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Abstract 

The spatial lag of X model, a linear regression model extended to include explanatory variables 

observed on neighboring cross-sectional units, is the simplest spatial econometric model 

producing flexible spatial spillover effects and the easiest model to parameterize the spatial 

weights matrix, denoted by W, describing the spatial arrangement of the units in the sample. 

Nevertheless, it has received relatively little attention in the theoretical and applied spatial 

econometrics literature. This study fills this gap by considering several extensions of its basic 

form. It is found that the claim made in many empirical studies that their results are robust to 

the specification of W is not sufficiently substantiated. Especially the spatial spillover effects, 

often the main interest of spatial economic and econometric studies, turn out to be sensitive to 

the specification of W. In addition, it is found that the common practice to adopt the same W 

for every spatial lag should be rejected. These findings are illustrated using a cigarette demand 

model based on panel data of 46 U.S. states over the period 1963 to 1992. 
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1. Introduction  

Two of the main interests in the spatial economics and spatial econometrics literature are 

spatial lags and spatial spillover effects. A spatial lag measures the impact of the dependent 

variable (Y), the explanatory variables (X) or the error term (u) observed in other cross-

sectional units j than unit i on the dependent variable of unit i. A spatial spillover effect is 

defined as the marginal impact of a change to one explanatory variable in a particular cross-

sectional unit on the dependent variable values in another unit, and is derived from the 

reduced form of a spatial econometric model. This spillover effect is a useful addition to the 

direct effect which measures the marginal impact of a change to one explanatory variable in a 

particular cross-sectional unit on the dependent variable of that unit itself.  

The spatial econometrics literature distinguishes seven different types of static spatial 

econometric models. The differences between these models depend on the type and number of 

spatial lags that are included. Table 1 provides an overview, including their designations and 

abbreviations. The spatial weights matrix W symbolizes the spatial arrangement of the cross-

sectional units in the sample. If there are N cross-sectional units, W is an N × N matrix describing 

which pairs of units are mutually connected to each other and which are not. If connected, the 

corresponding element is positive; if not, it is set to zero. Recently, Halleck Vega and Elhorst 

(2015) pointed out that the SAR, SEM and SAC models are of limited use in empirical research 

due to initial restrictions on the spillover effects they can potentially produce. In the SAR and 

SAC models the ratio between the spillover effect and the direct effect is the same for every 

explanatory variable, while in the SEM model the spillover effects are set to zero by 

construction. Only in the SLX, SDEM, SDM and GNS models can the spatial spillover effects 

take any value. Since the SLX model is the simplest one in this family of spatial econometric 

models, they recommend taking this model as point of departure when an empirical study 

focuses on spatial spillover effects and an underlying theory justifying any of the other models is 

lacking.  

 

Insert Table 1 

 

A concomitant advantage of the SLX model, in contrast to other spatial econometric 

models, is that W can be parameterized. A detailed explanation follows in Section 3 of this 

paper. Suppose a researcher wants to use a simple parametric approach applied to the elements of 

an inverse distance matrix 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 𝑑𝑑𝛾𝛾⁄ , where γ is a parameter to be estimated, to obtain more 

information on the strength of the connections among the cross-sectional observations rather than 
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to impose a certain specification of W in advance. A nonlinear, but straightforward estimation 

technique can then be used to estimate the parameters of the SLX model‒ the response 

parameters, given γ, and γ given the response parameters can be alternately estimated until 

convergence occurs. If γ appears to be small, observations at distant locations have relatively 

more impact than if this distance decay parameter appears to be large.  

 Notwithstanding these two advantages, there are several potential problems that may 

still cause misspecification. It might be that the true spatial weights matrix W* that generated 

the data may be different from the spatial weights matrix W that is used to model exogenous 

spatial lags (WX). Instead of a parameterized inverse distance decay matrix, W may also be 

specified as a parameterized exponential distance decay matrix. Also, instead of one common 

γ for all spatially lagged explanatory variables, it is also possible to consider one separate γk
 

for every variable WXk (k=1,…,K), where K represents the number of X variables. Another 

option is to model the elements of W by a gravity type of function, i.e., including the size of 

units i and j in terms of population and/or gross product.  

 It may also be the case that the SLX model should still be extended to include a spatial 

lag among the dependent variable (WY) to obtain the SDM or a spatial lag among the error 

terms (Wu) to obtain the SDEM (see Table 1). If so, another interesting question is whether 

the spatial weights matrix of this additional spatial lag may be the same or should be different, 

and whether it can be parameterized as well. Finally, other potential forms of misspecification 

are erroneous omission of relevant explanatory variables from the model, heteroskedasticity, 

and endogeneity of some of the explanatory variables. The aim of this paper is to set out these 

extensions formally, discuss the rationale behind them, illustrate them in an empirical setting, 

and above all, to investigate the impact of these different modeling choices on the magnitude 

of spatial spillover effects. In view of this aim, the paper relates to the traditional theoretical 

econometric literature investigating the consequences of the omission of relevant explanatory 

variables, the introduction of irrelevant explanatory variables and the adoption of a 

misspecified W on the bias, consistency and efficiency of the parameter estimates, and related 

to this, the direct and spatial spillover effects. Many empirical spatial econometric studies 

consider only a few specifications of W and state that their results are robust to this 

specification. We will show that this claim is not sufficiently substantiated since spatial 

spillovers appear to be sensitive to the specification of W. Besides, we briefly discuss to 

which extent test procedures that have been suggested in the literature to deal with these 

specification issues are helpful. 
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 The results derived in this study hold for both cross-sectional data and spatial panels, 

provided that the model specification is homogenous in its parameters. There is an upcoming 

literature of spatial econometric models in which the parameters are heterogeneous, i.e., are 

different for different units in the sample (Aquaro et al., 2015). Generally, the parameters of 

heterogeneous models can only be consistently estimated for spatial panels with a large time 

dimension (T). Whether the results derived in this paper also hold for these models is beyond 

the scope of the current paper, but note that most spatial panel data studies are characterized 

by a large number of observations in the cross-sectional domain (N) relative to T. Related to 

this, there is also an upcoming literature in which spatial econometric models are extended to 

include common factors (Bailey et al., 2016). The results derived in this study also hold for 

these type of models, since the common factors can be treated as additional control variables 

(Halleck Vega and Elhorst, 2016). 

 The setup of this paper is as follows. Section 2 sets out the SLX model and presents 

different parametric specifications of W. Even though the SLX model already covers K of the 

potential K+2 spatial lags, Section 3 deals with the question whether the SLX model should 

be further extended to contain one additional spatial lag, either among WY or Wu. Common 

test procedures developed in the spatial econometrics literature are considered: the (robust) 

Lagrange Multiplier (LM) tests, the general-to-specific approach, the J-test and the Bayesian 

comparison approach. In addition, Section 3 focuses on the question whether W of this 

additional spatial lag may be the same or should be different. Section 4 employs Baltagi and 

Li’s (2004) cigarette demand model, covering 46 U.S. states over the period 1963-1992, to 

demonstrate the impact of these spatial weights matrices and potential extensions of the SLX 

model on the sign, magnitude and significance levels of spatial spillover effects in an empirical 

setting. Finally, Section 5 provides our main conclusions and suggests directions for further 

research. 

 

2. The SLX model and the parameterization of W 

An often criticized aspect of using spatial econometric models is that 𝑊𝑊 is specified in 

advance instead of being estimated along with the parameters in the model (Corrado and 

Fingleton, 2012). There have been many studies that attempt to investigate how robust results 

are to different specifications of 𝑊𝑊 and to determine which one best fits the data using 

criterions such as log-likelihood function values, Bayesian posterior model probabilities, and 
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J-tests. However, parameterizing 𝑊𝑊 would be a further step forward. Halleck Vega and 

Elhorst (2015) show that the SLX model offers that opportunity. This model takes the form 

 

 𝑌𝑌 = 𝛼𝛼𝜄𝜄𝑁𝑁 + 𝑋𝑋𝑋𝑋 + 𝑊𝑊𝑋𝑋𝜃𝜃 + 𝜀𝜀, (1) 

where 𝑌𝑌 represents an 𝑁𝑁 × 1 vector consisting of one observation on the dependent variable 

for every unit in the sample (𝑖𝑖 =  1, … ,𝑁𝑁), 𝜄𝜄𝑁𝑁 is an 𝑁𝑁 × 1 vector of ones associated with the 

constant term parameter α, 𝑋𝑋 denotes an 𝑁𝑁 × 𝐾𝐾 matrix of explanatory variables associated 

with the 𝐾𝐾 × 1 parameter vector β, and ε = (𝜀𝜀1, … , 𝜀𝜀𝑁𝑁)𝑇𝑇 is a vector of independently and 

identically distributed disturbance terms with zero mean and variance σ2. Since W is N × N 

and 𝑋𝑋 is 𝑁𝑁 × 𝐾𝐾, the WX matrix of exogenous spatial lags is also 𝑁𝑁 × 𝐾𝐾. Consequently, the 

vector of response parameters θ is just like β of order 𝐾𝐾 × 1. The spatial spillover effects of 

this model coincide with the parameter estimates θ of the WX variables, and the direct effects 

with the parameter estimates β of the X variables. 

Most studies dealing with geographical units adopt a binary contiguity matrix with 

elements 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 if two units share a common border and zero otherwise (see Table 2 below). 

Arguments in favor of a binary contiguity matrix are given by Stakhovych and Bijmolt 

(2009). They find that first-order contiguity matrices perform better in detecting the true 

model than other spatial weights matrices. It should be stressed, however, that they only test 

the SAR and SEM specifications against each other. Furthermore, the common practice to 

adopt one particular spatial weights matrix can be quite arbitrary and it is preferable to 

compare different specifications with each other and to estimate the degree of distance decay.  

Inspired by the notion that that the connectivity between nearby units will be stronger 

than those further away, the elements of 𝑊𝑊 can be defined based on inverse distances with a 

distance decay factor  

 

 𝑤𝑤𝑖𝑖𝑖𝑖 =  1
𝑑𝑑𝑖𝑖𝑗𝑗𝛾𝛾

, (2) 

 

where dij denotes the distance between observations i and j, and γ is the distance decay 

parameter. A nonlinear, but straightforward estimation technique can be used to estimate the 

parameter γ, which provides more information on the nature of the interdependencies of the 

observations in the sample. For example, if the estimate of γ is small this is an indication that 

the commonly adopted binary contiguity principle is not an accurate representation of the 
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spatial dependence because contiguity can be seen as a restrictive distance measure confining 

interaction between units only to those units that share borders.  

An alternative specification to model distance decay is the negative exponential 

function 

 𝑤𝑤𝑖𝑖𝑖𝑖 =  exp (−𝛿𝛿𝑑𝑑𝑖𝑖𝑖𝑖). (3) 

 

The higher the estimate of the parameter δ implies that units at greater distances influence 

each other less, i.e. the cut-off point of interaction becomes smaller.  

Inspired by Newton’s law of universal gravitation, another option is to model the 

elements of the spatial weights matrix by a gravity type of function. One reason to adopt this 

function is its popularity in the literature explaining flow data. Another reason is that the 

elements of a spatial weights matrix should reflect the degree of spatial interaction between 

units, which is synonymous to the intensity of flows. Examples of studies pointing this out are 

Bavaud (1998) and Corrado and Fingleton (2012, Section 3), among others. Another 

advantage of the gravity model is that it is well embedded in the economic-theoretical 

literature (see Behrens et al., 2012, among others), the lack of which is one of the objections 

put forward against spatial econometric model studies (Corrado and Fingleton, 2012). A 

gravity type of function can be specified as 

 

 
𝑤𝑤𝑖𝑖𝑖𝑖 =  

𝑃𝑃𝑖𝑖
𝛾𝛾1𝑃𝑃𝑗𝑗

𝛾𝛾2

𝑑𝑑𝑖𝑖𝑗𝑗𝛾𝛾3
, (4) 

where P measures the size of units i and j in terms of population and/or gross product.  

Many studies initially assume that the spatial weights matrix is different for different 

spatial lags, but eventually they impose the restriction that each W is exactly the same in 

either their Monte Carlo simulation experiment or their empirical analysis, which is another 

objection often put forward against spatial econometric model studies (McMillen, 2012). 

Instead of (2), the elements of the spatial weights matrix of every exogenous spatial lag WkXk 

may also be modeled as  

 

 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 =  1
𝑑𝑑𝑖𝑖𝑗𝑗𝛾𝛾𝑘𝑘

, (5) 

 

to investigate whether this restriction makes sense.  

It should be stressed that theory should, preferably, be the driving force that 

determines the specification of the functional form of W, as is discussed extensively in 
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Corrado and Fingleton (2012). However, if a substantive theoretical framework is lacking, 

then an option could be to compare the results using alternative functional forms of W. 

Although one might argue that there are still numerous functional forms that can be specified, 

of overriding importance is that by parameterizing W it is tested rather than assumed to which 

extent interaction decreases as the distance between units becomes greater.  

 

3. The extension of SLX to SDM or SDEM 

3.1 The specifications of SDM and SDEM 

To find out whether the SLX model adequately describes the spatial relationships among the 

data, it may be further tested against the SDM and the SDEM. Table 1 shows that the former 

model extends the SLX model to contain an endogenous spatial lag among the dependent 

variables (WY) and the latter model to contain a spatial lag among the error terms (Wu). 

Taking equation (1) as point of departure, the first extension takes the form  

 

 𝑌𝑌 = 𝜌𝜌𝑊𝑊𝑌𝑌 + 𝛼𝛼𝜄𝜄𝑁𝑁 + 𝑋𝑋𝑋𝑋 + 𝑊𝑊𝑋𝑋𝜃𝜃 + 𝜀𝜀, (6) 

whose spatial spillover effects are known to be the off-diagonal elements of the N × N matrix 

 

 (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1(𝐼𝐼𝑁𝑁𝑋𝑋 + 𝑊𝑊𝜃𝜃), (7) 

and its direct effects the diagonal elements of that matrix. The second extension takes the 

form 

 𝑌𝑌 = 𝛼𝛼𝜄𝜄𝑁𝑁 + 𝑋𝑋𝑋𝑋 + 𝑊𝑊𝑋𝑋𝜃𝜃 + 𝑢𝑢   and   𝑢𝑢 = 𝜆𝜆𝑊𝑊𝑢𝑢 + 𝜀𝜀. (8) 

whose spatial spillover and direct effects are respectively θ and β, just as in the SLX model. 

Another difference is that the spatial spillovers in the SDM are global, while in the SDEM 

they are local in nature (see Halleck Vega and Elhorst, 2015). Global spillovers occur when a 

change in X of any spatial unit is transmitted to all other units, also if two units according to 

W are unconnected. This is due to the pre-multiplication of the response parameters by the 

spatial multiplier matrix (𝐼𝐼 − 𝜌𝜌𝑊𝑊)−1, provided that the spatial autoregressive coefficient of 

WY is non-zero (𝜌𝜌 ≠ 0). By contrast, local spillovers are those that affect other units only if 

according to W they are connected to each other. This requires that the coefficient of WY is 

zero (𝜌𝜌 = 0) and that the coefficients of WX are non-zero (𝜃𝜃 ≠ 0). Furthermore, it should be 

realized that the choice between global and local spillovers is related to the specification of W. 

A global spillover model with a sparse W, in which only a limited number of elements are 

non-zero such as a binary contiguity matrix, is more likely than with a dense W. Conversely, a 
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local spillover model with a dense W, in which all off-diagonal elements are non-zero such as 

an inverse distance or exponential distance decay matrix, is more likely than with a sparse W. 

 

3.2 Tests for the extension of SLX to SDM or SDEM 

Although one might use the classic and robust LM tests proposed by Anselin (1988) and 

Anselin et al. (1996) to test for the extension with either WY or Wu, it is not clear whether 

these tests are very powerful since their performance has only been investigated based on the 

residuals of the OLS model, i.e., the model without any WX variables, and not on those of the 

SLX model. Generally, the log-likelihood function values of the SDM (WY+WX) and SDEM 

(WX+Wu) models are closer to each other than those between the SAR (WY) and SEM (Wu) 

models, as a result of which one often can no longer reject one model against the other. 

Conversely, the estimation of the GNS model (WY+WX+Wu) is also not of much help due to 

overfitting. Even though the parameters of this latter model can be estimated, they have the 

tendency either to blow each other up or to become insignificant, as a result of which it does 

not perform any better than the SDM and SDEM models and so does not help to choose 

among simpler models with less spatial lags, known as the general-to-specific approach (see 

Burridge et al, 2016, for a similar finding). 

By contrast, LeSage (2014) demonstrates that a Bayesian comparison approach 

considerably simplifies the task of selecting an appropriate model specification, as well as the 

spatial weights matrix. This approach simultaneously determines the Bayesian posterior model 

probabilities of SDM and SDEM given a particular W, and the Bayesian posterior model 

probabilities of different W matrices given a particular model specification. These probabilities 

are based on the log marginal likelihood of the different model options, which are obtained by 

either integrating out the parameters of the model or by integrating out W. If the log marginal 

likelihood value of one model or of one W is higher than that of another model or another W, the 

Bayesian posterior model probability is also higher. Whereas the popular likelihood ratio, Wald 

and/or LM statistics only compare the performance of one model against another model based on 

specific parameter estimates within their parameter spaces, the strength of the Bayesian approach 

is that the posterior model probabilities are calculated over their entire parameter spaces, just 

because these parameters are integrated out. Inferences drawn on the log marginal likelihood 

function values are further justified because SDM and SDEM have the same set of explanatory 

variables ([𝑋𝑋 𝑊𝑊𝑋𝑋]) and are based on the same uniform prior for ρ or λ, related to WY or Wu. This 

prior takes the form 𝑝𝑝(𝜌𝜌) = 𝑝𝑝(𝜆𝜆) = 1 𝐷𝐷⁄ , where 𝐷𝐷 = 1 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚⁄ − 1 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚⁄  and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚 

represent, respectively, the largest and the smallest (negative) eigenvalue of W. This prior 
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requires no subjective information on the part of the practitioner as it relies on the parameter 

space (1 𝜔𝜔𝑚𝑚𝑖𝑖𝑚𝑚⁄ , 1 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚⁄ ) on which ρ and λ are defined, where 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 1 if W is row-

normalized or normalized by its largest eigenvalue. Full details on the choice of model can be 

found in LeSage (2014, 2015) and on the choice of W in LeSage and Pace (2009, chs. 5 and 6).  

An alternative to the Bayesian comparison approach is the comparison approach based 

on J-tests. In their editorial to the first issue of the 11th volume of Spatial Economic Analysis, 

Elhorst et al. (2016) provide a brief overview of this relatively small but growing literature, 

comprising ten studies in total. However, they also conclude that the main bottleneck for 

practitioners is that up to now nobody has made their software code freely available. For this 

reason, the J-test is left aside in this study.  

Another specification issue is that it is not clear whether the spatial weights matrix 

should be the same as the one used to model the exogenous spatial lags (WX). If the spatial 

weights matrix of these variables is specified as a binary contiguity matrix, it is common 

practice to use the same matrix when extending the model with either an endogenous spatial 

lag (WY) or a spatial lag among the error terms (Wu). However, if W is parameterized, for 

example, with the distance decay parameter being estimated, it is more likely to also consider 

another distance parameter for WY than for WX, or for Wu than for WX. If this approach is 

followed, all the aforementioned tests fall short since they are based on the assumption that 

the W of WY or of Wu are exogenous and non-parameterized. Yu and Lee (2015) consider a 

spatial econometric model in which the elements of W are a function of explanatory variables 

which might be endogenous, but also this extension does not involve the estimation of 

unknown parameters which we use to parameterize W. 

In sum, if it is found that the SLX model needs to be extended, there are two possible 

outcomes. Either the model needs to be extended with a spatial lag among the error terms, 

also known as spatial autocorrelation, or with an endogenous spatial lag. We discuss these 

two model extensions below. 

 

3.3 SDEM: SLX plus spatial autocorrelation 

If the SLX model needs to be extended with spatial autocorrelation, there is a strong 

methodological argument to adopt a different spatial weights matrix. Potentially, the W used 

to model the WX variables might still be different from the true matrix, say W*. If so, this 

misspecification (W-W*)X is transmitted to the error term specification, as a result of which it 

loses its property of being distributed with 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀) = 𝜎𝜎2𝐼𝐼. Instead, the error term specification 

will follow a spatial autoregressive process with spatial weights matrix V different from W 
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and 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢) = 𝜎𝜎2[(𝐼𝐼 − 𝜆𝜆𝑉𝑉)𝑇𝑇(𝐼𝐼 − 𝜆𝜆𝑉𝑉)]−1. Further note that ignoring spatial autocorrelation, 

when relevant, only affects the efficiency of the parameter estimates and not their consistency, 

and that the W used to model spatial autocorrelation does not have any effect on the spatial 

spillovers derived from the reduced form of the spatial econometric model (see equation (8)). 

Consequently, the choice on which spatial weights matrix to adopt to model spatial 

autocorrelation is a less weighty decision. For this reason, we may follow Stakhovych and 

Bijmolt (2009) and initially consider a first-order contiguity matrix. 

A Hausman test can be used whenever there are two consistent estimators, one of 

which is inefficient, while the other is efficient. Pace and LeSage (2008) develop this test for 

OLS and SEM estimates, which can also be used for comparing SLX and SDEM estimates. 

According to LeSage and Pace (2009, p. 62), rejection of the null hypothesis of equality in 

SLX and SDEM coefficient estimates can be useful in diagnosing the presence of omitted 

variables that are correlated with variables included in the model. The test statistic follows a 

chi-squared distribution with degrees of freedom equal to the number of regression 

parameters under test. Three different outcomes are possible. First, the SLX and SDEM 

coefficient estimates are not significantly different from each other and the spatial 

autocorrelation coefficient is not significant. When this occurs, the extension of the SLX 

model with spatial autocorrelation is not necessary and may be left aside. Second, the SLX 

and SDEM coefficient estimates are not significantly different from each other, but the spatial 

autocorrelation coefficient is significant. If this occurs, SDEM yields a significantly higher 

log-likelihood function value than SLX, as a result of which the conclusion must be that the 

spatial error term is still capturing the effect of omitted variables. However, since the null 

hypothesis cannot be rejected, it may also be concluded that these omitted variables are not 

correlated with the included variables and thus that the SDEM re-specification of the SLX 

model at the very most leads to an efficiency gain. Third, the SLX and SDEM coefficient 

estimates are significantly different from each other and the spatial autocorrelation coefficient 

is significant (the probability that the spatial autocorrelation coefficient will be insignificant 

here is negligible). This outcome points to serious misspecification problems due to omission 

of relevant explanatory variables.  

One potential misspecification problem in the latter case might be that W, the binary 

contiguity matrix that was recommended as the first potential candidate, is too simple. To test 

for this, other specifications for W may be considered. Alternatively, one might parameterize 

this W as well. However, Halleck Vega and Elhorst (2015) point out that the parameterization 

of W using models other than the SLX model is hampered by the perfect solution problem. 
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They demonstrate that the solution 𝜌𝜌 = −1, 𝛾𝛾 = 0, 𝛼𝛼 = 𝑌𝑌1 + ⋯+ 𝑌𝑌𝑁𝑁, and 𝑋𝑋 = 0 fully fits the 

dependent variable in the SAR model, as well as the SEM and SDM models if in addition to 

this 𝜃𝜃 = 0.1 Since the log-likelihood of this perfect solution does not exist, it has been 

excluded formally. To prove consistency of the ML estimator of the SAR model, Lee (2004) 

shows that one of the following two conditions should be satisfied: (a) the row and column 

sums of the matrices W, (𝐼𝐼-𝜌𝜌𝑊𝑊)−1 and (𝐼𝐼-𝜆𝜆𝑊𝑊)−1 before W is row-normalized should be 

uniformly bounded in absolute value as N goes to infinity, or (b) the row and column sums of 

W before W is row-normalized should not diverge to infinity at a rate equal to or faster than the 

rate of the sample size N. Condition (a) is originated by Kelejian and Prucha (1998, 1999).  

If the elements of W take the form in (2), then 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 provided that 𝛾𝛾 = 0. In that case 

all the off-diagonal elements of W equal one, as a result of which the row and column sums are 

N-1, which diverge to infinity as N goes to infinity. Furthermore, we have (N-1)/N→1 as N 

goes to infinity. This implies that the spatial weights matrix that is obtained in case of the 

perfect solution should be formally excluded for reasons of consistency since neither 

condition (a) nor condition (b) is satisfied. However, to cover this problem when working 

with real data and fixed sample sizes, 𝑁𝑁 = 𝑁𝑁�, numerically such that the optimum in computer 

software does not converge to the perfect solution is a challenge. The question is whether a 

local next to this invalid global optimum exists and whether it is possible to program the 

SAR, SEM or SDM models such that this local optimum can be obtained. Benjanuvatra and 

Burridge (2015) have investigated this, but they struggle with this problem too. Although they 

prove in the first theorem of their paper that the parameters, including the distance decay 

parameter, are identifiably unique if they are close to their true values provided that N goes to 

infinity, they face numerical problems to find these values computationally. In their Monte 

Carlo simulation experiments they report to find extreme, inaccurate or wild estimates due to 

the existence of local maxima. We therefore investigate this further for the SAR model below. 

 

3.4 SDM: SLX plus endogenous spatial lag with parameterized W 

Consider the distance decay specification of the spatial weights matrix in equation (2) and let 

𝛾𝛾𝑊𝑊𝑊𝑊 denote the distance decay parameter of the endogenous spatial lag and 𝛾𝛾𝑊𝑊𝑊𝑊 of the 

exogenous spatial lags. The first question that needs to be answered is on which interval 𝛾𝛾𝑊𝑊𝑊𝑊 

is defined. The following exposition helps to define this interval based on the two 

                                                 
1 The SAR model is a special case of the SDM specified in equation (6), obtained by setting 𝜃𝜃 = 0. The SEM 
model can be rewritten as a constrained SDM model (θ=-ρβ). This explains why the perfect solution of the SDM 
also holds for the SEM. 
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aforementioned conditions (a) and (b), of which one needs to be satisfied to obtain a 

consistent ML estimator of the parameters of the model. 

Consider an infinite number of spatial units that are arranged linearly. The distance of 

each spatial unit to its first left- and right-hand neighbor is d; to its second left- and right-hand 

neighbor, the distance is 2d; and so on. Since the off-diagonal elements of W are of the form 

1 𝑑𝑑𝑖𝑖𝑖𝑖
𝛾𝛾𝑊𝑊𝑊𝑊⁄ , where dij=d is the distance between two spatial units i and j, each row sum is 

2 × [1 𝑑𝑑𝛾𝛾𝑊𝑊𝑊𝑊⁄ + 1 (2𝑑𝑑)𝛾𝛾𝑊𝑊𝑊𝑊⁄ + 1 (3𝑑𝑑)𝛾𝛾𝑊𝑊𝑊𝑊⁄ + ⋯ ], representing a series that is finite if 

𝛾𝛾𝑊𝑊𝑊𝑊 > 1 (see Salas and Hille, 1990, p. 602).2 This implies that condition (a) is satisfied for 

values of the distance decay parameter greater than unity and that the ML estimator will give 

consistent parameter estimates under these circumstances. Condition (b) is satisfied if the ratio 

between the row sum and N is smaller than unity if N goes to infinity. This ratio can be 

represented by 2 × [1 𝑑𝑑𝛾𝛾𝑊𝑊𝑊𝑊+1⁄ + 1 (2𝑑𝑑)𝛾𝛾𝑊𝑊𝑊𝑊+1⁄ + 1 (3𝑑𝑑)𝛾𝛾𝑊𝑊𝑊𝑊+1⁄ + ⋯ ], which is finite for 

𝛾𝛾𝑊𝑊𝑊𝑊 > 0.3  

 

4. Spatial econometric model comparison: Empirical illustrations 

4.1 The cigarette demand model 

For empirical illustration, we use the well-known data set on cigarette demand of Baltagi and 

Li (2004). This data set has been used in other spatial econometric studies as well. It was used 

for the first time by Baltagi and Levin (1986, 1992), but then respectively over the periods 1963-

1980 and 1963-1988. Table 2 provides an overview of different studies taken from Elhorst 

(2016) and shows the progress that has been made over the years. This table is extended with a 

recent study of He and Lin (2015). Most studies now control for spatial and time period fixed 

effects. Elhorst (2014) explicitly tests for these controls and finds that this model specification 

outperforms its counterparts without spatial and/or time fixed effects, as well as the random 

effects model. Many studies also include the dependent variable lagged in time to control for 

habit persistence. In that case one can distinguish both short-term and long-term direct and 

spatial spillover effects; Elhorst (2013) and Debarsy et al. (2014) provide the mathematical 

formulas of these effects. Most studies also share the view that exogenous spatial lags should be 

included, but whether it is the SDM or the SDEM specification that best describes the data is still 

unclear. Halleck Vega and Elhorst (2015) argue that including an endogenous spatial lag is 

                                                 
2 In a continuous space, the row sum can be represented by the surface below the graph f(d)=1/dγ for 1 ≤ 𝑑𝑑 < 𝑁𝑁, 
where N goes to infinity. By calculating the integral of the f(d)-function over this interval, one obtains 
1 (𝛾𝛾 − 1)⁄ (1 − 1 (𝑁𝑁𝛾𝛾−1)⁄ ), which is finite for γ > 1 as N goes to infinity. 
3 The division of this row sum by N is equivalent to a division of f(d)=1/dγ by d, which can be represented by 
g(x)=1/d(γ+1). The surface below this graph is 1 𝛾𝛾⁄ (1 − 1 𝑁𝑁𝛾𝛾⁄ ), which is finite for γ > 0 as N goes to infinity. 
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difficult to justify since it would mean that a change in price or income in a particular state 

potentially impacts consumption in all states, including states that according to W (such as 

California and Illinois) are unconnected. Finally, almost all studies adopt a row-normalized 

binary contiguity matrix. One exception is Debarsy et al. (2014) who also consider a row-

normalized matrix based on state border miles in common between states. Recently, Kelejian and 

Piras (2014) and Halleck Vega and Elhorst (2015) are among the first going beyond an 

exogenous pre-specified spatial weights matrix with fixed weights. 

 

Insert Table 2 

 

In the cigarette demand model, real per capita sales of cigarettes (Cit, where i denotes 

one of 48 U.S. states and t =1963,…,1992) is regressed on the average retail price of a pack of 

cigarettes (Pit) and real per capita disposable income (Iit). In addition, variables are in logs. 

This rather basic equation can be obtained from maximizing a utility function depending on 

cigarettes and other consumer goods subject to a budget constraint (Chintagunta and Nair, 

2011). The model is aggregated over individuals since the objective is to explain sales in a 

particular state. If the purpose would be to model individual behavior (e.g., the reduction in 

the number of smokers or teenage smoking behavior) then this is better studied using micro 

data. Blundell and Stoker (2007) provide a review and propositions to bridge the gap between 

micro and macro level research and point out that both approaches have a role to play. We use 

state-level data mainly due to our illustration purposes. Spatial and time fixed effects are 

controlled for based on test results in Elhorst (2014). The reason to consider this data set is 

because consumers may be expected to purchase cigarettes in nearby states, both legally and 

illegally, if there is a price advantage, known as the bootlegging effect.  

 

4.2 Estimation results of the SLX model 

The first column of Table 3 reports the estimation results when the SLX model is taken as 

point of departure and when using the row-normalized binary contiguity matrix, the second 

column when using the inverse distance with the distance decay parameter γ set equal to one 

in advance, the third column when the distance decay parameter is estimated, and the fourth 

column when the distance decay parameter is estimated but the distance decay function is not 

specified as an inverse but as a negative exponential function.  
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Row-normalizing a weights matrix based on inverse or exponential distance causes its 

economic interpretation in terms of distance decay to no longer be valid (Kelejian and Prucha, 

2010). For example, the impact of unit i on unit j is not the same as that of unit j on unit i, and 

the information about the mutual proportions between the elements in the different rows of W 

gets lost. We therefore scale the elements of W matrices based on distance by the maximum 

eigenvalue. Since the SLX model does not contain the spatial lag WY, the direct effects are 

similar to the coefficient estimates of the non-spatial variables (βk) and the spillover effects 

are those associated with the spatially lagged explanatory variables (θk).  

 

Insert Table 3 

 

Whereas the direct effects of price and income across these four different 

specifications show a stable pattern, the spatial spillover effects show a changeable pattern. 

The direct effect of the price of cigarettes fluctuates closely around -1, and of income around 

0.6. By contrast, whereas the price spillover effect is negative and strongly significant when 

adopting the binary contiguity matrix (-0.220, t-value -2.80), it becomes insignificant when 

adopting the inverse distance matrix (-0.021, t-value -0.34), and it changes sign, becomes 

significant and, above all, consistent with the bootlegging effect hypothesis when the distance 

decay parameter is estimated (0.254, t-value 3.08). The estimate of this distance decay 

parameter amounts to 2.938 and is also significant (t-value 16.48). This makes sense because 

only people living at the border of a state are able to benefit from lower prices in a 

neighboring state on a daily or weekly basis, whereas people living further from their state 

borders can only benefit from lower prices if they visit states for other purposes or if 

smuggling takes place by trucks over longer distances. It explains why the parameterized 

inverse distance matrix gives a much better fit than the binary contiguity matrix; the degree of 

spatial interaction on shorter distances falls much faster and on longer distances more 

gradually than according to the binary contiguity principle. This is corroborated by the R2, 

which increases respectively from 0.897 to 0.899 and to 0.916, and the log-likelihood function 

value, which increases from 1668.2 to 1689.8 and to 1812.9. If the exponential rather than the 

inverse distance decay function is adopted, the picture changes again. Whereas the spatial 

price spillover effect and the distance decay parameter remain significant, the magnitude of 

the price spillover effect more than halves (0.129, t-value 1.80). 

Just as for price, the income spatial spillover effect shows a changeable pattern. This 

effect increases in magnitude when moving from the binary contiguity matrix (-0.219, t-value 
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-2.80) to the inverse distance matrix (-0.314, t-value (-6.63), and next to the parameterized 

inverse distance matrix (-0.815, t-value -4.76), to change sign and to become weakly 

significant (90%) when adopting the exponential distance decay matrix (0.129, t-value 1.80). 

However, since the R2 and the log-likelihood function value of the exponential distance decay 

matrix are substantially lower, this latter specification of the spatial weights matrix and this 

positive sign of the income spatial spillover effect should be rejected. Note that a negative 

income spatial spillover effect implies that an increase in own-state per capita income 

decreases cigarette sales in neighboring states. An explanation is that higher income levels 

reduce the necessity or incentive to purchase less expensive cigarettes elsewhere.  

 In view of the changeable patterns in the spatial spillover effects, it is interesting to 

consider the impact of other misspecification issues, where the main focus will be on the price 

spillover effect. If heteroskedasticity, as in column (5), endogeneity, as in column (6), are 

controlled for, or if one separate γ is considered for each explanatory variable, as in column (7), 

the sign and significance levels of the price and income spillover effects remain more or less 

similar to those for the parameterized inverse distance matrix, as in column (3), but their 

magnitudes still vary. We continue with a more detailed explanation below. 

Anselin (1988) advocated the incorporation of heteroskedastic disturbances in spatial 

econometric models over twenty-five years ago. Since cross-border consumption might be 

affected by differences in population size among states, we control for heteroskedasticity of 

known functional form.4 Following Anselin (1988, pp. 34-35), we specify 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝛼𝛼1 +

𝛼𝛼2(1/Population𝑖𝑖𝑖𝑖) and estimated this model by an iterative two-step procedure in which the 

αs and γ on the one hand and the βs on the other hand are alternately estimated until 

convergence occurs. These results are reported in column (5) of Table 3. A test for reduction 

to homoskedasticity is a test of the hypothesis that α2=0, and therefore has one degree of 

freedom. The likelihood ratio test statistic is equal to 2(1841.3-1812.9)=56.8, which is highly 

significant if treated as 𝜒𝜒12 under the null. It signals that spatial econometricians should devote 

more attention to accounting for heteroskedasticity. When doing so, the price spillover effect 

decreases from 0.254 to 0.182. 

Another issue is whether or not cigarette prices are endogenous. For this purpose, the 

Hausman test for endogeneity in combination with tests for the validity of the instruments are 

performed, namely to assess if they satisfy the relevance and exogeneity criterions. As 

instrumental variables, the cigarette excise tax rate, state compensation per employee in 

                                                 
4 Kelejian and Prucha (2010) consider a nonparametric approach to account for heteroskedasticity. 
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neighboring states, and income and income in neighboring states (the latter two which are 

already part of the SLX model) are used. Details can be found in Halleck Vega and Elhorst 

(2015), who find that the price of cigarettes observed in neighboring states may be used as an 

exogenous determinant of cigarette demand in the U.S., whereas the price of cigarettes observed 

in the own state may not. Apparently, consumption has feedback effects on the price in the 

own state, but if consumers decide to buy more cigarettes in neighboring states due to a price 

increase in their own state this has no significant feedback effects on prices there too. When 

accounting for endogeneity, the price spillover effect decreases from 0.254 to 0.192. 

Finally, when instead of one common distance decay parameter holding for all 

explanatory variables, a separate distance decay parameter is estimated for every explanatory 

variable, the price spillover effect increases from 0.254 to 0.385. 

 In contrast to these three model extensions above, the sensitivity of the price and income 

spatial spillover effects increases again when the elements of the spatial weights matrix are 

parameterized by the gravity model (see column (8)). Although the spatial spillover effect of the 

price of cigarettes remains positive, it is no longer significant, whereas the spatial spillover effect 

of income compared to the previous models in columns (3), (5) and (6), though still negative and 

significant, more than halves.  

 

4.3 Testing for the extension of SLX to SDM or SDEM 

Table 3 also reports the results of LeSage’s (2014) Bayesian comparison approach and 

Anselin et al.’s (1996) robust LM tests to investigate statistically whether a local spillover 

model specification is more likely than a global one. We also consider two versions of the 

robust LM tests5 to test for the extension of the SLX model with an endogenous spatial lag 

WY and for a spatial lag among the error terms Wu; one in which W is the same as the W used 

to model the exogenous spatial lags, and one where this W is specified as a binary contiguity 

matrix. In Section 3 we provided arguments in favor of the last option. The robust tests are 

based on the residuals of the SLX model and follow a chi-squared distribution with one 

degree of freedom; the critical value amounts to 3.84 at the five percent significance level. 

 Judging by the Bayesian comparison approach, the global spillover specification 

(SDM) initially seems to be more likely than the local one when adopting the rejected binary 

contiguity specification of W; the corresponding Bayesian posterior model probabilities of this 
                                                 
5 Besides the robust, we also calculated the classic LM test statistics. Since the latter pointed to both extensions 
rather than one, they are not helpful in choosing between them. For this reason, they are not reported. The 
employed tests are called robust because they test for the existence of one type of spatial dependence in the local 
presence of the other.  
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sparse matrix are 0.55 to 0.45. However, when the pre-specified or parameterized inverse 

distance matrix is adopted, which are both dense matrices, this proportion changes into 0 to 1. 

Finally, when adopting the rejected parameterized exponential distance matrix, this proportion 

reduces to 0.35 to 0.65. Hence, the SDEM seems the most appropriate extension of the SLX 

model.  

 This picture changes again when employing the robust LM tests. When the rejected 

binary contiguity matrix is adopted, the LM tests do not indicate which extension is more 

appropriate since both test statistics appear to be insignificant. When the inverse or 

parameterized exponential distance decay matrices are adopted, the LM tests point to the 

SDEM specification, just as the Bayesian comparison approach. However, when the 

parameterized inverse distance matrix is taken as point of departure, a different result is 

obtained. The Bayesian comparison approach points to SDEM, while the LM tests to SDM. 

For this reason, we consider both model extensions below.  

 

4.4 Estimation results of SDEM 

Column (1) of Table 4 reports the results of the SLX model extended to include the spatial lag 

among the error terms. For reasons pointed out in Section 2, the binary contiguity matrix is 

used for this purpose rather than the parameterized inverse distance matrix which is used to 

model the exogenous spatial lags. The Hausman test statistic based on Pace and LeSage 

(2009, section 3.3.1) amounts to 0.9267, which follows a chi-squared distribution with 4 

degrees of freedom equal to the number of regression parameters under test. The 

corresponding p-value is 0.9207. Since the Hausman test whether the SLX and SDEM 

estimates are the same cannot be rejected, but the spatial autocorrelation coefficient 

nonetheless appears to be significant (0.164 with t-value 4.58), the conclusion must be that the 

SDEM re-specification of the SLX model leads (at the very most) to an efficiency gain. 

 

Insert Table 4 

4.5 Estimation results of SDM 

Column (2) of Table 4 reports the results of the SLX model extended to contain the spatial lag 

among the dependent variables, where W just as in the SDEM specification is specified as a 

binary contiguity matrix. The log-likelihood function value of this model (1821.7) is 

somewhat greater than that of its counterpart the SDEM specification (1819.2), which is in 

line with the LM test results reported in column (3) of Table 3.  
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Column (3) of Table 4 again reports results of the SLX model extended to include the 

spatial lag among the dependent variables. However, instead of a priori imposing a binary 

contiguity matrix for the W of WY, in the third column we also specify this W using inverse 

distances between the states and estimate the decay parameter 𝛾𝛾𝑊𝑊𝑊𝑊. The parameterization of 

W using models with an endogenous spatial lag is hampered by the perfection solution 

problem, as mentioned in Section 3. Figure 1 shows the log-likelihood function for the 

distance decay parameter pertaining to the W modeling the endogenous spatial lag, where γWY 

takes values in the interval (0, 10] using increments of 0.1. The perfect solution problem can 

be observed when the decay parameter approaches the value γWY=0. Another important 

observation from Figure 1 is that the function is not concave, also when considering values of 

γWY>1 only. Although it has a maximum of approximately 5.54, there are many other possible 

values of γWY that are near this maximum. We come back to this significant finding shortly. 

 

Insert Figure 1 

  

Comparing the SDEM and SDM(a), there are large differences in the spillover effects. 

In fact, although all the spillover effects are highly significant under both specifications, they 

have opposite signs! Whereas the price spillover in the SLX model is positive corroborating 

the bootlegging effect and the income effect is negative, these spillover effects change sign in 

the SDM(a) model if the W of WY is specified as a binary contiguity matrix. In other words, 

although the performance of the model improves statistically in terms of the R2 and the log-

likelihood function value, it is not an improvement from an economic-theoretical viewpoint. 

A better performance, in both domains, is obtained in the case of the SDM(b) model. The 

spillover effects, reported under (b1) in column 3 of Table 4, have the same sign as those in 

the SDEM model and the significance levels are comparable One difference is that the 

magnitude of the income spillover in the SDM(b) model is much lower (in absolute value) 

than in the SDEM model, -0.125 versus -0.372, which in turn are much lower than the value 

of -0.815 in the SLX model. Finally, the point estimate of ρ in the SDM(b) model is negative 

and highly significant, thereby providing additional evidence in favor of competition effects, 

next to price and income level. Overall, these results again confirm that the search for the 

right spatial econometric model and the right functional form of W may have significant 

effects on the magnitude and significance levels of the spillover effects.  

It should be emphasized that the spillover effects resulting from the SDM(b) model are 

conditional on the exogeneity of W, i.e. the effects estimates are calculated with a fixed value 
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for the decay parameter γWY, taking a value of 5.54 in our application. This value is much 

higher than that for γWX, while the t-statistic of 0.971 is much lower. Yet, as can be observed in 

Figure 1, there is large uncertainty on how the W of WY should be specified. This uncertainty 

can be a reason why many applied studies find their results to be robust to changes in W, as 

illustrated in Figure 1 where the log-likelihood function hardly changes value if γWY > 4. 

However, what is often taken as a strong point may actually be a weak point. By showing that 

the results- generally the point estimates of the response parameters- are robust to different 

specifications of W, the researcher is more or less saying that they are uncertain about the true 

specification of W, while we have seen that the impact of different specifications of W on the 

spillover effects might be substantial.  

To demonstrate the importance of the uncertainty about specifying the appropriate W 

of WY, we simulated the effects estimates of SDM(b), but then also accounting for the 

variance in γWY rather than treating it as fixed. These effects estimates are reported under (b2) 

in column 3 of Table 4. Since the parameter estimates are the same as in SDM(b), these 

results are not repeated. The direct effects are again relatively constant. The key difference is 

observed in the spillover impacts (both for the price and income variables), which are small 

and not different from zero when the distance decay parameter is not taken as fixed. 

Therefore, what is observed from this application to state-level cigarette demand is that there 

are significant spillover effects, but conditional on the exogeneity of W. That is, we can only 

claim there is evidence of spillovers (e.g., bootlegging behavior) if we are willing to accept 

that W is exogenous. The fact that the log-likelihood function for γWY (Figure 1) is not strictly 

concave and rather flat points to identification problems since there is not a clear unique 

global maximum. It thus seems that spatial econometric models containing an endogenous 

spatial lag (i.e. global spillovers) are more difficult to identify.  

Finally, Figure 1 shows that limiting the interval of the distance decay parameter to for 

example, [1, 2] or [1, 4] can be quite restrictive. The true decay parameter may be outside the 

fixed interval defined by the researcher, as in the cigarette demand results where the estimated 

parameter is quite large compared to values that are normally used in applied research. 

 

5. Conclusion 

Recently, Halleck Vega and Elhorst (2015) recommended taking the SLX model as point of 

departure when a study focuses on spatial spillover effects and an underlying theory justifying 

alternative models is lacking. It is the simplest spatial econometric model producing flexible 
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spillover effects and, in contrast to other spatial econometric models, the spatial weights 

matrix W in the SLX model can easily be parameterized.  

More than a decade ago, Leenders (2002) demonstrated that the chosen specification 

of W is of vital importance when estimating the SAR or SEM models since both the value and 

the significance level of the spatial lag parameter of WY or Wu depends on the specification of 

W. This study corroborates Leender’s conclusions, but then according to latest insights. 

Instead of focusing on models with just one spatial lag, such as SAR or SEM, present studies 

adopt models with multiple spatial lags, among which is the SLX model. Rather than 

addressing the parameter estimates of the spatial lags, present studies are considering spatial 

spillover effects. The SLX model has the property that the parameter estimates of the 

exogenous spatial lags (WX) coincide with the spatial spillover effects, a property which may 

be another reason to take this model as point of departure in an empirical study. 

 In this paper, we have seen that the sign, magnitude, and significance level of the 

spillover effects are sensitive to both the specification of W and the spatial econometric model 

specification using the well-known Baltagi and Li (2004) cigarette demand model based on 

panel data of 46 U.S. states over the period 1963-1992. The first has been tested by estimating 

the SLX model for six different specifications of W, varying from a binary contiguity matrix 

to a parameterized gravity type of model reflecting the intensity of flows among spatial units. 

The second has been tested by controlling for heteroskedasticity and endogeneity, and by 

extending the model to include either a spatial lag among the error terms or among the 

dependent variables. The price spillover effect ranged from a negative and significant value of 

-0.102 to a positive and significant value of 0.417. Similarly, the income spillover effect 

ranged from a negative and significant value of -0.901 to a positive and weakly significant 

(90%) value of 0.129. The claim made in many empirical studies that their results are robust 

to the specification of W should thus be more sufficiently substantiated. It might be that these 

studies mainly focus on the direct effects. It has been found that the direct effects of price and 

income fluctuate around respectively -1 and 0.6, no matter how the spatial weights matrix and 

the spatial econometric model are specified. It might also be that the log-likelihood function 

value hardly changes for a specific range of the distance decay parameter when W is 

parameterized, as shown in the last part of Section 4. The conclusion must be that studies 

checking whether their results are robust to the specification of the spatial weights matrix 

should better focus on the spillover effects and, in addition, better consider spatial weights 

matrices that are different in nature. Spatial weights matrices that are similar in nature, such as 
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an inverse distance matrix for different values of the distance decay parameter or k-nearest 

neighbor matrices for different values of k, are less useful.  

Test statistics that help to find out whether the SLX model should be further extended 

to SDM or SDEM are still in its infancy because the SLX model has received relatively little 

attention in both the theoretical and applied spatial econometrics literature. The performance 

of the well-known and widely used (robust) LM tests has only been investigated starting from 

the OLS model, but not from the SLX model. It might explain why the robust LM tests, in 

contrast to the Bayesian comparison approach, points to the SDM model in our empirical 

application rather than the SDEM model when taking the SLX model with the parameterized 

inverse distance matrix as point of departure. However, when this SDM model is 

subsequently estimated, it turns out to be no improvement from an economic viewpoint, only 

from a statistical viewpoint. One explanation why the Bayesian comparison approach points 

to the SDEM model and performs better in this respect is that it compares the performance of 

one model against another on the entire parameter space (since these parameters are integrated 

out), while the popular (robust) LM tests only compare the performance of one model against 

another model based on specific parameter estimates within the parameter space. 

Notwithstanding this advantage, there is room for improvement; the Bayesian comparison 

approach assumes that the spatial weights matrix is the same for every spatial lag, while we 

found empirical evidence in favor of the proposition that these matrices should be different. In 

sum, these findings point to interesting directions for future research.  

Despite these uncertainties, we may conclude to have found empirical evidence in favor 

of the bootlegging effect. A price increase of one percent in one state causes a shift in 

consumption to other states of approximately 0.1-0.3 percent. In addition, we may say that an 

income increase of one percent in one state diminishes consumption in neighboring states in the 

range of 0.2-0.9 percent. These ranges are smaller than the full ranges reported above since the 

outcomes found outside these two ranges could be rejected largely on statistical grounds and 

partly on economic grounds.  
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Table 1 Spatial econometric models with different combinations of spatial lags and their 
 flexibility regarding spatial spillovers 

Type of model Spatial lag(s) Flexibility spatial spillovers 
SAR, Spatial autoregressive model*  WY Constant ratios 
SEM, Spatial error model Wu Zero by construction 
SLX, Spatial lag of X model WX Fully flexible 
SAC, Spatial autoregressive 
combined model** 

 
WY, Wu 

Constant ratios 

SDM, Spatial Durbin model WY, WX Fully flexible 
SDEM, Spatial Durbin error model WX, Wu Fully flexible 
GNS, General nesting spatial model WY, WX, Wu Fully flexible 
* Also known as the spatial lag model, ** Also known as the SARAR or Cliff-Ord model 
 

Table 2 Spatial panel data studies on cigarette demand 

Study Panel Dynamic Spatial W 
Baltagi and Levin (1986) TFE or TRE + SLX, price - 
Baltagi and Levin (1992) SFE or SRE + 

TFE 
+ SLX, price - 

Baltagi and Li (2004) SFE or SRE - SEM BC 
Elhorst (2005) SFE + TFE + SDEM BC 
Elhorst (2013) SFE + TFE + SDM BC 
Debarsy et al. (2014) SRE + SDM BC, border lengths 
Kelejian and Piras (2014) SFE + TFE - SAR Endogenous 
Elhorst (2014) SFE + TFE - SDM BC 
Halleck Vega and Elhorst 
(2015) 

SFE + TFE - All 
SLX 

BC  
parameterized ID 

He and Lin (2015) SRE - SAC BC 
Panel: SFE = spatial fixed effects, SRE = spatial random effects, TFE = time fixed effects, TRE = time 
random effects; Dynamic: + = Yt-1 included; Spatial: see Table 1 for abbreviations, All = SAR, SEM, 
SLX, SAC, SDM, SDEM, GNS; W: BC = binary contiguity matrix, ID = inverse distance matrix. 
Source: Elhorst (2016). 
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Table 3 SLX model estimation results explaining cigarette demand and the parameterization of W  
 BC 

 
(1) 

ID (γ=1) 
 

(2) 

ID 
 

(3) 

ED 
 

(4) 

ID Hetero-  
skedasticity* 

(5) 

2SLS 
 

(6) 

ID 
γk’s 

(7) 

ID 
Gravity 

(8) 
Price -1.017 

(-24.77) 
-1.013 

(-25.28) 
-0.908 

(-24.43) 
-1.046 

(-29.58) 
-0.884 

(-24.93) 
-1.246 

(-16.32) 
-0.903 

(-24.49) 
-0.841 

(-23.03) 
Income 0.608 

(10.38) 
0.658 

(13.73) 
0.654 

(15.39) 
0.560 

(15.44) 
0.716 

(17.03) 
0.591 

(13.34) 
0.667 

(15.76) 
0.641 

(15.16) 
W×Price -0.220 

(-2.95) 
-0.021 
(-0.34) 

0.254 
(3.08) 

0.108 
(2.08) 

0.182 
(3.02) 

0.192 
(3.00) 

0.385 
(1.81) 

0.041 
(0.87) 

W×Income -0.219 
(-2.80) 

-0.314 
(-6.63) 

-0.815 
(-4.76) 

0.129 
(1.80) 

-0.728 
(-13.21) 

-0.750 
(-14.14) 

-0.838 
(-5.21) 

-0.372 
(-4.97) 

γdistance 
 

 2.938 
(16.48) 

0.467 
(9.99) 

2.966 
(24.39) 

3.141 
(11.11) 

 2.986 
(11.50) 

γdistance price in col.(7) and γown population in col. (8)   5.986 
(8.86) 

-0.018 
(-0.41) 

γdistance income in col.(7) and γpopulation neighbors in col.(8)   2.938 
(17.70) 

0.340 
(2.63) 

R2 0.897 0.899 0.916 0.896 0.906 0.484 0.917 0.923 
LogL 1668.4 1689.8 1812.9 1666.9 1841.3  1818.4 1868.0 
LM test WY, W§ - 0.27 27.56 0.47     
LM test Wu, W§ - 12.39 4.16 0.22     
LM test WY, W=BC 0.30 0.40 5.13 0.72     
LM test Wu, W=BC 0.01 12.67 0.14 11.59     
Prob. SDM 0.5502 0.0000 0.0000 0.3536     
Prob. SDEM 0.4498 1.0000 1.0000 0.6464     
Notes: State and time fixed effects are controlled for in all specifications; t-statistics in parentheses;  
coefficient estimates of WX variables in the SLX represent spillover effects.  
*We specified 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝛼𝛼1 + 𝛼𝛼2(1/𝑃𝑃𝑃𝑃𝑝𝑝𝑢𝑢𝑃𝑃𝑉𝑉𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) and found α1=0.003 (t-value 14.14) and α2=1.971 (t-value 7.11). 
§W matrix similar to the one used to model exogenous spatial lags WX. 
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Table 4  Beyond the SLX model with parameterized W: SDEM and SDM 

             SDEM 
             ID+λWBCu 

            (1) 

                SDM(a) 
              ID+ρWBCY 

                (2) 

SDM(b) 
ID+ ρWID(γWY)Y 

(3) 

Point estimates     

Price -0.841 
(-23.03) 

-0.881 
(-23.13) 

-0.894 
(-24.60) 

Income 0.641 
(15.16) 

0.588 
(13.35) 

0.665 
(16.27) 

W×Price 0.041 
(0.87) 

0.288 
(4.68) 

0.076 
(1.30) 

W×Income -0.372 
(-4.97) 

-0.804 
(-16.04) 

-0.932 
(-17.54) 

W×u 0.164 
(4.58) 

- - 

W×Y - 0.143 
(5.19) 

-0.208 
(-3.78) 

γWX 2.904 
(21.36) 

3.134 
(12.61) 

3.035 
(15.43) 

γWY - - 5.540 
(0.971) 

Direct effects   (b1) (b2) 

Price -0.841 
(-23.03) 

-0.885 
(-23.60) 

-0.903 
(-23.87) 

-0.896 
(-22.77) 

Income 0.641 
(15.16) 

0.592 
(13.66) 

0.671 
(16.18) 

0.668 
(15.36) 

Spillover effects     

Price 0.041 
(0.87) 

-0.102 
(4.43) 

0.162 
(4.32) 

0.028 
(0.24) 

Income -0.372 
(-4.97) 

-0.019 
(-4.37) 

-0.125 
(-4.40) 

-0.025 
(-0.29) 

R2 0.916 0.918 0.918 

LogL 1819.2 1821.7 1868.0 

Notes: State and time fixed effects are controlled for in all specifications; t-statistics are reported in parentheses. W of 
WX variables parameterized by wij=1/dij

γ with γ estimated. 1) SDEM=SLX extended with Wu where W is binary 
contiguity matrix. 2) SDM=SLX extended with WY where W is binary contiguity matrix. 3) SDM=SLX extended with 
WY where W is parameterized inverse distance matrix, wij=1/dij

γ, and different γ parameters for WY and WX (see 
Section 4 for details). 
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Figure 1. Log-likelihood function for the decay parameter γWY using cigarette demand data set 

 
Note: Values of γWY are in the interval (0, 10] using increments of 0.1.  
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