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Abstract:The dynamical properties of saturated spherical shells are investigated in the 
exchange-dominated regime when assuming that surface anisotropy is present at both the inner 
and outer boundaries. It is found that surface anisotropy plays an important role in determining 
the dependence of lower-ordereigenvalueson shell thickness. The mode frequency can increase 
with decreasing shell thickness, oris driven rapidly towards the ferromagnetic resonance 
frequency depending on the choice of the surfaceanisotropy constant�� at each boundary. The 
presence of surface anisotropy significantlymodifies the size dependence of the modes which 
can be suppressed or amplified based on the coupling between boundaries. Similar size 
dependent behaviour to the solid sphere is observedfor lower-order eigenvalues in the presence 
of surface anisotropy up to a thickness of	�� ��⁄ ~	0.5 after which large deviations begin to 
occur, where �� and �� are the inner and outer radius, respectively. Moreover, surface 
anisotropyintroduces a dependence of the zeroth mode on shell thickness,removing the 
degeneracy with the ferromagnetic resonance and leading to apronounced size dependence of 
this modefor thin shells. 
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1 Introduction 

 Nano- and microscale ferromagnetic particles have been a source of intense research interest 
due their novel fundamental properties and broad range of applications, such as magnetic 
memory storage[1][2][3],  microwave oscillators [4][5] and cancer treatment [6][7].The static 
and dynamic properties of curved geometrical structures such as hemispheres, nanotubes and 
spherical shells  have undergone an explosion of interest in recent years, as part of a broader 
trend towards three-dimensional nanomagnetism[8]. In particular, advancements in chemical 
synthesis methods have enabled the production of nanosized hollow spheres with narrow size 
distributions and diameters ranging from tens to hundreds of 
nanometers[9][10][11][12][13][14][15].  There has been great interest in how surface anisotropy 
will alter the fundamental magnetic properties of nanostructures, which may emerge due to 
embedding magnetic particles in non-magnetic matrices [16][17], crystallographic arrangement 
on the surface [18], expansion and contraction of the lattice structure [19], among numerous 
other physical and chemical effects [20][21].  As a consequence, surface magnetism of 
nanoparticles has been the subject of rigorous experimental [22][23][24]  and theoretical 
[25][26][27][28] investigation. For example, surface anisotropy may be responsible for the high 
perpendicular magnetic anisotropy observed experimentally in thin epitaxial films of hcp cobalt 
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[29][30][31]and other multi-layered ferromagnetic materials [32][33][34]. When the surface 
anisotropy constant �� is negative and of sufficiently large absolute value, the magnetization 
vector can be orientated perpendicular to the film surface despite the presence of large 
demagnetizing fields, a phenomenon which is potentially useful for perpendicular magnetic 
recording. 

 

Gaididei et al derived a magnetic energy functional for an arbitrary smoothly curved thin 
shellunder the assumption that the magnetostatic effects can be reduced to an effective easy-
surface anisotropy[35]. It was shown that the curvilinear geometry brings about an effective 
exchange-driven anisotropy and an effective Dzyaloshinskii-Moriya interaction (DMI). As a 
consequence, magnetic skyrmions can be stabilized on a spherical shell by curvature effects 
only, even when the intrinsic DMI is absent [36]. The emergent curvature-induced anisotropy 
and an effective DMI leads to polarity-chirality coupling [37], increased domain wall velocities 
[38] and curvature-driven magnetochirality[39]. Magnetochiral effects have been demonstrated 
in studies of the Möbius ring [40] and torus [41]. Moreover, it has been shown [42][43] that 
toroidal nanomagnets can stabilize a magnetic vortex down to smaller sizes than has been 
previously reported in their cylindrical counterparts[44][45]. 

 

Surface anisotropy may also play an important role in the size-dependent dynamical properties 
of ferromagnetic nanospheres[46][47][48]. The dynamic permeability measurements of these 
spherical particles exhibit several narrow resonance bands which have been attributed to 
exchange resonance modes[49]. These modes have been a source of great research interest due 
to their negligible eddy current loss [50] andhave been adopted in the analysis of a wide range 
of material composites[51][52][53][54][55]in order toextract the magnetic parameters and 
estimate surface contributions to the resonance frequency.The formula for exchange resonance 
modes was first derived [56] by neglecting the magnetostatic contribution to the resonance, 
resulting in resonance frequencies which possess a 1 ���⁄  dependence on the particle size, where �� is the outer radius of the sphere. This approximation is justified for sufficiently small 
particles when the exchange energy dominates over the magnetostatic energy, in contrast to the 
magnetostatic approximation in large particles, for which the exchange term is neglected [57]. 

 

Recently, the microwave properties of core-shell and magnetically hollow particles have been 
the subject of considerableinterest[58][59][60][61][62][63]and the size dependent permeability 
of hollownickel[64]and carbonyl iron[65]particleshas been measured.Acore-shell or multi-
layered particle offers tuneable electromagnetic properties, lighter weight and awidefrequency 
bandwidth at the cost of increased sensitivity of the ferromagnetic shell to surface 
imperfections. However,little is understood about the influence of surface anisotropy on the 
high frequency performance of such nanoparticles, whereprevious theoretical and experimental 
treatment has focused on solid spheres. Here,the exchange resonance theory is 
generalizedwithin a rigorous micromagnetic framework in order to study the effect of surface 
anisotropy on the resonance frequency for different values of shell thickness and size.This can 
provide detailed understanding into the high frequency dynamics and improve accuracy when 
fittingmeasured permeability spectra to theoretical resonance curves. 

2 Theory 

Néel proposed a phenomenological model of the magnetic surface anisotropy [66] to account 
for the breaking of crystallographic symmetry at the particle surface. Macroscopic expressions 
for the surface anisotropy energy density were later suggested by Brown [67] and Aharoni[68]. 
Here, we consider a uniaxial anisotropy density 
� of the form 
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� = ��(1 − ���)						(1) 
 

where �� is the z-component of the magnetisation. If the magnetisation m is assumed to be 
parallel to �before nucleation, the micromagnetic boundary conditions of (1) are given by the 
equations [67] 

 ����� + 2��� �� = 0						(2) ����� + 2��� �� = 0						(3) 
 

where � is the exchange constant, Ks is the anisotropy constant and n is normal to the surface, 
which for a spherical particle is given by the spherical coordinate �. The linearized differential 
equations for the exchange modes are given by [68] 

 

�∇� − �!�� "�� +  �#$� ����% = 0						(4) 
and 

�∇� − �!�� "�� −  �#$� ����% = 0						(5) 
 

where  � is the saturation magnetisation and � = 2' is the exchange constant.Assuming that a 
sufficiently large DC field is present to saturate the particle, then the expression!� is given, for 
the case of a solid sphere, by 

!� = !$ + 2�� �  

where !$ is the external DC field applied parallel to an anisotropy easy axis, �� is the 
anisotropy constant for either uniaxial or cubic volume anisotropy, #$ is the gyromagnetic ratio, % is time, and ( = ) |)|⁄  is a unit vector parallel to the magnetization vector ). The boundary 
conditionsfor each surface,in the presence of surface anisotropy, are given by 

 

������ + 2��+� ��",-.+ = ������ + 2��/� ��",-./ 
= 0����� + 2��+� ��1,-.+ = 0����� + 2��/� ��1,-./ = 0	(6) 

 

Here, two surface anisotropy constants ��+and ��/ are introduced, corresponding to the inner 
and outer boundaries, respectively. The general solution of equations (4) and (5) can be obtained 
by separation of the variables in terms of the spherical coordinates	�, 3 and 4, given by 
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�� = 567856�9:;� (cos 3) 0'�?; �@���" + '�A; �@���"1						(7) 
and 

�� = 567856�9:;� (cos 3) 0C�?; �@���" + C�A; �@���"1						(8) 
 

where ',	C, E and @ are real constants, s and � ≥ G are integers, :;� is the Legendre function 
and ?;and A;are the spherical Bessel functions of the first and second kind, respectively. 
Substituting equations (7) and (8) into equations (4) and (5) gives, 

 

0@���� + �!�� 1'H + IE �#$� CH = IE �#$� 'H − 0@���� + �!�� 1CH = 0						(9) 
 

for ? = 1 and 2. The determinant of the coefficients of 'Hand CH must be zero if (9) has a 
common, nonzero solution. Equating the determinants to zero gives, 

 ( �!� �⁄ + @� ���⁄ )� = (E � #$�⁄ )�						(10) 
 

The resonance frequencies E are then given by, 

 E = ±#$(�@� (��� �)⁄ + !�) 
 

Now, it is only necessary to fulfil the boundary conditions (6). At first there are four equations 
to solve, however the problem can be simplified by noting that the substitution of (10) into (9) 
gives, 

 IC� ± '� = 0 and IC� ± '� = 0						(11) 
 

The terms to be substituted into the boundary conditions (6) can be calculated from the 
expressions (2) and (3), namely 

 ����� + 2��� �� = 

56L856�9:;� cos(3)M @�� '� �?; N
O,./P� NO,./P +

@�� '� �A; N
O,./P� NO,./P +

2��� '�?; �@���" + 2��� '�A; �@���"Q 				(12) 
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����� + 2��� �� = 

56L856�9:;� cos(3)M @�� C� �?; N
O,./P� NO,./P +

@�� C� �A; N
O,./P� NO,./P +

2��� C�?; �@���" + 2��� C�A; �@���"Q 				(13) 
 

Substituting equations (12) and (13) into (6) and using the relations (11) to substitute for C� and C�, it is readily seen that to fulfil all boundary conditions, it is necessary and sufficient to fulfil 
only 

 

56L856�9:;� (cos 3) R @�� '� �?;(#)�# + @�� '� �A;(#)�# + 2��+� '�?;(#) + 2��+� '�A;(#)ST-UV+V/  

= 56L856�9:;� (cos3)R @�� '� �?;(@)�@ + @�� '� �A;(@)�@ + 2��/� '�?;(@) + 2��/� '�A;(@)S = 0 

 

where we have defined # = @�� ��⁄ . By cancelling the 56L856�9:;� (cos3) term and equating '� and '�, these expressions can be re-written as 

 

'� R@�� �?;(#)�# − 2��+� ?;(#)ST-UV+V/ + '� R
@�� �A;(#)�# − 2��+� A;(#)ST-UV+V/= '� R@�� �?;(@)�@ + 2��/� ?;(@)S + '� R@�� �A;(@)�@ + 2��/� A;(@)S = 0 

 

Suchapairofequationshasnon-zerosolution 
for'�and'�providedthedeterminantoftheircoefficients vanishes, leaving 

 

R@�� �?;(@)�@ + 2��/� ?;(@)SR@�� �A;(#)�# − 2��+� A;(#)ST-UV+V/− R@�� �A;(@)�@ + 2��/� A;(@)S R@�� �?;(#)�# − 2��+� ?;(#)ST-UV+V/ = 0						(14) 
 

The eigenvalues @W; can be calculated from the transcendental equation (14) for different values 
of the outer radius �� and ratio ��/��. For the case that ��/ = ��+ = 0, when no surface 
anisotropy is present at either boundary, the expression (14) reduces to 
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��?;(@)�@ " 0�A;(#)�# 1T-UV+V/ − 0
�A;(@)�@ 10�?;(#)�# 1T-UV+V/ = 0						(15) 

 

which is the expression for the eigenvalues of the exchange resonance modes in a hollow 
ferromagnetic sphere when surface anisotropy is not present. It is readily seen that equation (14) 
introduces a dependence of the eigenvalues on the outer radius��, in addition to the ratio ��/��. 
 

For an ideally saturated solid sphere, the demagnetizing factor along the �-axis does not feature 
in the expression for the ferromagnetic resonance !�[70]. Here, the demagnetizing factors are 
equal in all directions and have no overall contribution to the exchange resonance frequency. 
However, the demagnetizing field is inhomogeneous for the hollow sphere, and it is necessary 
to consider the demagnetizing factor when calculating the ferromagnetic resonance in this 
situation. Recently, Prat-Camps et al calculated exact analytical expressions for the volume 
(YZ) and mid-plane (Y[) averaged demagnetizing factors of  the hollow sphere [71] which are 
expressed in terms of the static magnetic susceptibility of the particle, 

 

YZ = 13 − 2\]^6^ + 9 

and 

Y[ = 13 − 2\�_3 + ^(1 + \ + \�)`9(1 + \) + 6^(1 + \ + \�) 
 

where ^ is the static magnetic susceptibility and \ = �� ��⁄ . The change in the demagnetizing 
factor is small for �� ��⁄ ≤ 0.2 but grows rapidly with increasing �� ��⁄  and becomes large for 
thin shells.An ideally saturated shell has only non-zero Y� components when the applied field is 
directed along the �-axis, while for more complex magnetisation configurations[72]it maybe 
necessary toconsider variations in Y� and Y�. 
Results and Discussion 

1. Shell thickness 
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Figure 1: (a) @�,� plotted against the ratio �� ��⁄  for the condition ��/ = −4 × 10de	J/m²with 
(i)��+ = −4 × 10de	J/m², (ii) ��+ = 0	J/m² and(iii) ��+ = 4 × 10de	J/m² and ��/ = 4 ×10de	J/m² with (iv) ��+ = −4 × 10de	J/m², (v) ��+ = 0	J/m² and(vi) ��+ = 4 × 10de	J/m²(b)@W,; plotted against the ratio �� ��⁄  for ��/ = 0,��+ = 4 × 10de J/m².In all cases the 
dashed line represents ��/ = ��+ = 0. 

 
Here, we consider the case of iron particles with exchange constant 	2.1 × 10d�� J/m and outer 
radius�� 	= 	50 nm. In thin films, absolute values of �� have been found in the range �� =	0.6– 4.5 × 10deJ/m²for FePt films [73] and �� = 	1.7– 9.6 × 10deJ/m²for different interfaces 
of iron at room temperature [74]. The inner/outer surfaces of nanosized particles and thin films 
differ by an obvious topological feature. For a flat surface, the normal direction is mutually 
parallel at each local point, whereas the local coordinate varies for a curved spherical surface. A 
detailed comparison between the resonant properties of thinfilms and nanosized particles in the 
presence of surface anisotropy can be found in reference [75]. In this work, the surface 
anisotropy constants were chosen within the range of reported values for iron j��/j = j��+j =4 × 10de J/m².  

 

The dependence of @�,� on shell thickness is shown in Fig. 1(a) for different values of��. In the 
absence of surface anisotropy, the eigenvalues k = 1, � = 1,2,3 decrease with increasing �� ��⁄  
(see. Fig. 1(a), Fig. 1(b)). This behaviour is modified for non-zero��, such that the 
eigenvaluescan either increase or decreasewith increasing	�� ��⁄ . In Fig. 1(a), the @�,�moderapidlytends to 0 with decreasing shell thickness (see Fig. 1(a)) when �� is opposing 
the resonance.The situation is different for k = 2eigenvalues (see Fig. 1(b)).Here, surface 
anisotropy plays a less significant role in determining the dependence of the eigenvalues on 
shell thickness, because the eigenvalue equation (15) overwhelms the surface contributioneven 
for large values of ��. 
 
In Fig. 1(b), several of the eigenvalues @W,; are plotted as a function of the ratio �� ��⁄ . The 
first eigenvalue @�,$is degenerate with the ferromagnetic resonance (@�,$ = 0) unless surface 
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anisotropy is present (see Fig. 1(b)). This eigenvalue is independent of the shell thickness for �� = 0 but has an approximately linear dependence on �� ��⁄  in the range �� ��⁄ = 0 −0.6(see Fig.(b)) for non-zero ��+.In addition to shifting the frequency, surface anisotropy can 
deviate the magnetisation away from a homogenous single domain distribution [26]. In Fig. 
1(b), the first � = 0 mode can be expected to gradually separate from the ferromagnetic 
resonance as the deviation from the single domain becomes more pronounced with decreasing 
shell thickness. 

1. Size Dependence 

 

Figure 2: (a)@�,; plotted against 1 ���⁄ for ��/ = 4 × 10de	J/m², ��+ = 0 and �� ��⁄ =0.8,whereE$ = #$�@�,; ��� �⁄ , (b) @�,$ plotted against 1 �⁄ ��for ��/ = 4 × 10de	J/m²,��+ = 0 
and different values of �� ��⁄ , (c)@�,$plotted against ��for�� ��⁄ = 0.85,��/ = 4 × 10de	J/m² 
and varying values of ��+(I) − 4 × 10deJ/m², (II) − 2 × 10deJ/m² and (III)0J/m²and (d) The 
eigenvalue @�,$ plotted against the outer radius �� for�� ��⁄ = 0.85,��/ = 4 × 10de	J/m²and 
varying values of ��+(I)0	J/m², (II)2 × 10deJ/m² and (III)4 × 10deJ/m². 
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The eigenvalues have no dependence on �� when surface anisotropy is absent. A dependence on �� is introduced when the constants  ��/ and ��+ are non-zero, such that the resonance 
frequencies are no longer strictly proportional to1 ���⁄ .The deviation from the1 ���⁄  size 
dependence is shown in (see Fig. 2(a),(b)) when surface anisotropy is present only at the outer 
boundary, which could correspond to the case when a coating is applied on the outer surface. In 
this situation, the dependence of the eigenvalues on �� decreases with decreasing particle size 
(see Fig. 2(d)). Although the shift in the eigenvalues is decreasing with decreasing	��, the shift 
in the frequency is greatly increasing due to the 1 ���⁄  denominator in the expression for the 
frequency. However, the competition between different forms of surface anisotropy at each 
boundary can lead to more complex effects. In Fig. 2(c), the surface anisotropy has a small 
impact on the eigenvalue @�,$for �� = 115nm (@�,$~	0), but the dependence on �� becomes 
more pronounced with decreasing particle size. This is in contrast to the solid sphere [47][50] 
for which the dependence of the eigenvalues on ��always decreases with decreasing particle 
size. 

 

In Fig. 2(b), the size dependence of the lowest exchange mode is shown for different values of 
the shell thickness. The size dependence of @�,$ is close to that of the solid sphere for �� ��⁄ =0.5 in Fig. 2(b), but shows large deviation from the solid sphere for �� ��⁄ = 0.85.  In contrast 
to all other exchange modes, this mode has no size dependence in the absence of surface 
anisotropy. However, in the presence of surface anisotropy, the size dependence of this mode 
becomes pronounced as the shell thickness is decreased (see Fig. 2(b)), particularly when 
supported by surface contributions at the inner boundary (see Fig. 2(d)).As a result, the @�,$ 
mode can potentially reach high frequencies in spherical shells due to the possibility of tuning 
the thickness. 

5 Conclusions 

 

The eigenvalues of the exchange resonance modes were derived for the spherical shell when 
assuming that surface anisotropy is present at both the inner and outer boundaries. The presence 
of surface anisotropy was found to play an important role in the dynamical properties of 
saturated nanoshells, and resulted in a range of different behaviors for lower-order (k = 1) 
eigenvalues. Relatively small values of �� can rapidly drive these eigenvalues towards 0 with 
decreasing shell thickness, suggesting that surface anisotropy is an important factor to consider 
in the design of high frequency microwave devices which utilize spherical shells. For higher-
order modes (k = 2) surface anisotropy was found to play a more marginal role in determining 
the variation of the eigenvalues. The presence of surface anisotropy was foun ta dependence of 
the first � = 0 mode on �� ��⁄  which led to a gradual increase in the eigenvalue with 
decreasing shell thickness. For this mode, similar size-dependent behavior to the solid sphere 
was observed up to a thickness of	�� ��⁄ ~	0.5 when surface anisotropy was present only on the 
outer boundary. However, substantial deviation from the size dependence of the solid sphere 
was observed as the shell thickness was decreased further. 
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