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ABSTRACT

Inner hair cells (IHCs) are the actual sensory receptors in hearing. Immature IHCs gen-

erate spontaneous calcium-dependent action potentials. Changing the characteristic of

the Ca2+ signals modulates the amplitude and duration of the action potentials in these

cells. These spontaneous action potential firing patterns are thought to be important

for the development of the auditory system. The aim of this thesis is to gain a deeper

understanding of the electrical activity and calcium signalling during development of

IHCs from a mathematical point of view.

A numerical bifurcation analysis is performed to delineate the relative contributions

of the model parameters to the asymptotic behaviour of the model. In particular, we

investigate the pattern of periodic solutions including single (normal) spiking, pseudo-

plateau burstings and complex solutions using two-parameter sections of the parameter

space.

We also demonstrate that a simplified (three-dimensional) model can generate similar

dynamics as the original (four-dimensional) IHC model. This reduced model could be

characterised by two fast and one slow or one fast and two slow variables depending

on the parameters’ choice. Hence, the mechanisms underlying the bursting dynamics

and mixed mode oscillations in the model are studied applying 1-slow/2-fast and

2-slow/1-fast analysis, respectively.
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INTRODUCTION

Inner hair cells (IHCs) are the actual sensory receptors in hearing. During develop-

ment, IHCs generate spontaneous calcium-dependent action potentials [49, 63]. The

Ca2+ signals in immature IHCs trigger neurotransmitter release that generates action

potentials of auditory neurons [8, 39]. Changing the characteristic of the Ca2+ signals

modulates the amplitude and duration of the action potentials in immature IHCs. These

spontaneous action potential firing patterns in immature IHCs are thought to be im-

portant for the development of the auditory system such as tonotopic organisation, a

spatial representation of sounds in the auditory system according to frequencies, and

maturation of synaptic connections [35, 49].

In order to gain further insight into these earlier signaling in IHCs, a mathematical

model, called the IHC model, was originally proposed in [90] taking into account the

experimental data recorded from developing IHCs. In addition to the earlier studies

[31, 90] of the IHC model, the aim of this thesis is to attain deeper knowledge of the

electrical activity and Ca2+ signalling during development of IHCs from a mathematical

point of view.
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CHAPTER 1. INTRODUCTION

In this chapter, we briefly discuss the hearing process with a particular focus on the

developing inner hair cells (IHCs). Prior to reviewing the IHC model, we also discuss

earlier mathematical models to give an introduction to the fundamental aspects of

mathematical modeling of excitable cells as well as techniques that are used to study

the mechanisms underlying oscillatory dynamics of such models.

1.1 Hearing and Inner Hair Cells

In this section, we give an overview of the hearing process and physiology of the ear.

We focus on the inner hair cells that are the actual sensory receptors in hearing and

explain the differences between the physiology of mature and immature IHCs. We also

discuss why immature IHCs demand special attention as a motivation for this thesis.

1.1.1 The Physiology of an Ear

Hearing is one of the major mammalian senses and the organ of hearing is the ear.

An ear can be divided into three parts: the outer ear, the middle ear and the inner ear.

The outer ear consists of the auricle, or pinna, and the external auditory meatus, or

the ear canal. Sound waves are collected and amplified by the auricle, and then travel

through the ear canal [72]. These sound waves reach the tympanic membrane, or the

ear drum, causing vibrations.

The ear drum is the border of the middle ear, which hosts the auditory ossicles. The

role of the ossicle bones, namely the malleus, the incus and the stapes, is to transfer

and amplify movements of the ear drum towards the inner ear. Therefore, incoming

sound waves are converted into mechanical vibrations.

The inner ear consists of three parts; the cochlea, the vestibule and the semicircular

canals. We will focus on the cochlea, where the mechanical vibrations of the ossicles

are converted into fluid waves and neural signals, which are then passed to the brain.

2



1.1. HEARING AND INNER HAIR CELLS

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.1. Structures of the cochlea, its cross section and the organ of
Corti. Image from [76].

The cochlea in the inner ear is a fluid-filled, coil shaped organ (shown in Figure 1.1),

which converts the mechanical vibrations of the ossicles into fluid waves. The cochlea

consists of three fluid-filled chambers: the scala vestibuli, the scala media and the

scala tympani, which are seen in the cross-section shown at the upper right corner of

Figure 1.1. The scala vestibuli and scala tympani are separated by the organ of Corti,

an illustration of which is depicted at the lower part of Figure 1.1.

The organ of Corti lies on the basilar membrane and continues along the entire cochlea.

It consists of supporting cells and sensory cells (or hair cells). These sensory cells

are organised as three rows of outer hair cells (OHCs) and one row of inner hair cells

(IHCs), both of which are connected to the auditory nerves. Although the OHCs amplify

mechanical vibrations, the IHCs are the actual sensory receptors mediating hearing

3



CHAPTER 1. INTRODUCTION

that are connected to the afferent nerves [76].

1.1.2 Action Potentials

Excitable cells such as neurons, muscle cells, endocrine cells and cochlear hair cells,

display a transient change in their membrane potentials. These rapid changes are

called action potentials or spikes [21]. We show a typical action potential trace of a

neuron in Figure 1.2.

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.2. Sketch of an action potential. Image from [103].

The resting membrane voltage is about -70 mV, which describes the steady state of

the cell. When the cell is at rest, the ion channels are closed and distributed across

the membrane. The concentration of sodium (Na+) ions outside the cell is greater than

inside. Also, the concentration of potassium (K+) ions inside the cell is greater than

outside. The difference in charge is measured about -70 mV with the ions distributed

across the membrane.

During an action potential, the membrane potential reaches a critical value called

the threshold, which is about -55 mV. If the membrane potential does not reach this

4



1.1. HEARING AND INNER HAIR CELLS

critical level, then no action potential will fire. Once the membrane potential reaches

the threshold, it increases rapidly from negative to positive due to the rapid influx of

Na+ from the extracellular environment into the cell through the voltage gated Na+

channels. This is called depolarisation. Reaching the peak value, Na+ channels begin

to inactivate and K+ channels open. Therefore, K+ ions leave the cell which causes the

membrane voltage to move back to its resting potential. This is known as repolarisation.

After the peak of the action potential, the membrane becomes more negative than

its resting potential for a brief moment. This portion of the action potential is called

hyperpolarisation or the undershoot. After hyperpolarisation, the deactivation of K+

channels restores the membrane potential from the undershoot to its resting potential.

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.3. Electrical activity in the form of spiking (a) and bursting (b).
Image from [100].

Excitable cells fire action potentials in the form of single (normal) spikes, bursts with

several spikes and a mixed firing pattern, which is a combination of single spikes and

bursts [31, 78, 90, 93]. We show two distinct patterns of action potentials in Figure 1.3.

The first of which is generated in the single spike mode shown in Figure 1.3(a). Another

typical pattern of electrical activity commonly seen in excitable cells is called bursting

[78, 94, 99], which forms as a group of spikes. An example of a mixed firing pattern,

where single spikes are interrupted by prolonged oscillations or bursts, is shown in

Figure 1.5 in Section 1.1.4. This type of solution will be studied extensively throughout

this thesis.

5



CHAPTER 1. INTRODUCTION

Bursting patterns are characterised by a transition between an active (depolarised)

phase and a silent (repolarisation) phase (Figure 1.3(b)). Bursts are prolonged oscilla-

tions, which are more efficient than spikes in hormone and neurotransmitter release

[14, 39]. Since different ionic mechanisms of bursting may result in different mathe-

matical mechanisms, we will discuss the underlying mechanisms of different types of

bursting in detail in Section 1.2.4.

1.1.3 Inner Hair Cells

IHCs are responsible for sound transduction since 90-95% of the afferent fibres of the

auditory nerve connect to IHCs [61]. The mature IHC does not fire action potentials,

which are the rapid rise and subsequent fall in the membrane potential in a charac-

teristic pattern (see panel c in Figure 1.5). Since the organ of Corti lies on the basilar

membrane, any movement of the basilar membrane causes a displacement of the

organ of Corti. Therefore, stereocillia of the hair cells are deflected. Ion flows of IHCs

are the result of the deflection of the MET channels. Opening the MET channels allows

positively charged potassium (K+) ions into the cell, which cause depolarisation i.e.

the membrane potential becomes less negative. Due to the depolarisation, the voltage-

gated calcium (Ca2+) channels open resulting in a Ca2+ influx. This Ca2+ influx triggers

neurotransmitter release from the basal end of the IHCs (see Figure 1.4) [34, 76].

Then, neurotransmitters bind to the receptors [27], which causes the generation of an

action potential of the afferent nerve. Thus, the mechanical vibrations are converted

into electrical signals to be sent to the brain.

In contrast to the mature IHCs, immature IHCs do not respond to sound but fire calcium-

based action potentials close to the onset of hearing, which is around postnatal day 12

in mice [49, 63]. These action potentials trigger neurotransmitter release from the cells

due to the Ca2+ influx [39]. Additionally, the Ca2+ influx into the cell cytosol activates

Ca2+-activated K+ currents, which are expressed in immature IHCs [61, 62, 77].

It has been suggested that these spontaneous action potentials in immature IHCs are

6



1.1. HEARING AND INNER HAIR CELLS

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.4. Structure of inner hair cells and function of the mechano-
electrical transducer (MET) ion channels. Image from [76].

important for the development of the auditory system such as tonotopic organisation

and maturation of synaptic connections [24, 35–37, 41, 49, 81, 97]. We will now

discuss such action potentials in greater detail.

1.1.4 Ca2+-based Action Potentials of Immature IHCs

Calcium is responsible for generating action potentials in Ca2+ the immature IHCs

until the onset of hearing [49, 63]. When the membrane potential of these cells

is constant and near its equilibrium value, Ca2+ channels of the immature IHCs

are closed when the membrane potential is near its equilibrium. Additionally, Ca2+-

activated K+ channels are closed due to the low intracellular Ca2+ concentration.

During action potential firing [40, 98, 102], the membrane potential increases and

the voltage-gated Ca2+ channels (VGCC) open which allows Ca2+ entry and release

of neurotransmitters [8, 39]. In addition to the Ca2+ influx via VGCC, the level of the

intracellular calcium ([Ca2+]i) is increased by the Ca2+ release from intracellular stores

7



CHAPTER 1. INTRODUCTION

such as endoplasmic reticulum (ER), which is know as Ca2+-induced Ca2+ release

(CICR), through ryanodine receptors (RyRs) [46]. The increase of [Ca2+]i results in the

activation of Ca2+-activated K+ (KCa) channels. This generates an outflow of K+ ions.

Additionally, the voltage-gated K+ channels are activated by the change in membrane

potential, which also generates an outflow of K+ ions. Therefore, the IHCs repolarise

due to the outflow of K+ ions. During repolarisation, the voltage gated Ca2+ channels

close and the levels of intracellular Ca2+ concentration and neurotransmitter release

decreases.

These successive processes in immature IHCs described above result in oscillations

on the membrane potential in different forms, such as single (normal) spikes, pseudo-

plateau bursting and mixed type electrical activity (also called complex oscillations)

[31, 90]. Prolonged action potentials that feature plateau oscillations are called pseudo-

plateau bursting [87, 99], which differs notably from square wave bursting (also called

plateau bursting) [87, 94], which is probably the most studied bursting form. For

example, the active phase of square wave bursting is characterised by larger spikes,

although it is characterised by smaller oscillations in pseudo-plateau bursting. Another

characteristic of pseudo-plateau bursting is that it has a smaller number of oscillations

and a shorter period than square wave bursting [94] (see Figure 1.9 for an example

of these two types). We will discuss the square wave bursting and pseudo-plateau

bursting in detail from the mathematical point of view in Section 1.2.4. Complex

oscillations are another form of action potentials of immature IHCs. This mixed firing

pattern is formed by the combination of single (normal) spikes and bursts with several

small spikes (see the bottom panel in Figure 1.5). We will study this type of solution

in greater detail throughout this thesis focusing on the underlying mechanism using

dynamical systems theory.

The Ca2+ signals of immature IHCs trigger transmitter release that generates action

potentials of auditory neurons [8, 39]. As seen in Figure 1.5, prolonged action potentials

generate Ca2+ signals having larger amplitude and longer duration than normal action

8
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This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.5. Calcium signals during normal and prolonged action potential of
immature IHCs. (a) Line-scan image taken through the basal pole (1 µm).
Fluorescence indicates the changes in the intracellular calcium. Changes
in fluorescence (∆F) were used to estimate the effect of depolarising
voltage commands on Ca2+. (b) Analysis of fluore near the plasma mem-
brane Ca2+ signals from the line-scan image. (c) Whole-cell current clamp
simultaneous recording of membrane potential showing both brief and
oscillating action potential waveforms. Image from [31].

potentials. Therefore, a greater amount of calcium entry results in a larger amount of

neurotransmitter release [14, 39].

The pattern of action potentials in developing IHCs differs along the cochlea as the

tonotopic frequency map develops [35, 61]. Therefore, the different firing patterns that

are formed tonotopically could promote the tonotopic differentiation of auditory neural

9
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circuits to and from the brain [37, 41, 55, 56, 66, 96]. Also, these early signalling events

that occur during the development of IHCs are thought to be important in guiding and

refining the initial stages of the auditory circuits [45] as observed in the visual system

[10].

The changes in Ca2+ current amplitude and exocytic behavior during the development

of IHCs cause changes in number and arrangement of presynaptic active zones of

IHCs [8]. In particular, the action potential activity present in the developing IHCs is

crucial for the maturation of their ribbon synapses [37] due to the major biological and

functional refinements of the ribbon synapses during development from pre-hearing to

hearing [105].

In order to gain further insight into the immature IHCs electrical activity and intracellular

Ca2+ signalling, a mathematical model, called the IHC model, was originally developed

in [90] based on experimental data obtained by recording various ion channel current

found in immature IHCs [25, 38, 61–63, 108].

The IHC model [90] is of a specific type proposed by Chay and Keizer, the so-called

the Chay-Keizer model [13], that represents a modification of the Hodgkin-Huxley

model equations [30] including ionic currents and an additional equation to describe

the intracelullar Ca2+ dynamics. Therefore, we will overview the Chay-Keizer model

and summarise the primary findings, which will provide a basis to understand the IHC

model equations and to analyse the dynamics of the oscillations of the IHC model.

1.2 Review of the Chay-Keizer Model

Since the IHC model is a specific type of the Chay-Keizer model, in this section we

review the Chay-Keizer model [13], which is the first biophysical model of bursting

electrical activity in pancreatic β-cells as the electrical activity in pancreatic β-cells

is based on Ca2+ regulation as is the action potentials of the immature IHCs. In

10
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Section 1.2.3, we also overview the Rinzel’s slow-fast analysis [78, 79], a technique

broadly used to study the underlying dynamics of different type of burstings [71, 78,

87, 91, 93, 94], which we apply to the IHC model in Chapter 4.

1.2.1 Description of the Chay-Keizer Model Equations

The Chay-Keizer model is an early minimal model due to the basic representation of

the intracelullar Ca2+ dynamics and consisting of a few ionic currents. Over the years,

other models have been proposed by modifying the Chay-Keizer model equations;

including the addition of extra currents into the voltage equation [91], reducing the

number of gating variables [78, 79] and more complicated Ca2+ dynamics due to new

experimental findings [88]. These modifications were used to study different type of

bursting activity [71, 93] and to understand the transition between them [87, 94]. The

IHC model can also be considered as a modification of the Chay-Keizer model, which

will be reviewed in Section 1.3.2.

Atwater et al. [3] proposed, based on their experimental results, that calcium dependent

potassium channels (KCa) play a crucial role in the control of membrane porential in

pancreatic β-cells. Chay and Keizer [13] developed a mathematical model to describe

the interactions between ionic currents and intracellular calcium concentration of the

pancreatic β-cells, generating the bursting electrical activity observed in experiments

as shown in Figure 1.6.

Bursting is a specific firing pattern that is significantly different from regular spiking. A

bursting consists of two phases; the active phase where the rapid spike-like consecutive

oscillations (also called the bursts) occur and the silent phase that represents the

quiescent time intervals between two sequential bursts (see Figure 1.6). From a

mathematical point of view, bursting activity is characterised by the transitions between

the active phase and the silent phase. Additionally, a regular bursting requires at least

two timescales [47]. The repetitive oscillations during the active phase correspond to

the passage of a trajectory near a manifold of periodic solutions of the fast subsystem
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[84], which is obtained by considering the slowest variable as a constant. We will

give an overview of the slow-fast analysis in Section 1.2.2. Bursting is usually caused

by a slow process that can modulate fast spiking activity [32]. We now introduce the

Chay-Keizer model [13] to review the mechanisms underlying the bursting pattern in

Section 1.2.3.

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.6. Experimental recording of the bursting electrical activity in
pancreatic β-cells. Image from [65].

Chay and Keizer used the Hodgkin-Huxley model equations [30] as a basis for their

minimal model because of the similarity of the membranes of different cells. Therefore,

excitable cell membranes can be modelled using ionic current models introduced by

Hodgkin and Huxley [65]. Additionally, they made three major modifications to the

classical Hodgkin-Huxley model in order to take into account the dynamics of the

intracellular Ca2+ concentration. These are:

• an inward sodium current (INa) was replaced by an inward calcium current (ICa),

• a calcium activated potassium current (IKCa) was added,

• an ordinary differential equation (ODE) was also added to describe the dynamics

of the intracellular calcium concentration.
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1.2. REVIEW OF THE CHAY-KEIZER MODEL

The rate of change for the membrane potential (Vm) of the Chay-Keizer model satisfies

Cm
dVm

dt
=−[ICa(Vm,m,h)+ IK(Vm,n)+ IKCa(Vm,Ca)+ I leak(Vm)] (1.1)

where ICa, IK, IKCa and I leak are the currents of the voltage-gated Ca2+ current, the

voltage-gated K+, Ca2+-activated K+ current and the leakage current, respectively.

Hodgkin and Huxley introduced the equation of the voltage-gated K+ current as

IK(Vm,n)= ḡKn4(Vm−VK) (1.2)

where VK is the Nernst potential, ḡK is the maximum conductance and n is the

activation variable of K+ channel. The variable n obeys the differential equation

dn
dt

= n∞(Vm)−n
τn(Vm)

(1.3)

where

n∞(Vm)= αn(Vm)
αn(Vm)+βn(Vm)

, τn(Vm)= 1
αn(Vm)+βn(Vm)

(1.4)

The functions n∞(Vm) and τn(Vm) are in the same form as the Hodgkin-Huxley model

but the voltage Vm is shifted by V∗
m = 30 mV [30].

Chay and Keizer replaced the voltage-gated sodium current (INa) by the voltage-gated

calcium current given as

ICa(Vm,m,h)= ḡCam3h(Vm−VCa) (1.5)

where VCa is the Nernst potential, ḡCa is the maximum conductance, m and h are the

activation and inactivation variables of Ca2+ channel, respectively.

The calcium-activated potassium current (IKCa) was given by [73, 74]

IKCa(Vm,Ca)= ḡKCa

Ca
Kd +Ca

(Vm−VK) (1.6)

where ḡKCa is the maximum conductance, Kd is the half maximal effective concentration

of intracellular Ca2+ concentration (Ca).
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The flow of other ions in the model was described by a leakage current given by

I leak(Vm)= ḡleak(Vm−Vleak) (1.7)

where the constant ḡleak represents the maximal conductance.

The activation and inactivation variables m, h and n, satisfy the differential equations,

which were originally introduced by Hodgkin and Huxley [30], given by

dX
dt

= X∞(Vm)− X
τX(Vm)

where X = {m,h,n} (1.8)

In order to complete the Chay-Keizer model, there is one more ODE that describes

the dynamics of the intracellular Ca2+ concentration. The regulation of the intracellular

calcium concentration is represented by a balance equation and shows the difference

between influx and efflux of calcium, given by

dCa
dt

= f
(−k1ICa(Vm,m,h)−kCaCa

)
(1.9)

where f is the ratio of free to bound intracellular calcium ions, k1 is a constant given

by −3
4πr3F where F is Faraday’s constant, r is the radius of the cell and the factor 3 is

obtained by the ratio between the surface and volume of the cell.

The influx of Ca2+ ions is represented by the voltage-gated Ca2+ current and the efflux

of Ca2+ ions is given by kCaCa, where kCa is the rate constant of Ca2+ removal from

the cytoplasm. Although there are a variety of Ca2+ removal mechanism from the cell

including the ATPase pumps, the Na+ / Ca2+ exchange and the mitochondrial uptake

of Ca2+, the Ca2+ efflux in (1.9) was modelled linearly due to the lack of knowledge

about calcium regulation at that time. Additionally, the behaviour of the Chay-Keizer

model was studied for different values of kCa. They showed that as the value of the

parameter kCa increases, the silent phase of the bursting becomes shorter while the

active phase becomes longer [13].

The Chay-Keizer model is a five dimensional model given by the ODEs in (1.1),

(1.8) and (1.9), which was orginally introduced in [13]. Additionally, the original Chay-
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1.2. REVIEW OF THE CHAY-KEIZER MODEL

Keizer model was simplified by replacing the variables m and n, the activation and

inactivation variables of Ca2+ channel, by their steady-state functions m∞(Vm) and

n∞(Vm). Therefore, similar bursting can be captured by a model having fewer dynamic

variables [78–80]. In Chapter 3, the original four-dimensional (4D) IHC model will

also be simplified to a three-dimensional model, having the same dynamic variables,

which are the membrane voltage V , the activation variable of K+ channel n and the

intracellular calcium concentration Ca, as the reduced Chay-Keizer model.

Since the ODEs of the variables m and n in (1.8) were eliminated, the reduced

3-dimensional Chay-Keizer model is given by

Cm
dVm

dt
=−[ICa(Vm)+ IK(Vm,n)+ IKCa(Vm,Ca)+ I leak(Vm)]

dn
dt

=λn

(
n∞(Vm)−n
τn(Vm)

)
dCa
dt

= f
(−αICa(Vm)−kCaCa

)
(1.10)

where ICa(Vm) = ḡCam∞(Vm)3h∞(Vm)(Vm −VCa). The model parameters and current

activation/inactivation functions can be found in [79].

The reduced (3D) Chay-Keizer model, although having fewer state variables, shares

similar dynamics with the original (5D) Chay-Keizer model. We plotted a time series

of the membrane potential and intracellular calcium concentration of the reduced

Chay-Keizer model in Figure 1.7. This shows the reduced model also produces similar

bursting solutions as simulated by the original model (see Figure 1 in [13]). The

underlying dynamics of such bursting was studied using a tecnique called geometric

singular perturbation analysis, or slow-fast analysis, which will be reviewed in the

following section.

1.2.2 Review of the Slow-Fast Analysis

In this section, we will give a general overview of the slow-fast analysis which we apply

to the IHC model in Chapter 4.
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FIGURE 1.7. Reproduced numerical simulation of the reduced Chay-Keizer
model with the given parameter by Rinzel in [79].

A slow-fast system is a system of ordinary differential equations (ODEs) that takes the

form

ε
dx
dτ

= f (x, y,ε)

dy
dτ

= g(x, y,ε)
(1.11)

where (x, y) ∈Rm×Rn are the state variables, f :Rm×Rn×R→Rm and f :Rm×Rn×R→Rn

and 0< ε¿ 1. The small parameter ε represents the ratio of time scales. The variables

x and y are called fast and slow variables, respectively. Setting t = τ/ε, the system in

(1.11) becomes

dx
dt

= f (x, y,ε)

dy
dt

= εg(x, y,ε)
(1.12)

We refer to τ as the slow time and t as the fast time.

In order to analyse a slow-fast system, we first consider the case ε→ 0 in (1.11) and
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1.2. REVIEW OF THE CHAY-KEIZER MODEL

(1.12) since 0< ε¿ 1. Thus, setting ε= 0 on the fast time in (1.12) gives

dx
dt

= f (x, y,ε)

dy
dt

= 0
(1.13)

which is called the fast subsystem (or the layer problem) and the flow of the system in

(1.13) is called the fast flow [16, 52].

On the other hand, setting ε= 0 on the slow time in (1.11) gives

0= f (x, y,ε)

dy
dτ

= g(x, y,ε)
(1.14)

which is called the slow subsystem (or reduced problem) and the flow of the system in

(1.14) is called the slow flow [16, 52].

We note that the system in (1.14) is an ODE with an algebraic equation f (x, y,0)= 0.

Hence, we have a differential-algebraic equation (DAE). The trajectories near the set

given by f (x, y,0)= 0 are described by the slow flow. The set defined by

S := { (x, y) ∈Rm ×Rn | f (x, y,0)= 0 } (1.15)

is called the critical manifold. It is clear that the points of the critical manifold S are the

equilibrium points of the fast flow in (1.13) [52].

We will define the fast and slow subsystems of the IHC model in order to understand

the behaviour of the model solutions according to the fast and slow flows of the

corresponding subsystems in greater detail in Chapter 4.

1.2.3 The Slow-Fast Analysis of the Chay-Keizer Model

Rinzel [78, 79] described a theoretical treatment of the bursting phenomenon of the

Chay-Keizer model. The fundamental idea of his analysis was to split the model into

slow and fast subsystems due to the differences in time scales of the state variables.
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Since the intracellular calcium concentration (Ca) evolves on a much slower time scale

than the voltage membrane (Vm) and the activation variable of K+ channel (n), Rinzel

treated the variable Ca as a constant in the fast subsystem and performed a bifurcation

analysis of the fast subsystem using Ca as the bifurcation parameter [78].

Applying the bifurcation analysis, Rinzel was able to describe how the fast subsystem

dynamics depend on the changes of the slowest variable Ca. Additionally, the dynamics

of the control parameter Ca were included in the understanding of the overall dynamics

by superimposing the bursting solution on the fast subsystem bifurcation diagram. In

Figure 1.8, we illustrate his qualitative analysis of bursting for the reduced Chay-Keizer

model given by the system in (1.10).

In Figure 1.8(a), for illustrative purposes, we reproduce the bifurcation diagram origi-

nally computed by Rinzel [79]. The low and high membrane voltage (Vm) steady states

are stable and are shown by blue solid curves. The middle branch (the dashed red

curve) represents unstable steady states. At the supercritical Hopf bifurcation (HB), a

family of stable periodic orbits emanates (the solid green curve). This branch termi-

nates at a homoclinic bifurcation (HC) where the orbit connects the saddle equilibrium

on the middle branch, which is between two saddle-node bifurcations, to itself, having

an infinite period.

In the range of Ca values between SN2 and HC, the fast subsystem exhibits bistability

that are the lower stable steady states and stable periodic orbits. It was shown in

Figure 1.8 that the membrane potential switches between low voltage to high voltage

states i.e. between the silent to active phase during the bursting process. This activity

can be better understood by superimposing the bursting solution onto the fast subsys-

tem diagram, which is shown in Figure 1.8(b). When the bursting is in the silent phase,

the trajectory follows the lower stable steady state (solid blue) curve. Additionally, since

this happens under the Ca nullcline curve (i.e. dCa/dt < 0), Ca decreases until the

saddle node bifurcation (SN2). When the trajectory reaches SN2, it switches to the
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FIGURE 1.8. (a) Fast subsystem bifurcation diagram of the reduced Chay-
Keizer model with the given parameters in [79]. (b) Projection of the
solution shown in Figure 1.7 is superimposed. Solid blue lines represent
stable equilibria and the dashed red line represents unstable equilibria. HB:
Hopf bifurcation, HC: Homoclinic bifurcation, SN: Saddle-node bifurcation
of equilibria. max Vosc and min Vosc is the maximum and minimum values
of the voltage membrane of spiking oscillations, respectively. The Ca
nullcline curve is computed by solving the equation dCa/dt = 0.

oscillatory region (the green curves). Since the trajectory crosses the Ca nullcline (i.e.

dCa/dt > 0), Ca increases until the homoclinic bifurcation (HC), where the trajectory
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switches back to the lower stable steady state, which completes the cycle.

The bursting of the Chay-Keizer model shown in Figure 1.7 is known as square wave

bursting because the voltage amplitude profile during the active phase of bursting

sometimes looks like a square (or plateau bursting) [94] and is classified mathemati-

cally as fold-homoclinic since the silent phase of the bursting ends at a fold bifurcation

and the active phase ends at a homoclinic bifurcation [32]. However, the IHC model

produces a different type of bursting, so called pseudo-plateau bursting [87, 99] (see

Figure 1.5). In the following, we will review this type bursting, which can also be

observed by modifying the Chay-Keizer model.

1.2.4 Pseudo-Plateau Bursting

Pseudo-plateau bursting differs notably from square wave bursting [87, 94]. Figure 1.9

shows an example of these two types. The active phase of the square wave bursting is

characterised by larger spikes, which sometimes form the burst in a square-like shape.

On the other hand, the active phase of the pseudo-plateau bursting is characterised

by smaller oscillations. Another characteristic of pseudo-plateau burstings is that they

have a smaller number of oscillations and a shorter period than square wave burstings

[94].

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.9. Experimental recording of pseudo-plateau (left) and plateau
(right) burstings. Image from [93].
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The original Chay-Keizer model that produced square wave bursting was modified

to generate pseudo-plateau bursting [71, 87, 91]. Moreover, by changing some of

the model parameters of the Chay-Keizer model [94], the transition between plateau

and pseudo-plateau bursting was studied [87, 94]. These two class of burstings are

distinguished by their fast subsystem bifurcation structures. From the fast subsystem

structure of square wave bursting (see Figure 1.8(b)) to pseudo-plateau burstings,

these changes can be observed [94]:

• The supercritical Hopf bifurcation becomes subcritical.

• The stable limit cycles disappear and the unstable limit cycle branch terminates

at a homoclinic bifurcation.

• Bistability occurs between the upper and lower equilibrium branches.

Figure 1.10 shows the bursting oscillations of the modified Chay-Keizer model [94].

Increasing vn, voltage value at the midpoint of the steady-state function of the activation

variable of K+ channel (n∞(V )), changes the criticality of the Hopf bifurcation. As shown

in Figure 1.8(a), it is a supercritial Hopf bifurcation of the fast subsystem classified

mathematically as fold-homoclinic which we discussed in the previous section [32].

However, when vn increases, the Hopf becomes subcritical, which is a characteristic

of pseudo-plateau burstings classified mathematically as fold-subHopf where the

silent phase of the bursting ends at a fold bifurcation and the active phase ends at

a subcritical Hopf bifurcation [32]. The parameter f , which represents the fraction of

intracellular calcium that is unbound by buffers, controls the speed of the slow variable.

As it is increased, the slow variable c becomes faster and pseudo-plateau bursting

occurs.

The structure of the fast subsystem diagram shown in Figure 1.10 of the modified Chay-

Keizer model [94] is different from the fast subsystem of the original Chay-Keizer model

[13] (see Figure 1.8). In Figure 1.10, unstable limit cycles orginating from the subcritical
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This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.10. Plateau burstings (A, C, E) and pseudo-plateau burstings
(B, D, F) generated by modification of Chay-Keizer model in [94] with
different values of f and vn. Image from [94]. Increasing vn results in the
oscillations from plateau bursting to pseudo-plateau bursting. The bottom
figure shows the slow-fast analysis of the model when vn=-12 mV. The
two trajectory shown in B and F above, when f =0.00025 (orange) and
f =0.01 (black) respectively, are superimposed. Image from [92].

Hopf bifurcation (labelled as subHB) undergo a homoclinic bifurcation (labelled as

HM). The trajectories in Figure 1.10 B (orange) and F (black) are superimposed on

the fast subsystem bifurcation diagram. As the parameter f increases, the transition

occurs from plateau to pseudo-plateau bursting.
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The modified Chay-Keizer model discussed above has two fast (Vm, n) and one slow

(Ca) variable. Therefore, the slow variable Ca is used as a bifurcation parameter to

perform a bifurcation analysis. However, changing some of the model parameters

could change the number of fast and slow variables in biophysical models. For instance

in [93], the membrane capacitance Cm was changed to make the model has one fast

(Vm) and two slow (n, Ca) variables. Using the 2-slow/1-fast analysis, it was shown

that pseudo-plateau bursting is a canard-induced mixed mode oscillations [93]. We

will explain the details of the 2-slow/1-fast analysis and apply this analysis to the IHC

model in Chapter 4.

Reviewing the original and modified Chay-Keizer models, we are now able to study the

IHC model in detail in the following section.

1.3 A Mathematical Model for Immature Inner Hair

Cells

In this section, we introduce a mathematical model, called the IHC model, of immature

inner hair cells’ (IHCs) action potentials based on experimental data, which was

originally proposed in [90]. We discuss the action potentials of the immature IHCs and

review the mathematical model equations in detail in this section.

1.3.1 Membrane Currents of Immature IHCs

We reviewed the Ca2+-based action potentials of the immature IHCs in Section 1.1.4.

Figure 1.11 summarises the ionic currents involved in action potentials in immature

IHCs. Unlike neurones, action potentials of immature IHCs are generated by calcium

(Ca2+) rather than sodium (Na+) influx and terminate when external Ca2+ is removed.

Immature IHCs also express sodium currents INa. Although sodium currents do not

contribute to the upstroke of the action potential, they increase the rate of depolarisation

to threshold [63]. At rest, Ca2+-activated K+ channels (SK) are closed due to low Ca2+
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concentration. During action potential firing, the membrane potential depolarises and

opening voltage-gated Ca2+ channels result in Ca2+ influx. Additionally, Ca2+ signals

are amplified by CICR from intracellular stores. Due to the level of intracellular Ca2+

which is increased, Ca2+-activated K+ channels are opened and generate an outflow

of K+ ions [50, 62] in addition to outflow of K+ ions through the voltage-gated K+

channels. This results in the repolarisation of the cell and closure of voltage-gated

Ca2+ channels.

This image has been removed by the author of this thesis for copyright reasons.

FIGURE 1.11. Membrane currents involved in spiking in developing IHCs. IK1:
the inward K+ current, IK, neo: the delayed rectifier current, INa: sodium
current, ICa: voltage-gated Ca2+ current, ISK: Ca2+-activated K+ current.
Image from [62].

A mathematical model, called the IHC model, was orginally proposed in [90] by taking

into account the experimental results [25, 38, 46, 49, 61–63, 108]. We review the IHC

model, which is a Chay-Keizer type, in detail in the following section.

1.3.2 The IHC Model

The IHC model was originally introduced in [90] and explained in detail in the supple-

ment of [31]. We review the model equations in detail here.

The IHC model is based on experimental data that takes into account the interaction

between voltage and calcium dependent ion channels. The IHC model is of the Chay-

Keizer [13] type and is formulated in accordance with voltage-clamp experimental data

obtained from immature IHCs.
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The IHC model consists of four coupled ordinary differential equations (ODEs) including

the membrane potential (Vm) measured in mV, the dimensionless activation (n) and

inactivation (h) variables for the voltage-gated K+ channel and the intracellular calcium

concentration (Ca) measured in µM. We now describe the ion channels and ODEs of

the IHC model in greater detail. The parameters used in the IHC model will be given in

Table 1.1 at the end of this chapter.

Voltage-gated Ca2+ Channels:

The Ca2+ current is an L-type current carried by the CaV1.3 subunit [38, 75]. The

voltage-gated Ca2+ ion current equation is given by

ICa(Vm,Ca)= gCam2
∞(Vm)q∞(Ca)(Vm−VCa) (1.16)

The Boltzmann function is used to describe the steady-state activation variable m∞(Vm)

of the voltage-gated Ca2+ channels as well as the steady-state activation n∞(Vm) and

inactivation h∞(Vm) variables of the voltage-gated K+ channels.

Based on the experimental results [19, 61, 83, 86] that were fitted by single first-order

Boltzmann equations, the voltage-gated Ca2+ channels were assumed to become

active instantaneously

m∞(Vm)= (1+ e(VmL−Vm)/sm)−1 (1.17)

where VmL is the potential of half-maximal activation and sm is the voltage sensitivity

of the activation.

The analytical expression of the inactivation function q∞ based on [25] is given by

q∞(Ca)= (1+Ca/Kq)−1 (1.18)

The activation (m∞) and inactivation (q∞) functions are illustrated in Figure 1.12.
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FIGURE 1.12. The activation (a) and inactivation (b) functions of the voltage-
gated Ca2+ channels.

Ca2+-activated K+ Channels:

Ca2+-activated K+ channels in the immature inner hair cells are considered to take

part in the development of hearing [62]. The Ca2+-activated K+ ion current equation is

given by

IKCa(V ,Ca)= gKCa s∞(Ca)(V −VK) (1.19)

where s∞ is the steady-state activation function of the KCa channels given by [35]

s∞(Ca)= Ca4

Ca4 +k4
s

(1.20)

where ks is the half maximal effective concentration of intracellular Ca2+ concentra-

tion. The steady-state activation function of the KCa channels (s∞) is illustrated in

Figure 1.13.

Voltage-gated K+ Channels:

The voltage-gated K+ ion current equation is given by

IK(Vm,n,h)= gKnh(Vm−VK) (1.21)
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FIGURE 1.13. The steady-state activation function of the KCa channels.

where n and h represent the activation and inactivation variables associated with the

voltage-gated K+ channels, respectively.

The steady-state functions of these variables are given by

n∞(Vm)= (1+ e(Vn−Vm)/sn)−1 (1.22)

h∞(Vm)= 0.214+0.355(1+ e(Vm−Vh1)/sh1)−1 +0.448(1+ e(Vm−Vh2)/sh2)−1 (1.23)

The steady-state activation (n∞) and inactivation (h∞) function of the voltage-gated K+

channels are illustrated in Figure 1.14.

The time scale function of the activation variable n is

τn(Vm)= 0.0022+0.0029e−Vm/sτn (1.24)

and is illustrated in Figure 1.15. However, the voltage-gated K+ channels were assumed

to inactivate on a slow constant time scale τh = 0.55 s−1.

The activation (n) and inactivation (h) of the voltage-gated K+ channels are described
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FIGURE 1.14. The activation (a) and inactivation (b) functions of the voltage-

gated K+ channels.
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FIGURE 1.15. The time scale function of the activation of the voltage-gated
K+ channels.

by

dn
dt

= n∞(Vm)−n
τn(Vm)

dh
dt

= h∞(Vm)−h
τh

.
(1.25)

Like the Chay-Keizer model equations [13], the membrane current of the IHC model

is the sum of all the contributions of the ionic currents discussed above (1.20), (1.21)
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and (1.16) and plus a leak current given by

I leak(Vm)= gleak(Vm−Vleak). (1.26)

Then, the rate of change of the membrane potential is expressed by

Cm
dVm

dt
=−ICa(Vm,Ca)− IK(Vm,n,h)− IKCa(Vm,Ca)− I leak(Vm) (1.27)

where Cm = 10−5

Acell
is the membrane capacitance and Acell = π×d2

cell is the area of the

cell. In order to complete the IHC model , we need one more equation that defines the

rate of change of the intracellular Ca2+ concentration, which is given below.

Intracellular Ca2+ Dynamics:

The rate of change of the intracellular Ca2+ concentration (Ca) is given by the balance

equation

dCa
dt

= Jin(Vm,Ca)− Jout(Ca) (1.28)

where the Ca2+ influx (Jin) and efflux (Jout) are

Jin(Vm,Ca)=− fcαICa(Vm,Ca)+ pER(CaER−Ca) (1.29)

Jout(Ca)= kPMCACa2

Ca2 +K2
p

+kSERCACa (1.30)

The intracellular Ca2+ is increased by Ca2+ ion flow via voltage-gated Ca2+ channels

and via intracellular Ca2+ stores through ryanodine receptors (RyRs) [46], called

Ca2+-induced Ca2+ release (CICR). On the other hand, Ca2+ efflux occurs through

plasma-membrane Ca2+ (PMCA) and endoplasmic reticulum (SERCA) Ca2+ pumps.

The parameter fc is the ratio of free to total cytosolic Ca2+, which is multiplied with the

fluxes through the cell membrane. We note that this parameter controls the time scale
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of the intracellular Ca2+, and its role in the overall dynamics of the IHC model will be

investigated in Chapter 4 via a slow-fast analysis.

The parameter α is the factor that converts currents into Ca2+ ion fluxes, which is

inversely proportional to the cell area i.e. α= 105

2×9.65×Acell
where Acell = π×d2

cell is the

area of the cell.

kPMCA is the maximum rate of plasma membrane, kSERCA is the ER calcium ATPase

pump rate and pER is the rate of calcium-induced calcium release (CICR). Ca2+

concentration in the ER is assumed to be constant and is represented by cER in the

model.

The IHC model parameters and their dimensions are given in Table 1.1.

1.4 Thesis Outline

In this chapter, we discuss the Ca2+-based action potentials of immature IHCs. In order

to gain further insight into the electrical activity and intracellular Ca2+ signalling in

immature IHCs, a mathematical model, called the IHC model, based on experimental

results, was originally developed in [90] and is introduced in Chapter 1. In order to

review the previous work in mathematical modelling, we introduce the Chay-Keizer

model [13], upon which the IHC model is based, and discuss some developed tech-

niques to be used in the investigation of the dynamics of the oscillations in immature

IHCs.

There are three notable parameters that significantly contribute to calcium regulation in

the IHC model, namely gKCa (the maximum Ca2+-activated K+ channel conductance),

pER (the rate of Ca2+-induced Ca2+ release (CICR)) and gCa (the maximum Ca2+

channel conductance). Since the action potentials of IHCs depend on Ca2+, we are

interested in understanding the effects of varying the three parameters on the IHC

model solutions.
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Parameter Value Dimension

Voltage-gated Ca2+

current (ICa)

gCa 2.4 nS

VCa -60 mV

VmL -26.7 mV

sm 11.5 mV

Kq 0.6 µM

Ca2+-activated K+

current (IKCa)

gKCa 4 nS

VK 60 mV

ks 1.25 µM

Voltage-gated
K+ current (IK)

gK 2.85 nS

VK 60 mV

Vn -16 mV

sn 10 mV

Vh1 -60.5 mV

sh1 6.8 mV

Vh2 -17.8 mV

sh2 7.1 mV

sτn 14.3 mV

τn 0.55 s

Leak current (I leak)
gleak 0.12 nS

Vleak -20 mV

Intracellular
Ca2+ Equation

fc 0.004

α 7.3 µMpA−1s−1

kPMCA 3.6 s−1

Kp 0.08 µM

kSERCA 1.2 s−1

pER 0.0004 s−1

cER 500 µM

Cm 0.0071 nF

dcell 15 µm

Table 1.1: The IHC model parameters. The red coloured parameters are the bifurcation
parameters for the bifurcation analysis performed in Chapters 2 and 3.
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Chapter 2 looks at a numerical bifurcation analysis of the IHC model. Previous studies

[31, 90] investigated the effects of the parameters gKCa and pER on the model solutions,

however, the effects of varying the parameter gCa have not yet been addressed.

Therefore, we attempt to present a characterisation of the relative contributions of the

parameters gCa, gKCa and pER in shaping immature IHC signalling by performing a

numerical bifurcation analysis.

Chapter 3 discusses the simplification of the original (4D) IHC model. The nondi-

mensionalisation of the IHC model provides the characteristic time scale constants of

the dynamic variables. Then, we are able to reduce the dimension of the IHC model.

We verify that the reduced (3D) IHC model can also reproduce the oscillations that

were observed in the original IHC model. Similar to the analysis in Chapter 2, we

present a characterisation of the relative contributions of the three parameters on the

reduced IHC model solutions. Additionally, since the nondimensional reduced IHC

model provides the characteristic time scale constants, we use this information to

estimate the speed of the state variables based on the model parameters. Next, the

nondimensional reduced (3D) IHC model is considered in order to apply the slow-fast

analysis in Chapter 4.

Chapter 4 presents a slow-fast analysis of the reduced IHC model introduced in

Chapter 3 in order to understand the dynamics underlying the oscillations of the model.

The reduced IHC model can be characterised by two fast (v and n) and one slow

(c) or one fast (v) and two slow (n and c) variables depending on the choices of the

parameters. We explain the mechanism of pseudo-plateau bursting type oscillations

of the reduced IHC model using the 1-slow/2-fast analysis. By changing the model

parameters, the slow variable becomes faster and the reduced IHC model exhibits

mixed mode oscillations (MMOs) that are studied by the 2-slow/1-fast analysis.

Also, one of the parameters of interest, namely gCa, has a significant effect on the

characteristic time scale constants of the intracellular calcium concentration. However,
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this parameter could also directly affect the time scale of the membrane voltage when

it dominates the other conductances in the model since the time scale of v is given by

τ̂v := Cm
Qt gmax

where gmax is the maximum of the conductances. We attempt to interpret

the dynamics of the complex solutions according to the differences in the time scales

between fast and slow variables of the reduced IHC model. However, as a limitation of

our analysis in this chapter, neither the 1-slow/2-fast nor the 2-slow/1-fast analyses

can adequately explain the mechanism of complex solutions.

Chapter 5 summarises and suggests possible future research directions indicated

through the thesis. In Chapters 2 and 3, we identify the parameter regions where the

original (4D) and the reduced (3D) IHC models exhibit irregular mixed firing patterns

that were also seen in the experiments (see Figure 1.5). Altough we discuss possible

dynamic mechanisms underlying the aperiodic trajectories found in the model, a

deeper investigation of the routes to chaos in the IHC model is left for future studies.

In Chapter 4, the limitations on understanding the dynamics of the complex periodic

orbits of the IHC model using 1-slow/2-fast or 2-slow/1-fast analysis, which could be

due to the three distinct time scales of the model, also remain as a direction for future

research.

To sum up, we shall investigate the oscillatory behaviour of the IHC model throughout

this thesis. We will show that:

• As the parameter gCa increases, the complex oscillations lose their large spikes

and become pseudo-plateau bursting solutions, which can be observed over

a large span of the parameter space, resulting in a significant increase on the

amplitude and duration of Ca2+ signals. Also, we have studied the changes on the

pattern of the model solutions according to the changes of the three parameters

that are directly involved in calcium dynamics regulation. This represents a

significant advance compared to previous analysis of the model [31, 90].

• A simplified 3-dimensional IHC model can reproduce similar dynamics as the
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original 4-dimensional model. Therefore, we no longer need to deal with phase

space projections of the trajectories and attractors organising the oscillatory

behaviour in the model.

• The reduced model could exhibit two time scales depending on the choice of

parameters. Therefore, the mechanisms underlying the bursting dynamics and

mixed mode oscillations in the model are studied applying 1-slow/2-fast and

2-slow/1-fast analysis, respectively. We find that gCa is inversely proportional to

the time sclaes of the variables v and c. Therefore, large gCa causes an increase

on the speed of both v and c. Hence, the periodic orbits observed at high values

of gCa can also be studied by 2-slow/1-fast analysis.

• Finally, our analysis indicates that the complex (mixed) solutions in the model

could not be satisfactory explained by the well-established slow-fast analysis

techniques. This opens up future directions for investigation of the model dynam-

ics.
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2
A NUMERICAL CONTINUATION AND BIFURCATION

ANALYSIS OF THE IHC MODEL

In the previous chapter we reviewed the experimental data showing that the immature

inner hair cells’ (IHCs) action potentials arise due to interactions between influx from the

extracellular environment via voltage-gated calcium channels [25, 38, 63, 108], calcium-

sensitive potassium channels (KCa) [61, 62] as well as calcium induced calcium release

(CICR) mediated via the ryanodine receptors (RyRs) in the endoplasmic reticulum (ER)

[31, 46]. Furthermore, IHCs action potentials and associated calcium signals manifest

themselves in the form of regular single spikes, bursts with several small spikes and

chaotic solutions of mixed type, mixture of spikes and burst, in the membrane potential

of the cell [31, 90].

A mathematical model, called the IHC model, based on the experimental data to

mathematically model the complicated biological process in the developing inner hair

cells, was introduced in [90] and explained in detail in Chapter 1.
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The IHC model is defined by a set of four ordinary differential equations (ODEs) as

Cm
dVm

dt
=−ICa(Vm,Ca)− IK(Vm,n,h)− IKCa(Vm,Ca)− I leak(Vm)

dn
dt

= n∞(Vm)−n
τn(Vm)

dh
dt

= h∞(Vm)−h
τh

dCa
dt

= fc

(
−αICa(Vm)− kPMCACa2

Ca2 +K2
p

)
−kSERCACa+ pER(CaER−Ca)

(2.1)

where Vm denotes the membrane potential, (n) the activation and (h) the inactivation

variable for the voltage-gated K+ channel and Ca is the intracellular Ca2+ concentra-

tion.

The action potential firing in immature inner hair cells is calcium-based [49, 63].

Therefore we are interested in the parameters of the IHC model that control the

dynamics of calcium in the model. We will investigate the effects of these parameters

on the IHC model solutions in this chapter.

2.1 Periodic Patterns of the IHC Model: Simple and

Complex

There are three notable parameters that significantly contribute to the calcium regu-

lation in the IHC model, namely gKCa (the maximum KCa channel conductance), pER

(the rate of calcium-induced calcium release (CICR)) and gCa (the maximum calcium

channel conductance). Since the action potentials of IHCs depend on calcium, we will

try to understand the effects of varying these three parameters in this chapter.

Firstly, the effects of varying the parameter gKCa has already been investigated [90]. A

one-parameter bifurcation diagram using gKCa as a bifurcation parameter was com-

puted to show that decreasing gKCa results in complex periodic orbits with more spikes,

found on isolated solution branches, called isolas [31, 90].
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Secondly, a numerical bifurcation analysis was performed by continuing the bifurcations

underlying different stable periodic solutions in (pER-gKCa)-space [31] in order to

understand the relative contribution of the rate of CICR (pER) and the maximum

KCa channel conductance (gKCa) to specific characteristics of the action potential

waveforms, such as shape and duration, observed experimentally in the immature

inner hair cells. As these two parameters change, the two-parameter bifurcation

diagram in (gKCa-pER)-space (Figure 3-a in [31]) indicated the regions of some stable

periodic orbits as well as irregular mixed firing patterns.

In this chapter we investigate the behaviour of the model solutions as the above

mentioned parameters vary using numerical bifurcation analysis. We employ XPPAUT

[22] for numerical integration of the IHC model and AUTO [18] for numerical contin-

uation. We further compute two-parameter bifurcation diagrams in (gCa-pER)-space

and (gCa-gKCa)-space to gain an insight into the changes of the model solutions in

three parameters. In this way we attempt to present a characterisation of the relative

contributions of gCa, gKCa and pER to the transitions between different dynamic states

in the IHC model.

2.1.1 Single Spikes and Quasi-Periodic Solutions

The dependence of the model solutions on two parameters, namely gKCa and pER,

involved in the regulation of calcium dynamics has been previously investigated [31,

90]. However, there is another important parameter, the maximum calcium channel

conductance (gCa), that contributes significantly to the overall calcium flux in the IHC

model and whose involvement in shaping the action potentials and calcium signals

generated by the model has not been addressed. In order to investigate the interplay

between electrical activity and calcium dynamics in the IHC model, we perform a

bifurcation analysis using gCa as a bifurcation parameter.

In Figure 2.1 we show a one-parameter bifurcation diagram using gCa as a bifurcation

parameter. For small values of gCa, the IHC model produces stable equilibrium solu-
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FIGURE 2.1. One-parameter bifurcation diagram of the IHC model in the
parameter gCa. The region of complex periodic orbits is magnified in the
middle of the diagram. We fixed the two parameters, which are gKCa=1.98,
pER=0.0004, all other parameters of the IHC model are given in Table 1
in Chapter 1. Solid lines represent stable solution branches and dashed
lines represent unstable solution branches. Periodic orbits are denoted by
the number of their large (normal) and plateau oscillations. For example;
2+5 represents a periodic orbit with 2 large (normal) spikes and a burst
made of 5 plateau oscillations. HB: Hopf bifurcation, TR: Torus bifurcation,
PD: Period-doubling bifurcation, HC: Homoclinic bifurcation.

tions (solid blue curve). As gCa increases, the family of stable equilibria undergoes a

supercritical Hopf bifurcation (HB1) at gCa=0.77 and becomes unstable (dashed red

curve). This unstable family of equilibria regains stability at a second supercritical Hopf

bifurcation (HB2) for gCa=16.88. A family of stable spiking solutions arises from the

first supercritical Hopf bifurcation (HB1) and loses its stability at a torus bifurcation

(TR1) for gCa=2.11.

The branch of unstable single spike periodic orbits undergoes a period-doubling

bifurcation (PD1), which does not change the stability of the branch. Continuing these
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period-doubling bifurcations creates unstable period-doubled limit cycle branches

that terminate via homoclinic bifurcations (for example, we plotted the homoclinic

orbit that corresponds to HC1 in Figure 2.2(b)). These computations indicate that

the branches of limit cycle solutions originating from HB1 and HB2 are disconnected.

However, there is a possibility that these branches connect in other model parameters

and/or that not all invariant objects have been captured in our computations so far.

Thus, we have to explore complex and bursting periodic orbits by direct numerical

integration of the IHC model equations in a relatively large range of values for the

parameter gCa (2.11<gCa<16.87) in order to trace their families in the parameter gCa,

which will be done in the next section. However, as we showed in Figure 2.1, the

IHC model produces stable single spikes between the Hopf bifurcation (HB1) and the

torus bifurcation (TR1) for smaller values of the parameter gCa. The IHC model also

produces quasi-periodic oscillations nearby the bifurcation point TR1.

In Figure 2.2(a) we show the phase-space projection onto (Ca, n, Vm)-space of

a stable-single spike periodic orbit when gCa=2.1, that is very close to the torus

bifurcation, which occurs at gCa=2.11. Also, we plot the homoclinic orbit at gCa=5.51,

where the branch originating from HB1 terminates (see Figure 2.2(b)) via a homoclinic

bifurcation (HC1). The red dot on the periodic orbit represents the saddle equilibrium,

which indicates where the trajectory joins the equilibrium to itself as time goes to

infinity, called homoclinic orbit [89].

The torus bifurcation (TR1) occurs at gCa=2.11, which destabilises the family of single-

spike periodic solutions. Near TR1 the IHC model produces two dimensional invariant

torus around the unstable periodic orbit [53]. We plot the projection of the torus

(informally, a bagel or doughnut shaped) when gCa=2.113 onto (Ca, n, Vm)-space in

Figure 2.2(c). In order to confirm the quasi-periodic motion, we calculate a Poincaré

section of the torus [6], which we considered to be the section Vm=-25 since the

membrane potential (Vm) in Figure 2.2(c) is in the range -60 mV to 0 mV. Therefore,

the choice Vm=-25 would be sufficient to indicate the quasiperiodic motion by Poincaré
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FIGURE 2.2. Some of the IHC model solutions projected onto (Ca, n,
Vm)-space that correspond to the bifurcation parameter (a) gCa=2.1,
(b)gCa=5.51 and (c) gCa=2.113 (see Figure 2.1 for the bifurcation dia-
gram). (d) A Poincaré section at Vm=-25 of the torus shown in Figure 2.2(c)
on the (Ca, n)-space.

section. Unlike the periodic orbits whose Poincaré sections consist of n points (for

period-n limit cycles) in the phase space, Poincaré sections of an invariant torus forms

a closed curve in the phase space, which indicates that the motion is quasi-periodic

[68]. In Figure 2.2(d), we plot the Poincaré section at Vm=-25 of the torus shown in

Figure 2.2(c). The trajectory never crosses the Poincaré section at the same point

twice and hence forms a closed curve [95].

We have shown examples of how the IHC model trajectories form as single spikes

and invariant tori at low values of gCa when all the other model parameters are fixed.

Additionally, as the parameter gCa increases, the IHC model produces complex periodic

orbits, which are a combination of large and small oscillations, shown in Figure 2.1.
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We will investigate such solutions in more detail in the following section.

2.1.2 Complex Bursting Oscillations

In the previous section we showed a one-parameter bifurcation diagram using gCa as

a bifurcation parameter in order to gain an insight into the contribution of gCa to the

IHC model solutions. We continued the branches emanating from the Hopf bifurcation

(HB1), and showed that these branches terminate at homoclinic bifurcations. By direct

numerical integration of the IHC model, we computed a torus at gCa=2.113 near

the torus bifurcation point (TB1). In this section, we investigate more complicated

periodic orbits that form as a combination of large and small spikes for the paramater

gCa>2.113.

We mentioned that the complex periodic orbits consisting of one large (normal) spike

and several small spikes within the plateau-bursting part of the corresponding orbit

were observed lying on isolated solution branches as the parameter gKCa varies [90].

Similar behaviour can also be shown for the parameter gCa. In Figure 2.3(a) we depict

a part of the bifurcation diagram that is disconnected from the other branches, called

an isola [90]. In order to plot an isola, first we calculate a stable periodic orbit by direct

numerical integration of the IHC model with fixed gCa. For instance, we show a time

series representation such as a complex periodic orbit consisting of two large (normal)

spikes and a burst made of five plateau oscillations in Figure 2.3(b). Once we have

obtained one of the stable solutions of a continuous family, then we are able to continue

the periodic orbit in order to find the continuous family of such periodic orbits as gCa

varies.

In Figure 2.3(a) we show a continuous family of periodic attractors of the IHC model

that shares the same total number of spikes which, as was shown in [31], is seven

in this case. We represent a complex orbit by the number of its oscillations such as

M+N solution, which means that the orbit consists of M large (normal) spikes and a

burst made of N plateau oscillations. For example the isola in Figure 2.3(a) contains
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FIGURE 2.3. (a) An isolated branch of periodic solutions in the model, isola,
in the parameter gCa. Solid lines represent stable solution branches and
dashed lines represent unstable solution branches. PD: Period doubling
bifurcation, SNp: Saddle node bifurcation for periodic orbits. (b) Complex
bursting orbit with 2 large spikes and a burst made of 5 plateau oscillations
(2+5 solution) at gCa=2.2. (c) Complex bursting orbit with 1 large spike
and a burst made of 6 plateau oscillations (1+6 solution) at gCa=2.6. Both
solutions belong to the isola, along which the total number of oscillations
is fixed (7 in this case).

solutions with 7 oscillations in total, which are 2+5 solution (2 large spikes and a burst

made of 5 plateau oscillations) and 1+6 solution (1 large spike and a burst made of 6

plateau oscillations). Additionally, we will denote this isola by I7 [31].

In order to compute a solution branch or an isola such as shown in Figure 2.3(a),

we first calculate a stable periodic orbit as shown in Figure 2.3(b) or Figure 2.3(c) by
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direct numerical integration of the model equations with the given set of parameters.

Once we have a stable periodic orbit, then AUTO [18] allows us to continue that orbit

as the bifurcation parameter varies. Additionally, AUTO calculates the multipliers at

each step, which gives the information about the stability of the periodic solutions

along the isola. The stability of the solution branch changes at some bifurcation points

such as period-doubling (PD) and saddle-node of periodic (SNp) bifurcations (see

Figure 2.3(a)). AUTO can locate the bifurcation of equilibrium and periodic orbits by

computing the multipliers [9]. For example, one of the multipliers crosses the unit circle

at -1 when we have PD bifurcation, and similarly SNp bifurcation occurs when one of

the multipliers crosses the unit circle at +1. Hence, we are able to plot a solution curve

as shown in Figure 2.3(a), that locates the stable and unstable periodic solutions and

bifurcations along the isola.

The solid lines of the isola in Figure 2.3(a) denote the stable solution branches and

the dashed lines denote unstable solution branches that have 7 oscillations in total.

The stable part of the isola where 2+5 solutions lie is determined by period-doubling

bifurcations (PD2 and PD3). As gCa increases, the unstable branch becomes stable at

another period-doubling bifurcation (PD4), where stable 1+6 solutions can be found.

The stable region of 1+6 solutions ends at a saddle-node bifurcation (SNp2), which

is also one of the boundaries of the isola in the gCa parameter. Additionally, we will

continue these bifurcations in order to locate the regions of the stable periodic orbits in

the two-parameter spaces such as (gCa-gKCa)-space.

We plot two representative examples of complex periodic orbits computed by direct

numerical simulations that correspond to two different stable regions of the isola. The

2+5 solution in Figure 2.3(a) is calculated at gCa=2.2 and 1+6 solution in Figure 2.3(c)

is calculated when gCa=2.6. As gCa increases, one of the large spikes of the 2+5

solution becomes smaller between PD3 and PD4 and the model exhibits 1+6 solutions.

However, the total number of spikes of the periodic orbits along the isola does not

change. This behaviour is robust and seen at other isolas that have different number
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of spikes.

We observe in the time series of the periodic orbits that the intracellular calcium

concentration of 1+6 solution is larger than 2+5 solution since 1+6 solution corresponds

to larger gCa. This also shows that the IHC model is able to reproduce the behaviour of

inner hair cells captured in experiments, which is prolonged action potentials generate

much larger and long lasting calcium signals [31, 90].
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FIGURE 2.4. Bifurcation diagram of the IHC model that is zoomed to the region
where the isolas are located in Figure 2.1.

In Figure 2.4, we zoom the region where the complex solutions are located in Figure 2.1.

Similar to 2+5 and 1+6 solutions, we compute stable 1+5 solution by direct numerical

integration of the IHC model equations. Then, we continue this solution as gCa varies,

to find the family of such solutions in the parameter gCa. Unlike the isola I7 (magenta

coloured) that consists of solutions (2+5 and 1+6 solutions) with 7 oscillations in

total, there is only one stable region on the isola I6 (orange coloured) that consists of

solutions with 6 oscillations in total (1+5 solutions), which are located between 2+5 and

1+6 solutions in the parameter gCa. As gCa increases when gKCa=1.98, pER=0.0004

and all the other parameters given in Chapter 1 are fixed in the IHC model, as we have
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shown in Figure 2.4, the number of large (normal) spikes of complex periodic orbits

decreases while the number of small oscillations increases in the intermediate range

values of the parameter gCa, where the complex periodic behaviour is found.

Up to now, we have investigated the regions in the parameter gCa where normal

spiking, quasi-periodic and complex oscillations can be detected. As we showed at

the beginning of this chapter (in Figure 2.1), there is a stable branch that continues

for a larger range of values for the parameter (2.79<gCa<16.29) and terminates at

homoclinic bifurcations HC∗ and HC∗∗. In the following section, we will investigate the

periodic solutions along this branch.

2.1.3 Pseudo-Plateau Bursting

In the previous section, we considered periodic solutions up to the parameter gCa=2.78

(the saddle-node bifurcation (SNp2) on the isola for 1+6 solutions). Direct numerical

simulations show that the IHC model produces pseudo-plateau bursting solutions

[71, 87, 94] when gCa>2.78. The stable periodic solutions that correspond to the

values gCa>2.78 lie on neither one of the solution branches we have already calculated

nor the branch orginating from the second Hopf bifurcation (HB2). For example, we

plot a stable pseudo-plateau bursting when gCa=2.8 in Figure 2.5(b).

We continue this bursting solution in the parameter gCa, which is shown in Figure 2.5

as the longest branch of stable periodic solutions in the diagram and depicts three

representative stable periodic orbits along the branch in Figure 2.5(b), (c) and (d) which

correspond to the parameters gCa=2.8, gCa=5 and gCa=15, respectively. At gCa=2.8

the stable periodic orbit has 4 plateau oscillations (labelled 0+4 solution). As gCa

increases, the period of these orbits increase and the oscillations disappear resulting

in periodic solutions which appear as large prolonged action potentials. As expected,

this corresponds to an increase of the intracellular concentration in the model. We will

investigate this behaviour applying slow-fast analysis in Chapter 4.
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FIGURE 2.5. (a) The replaced one-parameter bifurcation diagram shown
in Figure 2.1. Here the region of the second Hopf bifurcation (HB2) is
magnified in the middle of the diagram. Time series plots of stable periodic
orbits correspond to the parameter gCa=2.8 (b), gCa=5 (c), gCa=15 (d)
and gCa=16.75 (e). The periodic orbits shown in (b),(c) and (d) lie on the
branch in the bifurcation diagram, while the periodic orbit shown in (e)
does not belong to the branch and is computed via numerical simulations
of the model equations.
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We have already mentioned that the solution branch of the pseudo-plateau oscillations

shown in Figure 2.5 is not connected to the branches orginating from Hopf bifurcations.

This branch terminates at homoclinic bifurcations (HC∗) and (HC∗∗). For smaller

values of gCa, this solution branch terminates at a homoclinc bifurcation (HC∗) about

gCa=3.946. Additinally, as gCa increases, another homoclinc bifurcation occurs (HC∗∗)

about gCa=16.29. We computed the orbits with a high period (T=1000s) near the

homoclinic bifurcation points in Figure 2.6 and the saddle equilibria shown as red stars

in the figure panels.
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FIGURE 2.6. Homoclinic orbits at (a) gCa=3.946 (HC∗) and (b) gCa=16.29
(HC∗∗) projected on the (Ca, n, Vm)-space. Red star indicates the saddle
equilibrium. (c) Small amplitude single spikes when gCa=16.88 between
TR2 and HB2 bifurcations in Figure 2.5(a).
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As gCa increases, we see in Figure 2.5 that the amplitude of limit cycles increase up

to gCa ≈16.29, which is near the second Hopf bifurcation (HB2). Additionally, there is

a rapid change in the amplitude of limit cycles, which resembles a canard explosion

[16]. In the parameter range 16.29<gCa<16.87 (TR2), we are able to calculate some

of the stable solutions by direct numerical integration, although the branches for

such periodic orbits are not continued and not plotted on the bifurcation diagram in

Figure 2.5(a). Figure 2.5(e) shows a time series plot of a stable periodic orbit when

gCa=16.75. We notice that the periodic orbit exhibits small oscillations near the end

of the action potential. The number of the small oscillations is increased as the value

of the parameter gCa approaches to the torus bifurcation point (TR2), where the IHC

model enters the parameter region of small amplitude single spikes, which continues

until the second Hopf bifurcation point (HB2). In Figure 2.6(c), we show a phase-

space plot of a small amplitude periodic orbit when gCa=16.88, between TR2 and HB2

bifurcations shown in Figure 2.5(a).

We have investigated the periodic behaviour of the IHC model as gCa varies when

all other parameters are fixed. However, we are interested in the interaction between

three notable parameters that are involved in calcium regulation, namely gCa, gKCa and

pER, on the pattern of electricial activity of the IHC model. Therefore, we will perform

further bifurcation analysis in order to map the stationary, normal spiking, complex

and bursting as well as chaotic oscillatory regions in a relatively large portion of the

parameter space, considering these parameters as bifurcation parameters.

2.2 Effects of Varying the Parameters on the Model

Solutions

In the previous section we showed the normal spikes, quasi-periodic, complex and

bursting oscillatory behaviours of the IHC model as the parameter gCa varies when all

other parameters are fixed. Since we are interested in the interactions between the
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parameters gCa, gKCa and pER, we present two-parameter bifurcation diagrams tracing

the bifurcations of branches emanating from Hopf as well as bifurcations of isolas that

delimit the stable solutions of the IHC model.

2.2.1 Mapping the Interaction between gCa and gKCa

We showed in Figure 2.4 that the number of large (normal) spiking decreases as

gCa increases and the solutions of the IHC model become bursting, whose plateau

oscillations become too small to be seen in the given resolution when gCa is large. The

one-parameter bifurcation diagram in Figure 2.1 was computed when gKCa=1.98 and

pER=0.0004.

We compute a wide variety of periodic attractors, which are normal spiking, bursting

and complex oscillations with one and two large (normal) spikes (0+N, 1+N1 or 2+N2)

when pER=0.0004, and trace the bifurcations that result in a change of the stability of

the periodic solutions, which are period-doubling (PD) and saddle-node bifurcation of

periodic solutions (SNp). As we pointed out in the previous section, complex periodic

orbits sharing the same total number of spikes belong to a continuous family of periodic

attractors and lie on isolated branches (isolas). We denote such isolas by their total

number of spikes. For instance, I7 stands for an isola whose total number of spikes is

7, so the periodic solutions on such an isola could be 0+7 , 1+6, 2+5 and so on, which

can be observed at some parameter settings.

We showed that the model exhibits large (normal) spiking behaviour when gCa is

small by plotting a one-parameter bifurcation diagram in Figure 2.1, and also plotted

a phase space diagram of such large (normal) spiking behaviour in Figure 2.2(a).

The big region at the top left corner in Figure 2.7(a) shows the stable region of

the large (normal) spiking periodic solutions of the model on gCa-gKCa plane when

pER=0.0004. We showed that the large (normal) spiking behaviour loses stability

via a torus bifurcation when gKCa=1.98 (see Figure 2.1) using gCa as a bifurcation

parameter. As gKCa increases, the large (normal) spiking behaviour loses stability via
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(a)

(b)

FIGURE 2.7. (a) A two-parameter bifurcation diagram of the IHC model when
pER=0.0004. Stable regions of solutions are delimited by tracing the
period-doubling bifurcations (solid curves) and saddle-node bifurcation of
periodic solutions (dashed curves) and are coloured accordingly. Torus bi-
furcations of the branches originating from Hopf bifurcations are indicated
by dashed dotted curves on the bottom left. White regions denote the
chaotic behaviour of the IHC model. (b) Portion of the diagram. The black
line represents the section at gKCa=1.98. We showed its one-parameter
bifurcation diagram in Figure 2.1 as gCa varies.
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period-doubling bifurcations.

When gKCa>2.5 in Figure 2.7, the large (normal) spiking behaviour loses stability via

period-doubling bifurcations (PD). However, when gKCa<2.5, the stability changes

via torus bifurcations (TR). We could not continue the torus bifurcation curve in two

parameters on gCa-gKCa plane when pER=0.0004. Instead, we computed several one-

parameter bifurcation diagrams to detect the torus bifurcations (TR) in the parameter

range 1<gKCa<2.5, which change the stability of the spiking periodic orbits. Then, we

constructed the region of the large (normal) spiking behaviour for 1<gKCa<2.5 by linear

interpolation between the computed torus bifurcation points by a blue dotted curve on

the two-parameter bifurcation diagram in Figure 2.7.

The behaviour of the IHC model solutions can be interpreted by examining the two-

parameter bifurcation diagram presented in Figure 2.7 where the stable regions of

various periodic solutions are coloured according to the total number of oscillations of

the periodic orbits in the gCa-gKCa plane. Additionally, the white regions also include

chaotic (aperiodic) solutions of the model. We will discuss representative model

solutions corresponding to white regions at the end of this chapter.

It was shown previously [31, 90] that lowering gKCa results in an increase in the

number of the plateau oscillations. The two-parameter bifurcation diagram in Figure 2.7

confirms this behaviour on gCa-gKCa plane. The stable regions for complex and bursting

periodic orbits with many oscillations accumulate as the parameter gKCa decreases.

We considered the model solutions up to 8 oscillations in total (2+6, 1+7 and 0+8

solutions) to illustrate the behaviour of the model solutions as the parameters gCa and

gKCa vary.

On the other hand, increasing the parameter gCa results in a decrease in the number

of large (normal) spikes of complex periodic orbits. The parameter range of complex

periodic orbits with 2 large (normal) spikes is smaller than the range of complex

periodic orbits with 1 large spike, and this range corresponds to smaller values for
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both parameters gCa and gKCa . As gCa increases, the complex solutions with two large

(normal) spikes lose one of the large spikes, where the region for such complex periodic

orbits with one large spike can be found at a larger parameter region in gCa-gKCa plane

comparing to the complex solutions with two large spikes. Increasing gCa further, the

complex solutions with one large spike become bursting periodic orbits through a large

range of parameter values. For larger values of the parameter gCa>3, the plateau

oscillations in bursting solutions become harder to be visualised as previously shown

in Figure 2.5(c) and (d).

In Figure 2.7, we showed only the stable regions of the periodic attractors which

are enclose by the PD and SNp curves. The PD and SNp curves that enclose the

stable region of a periodic solution become very close to each other in the parameter

space, but they actually do not merge. As these curves becomes closer and closer,

one of the multipliers of SNp curves cross the unit circle at -1. Similarly, one of the

multipliers of PD curves cross the unit circle at +1 at the same point. Although such

complex dynamical systems could have some other bifurcation curves that may not be

traced here, the multipliers suggest that those special points could be codimension

two bifurcations (the fold-flip bifurcations [54]).

Up to now, we have investigated the contributions of gCa and gKCa to the model

solutions when pER is fixed. The role of varying the parameter pER was investigated

performing a two-parameter bifurcation analysis in pER-gKCa plane when the third

parameter (gCa) was fixed [31]. In the following section, we will try to understand the

relative effects of these three parameters on the model solutions through a large span

of the parameter space.

2.2.2 Interpreting the Relative Contributions of gCa, gKCa and pER

We have shown a two-parameter bifurcation diagram to indicate the stable regions

of various periodic solutions in the gCa-gKCa plane in Figure 2.7 (also shown in Fig-

ure 2.8(a)) by tracing the bifurcations of isolas as well as limit cycle solution branches
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corresponding to normal spiking solutions. Also, the white regions in the gCa-gKCa

plane correspond to the parameter regions of aperiodic behaviour [31], which will

be discussed in Section 2.2.3. This two-parameter bifurcation diagram shows the

interaction between the parameters gCa and gKCa while the other third parameter is

fixed (pER=0.0004) .

In order to complete the investigation of understanding the relative contributions of

the three notable parameters, we freeze the parameter gKCa and compute another

two-parameter bifurcation diagram as gCa and pER vary, and note that the interaction

between pER and gKCa was already investigated when gCa=2.4 [31], which is repro-

duced in Figure 2.8(c). Therefore, we will be able to capture the behaviour of the

IHC model solutions over a large span of the parameter space using the bifurcation

diagrams in Figure 2.8.

We plot a two-parameter bifurcation diagram in the gCa-pER plane when gKCa=4

in Figure 2.8(b). As we pointed out, the role of gCa on the model solutions in the

gCa-gKCa plane in Figure 2.8(a) can also be seen in Figure 2.8(b), namely that the

complex periodic orbits become bursting solutions as gCa increases. Additionally, as

pER increases, the number of plateau oscillations of periodic orbits decreases.

Figure 2.8(a) shows that the IHC model produces complex periodic orbits with two large

(normal) spikes (2+N solutions) in the region where gKCa ∈ [1.5,2.5] and gCa ∈ [2.1,2.3]

when pER=0.0004. As pER increases, the parameter value of gKCa decreases while

the parameter values of gCa increase so that the IHC model produces 2+N solutions.

For example; if we increase the rate of CICR to pER=0.003, then 2+N solutions can be

found in the range of gKCa ∈ [0.55,0.65] and gCa ∈ [5.5,6.5].

The IHC model exhibits complex periodic orbits with two large (normal) spikes (2+N

solutions) in smaller parameter regions comparing to 1+N and bursting solutions as

shown in Figure 2.8(a). Therefore, it is expected that some parameter sections do

not contain any 2+N solutions. For example, the two-parameter bifurcation diagram
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(a) pER=0.0004

(b) gKCa=4

(c) gCa=2.4

FIGURE 2.8. Two-parameter bifurcation diagrams of the IHC model when
pER=0.0004 (a), gKCa=4 (b) and gCa=2.4 (c). Stable regions of solutions
are delimited by tracing the period-doubling bifurcations (solid curves)
and saddle-node bifurcation of periodic solutions (dashed curves) and
are coloured accordingly. Torus bifurcations of the branches originating
from Hopf bifurcations are indicated by dashed dotted curves. Black lines
indicate the cross-sections.
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in Figure 2.8(b) does not contain any 2+N solutions since the parameter gKCa=4 is

not sufficiently small. Therefore, we conclude that the IHC model produces complex

solutions with 2 (or more) large spikes for smaller values of gKCa (gKCa<3). We also

check the relative contributions of the three parameters on 2+N solutions and find the

intervals gKCa ∈ [0.55,3], pER ∈ [0,0.0031] and gCa ∈ [2,6] that indicate the maximum

and minimum values for the parameters having 2+N solutions in the IHC model.

Figure 2.8(c) is the two-parameter bifurcation diagram in the pER-gKCa plane, which

was orginally presented in [31] and reproduced here. As the parameter pER increases,

the number of large spikes in complex periodic orbits increases for the intermediate

values of pER. This two-parameter figure also supports that the complex periodic orbits

with two large (normal) spikes can be found in the region where gKCa ∈ [1.5,2.5] and

pER ∈ [0.0005,0.0006] when gCa=2.4.

When we increased the parameter gCa, the IHC model exhibited 2+N solutions for

smaller values of the parameter gKCa and larger values of the parameter pER. This is

also similar to the complex solutions with one large spike. For example, we consider two

values of the parameter gCa, which are gCa=2.4 and gCa=6, the IHC model produces

1+N solutions in the parameter range of [0,0.0005]× [1.5,40] in the pER-gKCa plane

when gCa=2.4 shown in Figure 2.8(c). If we increase the parameter gCa to 6, then the

model produces 1+N solutions in the parameter range of [0.0028,0.0030]× [0.6,0.7]

in the pER-gKCa plane. This indicates that if we increase the parameter gCa in the

model, the parameter pER must be increased while the parameter gKCa is decreased

accordingly in order to get similar behaviour (1+N solutions in this case).

2.2.3 Aperiodic Model Solutions

In Figure 2.8, we showed the stable regions for the periodic orbits in different colours

according to the numer of spikes of the periodic solutions. There are also regions in

white where we could not obtain stable periodic solutions. It is important to mention

that the region of solutions were determined by tracing the SNp and PD bifurcations.
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There are further PD bifurcations (second, third etc.) that would cover only a very

tiny area near the PD (solid) curves on the two-parameter bifurcation diagrams in

Figure 2.8, which is not shown in the diagrams.
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FIGURE 2.9. (a) Magnification of the two-parameter diagram in Figure 2.7.
The black cross corresponds to the parameters of the aperiodic pattern.
(b) A time series plot of the aperiodic pattern.

We consider an aperiodic pattern whose location is indicated by a black cross (gCa=2.18

and gK(Ca)=1.98) in the two parameter bifurcation diagram on (gCa-gK(Ca))-plane when

pER=0.0004 in Figure 2.9. We compute the time series and phase-space plots of

the pattern and three Poincaré sections at Vm=-15 mV, Vm=-30 mV and Vm=-45 mV,

respectively. We can gain an insight into the irregular pattern of the trajectory using the

Poincaré sections in Figure 2.10(a). Such Poincaré sections suggest that this pattern

arises from strong dissipation, which results in the contraction of areas in the phase

space [2, 82].

So far we have only showed the Poincaré sections of the aperiodic time series. How-

ever, chaos arises from the exponential growth of infinitesimal perturbations, which is

indicated by the Lyapunov exponents [20, 28]. Therefore, calculating Lyapunov expo-

nents gives more information about the nature of such trajectories i.e. Kaplan-Yorke

dimension, dissipation rate etc. [42, 57, 107] and could help gaining an insight into

the aperiodic behaviour of the IHC model. Therefore, we calculate the spectrum of
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the dynamic Lyapunov exponents using variational equations [106] in Figure 2.10(b)

for the given aperiodic time series. The positive exponent λ1 indicates the chaotic

behaviour of the model with the given parameters.

Poincaré sections of a periodic orbit has only a finite number fixed points. A quasi-

periodic orbit, on the other hand, forms a closed-curve (see Figure 2.2(d)) with an

infinite number of points. Therefore, the Poincaré sections and the spectrum of Lya-

punov exponents in Figure 2.10 give us an indication about the nature of such irregular

patterns, which are found in the white regions seen in the two-parameter bifurcation

diagrams. Due to the period-doubling bifurcation as the control parameter gCa de-

creases, this implies a possibility of a period-doubling cascade which underlies the

observed chaotic pattern. There are also aperiodic solutions near the quasi-periodic

oscillations, which could indicate the scenario of a quasi-periodic route to chaos [29].

This suggests a future direction for research in order to gain a better understanding of

the chaotic attractors of the IHC model.

2.3 Conclusion

Immature inner hair cells’ action potentials are calcium-dependent. In this chapter we

investigated the relative contribution of three important parameters, namely gKCa , pER

and gCa, that are directly involved in calcium dynamics regulation in the IHC model,

by performing a numerical bifurcation analysis in order to understand the effects of

varying these parameters on the model solutions.

The role of varying the two parameters (gKCa and pER) in shaping the pattern of

electrical activity in immature inner hair cells were studied when gCa is fixed [31, 90].

An atlas of stable solutions was presented in a two-parameter bifurcation diagram

in [31], where they traced only period-doubling bifurcations (PDs) of various isola,

highlighting the corresponding stable regions in the pER-gKCa plane. However, the

one-parameter bifurcation diagram in Figure 2.3(a) shows that the stable parts of the
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FIGURE 2.10. (a) Three Poincaré sections of the chaotic time series shown
in Figure 2.9 are computed at Vm=-15 mV, Vm=-30 mV and Vm=-45 mV.
(b) The spectrum of the dynamic Lyapunov exponents.

isola can sometimes be bounded by both PD and SNp bifurcations. Therefore, we

continued the SNp bifurcations in two parameters in our bifurcation analysis in this
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chapter. Additionally, although these bifurcation curves become very close to each

other, enclosing the stable regions of periodic solutions, they do not merge. As these

curves become closer and closer, one of the multipliers crosses the unit circle at a

specific point [54].

However, the effects of changing the parameter gCa (the maximum calcium channel

conductance) had not yet been studied. Therefore, prior to the investigation of the

relative contribution of the three parameters, we started to explore the effects of varying

gCa by fixing the two parameters gKCa and pER. We showed that the number of large

(normal) spikes of complex periodic orbits decreases and eventually complex solutions

become bursting solutions as gCa increases. Furthermore, the plateau oscillations of

bursting solutions become harder to visualise with larger values of gCa. In addition to

this, the intracellular calcium concentration increases significantly as gCa increases,

which leads to a higher calcium intake through the cell membrane.

We confirmed that the periodic orbits, whose total number of oscillations is fixed, lie

on the same isola [31], which indicates that those solutions are connected in the

parameter space. Therefore, we tried to understand the behaviour of periodic orbits

according to changes of the three parameters using several two-parameter bifurcation

diagrams shown in Figure 2.8.

Increasing the parameter gCa, 2+N solutions of the model are detected for smaller

values of the parameter gKCa and larger values of the parameter pER. We noted

that this behaviour is also similar to the complex solutions with one large spike and

bursting solutions. Therefore, in order to estimate the parameters for similar types of

solution (complex solutions with two large spikes, complex solutions with one large

spike or bursting), if the parameter gCa increases, then the parameter pER must

be increased while the parameter gKCa is decreased accordingly. For instance, we

showed the parameter region of 1+N solutions in the pER-gKCa plane when gCa=2.4

was [0,0.0005]× [1.5,40], partially shown in Figure 2.8(c). The parameter range will
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be [0.0028,0.0030]× [0.6,0.7] when gCa=6. Thus, our numerical bifurcation analysis

here helps to estimate the parameter regions of the IHC model solutions according to

changes in the three parameters.

However, there are some limitations of our analysis and further questions, which

remain open. Firstly, since we have considered two-parameter sections of the three

dimensional parameter space, we do not have a complete view of solutions in 3D

space to display how periodic solutions, whose total number of spikes is equal, connect

and disconnect when they have different numbers of large and small spikes. Secondly,

since we did not continue the homoclinic bifurcations on the two-parameter bifurcation

diagrams, we do not know if these bifurcations explain the relation between the

branches originating from Hopf bifurcations and isolas. Thirdly, as we have shown in

Figure 2.1, the IHC model produces quasi-periodic motion near the torus bifucation.

As gCa increases, the model solutions become complex periodic orbits. However, we

could not identify the relation between the quasi-periodic and complex solutions in the

IHC model.

Despite unanswered questions, we are now able to estimate what happens when

we vary the three parameters in the model. Next, we would like to simplify the four-

dimensional IHC model by reducing its dimension and compare it with the original

model. These parameter estimations will also help us to identify the ranges for the

parameters that result in different types of periodic solutions (regular, bursting and

complex) of the IHC model.
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3
DIMENSION REDUCTION OF THE IHC MODEL

The Inner Hair Cell (IHC) Model was introduced in Chapter 1 while its oscillatory

behaviour over a large range of three dimensional parameter space of parameters,

namely gCa, gKCa and pER, was studied in detail in Chapter 2 by considering the two-

parameter sections of the three dimensional parameter space. The states variables

of the model are the membrane potential Vm, an activation (n) and an inactivation (h)

variables for the voltage-gated K+ channel, and the intracellular Ca2+ concentration

Ca=[Ca2+]i. In this chapter, we show that it is possible to reduce the dimensions of

the original IHC Model that allows to deal with a simpler (three dimensional) model

without losing the valuable dynamic features of the original model. This enables us to

use this simpler reduced (3D) IHC model for further analysis instead of the original

(4D) IHC model. In Chapter 4, we will consider the reduced IHC model and carry out

slow-fast analysis of the IHC model.

61



CHAPTER 3. DIMENSION REDUCTION OF THE IHC MODEL

3.1 Determining the Slowest Variable of the Model

Dimension reduction of mathematical models of biological systems has a long history

[11]. In particular, recent models contain many state variables [58] due to the highly

complex biological processes the models describe. In order to understand the basic

dynamical behaviour of such models, model reduction is vital to reduce the complexity

and approximate the behaviour of the original models by constructing simplified models.

Thus, methods of dimension reduction and model simplification are still crucial topics

in the mathematical modelling of biological systems.

A recent review paper on methods of model reduction [85] provides an up-to-date

overview for reducing the dimensions of biological models. We will consider the

timescale exploitation methods to help reduce the dimension of the IHC model by

fixing the time derivative of the slowest variable to zero, which will make the slowest

variable a constant in the model.
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FIGURE 3.1. Time series of the state variables and absolute time derivatives
of a periodic orbit corresponding to the parameters gCa=2.4, gKCa=1.98
and pER=0.0004. All the other parameters are fixed and given in Table 1.1
in Chapter 1.
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Timescale exploitation methods are based on differences between time scales of

model variables. We have plotted the time courses and absolute values of the time

derivatives of the four variables, which are computed by the numerical simulation

package XPPAUT [22], in Figure 3.1, to indicate the differences in time scales of the

IHC model variables. It is seen from the amplitude ranges of the time series and their

derivatives that the variables h and Ca change on relatively slower time scales than

the variables Vm and n.

We will also calculate the time scale constants by nondimensionalising the IHC model

equations in greater detail in the following subsection to check and verify the fast and

slow variables of the IHC model. Additionally, we will use the nondimensional IHC

model to gain an insight into the speed of variables according to changes of the model

parameters and analyse their periodic behaviour by splitting the model into the fast

and slow subsystems in Chapter 4.

3.1.1 Nondimensionalisation of the IHC Model

The IHC model intoduced in Chapter 1 is biophysical and hence the variables repre-

senting the membrane potential (Vm) and the intracellular calcium (Ca ) as well as all

model parameters, have dimensions. We would like to remove the dimensions of the

state variables of the model to estimate the speed of the variables. Therefore, we can

approximate the model by considering the rate of change of the slowest variable in

time is negligible, which simplifies the four-dimensional model to a three-dimensional

model. Therefore, we can deal with a simplified model having fewer state variables

than the original (4D) IHC model and no longer need to consider the phase space

projections of the trajectories and periodic solutions of the model.

Nondimensionalisation is a process which eliminates the physical units of the variables

in the model [67]. There are several objectives in making biophysical models nondi-

mensional. Our purpose in creating a nondimensionalisation version of the IHC model

is to access the characteristic time scale differences between the variables.
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CHAPTER 3. DIMENSION REDUCTION OF THE IHC MODEL

Secondly, estimating the typical time scales of the variables in the IHC model enables

us to identify the important parameters that control the time scales and how the model

variables are related to each other. In Chapter 4, we will consider the nondimensional

reduced IHC model to apply a fast-slow analysis [78, 94].

3.1.2 Dimensionless Model Equations

The IHC model is defined by a set of four ordinary differential equations (ODEs) in

Chapter 1 as

Cm
dVm

dt
=−ICa(Vm,Ca)− IK(Vm,n)− IKCa(Vm,Ca)− I leak(Vm)

dn
dt

= n∞(Vm)−n
τn(Vm)

dh
dt

= h∞(Vm)−h
τh

dCa
dt

= fc

(
−αICa(Vm)− kPMCACa2

Ca2 +K2
p

)
−kSERCACa+ pER(CaER−Ca)

(3.1)

where Vm denotes the membrane potential, (n) the activation and (h) the inactiva-

tion variable for the voltage-gated K+ channel and Ca=[Ca2+]i the intracellular Ca2+

concentration. (The full model equations including the ion current equations and the

parameters can be found in Chapter 1.)

Dimensionless Membrane Voltage Equation (v):

In order to eliminate the dimensions of the membrane voltage equation in (3.1), we

have to rescale the state variables Vm and Ca as well as time t by some scaling

constants that have the same dimensions as variables Vm, Ca and t. Additionally, if we

use the typical amplitude ranges for the state variables as these rescaling constants,

the nondimensional state variables will vary between 0 and 1.

We have checked that the typical values of the membrane potential and the intracellular

calcium of the IHC model are Vm ∈ [−60,0] mV and Ca ∈ [0,1] µM. Therefore, we
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3.1. DETERMINING THE SLOWEST VARIABLE OF THE MODEL

consider the suitable choices for the membrane voltage and intracellular calcium as

Qv=100 mV and Qc=1 µM, respectively.

Rescaling Vm = vQv, Ca = cQc and t = τQt with Qt = 1s eliminates the dimensions of Vm,

Ca and t to get the new dimensionless variables v and c as well as time τ. Therefore,

we obtain the dimensionless form of the membrane voltage (v) as

Cm

Qt gmax

dv
dτ

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v) (3.2)

where gmax=max{gCa, gK, gKCa , gleak} and the dimensionless currents ÎX = IX
gmaxQv

with

X ∈{Ca,K,KCa, leak}.

Scaling the conductances by gmax results in all terms on the right hand side (RHS) of

the equation to be bounded (in absolute values) by one. Therefore, the typical time

scale for the membrane voltage v is given by Cm
Qt gmax

.

Dimensionless Calcium Equation (c):

Let us recall the intracellular calcium equation of the reduced IHC model given in ( 3.1).

dCa
dt

= fc
(−αICa(Vm,Ca)−φ(Ca)Ca− (k̂SERCA+ p̂ER)Ca+ p̂ERCaER

)
where k̂SERCA = kSERCA

fc
, p̂ER = pER

fc
and φ(Ca)= kPMCACa

Ca2+K2
p

.

Scaling Vm = vQv, Ca = cQc and t = τQt, we obtain the dimensionless form of the

calcium equation as:

dc
Qtdτ

= fc
(−ξĪc(v, c)−Φφ̄(c)c− (k̂SERCA+ p̂ER)c+ p̂ERcER

)
(3.3)

where ξ = αgCaQv
Qc

, Īc(v, c) = ICa(vQv,cQc)
gCaQv

, φ̄(c) = φ̃(c)
Φ with Φ = max0≤c≤1 φ̃(c) and cER =

CaER
Qc

.

Using the parameters specified in Chapter 1, we can plot the function φ̃(c) over the

range of c
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FIGURE 3.2. Graph of the function φ̃(c).

We see that the function φ̃(c) in (3.3) has a maximum of about 22. Hence, the function

φ̄(c) on the RHS of the equation (3.3), which is φ̄(c)= φ̃(c)
Φ with Φ=max0≤c≤1 φ̃(c), will

be bounded by one.

In order to make all terms on the RHS of the equation (3.3) bounded (in absolute

values) by one, we calculate the values of constants on the RHS. Thus, we get

(k̂SERCA+ p̂ER) is of an order O(103),

(p̂ERcER) is of an order O(103) and

ξ= αgCaQv

Qc
is of an order O(104)

with the model parameters given in 1.1 in Chapter 1 and considering the ranges of the

bifurcation parameters pER and gCa in Chapter 2.

We identify ξ as the largest constant in the RHS of the calcium equation (3.3). Ac-

cordingly, if we divide the RHS of (3.3) by ξ, all terms on the RHS will be bounded (in

absolute values) by one. Therefore, we get

Qc

Qt fcαgCaQv

dc
dτ

=−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3 (3.4)
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3.1. DETERMINING THE SLOWEST VARIABLE OF THE MODEL

where ζ1 = ΦQc
αgCaQv

, ζ2 = (k̂SERCA+p̂ER)Qc
αgCaQv

and ζ3 = p̂ERcERQc
αgCaQv

.

Dimensionless Activation Variable Equation (n):

The equation of the activation variable (n) associated with the voltage-dependent

potassium (K+) channel is given by

dn
Qtdτ

= 1
τn(v)

(n∞(v)−n) (3.5)

As we have seen, the variable n is already dimensionless. Since we would like to

bound the RHS of the of the IHC model in (3.1) as a result of the process of nondi-

mensionalisation, we need only to check if the right hand side of (3.5) is bounded by

one.

We have 0 ≤ n ≤ 1 and 0 ≤ n∞(v) ≤ 1, hence |n− n∞(v)| ≤ 1. Figure 3.3 shows the

behaviour of the inverse of the voltage dependent time scale function of the gating

variable, which is given by

1
τn(v)

= (0.0022+0.0029e−vQv/14.3)−1 (3.6)

Let T̂n :=max−0.6≤v≤0
1

τn(v) . Therefore, we can rescale the function 1
τn(v) by its maximum

to get a new dimensionless time scale function, which is bounded (in absolute values)

by one; i.e.

1
τ̂n(v)

:= 1/τn(v)
T̂n

Hence, the equation of the activation variable n in (3.5) becomes

1
T̂nQt

dn
dτ

= 1
τ̂n(v)

(n∞(v)−n) (3.7)
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FIGURE 3.3. Graph of the function 1
τn(v) in (3.6).

This scaling makes the RHS of the equation dimensionless and bounded (in absolute

values) by one. Therefore, the typical time scale for the activation variable is given by
1

T̂nQt
, which is equal to 0.0051.

Dimensionless Inactivation Variable Equation (h):

The rate of change in the inactivation variable h is represented by

dh
dt

= h∞(Vm)−h
τh

(3.8)

τh

Qt

dh
dτ

= h∞(v)−h (3.9)

Similar to the activation variable (n), the inactivation variable (h) is already dimension-

less, and moreover its time constant is already given in the model by τh, which is equal

to 0.55. Therefore, the typical time scale for the inactivation variable is given by τh
Qt

,

which is equal to 0.55.

68
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Thus, the dimensionless form of the IHC model in (3.1) can be written as

Cm

Qt gmax

dv
dτ

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

1
T̂nQt

dn
dτ

= 1
τ̂n(v)

(n∞(v)−n)

τh

Qt

dh
dτ

= h∞(Vm)−h

Qc

Qt fcαgCaQv

dc
dτ

=−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3

(3.10)

where

gmax =max{gCa, gK, gKCa , gleak}, ÎX = IX

gmaxQv
, X ∈ {Ca,K,KCa, leak}

1
τ̂n(v)

= 1/τn(v)
T̂n

where T̂n = max
−0.6≤v≤0

1
τn(v)

and

Īc(v, c)= ICa(v, c)
gCaQv

, ζ1 = ΦQc

αgCaQv
, ζ2 = (k̂SERCA+ p̂ER)Qc

αgCaQv
, ζ3 = p̂ERcERQc

αgCaQv

Now all terms on the right hand side of (3.10) are bounded (in absolute values) by one.

Therefore, the coefficients of the time derivatives of the nondimensional IHC model in

(3.10) indicate the relative rates of evolution of the state variables, which are

τ̂v := Cm

Qt gmax
, τ̂n := 1

TnQt
, τ̂h := τh

Qt
, τ̂c := Qc

Qt fcαgCaQv
(3.11)

Considering the scaling parameter values Qv=100 mV, Qc=1 µM, Qt=1 s and the

model parameter values given in Chapter 1, the time constants of the IHC model are

calculated with the given parameters for the periodic solution shown in Figure 3.1 as

τ̂v=0.0018, τ̂n=0.0051, τ̂h=0.55 and τ̂c=0.14. Therefore, these time scale constants

also support that the variable h of the IHC model is the slowest variable.

Additionally, fixing the slowest variable, the reduced IHC model becomes three dimen-

sional. We will investigate the effects of changing model parameters on the time scales

of the variables using fast-slow analysis in Chapter 4.
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3.1.3 The Reduced (3D) IHC Model

Up to now, we have shown that the state variables Vm and n are much faster than the

variables Ca and h. Additionally, since the action potentials of the inner hair cells are

calcium-dependent, the IHC model no longer exhibits its characteristic solutions such

as pseudo-plateau and complex periodic orbits if we assume dCa
dt = 0. Therefore, we

will consider the case that the state variable h satisfies the condition dh
dt = 0 in order to

reduce the dimension of the four-dimensional IHC model.

The rate of change in the variable h is represented by

dh
dt

= 1
τh

(h∞(Vm)−h) (3.12)

where h∞(Vm) is the steady-state function of h and 1
τh

is small. As we reviewed the

slow-fast analysis in Section 1.2.2, similar to the limit of ε, setting 1
τh

= 0 will make
dh
dt = 0. Therefore, we have to consider either h = h∞(Vm) or the variable h is fixed to a

constant.

Firstly, we assumed that h is always in instantaneous equilibrium, thus we replace h

by h∞(Vm), which is called quasi-steady state (QSS) reduction [43]. This sets the rate

of change in h equal to zero. However, we verified by direct numerical simulations and

bifurcation analysis (not shown) that this causes critical changes in the dynamics of the

original (4D) IHC model, which means that the reduced (3D) model no longer exhibits

bursting and complex oscillations. Since we do not want to lose the important dynamic

features of the original model, we cannot assume h = h∞(Vm). Therefore, secondly, we

will consider that h is a constant.

Fixing the variable h to a constant, we get dh
dt = 0. Therefore, the four dimensional IHC

model becomes three dimensional, which we will call the reduced IHC model. In order

to make a reasonable estimation for a fixed value of the variable h, we considered

a large range of the parameters gCa, gKCa and pER, where the original IHC model

exhibits single spikes, quasi-periodic, bursting and complex periodic solutions.
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We considered the range of the parameters where the model exhibits oscillations,

which are gCa ∈ [0,50], gKCa ∈ [0,150] and pER ∈ [0,0.0015].

In Appendix A, we plotted several one-parameter bifurcation diagrams in these ranges

in order to estimate an average value or a midrange value, which is calculated by

(hMax+hMin)/2, for h taking into account the possible limit cycles such as single spikes,

bursting and complex periodic solutions since the averaged value for h is different for

the different type of solutions. As an example, we plot a one-parameter bifurcation

diagram using gCa as a bifurcation parameter in Figure 3.4.
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FIGURE 3.4. A one-parameter bifurcation diagram of the IHC model when
gKCa=1.98 and pER=0.0004. The dynamic state variable h is plotted on
the y-axis.

Such one-parameter bifurcation diagrams considering the parameters gCa, gKCa and

pER as bifurcation parameters and the variable h on the y-axis, allow us to determine

the range for the constant value of h. Then, we will consider the average of the h

values over this range to make an estimation of the constant h value in the reduced

model. Based on one-parameter bifurcation analysis results as explained above, we

calculated the average value for the variable h as h=0.5732. We will use this value in
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CHAPTER 3. DIMENSION REDUCTION OF THE IHC MODEL

the reduced IHC model from now on.

Fixing the variable h=0.5732, we are able to introduce the reduced three dimensional

IHC model. The reduced IHC model has three state variables; namely, the membrane

potential Vm, an activation variable (n) for the voltage-gated K+ channel, and the

intracellular Ca2+ concentration Ca=[Ca2+]i. The model equations are

Cm
dVm

dt
=−ICa(Vm,Ca)− IK(Vm,n)− IKCa(Vm,Ca)− I leak(Vm)

dn
dt

= n∞(Vm)−n
τn(Vm)

dCa
dt

= fc

(
−αICa(Vm)− kPMCACa2

Ca2 +K2
p

)
−kSERCACa+ pER(CaER−Ca)

(3.13)

Balance equations for the ion currents, other sub-functions and the parameters of the

reduced IHC model in (3.13) can be found in Chapter 1.

3.2 Validation of the Reduced (3D) against the

Original (4D) IHC Model

In this section, we will investigate the behaviour of the reduced (3D) IHC model

solutions according to the changes of the parameters gCa, gK(Ca) and pER. Similar

to the analysis done for the original (4D) IHC model in Chapter 2, we will continue

the period-doubling (PDs) and saddle-node of periodic (SNp) bifurcations in two

parameters to identify the stable regions of the periodic solutions of the reduced IHC

model. To be consistent in our analyses, we will use the same set of parameters as

the original IHC model in Chapter 2 to perform the numerical bifurcation analysis in

this section.

3.2.1 Behaviour of the Reduced Model Trajectories

We showed the effect of varying the parameter gCa on the original IHC model solu-

tions with a one-parameter bifurcation diagram in Chapter 2. The original IHC model
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FIGURE 3.5. A one-parameter bifurcation diagram of the reduced (3D) IHC
model in the parameter gCa. The other two parameters are fixed to
gKCa=1.98 and pER=0.0004 (h=0.5732 is fixed).

exhibits single spike solutions for smaller values of gCa. As gCa increases, we showed

that the original model generates complex periodic orbits for intermediate values of

gCa. Increasing the parameter gCa results in the original IHC model solutions becom-

ing bursting and persists for a relatively large portion of the parameter space (see

Figure 2.1 in Chapter 2).

We plot a one-parameter bifurcation diagram of the reduced IHC model using gCa

as the bifurcation parameter in Figure 3.5 considering the parameters gKCa=1.98 and

pER=0.0004, which were used for the original IHC model in Figure 2.1 in Chapter 2.

The bifurcation diagram in Figure 3.5 indicates that the reduced IHC model solutions

also follow the pattern observed in the original IHC model, that is single spikes followed

by complex and then bursting solutions as gCa increases.

Additionally, there are some parameter values for which the original and reduced IHC

models exhibit periodic solutions with the same total number of spikes. This, of course,

is not true in general due to the approximation of the slowest variable h by a fixed
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FIGURE 3.6. Phase plots projections of the original (4D) IHC model (black
ink) and phase plots of the reduced (3D) IHC model (blue ink) at gCa= 2.4
(a)&(b), gCa= 2.5 (c)&(d), gCa= 2.79 (e)&(f) and gCa= 3 (g)&(h) (h=0.5732
is fixed).

quantity. As an example, we plot solutions of the original (4D) and reduced (3D) IHC
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models for different values of gCa in Figure 3.6.

Althought the original model generates a complex periodic orbit with one large spike

and 5 small spikes (1+5 solution), the reduced model generates a complex solution

with 4 spikes only (1+4 solution) at gCa=2.4 shown in Figure 3.6 (a)&(b) respectively.

However, for the parameter gCa=2.5, both models generate the complex 1+5 solutions

as shown in Figure 3.6 (c)&(d). This could also be true for the aperiodic trajectories.

We plot the 4D and 3D model trajectories when gCa=2.79 in Figure 3.6 (e)&(f), which is

computed for 10 seconds by XPPAUT [22]. We will investigate such aperiodic behaviour

at the end of this chapter in more detail. Additionaly, as gCa increases, both original

(4D) and reduced (3D) IHC models start generating bursting solutions with four spikes

(0+4 solution). We plotted such bursting solutions in Figure 3.6 (g)&(h) when gCa=3.

We showed the reduced IHC model exhibits similar behaviour as the original IHC

model, which could both generate the same number of spikes, such as 1+5 or 0+4

solutions, as well as aperiodic oscillations for the same set of parameters. Next, we

would like to verify the role of three parameters, namely gCa, gK(Ca) and pER, on

the model solutions generating two-parameter bifurcation diagrams using the same

parameters used to perform the bifurcation analysis for the original IHC model in

Chapter 2.

3.2.2 Mapping the Interaction between gCa, gK(Ca) and pER in the

Reduced Model

As in the original IHC model in Chapter 2, we fixed one of the three variables and com-

puted a wide variety of periodic attractors such as normal spiking, bursting and complex

periodic orbits with several oscillations. Then, we continue the bifurcations responsible

for change in the stability of the periodic solutions in the other two parameters with the

continuation package AUTO [18].

We considered the set of parameters used to draw the two-parameter bifurcation
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(a) pER=0.0004

(b) gKCa=4

(c) gCa=2.4

FIGURE 3.7. Two-parameter bifurcation diagrams of the reduced IHC model
when pER=0.0004 (a), gKCa=4 (b) and gCa=2.4 (c). Stable regions of so-
lutions are delimited by tracing the period-doubling bifurcations (solid
curves) and saddle-node bifurcation of periodic solutions (dashed curves)
and are coloured accordingly. Torus bifurcations of the branches originat-
ing from Hopf bifurcations are indicated by dashed dotted curves. Black
lines indicate the cross-sections.
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diagrams of the reduced IHC model, which are gCa=2.4, gKCa=4 and pER=0.0004.

This set was chosen for the original IHC model in Chapter 2. The two parameter

bifurcation diagram in Figure 3.7(a) when pER=0.0004 was computed by tracing the

period-doubling bifurcations (solid curves) and saddle-node bifurcation of periodic

solutions (dashed curves) in the gCa-gKCa plane. This diagram shows that the reduced

IHC model generates oscillations similar to the original IHC model. For instance, we

showed that the original IHC model generated oscillations upto 8 spikes (0+8, 1+7

and 2+6 solutions) when pER=0.0004 (see Figure 2.8(a) in Chapter 2). In agreement

with this, we show in Figure 3.7(a) that the reduced IHC model also generates periodic

solutions upto 8 spikes in total (1+7 solution) when pER=0.0004.

On the other hand, although the original IHC model exhibits complex solutions with 2

large spikes (2+4, 2+5 etc.) in the gCa-gKCa plane shown in Figure 2.8(a) in Chapter

2, the reduced IHC model does not generate complex solutions with 2 large spikes

when pER=0.0004. However, the reduced IHC model can produce complex periodic

solutions with two or more large spikes with some other sets of parameters, which are

not shown here.

The reduced IHC model can also generate the combination of bursting solutions. For

example in Figure 3.7(b), we display the regions "(0+2)+(0+3)" by arrows that indicate

the parameter regions of the stable periodic orbits, a burst with 2 small spikes is

followed by another burst with 3 small spikes referring to (0+2)+(0+3) solution. In some

parameter regions, the reduced IHC model generates periodic solutions which are a

combination of complex solutions such as (1+N)+(1+M) etc. For example, we show

time series and phase space projection of the (1+3)+(1+4) solution in Figure 3.8. Such

periodic patterns can also be seen in the original IHC model.

As a result of the two-parameter bifurcation diagrams in Figure 3.7, we conclude

that the reduced IHC model can generate oscillatory behaviours consistent with

the behaviour observed in the original IHC model. We also interpret the relative
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FIGURE 3.8. Time series and phase space projection of a combination of
complex solution for the parameters gCa=2.6, gKCa=3 and pER=0.0004.

contributions of the three parameters on the model solutions in the reduced IHC

model. Therefore, we can use the reduced (3D) IHC model for the slow-fast analysis in

the following chapter instead of considering the original (4D) IHC model to split the

variables into slow and fast sub-groups.

3.2.3 Aperiodic Model Solutions

Similar to the two-parameter bifurcation diagrams of the original (4D) IHC model, in

Figure 3.7, we showed the stable regions for the periodic orbits in different colours

according to the numbers of spikes of the periodic solutions of the reduced (3D) IHC

model. These regions are determined by continuing the SNp and PD bifurcations in

two parameters.

We consider the same parameter set as in Chapter 2 (gCa=2.18, gKCa=1.98 and

pER=0.0004) to show the aperiodic motion of the reduced IHC model. We indicate

this set by a blue cross in the two parameter bifurcation diagram on (gCa-gK(Ca))-plane

when pER=0.0004 in Figure 3.9. We show the time series and phase-space plots of

the pattern and three Poincaré sections at Vm=-15 mV, Vm=-30 mV and Vm=-45 mV,

respectively. As in the 4D model, these sections gives us a strong indication about the

chaotic dynamic of the model trajectory. Moreover, the Poincaré sections in Figure 3.9
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FIGURE 3.9. (a) An example of an aperiodic pattern in the reduced IHC model.
The blue cross in the white region corresponds to parameters gCa=2.18
and gKCa=1.98 in the two-parameter when pER=0.0004. Three Poincaré
sections are considered at Vm=-15 mV, Vm=-30 mV and Vm=-45 mV. (b)
The spectrum of the dynamic Lyapunov exponents.

indicate the strong dissipation and the resulting contraction of areas in phase space

[2, 82] (see the Poincaré map in Figure 4.5(d) in [64] that indicates the presence of a

rapid contraction of volumes).
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We have shown the aperiodic pattern of the reduced IHC model at the same parameter

set as the original IHC model. The Poincaré sections and Lyapunov exponents reveal

that the reduced model also exhibits chaotic behaviour. We consider a set of para-

meters corresponding to the white region at the two-parameter bifurcation diagram in

Figure 3.9 that is near the PD curves of 1+3 and 1+4 solutions. However, there are

still unanswered questions about the chaotic motion of the IHC model such as ’Does

this behaviour originate in a PD cascade or via some other route to chaos?’, which will

be left to further research.

3.3 Conclusion

In this chapter, we reduced the dimension of the original (4D) IHC model by approxi-

mating the slowest variable h with a constant. A similar analysis constructed for the

original IHC model in Chapter 2 was undertaken for the reduced (3D) IHC model to

show that the reduced model generates qualitatively similar behaviour as the original

model.

We demonstrated that we do not lose the essential dynamic features of the original

IHC model by fixing the slowest variable h in the original (4D) IHC model. Therefore,

we could deal with a simpler three-dimensional model without losing the dynamic

properties of the original (4D) IHC model. With this reduced model, we no longer have

to use the phase projections of the original IHC model.

The same set of parameters were considered in the bifurcation analyses of the original

(4D) and reduced (3D) IHC models. We compared the solutions of the original and

reduced models as the parameter gCa varied. Due to the approximation of the slowest

variable h, the original and reduced IHC models do not neccessary generate periodic

solutions of same type (or the same number of oscillations) for the same parameter sets.

However, there are some sets where both models generate the same type of periodic

orbits as well as aperiodic solutions. Similar to the analysis done in Chapter 2 for the
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original (4D) IHC model, we present a characterisation of the relative contributions

of the three parameters of the reduced IHC model solutions. The two-parameter

bifurcation diagrams reveal the qualitative agreement of the reduced model with the

original model.

Additionally, the nondimensional reduced model introduced in this chapter will be

considered in order to apply a slow-fast analysis to understand the mechanisms

underlying the dynamics of the model solutions in Chapter 4 and our numerical

bifurcation analysis here helps us to estimate the parameter regions of the reduced

IHC model solutions according to the changes of the three parameters.

As we discussed in Chapter 2, there are some limitations to our analysis and further

questions, which remain open in the analysis of the reduced IHC model. These are

• Although the two-parameter sections of the three dimensional parameter space

gives an indication of the organisation of the periodic solutions having a different

number of spikes, we still have not shown a complete view of solutions in three-

dimensional parameteric space to display how these solutions connect and

disconnect when they have different numbers of large and small spikes.

• The relation between the branches originating from Hopf bifurcations and isolas

remains unclear.

• We have shown the Poincaré sections of an aperiodic trajectory in Figure 3.9,

which correspond to the region in white in the two-parameter bifurcation diagram,

where we could not find stable solutions. However, we could not identify the

relation between the periodic, quasi-periodic and complex solutions in the IHC

model in order to understand if a period-doubling cascade, quasi-periodic motion

or other mechanisms underlie the observed chaotic pattern, which suggests a

future direction of investigation of the chaotic attractors of the IHC model.
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4
A SLOW-FAST ANALYSIS OF THE REDUCED IHC MODEL

We simplified the original (4D) IHC model in Chapter 3 [90] by reducing its dimensions.

This simplified version, called the reduced IHC model, is three-dimensional. Therefore,

we are able to visualise and study the oscillatory behaviour in the full phase space

of the model, rather than considering phase space projections. The nondimensional

model equations reveal the typical time scale constants of the model variables as

well as the model parameters that affect these time scales. Therefore, due to the

differences between time scales of the model, we can split the reduced IHC model into

the slow and the fast subsystems to gain an insight into the dynamics of the model

solutions via a slow-fast analysis [78], which was reviewed in Chapter 1.

In this chapter we will apply a slow-fast analysis to the reduced IHC model. We will

try to understand the contributions of the model parameters to the characteristic

time scales of the model. Knowing the typical time scale constants of the model by

nondimensionalisation, we are able to calculate the speed of the variables depending

upon the parameters and categorise the variables as slow and fast. Then, we apply

the slow-fast analysis techniques depending on the number of slow or fast variables

(1-slow/2-fast or 2-slow/1-fast) of the reduced (3D) IHC model.

82



4.1. THE SUBSYSTEMS OF THE MODEL

4.1 The Subsystems of the Model

The slow-fast analysis was originally introduced by Rinzel [78] to understand the

bursting solutions of the Chay-Keizer model [13]. We gave a brief overview of the

slow-fast analysis in Chapter 1. In this chapter, we will apply this theory to the reduced

IHC model to attempt to explain the dynamics of the bursting, complex solutions and

mixed mode oscillations (MMOs) of the IHC model discussed in Chapters 2 and 3.

4.1.1 Dimensionless Model Equations

The dimensionless form of the reduced (3D) IHC model discussed in Chapter 3 is

given by

Cm

Qt gmax

dv
dτ

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

1
T̂nQt

dn
dτ

= 1
τ̂n(v)

(n∞(v)−n)

Qc

Qt fcαgCaQv

dc
dτ

=−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3

(4.1)

The typical time scales of the state variables of the IHC model are given by the

constants on the left hand side of the nondimensional form of the model in (4.1), which

are

τ̂v := Cm

Qt gmax
, τ̂n := 1

T̂nQt
and τ̂c := Qc

Qt fcαgCaQv
(4.2)

We note that the parameter gCa affects both time scales of v and c when gCa ≥ gK = 2.85

i.e. the maxiumum conductance of the IHC model. Additionally, as we discussed in

Chapter 3, the IHC model exhibits oscillatory behaviour when 0 < gCa < 60. Thus,

considering the parameter values given in Table 1.1 in Chapter 1 and the range

0< gCa < 60, we get

• the typical time constant of v is of an order between O(10−3) and O(10−4),
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• the typical time constant of n is of an order O(10−2)

• the typical time constant of c is of an order between O(10−1) and O(10−2).

This suggests that when gCa is large, the variables n and c are slower (O(10−2)) than v

(O(10−4)). Thus, in this case, the model could have one fast and two slow variables.

On the other hand, we note that the parameter fc directly affects the time scale of c

only. Decreasing fc makes the slow variable slower i.e. the time scale of c is of an

order O(100). Therefore, v and n become much faster than c, where the model could

have two fast and one slow variables. We will study the effects of this parameter on

the solutions of the model in Sections 4.2.1 and 4.2.2.

The dimensionless model can be rescaled by replacing τ with τ̃= Qt gmax
Cm

τ. Therefore,

we obtain

dv
dτ̃

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

dn
dτ̃

= T̂nCm

gmax

(
n∞(v)−n
τ̂n(v)

)
dc
dτ̃

= ε
(−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3

)
(4.3)

where

ε= Cm fcαgCaQv

gmaxQc
. (4.4)

ε= 0.000162 when the bifurcation parameter values are given by gCa=2.4, gKCa=18,

pER=0.00097 and fc = 0.000235 whose time series graph is shown in Figure 4.1(a). The

constant ε represents the ratio between fast and slow time scales. As we mentioned

above, when fc is small or gCa is large, the model could have two fast and one slow

variables, where ε is of an order between O(10−2) and O(10−4) i.e. ε¿ 1. Therefore, we

can apply the geometric singular perturbation analysis (GSPA) with one slow variable

(or 1-slow/2-fast analysis) [78].
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On the other hand, if we re-cast the system (4.3) from the fast time scale τ̃ to the slow

time scale t̃ := ετ̃, we obtain

ε
dv
dt̃

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

dn
dt̃

= T̂nQc

fcαgCaQv

(
n∞(v)−n
τ̂n(v)

)
dc
dt̃

=−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3

(4.5)

to which we apply 2-slow/1-fast analysis [7]. Next, we will discuss the slow-fast analysis

by splitting the IHC model equations into slow and fast subsystems in greater detail.

4.1.2 Fast and Slow Subsystems

If a dynamical system exhibits only two time scales, it is commonly called a slow-fast

system [52]. We have shown that the reduced (3D) IHC model has slow and fast

variables depending upon the model parameters. If the slow variable is very slow

(when ε is sufficiently small in (4.3)), then we can study the behaviour of the reduced

IHC model using the subsystem obtained from the singular limit (ε→ 0). This allows us

to treat the slow variable as a bifurcation parameter in the model with the assumption
dc
dτ̃ = 0 and to analyse the bifurcation structure of the fast subsystem in order to make

predictions for 0< ε¿ 1 [7, 52, 78, 79].

Considering the system (4.3) in the limit ε→ 0 where v and n are the fast variables and

c is the slow variable (1-slow/2-fast), we have

dv
dτ̃

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

dn
dτ̃

= T̂nCm

gmax

(
n∞(v)−n
τ̂n(v)

)
dc
dτ̃

= 0

(4.6)

Hence, system (4.6) represents the fast subsystem (or layer equations) of the reduced

IHC model [16, 52]. Since dc
dτ̃ = 0, we can consider c as a parameter in (4.6) and

study the asymptotic behaviour of the the fast subsystem by computing the bifurcation

85



CHAPTER 4. A SLOW-FAST ANALYSIS OF THE REDUCED IHC MODEL

diagram of the fast subsystem where c is a bifurcation parameter. Then, using the

information extracted from the fast subsystem bifurcation structure, we attempt to

interpret the behaviour of the solutions of the reduced IHC model.

The slow subsystem that corresponds to the fast subsystem in (4.6) is given by

0=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

0= T̂nCm

gmax

(
n∞(v)−n
τ̂n(v)

)
dc
dt̃

= (−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3
)

(4.7)

We observed from the typical time scale constants in (4.2) that the reduced IHC model

could have one fast and two slow variables depending on the choice of parameters.

Considering v is the fast variable and n and c are the slow variables (2-slow/1-fast),

we write the system (4.5) in the singular limit as ε→ 0

0=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

dn
dt̃

= T̂nQc

fcαgCaQv

(
n∞(v)−n
τ̂n(v)

)
dc
dt̃

=−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3

(4.8)

which is called the slow subsystem (or reduced subsystem) of the model [16, 52]. We

prefer to use the term "slow subsystem" instead of "reduced subsystem" in order to

avoid confusion with the reduced IHC model.

The fast subsystem that corresponds to the slow subsystem in (4.8) is given by

dv
dτ̃

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

dn
dτ̃

= 0

dc
dτ̃

= 0

(4.9)
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The system (4.8) contains an algebraic equation

F(v,n, c)= 0 where F(v,n, c)=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v) (4.10)

in addition to the ODEs for the variables n and c in (4.8). Therefore, the system in (4.8)

is called a differential-algebraic system. The differential-algebraic system describes

the slow flow that is restricted to the critical manifold [7, 16, 52]

S := { (v,n, c) ∈R3 | F(v,n, c)= 0 }. (4.11)

We will use the fast and slow subsystems in order to understand the dynamics of

the full model given by (4.5) from a geometrical point of view taking into account the

invariant manifolds of the fast and slow subsystems, respectively.

4.1.3 The Critical Manifold and Slow Flow

The critical manifold, which is given by the set S := { (v,n, c) ∈ R3 | F(v,n, c) = 0 }

where F(v,n, c) :=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v), represents a surface in R3,

which is the equilibrium set of the fast subsystem for the 2-slow/1-fast case [7, 16, 52].

The fold curves on the critical manifold are defined by

F l,u := { (v,n, c) ∈R3 | F(v,n, c)= 0 and
∂F
∂v

= 0 }. (4.12)

In the equation F(v,n, c)= 0, the variable n appears only in the voltage-dependent K+

current that is given by ÎK(v,n)= gK
gmax

nh(v−vK). Therefore, F(v,n, c) is linear in n, and

so we can solve F(v,n, c)= 0 for n in terms of v and c. Hence, we get

n := n(v, c)= −gCam2∞(v)q∞(c)(v−vCa)− gKCa s∞(c)(v−vK)− gleak(v−vleak)
gKh(v−vK)

The slow subsystem, which is given by a differential-algebraic system (4.8), describes

the flow when the trajectory is on the critical manifold [16].
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Taking the derivative of F(v,n, c)= 0 with respect to time t̃ and applying the chain rule

to dF
dt̃ = 0, we obtain

−∂F
∂v

dv
dt̃

= ∂F
∂n

dn
dt̃

+ ∂F
∂c

dc
dt̃

−∂F
∂v

dv
dt̃

=
(

T̂nQc

fcαgCaQv

(
n∞(v)−n
τ̂n(v)

))
∂F
∂n

+ (−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3
) ∂F
∂c

(4.13)

This system is singular when ∂F
∂v = 0 i.e. at the fold curves. The flow is well defined on

the critical manifold S, but not on the fold curves. In order to remove the singularities,

we introduce a re-scaled time t̂ :=−(
∂F
∂v

)−1 dt̃. Hence, we obtain the system

dv
dt̂

=G(v, c)

dc
dt̂

=−(−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3
) ∂F
∂v

(4.14)

where G(v, c) =
(

T̂nQc
fcαgCaQv

(
n∞(v)−n
τ̂n(v)

))
∂F
∂n + (−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3

)
∂F
∂c . This system

defines the desingularised slow flow [16, 52].

A trajectory of the reduced IHC model near the singular limit passes through a folded

singularity with finite speed unlike the other points on the fold curve, where trajectories

have infinite speed [7].

The main idea of the geometric singular perturbation theory (GSPT) (or the slow-

fast analysis) reviewed above is to gain insight into the reduced (3D) IHC model

introduced in (4.1) by breaking it into subsystems using the information extracted from

the subsystems, the layer equations and the slow subsystem, with 0 < ε¿ 1. GSPT

analyses a dynamical system from a geometrical point of view by taking advantage of

the Fenichel Theory [23]. Fenichel Theory states that if ε> 0 is sufficiently small and S

is normally hyperbolic, then invariant manifolds exist that are at O(ε) distance from S,

and as ε→ 0 the flows on these invariant manifolds converge to the slow flow on S.

Our goal is to understand the oscillatory behaviour of the reduced IHC model based

on its fast and slow dynamics. We investigate the behaviour of fast and slow variables
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for different parameter sets and apply a slow-fast analysis to interpret the solutions of

the full model in terms of their behaviour near the invariant manifolds of fast and slow

subsystems.

4.2 The Slow-Fast Decomposition of the Reduced

IHC Model

We calculated the typical time scale constants of the reduced IHC model in the previous

section. These time scale constants suggest that the variable c in the reduced IHC

model could either be the only slow variable or share a similar time scale with the

variable n depending on the choice of parameters. In order to gain insight into the

dynamics of the reduced (3D) IHC model, we split the model equations into fast and

slow subsystems. Using the bifurcation structure of the subsystems, we will investigate

the 1-slow/2-fast and 2-slow/1-fast cases of the reduced IHC model that depend upon

different sets of parameters. We also discuss the dynamics of the model when there

is not a clear separation between the time scales. In this case we cannot reasonably

apply the slow-fast analysis.

4.2.1 One Slow-Two Fast Analysis

We showed that the model could have two distinct time scales (a slow-fast system)

in Section 4.1.2. As indicated in (4.2) the parameter fc, the fraction of free to total

cytosolic calcium, makes a direct contribution to the time scale of the slow variable c

without affecting the time scales of the variables v and n.

In order to make the ratio between the fast and the slow time scales ε smaller, we make

the slow variable c slower by increasing its time scale constant τ̂c = Qc
Qt fcαgCaQv

. The

slow time scale τ̂c is inversely proportional to the parameter fc, and fc does not appear

in the fast time scale equations in (4.2). As fc decreases, τ̂c increases, which implies

that the slow variable c becomes slower. This allows us to investigate the dynamics
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of the various periodic solutions of the reduced IHC model by applying a slow-fast

analysis.

Full model solutions

Before turning our attention to analysing the reduced IHC model in the limit of ε= 0, it

is instructive to look at the behaviour of the full model as fc changes.
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FIGURE 4.1. Time series of periodic orbits for (a) fc= 0.000235, (b) fc= 0.0004,
(c) fc= 0.0006, (d) fc= 0.001, (e) fc= 0.00235 and (f) fc= 0.00244.

In Figure 4.1, we plot the time series solutions of some of the periodic orbits. As fc
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increases, the model produces complex solutions with one large spike and different

numbers of small spikes (from 1+11 to 1+4 solutions). Furthermore, the model also

produces complex periodic orbits having two large spikes followed by a burst, for exam-

ple 2+5, 2+4 and 2+3. We plot the complex periodic orbit 2+5 as a representative time

series for such model solutions, which is computed at fc= 0.0006. For a large range

of the bifurcation parameter fc values, the model produces single spike solutions (for

instance fc= 0.001 and fc= 0.00235 in Figure 4.1(d)-(e)). We note that for fc= 0.00244

in Figure 4.1(f), the periodic orbit is a combination of large and small oscillations, but

different from the complex periodic orbits in Figure 4.1(b)-(c). Next we apply a slow-fast

analysis in an attempt to gain further insight into the behaviour of the periodic solutions

described above.

Slow-fast analysis of the reduced IHC model

In Section 3.1.2, we estimated the time scale constants for the rate of change of the

variables in (4.2). Considering the scaling parameters Qv=100 mV, Qc=1 µM, Qt = 1

s discussed in Section 4.1.1 and using the parameter values given in Table 1.1 in

Chapter 1, the time constants of the reduced IHC model are τ̂v = 0.000394, τ̂n = 0.0051,

τ̂c = 2.417 and ε= 0.000162 when the bifurcation parameter values are given by gCa=2.4,

gKCa=18, pER=0.00097 and fc = 0.000235. We see that the variables v and n evolve on

time scales that are much faster than the variable c. Therefore, for the given parameter

values, we can define that v and n are the fast variables and c is the slow variable in

the model.

We consider the singular limit ε = 0 in (4.6) to obtain the fast subsystem or layer

equations of the reduced IHC model

dv
dτ̃

=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v)

dn
dτ̃

= T̂nCm

gmax

(
n∞(vQv)−n

τ̂n(v)

)
dc
dτ̃

= 0

(4.15)
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Since dc
dτ̃ = 0, we can treat c as a parameter in the fast subsystem. Then, using the

fast subsystem bifurcation structure, we will attempt to interpret the dynamics of the

periodic solutions of the reduced IHC model.

FIGURE 4.2. Three dimensional views of the fast subsystem in (4.15) when
fc = 0.000235. The bursting periodic orbit shown in Figure 4.1(a) is su-
perimposed on the figure. The blue solid curves represent the stable
equilibria and the red dashed curve represents unstable equilibria. The
blue and green surfaces represent the stable and unstable periodic or-
bits, respectively. The transparent surface is the c-nullcline. HB: Hopf
bifurcation, SN: Saddle-node bifurcation of equilibria, SNp: Saddle-node
bifurcation of periodic orbits, HC: Homoclinic bifurcation.

In Figure 4.2, we plot two different views of the bifurcation diagram of the fast subsystem
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using c as a bifurcation parameter of the reduced (3D) IHC model. As the bifurcation

parameter c increases, the stable equilibria (solid blue curve) of the fast subsystem

undergoes a sub-critical Hopf bifurcation (HB1) and loses stability (dashed red curve).

The branch of equilibria regains stability at another sub-critical Hopf bifurcation (HB2)

obtained for larger values of c. A branch of unstable limit cycles (green surface)

emanates from (HB1) and gains stability (blue surface) at a saddle-node bifurcation

(SNp). This branch of stable limit cycles terminates at a homoclinic orbit (HC1).

A periodic orbit computed for fc = 0.000235 of the full (3D) IHC model, whose time

series is shown in Figure 4.1(a), is superimposed on the fast subsystem bifurcation

diagram in Figure 4.2. Above the c-nullcline, which is indicated by c-Null, c increases

since dc
dτ̃ > 0. Additionally, the amplitude of the small spikes within the bursting part

of the periodic solution decreases until HB1. This behaviour can be understood in

terms of the type of the fast system equilibria, which are stable foci. As the trajectory

of the full system moves away from HB1 the amplitude of the small spikes within the

burst starts to increase as the stability of the equilibria in the fast subsystem has

changed and these are now unstable foci. However, since the c-nullcline is very close

to the Hopf bifurcation HB1, the slow passage through Hopf [5] occurs in a very narrow

range of c. As the amplitude of the small spikes increases the trajectory of the full

system crosses the c-nullcline, the direction of the flow is reversed and is attracted to

the other stable regime of the fast subsystem, which is stable limit cycles. Crossing

the c-nullcline, c starts decreasing (dc
dτ̃ < 0) while the trajectory follows the stable limit

cycles region (blue surface). When the trajectory crosses the saddle node bifurcation

of periodic (SNp), it is attracted back to the stable equilibria region.

In Figure 4.3, we plot fast subsystem bifurcation diagrams for different values of fc.

As fc increases, the reduced IHC model solutions do not follow the stable regions of

the fast subsystem as closely as the bursting solution described above. Therefore, we

can no longer apply 2-slow/1-fast analysis when fc is large. Additionally, the typical

time scale constants we estimated in Section 4.1.1 imply that, depending upon the
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.3. Bifurcation diagrams of the fast subsystem in (4.15) and super-
imposed periodic orbits when (a) fc= 0.000235 (Bursting), (b) fc= 0.0004
(Complex: 1+11), (c) fc= 0.0006 (Complex: 2+5), (d) fc= 0.001 (Single
spike), (e) fc= 0.00235 (Single spike) and (f) fc= 0.00244.
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parameter values, the model could also be seen as having one fast and two slow

variables, which could be the case when fc is increased. We investigate this in the

next section.

4.2.2 Two Slow-One Fast Analysis

Above we showed that the 2-slow/1-fast analysis does not explain the full system

behaviour sufficiently when we increase fc in Figure 4.3. In terms of time scales, when

fc increases, the slow time scale τ̂c becomes smaller, therefore the slow variable c

becomes faster. Thus, the model now has two slow variables (n and c) and one fast

variable (v).

As we reviewed in Section 4.1.3, the S-shaped critical manifold is defined by the set

S := { (v,n, c) ∈R3 | F(v,n, c)= 0 }

where F(v,n, c) :=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v). The critical manifold in Fig-

ure 4.4 has two fold curves (lower F l and upper Fu) that separate the repelling and

attracting sheets of the manifold.

In Figure 4.4, we plot the critical manifold for fc=0.00244. The trajectories of the

desingularised slow flow, which was defined in (4.14), are shown on the figure as thin

cyan curves and arrows are the direction of the slow flow. We magnified the regions of

the lower F l and upper Fu fold curves.

On the lower fold curve, there is a folded singularity, denoted by a green circle, where

the trajectories of the slow flow switch from incoming to outgoing [16], satisfies

i) F(v,n, c)
∣∣∣
p∗

= 0,

ii) ∂F(v,n,c)
∂v

∣∣∣
p∗

= 0, ∂2F(v,n,c)
∂v2

∣∣∣
p∗

6= 0

iii) D(n,c)F(v,n, c)
∣∣∣
p∗

has full rank one, and
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(a) Critical manifold

(b) Lower fold (c) Upper fold

FIGURE 4.4. The critical manifold in (4.11) when fc=0.00244. The thin cyan
curves are the trajectories of the slow flow in (4.14). The green curves are
strong (double arrows) and weak (single arrows) stable manifold of the
node (green circle) on the lower fold curve (F l). The red curves are the
stable (solid) and unstable (dashed) manifolds of the saddle equilibrium
on the repelling sheet (Sr) at the critical manifold. The magenta curve is
the strong manifold of the node on the upper fold curve (Fu).

iv)
(
∂F(v,n,c)

∂n

∣∣∣
p∗

(
n∞(v)−n(v,c)

τ̂n(v)

)∣∣∣
p∗

)
+

(
∂F(v,n,c)

∂n

∣∣∣
p∗

(−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3
)∣∣∣

p∗

)
= 0

where p∗ ∈ F l on S. This implies p∗ is a folded singularity [7, 16].
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Additionally, the eigenvalues of the Jacobian matrix of the desingularised system

dv
dt̂

= F(v, c)

dc
dt̂

=−(−Īc(v, c)−ζ1φ̄(c)c−ζ2c+ζ3
) ∂F
∂v

(4.16)

are σ1=-0.51 and σ1=-0.11 with the given model parameters. These real positive

eigenvalues indicate that p∗ is a folded node [16, 17].

The green curves are the strong (double arrows) and weak (single arrow) stable

manifolds of the node p∗. We must note that the slow flow reverses on the repelling

branch of the critical manifold due to the time rescaling t̂ :=−(
∂F
∂v

)−1 dt̃ discussed in

Section 4.1.3.

Moreover, there is another equilibrium point of the desingularised system in (4.16).

This is a saddle equilibrium shown as a red square on the repelling part, which is also

an equilibrium (saddle focus) of the full model. We plot the stable (solid red curve) and

unstable (dashed red curve) manifolds of the saddle equilibrium of the desingularised

system by reversing the direction of the slow flow on the repelling sheet of the critical

manifold.

Similar to the lower fold, there is a folded node singularity on the upper fold curve,

which is denoted by a magenta circle, whose strong stable manifold is shown by the

magenta coloured curve on the manifold.

Next, we would like to interpret the behaviour of the full model periodic orbit at

fc=0.00244 in terms of the slow flow on the critical manifold shown in Figure 4.4.

Therefore, we superimposed the periodic orbit (black coloured) on the critical manifold

in Figure 4.5.

The S-shaped critical manifold is the blue surface in Figure 4.5. The manifold has two

fold curves; at v ≈−0.45 (lower) and v ≈−0.11 (upper). The middle surface between

fold curves is repelling Sr, and the top and bottom surfaces separated by the two fold
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FIGURE 4.5. The periodic orbit when fc=0.00244 is superimposed on the
critical manifold in (4.11). The green curve is the strong manifold of the
node on the lower fold curve (F l). The region of small oscillations around
the saddle-focus equilibrium of the full model is magnified. The colour
code on the orbit around the small oscillations represents the time along
the periodic orbit i.e. time increases from red to yellow.

curves of the manifold are attracting. The saddle-focus equilibrium [33], indicated by

a red square in Figure 4.5, has a pair of unstable complex conjugate eigenvalues

(λ1,2 = 1.21± i16.65) and a real negative eigenvalue (λ3 =−6.56).

The interplay of the periodic orbit shown in Figure 4.1(f) with the desingularised slow

flow gives an insight into the overall structure of the periodic orbit superimposed in

Figure 4.5.

On the lower attracting sheet of the critical manifold Sa, the periodic orbit follows

the strong stable manifold (green curve) of the folded node singularity on F l. We

colour code time when presenting the periodic orbit around the lower fold F l (see the

magnified region in Figure 4.5). As time increases, which is indicated by the colour
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change from red to yellow on the periodic orbit, the small oscillations become larger

around the saddle-focus equilibrium [33] on the repelling sheet, which repeatedly

intersect the repelling and attracting sheets of the manifold. Then, it jumps to the upper

attracting part of the critical manifold, where the attraction is not as strong as on the

lower sheet. After the trajectory passes the upper fold, it jumps to the lower attraction

sheet of the critical manifold and returns to the region near the singularity. Hence, it

makes a full limit cycle and continues the periodic motion.

4.2.3 Slow-Fast Analysis of Complex Periodic Solutions

We have shown that the reduced (3D) IHC model can have two fast (v and n) and

one slow variables (c) when fc=0.000235 (bursting). However, as fc increases, the

model now has one fast (v) and two slow variables (n and c) when fc= 0.00244 (MMO).

Morever, for the values between 0.000235< fc < 0.00244 the model produces complex

solutions as shown in Figures 4.1(b) and 4.1(c).

In fact the time scales for each of the variables in the IHC model vary along the limit

cycle solutions. So far we have used estimates of constant time scales based on

consideration of certain bounds. In the case of complex solutions however, it appears

that the variation of time scales along periodic orbit trajectories might be significant.

Hence taking time scale bounds and using classic slow-fast analysis is not sufficient

to explain the behaviour of the model. We attempt to illustrate this by plotting the fast

subsystem bifurcation diagram in Figure 4.6(a) considering v and n are fast and c is

slow. Additionaly, we plot the critical manifold in Figure 4.6(d) considering v is the fast,

and n and c are the slow variables.

The fast subsystem diagram in Figures 4.6(a) and 4.6(b) somewhat indicates that the

bursting part of the complex solutions follows the upper equilibria. Since the upper

stable equilibria curve (solid blue) is a stable focus, the amplitude of the oscillations

around this curve become smaller until Hopf biurcation. Then, as a result of the

unstable equilibria (focus) curve after the Hopf bifurcation (dashed red), the amplitude

99



CHAPTER 4. A SLOW-FAST ANALYSIS OF THE REDUCED IHC MODEL

(a) 1-slow/2-fast

(b) 1-slow/2-fast

(c) 2-slow/1-fast

(d) 2-slow/1-fast

FIGURE 4.6. Different views of the fast subsystem in (4.15) (a)-(b) and Critical
manifold in (4.11) (c)-(d) of the model when fc= 0.0006.

of oscillations becomes larger as they move away from the Hopf bifurcation. Crossing

the c-nullcline, the trajectory is attracted to the stable limit cycle manifold (blue surface),

where the large single spikes are observed. However, the fast subsystem cannot

explain the behaviour below the c-nullcline well, where the trajectory does not follow

the stable limit cycle region as seen in Figures 4.6(a) and 4.6(b).

In Figures 4.6(c) and 4.6(d) we superimposed the complex orbit on the critical manifold.

It is shown that the silent phase part of the trajectory is attracted to the lower attracting

sheet of the critical manifold. The trajectory follows this invariant object and leaves

when it crosses the fold curve.
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Therefore, neither the 1-slow/2-fast nor the 2-slow/1-fast analysis can fully explain the

mechanism of complex solutions. So far, we have considered the time scale constants

calculated by the nondimensionalisation of the model. These constants are the lower

bounds of the time scales of the state variables. However, the time scales of these

variables change over time. For example, the time scale function of the variable n was

introduced in the model equation, given by

τn(v)= 0.0022+0.0029e−(vQv)/14.3 (4.17)

In Figure 4.7, we plot the dynamic time scale function of n over the period of the

complex solution shown in Figure 4.1(c) when fc= 0.0006. The time scale range

is 0.006 < τn(v) < 0.126. The lower bound of this range (O(10−2)) agrees with the

estimated value from the time scale constant given by τ̂n := 1
T̂nQt

, which is equal to

0.0051 (O(10−2)). However, the time scale function seen in Figure 4.7 shows rapid

changes that correspond to the large spikes of complex solutions. This indicates that

further research is needed in order to understand the mechanisms of such complex

solutions according to the changes of the dynamic time scales.

0 0.5 1 1.5

Time(s)

0

0.05

0.1

0.15

τ
n
(v

)

FIGURE 4.7. Dynamic time scale function τn(v) along the period of the solution
when fc= 0.0006.

We studied the parameter dependence of the (4D) and (3D) IHC models in Chapters

2 and 3, respectively. We investigated the single, bursting and complex oscillatory

regions according to the changes of parameters gCa, gKCa and pER. The time scale
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constants calculated by nondimensionalisation indicate that the parameter gCa is

inversely proportional to the time scales τ̂v and τ̂c. In the following, we will investigate

the effects of this parameter on the time scales and corresponding model solutions.

4.2.4 Effects of Varying gCa on the Time Scales

In the previous section, we investigated the full system periodic solutions in terms of

slow-fast analysis as we varied the parameter fc. However, in the previous chapters

(particularly in Chapters 2 and 3) we considered the parameters gCa, gKCa and pER that

are directly involved in controlling the intracellular calcium dynamics of the IHC model.

Specifically we showed how the model solutions depend on the physical parameters

of the model, in particular the calcium conductance gCa, for the full IHC model (4D) in

Chapter 2 and the reduced IHC model (3D) in Chapter 3. In this section, we investigate

the role of gCa on the time scale constants and apply the slow-fast analysis to gain

insight into the behaviour of the model solutions as this parameter changes.

The characteristic time scales of the reduced (3D) IHC model were estimated in

Section 4.1.1 as

τ̂v = Cm

Qt gmax
, τ̂n = 1

T̂nQt
, τ̂c = Qc

Qt fcαgCaQv

The calcium conductance gCa affects time scale constants of the intracellular calcium

(τ̂c) and the membrane voltage (τ̂v) in the case when gCa is the maximum of the

conductances i.e. gCa > 2.85. Moreover, gCa is inversely proportional to both τ̂v and τ̂c.

Thus, increasing gCa makes both the fast variable (v) and the slow variable (c) faster

by decreasing their time scale constants.

We plot a one-parameter bifurcation diagram using gCa as the bifucation parameter in

Figure 4.8 when gKCa=2, pER = 0.0015 and fc = 0.004. For small values of the control

parameter, the stable equlibria (blue curve) undergo a a supercritical Hopf bifurcation

(HB1), at which a family of stable limit cycles is born. The inset in Figure 4.8 zooms
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FIGURE 4.8. One parameter bifurcation diagram of the reduced (3D) IHC
model for the parameters gKCa=2, pER = 0.00015 and fc = 0.004. We plot
the time series solutions of some of the representative periodic orbits
when gCa=3 (single spike), gCa=4 (complex: 1+2), gCa=4.1 (bursting: 0+2),
gCa=22 (large periodic orbit) and gCa=24 (MMO) above the bifurcation
diagram. Canard explosion, a sudden growth in the amplitude of the limit
cycles [12], occurs near the second Hopf bifurcation (HB2).

the family of complex periodic orbits (1+2). As gCa increases, the reduced IHC model

exhibits single spike solutions that terminate at a homoclinic bifurcation HC∗.

In Figure 4.9, we plot the fast subsystems and critical manifolds of the model for gCa=4

and gCa=4.1. It appears that we cannot apply the slow-fast analysis in these cases

since the limit cycles of the full model do not follow the manifolds of fast and slow

subsystems.

Table 4.1 shows the typical time scale constants for some representative periodic

orbits, which are gCa=3 for a small single limit cycle, gCa=4 for the complex periodic

103



CHAPTER 4. A SLOW-FAST ANALYSIS OF THE REDUCED IHC MODEL

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 4.9. Different views of the bifurcation diagrams of the fast subsystem
in (4.15) and critical manifolds in (4.11) respectively when gCa=4 (a)-(d)
and gCa=4.1 (e)-(h).
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orbit 1+2, gCa=4.1 for a bursting solution with two small spikes, gCa=22 for a large

single limit cycle and gCa=24 for a MMO (see the full model bifurcation diagram in

Figure 4.8).

If gCa > 2.85= gK, then gCa becomes the maximum conductance in the model. There-

fore, increasing gCa will affect the time scale constants of the variables v and c. The

time scale constants in Table 4.1 clearly show that the time scale constant of c be-

comes smaller and of the same order (O(10−2)) as the variable n when gCa=22 and

gCa=24. Additionally, the time scale constant of the fast variable becomes smaller

(O(10−4)). Therefore, the reduced IHC model has one fast variable (v) and two slow

variables (n and c) with the given set of parameters when gCa=22 and gCa=24 near

the second Hopf bifurcation (HB2) where a sudden growth in the amplitude of the limit

cycles occur, which is called a canard explosion [12].

gCa=3 gCa=4 gCa=4.1 gCa=22 gCa=24
τ̂v 0.0024 [O(10−3)] 0.0018 [O(10−3)] 0.0017 [O(10−3)] 0.0003 [O(10−4)] 0.0003 [O(10−4)]
τ̂n 0.0051 [O(10−2)] 0.0051 [O(10−2)] 0.0051 [O(10−2)] 0.0051 [O(10−2)] 0.0051 [O(10−2)]
τ̂c 0.1137 [O(10−1)] 0.0853 [O(10−1)] 0.0832 [O(10−1)] 0.0155 [O(10−2)] 0.0142 [O(10−2)]

Table 4.1: Time scale constants for gCa=3, gCa=4, gCa=4.1, gCa=22 and gCa=24.

Since the reduced IHC model has one fast (v) and two slow (n and c) variables when

gCa=22 and gCa=24, we investigate the behaviour of the periodic orbit in terms of a

slow-fast analysis (2-slow/1-fast case) similar to the analysis of MMO in the previous

section.

The critical manifold is defined by the set

S := { (v,n, c) ∈R3 | F(v,n, c)= 0 }

where F(v,n, c) :=−ÎCa(v, c)− ÎK(v,n)− ÎKCa(v, c)− Î leak(v), which represents a surface

in the (c,n,v)-coordinate system.

We plot the critical manifold and the slow flow of the desingularised system in Fig-

ure 4.10. The thin cyan coloured curves are the trajectories of the slow flow on the
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(a) Critical manifold

(b) Upper fold (c) Lower fold

FIGURE 4.10. The critical manifold in (4.11) when gCa=22. The thin cyan
curves are the trajectories of the slow flow in (4.14).The green curves are
strong (double arrows) and weak (single arrows) stable manifold of the
node (green circle) on the lower fold curve (F l). The red curves are the
stable (solid) and unstable (dashed) manifolds of the saddle equilibrium
on the repelling sheet (Sr) at the critical manifold. The magenta star is the
folded focus on the lower fold curve (F l).

critical manifold. The green curves are the strong (double arrows) and weak (single

arrow) stable manifolds of the folded node on Fu denoted by a green circle. Addi-

tionally, there is another folded singularity on the lower fold curve, which is denoted

by a magenta star. The eigenvalues of the Jacobian matrix of the desingularised

system evoluated at this folded singularity are σ1,2 =−0.0164± i0.076. Thus, this is a
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(a) Critical manifold

(b) Upper fold (c) Lower fold

FIGURE 4.11. The periodic orbit when gCa=22 is superimposed on the critical
manifold in (4.11). The trajectory follows the repelling part of the critical
manifold as shown in (b), which is called a canard segment.

folded-focus [16].

Also, there is another equilibrium point of the desingularised system. This is a saddle-

node equilibrium shown as a red square on the repelling part, which is also an

equilibrium (saddle) of the full model. We plot the stable (solid red curve) and unstable

(dashed red curve) manifolds of the saddle-node equilibrium of the desingularised

system by reversing the direction of the slow flow on the repelling branch of the critical

manifold.
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In Figure 4.11, we superimposed the periodic orbit when gCa=22 on the critical manifold.

On the lower attracting sheet of the critical manifold, the orbit moves following the slow

flow (denoted by cyan coloured single arrows). As it gets closer to the lower fold (F l),

the attraction becomes weaker and the orbit jumps up to the upper attracting sheet of

the manifold (denoted by double arrows). Once the orbit reaches the upper attracting

sheet, it follows the slow flow. The green curve on the upper sheet is the weak stable

manifold of the node (green circle) on the upper fold (Fu). The orbit continues following

the weak stable manifold after the node until near the saddle equilibrium denoted

by a red square (also a saddle equilibrium of the full model), where this path on the

repelling sheet is also part of the two-dimensional unstable manifold of the saddle of

the full model. Once the orbit gets closer to the saddle equilibrium, it moves to the

lower attracting sheet of the critical manifold and completes the cycle.

As we increase gCa from 22 to 24, we showed that the model still has one fast (v)

and two slow (n and c) variables. The time series of the periodic orbits at gCa=22 and

gCa=24 are shown in Figure 4.8. At gCa=24, the small oscillations occurs at the end of

the active phase of the bursting which was not seen at the periodic orbit when gCa=22.

The structure of the equilibria of the desingularised system when gCa=24 shown in

Figure 4.12 is the same as the desingularised system when gCa=22 (see Figure 4.10).

Both have a folded node on Fu, a folded focus on F l and a saddle equilibria of the

desingularised system on the repelling sheet of the critical manifold. However, although

the equilibrium of the full model when gCa=22 is a saddle, whose eigenvalues are

λ1=99.29, λ2=46.28 and λ3=-12.14, the equilibrium of the full model when gCa=24

is a saddle-focus, whose eigenvalues are λ1,2 = 10.34± i123.62 and λ3=-5.31. These

equilibria are saddle equilibria of the desingularised systems when gCa=22 and gCa=24,

which are shown as red squares in Figures 4.10 and 4.12.

If we superimpose the periodic orbit when gCa=24 on the critial manifold in Figure 4.13,

we note that the orbit behaves similarly as the orbit when gCa=24 shown in Figure 4.11.
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(a) Critical manifold

(b) Upper fold (c) Lower fold

FIGURE 4.12. The critical manifold in (4.11) when gCa=24. The thin cyan
curves are the trajectories of the slow flow in (4.14). The green curves are
strong (double arrows) and weak (single arrows) stable manifold of the
node (green circle) on the lower fold curve (F l). The red curves are the
stable (solid) and unstable (dashed) manifolds of the saddle equilibrium
on the repelling sheet (Sr) at the critical manifold. The magenta star is the
folded focus on the lower fold curve (F l).

The orbit moves according to the slow flow on the lower attracting sheet of the critical

manifold. As it gets closer to the lower fold (F l), the attraction becomes weaker and the

trajectory jumps up to the upper attracting sheet. Once it reaches the upper attracting

sheet, it follows the weak stable manifold (green curve) of the node on Fu.

In Figure 4.13, the small oscillations or the periodic orbit when gCa=24 are seen near
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(a) Critical manifold

(b) Upper fold (c) Lower fold

FIGURE 4.13. The periodic orbit when gCa=24 is superimposed on the critical
manifold in (4.11). In (b) the trajectory follows the repelling part of the
critical manifold i.e a canard segment.

the saddle on the repelling sheet of the manifold (Sr). Since this is a saddle-focus equi-

librium of the full model, the small oscillations spiral away from the equilibrium along

its two dimensional unstable manifold [16]. As the oscillations grow and repeatedly

intersect the repelling sheet, the trajectory of the orbit moves the lower attracting sheet

of the critical manifold and completes the cycle.
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4.3 Conclusion

In this chapter, we have investigated the dynamics underlying the oscillations of the

reduced (3D) IHC model applying a slow-fast analysis. In Chapter 3, we showed the

characteristic time scale constants of the dynamic variables of the model that enables

us to estimate the speed of the state variables according to the changes of the model

parameters.

Although we have not studied the effect of varying the parameter fc (the fraction of

free to total cytosolic calcium) on the original and reduced IHC model solutions in

Chapters 2 and 3, the characteristic time scales of the model reveal that the parameter

fc appears only in the time scale constant of the variable c. Therefore, we varied

parameter fc and showed that the reduced IHC model exhibits bursting solutions,

complex solutions with one and two large spikes, normal spiking and MMOs. Hence we

investigated the underlying mechanisms of these solutions according to the differences

between time scales.

First, we showed that the model has two fast (v and n) and one slow (c) variables when

fc is small ( fc=0.000235) where the model exhibits bursting oscillations. We applied

the classical 1-slow/2-fast analysis [78] to interpret the periodic orbit of the reduced

model by its fast-subsystem structure. On the other hand, as fc increases one order of

magnitude ( fc=0.00244), the slowest variable becomes faster and the model has one

fast (v) and two slow (n and c) variables. We showed how the periodic orbit (mixed

mode oscillations (MMOs)) when fc=0.00244 interacts with the critical manifold and

slow flow using the 2-slow/1-fast analysis [16].

The model exhibits complex solutions for intermediate values of fc (for instance,

solution 1+11 when fc=0.0004 and 2+5 when fc=0.0006). However, neither the 1-

slow/2-fast nor the 2-slow/1-fast analyses could explain sufficiently well the dynamic

mechanisms underlying these complex solutions. Instead of the typical time scale

constant of n, we plotted a time series solution of the time scale n along the complex
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periodic orbit. It revealed that the amplitude of time scale function rapidly changes

during the large (normal) spiking of complex solutions. However, the characteristic time

scale constants calculated by the nondimensionalisation are lower bounds of these

dynamics time scales functions. These rapid changes could be explained considering

the model evolving on three-time scales. Different parts of complex solutions could be

governed by different subsystems and evolved under the fast, slow and super-slow

flows [69, 101]. Therefore, a further research is needed in order to understand fully

the mechanisms of such complex solutions according to the changes of the dynamic

time scales. We can summarise the results in Table 4.2.

Parameter Type of
pattern τ̂c Type of analysis

fc=0.000235 Bursting 2.4184
Studied by 1-slow/2-fast

analysis. Its fast subsystem
diagram is shown in Figure 4.2.

fc=0.0006
Complex

(2+5)
solution

0.9474

1-slow/2-fast and 2-slow/1-fast
analyses can partially explain

the mechanism. Its fast and slow
subsystem diagrams are shown

in Figure 4.6.

fc=0.00244 MMO 0.2330

Studied by 2-slow/1-fast analysis.
Its S-shaped critial manifold and
the trajectories of the slow flow

are shown in Figure 4.5.

Table 4.2: Summary of the slow-fast analysis of the three representative model
solutions shown in Figure 4.1. The time scale constants for the variables v and c are
τ̂v = 0.0004 and τ̂n = 0.0051, respectively.

In Chapters 2 and 3, we investigated the effect of varying the parameter gCa on the

model solutions and showed that for larger values of gCa, the plateau oscillations of

bursting solutions become harder to visualise. Also, the time scale constants indicate

that the parameter gCa is inversely proportional to both time scales of the variables

v and c when gCa > 2.85. Therefore, we investigated the model solutions considering

gCa as the maximum conductance in the model. Since large values of gCa correspond
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to a faster speed of both v and c, the variables c evolves on a similar time scale as

n (O(10−2)) that is much slower than the variable v (O(10−4)). Hence, the periodic

orbits observed at high values of gCa can also be studied by a 2-slow/1-fast analysis.

However, when gCa is small, the time scales of v, n and c are of an order O(10−3),

O(10−2) and O(10−1), respectively. Similarly to the periodic solutions for intermediate

values of fc, the periodic orbits when gCa is small could also be studied by considering

three-time scales.

We also studied MMOs observed at larger gCa whose small oscillations occur at the

end of the active phase of bursting. We showed that although the dynamic structures

of the desingularised systems are the same for different values of gCa (large periodic

orbit when gCa=22 and MMOs when gCa=24), the full model equilibrium could help us

to explain the behaviour of the periodic orbits near the equilibrium. The main difference

between the periodic solutions at gCa=22 and gCa=24 is the equilibrium points of their

full model. The equilibrium when gCa=22 is a saddle. Thus, the trajectory of the orbit

on the repelling sheet of the critical manifold directly moves to the lower attracting

sheet near the saddle-focus. However, the trajectory of the MMO on the repelling sheet

spirals away from a saddle-focus equilibrium and moves to the lower attracting sheet

in the case of gCa=24.

We calculated such MMOs at larger values of gCa by direct numerical integration [22],

which are close to the torus bifurcation originating from the Hopf bifurcation. However,

at larger values of gCa we could not continue such MMOs as gCa varies to reveal

the organisation of such branches according to the number of their small oscillations

so that we could investigate the subsequent period-doubling and torus bifurcations

resulting in chaotic MMOs [26].
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CONCLUSION

In this chapter, we summarise the main results we have obtained, discuss the chal-

lenges we have faced performing this research and suggest future investigations.

5.1 Summary and Discussions

The aim of this thesis is to gain deeper knowledge of the electrical activity and Ca2+

signalling during the development of inner hair cells (IHCs) from a mathematical point

of view. We applied nonlinear dynamical systems theory to explain the oscillatory

behaviour of these cells.

There are three parameters in the IHC model that control calcium regulation, namely

gKCa (the maximum Ca2+-activated K+ channel conductance), pER (the rate of Ca2+-

induced calcium release (CICR)) and gCa (the maximum calcium channel conduc-

tance). The upstroke of the action potential in immature IHCs is generated by a calcium

influx through calcium channels on the cell membrane and results in a rise in intracel-

lular calcium [38, 63, 75]. The IHC model supports periodic and chaotic solutions of

complex (mixed) type, that are composed of single (normal) spikes and pseudo-plateau
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burstings, similar to the experimental data [31, 90].

Although previous studies [31, 90] investigated the effects of the parameters gKCa and

pER, the effects of varying the parameter gCa on model solutions had not yet been

addressed. Therefore, we performed a further numerical bifurcation analysis in order to

gain an insight into the effect of changing the maximum calcium channel conductance

and to present a more complete characterisation of the relative contributions of these

three parameters in Chapter 2.

In Chapter 2, we demonstrate that the number of large (normal) spikes of complex

periodic orbits decreases and, eventually, complex solutions become pseudo-plateau

bursting solutions as gCa increases. For larger values of gCa, the plateau oscillations

of bursting solutions become harder to visualise and the amplitude and duration of the

intracellular Ca2+ increases significantly.

We also confirmed that the periodic orbits, whose total number of oscillations is fixed,

lie on the same isolated solution branches (or isolas [90]) that are disconnected from

the other branches originated from Hopf bifurcations, which gives an indication that

those periodic orbits belong to a continuous family of periodic solutions sharing the

same total number of spikes. We computed a broad range of periodic attractors,

which are normal spiking, pseudo-plateau bursting with several plateau oscillations

and complex solutions with one and two large (normal) spikes, and continued the

bifurcations that result in a change of the stability of the periodic solutions, which are

period-doubling (PD) and saddle-node bifurcation of periodic solutions (SNp), into two

parameters. Thus, we characterised the behaviour of stable periodic orbits according

to changes of the three parameters using several two-parameter bifurcation diagrams.

These two-parameter sections of the three-parameter space enabled us to estimate

the changes in the asymptotic behaviour of the IHC model.

Our numerical bifurcation analysis in Chapter 2 reveals the parameter regions for

different types of solutions in the IHC model according to the variations of these three
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parameters. If we increase the parameter gCa in the model, the parameter pER must

be increased while the parameter gKCa decreases accordingly in order to get similar

behaviour such as normal spiking pattern, pseudo-plateau burstings and complex

solutions with one or two large spikes. For instance, Table 5.1 shows the parameter

ranges of gKCa and pER for two different values of gCa i.e. gCa=2.4 and gCa=6, where

the IHC model exhibits complex solutions with one large (normal) spike and several

plateau oscillations. Similar estimations can be done for the parameters gKCa and pER

using these two-parameter bifurcation diagrams.

gKCa pER

gCa=2.4 [1.5, 40] [0, 0.0005]
gCa=6 [0.6, 0.7] [0.0028, 0.0030]

Table 5.1: The ranges of the parameters gKCa and pER for different values of gCa
having complex solutions with one large spike and several small spikes.

In Chapter 3, we propose a reduction of the four-dimensional IHC model. Identifying the

slowest variable, which is the inactivation variable associated with the voltage-gated K+

channels (h), we were able to reduce the dimension of the IHC model by considering

h as a fixed quantity resulting in a reduced (three-dimensional) IHC model.

In order to verify that we do not lose the essential dynamic features of the original IHC

model by fixing the slowest variable h, we presented a characterisation of the relative

contributions of the three parameters on the reduced IHC model solutions, which is

a similar analysis to that in Chapter 2 for the original IHC model. The two-parameter

bifurcation diagrams of the reduced IHC model confirm the qualitative agreement

between the reduced and the original models. Therefore, we conclude that we could

investigate the simpler (3D) model without losing the dynamic properties of the original

(4D) model. Additionally, we no longer have to use projections of the original model in

the visualisations of the reduced model solutions [104]. This allows us to capture the

true representation of the trajectories in three dimensions and how various periodic

orbits are organised without projections.
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Moreover, the nondimensionalisation of the IHC model provides the typical time scale

constants of the dynamic variables that enable us to classify the state variables as fast

and slow according to the changes of the model parameters. Hence, having identified

differences between the time scales of the reduced (3D) IHC model, we are able to

apply slow-fast analysis in order to better understand the mechanisms underlying the

dynamics of the model solutions in Chapter 4.

The typical time scale constants reveal the contribution of the model parameters on the

speed of the state variables. It was shown that the parameter fc (the fraction of free

to total cytosolic calcium) appears only in the time scale of the variable c. Therefore,

varying fc directly affects the speed of c. We demonstrate that the reduced IHC model

exhibits bursting solutions, complex solutions with one and two large spikes, normal

spiking and MMOs as the parameter fc increases, which makes the slow variable

faster. Thus, it was shown that the model produces a broad range of periodic orbits

varying a single parameter fc. Next, we consider the speed of the variables for such

periodic orbits in order to apply slow-fast analysis.

The typical time scale constants also indicate that the reduced IHC model can be

characterised by two fast (v and n) and one slow (c) or one fast (v) and two slow (n

and c) variables depending on the choice of parameters. In particular, we show that

the mechanism underlying the bursting solutions can be understood by considering the

fast subsystem dynamics i.e. the 1-slow/2-fast analysis when fc is small. If we make

the slow variable c faster by increasing the parameter fc, the model exhibits MMOs,

which can be studied by the 2-slow/1-fast analysis.

Also, the typical time scale constants reveal that the parameter gCa is inversely propor-

tional to the time scales of both c and v when it dominates the other conductances in

the model. When gCa is large, the slow variable (c) evolves at the same time scales

as n (O(10−2)) and the fast variable v evolves at a much faster time scale (O(10−4)).

Therefore, the model has one fast (v) and two slow (n and c) variables. Hence, the pe-
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riodic orbits observed at high values of gCa, where the plateau oscillations of bursting

solutions become harder to visualise, can also be studied by a 2-slow/1-fast analysis.

We also studied a MMO observed at larger gCa, which is close to a torus bifurcation

on the branch of small amplitude limit cycles originating from the Hopf bifurcation. The

small oscillations of such MMOs occur at the end of the active phase of bursting. In

the review article [16], MMOs are studied with a three-dimensional model of chemical

reactors introduced by Koper [48, 51], where they observed two small oscillation

epochs near the maximum and minimum of large spikes in a narrow parameter region.

In this thesis we investigated that MMOs, where the small oscillations are found at

the end of the active phase of bursting. We show that such solutions are organised

by a folded node of the desingularised system and a saddle-focus equilibrium of the

full model. We also show that although the dynamic structures of the desingularised

system are the same for different values of gCa, the type of the full model equilibrium

(i.e. focus or saddle-focus) can help to explain the overall behaviour of the periodic

orbits. In particular, the small oscillations of such MMOs when gCa is large can be

interpreted by considering the saddle-focus equilibrium of the full model.

However, there are still limitations in our understanding this type of MMOs. For instance,

we solved numerically the model equation to find such MMOs that are not found on

solution branches originating from the Hopf bifurcations. Therefore, we do not know

how the solution branches of these MMOs are organised according to the number of

their small spikes although direct numerical integration shows the number of small

oscillations increases as the parameter gCa gets closer the torus bifurcation in the full

IHC model for large values of gCa.

5.2 Future Direction for Investigation

In Chapters 2 and 3, we verified the periodic solutions of the original (4D) and reduced

(3D) IHC models whose total number of oscillations is equal (for instance 2+5 solutions

118



5.2. FUTURE DIRECTION FOR INVESTIGATION

and 1+6 solutions shown in Figure 2.3) lie on the same isolated solution branch,

which indicate they belong to the same family of periodic solutions. The isolas are

interrupted on their unstable parts by homoclinic bifurcations at some parameter sets.

We continued the PD and SNp bifurcations in two-parameters to indicate the stable

regions of such periodic attractors. However, we have not continued the homoclinic

bifurcations in the two-parameters. Thus, we do not know if these bifurcations explain

the relation between the branches originating from Hopf bifurcations and isolas as well

as the origin of the pseudo-plateau and complex solutions. Since these solutions with

same number of spikes are connected in the parameter space sharing the same isola,

the isola center [15] of the family of isolas could explain the origin of such periodic

orbits.

Additionally, we showed several two-parameter sections of the three-dimensional

parameter space to give an indication about the organisation of the periodic solutions

with different number of large and small spikes of the original (4D) and reduced (3D)

IHC models at the (gCa, gKCa , pER)-space. Although these maps indicate the parameter

regions for various periodic orbits of the models according to the variations of these

three parameters, we did not compute a complete view of solutions in 3D-space to

display how these solutions connect and disconnect [4] when they have different

numbers of large and small spikes. This, on the other hand, will make the visulalisation

of the regions of solutions harder due to the complicated organisational structure of the

solutions as indicated by slices of three-parameter space. However, since the periodic

solutions are born as a result of Hopf bifurcations and isolas are found between two

Hopfs in the models, such a complete view could give an insight into how the periodic

orbits having various numbers of total spikes appear and disappear in the parameter

space.

Also, we identified the parameter regions (white regions in the two-parameter bifur-

cation diagrams) where the original (4D) and the reduced (3D) IHC models exhibit

irregular (chaotic) mixed firing patterns (see Figures 2.10 and 3.9) that were also seen
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in the experiments (see Figure 1.5). Although we discussed possible dynamic mecha-

nisms underlying the aperiodic trajectories found in the model, a deeper investigation

of the routes to chaos, such as period-doubling cascades, quasi-periodic motions or

other mechanisms in the IHC model, is left for future studies.

We showed the Poincaré sections of these irregular trajectories of model solutions in

order to give an indication about chaotic behaviour in the model. However, chaos is

associated with exponential growth of infinitesimal perturbations, which is characterized

by the spectrum of Lyapunov exponents [20, 28]. Therefore, calculating Lyapunov

exponents gives more information about the nature of such trajectories i.e. Kaplan-

Yorke dimension, dissipation rate etc. [42, 57, 107] and could help gaining an insight

into the mixed firing pattern observed in the experiments since experimental time

series can be used to compute the embedding dimension and delay time in phase

space reconstruction [1, 59, 60] to calculate their maximal Lyapunov exponent [106].

In Figure 5.1 (a), we show a chaotic time series of the reduced (3D) IHC model

when gCa=2.6, , gKCa=0.65 and pER=0.001 with the given parameters in Chapter 1.

The positive exponent λ1 indicates the chaotic motion. Additionally, the experiments

also show irregular mixed firing patterns. Such time series is embedded into a delay

reconstructed phase space to calculate their maximal Lyapunov exponent shown in

Figure 5.1 (b).

The chaotic regions appear in two-parameter bifurcation diagrams of both the original

and reduced IHC model discussed in Chapters 2 and 3, respectively. Investigating

various regions of chaotic solutions could help us to understand if there are any

similarities and differences between those regions and the experimental data sets.

In Chapter 4, we tried to understand the dynamics of the complex periodic orbits

of the IHC model using 1-slow/2-fast or 2-slow/1-fast analysis. However, neither the

1-slow/2-fast nor the 2-slow/1-fast analysis can fully explain the mechanism of complex

solutions. The time scale constants calculated by the nondimensionalisation of the
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FIGURE 5.1. (a) Chaotic time series of the reduced IHC model when gCa=2.6,
gKCa=0.65, pER=0.001 and its dynamic Lyapunov spectrum. (b) Exper-
imental data obtained from immature IHCs and its maximal Lyapunov
exponent.

model are the lower bounds of the time scales of the state variables. However, the

time scales of these variables change over time. We plotted a time series solution

of the time scale of n (τn(v)) for a complex solution in Figure 4.7. The time scale

function shows rapid changes that correspond to the large (normal) spiking of complex

solutions.

As seen in [101], trajectories of a three-time scale model could be explained locally

by the interactions of two-time scales groups of the full three-time scale system.

Additionally, the classical slow-fast analysis developed for two-time scale systems

can be extended to three-time scale systems. In [69], a three-time scale model were
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studied by reduced and layer problems as well as one fast-slow and a slow-superslow.

They showed how the orbits of the full system are governed by the subsystems and

evolved under the fast, slow and superslow flows. Since the time scales of complex

solutions of the IHC model show rapid changes, this could be studied as a three-time

scale phenomena. Therefore, further research is required in order to understand the

mechanisms of the complex solutions in the IHC model according to the changes of

the dynamic time scales.
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CALCULATING AN AVERAGE VALUE FOR THE SLOWEST

VARIABLE h

In Chapter 3, we discuss the simplification of the original (4D) IHC model. We show that

the slowest variable in the IHC model is the inactivation variable h for the voltage-gated

K+ channel. In order to determine the range of the variable h over a large span of the

parameter space for which the IHC model exhibits various types of periodic solutions,

we consider three parameter sets for performing a bifurcation analysis. Then, we

calculate an average value of h using the one-parameter bifurcation diagrams shown

in Figures A.1, A.2 and A.3.

The dynamic value of the inactivation variable h varies between 0 and 1 since it

represents the probability of the gate being open, which depends on the membrane

potential Vm, and changes along periodic orbits. We plotted dynamic values of the

variable h on the y axis at these bifurcation diagrams where periodic orbits of the

IHC model are in the form of single spikes, pseudo-plateau bursting and mixed type

(complex) solutions with different numbers of spikes. The average value is calculated

considering the midrange values between the maximums and minimums (i.e. (hMax+
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FIGURE A.1. One-parameter bifurcation diagrams. The parameters for the pa-
rameter set 1 are gCa=1.8, gKCa=4 and pER=0.00006. Blue solid and green
dashed curves represent stable and unstable periodic orbit branches, res-
pectively. Solid aqua and dashed red curves represent stable and unstable
equilibrium branches, respectively.
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FIGURE A.2. One-parameter bifurcation diagrams. The parameters for the pa-
rameter set 2 are gCa=2.4, gKCa=2 and pER=0.0004. Blue solid and green
dashed curves represent stable and unstable periodic orbit branches,
respectively. Solid aqua and dashed red curves represent stable and
unstable equilibrium branches, respectively.
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(a) gKCa=1 and pER=0.002
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(b) gCa=6 and pER=0.002
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FIGURE A.3. One-parameter bifurcation diagrams. The parameters for the
parameter set 3 are gCa=6, gKCa=1 and pER=0.002. Blue solid and green
dashed curves represent stable and unstable periodic orbit branches,
respectively. Solid aqua and dashed red curves represent stable and
unstable equilibrium branches, respectively.

hMin)/2) of various periodic orbits. Then, we consider the midrange value of all the

averages we computed.

The average values for the variable h considering the bifurcation diagrams for the

paramater set 1 (gCa=1.8, gKCa=4 and pER=0.00006) in Figure A.1, set 2 (gCa=2.4,

gKCa=2 and pER=0.0004) in Figure A.2 and set 3 (gCa=6, gKCa=1 and pER=0.002)

in Figure A.3 are calculated as 0.5628, 0.5796 and 0.5774, respectively. Thus, we

calculate the average value of these as h=0.5732. This constant value will be used in

the reduced IHC model in Chapters 3 and 4.
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AUTO CONTINUATION

In this chapter, we will give a brief overview of the mathematical formulation of AUTO

continuation [18] that we heavily use throughout this thesis.

We will consider the dynamical system in the form of

u′(t)= F(u(t),λ) (B.1)

where u ∈Rn, F :Rn →Rn and λ ∈R.

We would like to compute the solution branches of (B.1), which are the solutions of

F(u(t),λ)= 0. A solution (u0,λ0) of F(u(t),λ)= 0 is called regular if Rank[Fu(u0,λ0)]= n

i.e. the Jacobian Fu(u0,λ0) is nonsingular. According to the Implicit Function Theorem

(IFT), near the regular solution (u0,λ0) there exists a unique solution branch (u(s),λ(s))

with (u(0),λ(0))= (u0,λ0).

B.1 Parameter Continuation

Suppose we have a solution u0 of F(u,λ) = 0 at λ0 and its derivative with respect to

the parameter λ i.e. u̇0 = du
dλ . In order to find the solution u1 at λ1 = λ0 +∆λ, we use
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Newton’s method to solve F(u1,λ1)= 0 for u1,

Fu(u(v)
1 ,λ1)∆u(v)

1 =−F(u(v)
1 ,λ1)

u(v+1)
1 = u(v)

1 +∆u(v)
1 , v = 0,1,2, ...

(B.2)

with the initial approximation u(0)
1 = u0+∆λu̇0. The graphical illustration of the parameter

continuation is represented in Figure ??.

The Newton’s theory guarantees that this iteration will converge if Fu(u1,λ1) is nonsin-

gular and ∆λ is sufficiently small [9]. Therefore, the new derivative vector u̇1 can be

computed by differentiating F(u(λ),λ)= 0 with respect to λ at λ=λ1 i.e. by solving

Fu(u1,λ1)u̇1 =−Fλ(u1,λ1). (B.3)

The same procedure is repeated to find u2,u3 and so on.

B.2 Pseudo-Arclength Continuation

If there is a fold on the solution branch, then the derivative Fu is singular. Therefore,

the continuation method fails and we can no longer apply the parameter continuation.

However, AUTO [18] uses a method, called Keller’s pseudo-arclength continuation [44],

which allows us to compute the continuation of solutions passes a fold. The graphical

illustration of the pseudo-arclength continuation is represented in Figure ??.

Unlike the parameter continuation, the bifurcation curve is parameterised by its arc

length, s, in pseudo-arclength continuation. Suppose a regular solution (u0,λ0) and its

derivative vector (u̇0, λ̇0) are known. Pseudo-arclength continuation consists of solving

the following equations for u1 and λ1:

Fu(u1,λ1)= 0

(u1 −u0)∗u̇0 + (λ1 −λ0)λ̇0 −∆s = 0
(B.4)
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This image has been removed by the author of this thesis for copyright reasons.

This image has been removed by the author of this thesis for copyright reasons.

FIGURE B.1. Graphical interpretations of (a) parameter and (b) pseudo-
arclength continuations. Images from [70].

Newton’s method for solving those equations becomes

(F1
u)(v) (F1

λ
)(v)

u̇0 λ̇0

∆u(v)
1

∆λ(v)
1

=−
 Fu(u(v)

1 ,λ(v)
1 )

−(u(v)
1 −u0)∗u̇0 + (λ(v)

1 −λ0)λ̇0 −∆s

 (B.5)

where F1
u and F1

λ
denote the derivative of F with respect to u and λ evaluated at
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(u1,λ1). After convergence, the new derivative vector can be obtained by solving

F1
u F1

λ

u̇0 λ̇0

u̇1

λ̇1

=
0

1

 . (B.6)

B.3 Continuation of Periodic Solutions

In this section, we will discuss computing periodic solutions of a dynamical system

given in (B.1) and to follow such periodic solutions as the parameter λ varies.

AUTO uses a boundary value approach [70] to compute periodic solutions of a dy-

namical system. Since the period T of a periodic solution varies as the parameter

λ changes, we fix the interval of periodicity by the transformation t → t/T. Then, the

equation (B.1) becomes

u′(t)= TF(u(t),λ). (B.7)

where T is one of the unknowns. Now, we investigate solutions of period 1 i.e. u(0)=
u(1). However, since u and T are not uniquely specified, a phase condition is needed.

AUTO uses integral phase condition [18], which is a numerically more suitable phase

condition [70] given by

∫ 1

0
uk(t)∗u′

k−1(t)dt = 0. (B.8)

By Keller’s method, the pseudo-arclength continuation for periodic solutions takes the

form

∫ 1

0
(uk(t)−uk−1(t))∗uk−1(t)dt+ (λk −λk−1)λ̇k−1 =∆s (B.9)
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B.3. CONTINUATION OF PERIODIC SOLUTIONS

To sum up, if uk−1, Tk−1 and λk−1 are given, AUTO solves the system

u′
k(t)= TF(uk(t),λk)

uk(0)= uk(1)∫ 1

0
uk(t)∗u′

k−1(t)dt = 0∫ 1

0
(uk(t)−uk−1(t))∗uk−1(t)dt+ (λk −λk−1)λ̇k−1 =∆s

(B.10)

where u,F ∈Rn and λ,T ∈R.
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