
|I| ,

for j = 1, ..., d.
Note that (4.4) is equivalent to

(4.14) ej(p(n)) = mj(p(n))ξj + o(p(n)), j = 1, ..., d.

Combining (4.13) and (4.14) we have

ej(p(n)) = p(n)
mj(p(n))

p(n)

1

mj(p(n))
ej(p(n)) = (p(n) + o(p(n)))

µj
|I|ξj,

for j = 1, ..., d, and we get

(4.15)
d∑
j=1

λ̃jej(p(n)) =
d∑
j=1

(p(n) + o(p(n)))λ̃jµjξj.

Since (I, fµ,π) has a piecewise continuous embedding into (X,T ), (4.7) holds. Thus (4.15)
implies that

lim
n→+∞

d∑
j=1

(p(n) + o(p(n)))λ̃jµjξj = 0,

which can only hold if (4.12) is true, as desired. Finally note that (4.12) is equivalent to
(4.6), and the proof is complete. �

Condition (4.4) is not simple to verify in general since cj(n) is determined by two cocycles.
However under some assumption on θj we can identify cj(n) with an orbit of a point by
interval exchange map and compute the ξj as spatial averages using the ergodic theorem.

Corollary 4.2. Assume that (I, f) is a uniquely ergodic d-IET with a piecewise continuous
embedding by h into a d-PWI (X,T ) as in (4.5). Let χIj denote the characteristic function
of Ij. If

(4.16) θj =
2π

|I|τj,

for j = 1, ...d, then

(4.17)

∫
I

(
d∑
j=1

(
λj − h(0)(1− eiθj)

)
χIj(f

−1(x))

)
e−2πixdx = 0.
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Proof. Let f ′j : Ij → Ij be as in (4.2). With fµ,π = f , by (4.16) we have

cj(n) =
2π

|I|fµ,π ◦ f
′n
j (x′j),

Since (I, fµ,π) is uniquely ergodic, it follows that (Ij, f
′
j) is also uniquely ergodic. Thus, the

ergodic theorem implies that

(4.18) lim
n→+∞

1

mj(p(n))

mj(p(n))−1∑
k=0

exp

[
−2πi

|I| fµ,π ◦ f
′k
j (x′j)

]
=

1

µj

∫
fµ,π(Ij)

exp [−2πix] dx,

for j = 1, ..., d.
Let ξj = 1

µj

∫
fµ,π(Ij)

exp [−2πix] dx, for j = 1, ..., d. Combined with (4.3) and (4.18) we get

lim
n→+∞

1

mj(p(n))
ej(p(n)) = ξj,

for j = 1, ..., d, and thus by Theorem 4.1 we must satisfy (4.6) which is equivalent to (4.17).
This completes the proof. �

5. Evidence of non-trivial embeddings of IETs into PWIs

In this section we present some numerical evidence of non-trivial continuous embeddings of
IETs in PWIs. In order to do this we first define a PWI on 3 atoms that apparently exhibits
a single invariant curve that is the image of a non-trivial embedding of a 3-IET. We also
introduce a new family of PWIs that include linear embeddings of 2-IETs and apparently
many non-trivial embeddings of 4-IETs.

5.1. A PWI with an embedded three interval exchange. We now present an example
of a 3-PWI for which numerical evidence suggests the existence of a non-trivial embedded
3-IET.

Let α′ = 1.3, β′ = 0.75, z′0 = 0, z′1 = 0, 0.215998 + i0.168125, z′2 = 0.491520 + i0.051612,
z′3 = 0.586452 and the convex sets

Q′1 = {z ∈ C : Im(eiα
′
(z − z′1)) < 0},

Q′2 = {z ∈ C : Im(e−iβ
′
(z − z′2)) > 0 and Im(eiα

′
(z − z′1)) ≥ 0},

Q′3 = {z ∈ C : Im(e−iβ
′
(z − z′2)) ≤ 0 and Im(eiα

′
(z − z′1)) ≥ 0}.

Consider the PWI T ′ : C→ C such that

(5.1) T ′(z) = eiθ
′
jz + λ′j, z ∈ Q′j,
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(a) (b)

(c) (d)

Figure 3. An illustration of the action of the piecewise isometry T ′. (A) An invariant set
Y ′ and the partition {Q′j}j=1,2,3. (B) Image of Y ′ by T ′. (C) Orbits of 40 points, including
z0, (ignoring a transient) under T ′ and the partition {Q′j}j=1,2,3. (D) Image of the orbits and
the partition in (C) by T ′.

for j = 1, 2, 3, where

(5.2)

θ′j =


4.460361, j = 1,

0.800153, j = 2,

0.995933, j = 3,

λ′j =


z′3 − eiθ

′
1z′1, j = 1,

eiθ
′
3(z′3 − z′2)− eiθ′2z′1, j = 2,

eiθ
′
3z′2, j = 3,

and set Y ′ = {T ′n(z′0)}n∈N. These parameters are constructed according to certain renor-
malization properties of the IET: a separate paper is in preparation that explains this in
detail. Figure 3 shows the action of the map T ′, in particular in Figure 3 (A) we can see Y ′

and in Figure 3 (B) its image by T ′. Consider the family F3 of 3-IETs fµ,π′ : I → I given
by subdividing the interval into four intervals of lengths µ = (µ1, µ2, µ3) ∈ R3

+ with base
permutation π′ = (2)(13).
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We can partition Y ′ by setting Y ′j = Y ′ ∩ Q′j, for j = 1, 2, 3. The length l′j = Leb(Y ′j ) of
each Y ′j can be numerically estimated to be

l′1 = 0.3910666426, l′2 = 0.4553369973, l′3 = 0.1535963601.

Fix µ = (l′1, l
′
2, l
′
3) and consider the IET (I, fµ,π′) ∈ F3. Numerical evidence suggests that

there is a continuous embedding of (I, fµ,π′) into (C, T ′), by a map h′ : I → Y ′ with Y ′ ⊆ C,
such that h(0) = z′0. Note that Gπ′ is not a connected graph so we are not in the conditions of
Theorem 3.4. However by (5.2) it is simple to check that (3.6) and (3.8) are satisfied. Indeed
numerical verification shows that i′k(T

′(h(0))) = ik(fµ,π′(0)) for all k ≤ 6 × 104, supporting
that h′ is a symbolic embedding.

We can also verify numerically that the condition in Theorem 4.1 holds for this case. We

estimate ξ′j ' ej(p(8))

mj(p(8))
where ξ′1 ' −0.453+0.651i, ξ′2 ' 0.326+0.669i and ξ′3 ' 0.417+0.679i.

For these estimates we get∣∣∣∣∣
d∑
j=1

λ′jξ
′
jµj − h′(0)

d∑
j=1

(1− eiθ′j)ξ′jµj
∣∣∣∣∣ ' 1.19× 10−5.

5.2. A planar piecewise isometry with four cones. We now introduce a new family
of PWIs that include a linear embedding of a 2-IET and, apparently an infinite number of
non-trivial embeddings of 4-IETs.

For any β ∈ (0, π
2
) and α ∈ (0, π − 2β) and λ ∈ R+ we consider a partition of C into four

atoms
P0 = {z ∈ C : arg(z) ∈ [−β, β)} ∪ {0},
P1 = {z ∈ C : arg(z) ∈ [β, α + β)},
P2 = {z ∈ C : arg(z) ∈ [α + β, π − β)},
P3 = {z ∈ C : arg(z) ∈ [π − β, 2π − β)},

and define a map T : C→ C by T (z) = Tj(z), for z ∈ Pj, where

(5.3) Tj(z) =


z − 1, z ∈ j = 0,

zeiϑ1 − (1− λ), z ∈ j = 1,

zeiϑ2 − (1− λ), z ∈ j = 2,

z + λ, z ∈ j = 3,

and ϑ1 = π − 2β − α, ϑ2 = −α. An example is illustrated in Figure 4: note that this map
is not invertible. We define the maximal invariant set for this map as X ⊂ C. Note that
T restricted to the real line reduces to a 2-IET on [−1, λ) that equivalent to interchange of
intervals of length 1 and λ. We refer to this as the baseline transformation.

This map is such that all vertices of atoms that touch the baseline are mapped to the
baseline. This means that although T is not invertible, it is locally bijective near the base
line. The middle cones P1 and P2 are swapped by two rotations and after this, P1 and P2

are translated by −(1− λ).
We define the first return map R : P1 ∪ P2 → P1 ∪ P2, as

(5.4) R(z) = T k(z)(z).

where k(z) = inf{k ≥ 1 : T k(z) ∈ P1 ∪ P2}. If λ is irrational then every point enters P1 ∪ P2

after a finite number of iterates, and hence in this case R can be used to characterise all
orbits of the map.
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Figure 4. Schematic representation of a family of 4-PWIs T : C→ C with atoms given by
the four cones Pi, and three parameters: α, β and λ. The atoms P0 and P3 are translated by
T while P1 and P2 are rotated about their vertices then translated. The map on the baseline
[−1, λ) is a 2-IET.

(a) (b)

Figure 5. (A) Orbits of 200 points (ignoring a transient) by T , for (α, β, λ) = (0.5, 1,
√

5−1
2

).
(B) Details of (A) in the area [−0.4, 0.4]× [0, 0.5]. The cone indicates the location of P1∪P2.
In this and later figures, orbits of length 105 are generated after removing a transient of 100
iterates. The maximal invariant set appears to have a highly complex boundary, but it does
appear to include a polygon containing the baseline. The boxed region contains what seem
to be many invariant non smooth curves.

For typical choices of parameters α, β and λ it seems that the dynamics of T defined
by (5.3) (and hence of R) is very rich. Figure 5 (A) shows typical trajectories (after a

transient), for two hundred randomly selected points and (α, β, λ) = (0.5, 1,
√

5−1
2

). Details
of some invariant sets are then shown in Figure 5 (B). These numerical simulations illustrate
that (as expected [7, 8]) the map T has an abundance of periodic islands for typical values
of the parameters.

Figure 6 (A) shows the orbits of 5 points (ignoring a transient) under R, for (α, β, λ) =

(0.5, 1,
√

5−1
2

). Details of this are shown in Figure 6 (B) and (C) in the areas [−0.04,−0.01]×
[0.16, 0.21] and [−0.0016,−0.01]× [0.16, 0.165] respectively.
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(a)

(b) (c)

Figure 6. (A) Orbits of 5 points (ignoring a transient) under R, for (α, β, λ) = (0.5, 1,
√

5−1
2

)
in the area [−0.14, 0.14]× [0, 0.25]. (B) Details of (A) in the area [−0.04,−0.01]× [0.16, 0.21].
(C) Details of (A) in the area [−0.0016,−0.01] × [0.16, 0.165]. Observe a complex pattern
of periodic islands, the presence of non-trivially embedded IETs as well as orbits with more
complex structure.

These figures show the diverse types of behaviour that can be found in the invariant sets
of R (and hence T ). They show what seem to be non-trivial embedded IETs as well as
invariant sets of higher dimension. There are also periodic islands to which the return map
is a rotation.

Numerical results show that for some parameters we can observe non smooth invariant
curves for the dynamics of the map R as defined in equation (5.4). These curves appear to
have a dynamics similar to that of an interval exchange transformation. These curves can
bound invariant regions that exhibit quite complex dynamics. We now construct one such

region: set α = 0.5, β = 1, λ =
√

5−1
2

and η = 1− λ. Consider the points

z0 = r0e
i(π−β), z1 = r1e

i(π−β),

with r0 = 0.470 and r1 = 0.503 and denote the orbit closures of these points as Ξ′ and Ξ′′.
These are contained in the boxed region in Figure 5 (B) and are also represented in Figure
7 where it can be seen that both Ξ′ and Ξ′′ appear to be non-trivial continuous embeddings
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(a)

(b)

Figure 7. (A) The presumably invariant region Ξ = Ξ1 ∪ Ξ2 ∪ Ξ3 ∪ Ξ4. (B) Image of Ξ by
R.

of IETs. Now consider the sets

Q′L = {z ∈ C : arg(z) = π − β and r0 ≤ |z| ≤ r1},

Q′R = {z ∈ C : arg(z) = β and r0 ≤ |z| ≤ r1}.

If Ξ′ and Ξ′′ are invariant curves that are embeddings of IETs, then the set ∂Ξ = Q′L ∪Q′R ∪
Ξ′ ∪Ξ′′ is a Jordan curve. Denote by Ξ the closure of the region bounded by ∂Ξ. Numerical
investigations suggest that Ξ is an invariant region for R. Let Ξk = Qk ∩ Ξ, where

Q1 = {z ∈ C : Im(e−i(α+β)(z + (2λ− 1)eiα)) > 0},
Q2 = {z ∈ C : Im(e−i(α+β)(z + (2λ− 1)eiα)) ≤ 0 and Im(ei(β−α)(z − (1− λ)eiα)) < 0},
Q3 = {z ∈ C : Im(ei(β−α)(z − (1− λ)eiα)) ≥ 0 and Im(e−i(α+β)z) > 0},
Q4 = {z ∈ C : Im(ze−i(α+β)) ≤ 0}.
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Using the property of the golden mean 1 − λ = λ2 it can be seen that R(z) = Rj(z), for
z ∈ Ξj where

(5.5) Rj(z) =


zeiϑ2 + λ3, j = 1,
zeiϑ2 − λ4, j = 2,
zeiϑ2 − λ2, j = 3,
zeiϑ1 + λ3, j = 4.

The subsets Ξj, j = 1, ..., 4 and the action of R in this set are depicted in Figure 7. Note
that that R acts isometrically on each Ξj, but since these sets are not convex (Ξ, R) is not a
4-PWI, but it is simple to construct a 4-PWI (C, S) such that Ξ is invariant under S and the
restriction of S to Ξ is equal to R, by partitioning C =

⋃4
j=0Qj and setting S(z) = Rj(z),

for z ∈ Qj. One can verify that S satisfies the parametric connecting equation (3.12),
therefore satisfying a necessary condition for the existence of an IET that can be continuously
embedded by h in (C, S), with Y = h(I) ⊆ Ξ also invariant under R.

5.3. A PWI with an embedded four interval exchange. Finally, we show that the map
R in (5.5) is an example of a 4-PWI for which numerical evidence suggests the existence of
a non-trivial embedded 4-IET.

Consider the family F4 of four-interval exchange maps fµ,π : I → I given by subdividing
the interval into four intervals of lengths µ = (µ1, µ2, µ3, µ4) ∈ R4

+ with base permutation
π = (2)(143).

Note that on the real axis Im(z) = 0 is a trivial embedding of the (degenerate) four-interval
exchange where µ = (λ, 0, 0, 1). Let

Y = {Rn(0.416i)}n∈N.
This defines an invariant set which is portrayed in Figure 1 that appears to be an embedding
of an IET. We can partition Y by setting Yj = Y ∩Ξj, for j = 1, ...4. The length or Lebesgue
one dimensional measure lj = Leb(Yj) of each Yj can be numerically estimated to be

l1 = 0.1217970148, l2 = 0.1329352086, l3 = 0.2008884081, l4 = 0.3550989199

Fix µ = (l1, l2, l3, l4) and consider the IET (I, fµ,π) ∈ F4. Numerical evidence suggests
that there is a continuous embedding of (I, fµ,π) into (C, S), by a map h : I → Y with
Y ⊆ Ξ, such that h(0) = r0e

iθ0 , with r0 = 0.47665, and θ0 = 0.68165π. Indeed numerical
verification shows that i′kR(h(0)) = ik(fµ,π(0)) for all k ≤ 105, supporting that h is a symbolic
embedding.

We can also verify numerically that the condition in Theorem 4.1 holds for this case.

Estimating ξj ' ej(p(8))

mj(p(8))
where ξ1 ' 0.718 + 0.125i, ξ2 ' 0.538− 0.512i, ξ3 ' 0.460− 0.438i

and ξ4 ' 0.300− 0.562i. For these estimates we get∣∣∣∣∣
d∑
j=1

λjξjµj − h(0)
d∑
j=1

(1− eiθj)ξjµj
∣∣∣∣∣ ' 6.30× 10−6,

where θj = ϑ2, for j = 1, 2, 3 and θ4 = ϑ1.
Figure 8 shows 105 points of the orbit of (0, 0), by tangent exchange map Ψ associated to

S, which is consistent with the orbit being dense but not having nonuniform distribution on
the cylinder I × S1.
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Figure 8. First 105 points of the orbit of (0, 0), by the tangent exchange map Ψ given by
µ = (l1, l2, l3, l4), π = (2)(143), θj = ϑ2, for j = 1, 2, 3 and θ4 = ϑ1. Observe the apparent
lack of ergodicity as expected for a non-trivial embedding.

6. Conjectures, questions and conclusions

We have highlighted that embeddings of IETs into PWIs present a number of subtle and
mathematically rich problems associated with the regularity or otherwise of these embed-
dings. Theorem 3.6 shows that there are no non-trivial continuous embeddings of a minimal
d-IET into a d-PWI, for d = 2, while Theorem 4.1 gives a condition for the existence of a
piecewise continuous embedding. For d = 4 there are PWIs that seem to have an abun-
dance of non-trivial embeddings of d-IETs. It seems to be much harder to find a 3-PWI
that exhibits non-trivial embeddings of 3-IETs and to do so requires much parametric fine
tuning, a fact that is justified by Theorem 3.7 which shows that any 3-PWI has at most one
non-trivially continuously embedded minimal 3-IET with the same underlying permutation.

Our main conjecture is as follows.

Conjecture 6.1. For any d ≥ 3 there is a minimal d-IET (I, f) which admits an embedding
a into d-PWI which is continuous but not trivial.

Assuming this is conjecture is valid, a number of interesting lines of enquiry open up:

• For a given IET (I, f), what is the structure of the PWIs (X,T ) that carry continuous
embeddings of (I, f), and how can the irregularity of the continuous embeddings be
characterised within this class?
• If an IET has a non trivial embedding into a PWI, must its rotation parameters be

irrational multiples of π? How does this relate to the behaviour of the rotational
cocycle?
• For a given PWI (X,T ), what are the aritmetic properties and structure of the IETs

(I, f) that are embedded within this PWI?
• So far we have considered continuous embeddings of d-IETs into d-PWIs but in prin-

ciple a d-IET may be embedded into a d′-PWI for some d′ < d: see for example [8,
Figure 8]. How can we understand these embeddings within PWIs with fewer atoms?
• What is the structure of parametrizations of d-PWIs that embed the same given IET?
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We suspect that for a continuous non-trivial embedding h of (I, f) into (X,T ), typical
embeddings have a tangent exchange map that is minimal but not ergodic. A lot of insight
has come from examples (see eg [8]) and we suggest that the example introduced in Section 5
will be useful to explore the above in that it has a larger number of apparent embeddings
that limit to the baseline.

We do not consider the case of (I, f) that are not minimal, or that are reducible, but there
may be some surprises waiting there as well. The region Ξ discussed in Section 5 seems to
contain periodic islands, embedded IETs and other invariant sets that are neither. It is
a challenge to describe these other invariant sets in a coherent way. Regarding the IETs
embedded in Ξ we conjecture that all minimal nearby IETs in F4 are continuously (or at
least symbolically) embedded.
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