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Abstract 47	

Heritable variation in, and genetic correlations among, traits determine the response of 48	

multivariate phenotypes to natural selection. However, as traits develop over ontogeny, patterns 49	

of genetic (co)variation and integration captured by the G matrix may also change. Despite this, 50	

few studies have investigated how genetic parameters underpinning multivariate phenotypes 51	

change as animals pass through major life history stages. Here, using a self-fertilizing 52	

hermaphroditic fish species, mangrove rivulus (Kryptolebias marmoratus), we test the 53	

hypothesis that G changes from hatching through reproductive maturation. We also test 54	

Cheverud’s conjecture by asking whether phenotypic patterns provide an acceptable surrogate 55	

for patterns of genetic (co)variation within and across ontogenetic stages. For a set of 56	

morphological traits linked to locomotor (jumping) performance, we find that the overall level of 57	

genetic integration (as measured by the mean-squared correlation across all traits) does not 58	

change significantly over ontogeny. However, we also find evidence that some trait-specific 59	

genetic variances and pairwise genetic correlations do change. Ontogenetic changes in G 60	

indicate the presence of genetic variance for developmental processes themselves, while also 61	

suggesting that any genetic constraints on morphological evolution may be age-dependent. 62	

Phenotypic correlations closely resembled genetic correlations at each stage in ontogeny. Thus, 63	

our results are consistent with the premise that – at least under common environment conditions - 64	

phenotypic correlations can be a good substitute for genetic correlations in studies of 65	

multivariate developmental evolution. 66	

 67	

Keywords: G-matrix, genetic integration, ontogeny, Kryptolebias68	
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Introduction: 69	

Integration, a characteristic of the multivariate phenotype, describes patterns of correlation 70	

among functional traits (Pigliucci, 2003, Perez-Barrales et al., 2014, Margres et al., 2015). While 71	

most often studied at the phenotypic level (Klingenberg and Marugan-Lobon, 2013), if the goal 72	

is to understand multivariate evolution then studies of genetic integration are particularly 73	

informative (Klingenberg, 2014).  This is because the degree to which any trait can evolve under 74	

selection ultimately depends not only on the extent to which it varies due to genetic factors 75	

(referred to as ‘genetic variance’), but also on the genetic correlations it shares with other traits 76	

(Lande, 1979, Lande, 1980, Lande and Arnold, 1983, Arnold, 1992, Arnold et al., 2008, 77	

Björklund et al., 2013). These patterns of genetic (co)variation within and between traits can be 78	

represented as the genetic variance/covariance matrix (G).  While phenotypic integration is itself 79	

expected to arise from past selection favoring particular trait combinations, the structure of G 80	

also has the potential to facilitate or constrain adaptive evolutionary responses to current 81	

selection (Porto et al., 2009, Walsh and Blows, 2009). This is because genetic correlations 82	

among traits will prevent any one trait from evolving independently of others, even if this would 83	

in principle be advantageous (Cheverud, 1996, Armbruster et al., 2014).     84	

 In recent years, it has become increasingly evident that genetic variances and correlations 85	

do not remain static as organisms develop and age (Badyaev and Martin, 2000, Blumstein et al., 86	

2013, Class and Brommer, 2015). Genetic variances associated with life history (Charmantier et 87	

al., 2006) and morphological traits (Björklund, 1997, Badyaev and Martin, 2000) often vary 88	

across ontogeny. For specific trait pairs, it is also known that genetic correlations can change 89	

with age or life stage (Moran, 1994, Watkins, 2001, Aguirre et al., 2014). However, few studies 90	

have examined changes in a more fully multivariate context, comparing G among larger sets of 91	
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traits to test for shifting patterns of genetic integration across development (Cheverud et al., 92	

1983, Aguirre et al., 2014). Because selection acts on multivariate phenotypes (Ellis et al., 2014), 93	

and potentially in different ways over the full timeline of development (Gignac and Santana, 94	

2016), scrutinizing changes in G across ontogeny may help us better understand not only past 95	

evolutionary processes but also the potential for future adaptive evolution. The latter point 96	

follows because age-specific G matrices can be used to evaluate the potential for genetic 97	

constraint in relation to selection acting on phenotypic state at that age. However, it is also true 98	

that changes in G across age represent a (multivariate) genotype-by-age interaction (GxA), 99	

which can equally be conceptualized as genetic variance for the developmental trajectory (just as 100	

GxE is genetic variance for plasticity; e.g., Wilson et al., 2008, Roff and Wilson, 2014 for 101	

didactic explanations of this equivalence). Thus, to the extent that current selection acts directly 102	

on development as a process (rather than on age-specific phenotypic state), the presence of GxA 103	

is required for further evolution of the developmental trajectory. 104	

 While valuable, wider estimation of age-specific G matrices for traits known (or 105	

hypothesized) to contribute to functional integration is logistically challenging. Data 106	

requirements are high and further logistic constraints can arise from the characteristics being 107	

studied (Damián et al. 2017). For sexual diploid organisms, it is also generally necessary to 108	

utilize large breeding designs, or recover pedigree information using molecular data. When G 109	

cannot readily be estimated then P, the phenotypic variance-covariance matrix, has been used in 110	

its place (Marroig and Cheverud, 2001, Steppan et al., 2002). This strategy has become 111	

especially commonplace in studies related to morphological integration (Eroukhmanoff and 112	

Svensson, 2008). The primary criticism of such an approach is that, because P combines both 113	

genetic (G) and environmental (E) components of (co)variance, its reliability as a substitute for 114	
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G cannot be assured (Arnold, 1981, Lofsvold, 1986, Kruuk et al., 2008). Despite this, P has been 115	

shown to be a reliable predictor of G on many occasions (Atchley et al., 1981, Cheverud, 1995, 116	

Arnold and Phillips, 1999) and has given rise to Cheverud’s conjecture (Cheverud, 1988), which 117	

states that phenotypic correlations can be used as a substitute for genetic correlations. However, 118	

both G and E could change independently of one another across development, such that changes 119	

in P may not reflect changes in G (Badyaev and Martin, 2000, Mitteroecker and Bookstein, 120	

2009). Because of this, P may be an appropriate substitute for G only at certain stages of 121	

ontogeny. Few studies (Cheverud et al., 1983, Leamy and Cheverud, 1984, Badyaev and Martin 122	

2000), however, have looked at whether the relationship between P and G is stable over 123	

development.   124	

Mangrove rivulus fish, Kryptolebias marmoratus, are an excellent vertebrate model in 125	

which to test for ontogenetic changes in G using a quantitative genetic framework. Individuals 126	

exist as self-fertilizing hermaphrodites (Earley et al., 2012), a unique breeding strategy among 127	

vertebrates that allows for the production of many replicates of a single genotype without the 128	

need for complex breeding designs. We focus here on a set of morphological characters that we 129	

have previously shown are associated with a fitness-related functional performance characteristic 130	

– terrestrial jumping - using animals that were not involved in the present study (Styga et al., 131	

2018). Terrestrial jumping is an important behavior in mangrove rivulus fish, as it allows 132	

individuals to effectively traverse land to locate new pools of water or patches of damp leaf litter 133	

during periods of low tide (Magellan, 2016). A jump is produced when an individual flexes its 134	

axial muscles, places its body weight on its caudal peduncle (i.e. the area directly adjacent to its 135	

caudal fin), and launches itself from the ground (Gibb et al., 2011, Ashley-Ross et al., 2014). The 136	

fitness advantage associated with high terrestrial jumping may be most apparent in the field, 137	
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where other less terrestrially adept fish species (e.g., Gambusia) have been found dead in dried 138	

pools, while K. marmoratus has been found living on land just outside of these pools (Taylor, 139	

2012). Because of the association between skeletal morphology and jumping performance, 140	

positive selection on jumping has been postulated to drive corresponding changes in morphology 141	

(Gibb et al., 2013).  142	

 We have previously found that jumping performance is significantly correlated with bone 143	

dimensions within the caudal peduncle, the posterior portion of the body of a fish (Styga et al. 144	

2018). Jumping is positively correlated with lengths of the epural (EPL) and hypural (HYPL), 145	

and negatively correlated with the angle of the epural (EPA) relative to the vertebral centrum 146	

(Fig. S1). However, these phenotypic relationships were only present in young (<120 days post 147	

hatching, DPH) fish (see Fig. 2 in Styga et al. 2018), and not in mature (250-500 DPH) or old 148	

(>500 DPH) fish, possibly reflecting a decreased reliance on these bones for jumping at later 149	

ages (Styga et al. 2018). Therefore, in the present study, we focus on studying ontogenetic 150	

variation in the genetic (co)variance structure among these morphological traits at various points 151	

from hatching to sexual maturity (0-120 DPH range) (Cole and Noakes, 1997). In what follows, 152	

we characterize (co)variation at both phenotypic (P) and genetic (G) levels for six skeletal 153	

characteristics (Fig. S1), and standard length (SL), at three developmental stages (1, 15, and 100 154	

DPH). In mangrove rivulus, the skeletal morphology of the caudal peduncle is not perfectly 155	

bilaterally symmetrical (Styga et al., 2018); therefore, we assessed phenotypic and genetic 156	

(co)variation for traits on opposing sides of the vertebral column (i.e. EPL and PHPL and EPA 157	

and PHPA). We determine integration among these traits at both phenotypic and genetic levels, 158	

and also test Cheverud’s conjecture (Cheverud, 1988) that phenotypic correlations can be used to 159	

reliably estimate genetic correlations at each age. We formally test the hypotheses that: (i) 160	
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phenotypic (co)variance (P) among traits will vary among age classes, (ii) traits are genetically 161	

variable, (iii) trait genetic variance will be age-dependent, (iv) the full genetic (co)variance (or 162	

correlation) structure G will change between ages, and (v) P provides a valid proxy of G matrix 163	

at each stage in development.  164	

 165	

Methods: 166	

Animal Care and Specimen Collection 167	

Specimens (n=1,066) that were used in this study were obtained from (F2-F12) progenitors 168	

acquired from 44 genotypes; however, most specimens were obtained from F2 or F3 progenitor 169	

stocks (Table S1). Because the vast majority of animals (91%) came from F2 or F3 progenitor 170	

stocks, we did not include ‘generation’ in our models. All experimental fish were produced by 171	

selfing of genetically distinct progenitors with each progenitor having a unique genotype. We 172	

utilized 44 isogenic or near-isogenic lineages from our progenitor stock. Microsatellites were 173	

used to identify distinct multilocus genotypes (i.e. unique combinations of alleles present across 174	

32 loci), with isogenic lineages being derived from wild-caught progenitors that were 175	

homozygous at all 32 loci, and near-isogenic lineages being derived from wild-caught 176	

progenitors that were homozygous at, on average, 28 loci (range: 16-31, median: 30)  177	

(Mackiewicz et al. 2006; Tatarenkov et al., 2011). K. marmoratus is an androdioecous species, 178	

meaning that only male or hermaphroditic individuals make up the population (Turner et al., 179	

1992). In our study, we focused on morphological variation in hermaphrodites. As a result, we 180	

excluded any males from our study, which are easily recognizable by the presence of orange 181	

pigmentation on the body and a faded (or absent) eyespot on the dorsal portion of the caudal 182	

peduncle (Scarsella et al., 2018).  183	
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 Progenitors, their eggs, and hatchlings were housed under common garden conditions (12 184	

hour light: 12 hour dark photoperiod cycle, at 26°C, and in 25 ppt saltwater). Progenitors were 185	

fed 4 mL brine shrimp nauplii (Artemia spp.) while hatchlings were fed 1 mL brine shrimp 186	

nauplii on a daily basis. Both progenitors and hatchlings were housed individually for the 187	

duration of the experiment. Each progenitor was housed in 750 mL Rubbermaid® TakeAlong® 188	

Deep Square containers with spawning substrate (i.e. Poly-Fil®), which was checked for eggs 189	

weekly. Once obtained from the spawning substrate, eggs were transferred to 59 mL, clear 190	

polystyrene cups until hatching. Complete water changes were conducted on each egg cup 191	

weekly to refresh the water. The date on which eggs were laid was also recorded. At the time of 192	

hatching, each individual larval fish was transferred to one 473 mL plastic cup filled 75% with 193	

25 ppt water. Hatchlings were kept in these enclosures until they reached a predetermined age. 194	

Hatching date was recorded for all individuals. We included time spent in the egg (interval 195	

[days] between date laid and hatching date; hereafter referred to as ‘Time’) as a covariate in our 196	

models (see below) to account for phenotypic variance due to differences in developmental time 197	

within the egg. All fish husbandry was done in accordance with the University of Alabama’s 198	

Institutional Animal Care and Use Committee (Protocol #: 14-05-0070). A total of 10-15 199	

individuals were collected from most genotype-age combinations (1, 15, and 100 days post 200	

hatching [DPH]) (Table S1).  Although our sampling for each genotype-age combination was not 201	

completely balanced (Table S1), other studies have found that unbalanced designs in quantitative 202	

genetic studies do not mandate restrictive assumptions about variance/covariance structures (Fry, 203	

1992). We limited our focus to the first 100 DPH because this is the age, on average, at which K. 204	

marmoratus typically reaches sexual maturity (Cole and Noakes, 1997), and because jumping 205	

performance is only significantly correlated with caudal peduncle bone morphology before this 206	
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age (Styga et al., 2018). Each individual was euthanized in a lethal dose of pharmaceutical grade 207	

MS-222 (Finquel®), which was buffered to a neutral pH with sodium bicarbonate. Each hatchling 208	

was then stored individually in a 1.5 mL centrifuge tubes filled with 100% ethanol prior to 209	

morphometric analysis.   210	

 211	

Bone Morphometrics  212	

Specimens were cleared and stained individually in 1.5 mL centrifuge tubes, using a modified 213	

version of the procedure developed by Webb and Byrd (1994) (Table S2). The clearing and 214	

staining process produces transparent specimens with bones stained deep red, which we then 215	

photographed alongside a metric ruler in standard ichthyological position under a Zeiss 2000-C 216	

stereoscope using a Canon® Powershot G9 (Fig. S1). Images were then scaled to the nearest mm 217	

in ImageJ software (Schneider et al., 2012). Within ImageJ, we measured standard length (SL) of 218	

the specimen, length and angle of epural (EPL and EPA) and parahypural bones (PHPL and 219	

PHPA), and length and width of hypurals (HYPL and HYPW) (7 measurements; Fig. S1) from 220	

each fish. Although ossification is often not complete at the beginning of larval development in 221	

fishes (Mabee et al., 2000), in our study, all individuals were fully ossified at 1 DPH (Fig. S2). 222	

Therefore, we did not have to consider variance in the presence/absence of bones across ages 223	

when estimating G.  224	

 225	

Statistical analysis 226	

We analyzed data using used both univariate and multivariate linear mixed effect models to test 227	

our various hypotheses (described in detail below). Models were fitted with ASreml-R 3.0 228	
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(Butler, 2009, Gilmour et al., 2002) in R version 3.4.1 (R Core Team, 2017). All trait values 229	

were converted to standard deviation units (SDU) using the observed SD across all ages. This  230	

facilitates multivariate model fitting by removing among-trait scaling differences while retaining 231	

any among-age differences in (co)variance structures. Except where explicitly stated otherwise, 232	

all results are presented on this scale. In some instances, results are also presented in within-age 233	

class standard deviations such that, for example, age-specific genetic variances can be interpreted 234	

analogously to age-specific heritabilities. In addition to bone measurements, we treat standard 235	

length (SL) as a morphological trait in its own right that may be genetically correlated with other 236	

traits. Any such correlations with SL might shape evolutionary change in other aspects of 237	

morphology (Marroig et al., 2005) so we modeled this as an additional response variable rather 238	

than a ‘nuisance’ covariate.  239	

 To estimate genetic parameters, we included a random effect of genotype. Because 240	

experimental fish were produced by selfing of genetically distinct progenitors, this analysis 241	

partitions “among genotype” from total variance analogous to a study using recombinant inbred 242	

lines (as opposed to a family-based analysis of an outcrossing diploid). Statistical inferences 243	

were based on comparing nested models using likelihood ratio tests (LRTs) and on generating 244	

approximated 95% confidence intervals (see below). For LRTs we estimated χ2n as twice the 245	

difference in model log likelihoods. The number of degrees of freedom (n) was conservatively 246	

set to the number of additional parameters in the more complex model except when testing a 247	

single variance component in which case we assumed the test statistic to be asymptotically 248	

distributed as an equal mix of χ20 and χ21 (written below as χ20,1; Visscher, 2006). In each model 249	

we controlled statistically for any effect of ‘Time’, defined as the differences in number of days 250	

between when an individual egg was laid and when it hatched, by including it as a fixed effect on 251	
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all response variables. Although not directly relevant to the biological hypotheses being tested 252	

and so not discussed further below, statistical inferences on Time are presented in Table S3 for 253	

completeness.   254	

 255	

Phenotypic (co)variance within and across ages 256	

We estimated age-specific phenotypic variance-covariance matrices (P1, P15, P100) using a 257	

separate multivariate (7 trait) model for each age. These models had no random effects, such that 258	

all phenotypic (co)variance (conditional on ‘Time’) is allocated to the residual component. Using 259	

the matrix estimates and the sampling covariances of each element with them, we applied a 260	

parametric bootstrap approach (as described in Boulton et al., 2015) with 5,000 draws to 261	

generate approximate 95% confidence intervals for each element (and, for covariance terms, the 262	

corresponding correlation) of P1, P15, and P100. Confidence intervals are approximate since the 263	

bootstrap approach makes an assumption of multivariate normality that may well be violated (see 264	

Boulton et al., 2015, Houle and Meyer, 2015). Consequently, we do not calculate p-values but 265	

conclude (nominal) statistical significance when 95% confidence intervals do not include zero. 266	

We used bootstrap samples to test for significant differences between three aspects of age-267	

specific P matrices: total phenotypic integration, as calculated by the mean squared correlation 268	

among all traits; total phenotypic variation, as calculated by the matrix ‘trace’ (i.e. sum of 269	

diagonal elements); and pairwise-trait phenotypic correlations (rP) (see Houslay et al., 2017). For 270	

each pair of ages we also calculate the elements of the ‘difference matrices’ (e.g. P1 – P15) and 271	

use the bootstrapped samples to generate 95% confidence intervals for each element (i.e. 272	

pairwise difference between age groups in a variance or covariance estimate). We do this 273	

because, while non-overlapping 95% confidence intervals on age-specific elements of P denote 274	
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(nominally) significant differences at α = 0.05, it does not always follow that the difference in 275	

effect size is non-significant when 95% intervals do overlap (Austin et al. 2002).  276	

 277	

Genetic variation and GxA for each trait 278	

To determine whether individual traits harbored significant genetic variance across ontogeny, 279	

and whether there was a genotype-by-age interaction (GxA), we fitted a series of three nested 280	

trivariate models using age-specific observations as the three response variables (e.g., SL age 1, 281	

SL age 15, SL age 100). Each model included a fixed effect of ‘Time’ on each response and a 282	

heterogeneous residual structure allowing non-genetic (i.e., residual) variance to differ among 283	

age-classes. Model A contained no genetic effects, Model B allowed genetic variance but 284	

assumed a single genetic parameter and an absence of GxA (such that, for any pair of ages x,y, 285	

VAx = VAy and rGx,y = +1), while Model C estimated a fully unstructured matrix (i.e., genetic 286	

variance for each age and covariance between ages). LRT comparison of A and B provides a test 287	

for genetic variance, while comparison of B and C tests for GxA.  288	

 289	

Genetic integration of morphological traits 290	

We then used multivariate (7 trait) models to estimate the age-specific genetic variance-291	

covariance matrices (G1, G15, G100) among morphological traits and test for changes across 292	

ontogeny (in a similar manner to our analyses of P1, P15, P100). For each age-specific model we 293	

included a fixed effect of ‘Time’ and a random effect of genotype on each trait. The non-genetic 294	

(residual) structure was modelled as an unstructured matrix, as was G. However, for comparison 295	

we also fitted a simpler model in which we used diagonal matrix (i.e., genetic variances only, all 296	

among-trait covariances assumed to be zero). LRT comparison of full and simplified (i.e., 297	
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diagonal G only) provided a test of whether significant genetic covariance exists across all traits 298	

at the age in question. Although the data were scaled to overall (i.e., across all age classes) 299	

standard deviations as described earlier, we also estimated age-specific G matrices with data 300	

scaled to within-age SDUs. This scaling does not affect correlation structure but means that the 301	

diagonal elements can be interpreted as analogous to heritabilities (i.e. the proportion of variance 302	

– at that age – that is attributable to genetic effects). Comparisons among age classes then 303	

employed the bootstrapping procedure described earlier to compare the total genetic variation 304	

(i.e. trace, on both scales) across ages, pairwise-trait correlations (r) between each age group (see 305	

Houslay et al., 2017), and the level of genetic integration (calculated as the mean squared 306	

correlation across all traits).  307	

 Finally, as a test of Cheverud’s conjecture, we used our bootstrapped samples for P and 308	

G at each distinct age group (e.g., P1 vs G1) to test whether these matrices differ significantly in 309	

estimated correlation structure among morphological traits.  310	

   311	

Results:  312	

Phenotypic (co)variance within and across ages 313	

Confidence intervals estimated from our bootstrapping procedure revealed that the sum of 314	

phenotypic variance for all traits (i.e. trace) was significantly higher at P100 than at P1 and P15, 315	

while multivariate phenotypic variance did not differ significantly between P1 and P15 (Fig. 1; 316	

Table S4). Interestingly, different trait types contributed in opposing ways to the changes (and/or 317	

lack thereof) in P matrix trace with age. Specifically, while phenotypic variance in all linear 318	

distance measurements (EPL, PHPL, HYPL, HYPW, and SL) increased with ontogeny, the 319	

opposite pattern was seen for the angular measurements (EPA and PHPA) (Table 1).  For each of 320	
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the 7 traits, we found significant differences in phenotypic variance between P1 and P15, P1 and 321	

P100, and P15 and P100 (Table 2).  322	

As estimated by the mean-squared correlation, the extent of phenotypic integration (i.e. 323	

the relative strength of correlations among traits) differed among ages (point estimates of mean-324	

squared correlation were 0.22, 0.25 and 0.17 at ages 1,15 and 100 respectively). Based on 325	

bootstrapped confidence intervals, both P1 and P15 were significantly more integrated than P100 326	

(Fig. 1; Table S4) but P1 and P15 were not significantly different (Fig. 1; Table S4). 327	

Consideration of each off-diagonal element of P also revealed numerous differences between 328	

ages in the pairwise relationships among traits (Fig. 2 and 3; Tables S5 and S6). Scaled to 329	

correlations (which are perhaps easier to interpret than covariance), we find that 16 of the 21 330	

pairwise-trait associations differed significantly between P1 and P15, 10 between P1 and P100, and 331	

9 between P15 and P100 (Fig. 3; Table S6). Nonetheless, despite significant changes in correlation 332	

magnitude, it is also the case that many relationships were at least qualitatively consistent across 333	

ontogeny. For instance, in each age group: i.) EPL was significantly positively related to PHPL, 334	

HYPL, HYPW, and SL, ii.) PHPL was significantly positively related to HYPL, HYPW, and SL; 335	

iii.) HYPL was significantly positively related to HYPW and SL; and iv.) HYPW was 336	

significantly positively related to SL (Fig. 2; Table S5). On the contrary, only one (i.e. the 337	

correlation between PHPA and EPA) of the significant negative correlations evident within P1 338	

(many of which involved PHPA) was maintained throughout ontogeny.   339	

 340	

Genetic variation and GxA for each trait 341	

Based on the set of trivariate models formulated for each phenotypic trait, LRT comparisons 342	

showed that each trait exhibited significant genetic variance across ontogeny (see ‘Genetic 343	
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Variance’ in Table 3). In addition, the unstructured genetic (co)variance model provided a better 344	

fit to our data than the model that included a single genetic parameter. Thus, for each trait we 345	

find evidence of a significant genotype-by-age interaction (GxA) (Table 3). Significant GxA for 346	

each trait means that each trait has age-specific genetic variance, which will be reflected as 347	

between-age genetic correlations of less than +1 and/or changes in genetic variance with age. 348	

Here, for most traits, between-age genetic correlations were significantly positive between 1 and 349	

15 DPH and 1 and 100 DPH, and significantly negative between 15 and 100 DPH (Table 3). 350	

Genetic variance estimates from these models also differed across ages. They are not presented 351	

here but were very similar to the corresponding estimates obtained from multi-trait models fitted 352	

to each age class (presented and discussed below).  353	

 354	

Genetic integration of morphological traits within each age 355	

Multivariate (7 trait) models fitted to each age group, revealed significant among-trait genetic 356	

covariance structure contributing to morphological integration (Fig. 2; Table S7). In all three age 357	

classes, a model that included genetic covariances among traits was significantly better than the 358	

model that assumed a diagonal G matrix only (c221=188, P=<0.001; c221=207, P=<0.001; 359	

c221=176, P=<0.001 at ages 1,15 and 100 respectively). Confidence intervals estimated from our 360	

bootstrapping procedure revealed that total genetic variance for the multivariate phenotype (i.e. 361	

trace of G) was significantly lower at G15 and G1 than at G100 (Fig. 1; Table S4). The trace of G1 362	

did not differ significantly from that of G15. For individual traits, nominally significant 363	

differences in genetic variance were found in 11 out of 21 possible between-age comparisons 364	

(Table 2). One trait (SL) had a significant change in genetic variance between 1 and 15 DPH, 365	

and five traits changed significantly between 15 and 100 DPH, and 1 and 100, respectively. 366	
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These significant effects were driven by a clear pattern of increasing genetic variance with age 367	

for the linear distance traits (but not for the angular measurements EPA and PHPA). Note, 368	

however, that no such pattern is evident when expressing (total) genetic variance as a proportion 369	

of (total) phenotypic variance within each age class (i.e. on a ‘heritability’ scale). On this scale, 370	

there were no significant differences between ages in G matrix traces (Fig. 1; Table S4) or in 371	

trait-specific ‘heritabilities’ (Table 2).   372	

Using mean squared-genetic correlation to estimate age-specific genetic integration we 373	

found a qualitative pattern of decreasing integration with increased age, but we note that 374	

comparisons of this metric across age-specific G matrices were not statistically significant (Fig. 375	

1; Table S4). Despite the lack of significant change in overall genetic integration, there were 376	

some differences in pairwise genetic correlations between age groups that were significant at the 377	

nominal level (Fig. 2 and 3; Table S7 and S8). Specifically, of the 21 pairwise genetic 378	

correlations in G, 5 estimates differed significantly between G1 and G15, 5 between G1 and G100, 379	

but none between G15 and G100 (Fig. 3; Table S8). Although this provides evidence for changes 380	

in genetic correlation structure, we acknowledge the possibility of Type I error here and also note 381	

that, as in P, most between-trait associations in G were qualitatively maintained across ontogeny.  382	

For instance, in each age group: i.) EPL showed a positive genetic correlation with PHPL, 383	

HYPL, HYPW, and SL; ii.) PHPL showed a positive genetic correlation with HYPL, HYPW, 384	

and SL; iii.) HYPL showed a positive genetic correlation with HYPW, and SL; and iv.) HYPW 385	

showed a positive genetic correlation with SL.   386	

 387	

Similarity of correlations in P and G within each age 388	
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At each age, we found support for Cheverud’s conjecture – pairwise correlations in P did an 389	

excellent job of predicting correlations in G (Table S9). Of the 21 pairwise trait correlations at 390	

each age, only 4 differed significantly between P1 and G1, 2 between P15 and G15, and 2 between 391	

P100 and G100. In seven of these 8 instances, genetic and phenotypic correlation estimates were 392	

consistent in sign. The mean (SE) difference in magnitude between phenotypic and genetic 393	

correlations was -0.04 (0.04) at age 1, -0.1 (0.02) at age 15 and -0.09 (0.01) at age 100. 394	

 395	

Discussion 396	

Our results provide evidence in support of all five hypotheses advanced. First, for the set 397	

of morphological traits examined, we found that the among-trait phenotypic variance-398	

covariance-correlation structure P differed between ages (Fig. 2; Table S5). In particular, the 399	

variance of traits measured as linear distances increases with age (Table 1). For a given size-400	

related trait, differences in development (i.e. growth) must cause increased variance in size with 401	

age (Chevin, 2015). Thus, the pattern detected here means that there is variation in the 402	

multivariate developmental trajectory. Notably however, this not only impacts variances, but also 403	

leads to an overall decline in phenotypic integration with age. Second, we show that phenotypic 404	

variance is underpinned by genetic variation for all traits at all ages (Table 3). Third, for each 405	

trait considered individually there is evidence of genotype-by-age interaction (GxA) and 406	

fluctuations in genetic correlations between ages (Table 3). Thus, there appears to be genetic 407	

variance in developmental trajectory. Fourth, at the multivariate level, GxA is reflected by 408	

changes in G across ages (Fig. 2; Table 3). In particular, there is an increase in overall 409	

(multivariate) genetic variance with age (Fig. 1; Table S4), which mirrors the phenotypic pattern 410	

(Fig. 1; Table S4). Genetic integration among the traits also appears to decline with age (Fig. 1; 411	
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Table S4), although we acknowledge that this effect is not statistically significant. Finally, we 412	

also find support for our fifth hypothesis - that P is a valid proxy for G – in terms of 413	

understanding the among-trait correlation structure at each developmental stage (Table S9). In 414	

general, phenotypic correlations should more closely approximate genetic correlations as genetic 415	

variance underlying traits increases (Lande, 1982, Hadfield et al., 2007, Delahaie et al., 2017). 416	

Thus, because genetic variance was relatively high for most of our traits at all ages considered, 417	

the similarity between age-specific G and P matrices is perhaps not surprising. We also note that 418	

all fish were raised under standardized lab conditions such that environmental sources of trait 419	

(co)variation were both limited and common to all genotypes. 420	

 421	

Genetic effects and constraints on future evolution 422	

Morphological traits, and the relationships between them, are influenced heavily by 423	

genetic factors at each stage in ontogeny. We found that genetic variance across all traits was 424	

significantly lower at 1 and 15 compared to 100 DPH (Fig. 1). The increase in overall 425	

(multivariate) genetic variance with age might initially suggest that selection on caudal peduncle 426	

morphology should be more effective at driving evolutionary change in older fish. However, the 427	

non-genetic component of variance also increases such that the relative contribution of genetic 428	

factors to phenotypic variance is actually relatively stable. Indeed, when traits were scaled to 429	

standard deviation units calculated within each age group (i.e. the ‘heritability’ scale), we found 430	

that for most traits (not including EPA and PHPA), genetic variance was large, explaining > 40% 431	

of the phenotypic variance within each age group.  432	

The maintenance of high genetic variance for most traits across ontogeny may be related 433	

to high spatial heterogeneity within the mangrove ecosystem. Noting that our lab population was 434	
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founded from multiple field collection sites, spatial heterogeneity (within and among field sites) 435	

may have selected different genotypes (i.e., isogenic lineages) – with different phenotypes - to 436	

occupy specific habitats (Pantel et al., 2011). This scenario, which is often referred to as the 437	

‘frozen niche model’, can maintain standing levels of genetic variance in asexual (or, in our case, 438	

selfing) species similar to those found in sexual species (Jokela et al., 1997, Negovetic and 439	

Jokela, 2001, Niklasson et al., 2004).   440	

Genetic relationships between traits were largely stable in sign over ontogeny, although 441	

some changes in genetic correlations (notably in magnitude) with age were found. In general, 442	

covariance in G influences multivariate evolutionary trajectories by imposing constraints on the 443	

response to selection (Badyaev and Martin, 2010, Huchard et al., 2014, Nilsson-Örtman et al., 444	

2015). In the simplest case of two traits, a genetic correlation may prevent traits from becoming 445	

independently optimized by selection, resulting in a potential trade-off. In this study, the positive 446	

correlation between HYPL and EPA at 1 DPH may represent one of these trade-offs. HYPL is 447	

positively, and EPA is negatively, related to jumping performance in young fish (i.e. <120 DPH) 448	

(Styga et al., 2018). Although the functional link between these bones and jumping may not be 449	

relevant to 1 DPH individuals because they do not jump, it may be important for other 450	

performance characteristics used by 1 DPH individuals such as the aquatic C-start, which  451	

utilizes similar motor patterns as the tail-flip jump (Perlman and Ashley-Ross 2016).  Although 452	

the same relationship was also found at 100 DPH it may not represent a trade-off here because 453	

there appears to be decreased reliance on these bones as key determinants of jumping 454	

performance at this age (Styga et al., 2018). Indeed, at adulthood, other characteristics (i.e. 455	

strong muscles and well-developed neuromuscular junctions) may be playing a greater role in 456	

influencing jumping performance.  457	
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Taking a more fully multivariate view, despite the relatively high levels of genetic 458	

variance overall (at each age), if there are directions in multivariate trait space characterized by 459	

low genetic variance, then adaptive evolution in this direction is – at least relatively - constrained 460	

(Schluter, 1996; Björklund and Gustafsson, 2013). In fact, though the pattern was not significant, 461	

comparison of G matrices among ages suggests higher genetic integration in the youngest fish. 462	

This actually implies greater constraint here, at least in the limited sense that traits comprising 463	

the multivariate phenotype are less able to evolve independently at, for example, 1 DPH vs 100 464	

DPH. It is difficult to say more precisely what this means for expected evolution of the caudal 465	

peduncle since we currently lack quantitative estimates for age-specific selection gradients on 466	

morphological phenotype. An alternative view of the same phenomenon – namely multivariate 467	

GxA – arises if we consider the developmental process (rather than age-specific state) as the 468	

‘target’ of selection. GxA means there is genetic variance in, and so evolutionary potential of, the 469	

ontogenetic trajectory of (multivariate) morphology. In this study, (genetically) distinct 470	

developmental trajectories increase the observed (genetic) variation in morphology over 100 471	

days of development. 472	

 473	

Does the G matrix reflect past selection? 474	

 G (and P) might reflect historical selection favoring particular trait combinations at 475	

different ages (Herrel and Gibb, 2006, Gignac and Santana, 2016, Penna et al., 2017). For 476	

example, strong correlations among bones and muscles in young jackrabbits and guinea pigs 477	

appear to result from strong selection for hopping and running performance, respectively, in this 478	

age group (Carrier, 1983, Trillmich et al., 2003). However, ontogenetic variation in covariance 479	

structure may reflect historical age-dependent correlational selection on interactions among 480	
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multiple traits so long as those interactions (at one time) improved fitness (Armbruster et al. 481	

2014). Alternatively, directional selection on multiple traits simultaneously may have contributed 482	

to age-dependent genetic covariance (Penna et al., 2017). Either way, we expect that if historical 483	

selection on performance has been strong, then there should be strong correlations between traits 484	

in the direction that would have increased performance. In the case of the skeletal morphology 485	

within the caudal peduncle and its relationship to jumping performance, this means that G should 486	

depict a strong negative correlation between EPA and EPL/HYPL, and strong positive 487	

correlation between HYPL and EPL (Styga et al., 2018).  488	

 In this study, we found that the genetic correlations at 15 and 100 DPH are largely 489	

consistent with strong historical selection on jumping performance, although there were a few 490	

caveats (i.e. some of the correlations between traits in the direction that would increase jumping 491	

performance were not significant). We also found that genetic correlations at 1 DPH were not 492	

consistent with strong historical selection on jumping performance at this age (i.e. there was a 493	

significant positive relationship between HYPL and EPA). This result should, however, be 494	

considered in the context that 1 DPH individuals do not jump (Ashely-Ross pers. comm.).  495	

The known functional relationship between caudal peduncle morphology and terrestrial 496	

locomotion performance (Styga et al., 2018) does not preclude other relationships that may 497	

complicate our interpretation. For instance, burst swimming facilitates predator avoidance in 498	

many fish larvae (Hale, 1999), and might hypothetically require a totally different morphological 499	

architecture (Gibb et al., 2013). Equally, relationships among bone dimensions could change 500	

adaptively with age to maintain locomotor performance in the face of other development change 501	

not considered here (e.g., change in mass, gonad or digestive morphology) (Badyaev and Martin, 502	

2000). It is also possible that phenotypic integration is only critical for jumping performance 503	
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early on (i.e. 15 DPH) because other mechanisms (e.g. motor learning) are able to compensate 504	

later. It seems clear that the complex relationships between natural selection, form and function, 505	

and genetic covariance structure across ontogeny require further investigation.  506	

 Our study investigated ontogenetic variation in genetic (co)variance, while maximally 507	

controlling for any environmental variation, in a vertebrate species that exhibits a unique 508	

reproductive system where self-fertilization predominates. Because offspring were derived from 509	

isogenic lines, the G estimated from this study should be viewed as a broad-sense genetic 510	

variance-covariance matrix instead of an additive genetic variance-covariance matrix common in 511	

other quantitative genetic studies (Careau et al., 2015). As such, while G does a good job of 512	

predicting P at each stage in ontogeny, we should be wary of generalizing without considerable 513	

scrutiny to outbred sexual diploids and to situations where individuals are likely to vary due to 514	

exposure to environmental factors, unless those factors can be identified and 515	

controlled/modelled.  516	

 517	

Summary 518	

 In our study, we have demonstrated that genetic (co)variance structures among 519	

performance-related morphological traits are age dependent. This multivariate GxA can be 520	

conceptualized in two alternative ways: as shifting patterns of evolutionary constraint for 521	

responses to selection on age-specific morphology; or as the presence of genetic variance in the 522	

multivariate developmental trajectory itself. Regardless of whether the primary interest is in 523	

predicting future evolution or in understanding historical processes, it is important to bear in 524	

mind that adaptive phenotypes are produced by selection acting on heritable variation present 525	

throughout the full scope of development (Kingsolver and Pfenning, 2014). Consequently, 526	
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appreciating whether, and to what extent, G matrices change across ontogeny is an important - 527	

albeit empirically challenging – task. In this regard, we note that support for our final hypothesis 528	

is encouraging in a pragmatic sense. Specifically, in accordance with Cheverud’s conjecture, 529	

phenotypic correlations did an excellent job at predicting genetic correlations at each stage in 530	

development. While using P as a proxy for G always entails assumptions, our results suggest 531	

age-specific phenotypic patterns provide useful information for understanding the evolution of 532	

integration and development of multivariate morphology.  533	
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Fig. 1: Variation in overall phenotypic variance (Trace of the P matrix), overall genetic variance 777	
(Trace of the G-matrix; variance scale), overall heritability (Trace of the G-matrix; heritability 778	
scale), phenotypic integration (mean squared correlation, P-matrix), and genetic integration 779	
(mean squared correlation, G-matrix) across ages (1, 15, and 100 DPH). Confidence intervals are 780	
generated from 5,000 bootstrap draws. Estimates are significantly different when 95% 781	
confidence intervals do not overlap. Also included are representative pictures of each age class 782	
with scale bars.  783	

 784	
 785	
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Fig. 2: Pairwise-trait phenotypic correlations (rP, below diagonal) and pairwise-trait genetic 786	
correlations (rG, above diagonal) for 1, 15, and 100 DPH. Correlations are color coded by 787	
strength and direction. Correlations shown in blue are positive and correlations shown in red are 788	
negative. Stronger correlations are indicated by narrower ellipses, while weaker correlations are 789	
indicated by ellipses approaching a spherical shape.	EPL=Epural length, EPA=Epural angle, 790	
PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural 791	
width, and SL=standard length. 792	
 793	

 794	
 795	
Fig. 3: Difference matrices for pairwise-trait phenotypic correlations (rP, below diagonal) and 796	
pairwise-trait genetic correlations (rG, above diagonal) from 1, 15, and 100 DPH. Differences 797	
are color coded by strength and direction. Differences shown in blue are positive and differences 798	
shown in red are negative. When ages are similar, the colored square is small; when ages are 799	
very different, the colored square fills the cell.	EPL=Epural length, EPA=Epural angle, 800	
PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural 801	
width, and SL=standard length. 802	
 803	

 804	
 805	



 
 
 

Table 1: Phenotypic variance (Vp), genetic variance (VG; variance scale), and genetic variance (H2; heritability scale) for each trait at 1, 15, and 
100 DPH. EPL=Epural length, EPA=Epural angle, PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural length, 
HYPW=hypural width, and SL=standard length. 
 

 1 DPH 15 DPH 100 DPH 

Trait VP 
(CI) 

VG 
(CI) 

H2 

(CI) 
VP 
(CI) 

VG 
(CI) 

H2 

(CI) 
VP 
(CI) 

VG 
(CI) 

H2 

(CI) 

EPL 0.06 
(0.05, 0.07) 

0.05 
(0.02, 0.08) 

0.48 
(0.21, 0.76) 

0.16 
(0.13, 0.18) 

0.11 
(0.05, 0.18) 

0.73 
(0.36, 1.12) 

0.44 
(0.37, 0.50) 

0.3 
(0.14, 0.45) 

0.66 
(0.29, 0.98) 

EPA 0.68 
(0.57, 0.78) 

0.18 
(0.05, 0.31) 

0.13 
(0.04, 0.22) 

0.66 
(0.57, 0.76) 

0.06 
(0.01, 0.12) 

0.1 
(0.01, 0.19) 

0.49 
(0.42, 0.56) 

0.09 
(0.03, 0.16) 

0.15 
(0.05, 0.26) 

PHPL 0.06 
(0.05, 0.07) 

0.05 
(0.02, 0.08) 

0.40 
(0.16, 0.62) 

0.14 
(0.12, 0.16) 

0.11 
(0.05, 0.16) 

0.75 
(0.36, 1.14) 

0.4 
(0.35, 0.47) 

0.3 
(0.15, 0.4) 

0.69 
(0.32, 1.05) 

PHPA 0.95 
(0.81, 1.11) 

0.18 
(0.04, 0.31) 

0.10 
(0.02, 0.18) 

0.63 
(0.53, 0.72) 

0.16 
(0.07, 0.27) 

0.24 
(0.09, 0.39) 

0.46 
(0.4, 0.53) 

0.01 
(-0.03, 0.05) 

0.12 
(0.02, 0.21) 

HYPL 0.05 
(0.04, 0.05) 

0.04 
(0.02, 0.06) 

0.81 
(0.36, 1.28) 

0.1 
(0.08, 0.11) 

0.04 
(0.02, 0.07) 

0.46 
(0.20, 0.72) 

0.27 
(0.23, 0.31) 

0.13 
(0.05, 0.21) 

0.5 
(0.21, 0.76) 

HYPW 0.03 
(0.03, 0.04) 

0.02 
(0.01, 0.04) 

0.76 
(0.34, 1.19) 

0.07 
(0.06, 0.08) 

0.04 
(0.02, 0.06) 

0.58 
(0.26, 0.89) 

0.31 
(0.27, 0.35) 

0.2 
(0.09, 0.30) 

0.66 
(0.31, 1.03) 

SL 0.02 
(0.01, 0.02) 

0.01 
(0.01, 0.02) 

0.88 
(0.35, 1.35) 

0.06 
(0.05, 0.07) 

0.04 
(0.02, 0.06) 

0.58 
(0.28, 0.90) 

0.15 
(0.13, 0.18) 

0.09 
(0.05, 0.14) 

0.6 
(0.28, 0.94) 



 

 
 
 

Table 2: Differences in phenotypic variance (Vp), genetic variance (VG; variance scale), and genetic variance (H2; heritability scale) for each 
trait between 1 and 15 DPH, 1 and 100 DPH, and 15 and 100 DPH. Asterisks indicate significant differences in VP, VG, or H2 between the age 
groups shown in the header.  EPL=Epural length, EPA=Epural angle, PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural 
length, HYPW=hypural width, and SL=standard length. 
 

 1 vs 15 DPH 1 vs 100 DPH 15 vs 100 DPH 

Trait VP 
(CI) 

VG 
(CI) 

H2 

(CI) 
VP 
(CI) 

VG 
(CI) 

H2 

(CI) 
VP 
(CI) 

VG 
(CI) 

H2 

(CI) 

EPL -0.1* 
(-0.12, -0.07) 

-0.06 
(-0.13, 0.001) 

-0.25 
(-0.71, 0.22) 

-0.37* 
(-0.44, -0.31) 

-0.25* 
(-0.41, -0.09) 

-0.17 
(-0.64, 0.23) 

-0.28* 
(-0.35, -0.21) 

-0.19* 
(-0.36, -0.02) 

0.07 
(-0.44, 0.59) 

EPA 0.02 
(-0.12, 0.20) 

0.11 
(-0.01, 0.26) 

0.04 
(-0.09, 0.16) 

0.19* 
(0.07, 0.33) 

0.09 
(-0.05, 0.23) 

-0.02 
(-0.16, 0.12) 

0.18* 
(0.05, 0.29) 

-0.03 
(-0.12, 0.06) 

-0.06 
(-0.19, 0.08) 

PHPL -0.08* 
(-0.1, -0.05) 

-0.05 
(-0.12, 0.01) 

-0.35 
(-0.82, 0.09) 

-0.33* 
(-0.04, -0.29) 

-0.24* 
(-0.41, -0.09) 

-0.29 
(-0.71, 0.15) 

-0.26* 
(-0.32, -0.2) 

-0.19* 
(-0.36, -0.04) 

0.06 
(-0.51, 0.57) 

PHPA 0.32* 
(0.15, 0.50)  

0.02 
(-0.16, 0.18) 

-0.14 
(-0.31, 0.04) 

0.49* 
(0.33, 0.66) 

0.11 
(-0.03, 0.26) 

-0.02 
(-0.13, 0.12) 

0.17* 
(0.06, 0.28) 

0.1 
(-0.01, 0.21) 

0.12 
(-0.06, 0.30) 

HYPL -0.05* 
(-0.07, -0.04) 

-0.01 
(-0.04, 0.03) 

0.35 
(-0.18, 0.91) 

-0.21* 
(-0.26, -0.18) 

-0.1* 
(-0.17, -0.02) 

0.31 
(-0.27, 0.84) 

-0.16* 
(-0.21, -0.13) 

-0.09* 
(-0.16, -0.01) 

-0.03 
(-0.42, 0.34) 

HYPW -0.04* 
(-0.05, -0.03) 

-0.01 
(-0.04, 0.01) 

0.18 
(-0.25, 0.70) 

-0.27* 
(-0.32, -0.23) 

-0.18* 
(-0.29, -0.07) 

0.1 
(-0.44, 0.66) 

-0.24* 
(-0.29, -0.2) 

-0.2* 
(-0.27, -0.05) 

-0.08 
(-0.55, 0.40) 

SL -0.04* 
(-0.06, -0.04) 

-0.02* 
(-0.04, -0.002) 

0.29 
(-0.30, 0.85) 

-0.14* 
(-0.16, -0.12) 

-0.08* 
(-0.13, -0.03) 

0.27 
(-0.37, 0.83) 

-0.09* 
(-0.12, -0.07) 

-0.06* 
(-0.11, -0.004) 

-0.02 
(-0.45, 0.45) 



Table 3: Likelihood ratio tests of genetic variance and genotype x age (GxA) interactions for each morphological trait. Also shown are 
the genetic correlations between each pair of ages (+/- 1.96*SE) estimated under the GxA model. Asterisks denote significant 
correlations between ages. EPL=Epural length, EPA=Epural angle, PHPL=parahypural length, PHPA=parahypural angle, 
HYPL=hypural length, HYPW=hypural width, and SL=standard length. 
 
 

Trait Genetic Variance GxA Between age genetic correlations 

 c2 DF p-value c2 DF p-value 1 DPH vs 15 DPH 1 DPH vs 100 DPH 15 DPH vs 100 DPH 

EPL 377.2 1 <0.001 572.0 5 <0.001 -0.07 (-0.1 to -0.04)* 0.18 (0.12 to 0.24)* -0.37 (-0.46 to -0.28)* 

EPA 42.2 1 <0.001 45.6 5 <0.001 0.19 (0.09 to 0.29)* 0.24 (0.12 to 0.36)* -0.12 (-0.2 to -0.04)* 

PHPL 331.9 1 <0.001 633.3 5 <0.001 -0.02 (-0.06 to 0.02) 0.06 (0.003 to 0.12)* -0.31 (-0.4 to -0.22)* 

PHPA 64.25 1 <0.001 41.6 5 <0.001 0.45 (0.33 to 0.57)* 0.10 (0.01 to 0.19)* 0.29 (0.21 to 0.37)* 

HYPL 238.5 1 <0.001 337.6 5 <0.001 0.05 (0.03 to 0.07)* -0.42 (-0.46 to -0.38)* -0.29 (-0.33 to -0.25)* 

HYPW 365.7 1 <0.001 441.0 5 <0.001 -0.001 (-0.01 to 0.01) -0.58 (-0.62 to -0.54)* -0.28 (-0.32 to -0.24)* 

SL 418.4 1 <0.001 436.8 5 <0.001 -0.004 (-0.01 to 0.01) -0.07 (-0.09 to -0.05)* -0.03 (-0.06 to -0.002)* 
 



Table S1: Number of individuals acquired for each age group and genotype combination. Generations (Gen) of individuals are also 
given for each genetic line. The number of microsatellite loci at which the wild-caught progenitor of these animals was homozygous are 
shown in parentheses next to the genotype name.  
 

Genotype Gen 1 DPH 15 DPH 100 DPH  Genotype Gen 1 DPH 15 DPH 100 DPH 
BP11 (32) F3/F4   12  NUKE5 (27) F3 10 11 10 
BP15 (31) F3/F4 10 11   NUKE9 (32) F3 16 15 14 
BP18 (32) F3   13  OSR7 (32) F2 15 14 13 
BP23 (32) F2/F3 14 14 15  OSR9 (32) F2 15 14 14 
BP4 (32) F3/F4  10   RAD1 (32) F2 10 13 12 

BWS21 (30) F2/F3   13  RAD13 (32) F2 13 11 14 
BWS38 (25) F2/F3  10   RAD6 (32) F3  8  

CROC22 (30) F2   10  RHL (32) F12 14 13 16 
CROC27 (22) F2  11   RHL2 (32) F2 12 10 10 
CRWL18 (32) F2   11  RHL3 (32) F2 24 12 13 
CRWL19 (32) F2   10  RHL5 (32) F2 15 11  

DC22 (32) F3 14 15 12  RHL6 (31) F2 11 12  
DC8 (16) F2 12 13 15  RHL9 (32) F2 12   
FW6 (32) F2 11 13   RHL7 (32) F2 10 12  

HAM9 (32) F2   10  SAND20 (24) F2   10 
LMC1 (29) F2 11 13 10  SAND21(30) F2   10 
MES14 (32) F2   11  SAX14 (32) F2  12 10 
MRT8 (32) F2  10   SAX7 (32) F2 10 11  
NEL1 (32) F2 12 14 13  SOB9 (29) F2 12 11 10 
NEL10 (32) F2 11  13  UM2 (30) F2 10 12 14 

NUKE13 (32) F2  11   WEED10 (32) F2   10 
NUKE2 (32) F2 10 13 11  WEED4 (31) F2 13 11 10 

 
# Genotypes:  I DPH (N=30), 15 DPH (N=34), 100 DPH (N=35) 

 
# Individuals: 1 DPH (N=324), 15 DPH (N=368), 100 DPH (N=368) 

 
 
  



Table S2: Clearing and Staining Time Protocol. Specimens were first placed in a 1:1:18 staining solution of 0.1% Alcian blue: 0.2% 
Alizarin red S: 70% EtOH. Forty grams of potassium hydrogen phthalate was added to this solution to stabilize the pH between 5.2-
5.8. Specimens were then transferred to a 1% KOH solution, followed by a 2:2:1 solution of glycerol: 70% EtOH: benzyl alcohol. 
Finally, specimens were stored in a 1:1 solution of glycerol and 70% EtOH. Durations for each stage of the process are shown.  
 

Age Stain KOH 2:2:1 
1 DPH 24 hours 1 hour 1 hour 
15 DPH 48 hours 2 hours 1 hour 
100 DPH 72 hours 10 hours 14 hours 

 



Table S3: The fixed effect of ‘Time’ (i.e. interval [days] between hatching date and laid date) on morphological structure when: 1.) 
phenotypic variance/covariance matrices (P-matrices) were estimated across all traits at each age, and 2.) genetic variance/covariance 
matrices (G-matrices) were estimated across all traits at each age. EPL=Epural length, EPA=Epural angle, PHPL=parahypural length, 
PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural width, and SL=standard length. 
 
 

 1 DPH 15 DPH 100 DPH 
 Response 

trait 
Slope Wald’s F(Num, Den DF) P Slope Wald’s F(Num, Den 

DF) 
P Slope Wald’s F(Num, 

Den DF) 

P 

P-matrix EPA 0.002 F (7, 2176)=4.4 P=<0.001* 0.002 F (7,2553)=2.2 P=0.04* -0.009 F (7, 2534)=2.7 P=0.008* 
EPL 0.002 -0.003 0.0004 
HYPL -0.006 -0.007 -0.007 
HYPW -0.0005 -0.01 -0.001 
PHPA -0.009 -0.01 -0.006 
PHPL -0.006 0.0004 -0.002 
SL -0.02 -0.008 -0.009 

G-matrix EPA 0.004 F (7,2148)=1.9 P=0.07 0.004 F (7, 2525)=0.80 P=0.59 -0.003 F (7, 2506)=1.1 P=0.38 
EPL -0.0005 0.0004 0.001 
HYPL 0.003 -0.002 -0.00005 
HYPW 0.004 0.0006 0.0008 
PHPA -0.009 -0.006 -0.008 
PHPL -0.006 0.001 -0.0003 
SL -0.002 0.003 -0.003 



Table S4: Differences in phenotypic variance (‘Trace’) and integration between each age group. 
Differences in genetic variance (‘Trace’ (variance scale)), heritability (‘Trace’ (heritability 
scale)), and integration between each age group. Integration was estimated by the mean squared 
correlation across all traits. Significance based on 95% CI generated from 5,000 bootstrap 
estimates is indicated by an asterisk. Significant differences are noted when 95% CI do not span 
zero.  
 

Matrix Comparison Age 
comparison 

95% CI of 
difference 

P Trace 
 

1 vs. 15 -0.23 to 0.29 
1 vs. 100 -0.94 to -0.37* 
15 vs. 100 -0.94 to -0.45* 

Integration (mean squared 
correlation) 
 

1 vs. 15 -0.07 to 0.008 
1 vs. 100 0.002 to 0.08* 
15 vs. 100 0.04 to 0.11* 

G Trace (variance scale) 1 vs. 15 -0.33 to 0.29 
1 vs. 100 -1.13 to -0.16* 
15 vs. 100 -1.14 to -0.13* 

Trace (heritability scale) 1 vs. 15 -1.96 to 2.14 
1 vs. 100 -1.85 to 2.17 
15 vs. 100 -1.90 to 1.94 

Integration (mean squared 
correlation) 
 

1 vs. 15 -0.11 to 0.26 
1 vs. 100 -0.088 to 0.38 
15 vs. 100 -0.16 to 0.22 

 



Table S5: Age dependent phenotypic variance-covariance and correlation matrices (P) for: 1, 15, and 100 DPH ages. Phenotypic 
variance estimates are shown in bold on the diagonal, covariances are shown in shaded cells below the diagonals, and correlations 
above the diagonal. Approximate 95% CI are shown in parentheses and asterisks denote nominally significant correlations. 
EPL=Epural length, EPA=Epural angle, PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural length, 
HYPW=hypural width, and SL=standard length. 
 

1 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL 0.06 (0.05,0.07) 0.03 (-0.09,0.14) 0.86 (0.83,0.89)* -0.19 (-0.3,-0.08)* 0.49 (0.4,0.57)* 0.57 (0.5,0.65)* 0.44 (0.36,0.53)* 
EPA 0.01 (-0.02,0.03) 0.68 (0.57,0.78) 0.04 (-0.07,0.15) -0.57 (-0.65,-0.5)* 0.14 (0.04,0.26)* 0.16 (0.04,0.27)* 0.16 (0.05,0.27)* 
PHPL 0.05 (0.05,0.06) 0.01 (-0.01,0.03) 0.06 (0.05,0.07) -0.12 (-0.22,-0.008)* 0.54 (0.46,0.62)* 0.57 (0.49,0.64)* 0.42 (0.33,0.51)* 
PHPA -0.05 (-0.07,-0.02) -0.46 (-0.56,-0.35) -0.03 (-0.06,0) 0.95 (0.81,1.11) -0.28 (-0.38,-0.17)* -0.32 (-0.42,-0.22)* -0.28 (-0.39,-0.19)* 
HYPL 0.03 (0.02,0.03) 0.03 (0.01,0.05) 0.03 (0.02,0.04) -0.06 (-0.08,-0.03) 0.05 (0.04,0.05) 0.68 (0.62,0.74)* 0.73 (0.68,0.78)* 
HYPW 0.03 (0.02,0.03) 0.02 (0.01,0.04) 0.03 (0.02,0.03) -0.06 (-0.08,-0.04) 0.03 (0.02,0.03) 0.03 (0.03,0.04) 0.74 (0.68,0.78)* 
SL 0.01 (0.01,0.02) 0.02 (0.01,0.03) 0.01 (0.01,0.02) -0.03 (-0.05,-0.02) 0.02 (0.02,0.02) 0.02 (0.01,0.02) 0.02 (0.01,0.02) 
        
15 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL 0.16 (0.13,0.18) -0.06 (-0.17,0.04) 0.88 (0.86,0.9)* 0.06 (-0.04,0.16) 0.56 (0.49,0.63)* 0.68 (0.63,0.74)* 0.59 (0.53,0.66)* 
EPA -0.02 (-0.05,0.01) 0.66 (0.57,0.76) -0.04 (-0.14,0.06) -0.43 (-0.51,-0.35)* -0.06 (-0.17,0.04) -0.05 (-0.15,0.06) -0.02 (-0.12,0.09) 
PHPL 0.13 (0.11,0.15) -0.01 (-0.04,0.02) 0.14 (0.12,0.16) 0.13 (0.02,0.22)* 0.56 (0.5,0.63)* 0.67 (0.61,0.73)* 0.56 (0.49,0.63)* 
PHPA 0.02 (-0.01,0.05) -0.28 (-0.35,-0.21) 0.04 (0.01,0.07) 0.63 (0.53,0.72) 0 (-0.11,0.1) 0.09 (-0.01,0.19) -0.06 (-0.16,0.04) 
HYPL 0.07 (0.05,0.08) -0.02 (-0.04,0.01) 0.07 (0.05,0.08) 0 (-0.03,0.02) 0.1 (0.08,0.11) 0.76 (0.71,0.8)* 0.8 (0.77,0.84)* 
HYPW 0.07 (0.06,0.08) -0.01 (-0.03,0.01) 0.07 (0.05,0.08) 0.02 (0,0.04) 0.06 (0.05,0.07) 0.07 (0.06,0.08) 0.87 (0.84,0.89)* 
SL 0.06 (0.05,0.07) 0 (-0.02,0.02) 0.05 (0.04,0.06) -0.01 (-0.03,0.01) 0.06 (0.05,0.07) 0.06 (0.05,0.07) 0.06 (0.05,0.07) 
        
100 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL 0.44 (0.37,0.5) -0.13 (-0.23,-0.03)* 0.79 (0.75,0.83)* 0.03 (-0.08,0.13) 0.44 (0.35,0.52)* 0.6 (0.52,0.66)* 0.4 (0.31,0.48)* 
EPA -0.06 (-0.11,-0.01) 0.49 (0.42,0.56) -0.05 (-0.16,0.05) -0.28 (-0.37,-0.18)* -0.02 (-0.12,0.08) 0.02 (-0.09,0.11) 0.03 (-0.08,0.13) 
PHPL 0.33 (0.27,0.39) -0.02 (-0.07,0.02) 0.4 (0.35,0.47) 0.11 (0.01,0.21)* 0.38 (0.28,0.46)* 0.57 (0.5,0.64)* 0.32 (0.22,0.41)* 
PHPA 0.01 (-0.03,0.06) -0.13 (-0.18,-0.08) 0.05 (0,0.09) 0.46 (0.4,0.53) 0.02 (-0.08,0.12) 0.14 (0.04,0.24)* -0.02 (-0.12,0.09) 
HYPL 0.15 (0.11,0.19) -0.01 (-0.04,0.03) 0.12 (0.09,0.16) 0.01 (-0.03,0.04) 0.27 (0.23,0.31) 0.72 (0.67,0.77)* 0.77 (0.73,0.81)* 
HYPW 0.22 (0.18,0.26) 0.01 (-0.04,0.04) 0.2 (0.16,0.24) 0.05 (0.01,0.09) 0.21 (0.17,0.24) 0.31 (0.27,0.35) 0.71 (0.66,0.76)* 
SL 0.1 (0.07,0.13) 0.01 (-0.02,0.04) 0.08 (0.05,0.1) -0.01 (-0.03,0.02) 0.16 (0.13,0.18) 0.16 (0.13,0.18) 0.15 (0.13,0.18) 

 



Table S6: Estimated differences (with approximate 95% CI in parentheses) between each pair of ages in phenotypic variances (bold 
font, diagonal) and correlations (above diagonal). For each of these differences, the second age was subtracted from the first so a 
negative value reflects a higher value in an older age relative to a younger age. Asterisks denote significant differences in age specific 
parameters as evidenced by confidence intervals that do not span zero. EPL=Epural length, EPA=Epural angle, PHPL=parahypural 
length, PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural width, and SL=standard length. 
 

1 vs 15 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL  -0.1 (-0.12, -0.07)* 0.09 (-0.07,0.24) -0.02 (-0.05,0.02) -0.26 (-0.41,-0.1)* -0.06 (-0.17,0.05) -0.11 (-0.2,-0.02)* -0.15 (-0.26,-0.03)*    
EPA  0.02 (-0.12, 0.2) 0.08 (-0.08,0.23) -0.14 (-0.25,-0.03)* 0.21 (0.05,0.35)* 0.2 (0.05,0.34)* 0.18 (0.03,0.33)*    
PHPL   -0.08 (-0.1, -0.05)* -0.24 (-0.4,-0.09)* -0.03 (-0.13,0.07) -0.1 (-0.2,-0.01)* -0.14 (-0.26,-0.02)* 
PHPA    0.32 (0.15, 0.5)* -0.28 (-0.43,-0.13)* -0.41 (-0.55,-0.26)* -0.23 (-0.38,-0.09)* 
HYPL     -0.05 (-0.07, -0.04)* -0.08 (-0.16,-0.01)* -0.08 (-0.14,-0.02)* 
HYPW      -0.04 (-0.05, -0.03)* -0.13 (-0.19,-0.07)* 
SL       -0.04 (-0.06, -0.04)* 
        
1 vs 100 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL -0.37 (-0.44, -0.31)* 0.16 (0.01,0.32)* 0.07 (0.03,0.13)* -0.22 (-0.37,-0.07)* 0.06 (-0.07,0.17) -0.02 (-0.12,0.08) 0.05 (-0.08,0.17) 
EPA  0.19 (0.07, 0.33)* 0.1 (-0.06,0.24) -0.29 (-0.42,-0.17)* 0.16 (0.01,0.31)* 0.14 (-0.01,0.29) 0.14 (-0.02,0.27) 
PHPL   -0.33 (-0.4, -0.29)* -0.23 (-0.37,-0.08)* 0.16 (0.04,0.28)* -0.005 (-0.1,0.1) 0.1 (-0.03,0.23) 
PHPA    0.49 (0.33, 0.66)* -0.3 (-0.44,-0.14)* -0.46 (-0.59,-0.31) -0.26 (-0.41,-0.12) 
HYPL     -0.21 (-0.26, -0.18)* -0.05 (-0.12,0.03) -0.05 (-0.11,0.02) 
HYPW      -0.27 (-0.32, -0.23)* 0.02 (-0.05,0.09) 
SL       -0.14 (-0.16, -0.12)* 
        
15 vs 100 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL -0.28 (-0.35, -0.21)* 0.07 (-0.07,0.22) 0.09 (0.05,0.14)* 0.04 (-0.11,0.18) 0.12 (0.01,0.23)* 0.09 (0.003,0.17) 0.2 (0.09,0.31) 
EPA  0.18 (0.05, 0.29)* 0.02 (-0.14,0.15) -0.15 (-0.28,-0.02)* -0.04 (-0.18,0.1) -0.06 (-0.21,0.08) -0.04 (-0.19,0.1) 
PHPL   -0.26 (-0.32, -0.2)* 0.02 (-0.13,0.15) 0.19 (0.07,0.3)* 0.1 (0.01,0.19) 0.24 (0.13,0.36) 
PHPA    0.17 (0.06, 0.28)* -0.02 (-0.16,0.13) -0.04 (-0.19,0.1) -0.04 (-0.18,0.11) 
HYPL     -0.16 (-0.21, -0.13)* 0.04 (-0.03,0.1) 0.03 (-0.03,0.08) 
HYPW      -0.24 (-0.29, -0.2)* 0.16 (0.1,0.21) 
SL       -0.09 (-0.12, -0.07)* 



 
Table S7: Age dependent genetic variance-covariance and correlation matrices (G) for: 1, 15, and 100 DPH ages. Genetic variances 
are shown in bold font on the diagonal with estimates on the ‘heritability scale’ underneath (italic font, see text for details). Genetic 
covariances are shown in shaded cells below the diagonal, and corresponding genetic correlations are shown above the diagonal. 
Approximate 95% CI are shown in parentheses and asterisks denote nominally significant genetic correlations.  EPL=Epural length, 
EPA=Epural angle, PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural width, and 
SL=standard length. 
 

1DPH EPL EPA PHPL PHPA HYPL HYPW SL 

EPL 0.05 (0.02,0.08) 
0.48 (0.21,0.76)  

0.28 (-0.20,0.81) 0.97 (0.93,1.00)* -0.59 (-1.00,-0.16)* 0.66 (0.39,0.91)* 0.78 (0.58,0.96)* 0.55 (0.18,0.83)* 

EPA 0.07 (-0.04,0.19) 0.18 (0.05,0.31) 
0.13 (0.04,0.22)  

0.35 (-0.15,0.81) -0.47 (-0.95,0.08) 0.52 (0.10,0.93)* 0.44 (-0.02,0.87) 0.47 (0,0.87)* 

PHPL 0.42 (0.18,0.67) 0.08 (-0.03,0.19) 0.05 (0.02,0.08) 
0.40 (0.16,0.62)  

-0.52 (-0.90,-0.02)* 0.72 (0.49,0.94)* 0.75 (0.52,0.94)* 0.52 (0.15,0.83)* 

PHPA -0.13 (-0.25,-0.02) -0.05 (-0.12,0.01) -0.10 (-0.21,0) 0.18 (0.04,0.31) 
0.10 (0.02,0.18)  

-0.72 (-1.0,-0.33)* -0.77 (-1.0,-0.46)* -0.82 (-1.10,-0.53)* 

HYPL 0.41 (0.12,0.71) 0.17 (0.01,0.33) 0.41 (0.13,0.69) -0.21 (-0.37,-0.05) 0.04 (0.02,0.06) 
0.81 (0.36,1.28)  

0.8 (0.61,0.95)* 0.87 (0.73,0.97)* 

HYPW 0.47 (0.15,0.77) 0.14 (-0.02,0.28) 0.42 (0.14,0.69) -0.21 (-0.37,-0.06) 0.63 (0.24,1.04) 0.02 (0.01,0.04) 
0.76 (0.34,1.19)  

0.83 (0.66,0.95)* 

SL 0.36 (0.07,0.66) 0.16 (-0.01,0.32) 0.31 (0.03,0.56) -0.24 (-0.42,-0.07) 0.73 (0.27,1.17) 0.68 (0.28,1.13) 0.01 (0.01, 0.02) 
0.88 (0.35,1.35)  

        
15DPH EPL EPA PHPL PHPA HYPL HYPW SL 

EPL 0.11 (0.05,0.18) 
0.73 (0.36,1.12)  

-0.02 (-0.64,0.57) 0.97 (0.95,1)* 0.21 (-0.26,0.64) 0.69 (0.42,0.89)* 0.83 (0.68,0.96)* 0.67 (0.41,0.88)* 

EPA 0 (-0.14,0.12) 0.06 (0.01, 0.12) 
0.1 (0.01,0.19)  

0.07 (-0.53,0.67) 0.28 (-0.35,1.04) -0.06 (-0.65,0.58) -0.04 (-0.63,0.6) 0.03 (-0.55,0.67) 

PHPL 0.72 (0.33,1.07) 0.02 (-0.12,0.14) 0.11 (0.05, 0.16) 
0.75 (0.36,1.14)  

0.29 (-0.16,0.7) 0.65 (0.38,0.89)* 0.78 (0.59,0.93)* 0.56 (0.25,0.82)* 

PHPA 0.09 (-0.08,0.26) 0.04 (-0.04,0.12) 0.12 (-0.06,0.29) 0.16 (0.07, 0.27) 
0.24 (0.09,0.39)  

0.14 (-0.31,0.63) 0.2 (-0.23,0.68) -0.1 (-0.56,0.37) 

HYPL 0.4 (0.13,0.68) -0.01 (-0.12,0.09) 0.38 (0.11,0.65) 0.05 (-0.09,0.19) 0.04 (0.02, 0.07) 
0.46 (0.2,0.72)  

0.87 (0.74,0.97)* 0.85 (0.70,0.95)* 

HYPW 0.54 (0.22,0.85) -0.01 (-0.13,0.10) 0.52 (0.2,0.82) 0.07 (-0.08,0.22) 0.45 (0.18,0.72) 0.04 (0.02, 0.06) 
0.58 (0.26,0.89)  

0.87 (0.75,0.96)* 

SL 0.44 (0.15,0.74) 0.01 (-0.11,0.12) 0.37 (0.1,0.66) -0.04 (-0.19,0.12) 0.44 (0.19,0.72) 0.51 (0.2,0.79) 0.04 (0.02, 0.06) 
0.58 (0.28,0.9)  



 
 
100DPH 

 
 

EPL 

 
 

EPA 

 
 

PHPL 

 
 

PHPA 

 
 

HYPL 

 
 

HYPW 

 
 

SL 

EPL 
 

0.30 (0.14, 0.45) 
0.66 (0.29,0.98)  

-0.17 (-0.64,0.35) 0.93 (0.87,0.99)* 0.16 (-0.37,0.72) 0.61 (0.3,0.84)* 0.81 (0.65,0.96)* 0.52 (0.21,0.82)* 

EPA -0.05 (-0.19,0.08) 0.09 (0.03, 0.16) 
0.15 (0.05,0.26)  

-0.07 (-0.58,0.42) -0.51 (-1.01,0.06) 0.10 (-0.44,0.62) 0.01 (-0.49,0.55) 0.11 (-0.42,0.61) 

PHPL 0.63 (0.29,0.96) -0.02 (-0.1,0.12) 0.3 (0.15, 0.4) 
0.69 (0.32,1.05)  

0.33 (-0.17,0.84) 0.55 (0.23,0.83)* 0.78 (0.58,0.93)* 0.43 (0.08,0.76)* 

PHPA 0.04 (-0.08,0.18) -0.07 (-0.1,0.01) 0.09 (-0.04,0.24) 0.01 (-0.03, 0.05) 
0.12 (0.02,0.21)  

0.10 (-0.47,0.65) 0.31 (-0.25,0.78) -0.03 (-0.57,0.54) 

HYPL 0.35 (0.1,0.6) 0.03 (-0.1,0.14) 0.32 (0.08,0.58) 0.02 (-0.10,0.13) 0.13 (0.05, 0.21) 
0.5 (0.21,0.76)  

0.82 (0.65,0.95)* 0.91 (0.81,0.98)* 

HYPW 0.54 (0.22,0.84) 0 (-0.12,0.15) 0.53 (0.21,0.85) 0.09 (-0.04,0.22) 0.47 (0.18,0.75) 0.20 (0.09, 0.3) 
0.66 (0.31,1.03)  

0.73 (0.50,0.91)* 

SL 0.33 (0.05,0.58) 0.03 (-0.10,0.17) 0.28 (0.01,0.53) -0.01 (-0.13,0.12) 0.50 (0.19,0.76) 0.46 (0.15,0.74) 0.09 (0.05, 0.14) 
0.6 (0.28,0.94)  

 
  



Table S8: Estimated differences (with approximate 95% CI in parentheses) between each pair of ages in genetic variances (bold font, 
diagonal), heritabilities (italic font, diagonal) and correlations (above diagonal). For each of these differences, the second age was 
subtracted from the first so a negative value reflects a higher value in an older age relative to a younger age. Asterisks denote 
significant differences in age specific parameters as evidenced by confidence intervals that do not span zero. EPL=Epural length, 
EPA=Epural angle, PHPL=parahypural length, PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural width, and 
SL=standard length. 
 

1 vs 15 DPH EPL EPA PHPL PHPA HYPL HYPW SL 

EPL -0.06 (-0.13, 0.001) 
-0.25 (-0.71, 0.22) 

0.30 (-0.46,1.1) -0.004 (-0.05,0.04) -0.80 (-1.38,-
0.14)* 

-0.02 (-0.37,0.39) -0.05 (-0.31,0.2) -0.12 (-0.52,0.33) 

EPA 
 

0.11 (-0.01, 0.26) 
0.04 (-0.09, 0.16) 

0.28 (-0.52,1.05) -0.75 (-1.69,0.14) 0.58 (-0.15,1.34) 0.48 (-0.26,1.28) 0.45 (-0.3,1.22) 

PHPL 
  

-0.05 (-0.12,0.01) 
-0.35 (-0.82, 0.09) 

-0.80 (-1.39,-
0.11)* 

0.08 (-0.29,0.45) -0.03 (-0.31,0.26) -0.04 (-0.52,0.42) 

PHPA 
   

0.02 (-0.16,0.18) 
-0.14 (-0.31, 0.04) 

-0.86 (-1.45,-0.25)* -0.97 (-1.53,-0.42)* -0.72 (-1.28,-0.18)* 

HYPL 
    

-0.01 (-0.04,0.03) 
0.35 (-0.18, 0.91) 

-0.07 (-0.3,0.15) 0.02 (-0.17,0.22) 

HYPW 
     

-0.01 (-0.04,0.01) 
0.18 (-0.25, 0.7) 

 
-0.04 (-0.24,0.15)  

SL 
      

-0.02 (-0.04, -
0.002)* 

       0.29 (-0.3, 0.85) 

1 vs 100 DPH EPL EPA PHPL PHPA HYPL HYPW SL 

EPL 
-0.25 (-0.41, -

0.09)* 
-0.17 (-0.64, 0.23) 

0.45 (-0.26,1.08) 0.04 (-0.04,0.11) -0.7 (-1.46,-0.09)* 0.05 (-0.36,0.45) -0.03 (-0.29,0.23) 0.03 (-0.41,0.49) 

EPA 

 
0.09 (-0.05, 0.23) 

-0.02 (-0.16, 
0.12) 

0.42 (-0.25,1.09) 0.03 (-0.71,0.82) 0.43 (-0.21,1.13) 0.43 (-0.25,1.1) 0.36 (-0.25,1.04) 

PHPL 

  
-0.24 (-0.41, -

0.09)* 
-0.29 (-0.71, 0.15) 

-0.85 (-1.59,-
0.19)* 

0.17 (-0.24,0.58) -0.02 (-0.33,0.26) 0.09 (-0.44,0.55) 

PHPA 
   

0.11 (-0.03, 0.26) 
-0.02 (-0.13, 0.12) 

-0.82 (-1.57,-0.19)* -1.08 (-1.68,-0.45)* -0.79 (-1.45,-0.15)* 

HYPL 
    

-0.1 (-0.17, -0.02)* 
0.31 (-0.27, 0.84) 

-0.02 (-0.27,0.24) -0.04 (-0.21,0.1) 

HYPW 

     
-0.18 (-0.29, -

0.07)* 
0.1 (-0.44, 0.66) 

 
0.11 (-0.15,0.38)  

SL 
      

-0.08 (-0.13, -0.03)* 
0.27 (-0.37, 0.83) 



15 vs 100 
DPH 

EPL EPA PHPL PHPA HYPL HYPW SL 

EPL 
-0.19 (-0.36, -

0.02)* 
0.07(-0.44, 0.59) 

0.15 (-0.63,0.92) 0.04 (-0.02,0.12) 0.05 (-0.64,0.8) 0.07 (-0.34,0.43) 0.02 (-0.21,0.23) 0.14 (-0.26,0.56) 

EPA 

 
-0.03 (-0.12, 

0.06) 
-0.06(-0.19, 0.08) 

0.14 (-0.63,0.99) 0.79 (-0.14,1.71) -0.15 (-0.97,0.66) -0.05 (-0.86,0.8) -0.08 (-0.84,0.76) 

PHPL 

  
-0.19 (-0.36, -

0.04)* 
0.06 (-0.51, 0.57) 

-0.04 (-0.76,0.62) 0.1 (-0.31,0.52) 0 (-0.25,0.26) 0.13 (-0.33,0.61) 

PHPA 
   

0.1 (-0.01, 0.21) 
0.12 (-0.06, 0.3) 

0.04 (-0.7,0.77) -0.12 (-0.83,0.57) -0.07 (-0.86,0.63) 

HYPL 

    
-0.09 (-0.16, -

0.01)* 
-0.03 (-0.42, 0.34) 

0.05 (-0.13,0.29) -0.06 (-0.23,0.1) 

HYPW 
     

-0.2 (-0.27, -0.05)* 
-0.08 (-0.55, 0.4) 

 
0.15 (-0.06,0.42)  

SL 

      
-0.06 (-0.11, -

0.004)* 
-0.02 (-0.45, 0.45) 

 
  



 
Table S9: Test of Cheverud’s conjecture that P can be used as a surrogate for G. Confidence intervals based on Estimated differences 
(with 95% CI in parentheses) between phenotypic and genetic correlations at 1, 15, and 100 DPH are depicted on the off-diagonals. 
Significant differences are noted when 95% CI do not span zero. EPL=Epural length, EPA=Epural angle, PHPL=parahypural length, 
PHPA=parahypural angle, HYPL=hypural length, HYPW=hypural width, and SL=standard length. 

1 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL   -0.25 (-0.73,0.25) -0.11 (-0.15,-0.06)*  0.39 (-0.04,0.81)  -0.17 (-0.44,0.11)  -0.21 (-0.4,0) -0.11 (-0.43,0.23) 
EPA   -0.30 (-0.79,0.19)  -0.10 (-0.65,0.35)  -0.37 (-0.79,0.05)  -0.28 (-0.70,0.17)  -0.30 (-0.76,0.13) 
PHPL     0.41 (-0.06,0.85)  -0.19 (-0.40,0.09) -0.19 (-0.39,0.05) -0.11  (-0.42,0.26) 
PHPA      0.43 (0.05,0.79)*  0.45 (0.11,0.77)*  0.53 (0.23,0.83)* 
HYPL       -0.12 (-0.28,0.08)  -0.14 (-0.25,0.01) 
HYPW        -0.10 (-0.25,0.06) 
SL        
        
15 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL   -0.05 (-0.66,0.55)  -0.09 (-0.13,-0.06)* -0.14 (-0.6,0.32) -0.12 (-0.36,0.13)  -0.14 (-0.29,0.02) -0.08 (-0.3,0.20) 
EPA    -0.11 (-0.73,0.47)  -0.71 (-1.55,-0.11)*  -0.004 (-0.67,0.62)  -0.01 (-0.64,0.61)  -0.04 (-0.7,0.58) 
PHPL     -0.16 (-0.60,0.29)  -0.08 (-0.32,0.21)  -0.11 (-0.28,0.09)  -0.004 (-0.27,0.32) 
PHPA      -0.14 (-0.63,0.35)  -0.11 (-0.53,0.39) 0.04 (-0.42,0.51) 
HYPL       -0.11 (-0.22,0.03)  -0.04 (-0.16,0.10) 
HYPW        -0.004 (-0.1,0.11) 
SL        
        
100 DPH EPL EPA PHPL PHPA HYPL HYPW SL 
EPL   0.04 (-0.47,0.55) -0.14 (-0.22,-0.07)*  -0.13 (-0.69,0.42) -0.17 (-0.44,0.14)  -0.22 (-0.38,-0.03)  -0.13 (-0.43,0.21) 
EPA   0.02 (-0.49,0.55)  0.23 (-0.37,0.75) -0.11 (-0.62,0.42)  0.004 (-0.52,0.52)  -0.08 (-0.6,0.42) 
PHPL    -0.22 (-0.72,0.33) -0.17 (-0.49,0.16)  -0.2 (-0.37,0.002)  -0.12 (-0.45,0.25) 
PHPA     -0.08 (-0.66,0.53)  -0.2 (-0.71,0.37)  0.01 (-0.53,0.64) 
HYPL      -0.09  (-0.24,0.08) -0.14 (-0.23,-0.04)* 
HYPW       -0.01 (-0.19,0.22) 
SL        

 






