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Abstract. We investigate a certain class of (geometric) finite (Galois) coverings of

formal fibres of p-adic curves and the corresponding quotient of the (geometric) étale
fundamental group. A key result in our investigation is that these (Galois) coverings

can be compactified to finite (Galois) coverings of proper p-adic curves. We also prove

that the maximal prime-to-p quotient of the geometric étale fundamental group of
a (geometrically connected) formal fibre of a p-adic curve is (pro-)prime-to-p free of

finite computable rank.
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§0. Introduction/Main Results. A classical result in the theory of étale funda-
mental groups is the description of the structure of the geometric étale fundamental
group of an affine, smooth, and geometrically connected curve over a field of char-
acteristic 0 (cf. [Grothendieck], Exposé XIII, Corollaire 2.12). In this paper we
investigate the structure of a certain quotient of the geometric étale fundamental
group of a formal fibre of a p-adic curve.

Let R be a complete discrete valuation ring, K = Fr(R) its quotient field, and k
its residue field which we assume to be algebraically closed of characteristic p ≥ 0.
LetX be a proper, flat, and normal formalR-curve whose special fibreXk is reduced
and consists of n ≥ 1 distinct irreducible components {Pi}ni=1 which intersect at a

(closed) point x ∈ Xk(k), and x is the unique singular point of Xk. Write P̃i → Pi

for the morphism of normalisation. We assume P̃i = P1
k is a projective line, the

morphism P̃i → Pi is a homeomorphism, and if xi is the (unique) pre-image of x

in P̃i then xi ∈ P̃i(k) is the zero point of P̃i. In particular, the configuration of
the irreducible components of Xk is tree-like. The formal curve X has a formal
covering X = B ∪ D1 ∪ . . . ∪ Dn where B ⊂ X is a formal sub-scheme with
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special fibre Bk = Xk \ {∞i}ni=1 (∞i is the image in Pi of the infinity point of

P̃i, 1 ≤ i ≤ n), Di = Spf〈 1
Ti
〉 is an R-formal closed unit disc with special fibre

Di,k = Pi \ {x} and generic fibre Di,K = SpK〈 1
Ti
〉 which is a closed unit K-

rigid disc centred at the point ∞i ∈ Di,K(K) (which specialises in ∞i ∈ Di,k),

1 ≤ i ≤ n. Write F def
= Fx = Spf ÔX,x for the formal germ of X at x and

FK
def
= Fx,K = Spec(ÔX,x ⊗R K) for the formal fibre of the generic fibre XK

of the algebraisation of X at x (cf. 1.2 for more details, as well as Remark 3.1
which asserts that any formal germ of a formal R-curve at a closed point admits a
compactification as above).

Let S ⊂ FK be a (possibly empty) finite set of closed points. Write π1(FK \S)geo

for the geometric étale fundamental group of FK\S (in the sense of Grothendieck, cf.
1.3 for more details), and consider the quotient π1(FK\S)geo � π̂1(FK\S)geo which

classifies finite coverings Y ′ → F ′ def
= F×RR

′, where R′/R is a finite extension, Y ′ is
normal and geometrically connected, which are étale above FK′ \ SK′ (K ′

def
= FrR′

and SK′
def
= S ×K K ′) and étale above the generic points of Fk (cf. loc. cit.).

Similarly, write π1(XK \ (S ∪ {∞i}ni=1))geo for the geometric étale fundamental
group of the affine curve XK \ (S ∪ {∞i}ni=1) and consider the quotient π1(XK \
(S ∪ {∞i}ni=1))geo � π̂1(XK \ (S ∪ {∞i}ni=1); {∞i}ni=1)geo which classifies finite
coverings Y ′ → XR′ which are étale above XK′ \(SK′ ∪{∞i}ni=1), possibly ramified
above the points {∞i}ni=1 with ramification indices prime-to-p, and which are étale
above the generic points of Xk (here R′, K ′ and SK′ are as above). We also write

π̂1(XK \(S∪{∞i}ni=1))geo,p def
= π̂1(XK \(S∪{∞i}ni=1); {∞i}ni=1)geo,p (resp. π̂1(FK \

S)geo,p) for the maximal pro-p quotient of π̂1(XK \(S∪{∞i}ni=1); {∞i}ni=1)geo (resp.
π̂1(FK \ S)geo). Our first main result is the following (cf. Theorem 3.2).

Theorem 1. The (scheme) morphism FK → XK induces a continuous homo-
morphism π̂1(FK \ S)geo → π̂1(XK \ (S ∪ {∞i}ni=1); {∞i}ni=1)geo (resp. π̂1(FK \
S)geo,p → π̂1(XK \ (S ∪{∞i}ni=1); {∞i}ni=1)geo,p) which makes π̂1(FK \S)geo (resp.
π̂1(FK \S)geo,p) into a semi-direct factor (cf. Definition 1.1.4 and Lemma 1.1.5) of
π̂1(XK \ (S ∪{∞i}ni=1); {∞i}ni=1)geo (resp. π̂1(XK \ (S ∪{∞i}ni=1); {∞i}ni=1)geo,p).
In particular, the above homomorphisms are injective.

In the course of proving Theorem 1 (cf. proof of Theorem 3.2) we prove the
following.

Theorem 2. Let f : Y → F be a finite (Galois) covering with Y normal and
geometrically connected, which is étale above FK \ S and above the generic points
of Fk. Then there exists, after possibly a finite extension of K, a finite (Galois)

covering f̃ : Y → X of formal schemes with Y normal and geometrically connected,
which is étale above XK \ (S ∪ {∞i}ni=1) and above the generic points of Xk, is
possibly ramified above the points {∞i}ni=1 with ramification indices prime-to-p,
and which induces by pull back via the (scheme) morphism F → X the covering f .

Let gx
def
= genus(XK), which is also called the genus of the formal fibre FK .

Write π1(FK \ S, η)geo,p′
(resp. π1(XK \ (S ∪ {∞i}ni=1), η)geo,p′

) for the maximal
prime-to-p quotient of the geometric étale fundamental group π1(FK \S, η)geo (resp.
π1(XK \(S∪{∞i}ni=1), η)geo). Our second main result is the following (cf. Theorem
3.4).
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Theorem 3. Let S(K) = {y1, . . . , ym} of cardinality m ≥ 0. Then the continuous

homomorphism π1(FK \ S, η)geo,p′ → π1(XK \ (S ∪ {∞i}ni=1), η)geo,p′
(induced by

the (scheme) morphism FK → XK) is an isomorphism. In particular, π1(FK \
S, η)geo,p′

is (pro-)prime-to-p free of rank 2gx + n+m− 1 and can be generated by
2gx +n+m generators {a1, . . . , ag, b1, · · · , bg, σ1, . . . , σn, τ1, . . . , τm} subject to the
unique relation

∏g
i=1[ai, bi]

∏n
j=1 σj

∏m
t=1 τt = 1, where σj (resp τt) is a generator

of inertia at ∞i (resp. yt).

Next, we outline the content of the paper. In §1 we collect some well-known
background material. In §2 we investigate a certain quotient of the absolute Galois
group of a formal boundary of a formal germ of a p-adic curve and prove Proposition
2.5 which is used in the proof of Theorem 1. In §3 we prove Theorems 1 and 3.

Notations. In this paper K is a complete discrete valuation field, R its valuation

ring, π a uniformising parameter, and k
def
= R/πR the residue field which we assume

to be algebraically closed of characteristic p ≥ 0.
We refer to [Raynaud], 3, for the terminology we will use concerning K-rigid

analytic spaces, R-formal schemes, as well as the link between formal and rigid

geometry. For an R-(formal) scheme X we will denote by XK
def
= X ×R K (resp.

Xk
def
= X×Rk) the generic (resp. special) fibre of X (the generic fibre is understood

in the rigid analytic sense in the case where X is a formal scheme). Moreover, if X =

Spf A is an affine formal R-scheme of finite type we denote by XK
def
= Sp(A⊗R K)

the associated K-rigid affinoid space and will also denote, when there is no risk of

confusion, by XK the affine scheme XK
def
= Spec(A⊗R K).

A formal (resp. algebraic) R-curve is an R-formal scheme of finite type (resp.
R-scheme of finite type) flat, separated, and whose special fibre is equi-dimensional
of dimension 1. For a K-scheme (resp. K-rigid analytic space) X and L/K a field

extension (resp. a finite extension) we write XL
def
= X ×K L which is an L-scheme

(resp. an L-rigid analytic space). If X is a proper and normal formal R-curve
we also denote, when there is no risk of confusion, by X the algebraisation of X
which is an algebraic R-curve and by XK the proper normal and algebraic K-curve
associated to the rigid K-curve XK via the rigid GAGA functor.

For a profinite group H and a prime integer ` we denote by H` the maximal
pro-` quotient of H, and H`′ the maximal prime-to-` quotient of H.

§1 Background. In this section we collect some background material used in this
paper.

1.1. Let p > 1 be a prime integer. We recall some well-known facts on profinite
pro-p groups. First, we recall the following characterisations of free pro-p groups.

Proposition 1.1.1. Let G be a profinite pro-p group. Then the following properties
are equivalent.
(i) G is a free pro-p group.
(ii) The p-cohomological dimension of G satisfies cdp(G) ≤ 1.
In particular, a closed subgroup of a free pro-p group is free.

Proof. Well-known (cf. [Serre], and [Ribes-Zalesskii], Theorem 7.7.4). �

Next, we recall the notion of a direct factor of a free pro-p group (cf. [Garuti],
1, the discussion preceding Proposition 1.8, and [Säıdi], §1).
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Definition/Lemma 1.1.2 (Direct factors of free pro-p groups). Let F be
a free pro-p group, H ⊆ F a closed subgroup, and ι : H → F the natural ho-
momorphism. We say that H is a direct factor of F if there exists a continuous
homomorphism s : F → H such that s ◦ ι = idH . There exists then a (non unique)
closed subgroup N of F such that F is isomorphic to the free direct product H ?N .
We will refer to such a subgroup N as a supplement of H.

Proof. See [Säıdi] Lemma 1.1.2. �

One has the following cohomological characterisation of direct factors of free
pro-p groups.

Proposition 1.1.3. Let H be a pro-p group, F a free pro-p group, and σ : H → F
a continuous homomorphism. Assume that the map induced by σ on cohomology

h1(σ) : H1(F,Z/pZ)→ H1(H,Z/pZ)

is surjective, where Z/pZ is considered as a trivial discrete module. Then σ induces

an isomorphism H
∼→ σ(H) and σ(H) is a direct factor of F . In particular, H is

pro-p free. We say that σ makes H into a direct factor of F .

Proof. cf. [Garuti], Proposition 1.8 and Proposition 1.1.1 above. �

Next, we consider the notion of a semi-direct factor of a profinite group.

Definition 1.1.4 (Semi-direct factors of profinite groups). Let G be a profi-
nite group, H ⊆ G a closed subgroup, and ι : H → G the natural homomorphism.
We say that H is a semi-direct factor of G if there exists a continuous homomor-
phism s : G→ H such that s ◦ ι = idH (s is necessarily surjective).

Lemma 1.1.5. Let τ : H → G be a continuous homomorphism between profinite
groups. Write H = lim←−

j∈J
Hj as the projective limit of the inverse system {Hj , φj′j , J}

of finite quotients Hj of H with index set J . Suppose there exists, ∀j ∈ J , a
surjective homomorphism ψj : G � Hj such that τ ◦ ψj : H � Hj is the natural
map and ψj = φj′j◦ψj′ whenever this makes sense. Then τ induces an isomorphism

H
∼→ τ(H) and τ(H) is a semi-direct factor of G. We say that τ makes H into a

semi-direct factor of G.

Proof. Indeed, the {ψj}j∈J give rise to a continuous (necessarily surjective) homo-
morphism ψ : G→ H which is a right inverse of τ . �

1.2. Formal Patching. Next, we explain the procedure which allows to construct
(Galois) coverings of curves in the setting of formal geometry by patching coverings
of formal (affine, non-proper) curves with coverings of formal germs at closed points
of the special fibre along the boundaries of these formal germs.

1.2.1. Let X be a proper, normal, formal R-curve with Xk reduced. For x ∈ X a

closed point let Fx
def
= Spf ÔX,x be the formal completion of X at x which we will

refer to as the formal germ of X at x. Thus, ÔX,x is the completion of the local

ring of the algebraisation of X at x. Write Fx,K
def
= Spec(ÔX,x ⊗R K). We will

refer to Fx,K as the formal fibre of XK at x. Let {Pi}ni=1 be the minimal prime

ideals of ÔX,x which contain π; they correspond to the branches {ηi}ni=1 of the
completion of Xk at x (i.e., closed points of the normalisation of Xk above x), and
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Xi = Xx,i
def
= Spf Ôx,Pi

the formal completion of the localisation of Fx at Pi. The

local ring Ôx,Pi
is a complete discrete valuation ring with uniformiser π. We refer

to {Xi}ni=1 as the set of boundaries of the formal germ Fx. We have a canonical
morphism Xi → Fx of formal schemes, 1 ≤ i ≤ n.

Let Z be a finite set of closed points of X and U ⊂ X a formal sub-scheme of X

whose special fibre is Uk
def
= Xk \ Z.

Definition 1.2.2. We use the notations above. A (G-)covering patching data for
the pair (X,Z) consists of the following.
(i) A finite (Galois) covering V → U of formal schemes (with Galois group G).
(ii) For each point x ∈ Z, a finite (Galois) covering Yx → Fx of formal schemes
(with Galois group G).

The above data (i) and (ii) must satisfy the following compatibility condition.
(iii) If {Xi}ni=1 are the boundaries of the formal germ at the point x, then for
1 ≤ i ≤ n is given a (G-equivariant) Xi-isomorphism

Yx ×Fx Xi
∼→ V ×U Xi.

Property (iii) should hold for each x ∈ Z. (Note that there are natural morphisms
Xi → U of formal schemes, 1 ≤ i ≤ n.)

The following is the main patching result that we will use in this paper (cf.
[Pries], Theorem 3.4, [Harbater], Theorem 3.2.8).

Proposition 1.2.3. We use the notations above. Given a (G-)covering patching
data as in Definition 1.2.2 there exists a unique, up to isomorphism, (Galois) cov-
ering Y → X of formal schemes (with Galois group G) which induces the above
(G-)covering in Definition 1.2.2(i) when restricted to U , and induces the above
(G-)covering in Definition 1.2.2(ii) when pulled-back to Fx for each point x ∈ Z.

1.2.4. With the same notations as above, let x ∈ X be a closed point and X̃k

the normalisation of Xk. There is a one-to-one correspondence between the set of

points of X̃k above x and the set of boundaries of the formal germ of X at the

point x. Let xi be the point of X̃k above x which corresponds to the boundary Xi,

1 ≤ i ≤ n. Then the completion of X̃k at xi is isomorphic to the spectrum of a
ring of formal power series k[[ti]] over k where ti is a local parameter at xi. The

complete local ring Ôx,Pi is a discrete valuation ring with uniformiser π and residue

field isomorphic to k((ti)). Fix an isomorphism k((ti))
∼→ Ôx,Pi

/π. Let Ti ∈ Ôx,Pi

be an element which lifts (the image in Ôx,Pi/π under the above isomorphism of)

ti; we shall refer to such an element Ti as a parameter of Ôx,Pi
, or of the boundary

Xi. Then there exists an isomorphism R[[Ti]]{T−1
i }

∼→ Ôx,Pi , where

R[[T ]]{T−1} def
=
{ ∞∑

i=−∞
aiT

i, lim
i→−∞

|ai| = 0
}

and | | is a normalised absolute value of R (cf. [Bourbaki], §2, 5).

1.3. Let X be a normal and geometrically connected flat R-scheme (resp. R-formal
affine scheme) whose special fibre is equidimensional of dimension 1, F ⊂ XK a
finite set of closed points, and η a geometric point of X above its generic point.
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Then η determines an algebraic closure K of K and we have an exact sequence of
arithmetic fundamental groups

1→ π1(XK \ F, η)geo → π1(XK \ F, η)→ Gal(K/K)→ 1,

where π1(XK \ F, η)geo def
= Ker

(
π1(XK \ F, η) � Gal(K/K)

)
is the geometric fun-

damental group of XK with generic point η. (In case X = Spf A is formal affine

we define π1(XK , η)
def
= π1(SpecAK , η) and similarly we define π1(XK \ F, η), cf.

[Säıdi], 2.1.)

Definition 1.3.1. Let S, T ⊂ XK be (possibly empty) finite sets of closed points
(which we also view as reduced closed sub-schemes of XK). Assume that the special

fibre Xk of X is reduced. Let I
def
= IXk,T ⊂ π1(XK \ (S ∪ T ), η)geo be the subgroup

normally generated by the inertia subgroups above the generic points of Xk and
the pro-p Sylow subgroups of the inertia groups above all points in T . We define

π̂1(XK \ (S ∪ T );T, η)geo def
= π1(XK \ (S ∪ T ), η)geo/I

and refer to it as the geometric étale fundamental group of XK \ (S ∪T ); with base
point η, generically étale above Xk and tamely ramified above T . In case T = ∅ and

UK
def
= XK \ S we simply write π̂1(UK , η)geo def

= π̂1(XK \ S; ∅, η)geo.

Note that the definition of π̂1(XK \ (S ∪ T );T, η)geo depends on the model X
of XK (the model X of XK will be fixed in later discussions in this paper). The

profinite group π̂1(XK \ (S ∪ T );T, η)geo classifies finite covers f : YL → XL
def
=

X ×K L where L/K is a finite extension with valuation ring RL, which are étale

above XL \ (S ∪ T )L (here (S ∪ T )L
def
= (S ∪ T ) ×K L) and possibly ramified

with ramification indices prime-to-p above the points in TL
def
= T ×K L, YL is

geometrically connected, and such that f extends after possibly a finite extension

of L to a finite cover f̃ : Y → XRL

def
= X×RRL with Y normal and f̃ is étale above

the generic points of Xk. Note that if X is a smooth R-formal affine scheme as
above which is an R-formal curve then π̂1(XK , η)geo is isomorphic to the geometric
étale fundamental group of the affine scheme Xk as follows from the theorems of
liftings of étale coverings (cf. [Grothendieck], Exposé I, Corollaire 8.4) and the
theorem of purity of Zarizski-Nagata (cf. loc. cit. Exposé X, Théorème de pureté

3.1). Note also that π̂1(XK \ (S ∪ T );T, η)geo,p′
= π1(XK \ (S ∪ T ), η)geo,p′

, as
follows easily from Abhyankar’s lemma (cf. loc. cit. Exposé X, Lemme 3.6).

§2. Geometric Galois groups of formal boundaries of formal germs of
p-adic formal curves. In this section we investigate the structure of a certain
quotient of the geometric Galois group of a formal boundary of a formal germ of a
formal R-curve. The results in this section will be used in §3.

Let D
def
= Spf R〈 1

T 〉 be the formal standard R-closed unit disc and DK
def
=

SpK〈 1
T 〉 its generic fibre which is the standard rigid K-closed unit disc centred

at ∞. Write X = Spf R[[T ]]{T−1} and XK
def
= Spec(R[[T ]]{T−1} ⊗R K). We have

natural morphisms X → D of formal R-schemes, and XK → DK of K-schemes (cf.
Notations). Let η be a geometric point of XK with value in its generic point which
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determines a generic point of DK ; which we denote also η, as well as algebraic clo-

sures K of K, k of k, and M of M
def
= Fr(R[[T ]]{T−1}). We have an exact sequence

of Galois groups

1→ Gal(M/K.M)→ Gal(M/M)→ Gal(K/K)→ 1.

Let I
def
= I(Xk) ⊂ Gal(M/K.M) be the subgroup normally generated by the

inertia subgroups above the generic point of Xk. Write ∆
def
= Gal(M/K.M)/I and

Γ
def
= ∆p′

. We have an exact sequence

1→ P → ∆→ Γ→ 1,

where P
def
= Ker(∆ � Γ).

Lemma 2.1. With the notations above, P is the unique pro-p Sylow subgroup of ∆,
P is pro-p free, and Γ is canonically isomorphic to the maximal prime-to-p quotient
Ẑ(1)p

′
of the Tate twist Ẑ(1).

Proof. Indeed, it follows from the various Definitions that ∆ is isomorphic to the
absolute Galois group of k((t)) which is known to be an extension of Ẑ(1)p

′
by a

free pro-p group. �

Lemma 2.2. Assume p > 0. Then the pro-p group π̂1(DK , η)geo,p is free.

Proof. Indeed, it follows from the various Definitions that π̂1(DK , η)geo,p is isomor-
phic to the maximal pro-p quotient of the geometric fundamental group of Dk = A1

k

which is pro-p free (cf. [Serre1], Proposition 1). �

Proposition 2.3. Assume p > 0. Then the homomorphism ∆ → π̂1(DK , η)geo

induced by the morphism XK → DK induces a homomorphism ∆p → π̂1(DK , η)geo,p

which makes ∆p into a direct factor of π̂1(DK , η)geo,p. Moreover, ∆p is a free pro-p
group of infinite rank.

Proof. We show that the map ψ : H1(π̂1(DK , η)geo,Z/pZ)→ H1(∆,Z/pZ) induced
by the homomorphism ∆ → π̂1(DK , η)geo on cohomology is surjective (cf. Propo-

sition 1.1.3). Let f̃ : ∆ � Z/pZ be a surjective homomorphism and f : Y → X
the corresponding Galois cover (which we can assume, without loss of generality,
defined over K) with Y normal, geometrically connected, and f is étale above the
generic point of Xk (hence f is étale above X ). Thus, fk : Yk → Xk = Spec k((t))
is an étale Z/pZ-torsor. By Artin-Schreier theory the torsor fk can be approx-
imated by a Galois cover gk : Yk → P1

k of degree p which is étale outside the
point t = 0 and whose completion above this point is isomorphic to fk. The étale

Z/pZ-torsor g−1
k (A1

k) → A1
k

def
= P1

k \ {t = 0} = Spec k[ 1
t ] lifts (uniquely up to iso-

morphism) to an étale Z/pZ-torsor g : ZK → DK by the theorems of liftings of
étale covers (cf. [Grothendieck], Exposé I, Corollaire 8.4) which gives rise to a
class in H1(π̂1(DK , η)geo,Z/pZ) that is easily verified to map to the class of f in
H1(∆,Z/pZ). Moreover, ∆p has infinite rank as it is isomorphic to the maximal
pro-p quotient of the absolute Galois group of k((t)) which is known to be free of
infinite rank. �

Write Γ̃
def
= π̂1(DK \ {∞}; {∞}, η)geo,p′

= π1(DK \ {∞}, η)geo,p′
(cf. 1.3) for the

maximal prime-to-p quotient of π̂1(DK \ {∞}; {∞}, η)geo.
7



Lemma 2.4. The morphism XK → DK induces a canonical homomorphism Γ→ Γ̃

which is an isomorphism. In particular, Γ̃ is (canonically) isomorphic to Ẑ(1)p
′
.

Proof. Follows easily from the fact that a Galois covering YK → DK of order prime-
to-p with YK geometrically connected, ramified only above ∞ is, possibly after a
finite extension of K and for a suitable choice of the parameter T of DK , generically
a µn-torsor given generically by the equation Sn = T for some positive integer n
prime-to-p. �

Consider the following exact sequence

1→ H→ π̂1(DK \ {∞}; {∞}, η)geo → Γ̃→ 1,

where H def
= Ker(π̂1(DK \{∞}; {∞}, η)geo � Γ̃). Further, let P̃

def
= Hp be the maxi-

mal pro-p quotient of H. By pushing out the above sequence by the (characteristic)

quotient H� P̃ we obtain an exact sequence

1→ P̃ → ∆̃→ Γ̃→ 1.

Proposition 2.5. The morphism XK → DK induces a commutative diagram of
exact sequences

1 −−−−→ P −−−−→ ∆ −−−−→ Γ −−−−→ 1y y y
1 −−−−→ P̃ −−−−→ ∆̃ −−−−→ Γ̃ −−−−→ 1

where the right vertical homomorphism Γ→ Γ̃ is an isomorphism (cf. Lemma 2.4)

and the middle vertical homomorphism ∆ → ∆̃ makes ∆ into a semi-direct factor

of ∆̃ (cf. Lemma 1.1.5).

Proof. Let ∆ � G be a finite quotient which sits in an exact sequence 1 → Q →
G→ Γn → 1 where Γn is the unique quotient of Γ of cardinality n; for some integer
n prime-to-p, with Q a p-group (cf. Lemma 2.1). We will show there exists a

surjective homomorphism ∆̃ � G whose composition with ∆ → ∆̃ is the above
homomorphism. We can assume, without loss of generality, that the corresponding
Galois covering f : Y → X with group G is defined over K, Y is normal and
connected, and f is étale. This covering factorises as Y → X ′ → X where X ′ → X
is Galois with group Γn

∼→ µn and Y → X ′ is Galois with group Q. After possibly
a finite extension of K the µn-torsor X ′ → X extends to a generically µn-torsor
D′ → D defined generically by an equation Sn = T , for a suitable choice of the
parameter T of D, which is (totally) ramified only above ∞, D′ = Spf R〈 1

S 〉 is a
closed formal unit disc centred at the unique point; which we denote also∞, above

∞ ∈ D and X ′ = Spf R[[S]]{S−1} (cf. Lemma 2.4 and the isomorphism Γ
∼→ Γ̃

therein).
For the rest of the proof we assume p > 0. By Proposition 2.3, applied to

X ′ → D′, there exists (after possibly a finite extension of K) an étale Galois
covering Y → D′ with group Q, Y is normal and geometrically connected, and
such that we have a commutative diagram of cartesian squares

Y −−−−→ X ′ −−−−→ Xy y y
Y −−−−→ D′ −−−−→ D.
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Next, we borrow some ideas from [Garuti] (preuve du Théorème 2.13). We claim one
can choose the above (geometric) covering Y → D′ such that the finite composite
covering Y → D is Galois with group G. Indeed, consider the quotient ∆ � ∆X ′

(resp. ∆̃ � ∆̃D′) of ∆ (resp. ∆̃) which sits in the following exact sequence

1→ PX ′ → ∆X ′ → Γn → 1 where PX ′
def
= π̂1(X ′, η)geo,p (resp. 1→ P̃D′ → ∆̃D′ →

Γ̃n → 1 where P̃D′
def
= π̂1(D′, η)geo,p). We have a commutative diagram of exact

sequences

1 −−−−→ PX ′ −−−−→ ∆X ′ −−−−→ Γn −−−−→ 1y y y
1 −−−−→ P̃D′ −−−−→ ∆̃D′ −−−−→ Γ̃n −−−−→ 1

where the right vertical map is an isomorphism (cf. Lemma 2.4). The choice of
a splitting of the upper sequence in the above diagram (which splits since PX ′ is

pro-p and Γn is cyclic (pro-)prime-to-p) induces an action of Γn on P̃D′ and PX ′

is a direct factor of P̃D′ (cf. Proposition 2.3) which is stable by this action of Γn.

Further, PX ′ has a supplement E in P̃D′ which is invariant under the action of Γn

by [Garuti], Corollaire 1.11. The existence of this supplement E implies that one
can choose Y → D′ as above such that the finite composite covering Y → D is
Galois with group G. More precisely, if the Galois covering Y → X ′ corresponds
to the surjective homomorphism ρ : PX ′ � Q (which is stable by Γn since Y → X
is Galois) then we consider the Galois covering Y → D′ corresponding to the

surjective homomorphism P̃D′ = PX ′ ?E � Q which is induced by ρ and the trivial
homomorphism E → Q, which is stable by Γn.

The above construction can be performed in a functorial way with respect to the
various finite quotients of ∆. More precisely, let {φj : ∆ � Gj}j∈J be a cofinal
system of finite quotients of ∆ where Gj sits in an exact sequence 1 → Qj →
Gj → Γnj → 1, for some integer nj prime-to-p, and Qj a p-group. Assume we
have a factorisation ∆ � Gj′ � Gj for j′, j ∈ J . Thus, nj divides nj′ , and we
can assume without loss of generality (after replacing the group extension Gj by

its pull-back via Γn′
j
� Γnj

) that n
def
= nj = nj′ . With the above notations we then

have surjective homomorphisms ρj′ : PX ′ � Qj′ , ρj : PX ′ � Qj (which are stable
by Γn), and ρj factorises through ρj′ . Then we consider the Galois covering(s)
Yj′ → D′ (resp. Yj → D′) corresponding to the surjective homomorphism(s) ψj′ :

P̃D′ = PX ′ ? E � Q (resp. ψj : P̃D′ = PX ′ ? E � Q) which are induced by
ρj′ (resp. ρj) and the trivial homomorphism E → Q, which are stable by Γn

and ψj factorises through ψj′ . We deduce from this construction the existence of a

surjective continuous homomorphism ∆̃ � ∆ which is a right inverse to the natural

homomorphism ∆→ ∆̃ (cf. Lemma 1.1.5). �

§3 Geometric fundamental groups of formal fibres of p-adic curves. In
this section we investigate the structure of π̂1 of a formal fibre of a K-curve. Let
X be a proper, normal, formal R-curve whose special fibre Xk is reduced and
consists of n ≥ 1 distinct irreducible components {Pi}ni=1 which intersect at a

(closed) point x ∈ Xk(k), and x is the unique singular point of Xk. Write P̃i → Pi

for the morphism of normalisation. We assume P̃i = P1
k is a projective line, the

morphism P̃i → Pi is a homeomorphism, and if xi is the (unique) pre-image of x
9



in P̃i then xi ∈ P̃i(k) is the zero point of P̃i. In particular, the configuration of
the irreducible components of Xk is tree-like. The formal curve X has a formal
covering X = B ∪ D1 ∪ . . . ∪ Dn where B ⊂ X is a formal sub-scheme with

special fibre Bk = Xk \ {∞i}ni=1, ∞i is the image in Pi of the infinity point of P̃i,
Di = Spf R〈 1

Ti
〉 is an R-formal closed unit disc with special fibre Di,k = Pi \ {x}

and generic fibre Di,K = SpK〈 1
Ti
〉 which is a closed unit K-rigid disc centred

at the point ∞i ∈ Di,K(K) which specialises into the infinity point ∞i ∈ Pi,

1 ≤ i ≤ n. Write F def
= Fx = Spf ÔX,x for the formal germ of X at x and

FK
def
= Fx,K = Spec(ÔX,x ⊗R K) for the formal fibre of XK at x (cf. 1.2.1). For

1 ≤ i ≤ n, let Xi be the formal boundary of F corresponding to the point xi
above. The completion of the normalisation Xnor

k of Xk at xi is isomorphic to
the spectrum of a ring of formal power series k[[ti]] in one variable over k, and

Xi
∼→ Spf R[[Ti]]{T−1

i } (cf. 1.2.4).

Remark 3.1. Let Ỹ be a proper and normal formal R-curve with Ỹk reduced and

y ∈ Ỹ (k) a closed point. Write G def
= Gy = Spf ÔỸ ,y for the formal germ of Ỹ at

y and GK
def
= Gy,K = Spec(ÔỸ ,y ⊗R K) for the formal fibre of ỸK at y (cf. 1.2.1).

Let {Yi}ni=1 be the set of formal boundaries of G, and yi ∈ (Ỹk)nor(k) the point

of the normalisation (Ỹk)nor of Ỹk above y which corresponds to the boundary Yi,
1 ≤ i ≤ n. The completion of (Ỹk)nor at yi is isomorphic to the spectrum of a

ring of formal power series k[[si]] in one variable over k and Yi
∼→ Spf R[[Si]]{S−1

i }
(cf. 1.2.4). One can construct a compactification of G (as in the above discussion

where G = F) which is a formal and proper R-curve Y
def
= Yy obtained by patching

an R-formal closed unit disc Yi = Spf R〈 1
Si
〉 with G along the boundary Yi, for

1 ≤ i ≤ n. The resulting formal R-curve Y has a special fibre Yk consisting of
n distinct reduced irreducible components {Qi}ni=1 which intersect at the (closed)

point y, and y is the unique singular point of Yk. Moreover, if we write Q̃i → Qi for

the morphism of normalisation then Q̃i = P1
k is a projective line and the morphism

Q̃i → Qi is a homeomorphism. By construction the formal germ (resp. formal
fibre) of Y (resp. of YK) at the closed point y is isomorphic to G (resp. GK).
(cf. [Bosch-Lütkebohmert], Definition 4.4, for a rigid analytic construction of the

generic fibre Y rig
K

def
= YK of the above compactification Y endowed with a formal

covering corresponding to the above formal model Y of YK , as well as [Bosch],
Theorem 5.8, for the invariance of the formal germ at y under this construction.)

Let η be a geometric point of FK with value in its generic point which induces a
geometric point η of XK via the natural (scheme theoretic) morphism FK → XK

(cf. Notations) and determines an algebraic closure K of K. Let S ⊂ FK be a
(possibly empty) finite set of closed points. We have an exact sequence of arithmetic
fundamental groups

1→ π1(FK \ S, η)geo → π1(FK \ S, η)→ Gal(K/K)→ 1,

where π1(FK \S, η)geo def
= Ker(π1(FK \S, η) � Gal(K/K)). Write π̂1(FK \S, η)geo

for the quotient of π1(FK \S, η)geo defined in 1.3.1. Thus, π̂1(FK \S, η)geo classifies
finite (geometric) coverings Y → F (which we assume without loss of generality
defined over K) with Y normal and geometrically connected, which are étale above
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FK \S and above the generic points of Fk. Write UK
def
= XK \(S∪{∞i}ni=1) which is

an affine curve and π̂1(UK ; {∞i}ni=1, η)geo def
= π̂1(XK \(S∪{∞i}ni=1); {∞i}ni=1, η)geo

for the quotient of π1(UK , η)geo defined in 1.3.1. Thus, π̂1(UK ; {∞i}ni=1, η)geo classi-
fies finite (geometric) coverings Y → X (which we assume without loss of generality
defined over K) with Y normal and geometrically connected, which are étale above
XK \ (S ∪ {∞i}ni=1), are possibly ramified above the points {∞i}ni=1 with ramifi-
cation indices prime-to-p, and are étale above the generic points of Xk. One of our
main results is the following.

Theorem 3.2. The (scheme) morphism FK → XK induces a continuous homo-
morphism π̂1(FK \ S, η)geo → π̂1(UK ; {∞i}ni=1, η)geo (resp. π̂1(FK \ S, η)geo,p →
π̂1(UK ; {∞i}ni=1, η)geo,p) which makes π̂1(FK \ S, η)geo (resp. π̂1(FK \ S, η)geo,p)
into a semi-direct factor of π̂1(UK ; {∞i}ni=1, η)geo (resp. π̂1(UK ; {∞i}ni=1, η)geo,p).

Proof. We prove the first assertion by showing the criterion in Lemma 1.1.5 is sat-
isfied. Let π̂1(FK \S, η)geo � G be a finite quotient (which we can assume without
loss of generality) corresponding to a finite Galois covering f : Y → F with group
G, with Y normal and geometrically connected, which is étale above FK \ S and
above the generic points of Fk. We will show the existence of a surjective homo-
morphism π̂1(UK ; {∞i}ni=1, η)geo � G whose composite with π̂1(FK \ S, η)geo →
π̂1(UK ; {∞i}ni=1, η)geo is the above homomorphism. For 1 ≤ i ≤ n, let fi : Yi =
∪ni
j=1Yi,j → Xi be the pull-back of f to Xi via the natural morphism Xi → F ;

{Yi,j}ni
j=1 are the connected components of Yi and the morphism fi,j : Yi,j → Xi

induced by fi is Galois with group Gj a subgroup of G. Thus, Gj is a quotient of

π̂1(Xi, ηi) (ηi is a suitable base point of Xi). Fix 1 ≤ j0 ≤ nj , then fi
∼→ IndG

Gj0
fi,j0

is an induced cover (cf. [Raynaud], 4.1). By Proposition 2.5 there exists (after pos-

sibly a finite extension of K) a finite Galois covering f̃i,j0 : Yi,j0 → Di with group
Gj0 , where Yi,j0 is normal and geometrically connected, whose pull-back to Xi via

the natural morphism Xi → Di is isomorphic to fi,j0 . Further, the morphism f̃i,j0,
is ramified above Di,K possibly only above ∞i with ramification index prime-to-p,

and f̃i,j0 is étale above the generic point of Di,k. Let f̃i : Yi
def
= IndG

Gj0
Yi,j0 → Di

be the induced cover (cf. loc. cit.), for 1 ≤ i ≤ n. By Proposition 1.2.3 one

can patch the covering f with the coverings {f̃i}ni=1 to construct a finite Galois

covering f̃ : Y → X between formal R-curves with group G, Y is normal and geo-
metrically connected (since YK is), which gives rise (via the formal GAGA functor)
to a surjective homomorphism π̂1(UK ; {∞i}ni=1, η)geo � G as required. Moreover,
one verifies easily that the above construction can be performed in a functorial way
with respect to the various quotients of π̂1(FK \ S, η)geo (in the sense of lemma
1.1.5) using Proposition 2.5, so that one deduces the existence of a continuous ho-
momorphism π̂1(UK ; {∞i}ni=1, η)geo → π̂1(FK \ S, η)geo which is right inverse to
π̂1(FK \ S, η)geo → π̂1(UK ; {∞i}ni=1, η)geo. The proof of the second assertion is
entirely similar using similar arguments. �

Proposition 3.3. The (scheme) morphism FK → XK induces a continuous ho-

momorphism π̂1(FK \ S, η)geo,p′ → π̂1(UK ; {∞i}ni=1, η)geo,p′
which makes π̂1(FK \

S, η)geo,p′
into a semi-direct factor of π̂1(UK ; {∞i}ni=1, η)geo,p′

.

Proof. The proof follows by using similar arguments to the ones used in the proof
of Theorem 3.2. More precisely, with the notations in the proof of Theorem 3.2
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the morphism Yi,j → Xi in this case is Galois with group µn, where n is an integer
prime-to-p, and extends (uniquely, possibly after a finite extension of K) to a cyclic
Galois covering Yi,j → Di of degree n ramified only above ∞i (cf. Lemma 2.1 and
Lemma 2.4).

In [Säıdi1] we defined the genus gx of the closed point x of X, whose definition
depends only on the local (étale) structure of Xk at x, and which equals the genus
of the proper, connected, and smooth K-curve XK constructed above (cf. loc. cit.
Lemma 3.3.1 and the discussion before it). (The genus gx of x is also called the
genus of the formal fibre FK .)

Theorem 3.4. Let S(K) = {y1, . . . , ym} of cardinality m ≥ 0. Then the contin-

uous homomorphism π1(FK \ S, η)geo,p′ → π1(XK \ (S ∪ {∞i}ni=1), η)geo,p′
(cf.

Proposition 3.3) is an isomorphism. In particular, π1(FK \ S, η)geo,p′
is (pro-

)prime-to-p free of rank 2gx + n + m − 1 and can be generated by 2gx + n + m
generators {a1, . . . , ag, b1, . . . , bg, σ1, . . . , σn, τ1, . . . , τm} subject to the unique re-
lation

∏g
i=1[ai, bi]

∏n
j=1 σj

∏m
t=1 τt = 1, where σj (resp τt) is a generator of inertia

at ∞i (resp. yt).

Proof. The homomorphism π1(FK \S, η)geo,p′ → π1(XK \ ({∞i}ni=1 ∪S), η)geo,p′
is

injective as follows from Proposition 3.3 (note that π̂1 = π1 in this case). We show
it is surjective. To this end it suffices to show that given a finite Galois covering
f : Y → X with groupG of cardinality prime-to-p, with Y normal and geometrically
connected, which is étale above XK\(S∪{∞i}ni=1), and f̃ : YK → FK its restriction
to FK , then YK is geometrically connected. Equivalently, we need to show (possibly
after passing to a finite extension of K) that f−1(x) consists of a single closed point.
(The set of connected components of YK is in one-to-one correspondence with the
set f−1(x).) We can assume, without loss of generality, that Yk is reduced (cf.
Lemme d’Abhyankar, [Grothendieck], Exposé X, Lemme 3.6). Let y ∈ f−1(x)
and Dy ⊂ G its decomposition group. Let Yi be an irreducible component of Yk
above Pi passing through y, Ỹi → Yi the morphism of normalisation, and Ỹi → P̃i

the natural morphism which is Galois with group DYi
⊂ G the decomposition

group of Yi. The morphism Ỹi → P̃i is étale outside {xi,∞i} by Zariski’s purity
Theorem. Hence DYi

= µn is cyclic of order n, for some integer n prime-to-p, and

the above morphism Ỹi → P̃i is totally ramified above ∞i and xi as follows from
the structure of π1(P1

k̄
\{0,∞})p′

. In particular, DYi
⊂ Dy. Moreover, Yk is regular

outside f−1(x) (cf. [Raynaud], Lemma 6.3.2). We can associate a graph Γ to Yk
whose vertices are the irreducible components of Yk and edges are the closed points
of Yk above x, two vertices Yi and Yi′ passing by a closed point y above x are linked
by the edge y. Assume that f−1(x) has cardinality > 1 and let {y, y′} ⊆ f−1(x)
be two distinct points. Then no irreducible component of Yk passes through both

y and y′ (cf. the above fact that Ỹi → P̃i is totally ramified above xi). More
precisely, if Yi is an irreducible component of Yk then Yi passes through a unique
point y of Yk above x. From this (and the above facts) it follows easily that the
connected components of Γ are in one-to-one correspondence with the elements of
f−1(x) and Γ is disconnected which contradicts the fact that Yk is connected. Thus,
f−1(x) has cardinality 1 necessarily as required. The last assertion follows form the

well-known structure of π1(XK \ (S∪{∞i}ni=1), η)geo,p′
(cf. [Grothendieck], Exposé

XIII, Corollaire 2.12). �
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Examples 3.5. Suppose K is of mixed characteristics with char(k) = p > 0. Let
F = Spf R[[T ]] (resp. F = Spf R[[T1, T2]]/(T1T2 − πe)) be the formal open unit
disc (resp. formal open annulus of thickness e ≥ 1) and S = {y1, . . . , ym} ⊂ F(K)
a set of m ≥ 0 distinct K-rational points (in the second case e > 1 necessar-
ily if m 6= 0). In this case F has a compactification X = P1

R the R-projective
line with parameter T and F is the formal germ at T = 0 (resp. a compact-
ification X which is a formal model of the projective line P1

K consisting of two
formal closed unit discs D1 and D2 centred at ∞1 and ∞2; respectively, which
are patched with F along its two boundaries. The special fibre Xk consists of
two projective lines which intersect at the double point x and F is the formal
germ at x). The results of §3 in this case read as follows. First, the homomorphism
π̂1(FK \S, η)geo → π̂1(P1

K \(T ∪{∞}); {∞}, η)geo (resp. π̂1(FK \S, η)geo → π̂1(P1
K \

(T ∪ {∞1,∞2}); {∞1,∞2}, η)geo) makes π1(FK \ S, η)geo into a semi-direct factor
of π̂1(P1

K \ (T ∪ {∞}); {∞}, η)geo (resp. π̂1(P1
K \ (T ∪ {∞1,∞2}); {∞1,∞2}, η)geo)

and the maximal prime-to-p quotient π1(FK \ S, η)geo,p′
is free of rank m (resp.

m+ 1).
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