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Abstract 28 

Many defended species use conspicuous visual warning signals to deter potential predators 29 

from attacking. Traditional theory holds that these signals should converge on similar forms, 30 

yet variation in visual traits and the levels of defensive chemicals is common, both within and 31 

between species. It is currently unclear how the strength of signals and potency of defences 32 

might be related: conflicting theories suggest that aposematic signals should be quantitatively 33 

honest, or, in contrast, that investment in one component should be prioritised over the other, 34 

while empirical tests have yielded contrasting results. Here, we advance this debate by 35 

examining the relationship between defensive chemicals and signal properties in a family of 36 

aposematic Lepidoptera, accounting for phylogenetic relationships and quantifying coloration 37 

from the perspective of relevant predators. We test for correlations between toxin levels and 38 

measures of wing colour across 14 species of day-flying burnet and forester moths 39 

(Lepidoptera: Zygaenidae), protected by highly aversive cyanogenic glucosides, and find no 40 

clear evidence of quantitative signal honesty. Significant relationships between toxin levels 41 

and coloration vary between sexes and sampling years, and several trends run contrary to 42 

expectations for signal honesty. Although toxin concentration is positively correlated with 43 

increasing luminance contrast in forewing pattern in one year, higher toxin levels are also 44 

associated with paler and less chromatically salient markings, at least in females, in another 45 

year. Our study also serves to highlight important factors, including sex-specific trends and 46 

seasonal variation, that should be accounted for in future work on signal honesty in 47 

aposematic species. 48 

 49 
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Introduction 53 

Aposematic animals use conspicuous colours and patterns to warn potential predators of their 54 

unprofitability, linked to physical or chemical defences (Ruxton et al., 2004; Stevens & 55 

Ruxton, 2012). This strategy, first proposed by Alfred Russell Wallace to explain the 56 

colourful appearance of caterpillars (Wallace, 1867) is now recognised to occur in a wide 57 

range of taxa, from a host of invertebrates (e.g. Hemiptera [Exnerová et al., 2003], 58 

Lepidoptera [Rothschild, 1985]) and amphibians (e.g. poison frogs; Summers & Clough, 59 

2001) to mammals (Stankowich et al., 2011) and birds (Dumbacher et al., 2008). Predators 60 

who encounter distasteful warningly-coloured prey should learn to associate the prey signal 61 

with their unpleasant experience and avoid attacking similar prey in the future. Bright and 62 

colourful patterns facilitate this process in a number of ways, enhancing the “efficacy” of 63 

aposematic signals by increasing their detectability, memorability and discriminability 64 

(Guilford & Dawkins, 1991; Ruxton et al., 2004). Moreover, traditional theory rooted in Fritz 65 

Müller’s insights into mutually-beneficial mimicry between defended species (Müller, 1879), 66 

has held that warning signals should converge onto a limited number of common forms, to 67 

further speed up predator avoidance learning. Yet, there is extensive variation in warning 68 

coloration across aposematic taxa, which can be perceptible to their predators (Arenas & 69 

Stevens, 2017; Briolat et al. 2018a). 70 

 71 

A key line of enquiry into this seemingly paradoxical variation explores the relationship 72 

between the strength of visual signals and levels of defences, which also vary greatly both 73 

between (e.g. Arenas et al., 2015) and within species (e.g. Brower et al., 1968). As 74 

conspicuous coloration incurs the cost of heightened detection by predators, it should often be 75 

too costly for undefended species, which would be captured and consumed (with the 76 

exception of Batesian mimics of aposematic species; Bates, 1862). Aposematic signals are 77 
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therefore generally considered to be qualitatively honest, reliably indicating the presence of a 78 

defence (Sherratt, 2002; Ruxton et al., 2004). Whether they should also be expected to be 79 

quantitatively honest, with the strength of visual signals reflecting the potency of the defences 80 

they advertise, is more controversial. 81 

 82 

Despite the cost of increased visibility to predators, early interpretations of aposematism as an 83 

honest handicap signal (Grafen, 1990) have been criticised for the lack of a physiological link 84 

between visual features and defensive chemistry (Guilford & Dawkins, 1993). This could be 85 

provided by competition between traits for resources, leading to positive correlations between 86 

signals and defences when these resources are limited (Blount et al., 2009; 2012). Yet some 87 

theoretical models predict a disjunction between signals and defences, suggesting that prey 88 

should prioritise investment in either signals, to which predators respond (Leimar et al., 89 

1986), or defences, which do not incur detection costs (Speed & Ruxton, 2007). Overall, 90 

considering the relative costs of signals and defences, quantitative honesty may be expected to 91 

occur under certain conditions, depending on the economics of colour and toxin production 92 

(Speed & Ruxton, 2007), predator behaviour (Guilford, 1994; Speed et al., 2010) and prey 93 

resilience to attack (Sherratt, 2002). While most theoretical work focuses on single species, 94 

several of these evolutionary mechanisms have been proposed to underpin signal honesty 95 

across closely-related species too (Summers et al., 2015). Coevolutionary dynamics with 96 

mimics of defended prey (Franks et al., 2009), cautious or “go-slow” behaviour on the part of 97 

predators (Guilford, 1994), exaptation through other functions of visual signals (Lee et al., 98 

2011), and resource allocation trade-offs (Blount et al., 2009), are all thought to have the 99 

capacity to lead to honest signalling between populations or species (Holen & Svennungsen, 100 

2012; Summers et al., 2015).  101 

 102 
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Most empirical studies of the relationship between signals and defences across clades of 103 

species have found positive correlations between measures of visual signal strength and 104 

measures of toxicity, suggesting quantitative honesty in signalling (Summers & Clough, 105 

2001; Cortesi & Cheney, 2010; Santos & Cannatella, 2011; but see Darst et al., 2006, Winters 106 

et al. 2018). Work on ladybird beetles (Coccinellidae), combining toxin bioassays to field 107 

predation experiments with ladybird models presented to birds, has explicitly linked more 108 

conspicuous coloration and higher defence levels to greater survival in the wild (Arenas et al., 109 

2015). However, these studies are restricted in taxonomic scope, primarily focusing on poison 110 

frogs (Dendrobatidae), ladybird beetles and to a lesser extent marine opisthobranchs (Cortesi 111 

& Cheney, 2010; Winters et al. 2018), so research in a wider range of taxa is needed before 112 

more general conclusions can be drawn (Stevens, 2015; Summers et al., 2015). Existing 113 

studies can also be difficult to compare, as they employ a wide range of methods for 114 

quantifying defences, from bioassays (e.g. Darst et al. 2006, Arenas et al., 2015) to specific 115 

quantification of individual chemicals (e.g. alkaloids in the Dendrobatidae; Summers & 116 

Clough, 2001), and vary in their approaches to measuring coloration. Animal visual systems 117 

differ from human perception and are highly variable between species, so it is essential to 118 

consider visual signals from the perspective of the relevant receivers, which in the case of 119 

aposematism are potential predators (Stevens, 2007; 2011). Although this is not always the 120 

case (e.g. Summers and Clough, 2001; Dumbacher et al., 2000; 2008), studies of 121 

aposematism are increasingly considering predator perception (e.g. birds [Darst et al., 2006; 122 

Arenas et al., 2015] and fish [Cortesi & Cheney, 2010; Winters et al. 2018]), as our 123 

understanding of animal vision improves. 124 

 125 

Aposematic burnet moths (Lepidoptera: Zygaenidae) are well-suited to testing the relationship 126 

between signals and defences across closely-related species. In the Western Palearctic, the 127 
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Zygaenidae are represented by three subfamilies: the Zygaeninae, Procridinae and 128 

Chalcosiinae.  Of the 1,036 species of Zygaenidae recognised worldwide (van Nieukerken et 129 

al., 2011), all 45 tested so far, including members of all three relevant subfamilies (38 130 

Zygaeninae, including 35 Zygaena spp., two Procridinae and five Chalcosiinae), possess 131 

potent chemical defences, in the form of cyanogenic glucosides (Davis & Nahrstedt, 1982, 132 

1985; Zagrobelny et al., 2004). The Zygaenidae synthesise the cyanogenic glucosides 133 

linamarin and lotaustralin de novo, from the amino acids valine and isoleucine respectively 134 

(Wray et al., 1983), but species in the Zygaeninae further have the apparently unique ability 135 

to simultaneously sequester the same compounds from their host plants (Zagrobelny et al., 136 

2014). Cyanogenic glucosides, occurring in plants and several arthropod lineages (Zagrobelny 137 

et al., 2008), are bitter-tasting compounds, distasteful to avian predators, so are likely to 138 

facilitate taste-rejection during an attack (Skelhorn & Rowe, 2009). They are also toxic, 139 

releasing hydrogen cyanide upon enzymatic breakdown, due to enzymes either in the gut of 140 

predators or present in the prey themselves (Zagrobelny et al., 2008). In terms of coloration, 141 

there are dramatic differences in wing patterns between subfamilies of Zygaenidae, and more 142 

subtle variation within. Burnet moths in the genus Zygaena are characterised by classically 143 

conspicuous aposematic markings, with a typical pattern of black forewings with red spots, 144 

and red hindwings. Both within and between species, there can be extensive variation on this 145 

theme, with respect to the colour, size, shape and number of markings (Hofmann & 146 

Tremewan, 2017). By contrast, temperate species of Procridinae, or forester moths, are 147 

iridescent green or dull brown in colour (Drouet, 2016) and are generally considered cryptic 148 

(Efetov & Tarmann, 1999). The single representative of the Chalcosiinae in Western Europe, 149 

Aglaope infausta (L.), has brown forewings with discreet red markings, and red hindwings.  150 

 151 
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To test for evidence of quantitative signal honesty across the Zygaenidae, we measured signal 152 

and defence properties in 14 species, collected in 2015 and 2016 from a range of locations in 153 

Denmark, France and the UK. As the defences of the Zygaenidae have been extensively 154 

studied, we were able to accurately quantify the levels of cyanogenic glucosides in our 155 

samples, using a liquid chromatography – mass spectrometry (LC-MS) protocol specifically 156 

refined to identify linamarin and lotaustralin. In terms of signal receivers, birds are the most 157 

likely visually-driven predators of adult Zygaenidae. Experiments with captive birds, 158 

including Cyanistes caeruleus (blue tits) and Parus major (great tits) (Wiklund & Järvi, 1982) 159 

as well as Sturnus vulgaris (starlings; Rammert, 1992), suggest that they generally find burnet 160 

moths distasteful, yet observations in the wild reveal that several species, such as Alauda 161 

arvensis (skylarks), Anthus pratensis (meadow pipits) and even S. vulgaris, will nevertheless 162 

attack and in some cases partly or entirely consume these moths (Tremewan, 2006). Using 163 

visual modelling techniques, we measured multiple characteristics of zygaenid wing patterns, 164 

from the perspective of a potential avian predator, with a visual system modelled on the blue 165 

tit, C. caeruleus. In addition, molecular data and recent phylogenies of the Zygaenidae and the 166 

genus Zygaena are available (Niehuis et al., 2006a,b,c; 2007), enabling evolutionary 167 

relationships to be accounted for when analysing variation across species. This study is the 168 

first detailed exploration of the chemical defences and coloration of multiple species in this 169 

family of aposematic Lepidoptera. We test the idea of quantitative signal honesty in a new 170 

study system, using relevant and meaningful measures of signals and defences, to contribute 171 

to the debate over signal honesty across aposematic species. 172 

 173 

Materials and Methods 174 

Specimen collection and rearing 175 



8 
 

Individuals of 14 Zygaenidae species were collected in spring and summer 2015 and 2016, 176 

from locations in Denmark, France, and the UK (Table 1; see Supporting Information S1 for 177 

full details). Where possible, host plants were sampled at the same locations (see Supporting 178 

Information S2). To ensure that all Zygaenidae analysed were virgin, an important 179 

consideration as males and females exchange cyanogenic glucosides during reproduction 180 

(Zagrobelny et al., 2007a,b; 2013), specimens were collected at the larval or pupal stage, then 181 

reared to maturity in the laboratory. Larvae and pupae were kept in individual boxes with air-182 

holes, inside an incubator at 20°C, with a 16:8h day:night cycle, following protocols from 183 

previous work on Zygaena filipendulae (Linnaeus, 1758) (Zagrobelny et al., 2007a). The 184 

larvae were fed ad libitum with the same host plant as they were found on in the field (Table 185 

1). After emergence, the adults were euthanised by placing them in a -80°C freezer. Due to 186 

the difficulty of finding larvae or pupae of certain species, and high mortality, five species are 187 

limited to very small sample sizes (N=1 or N=2, see Table 1). Their wings were dissected for 188 

photography, then the entire sample was placed in 1ml 80% methanol in preparation for LC-189 

MS analysis of cyanogenic glucoside content.  190 

 191 

Wing photography 192 

Photographs of the moths’ forewings were taken with a calibrated, UV-sensitive digital 193 

camera (Nikon D7000 fitted with a 105mm CoastalOptics quartz lens), in controlled 194 

conditions inside a dark room. Lighting was provided by an EYE Color Arc Lamp MT70 bulb 195 

(Iwasaki Electric Co. Ltd.), its UV-blocking coating removed by lightly scrubbing with a steel 196 

brush (Troscianko & Stevens, 2015), thus emitting a spectrum of light similar to D65 daylight 197 

conditions. The forewings were chosen for analysis as they are more visible to predators than 198 

the hindwings, which in the Zygaenidae are hidden from view when at rest. As these wings 199 

are iridescent, only the right-hand wings were photographed (to keep scale direction 200 
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consistent), and the light source and camera were held at constant angles relative to the wings 201 

(50° and 90° respectively). The wings were photographed flat against a background of grey 202 

ethylene-vinyl acetate (EVA, or craft foam). A scale bar and a set of two 203 

polytetrafluoroethylene (PTFE) reflectance standards, reflecting 7% and 93% of all 204 

wavelengths of light respectively (Zenith Lite Diffuse Target sheets, SphereOptics, Pro-Lite 205 

Technology, Cranfield, UK), were included in each photograph, enabling calibration of the 206 

images with respect to lighting conditions (Troscianko & Stevens, 2015). Each specimen was 207 

photographed twice, using different filters (a UV/infrared blocking filter [Baader UV/IR Cut 208 

Filter], transmitting between 400 and 700 nm, and a UV pass and IR blocking filter [Baader U 209 

filter], transmitting between 300 and 400 nm). All photographs were taken in RAW format, 210 

with a constant aperture (f8) and manual white balance set to “cloudy”. 211 

 212 

Image analysis  213 

All image analysis was performed in ImageJ (Schneider et al., 2012) using open access 214 

custom-made plugins in the Image Calibration and Analysis Toolbox (Troscianko & Stevens, 215 

2015). Methods used for processing images and extracting colour metrics are summarised 216 

below; full details are provided in Supporting Information S3. To allow for objective colour 217 

measurements, images were linearised and normalised (Stevens et al., 2007), then scaled to 218 

100 pixels/mm. Photographs taken with the two types of filter were combined using an 219 

automatic alignment tool, and the resulting multispectral images were mapped to avian vision, 220 

as previous observations show that birds are likely to be the most relevant visual predators of 221 

burnet moths (Tremewan, 2006). Each image was converted to the visual system of C. 222 

caeruleus, the model species for the ultraviolet-sensitive (UVS) avian visual system (Hart et 223 

al., 2000) using a highly-accurate polynomial mapping technique (Stevens & Cuthill, 2006; 224 

Stevens et al. 2007; Pike, 2011; Troscianko & Stevens, 2015) to produce a set of image layers 225 
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corresponding to the predicted cone catch values for each of the five avian cone types: long 226 

wavelength- (LW-), medium wavelength- (MW-), short wavelength- (SW-) and ultraviolet- 227 

(UV-) sensitive photoreceptors, and double cones. Relevant wing areas were selected using 228 

the freehand tool in Image J. Most species display red forewing markings, but for Rhagades 229 

pruni (Denis & Schiffermüller, 1775), the iridescent blue patch at the base of the wing was 230 

selected as the markings, while for Theresimima ampellophaga (Bayle-Barelle, 1808) the 231 

whole uniform wing was measured as a single patch. Cone catch values for every 232 

photoreceptor type were obtained from each selected patch, then averaged to obtain a single 233 

measure of colour per individual, for both the wing markings and wing background area. 234 

 235 

Colour metrics 236 

Based on the average cone catch values, several measures of coloration were calculated: 237 

luminance, saturation, and hue of the forewing marking colours, as well as both chromatic 238 

and luminance contrasts between markings and background colours. In brief, luminance 239 

(perceived lightness) was taken as the cone catch value for the double cones (Jones & Osorio, 240 

2004; Osorio & Vorobyev, 2005), and saturation, measuring colour ‘richness’, was calculated 241 

by plotting wing colours in a tetrahedral colour space and measuring the Euclidian distance 242 

from each colour to the centre of the tetrahedron (after Endler & Mielke, 2005; Stoddard & 243 

Prum, 2008). Hue, representing the type or shade of a colour, was derived using principal 244 

component analysis (after Spottiswoode & Stevens, 2011) to obtain a ratio of cone catch 245 

values broadly inspired by the general principle of colour opponency, known to be relevant to 246 

avian vision (Osorio et al., 1999). In this study, hue is given by the following equation, such 247 

that higher hue values represent colours with relatively higher reflectance in the LW or UV 248 

channels, indicating redder colours, higher ultraviolet reflectance, or both:  249 

Hue = (LW+UV)/(SW+MW)                                                  (1) 250 
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 251 

Chromatic and achromatic contrasts between the markings and background colours provide a 252 

sense of the salience of wing markings, and may be relevant to predator behaviour, although 253 

the relative importance of pattern contrast over colour per se in aposematic signals remains 254 

unclear (Svádová et al., 2009; Aronsson & Gamberale-Stille, 2008; 2012a,b). Internal 255 

contrasts were calculated using a log version of the Vorobyev-Osorio model (Vorobyev & 256 

Osorio, 1998) and relative cone abundance values for Cyanistes caeruleus as a model for the 257 

UVS avian visual system (Hart et al., 2000), with a widely-used estimate of the Weber 258 

fraction (ω=0.05; Eaton, 2005; Håstad et al., 2005; Stevens, 2011) to calculate noise. 259 

Achromatic, or luminance, contrast was taken as the natural logarithm of the ratio between the 260 

mean double cone catch values of two colours, divided by the same Weber fraction (Siddiqi et 261 

al., 2004). Both contrasts are measured in “just-noticeable differences” (JNDs): values below 262 

1 suggest that the two colours compared are indiscriminable, even in optimal lighting 263 

conditions, while values above 1 and higher indicate colours increasingly easy to discriminate 264 

(Siddiqi et al., 2004). Supporting Information S3 provides details on the calculations of all the 265 

metrics described above. 266 

 267 

Quantification of chemical defences 268 

After photography, each specimen, complete with its forewings, was preserved in 1ml 80% 269 

methanol in preparation for analysis of their cyanogenic glucoside content. Quantification of 270 

linamarin and lotaustralin in our samples was performed by liquid chromatography – mass 271 

spectrometry (LC-MS), following a protocol specifically refined to identify these compounds, 272 

and used in previous work on the chemistry of the Zygaenidae (Zagrobelny et al., 2004, 273 

2007a,b; 2014; 2015; Fürstenberg-Hägg et al., 2014; Pentzold et al., 2015; 2016). Samples 274 

were prepared by grinding up the specimens in 1ml ice-cold 55% MeOH with 0.1% formic 275 
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acid then passing them through an Anopore 0.45μm filter (Whatman). The analytical LC-MS 276 

was performed with an Agilent 1100 Series LC (Agilent Technologies, Germany), and Bruker 277 

HCT-Ultra ion trap mass spectrometer (Bruker Daltonics, Bremen, Germany), run in positive 278 

electrospray mode, with an oven temperature of 35°C. A Zorbax SB-C18 column (Agilent; 279 

1.8μM, 2.1x50 mm) was used for chromatographic separation, running with a flow rate of 0.2 280 

ml/min, increased to 0.3 ml/min from 11.2 to 13.5 min. The mobile phases A and B were 281 

composed respectively of H2O with 0.1% (v/v) HCOOH, 50 μM NaCl, and MeCN with 0.1% 282 

(v/v) HCOOH, with a gradient as follows: 0 to 0.5 min, isocratic 2% B; 0.5 to 7.5 min, linear 283 

gradient 2% to 40% B; 7.5 to 8.5 min, linear gradient 40% to 90% B; 8.5 to 11.5 isocratic 284 

90% B; 11.6 to 17 min, isocratic 2% B. Sodium adducts of linamarin (retention time [RT] 2.6 285 

min, [M+Na]+ at m/z 270) and lotaustralin (RT 5.5 min, [M+Na]+ at m/z 284) were detected 286 

and compared to authentic standards (Møller et al., 2016) using native analysis software. The 287 

total amount of each compound was estimated according to its Extracted Ion Chromatogram 288 

(EIC) peak areas, and quantified using calibration curves for the linamarin, lotaustralin, and 289 

amygdalin standards. Finally, the concentration of cyanogenic glucosides in each sample was 290 

determined by dividing the total amount of compounds in each sample by the specimen mass, 291 

recorded at the time of preservation. Samples of larval host plants were analysed similarly. To 292 

rule out that differences between samples from 2015 and 2016 were due to the LC-MS 293 

machine, a subset of 20 samples (5 A. infausta and 5 Z. trifolii from each year, both males and 294 

females) were run together a second time in 2017. Analysing the results with a mixed effects 295 

model including specimen ID as a random effect, we found no significant effect of the 296 

interaction between collection year and machine run (original, in 2015 or 2016, vs. second run 297 

in 2017) on the concentration of cyanogenic glucosides for either A. infausta (χ2
1=1.73, df=1, 298 

p=0.19) or Z. trifolii (χ2
1=0.64, p=0.43), suggesting that differences between years were not 299 

due to variation in the sensitivity of the LC-MS machine in 2015 and 2016. 300 
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 301 

Phylogenetic reconstruction 302 

The phylogenetic tree was reconstructed using previously-published mitochondrial and 303 

nuclear sequences, following existing studies of the evolutionary history of the Zygaenidae 304 

(Niehuis et al.,  2006a; 2007): complete sequences of the mitochondrial genes for NADH 305 

dehydrogenase subunit 1 (ND1), tRNA-leucine (tRNA-Leu), the large subunit ribosomal 306 

RNA (16S rRNA), tRNA-valine (tRNA-Val) and a large fragment of the sequence for the 307 

mitochondrial small subunit of rRNA (12S rRNA), as well as two nuclear DNA fragments, an 308 

almost complete sequence of the small subunit rRNA (18S rRNA) and the 5’ end of the large 309 

subunit rRNA (28S rRNA). A new phylogenetic tree was built from these sequences, as 310 

previously-published phylogenies using all available sequences (Niehuis et al., 2006a; 2007) 311 

did not include all our species of interest. Sesia bembeciformis (Lepidoptera: Sesiidae) was 312 

used as an outgroup to root the tree (Niehuis et al., 2006a,b,c). Sequences for each species 313 

photographed and the outgroup were downloaded from GenBank 314 

(http://www.ncbi.nlm.nih.gov/; see Supporting Information S4). and aligned using MUSCLE 315 

(Edgar, 2004), as implemented by the ‘ape’ package (Paradis et al., 2004) in R 3.3.1 (R 316 

Development Core Team, 2015). The alignments for each sequence were then concatenated to 317 

produce a single final alignment (5697 base pairs [bp] long) for phylogenetic reconstruction. 318 

 319 

Phylogenetic relationships were assessed with maximum likelihood (ML), using the 320 

‘phangorn’ package (Schliep, 2011) in R. The most appropriate model of evolution was 321 

identified as a GTR+G+I model, allowing for variation in mutation rates between sites and the 322 

presence of invariant sites, according to ML estimates calculated with the modelTest function 323 

in ‘phangorn’. Tree topology was then optimised by nearest-neighbour interchange (NNI), 324 

using the optim.pml function. Finally, partitions allowing different rates of evolution for 325 

http://www.ncbi.nlm.nih.gov/
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nuclear and mitochondrial sequences or for every different gene were tested with the pmlPart 326 

function. Based on Akaike Information Criterion (AIC) scores, a partitioned model 327 

considering each gene separately was selected (AICno partition= 40049.83, AICnuclear/mitochondrial 328 

partition= 39575.70, AICpartition by gene= 39405.41). The final rooted tree (Figure 1) was 329 

bootstrapped with 1000 replicates, and nodes with less than 70% support were collapsed into 330 

polytomies. 331 

 332 

Statistical analyses 333 

All analyses were carried out in R 3.3.1 (R Development Core Team, 2015). To test whether 334 

data collected in 2015 and 2016 could be analysed together, we examined differences in 335 

cyanogenic glucoside concentration and colour metrics (luminance, saturation, hue, internal 336 

contrasts and relative marking area on the forewing) between years, across the seven species 337 

collected in both (see Table 1). These were tested for each dependent variable, with a linear 338 

model and stepwise model simplification, allowing interactions between the independent 339 

variables of year, sex and species in the full model. Luminance, hue, and chromatic contrast 340 

were log-transformed to fit model assumptions.  341 

 342 

As this investigation revealed significant effects of year and sex on both toxicity and colour 343 

metrics, we subsequently analysed the relationship between colour metrics and cyanogenic 344 

glucoside levels across species separately for each year. The data were also analysed across 345 

both sexes, and for males and females separately. To account for evolutionary relatedness 346 

between species, we used phylogenetic generalised least squares (PGLS) models, allowing λ 347 

to be fitted by maximum likelihood (Mundry, 2014), as implemented by the package ‘caper’ 348 

(Orme, 2013). We set out to test the relationship between cyanogenic glucoside concentration 349 

and all available colour metrics in a single model, but several of these variables were highly-350 
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correlated. To deal with the problem of collinearity, we calculated variance inflation factors 351 

(VIFs) using the vif function in the ‘car’ package (Fox & Weisberg, 2011), and selected 352 

appropriate models by a combination of a commonly-used “rule-of-thumb”, whereby VIFs 353 

should not exceed 10, and logical expectations of correlations (O’Brien, 2007; Dormann et 354 

al., 2013): for example, colour measures such as saturation, hue, and chromatic contrast are 355 

calculated from the same cone catch values, so are expected to be correlated, while marking 356 

size is not tied to these variables. This yielded 3-4 different models per dataset (combination 357 

of sex and collection year; see Supporting Information S5). To fit model assumptions, for the 358 

dataset of females in 2015, saturation was transformed using the square-root function, and 359 

chromatic contrast was log-transformed. Cyanogenic glucoside concentration was log-360 

transformed for all the 2016 datasets. Finally, small phylogenies suffer from a lack of power 361 

(Freckleton et al., 2002), making it difficult to accurately estimate parameters of phylogenetic 362 

signal, such as λ (Symonds & Blomberg, 2014; Arenas et al., 2015). We thus re-ran the same 363 

PGLS models with λ fixed to 1, corresponding to a Brownian model of evolution, to check 364 

whether our results were affected by a low estimate of phylogenetic signal. 365 

 366 

With the exception of Zygaena filipendulae, for which quantitative signal honesty has already 367 

been investigated (Briolat et al., 2018b), sample sizes in this study are generally too low to 368 

explore intra-specific variation in toxin level and coloration, especially as the different 369 

collection years and localities used for each species would also have to be accounted for (see 370 

Table S1). However, we do investigate quantitative honesty in Z. ephialtes, a species for 371 

which all samples (N=21) originated from a single location in 2015 (see Supporting 372 

Information S6). Following Briolat et al. (2018b), we used multiple linear regression and 373 

stepwise model simplification to test the relationship between the concentration of cyanogenic 374 

glucosides in each sample and forewing coloration. As above, VIFs were used to determine 375 
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that models including saturation or hue should be run separately. Models included all other 376 

possible colour metrics (luminance, chromatic contrast, luminance contrast, relative marking 377 

area, and either hue or saturation), and sex was allowed to interact with every metric.  378 

 379 

 Results 380 

Within species, signals and defences vary between years and between sexes 381 

Analysing data from the seven species collected in both 2015 and 2016 revealed significant 382 

interactions between sex, year, and species when testing for differences in both cyanogenic 383 

glucoside concentration and measures of colour (Table 2). Differences in cyanogenic 384 

glucoside concentration between years varied across species and between sexes. Cyanogenic 385 

glucoside levels in females increased between 2015 and 2016 in most species, with the 386 

exception of Z. sarpedon; in males, a more complex picture emerged, with half the species 387 

showing an increase in toxicity between years, and half showing a decrease (Figure 2).  388 

 389 

With regards to coloration, there was a significant interaction between year and species for all 390 

colour metrics analysed (Table 2). Individuals of all species collected in 2016 consistently 391 

displayed features suggesting that their markings would be more salient to predators (Figure 392 

3). Specimens of species with red wing markings collected in 2015 had paler wing markings 393 

than those found in 2016, although the extent of the difference varied between species and 394 

sexes (Figure 3a; Table 2). They also displayed markings with higher saturation and hue 395 

values, more contrasting to the wing background colours, and occupying a larger proportion 396 

of the forewing (Figure 3b-f). This indicates that their markings had more intense colours, 397 

which were also relatively redder (or had higher UV reflectance), larger and more 398 

conspicuous. For Rhagades pruni, which displays iridescent blue markings, trends in 399 

luminance and hue were opposite to those seen in all other species (Figure 3a; 3d). 400 
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Nevertheless, this led to similar effects on marking saturation and internal contrasts in the 401 

forewings, which were also higher in 2016 than 2015 in this species (Figures 3c; 3e). 402 

Differences in the levels of signals and defences between years cannot be fully elucidated 403 

with samples from only two years but may be linked to variation in climate and 404 

environmental conditions (see Supporting Information S7). As sex and year do influence both 405 

colour metrics and cyanogenic glucoside levels, these variables cannot be ignored in cross-406 

species analyses of signal honesty. Subsequent tests of the relationship between colour and 407 

toxicity were thus carried out separately for each year and each sex. 408 

 409 

In Z. ephialtes, for which sufficient samples were collected in a single year and location, some 410 

significant associations were found between cyanogenic glucoside levels and measures of 411 

coloration. Toxin levels increased with relative marking size in males, but decreased in 412 

females (linear model, F1,16=23.50, p=0.00018; Supporting Information S6). Moreover, across 413 

both sexes, there was a negative relationship between the internal chromatic contrast of the 414 

forewing and the concentration of cyanogenic glucosides (linear model, F1,16=29.77, 415 

p=0.000053; Supporting Information S6).  416 

 417 

Across species, there is no clear evidence of quantitative honesty  418 

Despite a small number of species sampled, our phylogenetic tree (Figure 1) is in broad 419 

agreement with previously-published phylogenies of the Zygaenidae and the genus Zygaena 420 

(Niehuis et al., 2006a; 2007). Using PGLS models to account for evolutionary relatedness, we 421 

found very few correlations between cyanogenic glucoside concentration and any of our 422 

measures of coloration (Supporting Information S5). While trends followed the same 423 

direction whether males, females, or all specimens were considered, the significance of these 424 
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relationships did vary depending on sex (Table 3; Supporting Information S5). Moreover, 425 

significant correlations were not consistent between years (Table 3).  426 

 427 

In addition, there were contrasting trends between luminance and colour, and most of the 428 

significant relationships between defences and certain signal properties were not indicative of 429 

quantitative honesty in the warning signals of these species. For samples collected in 2015, 430 

there was a positive correlation between luminance and cyanogenic glucoside concentration, 431 

suggesting that higher toxin levels were associated with paler markings (PGLS; across both 432 

sexes, F1,7=13.41, p=0.0081; for females, F1,6=14.98, p=0.0083; Figure 4a). This relationship 433 

was not significant for male samples, although the direction of the trend matched results in 434 

females and across both sexes (PGLS for males, F1,7=5.92, p=0.051; Figure 4a). However, 435 

there was also a significant negative relationship, in females, between measures of colour 436 

(saturation, hue, and chromatic contrast between markings and background colours) and 437 

cyanogenic glucoside levels (PGLS; saturation, F1,6=11.78, p=0.014; hue, F1,6=15.68, 438 

p=0.0075; chromatic contrast, F1,6=13.71, p=0.010; Figure 4b), indicating that higher toxin 439 

levels correlated with less intense, potentially less red, and less conspicuous markings, at least 440 

in terms of colour. In 2016, there was a positive correlation between internal luminance 441 

contrast and cyanogenic glucoside concentration, (PGLS; across both sexes, F1,9=6.80, 442 

p=0.0029; in males, F1,8=11.47, p=0.0095; Figure 5). This was not significant for females but 443 

the direction of the trend was consistent with those in males and across both sexes (F1,6=3.96, 444 

p=0.094; Figure 5). This relationship between internal luminance contrast and the level of 445 

chemical defences could not be attributed to trends in marking luminance; unlike in 2015, 446 

there was no relationship between cyanogenic glucoside concentration and luminance, or any 447 

other colour metric in 2016 (Supporting Information S5). 448 
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Finally, maximum likelihood estimates found very little phylogenetic signal in the residuals 449 

of the regressions between colour metrics and cyanogenic glucoside levels (λ=1*10-6 in each 450 

case). When λ was set to 1, corresponding to a Brownian model of evolution, only one 451 

relationship, the positive correlation between luminance contrast and cyanogenic glucoside 452 

levels in males in 2016, remained significant (F1,8=11.61, p=0.0093; Table 3). 453 

 454 

Discussion 455 

Overall, we found little evidence of quantitative signal honesty across the sampled species of 456 

Zygaenidae. Most colour metrics were not correlated with the concentration of defensive 457 

cyanogenic glucosides, whether male or female specimens were considered, and irrespective 458 

of the value of λ in phylogenetically-controlled analyses (Table 3, Supporting Information 459 

S7). The trends that did emerge from this dataset usually suggested a dishonest relationship 460 

between the strength of colour signals and defence levels, as higher toxin concentrations were 461 

associated with paler and less chromatically vibrant colours in 2015. Nevertheless, 462 

relationships between the concentration of cyanogenic glucosides and achromatic features 463 

could be seen to suggest quantitative honesty. When λ was estimated as a low value by 464 

maximum likelihood, some trends were significant in 2015, and, in particular, luminance was 465 

positively correlated with the concentration of cyanogenic glucosides across species. 466 

However, this did not lead to significant differences in achromatic contrast in the wings, and 467 

paler markings per se seem unlikely to constitute more salient markings. In terms of colour, 468 

only negative correlations with toxicity were found, suggesting dishonesty in signalling: 469 

saturation, hue, and chromatic contrast were all negatively correlated with cyanogenic 470 

glucoside levels in 2015, especially in females. Under a Brownian motion model of evolution, 471 

we found only one significant relationship, a positive correlation in 2016 between luminance 472 

contrast and cyanogenic glucoside concentration across males of these species. This could be 473 



20 
 

a potentially useful cue for predators, although there were no other significant correlations 474 

between other measures of coloration and toxin levels in that year.  475 

 476 

Signal honesty across species – disentangling visual features 477 

Assessing the relevance of these correlations to predator behaviour is difficult, as determining 478 

which aspects of signals and defences are most relevant to predators is not straightforward. 479 

Chemical defences are generally assessed by measuring toxin levels, but these may vary 480 

across body parts, total toxin amounts may be more relevant if prey are swallowed whole, and 481 

distastefulness, inducing taste-rejection by predators (Skelhorn & Rowe, 2009; 2010) may not 482 

covary with toxicity: in nudibranchs, similarly-distasteful red-spotted species were shown to 483 

vary widely in their chemical profiles and lethality to brine shrimp (Winters et al., 2018). As 484 

cyanogenic glucosides are bitter-tasting and can be dispensed to predators via defensive fluids 485 

during an attack (Jones et al., 1962), measuring levels of linamarin and lotaustralin in burnet 486 

moths should provide a relevant estimate of both unpalatability and toxicity. By contrast, the 487 

question of which properties of warning signals predators most attend to is still somewhat 488 

unresolved, and is poorly-studied in the context of the Zygaenidae.  489 

 490 

Several lines of evidence suggest that chromatic features are the most important for avoidance 491 

learning, at least for avian predators (Stevens & Ruxton, 2012). In the laboratory, learning 492 

experiments, primarily with Gallus gallus domesticus chicks but also with C. caeruleus and 493 

other passerines, suggest that chromatic features are generally more important than pattern for 494 

avoidance learning, generalisation and memory in birds (Osorio et al., 1999a,b; Exnerová et 495 

al., 2006; Aronsson & Gamberale-Stille, 2008; Svádová et al., 2009; Aronsson & Gamberale-496 

Stille, 2012a; Kazemi et al. 2014). These findings are broadly supported by several artificial 497 

predation experiments in the wild, suggesting that colour is most critical in determining the 498 
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survival of model prey exposed to avian predators, although pattern can have an added effect 499 

(Nokelainen et al., 2012; Finkbeiner et al., 2014; Arenas et al., 2015; Tan et al., 2016). As 500 

such, colour generally seems more important than luminance in predator avoidance, and 501 

several chromatic features are thought to be especially relevant to aposematic prey and their 502 

predators. Field studies with model frogs and ladybirds have shown that chromatic contrast to 503 

the natural background is particularly important (Hegna et al., 2011; Arenas et al., 2015), 504 

while experiments presenting different species of Lycaeidae seed bug larvae to domestic 505 

chicks suggest that prey with redder and more saturated signals are more strongly avoided 506 

(Gamberale-Stille & Tullberg, 1999). Long-wavelength colours are also thought to be more 507 

effective as warning signals, due to innate avoidance by some predators and their greater 508 

stability under different lighting conditions (Arenas et al., 2014). Finally, experiments with 509 

artificial stimuli and natural prey items such as Arctia plantaginis (wood tiger moth) larvae 510 

suggest that larger coloured markings generate greater avoidance (Forsman & Merilaita, 511 

1999; Lindström et al., 1999; Lindstedt et al., 2008; Smith et al., 2014). In an honest 512 

signalling paradigm, we would thus expect stronger defences to be associated with stronger 513 

signals, represented by more saturated, redder, larger and more conspicuous markings 514 

(Stevens & Ruxton, 2012; Arenas et al., 2015). Yet, in our study, we found no association 515 

between marking size and toxicity across species, and the few correlations between chromatic 516 

features and toxicity we found in 2015 go against our expectations for quantitative honesty.  517 

 518 

On the other hand, correlations between achromatic features, such as luminance and 519 

luminance contrast to wing background colours, could also be utilised by predators. 520 

Achromatic information may still be relevant to avian predators, potentially helping them to 521 

distinguish small pattern elements (Stevens, 2007), triggering initial avoidance of aposematic 522 

patterns (Sandre et al., 2010) and speeding up learning (Aronsson & Gamberale-Stille, 523 
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2012b). Luminance contrast in the pattern of prey items can also facilitate detection and 524 

avoidance learning in experiments with mantids (Prudic et al., 2007), suggesting that it could 525 

be a useful cue for some invertebrate predators, to which burnet moths are also exposed 526 

(though note that mantids seem to lack colour discrimination, whereas many other 527 

invertebrates have good colour vision). In 2016, we found that internal luminance contrast 528 

was positively correlated with toxicity, so there is the potential for this signal property to act 529 

as an honest signal. Yet it is also important to note that this trend was not linked to differences 530 

in marking luminance, so was likely to be driven by changes in the luminance of the dark 531 

background area of the moths’ wings. As the dark pigment melanin is involved in many other 532 

functions, from immune defences to thermoregulation (Solano, 2014), other selective 533 

pressures besides avoiding predation could be responsible for the trends in wing background 534 

luminance, and hence the relationship between luminance contrast and toxin levels. It would 535 

be useful to know more about the response of avian predators to the different features of a 536 

burnet moth-like pattern, to conclusively determine whether any of the correlations found 537 

here could be relevant to predator behaviour in the wild. Across the board, comprehensively 538 

examining variation in many aspects of their colour signals suggests a lack of quantitative 539 

honesty across the zygaenid species studied here, but features such as luminance contrast 540 

between wing markings and background colours may be worthy of further investigation. 541 

 542 

The above conclusions across species are broadly supported by results found when testing 543 

quantitative honesty within species in the Zygaenidae. In Z. filipendulae, few significant 544 

associations emerged between measures of coloration and cyanogenic glucoside levels, and 545 

the trends that were uncovered are more indicative of a negative relationship between signal 546 

strength and toxicity: within some populations, higher cyanogenic glucoside concentrations 547 

were associated with paler markings, while across populations, higher toxin levels were found 548 
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in females with smaller and paler markings (Briolat et al., 2018b). Within Z. ephialtes, we 549 

found a negative correlation between toxin levels and internal chromatic contrast, similarly 550 

suggesting a negative correlation between signal salience and defence levels. As in Z. 551 

filipendulae, there is also a negative relationship between the relative size of the red markings 552 

and cyanogenic glucoside concentration, such that more toxic females have smaller markings. 553 

However, this relationship is reversed in males, raising the possibility that the area of red 554 

markings could act as an honest signal of toxicity in males. Aside from this potentially 555 

interesting difference between sexes, which may be related to the overall smaller size of 556 

males, there is little evidence of quantitative honesty within the Zygaenidae studied so far. As 557 

already discussed in the case of Z. filipendulae (Briolat et al., 2018b), the highly aversive 558 

nature of cyanogenic glucosides and fluctuations in individual toxin content over a moth’s 559 

lifetime, depending on reproductive events, might limit the usefulness of quantitative honesty 560 

in burnet moths. More data would be required to test within-species variation in a greater 561 

number of zygaenid species, and determine whether this is a family-wide pattern. 562 

 563 

Relatively few studies have explored the relationship between coloration and the levels of 564 

chemical defences across species while accounting for phylogeny as we do here (but see 565 

Summers & Clough, 2001; Cortesi & Cheney, 2010; Santos & Cannatella, 2011), so the 566 

present study makes a rare contribution to the field. While some species have very small 567 

sample sizes (N=1 or N=2), these were still included in the analysis as increasing the number 568 

of species is key to greater reliability in phylogenetic analyses. The absence of signal honesty 569 

in the Zygaenidae is contrary to the results of other studies of signal honesty across species, in 570 

ladybirds (Arenas et al., 2015) and nudibranchs (Cortesi & Cheney, 2010), as well as some 571 

work in poison frogs (Summers & Clough, 2001; Santos & Cannatella, 2011, but see Darst et 572 

al., 2006). It demonstrates that quantitative signal honesty is not ubiquitous across families of 573 
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aposematic species. Across species, a range of factors, including different habitat or 574 

microhabitat features (Endler, 1993), predator communities (Endler & Mappes, 2004; 575 

Nokelainen et al., 2014) and life-history traits (Longson & Joss, 2006), are likely to impose 576 

different fitness costs and benefits on the production of both signals and defences. If these 577 

costs and benefits do not change in parallel, honest signalling may not be expected (Speed & 578 

Ruxton, 2007). In the Zygaenidae, the economics of signals and defences are likely to differ 579 

between species, as they vary in their means of acquiring toxins, as well as in their behaviour. 580 

Sampling host plants from collection sites wherever possible, we measured the cyanogenic 581 

glucoside content of plant tissues the larvae were likely to feed on (Supporting Information 582 

S2) to address this issue. Although not comprehensive, our results suggest that, among our 583 

samples, only Z. filipendulae and Z. occitanica were feeding on plants with high levels of 584 

cyanogenic glucosides. Z. trifolii, Z. cynarae, R. pruni and in some cases A. infausta may also 585 

have been able to both sequester the cyanogenic glucosides linamarin and lotaustralin from 586 

their hostplants as well as synthesise them themselves (Davis & Nahrstedt, 1986; Zagrobelny 587 

et al., 2014), while the other species appear to have relied entirely on de novo synthesis. 588 

Moreover, behavioural differences between the species in the Zygaena genus and the others 589 

will modulate their exposure to predators. The Procridinae behave more like cryptic species, 590 

flying rapidly and seeking to evade capture, while red-spotted burnet moths are much more 591 

sluggish (Hofmann & Tremewan, 2017) and highly visible. Finally, although many of these 592 

species do co-exist in the wild, our samples were collected from many different locations, so 593 

were not exposed to the same community of predators.  594 

 595 

Considerations for cross-species studies of signal honesty 596 

Sex-specific trends in quantitative honesty found for Z. filipendulae (Briolat et al., 2018) and 597 

Z. ephialtes suggest that differences between sexes should be considered in studies of signal 598 
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honesty. The costs and benefits of aposematic signalling may vary between males and females 599 

of warningly-coloured species, due to size dimorphism, trade-offs related to sexual signalling, 600 

and variation in habitat use and behaviour, modulating their exposure to predators. In 601 

sexually-dimorphic seven-spot ladybirds (Coccinella septempunctata) an honest relationship 602 

between elytra carotenoids and coccinelline levels was only found in females, a result 603 

attributed to greater resource-limitation or greater benefits of aposematic signalling in the 604 

larger sex (Blount et al., 2012). Burnet moths are similarly sexually-dimorphic, with larger 605 

females (Naumann et al., 1999), but other factors may also affect the economics of 606 

aposematic signalling: while both sexes are highly visible at rest, males are generally more 607 

active (Naumann et al., 1999), and there is some limited evidence that visual signals could 608 

play a role in sexual signalling, at close range (Zagatti & Renou, 1984; Koshio, 2003; 609 

Friedrich & Friedrich-Polo, 2005), and at certain times of day (Hofmann & Kia-Hofmann, 610 

2010). Across species, trends were broadly similar between sexes in this study, but the 611 

significance of these relationships varied, suggesting that ignoring differences between sexes 612 

could mask interesting results.  This is an important consideration, as no existing studies of 613 

quantitative honesty across aposematic species and populations analyse males and females 614 

separately, even in taxa in which males and females are known to differ (e.g. in ladybirds; 615 

Arenas et al., 2015).   616 

 617 

Our study also revealed considerable variation, in both coloration and toxicity, between 618 

individuals collected in two different years. These differences are unlikely to be caused by 619 

inconsistencies in our experimental procedures. While caterpillars were raised under natural 620 

conditions during collection trips, subsequent rearing conditions were kept as consistent as 621 

possible between specimens collected in 2015 and 2016. Moreover, differences in colour 622 

between years were found even among Z. trifolii specimens, collected as pupae from the same 623 
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location and placed in an incubator with the same settings until eclosion, suggesting that 624 

conditions prior to euthanasia were not responsible for this variation. Preliminary experiments 625 

verified that the time that specimens were kept in the -80 °C freezer between termination and 626 

photography did not impact coloration. Methods and equipment used for image capture did 627 

not vary between years, and all images from both seasons were processed and analysed 628 

together. Finally, we verified that differences in toxin levels were not caused by variations in 629 

the sensitivity of the LC-MS machine and column used, by re-running a subset of samples 630 

from both years together. While existing studies of signal honesty in aposematic species do 631 

not consider temporal variation in signal and defence traits, our study suggests that seasonal 632 

variation may have an impact on these traits.  633 

 634 

With only two years of data, it is difficult to explain the observed patterns of between-year 635 

variation, but environmental conditions, linked to variation in weather across years (see 636 

Supporting Information S7), are likely to impact investment in coloration and chemical 637 

defences in burnet moths. Variation in coloration in tiger moths (Erebidae) has been linked to 638 

fluctuations in local ecological conditions (Galarza et al., 2014), and in particular temperature 639 

(Goulson & Owen, 1997; Lindstedt et al., 2009). Climate may also indirectly affect resource 640 

allocation to signals and defences in aposematic species, via effects on their host plants. 641 

Cyanogenic plants possess highly variable levels of defensive chemicals, strongly affected by 642 

environmental conditions (Gleadow & Woodrow, 2002). The effects of temperature have 643 

been well-documented in both Trifolium repens (white clover; Daday, 1954a,b; 1958; De 644 

Aráujo, 1976; Stochmal & Oleszek, 1997; Richards & Fletcher, 2002  and Lotus corniculatus 645 

(bird’s foot trefoil), a key host plant of several Zygaenidae (Ellis et al., 1977; Jones, 1977; 646 

Salgado et al., 2016). For the species relying completely on de novo synthesis of cyanogenic 647 

glucosides, plant productivity may still be important. For example, nitrogen limitation will 648 
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lead to reduced investment in cyanogenic glucosides in burnet moths, due to trade-offs with 649 

other products, as suggested by the hypothesized breakdown of cyanogenic glucosides during 650 

pupation to fuel chitin synthesis (Zagrobelny et al., 2007b). Interestingly, all the species in 651 

which cyanogenic glucoside levels decreased between years in males (A. infausta, R. pruni 652 

and Z. sarpedon) feed on acyanogenic host plants, suggesting that resource allocation trade-653 

offs may broadly differ between species able to sequester cyanogenic glucosides from their 654 

host plants and those who cannot. Comparing host plant levels of cyanogenic glucosides and 655 

other nutritional resources to moth toxin levels and coloration across years would help 656 

elucidate the relationship between environmental conditions, host properties and aposematic 657 

phenotypes. This type of longitudinal study could be a valuable means of testing for 658 

quantitative honesty in aposematic signalling, providing the opportunity to study how 659 

resources are allocated to these two elements of aposematism in response to environmental 660 

conditions, and as the communities of predators and prey co-evolve.  661 

 662 

In conclusion, the present work deepens our understanding of the relationship between signals 663 

and defences across species, by contributing to the small number of studies testing signal 664 

honesty across closely-related aposematic species, with sophisticated methods for quantifying 665 

chemical defences, phylogenetic controls and measures of coloration accounting for predator 666 

vision. We find no clear evidence of quantitative signal honesty across the sampled species of 667 

Zygaenidae, especially not with regards to those aspects of appearance most likely to be 668 

salient to predators, a result likely attributable to varying costs of signal and defence 669 

production across species. Our study also highlights the importance of considering differences 670 

between sexes and temporal variation in analyses of signal honesty moving forward.  671 

 672 

 673 
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Table 1: Number (N), species and host plants of photographed specimens. 

Species Country  Hostplant at collection site 

N 

2015 2016 

Aglaope infausta (Linnaeus, 1767) France Cotoneaster sp., Crateagus sp., 

Prunus sp. (Rosaceae) 

21 17 

Rhagades pruni (Denis & 

Schiffermüller, 1775) 

France Prunus spinosa (Rosaceae) 

8 8 

Theresimima ampellophaga (Bayle-

Barelle, 1808) 

France Vitis sp. (Vitaceae) 

0 1 

Zygaena cynarae (Esper, 1789) France Peucedanum cervaria (Apiaceae) 1 0 

Zygaena ephialtes (Linnaeus, 1767) France Securigera varia (Fabaceae) 21 0 

Zygaena erythrus (Hübner, 1806) France Eryngium campestre (Apiaceae) 0 11 

Zygaena exulans (Hohenwarth, 

1792)* 

France Polyphagous – host plant 

unknown 

0 5 

Zygaena filipendulae (Linnaeus, 

1758) 

Denmark, 

France, UK 

Lotus corniculatus, Dorycnium 

pentaphyllum, Hippocrepis 

comosa (Fabaceae) 

107 8 

Zygaena lonicerae (Scheven, 1777) France Trifolium sp. (Fabaceae) 0 1 

Zygaena minos (Denis & 

Schiffermüller, 1775) 

France Pimpinella saxifraga (Apiaceae) 

1 1 

Zygaena occitanica (Villiers, 1789) France Dorycnium pentaphyllum 

(Fabaceae) 

0 2 

Zygaena sarpedon (Hübner, 1790) France Eryngium campestre (Apiaceae) 6 2 

Zygaena transalpina (Esper, 1780) France Hippocrepis comosa, Securigera 

varia (Fabaceae) 

3 13 

Zygaena trifolii (Esper, 1783) UK Lotus pedunculatus (Fabaceae) 9 14 

*: collected as pupae only 
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Table 2: Results of stepwise simplification of models testing differences in cyanogenic 

glucoside (CNGlc) concentration and colour metrics between 2015 and 2016. 

Significance levels: *:p<0.05, **:p<0.01, ***:p<0.001. 

Metric Factor F df p Significance 

CNGlc concentration Sex:Species:Year 3.21 5, 192 0.0083 ** 

Luminance Sex:Species:Year 2.35 5, 192 0.042 * 

Saturation Sex:Species:Year 1.42 5, 192 0.22 - 

 Sex:Year 0.17 1, 197 0.68 - 

 Sex:Species 1.49 5, 198 0.20 - 

 Species:Year 4.17 6, 203 <0.001 *** 

 Sex 5.87 1, 203 0.016 * 

Hue Sex:Species:Year 0.82 5, 192 0.54 - 

 Sex:Year 0.061 1, 197 0.80 - 

 Sex:Species 1.53 5, 198 0.18 - 

 Species:Year 27.95 6, 203 <0.001 *** 

 Sex 4.99 1, 203 0.027 * 

Chromatic contrast 

(JNDs) 

Sex:Species:Year 0.47 5, 192 0.80 - 

Sex:Year 0.0056 1, 197 0.94 - 

Sex:Species 3.08 5, 198 0.011 * 

Species:Year 3.32 6, 198 0.0039 ** 

Achromatic contrast 

(JNDs) 

Sex:Species:Year 1.12 5, 192 0.35 - 

Sex:Year 2.06 1, 197 0.15 - 

Sex:Species 5.57 5, 198 <0.001 *** 

Species:Year 10.67 6, 198 <0.001 *** 

Relative marking area 

(%) 

Sex:Species:Year 0.84 5, 192 0.35 - 

Sex:Year 0.0013 1, 197 0.97 - 

Sex:Species 5.45 5, 198 <0.001 *** 

Species:Year 2.97 6, 198 0.0085 ** 
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Table 3: Results of stepwise simplifications of PGLS models testing the relationship 

between cyanogenic glucoside concentration ([CNGlc]) and colour metrics, yielding a 

significant result with λ estimated by maximum likelihood (λ=1*10-6), and re-run with 

λ=1 (Brownian motion model of evolution). 

Dataset Model Results with λ=1*10-6 Results with λ=1 

2015, 

overall 

[CNGlc] ~ luminance F1,7=13.41, p=0.0081 F1,7=5.45, p=0.052 

2015,   

males 

[CNGlc] ~ luminance F1,6=5.92, p=0.051 F1,6=2.67, p=0.15 

2015, 

females 

[CNGlc] ~ luminance F1,6=14.98, p=0.0083 F1,6=4.37, p=0.082 

2015, 

females 

[CNGlc] ~ saturation F1,6=11.78, p=0.014 F1,6=3.56, p=0.11 

2015, 

females 

[CNGlc] ~ hue F1,6=15.68, p=0.0075 F1,6=5.28, p=0.061 

2015, 

females 

[CNGlc] ~ chromatic contrast F1,6=13.71, p=0.010 F1,6=4.58, p=0.076 

2016, 

overall 

[CNGlc] ~ luminance contrast F1,9=6.80, p=0.028 F1,9=4.24, p=0.070 

2016,   

males 

[CNGlc] ~ luminance contrast F1,8=11.47, p=0.0095 F1,8=11.61, p=0.0093 

2016, 

females 

[CNGlc] ~ luminance contrast F1,6=3.96, p=0.094 F1,6=3.64, p=0.11 
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Figures: 

 

Figure 1: Phylogenetic tree of the Zygaenidae used in this study. Branch labels represent 

bootstrap values for 1000 replicates; the scale bar corresponds to genetic distances between 

sequences, along branch lengths. Image credits: T. amphellophaga, adapted from 

www.lepinet.fr/especes/nation/lep/index.php?id=02140, ©Daniel Morel; all other images 

authors’ own.  

http://www.lepinet.fr/especes/nation/lep/index.php?id=02140
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Figure 2: Mean and standard error of the concentration of cyanogenic glucosides (CNGlc) in 

males and females of each species. Filled circles = samples collected in 2015; open circles = 

samples collected in 2016. 
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Figure 3: Mean values and standard errors of coloration for males and females of species 

collected in 2015 and 2016. Filled circles = samples collected in 2015; open circles = samples 

collected in 2016. In (b), relative marking size is measured as the percentage of the forewing 

area occupied by contrasting markings. In (e) and (f), the red dashed line represents the 

threshold for discrimination, JND = 1.  
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Figure 4: Mean cyanogenic glucoside (CNGlc) concentration and (a) luminance and (b) hue 

in species sampled in 2015, calculated in males, females and across both sexes. Lines 

represent the results of PGLS models. 
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Figure 5: Mean log-transformed cyanogenic glucoside (CNGlc) concentration and luminance 

contrast in species sampled in 2016, calculated in males, females and across both sexes. Lines 

represent the results of PGLS models. 

 

 


