The dominant role of semi-arid ecosystems in the trend and variability of the land CO$_2$ sink

Authors: Anders Ahlström$^{1,2, *}$, Michael R. Raupach3, Guy Schurgers4, Benjamin Smith1, Almut Arneth5, Martin Jung6, Markus Reichstein6, Josep G. Canadell7, Pierre Friedlingstein8, Atul K. Jain9, Etsushi Kato10, Benjamin Poulter11, Stephen Sitch12, Benjamin D. Stocker13,14, Nicolas Viovy15, Ying Ping Wang16, Andy Wiltshire17, Sönke Zaehle6, Ning Zeng18

Affiliations:
1. Lund University, Department of Physical Geography and Ecosystem Science, 223 62 Lund, Sweden.
2. Department of Earth System Science, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, CA 94305, USA
3. Australian National University, Climate Change Institute, Canberra, ACT 0200, Australia.
4. Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark.
5. Karlsruhe Institute for Technology, Institute for Meteorology and Climate Research- Atmospheric Environmental Research, 82476 Garmisch-Partenkirchen, Germany.
6. Max Planck Institute for Biogeochemistry, 07745 Jena, Germany.
7. Global Carbon Project, CSIRO Oceans and Atmospheric Flagship, Canberra, Australia
8. Capital Territory, Australia
10. Department of Atmospheric Sciences, University of Illinois, Urbana-Champaign, 105 S. Gregory Street, Urbana, IL 61801.
12. Montana State University, Institute on Ecosystems and the Department of Ecology, Bozeman, Montana 59717, USA.
13. College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK.
14. Department of Life Sciences, Imperial College, Silwood Park, Ascot SL5 7PY, UK.
15. Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
16. Laboratoire des sciences du climat et de l'environnement, Bat 712, Orme des Merisiers, CEA Saclay, F-91191 Gif sur Yvette CEDEX, France.
17. CSIRO Ocean and Atmosphere Flagship, PMB 1, Aspendale Vic 3195, Australia.
18. Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, Ex1 3PB, UK.
19. Department of Atmospheric and Oceanic Science and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742-2425, USA.

*Correspondence to: anders.ahlstrom@nateko.lu.se
Abstract:

The growth rate of atmospheric CO$_2$ concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in the CO$_2$ uptake by terrestrial ecosystems. However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of the global gross primary production, we show that the mean sink, trend, and interannual variability in CO$_2$ uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the sink strength is dominated by highly productive lands, mainly tropical forests, the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.

One Sentence Summary:

Semi-arid savannas and shrub lands dominate the trend and interannual variability of the global land CO$_2$ sink.

Main Text:

Since the 1960s, terrestrial ecosystems have acted as a substantial sink for atmospheric CO$_2$, sequestering about one quarter of anthropogenic emissions in an average year (1). This ecosystem service, which helps mitigate climate change by reducing the rate of increase of atmospheric greenhouse gases, is due to an imbalance between the uptake of CO$_2$ through gross primary production (GPP, the aggregate photosynthesis of plants) and the release of carbon to the atmosphere by ecosystem respiration (R_{eco}) and other losses, including wildfires (C_{fire}). The net carbon flux (net biome production, NBP = GPP - R_{eco} - C_{fire}) results from the small imbalance between the much larger uptake and release fluxes. Consequently, small fractional variations in either of these fluxes can cause substantial absolute variations in net carbon exchange with the atmosphere. These variations account almost entirely for year-to-year variations around the overall trend in atmospheric concentrations of CO$_2$ (2, 3).

Modelling studies suggest a large uncertainty of the future magnitude and sign of the carbon sink provided by terrestrial ecosystems (4-8). Robust projections are crucial to assess future atmospheric CO$_2$ burdens and associated climate change, and also for developing effective mitigation policies. Reducing uncertainty requires better knowledge of the regions and processes governing the present sink and its variations. Inventories suggest that the majority of carbon sequestered by the terrestrial biosphere since industrialization has accumulated in forest ecosystems of the tropics and temperate zones (9). However, the relative contributions of ecosystems of different, climatically-distinct, regions to variations in the land sink on interannual to multi-decadal time scales are not well characterized. Here we investigate relative regional contributions to, respectively, the mean sink, its trend over recent decades and the interannual variability (IAV) around the trend.
We simulate the geographic pattern and time course of NBP using LPJ-GUESS \((10-12)\), a biogeochemical dynamic global vegetation model (DGVM) that explicitly accounts for the dependency of plant production and downstream ecosystem processes on the demography (size structure) and composition of simulated vegetation. We force the model with historical climate \((13)\) and CO\(_2\) concentrations, accounting for emissions from land use change and carbon uptake due to regrowth following agricultural abandonment \((14)\). We compare the results to an ensemble of nine ecosystem and land surface model simulations from the TRENDY model intercomparison project \((12, 15)\) (hereinafter TRENDY models, Table S1).

The TRENDY ensemble is similarly based on historical climate and CO\(_2\), but employs a static 1860 land use mask.

Global NBP as simulated by LPJ-GUESS shows strong agreement \((r^2=0.62)\) with the Global Carbon Project (GCP) estimate of the net land CO\(_2\) flux; an independent, bookkeeping-based estimate derived as the residual of emissions, atmospheric growth and ocean uptake of CO\(_2\) \((1)\) (Fig 1A). TRENDY models do not account for land use change. In comparison to the GCP land flux estimate they consequently predict a higher average NBP but similar interannual variation. Moreover, the offset between the TRENDY ensemble mean and the GCP land flux estimate is comparable to the GCP estimate of mean land use change emissions for the period 1982-2011 (fLUC).

We divide the global land area into six land cover classes following the MODIS MCD12C1 land cover classification \((12, 16)\): tropical forests (Fig 1B), extra-tropical forest, grasslands and croplands (here combined), semi-arid ecosystems (Fig 1C), tundra and arctic shrub lands, and sparsely vegetated lands (areas classified as barren) (Fig S1 and S2).

When the global terrestrial CO\(_2\) sink (average NBP) and its trend (1982-2011) are partitioned among land cover classes, we find that tropical forests account for the largest fraction (26%, 0.33 PgC year\(^{-1}\)) of the average sink over this period (1.23 PgC year\(^{-1}\)) (Fig. 1D). In contrast, we find that semi-arid ecosystems dominate the positive global CO\(_2\) sink trend (57%, 0.04 PgC year\(^{-2}\), global: 0.07 PgC year\(^{-2}\)) (Fig. 1E). The TRENDY ensemble shows a consistent pattern, with tropical forests dominating the mean sink (median: 24%) and semi-arid ecosystems dominating the trend (median: 51%). The predominance of semi-arid ecosystems in explaining the global land sink trend is consistent with widespread observations of woody encroachment over semi-arid areas \((17)\) and increased vegetation greenness inferred from satellite remote sensing over recent decades \((17-19)\). Likewise, a recent study attributes the majority of the record land sink anomaly of 2011 to the response of semi-arid ecosystems in the Southern Hemisphere, particularly Australia, to an anomalous wet period; the study further postulates a recent increase in the sensitivity of carbon uptake to precipitation for this region due to vegetation expansion \((20)\).

We further partition interannual variability in global NBP among land cover classes based on the contribution of individual grid cells to global NBP IAV \((12)\). To this end, we adopted an index (Eq. S1, Fig S3) that scores individual geographic locations according to the consistency over time (years) with which the local NBP flux resembles the sign and magnitude of global NBP (Fig S4). Regions receiving higher and positive average scores are inferred to have a larger contribution in governing global NBP IAV, as opposed to regions characterized by smaller or negative (counteracting) scores (Fig S3). The index we adopt does not characterize the variability of ecosystems of different land cover classes as, for example
the standard deviation would do (Fig S5) but rather enables a comparison of their relative importance (contribution) in governing global IAV.

Semi-arid ecosystems were found to account for the largest fraction, 39%, of global NBP IAV, exceeding tropical forest (19%), extra-tropical forest (11%; all forest: 30%) and grasslands and croplands (27%) (Fig 1F). The TRENDY ensemble shows a similar partitioning, with semi-arid ecosystems accounting for 47% (median; tropical forests: 28%, extra-tropical forest: 6%, all forest: 35%). The overall contributions per land cover class are the sum of both positive and negative contributions that result from differences in phase between IAV of individual grid cells compared with global IAV (Fig S4). The extent to which negative contributions reduce the overall land cover class contributions is minor for all regions except grasslands and crops (Fig S6) (LPJ-GUESS: -13%, TRENDY median: -13%) the latter being distributed widely across climate zones, both climate variations and the sensitivity of NBP to climate variations differing among regions.

To partition the global NBP IAV among component fluxes (GPP, \(R_{eco} \), \(C_{fire} \)) and among land cover classes, we applied Eq. S1. We found that global NBP IAV is most strongly associated with variation in GPP; interannual GPP anomalies contribute 56% of the global NBP IAV in LPJ-GUESS, and a median of 90% in the TRENDY model ensemble. Comparing different land cover classes, the GPP anomalies of semi-arid ecosystems alone contribute 39% in LPJ-GUESS and a median of 65% in the TRENDY model ensemble to global NBP IAV (Fig. S7). Semi-arid vegetation productivity thus emerges clearly as the single most important factor governing global NBP IAV.

We employed two complementary methods to attribute the variability in GPP—as the inferred primary driver of global NBP IAV—to its environmental drivers. Firstly, we analyzed simulation results from LPJ-GUESS, linking output GPP anomalies to variability in the climatic input data. Secondly we use a time-resolved gridded global GPP product derived from upscaled flux tower measurements (12, 21) (hereinafter empirical GPP product). This product uses an empirical upscaling of flux measurements and is thus entirely independent of the modelled GPP in our study.

The three main climatic drivers temperature (T), precipitation (P) and shortwave radiation (S) are interdependent and correlated. To account for combined effects of these drivers we adopt an analysis of GPP variations from an “impact perspective” (22-24): we first identify GPP anomalies and then extract their climatic covariates. The primary challenge of such analysis on annual scale is to target climate indices that adequately characterize the “period of climatic influence”, e.g. growing season average, annual averages, minima or maxima of a given climatic forcing. To overcome this challenge we use semi-annual time series of climate drivers constructed using an optimization procedure that weights monthly anomalies of a given climate variable (T, P or S), accounting for time lags of up to 24 months while making no additional prior assumptions as to the period of influence (12). For each GPP event we extract climatic covariates as z-scores of the semi-annual climatic drivers.

We evaluate the climatic covariates of GPP anomalies for semi-arid ecosystems from the empirical GPP product and modelled by LPJ-GUESS, focusing on T and P, and find similar responses of GPP to climate with both approaches across all latitude bands (Fig 2 A,B). Negative GPP anomalies in semi-arid ecosystems are mainly driven by warm and dry (low rainfall) climatic events in most latitudes, suggestive of drought. By contrast, positive GPP
anomalies are dominated by cool and wet conditions. Averaging the distributions over
latitudes (Fig 2 A,B) and extracting the climatic covariates per percentile of the GPP
distributions shows that GPP varies with climatic conditions on a straight line in T-P space
(Fig S8), with a stronger covariation with P than T. This implies that the full GPP
distributions are driven by similar climatic patterns, i.e. anomalies that differ in size and sign
covary with corresponding differences in size and sign in the drivers. GPP extremes (the tails
of the distribution of GPP among years) covary with ENSO across all latitudes (Fig 2 C,D).
Both in the model and the empirical GPP product, GPP anomalies are more strongly
associated with the positive phase of ENSO (El Niño) than the negative phase (La Niña),
while the sign of the relationship varies with latitude. Positive ENSO tends to coincide with
negative GPP anomalies in the tropics (30°S - 20°N), and with positive GPP anomalies north
of 20°N.

The agreement between climatic covariates of the data-based empirical GPP product and
modelled GPP alongside the comparatively robust pattern of the covariation with climate
suggests that GPP IAV for semi-arid ecosystems is mediated by climate. Since ENSO
covaries with a considerable portion of the GPP distribution, we infer that ENSO is the
dominating mode of global circulation variations driving GPP IAV over semi-arid
ecosystems. Recent modelling studies have found that extreme El Niño events could become
more common under climate change (25), which together with an increased atmospheric
demand for water associated with global warming might exacerbate the impact of El Niño
events over semi-arid ecosystems and further increase the role of semi-arid regions in driving
global NBP IAV (26-28).

We repeat the calculation of climatic covariates to simulated NBP for LPJ-GUESS and each
of the TRENDY models. The resulting maps of covariates in T-P space are shown as average
covariates of negative (low CO₂ uptake or CO₂ release) extremes (Fig 3 A,B) and positive
(high CO₂ uptake or low CO₂ release) extremes (Fig 3 C,D). In general, semi-arid ecosystems
stand out as regions in which strong CO₂ uptake events are consistently associated with cool
and moist conditions, and strong CO₂ release events with warm and dry conditions. In tropical
forests NBP covaries with both T and P as in semi-arid regions, but also with T alone. In high
latitudes wet or warm and wet conditions lead to negative NBP extremes whereas warm and
dry or dry conditions tend to lead to positive extremes, although the spatial heterogeneity of
the covariates is large in this region (Fig 3).

Our approach offers detailed spatial and temporal disaggregation of drivers and responses
which is important when analyzing drivers or covariates of global NBP IAV because of the
high temporal and spatial variability in P (Fig S9-11). Using four upscaling levels with
increasing spatial and temporal disaggregation (ranging from land surface mean P and T to
using semi-annual P and T, averaged based on the spatial origin of each year’s global NBP
anomaly (Eq S5 and S6)) we show that P and NBP IAV become more correlated at higher
levels of disaggregation. At the highest disaggregation level, P is almost as strongly correlated
with NBP IAV as T, suggesting a strong influence of soil moisture variations on global NBP
IAV (28). This strong increase in P correlations with disaggregation resolves an apparent
conflict between the findings of the present study, and those of studies using regionally
averaged drivers which emphasize the role of T in governing IAV in atmospheric CO₂ (28-30).
For semi-arid ecosystems T correlations are slightly stronger than P correlations with
NBP IAV (Fig 4B), partly due to an asymmetric distribution of P and/or an asymmetric
response of NBP to P IAV (Fig S12). The correlation of tropical forest P with NBP IAV
increases when we use the semi-annual drivers, suggesting large importance of accounting for
time lags and “period of climatic influence” of P variations (12), but P-NBP IAV correlations
are still weaker than T-NBP IAV correlations (Fig 4C).

Our analysis provides evidence that semi-arid ecosystems, largely occupying low latitudes,
have dominated the IAV and trend of the global land C sink over recent decades. Semi-arid
regions have been the subject of relatively few targeted studies that place their importance in a
global context. Our findings indicate that semi-arid regions and their ecosystems merit
increased attention as a key to understanding and predicting inter-annual to decadal-scale
variations in the global carbon cycle.

References and Notes
2. C. D. Keeling, T. P. Whorf, M. Wahlen, J. van der Plichtt, Interannual extremes in the
4. A. Ahlström, G. Schurgers, A. Arneth, B. Smith, Robustness and uncertainty in
5. P. Friedlingstein et al., Climate–Carbon Cycle Feedback Analysis: Results from the
6. A. D. McGuire et al., Carbon balance of the terrestrial biosphere in the Twentieth
Century: Analyses of CO₂, climate and land use effects with four process-based
7. S. Schaphoff et al., Terrestrial biosphere carbon storage under alternative climate
8. S. Sitch et al., Evaluation of the terrestrial carbon cycle, future plant geography and
10. A. Ahlström, P. A. Miller, B. Smith, Too early to infer a global NPP decline since
11. B. Smith, I. C. Prentice, M. T. Sykes, Representation of vegetation dynamics in the
modelling of terrestrial ecosystems: comparing two contrasting approaches within
12. Materials and methods are available as supplementary materials on *Science* Online.
13. I. Harris, P. D. Jones, T. J. Osborn, D. H. Lister, Updated high-resolution grids of
monthly climatic observations – the CRU TS3.10 Dataset. *International Journal of
Climatology* 34, 623-642 (2014).
14. G. Hurtt et al., Harmonization of land-use scenarios for the period 1500–2100:
600 years of global gridded annual land-use transitions, wood harvest, and resulting
15. S. Sitch et al., Recent trends and drivers of regional sources and sinks of carbon
16. M. A. Friedl et al., MODIS Collection 5 global land cover: Algorithm refinements and

Supplementary Materials

www.sciencemag.com

Materials and Methods

Figs. S1-S12

References (33-57)
The MODIS MOD12C1 land cover product was obtained through the online Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov/data_access). AAhl acknowledge support from The Royal Physiographic Society in Lund (Birgit and Hellmuth Hertz’ Foundation), the Swedish Research Council (637-2014-6895) and the foundation for Strategic Environmental Research (MISTRA) through the Mistra-SWECIA programme. AArn acknowledges support from EC FP7 grants LUC4C (603542). AArn, MRei and BDS acknowledge support from EC FP7 EMBRACE (282672). JGC thanks the support of the Australian Climate Change Science Program. AKJ was supported by the US National Science Foundation (NSF AGS 12-43071), the US Department of Energy (DOE DE-SC0006706) and NASA LCLUC program (NASA NNX14AD94G). EK was supported by the Environmental Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan. YPW was supported by CSIRO strategic research funds. NZ acknowledge support from NOAA (NA10OAR4310248 and NA09NES4400006) and NSF (AGS-1129088). This study is a contribution to the Lund Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI) and the strategic research areas MERGE and BECC.

Figure captions:

Figure 1. Global and regional NBP mean, trend and variations. (A) Global NBP and GCP land flux time series (1982 – 2011). TRENDY models are plotted on a separate vertical axis with a time-invariant offset corresponding to the time period average GCP fLUC estimate (1.2 Pg C). (B) Tropical forest NBP. LPJ-GUESS (red line) includes emissions from land use change. TRENDY models average (blue line) and 1st and 3rd quartiles of the ensemble (shaded blue area) do not include emissions from land use change. (C) NBP of semi-arid ecosystems from LPJ-GUESS (including land use change emissions) and TRENDY models (excluding land use change emissions). (D) Contribution of land cover classes to global mean NBP (1982-2011) (mean NBP of land cover class / mean global NBP). Horizontal lines in boxplots show from top, 95th, 75th, 50th, 25th, and 5th percentiles. (E) Contribution of land cover classes to global NBP trend (land cover class NBP trend / global NBP trend). (F) Contribution of land cover classes to global NBP interannual variations (Eq S1).

Figure 2. Climatic-covariates of semi-arid ecosystem GPP variations. (A) Distribution by latitude of the empirical GPP product anomalies normalized by average standard deviation of GPP in semi-arid lands. The distribution is colored according to the legend based on average local climatic covariates per latitude zone and distribution bin. (B) LPJ-GUESS GPP distribution calculated and colored as in (A). (C) Covariation of the multivariate ENSO index anomalies (MEI (31, 32)) with the empirical GPP product. (D) Covariation of MEI and modelled GPP anomalies per latitudinal zone. NB: the figure shows the covariates of latitudinal average local GPP anomalies and not the average covariates based on GPP IAV contribution to NBP IAV.

Figure 3. Climatic covariates of NBP extremes. (A) Climatic covariates of LPJ-GUESS negative NBP extremes (1-10th percentiles). (B) Mean climatic covariates of TRENDY-models negative NBP extremes (1-10th percentiles). (C) covariates of LPJ-GUESS positive
NBP extremes (90-99th percentiles). (D) Mean climatic covariates of TRENDY-models positive NBP extremes (90-99th percentiles).

Figure 4. Correlations between annual climatic drivers IAV (P and T) and global NBP IAV (mean of all 10 models). (A) Global P and T correlations to global NBP IAV. From black to white and left to right, bars represent annual P and T IAV correlations to global NBP IAV with increasing spatial and temporal disaggregation of P and T while averaging to global time series: (I) Black bars represent averaged global land surface P and T weighted by grid cell area. (II) Dark grey bars represent P and T weighted by 30-year average contribution to global NBP IAV (Eq S1, Fig S4). (III) Light grey bars represent averaged P and T weighted by each years contributions, thus accounting for the difference in the spatial distribution of contributions between years (Eq S5 and S6). (IV) White bars represent semi-annual climate drivers averaged to global time series using the annual spatial contributions as in (III) thereby accounting for the “period of climatic influence” and time lags of up to 24 months. (B) Correlations between P and T IAV and NBP IAV for semi-arid ecosystems. Weights, where applicable, are based on contributions to global NBP IAV as in (A) but with P and T averaged over semi-arid ecosystems only. (C) Correlations between P and T IAV and global NBP IAV for tropical forest. Weights, where applicable, are based on contributions to global NBP IAV as in (A) but with P and T averaged over tropical forest only.