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 2 

Abstract 24 

Ultrasonography is a useful technique to study muscle contractions in vivo, however 25 

larger muscles like the vastus lateralis may be difficult to visualise with smaller, 26 

commonly used transducers. Fascicle length is often estimated using linear 27 

trigonometry to extrapolate fascicle length to regions where the fascicle is not visible. 28 

However, this approach has not been compared to measurements made with a larger 29 

field of view for dynamic muscle contractions. Here we compared two different single-30 

transducer extrapolation methods to measure VL muscle fascicle length to a direct 31 

measurement made using two synchronised, in-series transducers. The extrapolation 32 

methods used either pennation angle and muscle thickness to extrapolate fascicle 33 

length outside the image (extrapolate method) or determined fascicle length based on 34 

the extrapolated intercept between fascicle and aponeurosis (intercept method). Nine 35 

participants performed maximal effort, isometric, knee extension contractions on a 36 

dynamometer at 100 increments from 50-1000 of knee flexion. Fascicle length and 37 

torque were simultaneously recorded for offline analysis. The dual transducer method 38 

showed similar patterns of fascicle length change (overall mean coefficient of multiple 39 

correlation was 0.76 and 0.71 compared to extrapolate and intercept methods 40 

respectively), but reached different absolute lengths during the contractions. This had 41 

the effect of producing force-length curves of the same shape, but each curve was 42 

shifted in terms of absolute length. We concluded that dual transducers are beneficial 43 

for studies that examine absolute fascicle lengths, whereas either of the single 44 

transducer methods may produce similar results for normalised length changes, and 45 

repeated measures experimental designs. 46 

 47 

  48 
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Introduction 49 

Ultrasonography allows for non-invasive measurement of muscle fascicle geometry 50 

during muscle contractions. For human muscles with relatively short fascicles, like 51 

gastrocnemius or tibialis anterior, dynamic imaging is relatively simple because the 52 

majority of the muscle fascicle is visible within the field of view (FOV) of the transducer 53 

(Brennan et al., 2017; Cronin et al., 2013; Day et al., 2013; Kawakami et al., 1998; 54 

Maganaris, 2003). Measurements of longer fascicles in muscles like vastus lateralis 55 

(VL) are more difficult due to the required FOV being larger.   56 

 57 

Different methods are available to overcome the FOV issue. The first method is to use 58 

a longer transducer that can image a larger FOV  (Sharifnezhad et al., 2014). 59 

However, longer transducers (e.g. 10 cm) often have a limited frame rate because of 60 

the greater time it takes to obtain data along the length of the transducer, and can 61 

have reduced image quality depending on the number of crystal elements per unit 62 

length. Another method is to use extended FOV techniques (Noorkoiv et al., 2010), 63 

which is a valid and reliable method for static measurements when there are not 64 

changes in muscle force and/or fascicle length. The most common method to 65 

overcome FOV issues during dynamic contractions is to use linear trigonometry to 66 

estimate the length of the portion of the fascicle that is outside the FOV of a single 67 

transducer (Austin et al., 2010; Finni et al., 2003; Fontana et al., 2014). An alternative 68 

is to utilise a second, in-series transducer to simultaneously record images of the part 69 

of the fascicle not visible by the first transducer (Bolsterlee et al., 2016; 2015; Herbert 70 

et al., 2011; 2015). Using a second transducer, both fascicle endpoints are visible, 71 

reducing some of the uncertainty in fascicle length measurements. For dynamic 72 
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fascicle tracking, estimations of fascicle length from a single transducer have not yet 73 

been compared to length measurements from a greater FOV using two transducers. 74 

 75 

The aim of the study was to determine if dynamic measurements of VL fascicle length 76 

using extrapolation methods with one transducer during isometric knee extension 77 

contractions match those made with two synchronised, in-series transducers. We 78 

hypothesised that the absolute lengths of the fascicles would differ between the single 79 

and dual ultrasound techniques, due to the ability to visualise the fascicle endpoint. 80 

However, we also predicted that any differences would be negligible for normalised 81 

length changes, and hence, would not affect observations made using a repeated 82 

measures design. 83 

 84 

Methods 85 

Protocol 86 

Nine participants (age 26 ± 2.5 years, mass 72.8 ± 7.0 kg, height 178 ± 6.3 cm) 87 

provided informed consent to participate in the study. The study was approved by an 88 

institutional ethics committee. Each participant completed maximal effort, isometric, 89 

knee extension contractions on an isokinetic dynamometer (HUMAC NORM, CSMi 90 

Inc., Stoughton, MA, USA). A familiarisation session was completed to make sure that 91 

they could perform consistent maximal efforts. A second experimental session 92 

followed within 10 days, which included the ultrasound measurements. The two 93 

sessions used the same protocol and dynamometer position. 94 

 95 

Participants were seated in the dynamometer with a hip angle of 800 and the 96 

dynamometer attachment adjusted to align with the flexion/extension axis of the left 97 
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knee. A 60-s isotonic warm up protocol was performed using the interactive path 98 

program on the dynamometer. The isometric protocol consisted of randomised blocks 99 

of three maximal effort, isometric contractions at 100 increments from 500-1000 of knee 100 

flexion. A straight leg was defined as 00 of knee flexion. For each contraction 101 

participants were instructed to perform a ramp contraction to maximal effort over a 3-102 

s period, and hold the maximum effort for 1-s before relaxing. Two minutes rest was 103 

given between trials to avoid any potential fatigue effects.  104 

 105 

Dynamometer measurements 106 

Knee extensor torque and joint angle were sampled from the analogue output of the 107 

dynamometer using a CED Micro 1401 A/D converter at a 2kHz sample rate and 108 

recorded in Spike 2 software (Cambridge Electronic Design Ltd., Cambridge, 109 

England). The torque signal was filtered using a 10 Hz, first-order, low-pass, bi-110 

directional Butterworth filter in Matlab (MathWorks Inc., Natick, MA, USA). The 111 

maximum gravity effective torque (maxGET) was taken as the resting torque with the 112 

knee at full extension (00). Torque was then gravity corrected using maxGET and joint 113 

angle (Pincivero et al., 2004; Westing and Seger, 1989). Passive torque was 114 

calculated as the difference between the resting torque and gravity corrected torque 115 

prior to the contraction. The best two-out-of-three trials based on maximal torque were 116 

analysed for each joint angle. 117 

 118 

Ultrasound measurements 119 

Muscle fascicle measurements of VL were made using two flat ultrasound transducers 120 

(LV7.5/60/96Z, TELEMED, Vilnius, Lithuania) that were held end-to-end by a custom 121 

made frame (Figure 1). Due to the shape of the transducer, there was a 22 mm gap 122 
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between the visual fields of the transducers. A custom Matlab script was written to 123 

‘stitch’ the images together (Figure 1c). The transducers were placed at approximately 124 

50% thigh length, following a line between the greater trochanter and superior patella 125 

insertion. A self-adhesive compression bandage was used to secure the transducers 126 

to the thigh. The central frequency of the transducer was set at 5 MHz, image depth 127 

at 50 mm, and sampling rate of 80 Hz. A logic pulse from the first ultrasound system 128 

triggered data capture by the other system, which produced its own logic pulse. The 129 

two pulses were recorded by the A/D board to determine any delay between the onsets 130 

of image collection. A semi-automated tracking algorithm (Cronin et al., 2011; Farris 131 

and Lichtwark, 2016; Gillett et al., 2013) tracked the positions of the visible fascicle,  132 

and the deep and superficial aponeuroses, which was subsequently used to estimate 133 

fascicle length using three different methods. 134 

  135 

Method 1 - Extrapolation 136 

Fascicle length for the “extrapolation” method (Figure 1a) was calculated from the 137 

proximal image using the equation: 138 

 139 

FL = visible fascicle length + h/sin(PA) 140 

 141 

where ‘h’ equals the vertical distance between the intersection of the visible fascicle 142 

with the image border and the deep aponeurosis; and PA equals the pennation angle 143 

of the tracked fascicle (Austin et al., 2010; Finni et al., 2003; Fontana et al., 2014).  144 

Method 2 - Intercept 145 

Fascicle length for the “intercept” method (Figure 1b) was calculated from the proximal 146 

image using: 147 
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 148 

 FL = visible fascicle length + predicted length 149 

 150 

where the predicted length is equal to the distance between the visible fascicle’s 151 

intersection with the image border and the intersection of the linearly extrapolated 152 

paths of the visible fascicle and deep aponeurosis (Blazevich et al., 2009). 153 

Method 3 – Dual 154 

The proximal and distal images of VL were used to separately track the positions of 155 

the proximal and distal endpoints of a line assumed to be representative of a single 156 

fascicle (Figure 1c). The proximal insertion and visible fascicle length was defined first, 157 

then the distal ‘fascicle’ was defined as the continuation of that line within the distal 158 

image. Fascicle lengths were calculated as the distance between the origin of the 159 

fascicle in the proximal image and the distal intersection with the deep aponeuroses 160 

in the distal image. 161 

 162 

Due to the large proportion of fascicle length that is estimated, Methods 1 and 2 163 

(extrapolate and intercept) are highly sensitive to changes in the orientation of the 164 

deep aponeurosis. As such, the coordinates of the tracking points were filtered using 165 

a 5 Hz, second-order, low-pass, bi-directional, Butterworth filter to reduce the chances 166 

of non-physiological length changes as a result of the calculations. Fascicle lengths 167 

were then calculated from the filtered X-Y coordinates and interpolated to the analogue 168 

sampling rate.  169 

 170 

Analysis 171 
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Quadriceps force was calculated as active torque divided by the angle specific VL 172 

moment arm, calculated individually using a modified gait 2392 musculoskeletal model 173 

in OpenSim software and standard scaling procedures (Delp et al., 1990). The scale 174 

factors were determined from markers placed on anatomical landmarks of the pelvis 175 

and left lower limb. Fascicle length was recorded at rest and at the time of maximal 176 

quadriceps force for each contraction at each joint position. The change in fascicle 177 

length from the resting state to maximum quadriceps force was also calculated. 178 

 179 

For each individual a force-length curve was fitted, based on physiologically 180 

appropriate models (Azizi and Roberts, 2010) 181 

𝐹𝑎𝑐𝑡𝑖𝑣𝑒 =  𝑒−|(𝐿𝑏−1)∕𝑠|
𝑎

 182 

 183 

where F is force, L is fascicle length, a is roundness, b is skewness, and s is width. 184 

The curve fit was optimised using a nonlinear least squares method. 185 

 186 

A coefficient of multiple correlation (CMC) analysis was performed for each joint angle, 187 

comparing the waveform fascicle lengths of Method 3 with each of the other estimation 188 

methods, averaged across two trials. A two-way repeated measures ANOVA (method 189 

x joint angle) was performed on fascicle length and fascicle length change data, with 190 

Dunnett’s multiple comparisons where interactions were found. A one-way repeated 191 

measures ANOVA was used to compare Lo across methods. The coefficient of 192 

variation (R2) of the force-length fits was calculated to measure how well the curve fit 193 

explained the variance in the data. An alpha level of 0.05 was used for all statistical 194 

tests. Values in text are shown as mean ± standard deviation (SD). 195 

 196 
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Results 197 

CMC’s between the dual transducer method and the two single transducer methods 198 

showed that the pattern of fascicle length changes was consistent across methods 199 

(Table 1, Figure 2a). The extrapolate method had higher CMC values at shorter 200 

lengths (smaller joint angle) and lower CMC values at longer lengths, whereas the 201 

intercept method was consistent across joint angles. The pattern of fascicle length 202 

changes had consistent temporal phases across methods, with high values for CMCs 203 

(Table 1, Figure 2a), but the absolute fascicle length range varied between methods 204 

(Figure 2b).  205 

 206 

There was a significant main effect of method on fascicle shortening (F = 28.71, p < 207 

0.01), with no significant interaction (F = 1.52, p = 0.15, Figure 3b). The extrapolate 208 

and intercept methods showed greater fascicle shortening compared to the dual 209 

transducer method by a mean of 24.64 mm (95% CI = 16.75 – 32.53) and 11.38 mm 210 

(95% CI = 3.49 – 19.27) respectively across all joint angles.  211 

 212 

The dual transducer method (106 ± 10 mm) predicted the largest Lo, where both the 213 

intercept (90 ± 17 mm) and the extrapolation (89 ± 16 mm) resulted in a significantly 214 

lower predicted Lo (F = 18.7, p < 0.01). The normalised force-length curves for each 215 

of the methods are shown in Figure 4. The R-squared values for the extrapolation, 216 

intercept and dual transducer curve fits were 0.72 ± 0.14, 0.72 ± 0.13, and 0.74 ± 0.10 217 

respectively. 218 

 219 

Discussion 220 
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The main findings of the study suggest that fascicle length measurements made by 221 

the different methods result in absolute differences in fascicle length. However, these 222 

differences appear to be systematic and the pattern of length change between the 223 

different methods is consistent. Furthermore, the effect on normalised lengths is 224 

minimal. 225 

 226 

We observed that a second ultrasound transducer is beneficial for visualising the distal 227 

changes in muscle orientation. The greater fascicle shortening and shorter fascicle 228 

lengths at maximal force in both of the single transducer methods may be due to 229 

underestimation of fascicle length by tracking only the proximal region of the muscle. 230 

The greater shortening resulted in lower predicted absolute Lo values, however that 231 

shift was not evident when utilising normalised fascicle lengths (Figure 4). Therefore, 232 

if understanding absolute fascicle lengths is important, using a second ultrasound 233 

transducer to visualise the distal fascicle endpoint is recommended. The use of either 234 

single transducer method would provide similar results for experimental data 235 

measuring differences in muscle contraction dynamics within-participants. Thus, for a 236 

repeated measures design, the choice of estimation method may shift the overall data 237 

set but not alter the effects of experimental factors. 238 

 239 

Limitations 240 

We assumed that a second transducer is beneficial because it is possible to visualise 241 

the distal muscle region. However, the dual transducer method used in this study was 242 

not validated against any other fascicle measurement technique such as diffusion 243 

tensor imaging (Bolsterlee et al., 2015) or extended FOV techniques (Noorkoiv et al., 244 
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2010) because there is not currently a gold standard measurement for dynamic muscle 245 

contractions. 246 

 247 

Conflict of Interest Statement 248 

The authors have no conflict of interest to disclose. 249 

 250 

Funding 251 

Scott Brennan is supported by an Australian Postgraduate Award scholarship. There 252 

were no external sponsors providing financial support for the study. 253 

 254 

  255 



 12 

References 256 
 257 
Austin, N., Nilwik, R., Herzog, W., 2010. In vivo operational fascicle lengths of vastus 258 

lateralis during sub-maximal and maximal cycling. Journal of Biomechanics. 43, 259 

2394–2399.  260 

Azizi, E., Roberts, T.J., 2010. Muscle performance during frog jumping: influence of 261 

elasticity on muscle operating lengths. Proceedings of the Royal Society B: 262 

Biological Sciences. 277, 1523–1530.  263 

Blazevich, A.J., Coleman, D.R., Horne, S., Cannavan, D., 2009. Anatomical predictors 264 

of maximum isometric and concentric knee extensor moment. European Journal 265 

of Applied Physiology. 105, 869–878.  266 

Bolsterlee, B., Gandevia, S.C., Herbert, R.D., 2016. Effect of transducer orientation on 267 

errors in ultrasound image-based measurements of human medial gastrocnemius 268 

muscle fascicle length and pennation. PLoS ONE. 11, e0157273.  269 

Bolsterlee, B., Veeger, H.E.J.D., van der Helm, F.C.T., Gandevia, S.C., Herbert, R.D., 270 

2015. Comparison of measurements of medial gastrocnemius architectural 271 

parameters from ultrasound and diffusion tensor images. Journal of Biomechanics. 272 

48, 1133–1140.  273 

Brennan, S.F., Cresswell, A.G., Farris, D.J., Lichtwark, G.A., 2017. The effect of 274 

cadence on the muscle-tendon mechanics of the gastrocnemius muscle during 275 

walking. Scandinavian Journal of Medicine & Science in Sports. 27, 289–298.  276 

Cronin, N.J., Avela, J., Finni, T., Peltonen, J., 2013. Differences in contractile 277 

behaviour between the soleus and medial gastrocnemius muscles during human 278 

walking. Journal of Experimental Biology. 216, 909–914.  279 

Cronin, N.J., Carty, C.P., Barrett, R.S., Lichtwark, G., 2011. Automatic tracking of 280 

medial gastrocnemius fascicle length during human locomotion. Journal of Applied 281 



 13 

Physiology. 111, 1491–1496.  282 

Day, J.T., Lichtwark, G.A., Cresswell, A.G., 2013. Tibialis anterior muscle fascicle 283 

dynamics adequately represent postural sway during standing balance. Journal of 284 

Applied Physiology. 115, 1742–1750.  285 

Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M., 1990. An 286 

interactive graphics-based model of the lower extremity to study orthopaedic 287 

surgical procedures. IEEE Transactions on Biomedical Engineering. 37, 757–767.  288 

Farris, D.J., Lichtwark, G.A., 2016. UltraTrack: Software for semi-automated tracking 289 

of muscle fascicles in sequences of B-mode ultrasound images. Computer 290 

Methods and Programs in Biomedicine. 128, 111–118.  291 

Finni, T., Ikegawa, S., Lepola, V., Komi, P.V., 2003. Comparison of force-velocity 292 

relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle 293 

exercises. Acta Physiologica Scandinavica 177, 483–491.  294 

Fontana, H. de B., Roesler, H., Herzog, W., 2014. In vivo vastus lateralis force-velocity 295 

relationship at the fascicle and muscle tendon unit level. Journal of 296 

Electromyography & Kinesiology. 24, 934–940.  297 

Gillett, J.G., Barrett, R.S., Lichtwark, G.A., 2013. Reliability and accuracy of an 298 

automated tracking algorithm to measure controlled passive and active muscle 299 

fascicle length changes from ultrasound. Computer Methods in Biomechanics and 300 

Biomedical Engineering. 16, 678–687.  301 

Herbert, R.D., Clarke, J., Kwah, L.K., Diong, J., Martin, J., Clarke, E.C., Bilston, L.E., 302 

Gandevia, S.C., 2011. In vivo passive mechanical behaviour of muscle fascicles 303 

and tendons in human gastrocnemius muscle-tendon units. Journal of Physiology. 304 

589, 5257–5267.  305 

Herbert, R.D., Héroux, M.E., Diong, J., Bilston, L.E., Gandevia, S.C., Lichtwark, G.A., 306 



 14 

2015. Changes in the length and three-dimensional orientation of muscle fascicles 307 

and aponeuroses with passive length changes in human gastrocnemius muscles. 308 

Journal of Physiology. 593, 441–455.  309 

Kawakami, Y., Ichinose, Y., Fukunaga, T., 1998. Architectural and functional features 310 

of human triceps surae muscles during contraction. Journal of Applied Physiology. 311 

85, 398–404. 312 

Maganaris, C.N., 2003. Force-length characteristics of the in vivo human 313 

gastrocnemius muscle. Clinical Anatomy. 16, 215–223.  314 

Noorkoiv, M., Stavnsbo, A., Aagaard, P., Blazevich, A.J., 2010. In vivo assessment of 315 

muscle fascicle length by extended field-of-view ultrasonography. Journal of 316 

Applied Physiology. 109, 1974–1979.  317 

Pincivero, D.M., Salfetnikov, Y., Campy, R.M., Coelho, A.J., 2004. Angle- and gender-318 

specific quadriceps femoris muscle recruitment and knee extensor torque. Journal 319 

of Biomechanics. 37, 1689–1697.  320 

Sharifnezhad, A., Marzilger, R., Arampatzis, A., 2014. Effects of load magnitude, 321 

muscle length and velocity during eccentric chronic loading on the longitudinal 322 

growth of the vastus lateralis muscle. Journal of Experimental Biology. 217, 2726–323 

2733.  324 

Westing, S.H., Seger, J.Y., 1989. Eccentric and concentric torque-velocity 325 

characteristics, torque output comparisons, and gravity effect torque corrections 326 

for the quadriceps and hamstring muscles in females. International Journal of 327 

Sports Medicine. 10, 175–180.  328 

 329 
 330 
 331 
 332 
 333 
 334 



 15 

 335 
 336 
 337 

  338 



 16 

 339 

 340 
 341 

Joint Angle Extrapolate Intercept 

50 0.80 ± 0.17 0.75 ± 0.17 

60 0.80 ± 0.12 0.77 ± 0.07 

70 0.76 ± 0.12 0.67 ± 0.20 

80 0.77 ± 0.11 0.72 ± 0.15 

90 0.77 ± 0.09 0.65 ± 0.25 

100 0.66 ± 0.16 0.69 ± 0.21 

 342 
 343 
 344 

Coefficient Extrapolate Intercept Dual 

b 0.38 ± 0.65 0.42 ± 0.70 0.74 ± 0.97 
s 0.20 ± 0.35 0.25 ± 0.43 0.20 ± 0.25 

 345 

 346 
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Figure 1. Schematic of the different methods of estimating fascicle length in the vastus 350 
lateralis muscle. The top of the image shows the frame used to hold the two ultrasound 351 
transducers. The extrapolate method (a) and intercept method (b) use only the information 352 
from the proximal transducer, whereas the dual transducer method (c) uses two separate 353 
fields of view. The extrapolate method calculates the remaining portion of the muscle fascicle 354 
by dividing the remaining muscle thickness (h) by the sine of the pennation angle (α). The 355 
intercept method calculates the remaining portion of the muscle fascicle length by finding the 356 
intersection of the extrapolated paths of the visible fascicle and deep aponeuroses, each 357 
defined by a respective linear equation y=mx+c. The dual transducer method uses 358 
information from both regions of interest (red dashed lines) to track the movement of two 359 
parts of a visible fascicle (L1 & L2). 360 
 361 
Figure 2. Example data from a representative subject, showing the patterns of fascicle 362 
length change (a) and force-length curves (b) for each method. (a) Torque is plotted 363 
against the right axis (dotted). The vertical line indicates the occurrence of peak torque 364 
development and the point at which fascicle length measurements were taken during the 365 
trial. (b) The absolute force-length curves show that the curves are the same shape but 366 
fascicle length ranges vary across methods. The line types in (b) match the legend from 367 
(a). 368 
 369 
Table 1. Coefficient of multiple correlation (CMC) values for extrapolate and intercept 370 
methods compared to the dual transducer method. Data are shown as group mean ± SD. 371 
 372 
Table 2. Curve fit coefficients for the three different length estimation methods. Data are 373 
shown as group mean ± SD. 374 
 375 
Figure 3. Fascicle length at maximum force (a) and fascicle shortening (b) determined by 376 
each of the three different methods. Data are shown as group mean ± SE. Annotations 377 
show significant differences between all groups at the relevant joint angle. 378 
 379 
Figure 4. Force-length curves of the normalised data for the dual transducer method (a), the 380 
intercept method (b), and extrapolate method (c). Each point represents a data point on an 381 
individual force-length curve, normalised to the respective Fmax and Lo. The curve fits 382 
represent a new fit of the normalised data points for each method. 383 
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