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Abstract 

 

The potential of Near Infrared (NIR) spectroscopy for application in automated sorting was 

investigated on a sample of iron oxide copper-gold ore. The ore contains a substantial amount of 

carbonate material which results in excessive acid consumption in the leaching circuit during copper 

extraction, thereby increasing the processing cost. To separate this unwanted gangue material 

(carbonate) from the valuable metal (copper), a strategy for classification of ore according to copper 

and carbonate content was developed. The chemical and mineralogical composition of the ore was 

determined using XRF, respectively XRD. This data was correlated with NIR spectra measured on the 

surface of ore particles. NIR spectra showed distinct characteristic absorption features for carbonate 

rich particles that distinguish these from copper bearing particles, which are fairly featureless at 

longer NIR wavelengths (range 2000nm -2405nm). Combined interpretation of spectral features and 

chemical and mineralogical data indicates that NIR-based sorting has potential forthis type of ore. 

1.0 Introduction 

The mining industry is based on exploitation of non-renewable resources. There has been a significant 

decrease on the average grade in ore bodies over the years, creating more waste. This in turn has led 

to increased processing costs and decrease in productivity across the mining value chain(Carrasco et 

al., 2015).To make low feed grade ores economically viable and increase unit metal productivity, 

early elimination of course waste material before downstream concentration processes has been 

identified as an important operational advancement (Carrasco et al., 2014; Bowman and Bearman, 

2014; Logan and Krishnan, 2012, Bearman, 2012).To achieve this, a new technique of sensor-based 

sorting is being investigated for pre-concentration of ore offering reduced processing costs, cut-off 

grade and environment impact for the mines (Salter and Wyatt, 1991).  

The Near InfraRed (NIR) sensor offers rapid, inexpensive, non-destructive, non-invasive 

measurement of ore surfaces, with minimum sample preparation demands (Hunt, 1977).Interaction of 

near infrared electromagnetic waves with its constituents is considered to be robust for surface 

analysis (Hunt, 1977).It can help determine the mineralogy and provide information on the minor 

element chemistry of hard-to-discriminate carbonate minerals. As such, NIR provides a useful 

complement to existing mineralogical and petrographic methods for studying carbonates (Gaffey, 

1986). In one step, NIR provides information which previously required combined application of two 

or more techniques. With a view to improving the sustainability of mineral processing operations 

through reduced energy and processing costs, this research seeks to develop a strategy to discriminate 

carbonate material (unwanted gangue) from the copper (product) through NIR spectral interpretation. 

                                                           
 

 



2 
 

2.0 Material and methods 

The ore material used in this experiment was from Northern Chile, America. With the carbonaceous 

material being the most problematic in the leaching circuit, copper was separated from carbonate. 

Proportions of the sample were made into ‘high copper, low carbonate’ and ‘high carbonate, low 

copper’ using the cluster algorithm. 

2.1 NIR Spectroscopy 

In light of the diverse nature of minerals, surface heterogeneity and complexity of the samples being 

investigated, ten transects were taken for each of the samples covering the entire surface on both 

sides. The belt was divided into an equal line labels spacing 10mm as shown in figure 3-1 below. 

Successive scans were made as the belt was being moved by hand to a predetermined marker point 

across the particle. A selected set of pure specimens taken from the Camborne School of mines 

learning lab for possible minerals present in the ore being tested were also scanned as spectra library 

and this was used as a guiding tool to examine spectral pattern, characteristic adsorption features and 

corresponding wavelengths for the samples. The spectral reflectance in near infrared sensors was 

measured when the material was illuminated by light and characteristic absorption features are then 

observed at specific wavelength for different minerals. Samples were analysed for presence of 

spectral features with appropriately characterised mineral samples. 

 

 

Figure 1: Schematic Representation of Sample and Pixel line location 

2.1.1 Software and Pre- processing 

The NIR data was collected using View2 software (Viewing programme 2). The data was produced in 

a Microsoft excel file, converted and formatted to comma separated value (csv). The raw images 

acquired by the camera needed to be pre-processed to correct the measurement deficiencies of the 

acquisition system and to reduce the amount of data for an efficient real-time classification. The 

process involved applying a correction factor to each wavelength in each pixel. There were two 

corrections: The first was a dark current correction (Dark Reading) and second was a detector 

calibration (White Reading) which was performed by measuring a white diffuse reflectance standard 

image. The resulting reflectance images could then have a resolution of 40 X 371 pixels 

corresponding to one spectrum (giving 371 vectors with 40 elements or less depending on the particle 

dimensions). The Visual Basic Application in excel was used to write and apply the algorithm. 

2.1.2 Smoothing Techniques 

The most important problem of using spectral data is signal noise levels. The physical disturbances 

such as the fluctuation of light illumination and atmospheric changes may also make the situation 

worse as the disturbances decrease the precision of spectral signals recorded by the sensor. In the field 
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of digital signal processing, the definition of a spectrum so(λ) observed by a spectrometer is given by 

the sum of the true signal of the spectrum st(λ) and the noise n(λ) where λ indicates wavelength. 

so(λ) = st(λ) + n(λ) 

Thus, the definition of spectral smoothing is the estimation of st(λ) from the observed spectrum so(λ). 

An estimate ŝt(λ) can be calculated by the convolution of the observed spectrum so(λ) with a 

weighting function (i.e. smoothing filter) g(λ) chosen by the practitioner (Vaiphasa, 2006). The 

operator * denotes convolution integral, 

st(λ) = so(λ) * g(λ) 

Spectral smoothing technique was used in this study remove the noise from the collected data. One of 

the samples was tested for noise levels at different windows. The figure below shows that unsmoothed 

pixels could have noise disturbances that may be mistaken for features and over smoothing could also 

completely smooth out the spectral features (e.g. 73window) which could lead to changes in the 

properties of the original data. In order to preserve the original properties of the spectral, smoothing 

filter window should then be careful considered. The moving average was used as a smoothing filter 

with a 7 filter window was used for this study 

 

Figure 2: Spectral smoothing technique 

2.2 Chemical and mineralogical analysis 

The samples were prepared by standardised sample preparation techniques, fragmented using the 

laboratory jaw crusher and the disk grinder and then representative samples were taken from each of 

the resulting homogenised powders for analytical preparation. The boric jackets were prepared for 

XRF in order to analyse samples for chemical data and mineralogy of all samples was verified by 

XRD.  

Egn.2 

 

Egn.1 
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2.3 Material Classification 

2.3.1 K-means Cluster Algorithm 

The k-means cluster algorithm was used in this paper to computes the squared distances between the 

input data points and centroids, and then the input was assigned to the nearest centroid. The algorithm 

partitioned the input dataset into k clusters. Each cluster was represented by an adaptively-changing 

centroid, starting from some initial values named Seed-Points (Zalik, 2008). An algorithm for 

clustering N input data points into k disjoint subsets each containing in data points, 0 <ni<N, 

minimizes the following Mean-Square-Error (MSE) cost-function: 

 
Where xt is a vector representing the t-th data point in the cluster Ci and ci is the geometric centroid of 

the cluster Ci. This algorithm aims at minimizing an objective function, in this case a squared error- 

function, where ‖xt-ci‖2 is a chosen distance measurement between data point xt and the cluster centre 

ci. The k-means algorithm assigns an input data point xt into the ith cluster if the cluster membership 

function I(xt, i) is 1. 

 
Here c1, c2, cj…, ck are called cluster centres which are learned by the following steps illustrated by 

Zalik (2008): The four main steps included; 

1. Initializing k cluster centres c1, c2..., ck using initial values called seed-points, through 

random sampling.  

2. Calculating cluster membership function I(xt, i) by Equation (14) and decide the 

membership of each input data point in one of the k clusters whose cluster centre is closest 

to that point.  

3. For all k cluster centres, ci was set to be the centre of mass of all points in cluster Ci.  

4. For each input data point xt and all k clusters, steps 2 and 3 were repeated until all centres 

converge. 

The first k-means cluster approach was a random selection of numbers which involved four modules 

and these includes;  

 Data compilation- This compiled all the data samples into one sheet for training and number 

of pixels was identified for each particle. The k cluster centres were initialized by using 

random sampling. The centre of mass of all points in cluster was set for all k cluster centres. 

 K-means Algorithms- computed the squared distances between the inputs data points and 

centroids, and assigned inputs to the nearest centroid and then the cluster membership 

function was calculated. To avoid initialising problem, the distance score was used as the 

measure of all data point to their cluster centroids.  

 Tested compiled data- This was used to normalised the data 

 Tested K-means- This was used to assign the numbers of pixels to the clusters. 

The second k-means algorithm method was tried and this involved identifying the number of pixel 

that related to a particular particle. Cluster centres were initialised using a random number generator 

and members assigned to each cluster. The algorithm clustered each pixel individually. If there were 

no members in a cluster, the centre vector was set to null vector and if there were members in the 

cluster, then the centre is calculated. The current membership matrix was compared with the previous 

membership and if they converge the results were printed on the worksheet, otherwise another 

iteration was performed until convergence 

Egn.2- 13 

 

Egn.2- 14 
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2.3.2 Cluster Validity 

Cluster validity as a measure of the quality of clustering, the David Bouldin (DB) Index was used. 

The clustering algorithm was run multiple times while varying the number of clusters in each run 

from minimum to maximum value. For each clustering obtained under this procedure the considered 

validation index was computed. Small values of DB correspond to clusters that are compact, and 

whose centres are far away from each other and the number of clusters that minimizes DB was taken 

as the optimal number of clusters, hence final results. Cluster validity was only applied to cluster 

algorithm1. The equation is given as below; 

 
Where, M is the number of clusters, d(ci, cj) is the distance of cluster centres ci and cj and σi is 

the average distance of all patterns in cluster i to their cluster centre ci..  

3.0 Results 

3.1 Chemical Analysis on Selected Sample 

The selection of the sample was done and classified according the cluster algorithms. Table 1 shows 

the XRF results based on the cluster classification. Hematite has been included due to its massive 

presence in this ore mainly on copper particles 

Table 1: Mass fraction and (%) grade for selected samples 

Sample Wt Cu CaO Fe2O3 

name (g)  (%)  (%)  (%) 

PG01 766.40 0.38 0.27 20.47 

PG02 500.30 0.00 21.57 5.5 

PG03 352.50 0.14 21.70 4.86 

PG04 583.10 0.00 23.52 5.46 

PG05 711.40 0.15 8.80 8.21 

PG06 488.90 0.00 22.24 9.37 

PG07 687.90 4.01 7.77 16.71 

PG08 670.70 0.58 5.11 5.2 

PG09 790.70 3.26 20.78 20.14 

PG10 707.30 0.16 18.08 5.84 

PG11 790.10 0.00 11.94 3.41 

PG12 268.30 0.15 23.24 5.7 

PG13 300.00 0.19 16.26 4.04 

PG14 419.10 0.13 0.27 14.64 

PG15 1333.20 3.98 0.36 12.15 

PG16 421.50 8.52 21.39 8.9 

PG17 628.60 5.72 30.49 6 

PG18 656.90 6.67 0.77 10.26 

PG19 1120.90 2.49 0.33 15.25 

PG20 888.10 0.25 0.13 6.97 

PG21 377.60 0.20 1.34 10.45 

PG22 535.30 0.00 3.77 15.43 

PG23 619.70 1.02 0.16 6.09 

PG24 572.10 0.18 0.19 6.62 

PG25 874.60 1.06 0.00 58.76 

PG26 467.00 1.55 0.15 31.49 

PG27 798.50 4.73 0.18 35.2 

PG28 1093.30 1.26 2.32 49.06 

PG29 1358.60 1.03 0.00 49.38 

PG30 1284.50 1.49 0.13 83.46 

Total Feed 21067.10       

Feed grade 6.65%       

Egn.2- 15 
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The samples were classified into product fraction (high copper, low carbonate and high copper, high 

carbonate) and Waste fraction (high carbonate, low copper and low copper, low carbonate). The cut-

off grade for copper and carbonate was set at 1% and 5% respectively. The following classifications 

and sample number based on the cut-off grade could be considered economically viable; 

Table 2: Material Classification 

Category Classification Sample Number 

Product 
High Copper, low carbonate PG18, PG19, PG23, PG25, PG26, PG27, PG28, PG29, PG30 

High Copper, high carbonate PG07, PG09, PG15, PG16, PG17 

Waste 
High Carbonate, low copper PG2, PG3, PG4, PG5, PG6, PG8, PG10, PG11, PG12, 13 

Low Carbonate, low copper PG1, PG14, PG20, PG21, PG22, PG24 

3.2 Mineralogical Analysis of the Ore 

The mineralogy analysis identified seven most dominant crystalline mineral constituents present in 

the batch particles and these include: Calcite (CaCO3), Quartz (SiO2), Hematite (Fe2O3), Muscovite 

(KAl2(AlSi3O10)(F,OH)2), Microcline (KAlSi3O8), Clinoclore (Mg,Fe2+)5Al2Si3O10(OH)8, and Cuprite 

(Cu2O). The minor component includes; Malachite (Cu2CO3(OH)2), Chrysocolla (Cu2H2Si2O5(OH)4, 

Chlorite (ClO2
-), Dolomite (CaMg(CO3)2), Dravite (NaMg3Al6(BO3)3Si6O18(OH)3F), Sanidine 

(KAlSi3O8), Tenorite (CuO), Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)], Magnitite  (Fe3O4) 

and Apachite (Cu9Si10O29.11(H2O)). 

3.3 NIR Spectral Interpretation 

To select a region of the near infrared spectrum for analysis, library spectra for mineral present 

needed to be consulted and by examining spectra of pure specimens, characteristic peaks and the 

corresponding wavelength could be identified. Figure 3 below is a spectral of pure Malachite; the 

sample was taken from the Camborne School of Mines learning laboratory. Malachite has been 

selected because of its abundance as a copper mineral. 

 

Figure 3: Spectral of Pure Malachite Specimen 

Studying the spectra of malachite in figure 4-1 above by analogy with the spectrum of pure CuCO3, 

the peak at 2270nm, 2350nm and 2370nm may be due to the CO3 radical. Some contributions to the 

band at 2350nm and 2370nm may come from the hydroxyl present in this sample. The spectral range 

of (2000 -2405nm) was analysed for these samples because it is considered to offer significant 

information about minerals. 
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3.3.1 NIR Spectral Interpretation: High Copper Samples 

The spectral interpretation and Photomicrographs analysis for the high copper samples combined with 

the indicative composition of XRF and XRD results for individual particles. The photomicrographs 

have been presented with the scale taken on the microscope for all the particles to show that only a 

small area was focused to be representative of the entire particle and this area does not represent the 

entire spectra seen in the samples but only a small section. This could be estimated for a single pixel 

dimension covering about 14mm in size.  

Table 2: PG9 Indicative Composition 

 

Analysis Indicative Sample Composition- PG9 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) 3.26 20.78 20.14 7.86 25.79 16.96 

XRD Quart, Microcline, Malachite, Clinochlore, Calcite, Cuprite 

 

Figure 4: Plot of NIR reflectance against wavelength for Sample PG9 

Figure 4 present a copper-carbonate-iron rich sample. The limitation in the relative reflectance and the 

lack of distinct features is apparent in this sample. Iron and calcite indicates about the same content 

and dominating the entire matrix. This sample only has a weak features appearing at about 2000 to 

2050nm which may be due to low frequency lattice modes of the OH stretching fundamental. And a 

weak carbonate feature at about 2375nm which may be due to CO3
2- anion present in malachite. This 

is one of the samples indicated with high copper, high carbonate presented XRF results classified as  

product. The cluster algorithms does indicate that the carbonate content in this sample is only about 

10% compared to the copper content which is also supported with spectral interpretation. 

Table 3: PG15 Indicative Composition 

Analysis Indicative Sample Composition- PG15 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) 3.98 0.36 12.15 14.86 57.91 4.56 

XRD Quart, Muscovite, Hematite, Cuprite 
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Figure 5: Plot of NIR reflectance against wavelength for Sample PG15 

Samples PG15 present a copper rich, low carbonate particle with significant iron staining due to 

hydrothermal alterations. The copper is present in the sample in cuprite form. The sample is equally 

featureless with only few weaker bands at about 2200nmdue to Al-OH present in muscovite or this 

may also be due to H-O vibrations, and a high correlation to this spectral indicate the presence of 

hematite due to drop in reflectance and 2290nm may arise from the Fe-OH. 

Table 4: PG18 Indicative Composition 

Analysis Indicative Sample Composition- PG18 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) 6.67 0.77 10.26 8.72 58.78 6.47 

XRD Quart, Malachite, Tenorite, Clinoclore 

 

Figure 6: Plot of NIR reflectance against wavelength for Sample PG18 

Sample PG18 in the figure above indicates a high copper, low carbonate particle on a quartz matrix. 

This is one of the few high copper samples with indicative composition of low iron as most of the 

copper particles have been shown to occur in association with the iron oxides. The presence of a 

carbonate features at wavelength 2350nm and 2375nm is indicative of the malachite present in the 

sample. The deep broad peak at 1900-1950nm is due to combinations of the H-O-H band with the OH 

stretches due to the water molecule. This is an example of high copper samples, which cannot be 

understood by spectra interpretation alone because of the band broadening, leading to complex spectra 

and making it difficult to assign specific features to specific chemical components without any 

analysis technique.  
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Table 5: PG19 Indicative Composition 

Analysis Indicative Sample Composition- PG19 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) 2.49 0.33 15.25 15.78 45.88 5.285 

XRD Quartz, Hematite, Microcline, Clinochlore, Cuprite 

 

Figure 7: Plot of NIR reflectance against wavelength for Sample PG19 

The notable spectral features correlate to the observable surface mineralogy shows fine grain copper 

dissemination with iron crystals and silicates. Figure 7 presents a copper rich particle indicated by the 

presence of cuprite (green colouring) in this sample and similarly no spectral pattern is observed in 

this sample due to quartz matrix and the presence of hematite dominating the spectrum. 

Table 6: PG30 Indicative Composition 

Analysis Indicative Sample Composition- PG30 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt.%) 1.49 0.13 83.46 3.08 9.21 3.245 

XRD Quartz, Hematite, Microcline, Clinochlore 

 

Figure 8: Plot of NIR reflectance against wavelength for Sample PG30 

Sample PG30 is a relative high copper-rich particle and featureless with its iron content 

increasing with decreasing reflectance. It can also be observed from this sample that it has the 

amount of iron which is way too high with for example 83.46%Fe and clearly indicating low 

reflectance ranging from 0.1 -0.27.  
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4.4 Results: High Carbonate Samples 

4.4.1 Introduction 

The most common of the carbonate minerals is Calcite. Figure 9 below shows the pure calcite sample 

taken from the Camborne School of Mines laboratory. It was scanned in order to be used as spectral 

library. Pure calcite only exhibits spectral bands at a longer wavelength. These bands can be seen at 

1800 to 2400nm in the figure below; 

 

Figure 9: Spectral Library of Pure Calcite 

Notable features in the figure 9 above are the ones indicated at 1600nm, 1730nm, 1800nm, 1900nm, 

2000nm, 2150nm and intense band between 2300- 2350nm. The deep absorption observed between 

1400nm -1500nm is the overtones of the OH stretches and combinations of the H-O-H band with the 

OH stretches are found at about 1900nm due to water molecules. It should be noted that the spectral 

appearance of this calcite is different from the one indicated in figure 2-3 which could be due to 

difference in the purity of the sample and internal calibration of the equipment. Analysis of the 

carbonate spectral with their indicative composition and photomicrographs could now be presented 

after though understand of spectral library of predominant mineral in this section. 

4.4.2 Spectral Interpretation: Carbonates 

The spectral interpretation analysis for the high carbonate samples combined with the indicative 

composition of XRF and XRD results for individual particles.  

 

Table 7: PG2 Indicative Composition 

Analysis Indicative Sample Composition- PG2 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) pmm 21.57 5.5 13.43 37.14 16.8 

XRD Quartz, Calcite, Clinochlore, Muscovite 
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Figure 10: Plot of NIR reflectance against wavelength for Sample PG2 

Sample PG2 in figure 10 is atypical of a carbonate-rich particle. It displays peaks at 2200nm, 2300nm 

and 2375nm. The peak at 2200nm indicates the presence of Al-OH which is found in Muscovite 

confirmed herein by XRD results meanwhile the peak observed at 2300nm is due to the presence of 

Mg-OH or conversely carbonates which may occur between 2300nm and 2375nm. 

Table 8: PG4 Indicative Composition 

  

Analysis Indicative Sample Composition- PG4 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) ppm 23.52 5.46 11.39 37.99 17.6 

XRD Quartz, Calcite, Clinochlore, Muscovite 

 

Figure 11: Plot of NIR reflectance against wavelength for Sample PG4 

Sample PG4 in figure 11 has a more intense peak at about 2200nm indicating the presence of Al-OH 

due to the Muscovite present in this sample. The other features observed are at about 2245nm, and 

weak band at about 2350nm. The weak peak at 2245nm could due to O-H affected by either silicon or 

iron in clinoclore. The band at 2350nm is likely to be O-H stretch shifted due to interaction with the 

magnesium in clinoclore or due to presence of calcite. 
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Table 9: PG5Indicative Composition 

Analysis Indicative Sample Composition- PG5 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) 0.15 8.8 8.21 17.66 48.99 8.62 

XRD 

Quartz, Calcite, Microcline, Clinochlore, Muscovite, Illite, 

Hematite, Hydroxylapatite 

 

Figure 12: Plot of NIR reflectance against wavelength for Sample PG5 

Sample PG5 exhibited peaks in the vicinity of 2200nm, and 2330nm. The peak at about 2200nm is 

due to Al-OH stretch present in muscovite, and the band at 2330nm may be due to the Mg-OH stretch 

present in clinoclore/illite. The cross correlation with XRD results does indicate the presence of these 

minerals. 

Table 10: PG6 Indicative Composition 

 

Analysis Indicative Sample Composition- PG6 

XRF Cu CaO Fe2O3 Al2O3 SiO2 LOI% 

(wt%) ppm 22.24 9.37 13.4 36.63 16.6 

XRD Calcite, Quartz, Muscovite, Illite, Hematite, Dravite 

 

Figure 13: Plot of NIR reflectance against wavelength for Sample PG6 

Sample PG6 is equally a carbonate-rich particle with its spectral features appearing at 2200nm, and 

2330nm. The peak present at 2200nm is due to the Al-OH in Muscovite and the band displayed at 

2330nm is essentially the same as one in PG5 resulting from the O-H stretch shifted due to interaction 

with the magnesium in clinoclore present in this sample which could also indicate the presence of 

calcite.  

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27
0.3

0.33

1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

R
e

fl
e

ct
an

ce

Wavelength nm

PG5
Pixel4

Pixel5

Pixel6

Pixel10

Pixel13

Pixel15

Pixel17

Pixel24

Pixel28

Pixel30

0
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27

0.3
0.33
0.36

1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400

R
e

ff
le

ct
an

ce

Wavelength nm

PG6
Pixel3

Pixel4

Pixel6

Pixel7

Pixel13

Pixel22

Pixel25

Pixel26

Pixel28

Pixel29



13 
 

4.0 Discussion 

The variety of absorption processes and their wavelength dependence was used to derive information 

about the chemistry of a mineral from its reflected light. The absorptions observed in the near infrared 

spectrum are due to vibrational processes (overtones and combination tones of the fundamental modes 

occurring in the near infrared) of anion groups and molecules such as OH-, CO3
2- and H2O (Hunt and 

Salisbury, 1971). The atomic groups form independent oscillatory units such as Al-OH, Mg-OH and 

CO3 observe on different bands position. Most of the sample have shown the broad feature around 

1800nm - 1900nm which is of little significance as this study was mainly focused on a wavelength 

range of 2000 – 2405nm where there is significant information and that is why nothing much has been 

elucidated on this particular area.  Clark (1995) noted that most low grade rock type exhibit a peak at 

2200nm to 2210nm this has also been observed in this study due to the massive presence of muscovite 

giving the Al-OH stretching mode. The region between 2200–2500 nm of the spectral bands are 

ascribed to the OH stretch fundamental in combination with either the fundamental of SiO2 stretch or 

a metal–OH bend (Hunt, 1977).  

It has been indicated that most copper minerals have no features in the Near Infrared region with only 

features being observe when a copper particle has a matrix dominated by Malachite crystals. The 

relative reflectance intensities of the copper samples have also been observed to be generally low for 

all the samples ranging from about 0.09 -0.35. This could have been due to the iron being mostly 

associated with the copper particles. The presence of iron in other minerals could also lead to loss in 

relative reflectance depending on the type of minerals present in sample and the sample brightness. 

Calcite has been shown to have a very high reflectance (0.21-0.55) because of its brightness. This 

could be due to the presence of hematite dominating the spectrum. Bishop et al (1996) demonstrated 

that the presence of the hematite suppresses certain peaks that appear in the near infrared spectrum 

depending on the iron content.  

Surface heterogeneity and complexity may also lead to inaccuracy. On the other hand, the mineral 

surface could be homogenous but contains an inclusion, and if the transect is taken on that particular 

area then the analysis of transect would be incorrect. The environmental parameters such as 

temperature, pressure, and orientation can also affect the appearance of the spectra (Clark, 1995). 

Another factor that can cause spectral of mineral mixtures difficult to interpret  is that the mineral 

dominacnce in the particle does not always mean the same mineral would dominate the spectra 

(Bishop and Dummel, 1996) 

5.0 Conclusions 

The k-means cluster algorithms used in this study successful classified the material using two clusters 

into high copper, low carbonate and low copper, high carbonate. The combination of mineralogical 

and chemical analysis with the NIR spectra qualitatively analysed the material by relating them to the 

different mineral types present in the ore.   

The strategy identified distinct characteristic absorption features depending on the reflectance on the 

mineral particles at a specific wavelength. This indicates that through interpretation of the adsorption 

features, the near infrared has potential in discriminating the carbonate particles (unwanted gangue) 

from the copper bearing particles (Product) which are fairly featureless at longer wavelength (range 

2000nm -2405nm). This then implies that the mining industry can reduce processing costs on high 

energy intensive comminution, water and concentration through early rejection of unwanted gangue 

material. This could lead to an economic gain through reduced processing cost and increased 

productivity per unit metal produced. 
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