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Abstract	7 

Evaluation	of	 liquefaction	potential	of	 soils	 is	an	 important	 step	in	many	geotechnical	investigations	in	8 
regions	susceptible	to	earthquake.	For	this	purpose,	 the	use	of	site	shear	wave	velocity	(Vs)	provides	a	9 
promising	approach.	The	safety	factors	 in	 the	deterministic	analysis	of	 liquefaction	potential	are	often	10 
difficult	 to	 interpret	 because	of	 uncertainties	in	 the	 soil	 and	 earthquake	parameters.	To	 deal	with	 the	11 
uncertainties,	 probabilistic	 approaches	 have	 been	 employed.	 In	 this	 research,	 the	 Jointly	 Distributed	12 
Random	 Variables	 (JDRV)	 method	 is	 used	 as	 an	 analytical	 method	 for	 probabilistic	 assessment	 of	13 
liquefaction	 potential	 based	 on	 measurement	 of	 site	 shear	 wave	 velocity.	 The	 selected	 stochastic	14 
parameters	are	stress-corrected	shear-wave	velocity	and	stress	reduction	factor,	which	are	modeled	using	15 
a	truncated	normal	probability	density	function	and	the	peak	horizontal	earthquake	acceleration	ratio	and	16 
earthquake	magnitude,	which	are	considered	to	have	a	truncated	exponential	probability	density	function.	17 
Comparison	of	the	results	with	those	of	Monte	Carlo	Simulation (MCS)	indicates	very	good	performance	of	18 
the	proposed	method	in	assessment	of	reliability.	Comparison	of	the	results	of	the	proposed	model	and	a	19 
Standard	Penetration	Test	(SPT)-based	model	developed	using	JDRV	shows	that	shear	wave	velocity	(Vs)-20 
based	model	provides	a	more	conservative	prediction	of	liquefaction	potential	than	the	SPT-base	model.	21 
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1.		Introduction	24 

Liquefaction	results	from	tendency	of	soil	deposits	to	decrease	in	volume	when	subjected	25 
to	shearing	stresses.	In	a	deterministic	analysis,	liquefaction	can	be	determined	using	the	Cyclic	26 
Resistance	Ratio	(CRR)	and	Cyclic	Stress	Ratio	(CSR)	due	to	earthquake	(Kramer	1996).	The	cyclic	27 
stress	ratio	is	obtained	using	some	soil	and	earthquake	characteristics	(Seed	and	Idriss	1971).	28 
The	cyclic	resistance	ratio	can	be	obtained	by	several	methods	that	were	proposed	by	Seed	and	29 
Idriss	(1971),	or	as	demonstrated	by	Youd	and	Idriss	(2001),	using	the	standard	penetration	test	30 
(Seed,	Tokimatsu	et	al.	1984,	Bolton	Seed,	Tokimatsu	et	al.	1985,	Arulanandan,	Yogachandran	et	31 
al.	1986,	Seed	and	De	Alba	1986,	Seed	and	Harder	1990,	Youd,	Idriss	et	al.	2001),	cone	penetration	32 
test	(Arulanandan,	Yogachandran	et	al.	1986,	Seed	and	De	Alba	1986,	Mitchell	and	Tseng	1990,	33 
Robertson	1990,	Juang	and	Chen	1999,	Youd,	Idriss	et	al.	2001,	Baziar	and	Nilipour	2003,	Juang,	34 
Yuan	 et	 al.	 2003,	 Lees	 et	 al.	 2015),	 triaxial	 test	 results	 (Silver	 1977),	 or	 shear	wave	 velocity	35 
(Andrus	and	Stokoe	1997,	Andrus	and	Stokoe	II	2000).		36 

Evaluation	of	soil	 liquefaction	using	site	shear	wave	velocity	provides	a	more	applicable	37 
method	than	other	site	test	methods	such	as	standard	penetration	and	cone	penetration	tests.	38 
This	method	is	particularly	useful	for	specific	soils	such	as	gravel	where	penetration	tests	may	be	39 
unreliable,	and	at	sites	where	borings	may	not	be	permitted	such	as	under	constructed	structure	40 
and	 landfill	 (Dobry,	 Stokoe	 et	 al.	 1981,	 Seed,	 Idriss	 et	 al.	 1983,	 Stokoe,	 Roesset	 et	 al.	 1988,	41 
Tokimatsu	and	Uchida	1990).	However,	Andrus	et	al.	(2004)	pointed	out	that	this	method	is	more	42 
conservative	 than	 penetration-based	methods	 for	 evaluation	 of	 liquefaction	 for	 the	 compiled	43 
Holocene	data.	Youd	and	Idriss	(2001)	and	Andrus	et	al.	(2004)	provide	further	discussion	on	the	44 
advantages	and	disadvantages	of	this	method	and	penetration-based	methods	in	evaluation	of	45 
liquefaction	potential.	46 

However,	 the	inherent	uncertainties	of	the	parameters,	which	affect	liquefaction,	dictate	47 
that	 this	 problem	 is	 of	 a	 probabilistic	nature	 rather	 than	being	 deterministic.	Uncertainty	 in	48 
liquefaction	can	be	divided	into	two	distinctive	categories:	uncertainty	in	the	cyclic	stress	ratio	49 
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due	 to	 earthquake	 characteristics	 and	 uncertainty	 in	 the	 cyclic	 resistance	 ratio	 due	 to	 soil	1 
properties.	 In	 the	 first	 category,	 the	 selection	 of	 appropriate	earthquake	 parameters	 such	 as	2 
magnitude,	 location	 and	 recurrence	 to	 assess	 the	 liquefaction	 potential	of	 the	 site	 would	 be	3 
important	and	 in	 second	 category,	 the	 parameter	uncertainty,	model	 uncertainty	and	human	4 
uncertainty	would	be	important	(Morgenstern	1995).	Parameter	uncertainty	is	the	uncertainty	5 
in	the	input	parameters	for	analysis	(Ishihara	1996);	model	uncertainty	is	due	to	the	limitation	6 
of	 the	 theories	 and	 models	 used	 in	 performance	 prediction	 (Whitman	 2000),	while	 human	7 
uncertainty	is	due	to	human	errors	and	mistakes	(Sowers	1991).	8 

Reliability	analysis	provides	a	means	of	evaluating	the	combined	effects	of	uncertainties	9 
and	offers	a	logical	framework	for	choosing	factors	of	safety	that	are	appropriate	for	the	degree	10 
of	uncertainty	and	the	consequences	of	failure.	Thus,	 as	an	alternative	or	a	supplement	to	 the	11 
deterministic	assessment,	a	reliability	assessment	of	 liquefaction	potential	would	be	useful	 in	12 
providing	better	engineering	decisions.		13 

There	 are	many	 reliability	approaches	 that	have	 been	 developed	 to	 deal	 uncertainties	 in	14 
liquefaction	potential	based	on	shear	wave	velocity.	These	approaches	can	be	grouped	into	three	15 
categories:	approximate	methods,	artificial	intelligence	method	and	regression	analysis.	16 

Approximate	methods:	Most	of	 the	approximate	methods	are	modified	versions	of	 three	17 
methods	namely,	First	Order	Second	Moment	(FOSM)	method	(Alfredo	and	Wilson	1975),	Point	18 
Estimate	 Method	 (PEM)	 (Rosenblueth	 1975),	 and	 First	 Order	 Reliability	 Method	 (FORM)	19 
(Hasofer,	Lind	et	al.	1973).	These	approaches	require	knowledge	of	the	mean	and	variance	of	all	20 
input	variables	as	well	as	the	performance	function	that	defines	liquefaction	safety	factor.	21 

Juang	et	al.	(2005)	used	FORM	to	characterize	the	uncertainty	of	a	shear	wave	velocity-based	22 
simplified	model	for	liquefaction	potential	evaluation	developed	by	Andrus	and	Stokoe					(1997,	23 
2000).	They	represented	the	uncertainty	of	this	simplified	model	by	a	lognormal	random	variable	24 
and	performed	a	 trial-and-error	procedure	 to	determine	 the	 two	statistical	parameters	of	 the	25 
model	uncertainty	(mean	and	the	Coefficient	of	Variation	(COV))	based	on	a	Bayesian	mapping	26 
function	that	was	calibrated	with	a	database	of	case	histories.	27 

Zou	et	al.	(2017)	used	FORM	to	characterize	the	uncertainty	of	a	Cone	penetration	test	model	28 
for	 liquefaction	potential	evaluation.	 It	was	shown	 that	 the	 deterministic	nature	of	 the	 CPTU	29 
observations	can	be	captured	in	the	probabilistic	analysis	if	the	proposed	procedure	is	applied.		30 

Artificial	intelligence	method:	In	recent	years,	by	pervasive	developments	in	computational	31 
software	and	hardware,	several	alternative	computer-aided	pattern	recognition	approaches	have	32 
emerged.	The	main	idea	behind	pattern	recognition	systems	such	as	neural	network,	fuzzy	logic	33 
or	 genetic	 programming	 is	 that	 they	 learn	 adaptively	 from	 experience	 and	 extract	 various	34 
discriminates,	each	 appropriate	for	 its	purpose.	Artificial	Neural	Networks	 (ANNs)	and	Multi-35 
Layer	Regression	(MLR)	are	the	most	widely	used	pattern	recognition	procedures	that	have	been	36 
introduced	for	determination	of	liquefaction	potential.	In	this	approach	the	reliability	analysis	is	37 
done	based	on	a	function	that	is	developed	by	an	appropriate	artificial	intelligence	method	(Chau	38 
and	Wu	2010,	Wu,	Chau	et	al.	2010,	Taormina,	Chau	et	al.	2015).	39 

Juang	et	al.	(2001)	developed	a	new	Vs-based	empirical	equation	for	assessing	the	liquefaction	40 
resistance	of	soils	using	a	neural	network.	A	database	of	case	histories	was	used	to	train	and	test	41 
an	artificial	neural	network	model.	The	model	could	predict	 the	occurrence/nonoccurrence	of	42 
liquefaction	 based	 on	 soil	 and	 seismic	 load	 parameters.	 Based	 on	 this	 deterministic	 model,	43 
probabilistic	analysis	of	 the	cases	in	the	database	was	conducted	using	the	 logistic	regression	44 
approach	and	the	mapping	function	approach.	45 

Goh	 (2002)	used	 a	 Probabilistic	Neural	 Network	 (PNN)	 approach	based	 on	 the	 Bayesian	46 
classifier	method	 to	 evaluate	 seismic	 liquefaction	potential	based	on	 actual	 field	 records	 and	47 
performed	 two	separate	analyses,	one	based	on	cone	penetration	test	data	and	one	based	on	48 
shear	wave	velocity	data.	Comparisons	of	the	results	showed	that	the	PNN	models	perform	far	49 
better	 than	 the	 conventional	 methods	 in	 predicting	 the	 occurrence	 or	 non-occurrence	 of	50 
liquefaction.	51 
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Muduli	et	al.	(2014)	evaluated	liquefaction	potential	of	soil	within	a	probabilistic	framework	1 
based	on	the	post-liquefaction	Cone	Penetration	Test	(CPT)	data	using	an	evolutionary	artificial	2 
intelligence	technique,	multi-gene	genetic	programming	(MGGP).	3 

Regression	analysis:	The	rationality	of	the	reliability	analysis	results	largely	depends	on	the	4 
amount	and	quality	of	the	collected	data	used	to	deduce	the	statistics	of	the	cyclic	soil	strength.	5 
This	method	requires	collecting	data	for	liquefaction	and	non-liquefaction	cases.		6 

Juang	et	al.	(2002)	used	two	different	approaches,	logistic	regression	and	Bayesian	mapping	7 
functions	for	calculating	probabilities	of	liquefaction	based	on	the	standard	penetration	test,	cone	8 
penetration	test,	and	shear	wave	velocity	measurements	and	compared	 the	 results	with	 each	9 
other.	They	showed	that	the	Bayesian	mapping	approach	is	preferred	over	the	logistic	regression	10 
approach	for	estimating	the	site-specific	probability	of	liquefaction,	although	both	methods	yield	11 
comparable	probabilities.	12 

Nafday		(2010)	developed	a	soil	liquefaction	models	based	on	survival	analysis	parametric	13 
regression	to	evaluate	the	factor	of	safety	and	probability	of	liquefaction.	14 

In	addition	to	the	above	mentioned	approaches,	analytical	methods	such	as	jointly	distributed	15 
random	variables	method	and	numerical	methods	like	Monte	Carlo	simulation	(Metropolis	and	16 
Ulam	 1949, Metropolis	 and	 Ulam	 1949)	 also	 can	 be	 employed	 for	 reliability	 analysis	 of	17 
liquefaction	potential	based	on	in	situ	shear	wave	velocity	measurement.		18 

In	 this	 research,	 the	 jointly	distributed	random	variables	method	 is	 used	as	 an	analytical	19 
method	 to	 assess	 the	 reliability	of	 the	 safety	 factor	 in	 the	 prediction	of	 liquefaction	potential	20 
considering	the	uncertainties	in	parameters	and	Monte	Carlo	simulation	is	used	for	verifying	the	21 
results	of	JDRV	method. 22 

In	this	analytical	method,	the	derivation	is	done	only	once	and	after	that,	 it	can	be	used	in	23 
many	applications.	It	is	also	worth	noting	that,	in	some	problems	such	as	liquefaction	potential	24 
assessment,	when	a	relatively	large	number	of	variables	are	involved,	the	Monte	Carlo	simulation	25 
may	 require	 hundreds	 of	 thousands	 of	 simulation	 runs	 that	 make	 the	 method	 excessively	26 
demanding	 in	 computational	 time	 and	 resources.	 Moreover,	 the	 jointly	 distributed	 random	27 
variables	method	 can	be	used	 for	 stochastic	parameters	with	 any	distribution	 curve	 (such	 as	28 
normal,	exponential,	gamma,	uniform,	...)	whereas	some	other	analytical	methods	like	PEM,	and	29 
FOSM	require	specific	(e.g.,	normal)	distribution	functions.	This	ability	is	very	important	because	30 
the	peak	horizontal	earthquake	acceleration	ratio	(α)	and	earthquake	magnitude	(Mw),	which	are	31 
presented	 in	 liquefaction	potential	 relationship,	are	considered	 to	have	 truncated	exponential	32 
probability	density	functions.	It	is	important	to	note	that	the	main	deference	between	this	paper	33 
and	the	published	papers	is	that	the	previous	papers	were	followed	the	reliability	assessment	of	34 
liquefaction	by	JDRV	method	using	SPT,	CPT	and	triaxial	data	(Johari,	 Javadi	et	al.	2012,	Johari	35 
and	 Khodaparast	 2013, Johari	 and	 Khodaparast	 2014).	 However,	 this	 research	 assesses	 this	36 
reliability	by	JDRV	method	using	shear	wave	velocity	data.  37 

2.		Factor	of	Safety	against	liquefaction	based	on	site	shear	wave	velocity		38 

The	soil	liquefaction	Factor	of	Safety	(FS)	is	defined	in	terms	of	Cyclic	Resistance	Ratio	for	39 
earthquakes	with	magnitude	 of	 7.5	 (CRR7.5),	 Cyclic	 Stress	 Ratio	 (CSR),	 earthquake	Magnitude	40 
Scaling	Factor	(MSF),	and	overburden	stress	correction	factor	(Kσ)	as:	41 

																																																																																																																									(1)	42 

No	liquefaction	is	predicted	if	FS	>	1,	and	on	the	other	hand,	if	FS	≤	1,	liquefaction	is	predicted.	43 
Cyclic	Resistance	Ratio	for	earthquakes	with	magnitude	of	7.5	(CRR7.5)	can	be	obtained	from	shear	44 
wave	velocity	measurement	as	(Andrus,	Stokoe	et	al.	2004):	45 

																																																		(2)	46 
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where:		1 

	VS1cs:	The	clean-sand	equivalent	of	the	overburden	stress-corrected	shear-wave	velocity,	defined	2 
as	(Andrus,	Stokoe	et	al.	2004):	3 

																																																																																																																																																(3)	4 

VS1:	The	stress-corrected	shear-wave	velocity	normalized	to	the	effective	overburden	stress	of	5 
100	kPa	calculated	as	(Youd,	Idriss	et	al.	2001): 6 

																																																																																																																	(4)	7 

CVS	:	A	factor	to	correct	the	measured	site	velocity	for	 	(a	maximum	CVS	value	of	1.4	is	applied	8 
at	shallow	depths).	9 
Vs	:	Site	shear	wave	velocity(m/s)				10 
Kcs	:	Fines	content	correction	to	adjust	Vs1	values	to	a	clean	soil	equivalent.	It	can	be	approximated	11 
using	the	following	equation	(Juang,	Jiang	et	al.	2002):	12 

																																																																																												(5)	13 

where:	14 

																																																																																										(6)	15 

FC	:	The	average	fines	content.	16 

Ka1	and	Ka2:	Correction	factors	for	cementation	and	aging	(Andrus,	Stokoe	et	al.	2004).	17 

The	factors	Ka1	and	Ka2	are	included	in	Equation	(2)	to	extend	the	original	CRR-based	shear	wave	18 
velocity	equation	by	Andrus	and	Stokoe	(2000)	for	uncemented	Holocene-age	soils	to	older	soils.	19 
The	two	correction	factors	are	suggested	because	it	is	believed	that	two	mechanisms	influence	20 
the	position	of	 the	CRR-based	shear	wave	velocity	 curve	 for	 older	soils.	 The	 first	mechanism	21 
involves	the	effect	of	aging	on	VS1.	The	second	mechanism	involves	the	effect	of	aging	on	CRR.	22 
Both	Ka1	and	Ka2	are	1.0	for	uncemented	soils	of	Holocene	age.	For	older	soils,	the values of Ka1	and	23 
Ka2	were	proposed	by	Andrus	et	al.	(2004). 24 

	The	Cyclic	Stress	Ratio	(CSR)	has	been	proposed	by	Seed	and	Idriss	(1971)	as:	25 

																																																																																																										(7)	26 

where:	27 

σ’v:		Effective	vertical	stress		28 

σv	:	Total	vertical	stress	29 

τav	:	Average	shear	stress	causing	liquefaction		30 

(amax/g)=α: Peak	horizontal	ground	surface	acceleration	normalized	with	respect	to	acceleration	31 
of	gravity 32 

rd:	Stress	reduction	factor	33 
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The	 stress	 reduction	 factor,	 rd,	 provides	 an	 approximate	 correction	 for	 flexibility	 in	 the	 soil	1 
profile.	There	are	several	empirical	relations	for	determination	of	rd.	The	earliest	and	most	widely	2 
used	 recommendation	 for	 assessment	 of	 rd	 was	 proposed	 by	 Seed	 and	 Idriss	 (1971),	3 
approximated	by	Liao	and	Whitman	(1986),	and	expressed	in	Youd	and	Idriss	(2001)	as:	4 

             																																																	(8)	5 

where:	6 

h	:	depth	below	ground	surface	(m)	7 

The	magnitude	scaling	factor,	MSF,	has	been	used	to	adjust	the	induced	CSR	during	earthquake	8 
magnitude	Mw	 to	 an	 equivalent	 CSR	 for	 an	 earthquake	magnitude,	Mw=7.5.	 The	 MSF	 is	 thus	9 
expressed	as	(Youd,	Idriss	et	al.	2001):		10 

																																																																																																																																															(9)	11 

Mw	:	earthquake	magnitude	12 

The	overburden	pressure	correction	factor,	Kσ is	used	to	adjust	the	cyclic	resistance	ratio	where	13 
the	 overburden	 stresses	 are	much	 greater	 than	100	kPa.	This	 factor	 is	 defined	by	 Idriss	and	14 
Boulanger	(2006):	15 

																																																																																																																											(10)	16 

where:	17 

																																																																																																																																	(11)	18 

Pa:	Atmospheric	air	pressure	19 
DR:	Field	relative	density	20 
For	uncemented	soils,	Equation	(1)	can	be	rewritten	based	on	equations	(2)	to	(11)	as	follows:	21 

																							(12)	

22 

Equation	(12)	can	be	simplified	as:

														
	23 
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(14)	1 

It	should	be	noted	that	if	σ'v≤100	kPa,	then	Kσ	=1.0	and	the	term	 	2 

is	removed	from	equation	(14).	3 

3.	Developing	relations	between	dependent	variables	4 

The	jointly	distributed	random	variables	method	that	is	used	for	reliability	assessment	in	5 
this	 research	 assumes	 that	 the	 variables	 are	 independent.	 There	 are	 several	 stochastic	6 
parameters	 in	 equations	 (13)	 and	 (14).	 As	 the	 liquefaction	 classification	 problem	 is	 highly	7 
nonlinear	in	nature,	it	is	difficult	to	develop	a	comprehensive	model	taking	into	account	all	the	8 
independent	 variables,	 such	 as	 the	 seismic	 and	 soil	 properties,	 using	 conventional	 modeling	9 
techniques.	Hence,	 in	many	of	 the	 conventional	methods	 that	have	been	proposed,	 simplified	10 
assumptions	have	been	made.		11 

No	 direct	 correlation	 exists	 between	 α	 and	 earthquake	 magnitude.	 Several	 empirical	12 
relationships	 have	 been	 developed	 for	 estimating	 α	 as	 a	 function	 of	 earthquake	 magnitude,	13 
distance	 from	 the	 seismic	 energy	 source,	 and	 local	 site	 conditions.	 Preliminary	 attenuation	14 
relationships	have	also	been	developed	for	a	limited	range	of	soft	soil	sites	(Idriss	1991).	Selection	15 
of	an	attenuation	relationship	should	be	based	on	such	factors	as	the	region	of	the	country,	type	16 
of	faulting,	and	site	condition	(Youd,	Idriss	et	al.	2001).	17 

On	the	other	hand,	in	equation	(14),	the	parameters	DR	and	 are	related	to	Vs1.		In	this	18 
section,	the	relationship	between	DR	and	Vs1	as	well	as	 	and	Vs1	are	developed	to	resolve	the	19 
dependency	problem	of	variables	in	this	equation.	As	a	result	of	this	derivation,	equations	(13)	20 
and	(14)	have	four	stochastic	parameters,	peak	ground	acceleration	(α),	earthquake	magnitude	21 
(Mw),	 corrected	 shear-wave	 velocity	 (Vs1),	 and	 stress	 reduction	 factor	 (rd)	 as	 well	 as	 the	22 
deterministic	parameters	maximum	possible	dry	unit	weight	( ),	minimum	possible	dry	unit	23 
weight	( ),	unit	weight	of	water	( ),	average	Fines	Content	(FC),	and	specific	gravity	(Gs).	24 

3.1. Relation	between	DR	and	Vs1:	25 

Andrus	et	al.	(2004) proposed	the	following	relation	between	VS1cs	and	N1,60cs:	26 

																																																																																																																																(15)	27 

where:	28 
VS1cs	:	The	clean-sand	equivalent	of	the	overburden	stress-corrected	shear-wave	velocity.	It	can	29 
be	calculated	from	equation	(3).	30 
N1,60cs	:	The	clean-sand	equivalent	of	the	overburden	stress-corrected	SPT	blow	count		defined	as	31 
(Youd,	Idriss	et	al.	2001):	32 

																																																																					                                 																																(16) 33 

where:	34 
	35 
N1,60:	The	corrected	SPT	blow	count	normalized	to	the	effective	overburden	stress	of	100kPa	36 
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a	and	b	are	coefficients	to	account	for	the	effect	of	Fines	Content	(FC),	defined	as	(Youd,	Idriss	et	1 
al.	2001):	2 

																																																																																		(17)	3 

																																																																																(18)	4 

Several	relationships	between	relative	density	and	SPT	blow	counts	have	been	proposed	in	the	5 
literature	(Tokimatsu	and	Seed	1987,	Terzaghi	1996,	Idriss	and	Boulanger	2008).	Cubrinovski	6 
and	Ishihara	(1999)	proposed	a	relationship	between	DR	and	corrected	SPT	blow	count	as:	7 

																																																																																																																																							(19)	8 

where:	9 

																																																																																																																									(20)	10 

emax:	Maximum	possible	void	ratio	from	laboratory	experiment		11 
emin:	Minimum	possible	void	ratio	from	laboratory	experiment		12 
The	void	ratio	range	(emax	-	emin)	can	be	calculated	as	follows	(Das	2013):	13 

																																									(21)	14 

where:	15 

:	Maximum	possible	dry	unit	weight	from	laboratory	experiment	16 

:	Minimum	possible	dry	unit	weight	from	laboratory	experiment	17 
	18 
Combining	equations	(15)	to	(19),	the	relationship	between	DR	and	Vs1	can	be	developed	as:	19 

																																																																																																					

(22)	20 

3.2. Relation	between	γsat	and	Vs1:	21 

The	relation	between	γsat	and	γd	can	be	derived	from	their	basic	definitions	as	(Das	2013):	22 
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																																					(23)		1 

where:	2 

γsat:	Saturated	unit	weight		3 
γd:	Dry	unit	weight	in	natural	state	of	soil	4 
Gs:	Specific	gravity	of	soil	solids		5 
γw:	Unit	weight	of	water	(9.81	kN/m3)	6 
e:	Void	ratio	in	natural	state	of	soil	7 
The	relation	between	relative	density	(DR)	and	dry	unit	weight	(γd)	is	(Das	2013):	8 

                            
																													(24)	9 

Using	equation	(23)	and	(24),	the	relation	between	γsat	and	DR	can	be	developed	as	follows:	10 

        
																																																																																															(25)	11 

With	substituting	equation	(22)	in	equation	(25),	the	relation	between	γsat	and	Vs1	can	be	12 
obtained	as	bellow:	13 

																																															

(26)	14 

By	substituting	equation	(22)	and	(26)	into	equations	(13)	and	(14),	these	equations	convert	to	a	15 
stochastic	independent	variable	relations.	16 

4. Jointly	distributed	random	variables	method		17 

Jointly	 distributed	 random	 variables	 method	 is	 an	 analytical	 stochastic	 method.	 In	 this	18 
method,	the	probability	density	function	(pdf)	of	input	variables	are	expressed	mathematically	19 
and	jointed	together	by	statistical	relations.	The	JDRV	method	is	an	exact	method	and	can	be	used	20 
for	stochastic	parameters	with	any	distribution	curve	(such	as	normal,	lognormal,	exponential,	21 
gamma,	 uniform,	 …).	 This	 ability	 is	 very	 important	 because	 the	 peak	 horizontal	 earthquake	22 
acceleration	ratio	(α)	and	earthquake	magnitude	(Mw),	which	are	presented	in	Factor	of	Safety	23 
against	 liquefaction	 relationship,	 are	 considered	 to	 have	 truncated	 exponential	 probability	24 
density	functions.	The	available	statistical	and	probabilistic	relations	between	random	variables	25 
are	given	in	the	literature	(Hoel,	Port	et	al.	1971,	Tijms	2012,	Ramachandran	and	Tsokos	2014).		26 

In	 recent	 years	 this	 method	 has	 been	 applied	 to	 a	 number	 of	 geotechnical	 engineering	27 
problems	(Johari	and	Javadi	2012,	Johari,	Javadi	et	al.	2012,	Johari,	Fazeli	et	al.	2013,	Johari	and	28 
Khodaparast	2013, Johari	and	Khodaparast	2014,	Johari	and	khodaparast	2015).	29 
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5.		Monte	Carlo	simulation		1 

The	simulation	by	Monte	Carlo	can	solve	problems	by	generating	suitable	random	numbers	2 
(or	 pseudo-random	 numbers)	 and	 assessing	 the	 dependent	 variable	 for	 a	 large	 number	 of	3 
possibilities.	 The	 MCS	 involves	 the	 definition	 of	 the	 variables	 that	 generate	 uncertainty	 and	4 
probability	density	function	(pdf);	determination	of	the	value	of	the	function	using	variable	values	5 
randomly	obtained	considering	the	pdf;	and	repeating	this	procedure	until	a	sufficient	number	of	6 
outputs	to	build	the	pdf	of	the	function.	The	number	of	required	Monte	Carlo	trials	is	dependent	7 
on	 the	 desired	 level	 of	 confidence	 in	 the	 solution	 as	 well	 as	 the	 number	 of	 variables	 being	8 
considered	(Harr	1987),	and	can	be	estimated	from:	9 

																																																																																																																																													(27)	10 

where:	11 
N:	Number	of	Monte	Carlo	trials	12 
d:	The	standard	normal	deviate	corresponding	to	the	level	of	confidence	13 
:	The	desired	level	of	confidence	(0	to	100%)	expressed	in	decimal	form	14 

n:	Number	of	variables	15 
If	the	problem	has	n	variables,	the	number	of	trials	increases	geometrically,	according	to	power	16 
n.	17 

6.		Reliability	assessment	by	jointly	distributed	random	variables	method	18 

For	reliability	assessment	of	liquefaction	potential	and	to	account	for	the	uncertainties,	four	19 
independent	 input	 parameters	 have	 been	 defined	 as	 stochastic	 variables.	 The	 stochastic	20 
parameters	are	stress	corrected	shear-wave	velocity	(Vs1)	and	stress	reduction	factor	(rd),	which	21 
are	modeled	using	truncated	normal	probability	density	functions	(pdf)	and	the	peak	horizontal	22 
earthquake	acceleration	ratio	(α)	and	earthquake	magnitude	(Mw)	which	are	considered	to	have	23 
truncated	 exponential	 probability	 density	 functions.	 The	 depth	 is	 regarded	 as	 a	 constant	24 
parameter.		25 

For	 reliability	assessment	of	 liquefaction	safety	factor	using	 the	 JDRV	method,	 equation	26 
(13)	 is	 rewritten	 into	 terms	 of	 K1	 to	 K7	 as	 shown	 in	 equation	 (28).	The	 terms	 K1	 to	 K7,	 are	27 
introduced	in	equation	(29).	The	probability	density	function	of	each	term	is	derived	separately	28 
by	equations	(36)	to	(43).	Derivations	of	these	equations	are	presented	in	the	Appendix	1.	29 

																																																																(28)	30 

where:	31 
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													Using	 the	 above	mathematical	 functions	 for	 K1	 to	 K7	 and	 fK1(k1)	 to	 fK7(k7)	 a	 computer	1 
program	was	developed	(coded	in	MATLAB)	to	determine	the	probability	density	function	curve	2 
of	liquefaction	safety	factor.	In	addition,	for	comparison,	determination	of	 the	safety	factor	for	3 
liquefaction	using	the	MCS was	also	coded	in	the	same	computer	program. 4 

           MATLAB	is	a	multi-paradigm	numerical	computing	environment.	MATLAB	allows	matrix	5 
manipulations,	plotting	of	 functions	and	data,	 implementation	of	 algorithms,	creation	 of	 user	6 
interfaces,	and	interfacing	with	programs	written	in	other	languages.	 7 

           To	 show	 the	 ability	of	 the	 proposed	method	 an	 example	 is	 presented	 in	 the	 following	8 
sections.	9 

7.		Example		10 

To	demonstrate	the	 efficiency	and	accuracy	of	 the	proposed	method	 in	determining	the	11 
probability	density	function	curve	for	the	liquefaction	safety	factor	and	reliability	assessment,	an	12 
example	problem	with	selected	parameters	values	from	literature	(Gabriels,	Snieder	et	al.	1987,	13 
Kramer	1996,	Duncan	2000,	Youd,	Idriss	et	al.	2001,	Marosi	and	Hiltunen	2004)	is	presented.	The	14 
stochastic	parameters	with	truncated	normal	and	truncated	exponential	distributions	are	shown	15 
in	Tables	(1)	and	(2)	respectively,	and	the	deterministic	parameters	are	given	in	Table	(3).	16 

Table	(1)	_	Stochastic	parameters	with	truncated	normal	distribution		 17 
	18 

	19 
	20 

Table	(2)	_	Stochastic	parameters	with	truncated	exponential	distribution	 21 
Mean Maximum Minimum λ Parameters 
6.418 8.0 5.5 2/3 Mw 
0.269 0.4 0.2 10 α 

Table	(3)	_	Deterministic	parameters	 22 
Depth	of	water	table(m)	 Depth(m)	 FC	(%)	 (kN/m3)	 (kN/m3)	 Gs 

0.0	 12.0	 10.0	 14.0	 19.0	 2.65	

In	order	to	compare	the	results	of	the	presented	method	with	those	of	the	MCS,	the	final	23 
probability	density	and	cumulative	distribution	curves	for	the	factor	of	safety	against	liquefaction	24 
are	determined	using	the	same	data	and	both	methods.	For	this	purpose,	10,000,000	generation	25 
points	are	used	for	the	MCS.	The	results	are	shown	in	Figures	(1)	and	(2).		26 

	 	
Figure	(1)	_	Comparison	of	probability	density	function	of	

safety	factor	against	liquefaction	by	two	methods	
Figure	(2)	_	Comparison	of	cumulative	distribution	function	of	

safety	factor	against	liquefaction	by	two	methods	
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As	it	can	be	seen	in	these	figures,	the	results	obtained	using	the	developed	method	are	very	1 
close	to	those	of	the	MCS.	The	probability	of	liquefaction,	is	shown	by	green	region	for	FS<1,	in	2 
Figure	(1).	Figure	(2)	shows	the	cumulative	distribution	curve	of	the	liquefaction	safety	factor.	It	3 
can	be	seen	the	probability	of	liquefaction	(FS≤1)	for	this	site	at	the	assessed	depth	(12m)	is	about	4 
76%.	Table	(4)	indicates	that	at	this	depth	liquefaction	would	most	likely	occur.	5 

Table	(4)	_	Classes	of	liquefaction	potential	(Juang,	Jiang	et	al.	2002)	6 
Probability	 Class	 Description	(Likelihood	of	liquefaction)	

0.85<PL<1.00	 5	 Almost	certain	that	it	will	liquefy	
0.65<PL<0.85	 4	 Liquefaction	very	likely	
0.35<PL<0.65	 3	 Liquefaction	and	non-liquefaction	equally	likely	
o.15<PL<0.35	 2	 Liquefaction	unlikely	
0.0<PL<0.15	 1	 Almost	certain	that	it	will	not	liquefy	

On	 the	 other	 hand,	 a	 deterministic	 calculation	 using	 the	 mean	 value	 of	 the	 stochastic	7 
parameters	shows	that,	the	safety	factor	against	liquefaction	is	about	0.72.	This	demonstrates	8 
that	at	this	depth	liquefaction	would	occur,	but	 the	probability	of	 liquefaction	is	not	specified.	9 
Therefore,	the	designer	cannot	have	an	engineering	judgment.	In	fact,	reliability	assessment	and	10 
engineering	judgment	are	employed	together	to	develop	risk	and	decision	analyses. 	11 

8.	Probabilistic	model	development		12 

8.1.	Database	13 

For	 developing	 the	 model,	 a	 database	 consisting	 of	 225	 site	 case	 histories,	 collected	 by	14 
Andrus	et	 al.	 (1999),	was	used.	 The	database	is	composed	of	 129	non-liquefied	cases	and	96	15 
liquefied	cases.	Table	(5)	provides	a	summary	of	this	database,	including	the	ranges	of	parameter	16 
values	of	the	case	histories	in	the	database.	17 

Table	(5)	_	Parameters	ranges	of	case	histories	in	the	database	(Andrus,	Stokoe	et	al.	1999)	18 

Earthquake	 Mw	 amax	(g)	
No.	of	cases Depth	

(m)	
G.W.L.	
(m)	 FC	(%)	 Vs1	

(m/s)	Liq.	 Non-Liq.	

1906	SAN	FRANCISCO,	CALIFORNIA	 7.7	 0.32-0.36	 8	 4	 4.6-9.9	 2.4-6.1	 5-44	 124-191 
1957	DALY	CITY,	CALIFORNIA	 5.3	 0.11	 0	 5	 3.5-7.9	 2.7-5.9	 2-12	 113-211 
1964	NIIGATA,	JAPAN	 7.5	 0.16	 3	 1	 3.2-6.2	 1.2-5.0	 5	 136-164 
1975	HAICHENG,	PRC	 7.3	 0.12	 5	 1	 3.0-10.2	 0.5-1.5	 42-92	 111-158 
1979	IMPERIAL	VALLEY	 6.5	 0.12-0.51	 4	 7	 3.0-4.7	 1.5-2.7	 10-75	 104-211 
1980	MID-CHIBA,	JAPAN	 5.9	 0.08	 0	 2	 6.1-14.8	 1.3	 20-35	 173-185 
1981	WESTMORLAND,	CALIFORNIA	 5.9	 0.02-0.36	 6	 5	 3.0-4.7	 1.5-2.7	 10-75	 104-211 
1983	BORAH	PEAK,	IDAHO	 6.9	 0.23-0.46	 15	 3	 1.9-3.7	 0.8-3.0	 5-6	 115-318 
1985	CHIBA-IBAARAGI,	JAPAN	 6.0	 0.05	 0	 2	 6.1-14.8	 1.3	 20-35	 173-185 
10/26/85	TAIWAN	(EVENT	LSST	2)	 5.3	 0.05	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
11/7/85	TAIWAN	(EVENT	LSST	3)	 5.5	 0.02	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
1/16/86	TAIWAN	(EVENT	LSST	4)	 6.6	 0.22	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
4/8/86	TAIWAN	(EVENT	LSST	6)	 5.4	 0.04	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
5/20/86	TAIWAN	(EVENT	LSST	7)	 6.6	 0.18	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
5/20/86	TAIWAN	(EVENT	LSST	8)	 6.2	 0.04	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
07/30/86	TAIWAN	(EVENT	LSST	12)	 6.2	 0.18	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
07/30/86	TAIWAN	(EVENT	LSST	13)	 6.2	 0.05	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
11/14/86		TAIWAN	(EVENT	LSST	16)	 7.6	 0.16	 0	 4	 5.3-6.1	 0.5	 50	 155-191 
1987	CHIBA-TOHO-OKI,	JAPAN	 6.5	 0.03	 0	 1	 9.0	 1.8	 15	 141 
1987	ELMORO	RANCH	 5.9	 0.03-0.24	 0	 11	 3.0-4.7	 1.8	 10-75	 104-211 
1987	SUPERSTITION	HILLS,	CALIFORNIA	 6.5	 0.18-0.21	 3	 8	 3.0-4.7	 1.5-2.7	 10-75	 104-211 
1989	LOMA	PRIETA,	CALIFORNIA	 7.0	 0.13-0.42	 33	 34	 2.3-9.9	 0.6-6.1	 1-57	 107-222 
1993	KUSHIRO-OKI,	JAPAN	 8.3	 0.41	 2	 0	 4.2-4.5	 0.9-1.9	 5-7	 161-189 
1993	HOKKAIDO-NANSEI-OKI,	JAPAN	 8.3	 0.15-0.19	 3	 1	 2.0-7.0	 1.0-1.4	 5-54	 99-166 
1994	NORTHRIDGE,	CALIFORNIA	 6.7	 0.51	 3	 0	 4.4-5.6	 3.4	 10	 142-170 
1995	HYOGOKEN-NANBU,	JAPAN	 6.9	 0.12-0.65	 11	 8	 3.3-15	 1.5-7.0	 2-77	 126-239 
1906	SAN	FRANCISCO,	CALIFORNIA	 7.7	 0.32-0.36	 8	 4	 4.6-9.9	 2.4-6.1	 5-44	 124-191 
1957	DALY	CITY,	CALIFORNIA	 5.3	 0.11	 0	 5	 3.5-7.9	 2.7-5.9	 2-12	 113-211 
1964	NIIGATA,	JAPAN	 7.5	 0.16	 3	 1	 3.2-6.2	 1.2-5.0	 5	 136-164 

8.2.	Model	development	19 

To	develop	the	probabilistic	liquefaction	model	the	following	procedure	was	followed:	20 
• The	 uncertainty	 in	 the	 input	 parameters	 used	 in	 the	 calculation	 of	 safety	 factor	 of	21 

liquefaction	 was	 assessed	 for	 each	 series	 of	 database.	 The	 large	 majority	 of	 the	22 
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liquefaction	case	histories	lack	sufficient	information	to	justify	attempting	to	develop	site-1 
specific	estimates	of	these	uncertainties	for	each	case	history.	For	this	reason,	the COV	of	2 
Vs1	was	taken	as	being	the	same	for	all	case	histories	and	equal	to	0.05	as	suggested	by	3 
Marosi	and	Hiltunen	(2004).	The	standard	deviation	of	rd	was	selected	based	on	the	three-4 
sigma	rule	(Duncan	2000)	and	the	curve	suggested	by	Seed	and	Idriss	(1971)	for	each	5 
depth.	To	 consider	 the	uncertainty	of	 earthquake	parameters,	 reasonable	values	were	6 
taken	for	the	scale	parameter	of	earthquake	acceleration	ratio	and	moment	magnitude,	7 
as	being	the	same	for	all	case	histories	and	equal	to	0.05	and	0.8	respectively	(βa=0.05	8 
and	βMw=0.8).	Furthermore	 the	 range	of	 variation	of	a	 and	Mw	was	 taken	0.2	 and	2.5	9 
respectively	for	all	case	histories	(MWmax-	MWmin=2.5	and	amax-amin=0.2).	10 

• The	 cumulative	 distribution	 function	 of	 each	 data	 series	 from	 the	 database	 was	11 
determined	using	the	JDRV	method	as	described	in	section	5.	12 

• The	probability	of	liquefaction	was	computed	from	the	cumulative	distribution	function	13 
for	each	data	series.	14 

• The	 safety	 factor	of	 each	 data	series	was	calculated	using	 the	 deterministic	approach	15 
described	in	section	2.	16 

• The	probability	of	liquefaction	and	the	related	factor	of	safety	from	two	previous	steps	17 
were	plotted	with	respect	to	each	other	for	all	data	series.		The	results	are	shown	in	Figure	18 
(3).	19 

	
Figure(3)_	Predictions	of	the	developed	probability	liquefaction	model	using	JDRV	

• The	probabilistic	liquefaction	model	was	developed	using	MATLAB	curve	fitting	toolbox.	20 
The	model	has	the	following	form:		21 

														
																																																																																				(30)	22 

In	equation	(30),	FS	is	computed	using	the	method	recommended	by	Andrus	et	al.	(Andrus,	Stokoe	23 
et	 al.	 2004),	 as	 described	 in	 section	2	 and	Φ	 is	 the	 standard	 normal	 cumulative	 distribution	24 
function	defined	as:	25 

																																																																											(31)	26 

Using	equation	(31),	equation	(30)	can	be	rewritten	as:	27 

																																																																																			(32)	28 
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where	erf	is	error	function,	defined	as:	1 

																																																																																																															(33)	2 

8.3	Comparison	of	the	model		3 

In	this	part	the	developed	model	was	compared	to	an	existing	model	and	empirical	data.	4 
For	this	purpose	the	model	proposed	by	Juang	et	al.	(2002)	was	selected.		5 

																																																																																																																			(34)	6 

where	FS	must	be	computed	as	suggested	by	Andrus	and	Stokoe	(1997,	2000).	7 
Additionally	the	model	was	compared	with	empirical	data.	For	this	purpose	the	FSs	were	8 

calculated	for	all	data	using	the	deterministic	approach	as	described	in	section	3.	The	results	were	9 
then	placed	in	different	bin	widths	(classes)	of	0.1,	0.2,	0.3,	0.4	and	0.5	based	on	their	FS	values.	10 
By	counting	the	number	of	liquefied	cases	(n1)	and	non-liquefied	cases	(n2)	in	the	same	bin	the	11 
empirical	probability	of	liquefaction	PL	corresponding	to	the	center	of	each	FS	bin	was	obtained	12 
as	PL=n1/(n1+n2)	(Juang,	Ching	et	al.	2012).	13 

Comparison	of	the	probabilistic	models	proposed	by	JDRV	and	Juang	et	al.	(2012)	and	the	14 
empirical	data	for	bin	widths	0.1,	0.2,	0.3,	0.4	and	0.5	is	presented	in	Figure	(4).	Furthermore,	15 
liquefaction	probability	predictions	of	the	models	for	some	safety	factors	are	given	in	Table	(6).		16 

	
Figure(4)_	Comparison	of	different	models	and	empirical	data	

Table	(6)	_	Liquefaction	probability	predictions	of	the	models 17 
	Probability	of	liquefaction	(%)   

JDRV	Model Juang	et	al.	(2002) Design	FS Model	
40.46	25.54	1.0	

Vs-based	 24.24 15.58 1.2 
11.58 7.95 1.5 

	18 

It	 can	 be	 seen	 that	 the	 proposed	 model	 provides	 a	 more	 conservative	 prediction	 of	19 
liquefaction	potential	than	the	Juang	et	al.	(2002)	model	and	empirical	data	which	is	due	to	use	20 
of	liquefaction	boundary	curve	proposed	by	Andrus	and	Stokoe	(1997,	2000).	This	curve	missed	21 
the	least	number	of	liquefied	cases	and	thus	is	equivalent	to	the	26%	probability	curve	(Juang,	22 
Jiang	et	al.	2002).	This	curve’s	conservation	transfer	to	JDRV	model	directly.	However,	the	Juang	23 
et	 al.	 (2002)	model	was	derived	using	 logistic	 regression	and	Bayesian	mapping	 functions	on	24 
shear	wave	velocity	measurement	database.		25 
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8.4	Comparison	of	the	Vs	and	SPT	based	probabilistic	models	1 

A	comparison	of	 the	results	of	 the	proposed	model	(Eq.	 (30))	and	the	SPT-based	model	2 
developed	using	JDRV	(Johari	and	Khodaparast	2013)	(Eq.	(35))	is	presented	in	Figure	(5).		3 
		4 

																																																																																																					(35)	5 

In	this	equation,	FS	is	computed	using	the	method	recommended	by	Youd	and	Idriss.	(2001).	6 
It	is	shown	that,	as	expected,	the	Vs-based	model	provides	the	more	conservative	prediction	of	7 
liquefaction	potential	than	 the	 SPT-based	model	 for	 important	safety	 factors	(FS<1.3)	(in	 the	8 
same	probability	of	liquefaction	occurrence,	the	Vs-based	model	predicts	smaller	factor	of	safety	9 
than	SPT	model)	although	the	results	of	the	models	are	close	to	each	other.	10 

	
Figure(5)_ Comparison	of		Vs	and	SPT	based	JDRV	models 

9.		Conclusion	11 

	 This	paper	has	presented	the	development	of	a	probabilistic	model	for	liquefaction	based	12 
on	site	shear	wave	velocity	using	the	 JDRV	method.	The	Monte	Carlo	simulation	was	used	 for	13 
verifying	the	results	of	JDRV	method.	The	selected	stochastic	parameters	were	stress-corrected	14 
shear-wave	velocity	and	stress	reduction	 factor,	which	were	modeled	using	truncated	normal	15 
probability	density	 functions	 and	 the	 earthquake	 acceleration	 ratio	 and	 earthquake	moment	16 
magnitude,	which	were	considered	to	have	truncated	exponential	probability	density	functions.	17 
The	results	showed	that	the	probability	distribution	of	the	liquefaction	safety	factor	obtained	by	18 
the	 JDRV	method	is	very	close	to	 that	predicted	by	 the	Monte	Carlo	simulation.	Moreover,	 the	19 
results	indicated	that	the	JDRV	method	was	able	to	capture	the	expected	probability	distribution	20 
of	the	safety	factor	of	liquefaction	correctly.	Comparison	of	the	results	of	the	proposed	model	and	21 
the	SPT-based	model,	both	developed	using	JDRV,	shows	that	the	Vs-based	model	provides	a	more	22 
conservative	prediction	of	liquefaction	potential	than	the	SPT-base	model.	23 

10.		Appendix	1	24 

Derivation	of	mathematical	functions	K1	to	K7	and	FS	and	theirs	domains	is	presented	in	this	25 
Appendix:	26 
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1 

	
2 

where:	
3 

                                                                                                                 		4 

VS1mean:	Average	value	of	stress-corrected	shear-wave	velocity	5 
σVs1:	Standard	deviation	of	stress-corrected	shear-wave	velocity	6 
VS1min:	Minimum	value	of	stress-corrected	shear-wave	velocity	7 
VS1max:	Maximum	value	of	stress-corrected	shear-wave	velocity	8 

																																														(37)	9 

	

10 

	

11 

                                                                                                                         		12 

rdmean:	Average	value	of	stress	reduction	factor		13 
σrd:	Standard	deviation	of	stress	reduction	factor		14 
rdmin:	Minimum	value	of	stress	reduction	factor		15 
rdmax:	Maximum	value	of	stress	reduction	factor	16 

										(38)	17 

	18 

	
19 

where:	
20 

MWmin:	Minimum	value	of	moment	magnitude		21 
MWmax:	Maximum	value	of	moment	magnitude	22 
λMw:	Rate	of	change	in	moment	magnitude	(rate	parameter)	=1/βMw		23 
βMw	:	Scale	parameter	of	moment	magnitude	24 
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	2 

	

3 

where:	

4 

αmin:	Minimum	value	of	earthquake	acceleration	ratio	5 
αmax	:	Maximum	value	of	earthquake	acceleration	ratio	6 
λα	:	Rate	of	change	in	earthquake	acceleration	ratio	(rate	parameter)	=1/βα 7 
βα	:	Scale	parameter	of	earthquake	acceleration	ratio	8 
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	13 

																and															

	

14 

																																																																												(42)	15 

	16 

																and															

 

17 

And	the	cumulative	distribution	function	of	K7	can	be	determined	as	bellow:	18 
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