
	 1	

 1	

The contribution of semi-arid ecosystems to interannual 2	

global carbon cycle variability 3	

 4	

Benjamin Poulter1,2, David Frank3, Philippe Ciais2, Ranga Myneni4, Niels Andela5, 5	

Jian Bi4, Gregoire Broquet2, Josep G. Canadell6, Frederic Chevallier2, Yi Y. Liu7, 6	

Steven W. Running8, Stephen Sitch9, and Guido R. van der Werf5 7	

 8	

1 Montana State University, Institute on Ecosystems and the Department of Ecology, 9	
Bozeman, MT 59717, USA 10	
2 Laboratoire des Sciences du Climat et de l’Environnement, LSCE CEA CNRS 11	
UVSQ, 91191 Gif Sur Yvette, France 12	
3 Swiss Federal Research Institute WSL, Dendroclimatology, Zürcherstrasse 111, 13	
Birmensdorf 8903, Switzerland and Oeschger Centre for Climate Change Research, 14	
University of Bern, Bern, Switzerland 15	
4 Department of Earth and Environment, Boston University, 685 Commonwealth 16	
Avenue, Boston, MA 02215, USA 17	
5 Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands 18	
6 Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, ACT 19	
2601, Australia 20	
7 Water Research Centre, School of Civil and Environmental Engineering, University 21	
of New South Wales, Sydney, NSW 2052, Australia 22	
8 Department of Ecosystem and Conservation Sciences, University of Montana, 23	
Missoula, MT 59812, USA 24	
9 College of Engineering, Computing and Mathematics, University of Exeter, Exeter 25	
EX4 4QF, UK 26	
 27	

¶ Corresponding Author Email: benjamin.poulter@montana.edu 28	
 29	
 30	

Revised version March 27, 2014 31	
 32	
 33	

The	land	and	ocean	act	as	a	sink	for	fossil	fuel	emissions	thereby	slowing	34	

the	rise	of	atmospheric	carbon	dioxide	concentrations1.	While	the	uptake	35	

of	carbon	by	oceanic	and	terrestrial	processes	has	kept	pace	with	36	

accelerating	carbon	dioxide	emissions	to	date,	atmospheric	carbon	dioxide	37	
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concentrations	exhibit	a	large	variability	on	interannual	timescales2,	38	

considered	to	be	driven	primarily	by	terrestrial	ecosystem	processes	39	

dominated	by	tropical	rainforests3.	Here	we	use	a	terrestrial	40	

biogeochemical	model,	atmospheric	inversion	and	global	carbon	budget	41	

accounting	methods	to	investigate	the	evolution	of	the	terrestrial	carbon	42	

sink	over	the	past	30	years	with	a	focus	on	the	underlying	mechanisms	43	

responsible	for	the	exceptionally	large	land	carbon	sink	reported	in	20112.	44	

Our	three	terrestrial	carbon	sink	estimates	are	in	good	agreement	and	45	

support	the	finding	of	a	2011	record	land	carbon	sink.	Surprisingly,	we	find	46	

that	the	global	carbon	sink	anomaly	was	driven	by	semi-arid	vegetation	47	

activity	in	the	Southern	Hemisphere,	with	almost	60	percent	of	carbon	48	

uptake	attributed	to	Australian	ecosystems,	where	prevalent	La	Niña	49	

conditions	caused	up	to	six	consecutive	seasons	of	increased	precipitation.	50	

In	addition,	since	1981,	a	six	percent	expansion	of	vegetation	cover	over	51	

Australia	was	associated	with	a	four-fold	increase	in	the	sensitivity	of	52	

continental	net	carbon	uptake	to	precipitation.	Our	findings	suggest	that	53	

the	higher-turnover	rates	of	carbon	pools	in	semi-arid	biomes	are	an	54	

increasingly	important	driver	of	global	carbon	cycle	inter-annual	55	

variability	and	that	tropical	rainforests	may	become	less	of	a	relevant	56	

driver	in	the	future.	More	research	is	needed	to	identify	to	what	extent	the	57	

carbon	stocks	accumulated	during	wet	years	are	vulnerable	to	rapid	58	

decomposition	or	loss	through	fire	in	subsequent	years.		59	

 60	

Each year on average, land and ocean carbon sinks absorb the equivalent of about half 61	

of global fossil fuel emissions, thereby providing a critical service that slows the rise 62	
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in atmospheric CO2 concentrations1. Emissions from fossil fuels and land-use change 63	

now surpass 10 billion tons or Petagrams (Pg) of carbon per year, tracking the most 64	

carbon intense emission scenarios of the Intergovernmental Panel on Climate 65	

Change4. Even with this acceleration, the fraction of anthropogenic emissions that 66	

accumulates in the atmosphere, the airborne fraction, has remained largely unchanged 67	

since 1959 at 44%2 (p=0.36 for slope of linear regression). This implies that the 68	

uptake of carbon by ocean and terrestrial processes has, to some extent, kept pace 69	

with accelerating emissions due to a range of possible factors, such as the fertilization 70	

effect of increased CO2 and atmospheric nitrogen deposition on plant growth, changes 71	

in growing season length, and land management5. Associated with the continued 72	

uptake of CO2, the airborne fraction exhibits large variability on interannual 73	

timescales, ranging between 18-79% during the past 54 years2. This high interannual 74	

variability is primarily driven by terrestrial processes which must be better understood 75	

to forecast long-term biospheric responses to climate change3. 76	

 77	

Owing to high uncertainties in quantifying ecosystem processes, the global terrestrial 78	

carbon sink is often estimated as the residual between emissions from the combustion 79	

of fossil fuels, cement production, and net land-use change, and sinks combining 80	

accumulation in the atmosphere and uptake by the ocean6. Based on this method, the 81	

Global Carbon Project reported in their annual assessment a 2011 residual land sink 82	

of 4.1±0.9 PgC yr-1 (± standard deviation) representing an unusually large increase 83	

compared with the 2.6±0.8 PgC yr-1 decadal average and the largest reported residual 84	

land carbon sink since measurements of atmospheric CO2 began in 1958. The 2011 85	

residual land sink is indicative of several aspects of the debate surrounding the fate of 86	

terrestrial ecosystems under environmental change. First, the large uptake of carbon in 87	
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2011 continues a trend of increasing strength in the land carbon sink over at least one 88	

decade1,7. Second, the large annual growth anomaly in the land carbon sink raises 89	

questions regarding the growth rate of atmospheric CO2 in coming years and how this 90	

is affected by the allocation of sequestered carbon to either labile or more stable 91	

pools. Lastly, increasing uncertainty in other terms of the global CO2 budget has 92	

direct consequences on land sink estimates, e.g., an overestimate of anthropogenic 93	

emissions would be assigned (due to mass conservation and current accounting 94	

schemes) as an erroneously large land sink. Thus, attributing changes in net carbon 95	

uptake to carbon cycle processes requires a range of methodological approaches. 96	

 97	

Here, we investigate the evolution of the terrestrial carbon sink over the last 30 years 98	

and the underlying mechanisms of the exceptionally large 2011 residual land carbon 99	

sink in a long-term context using i) a “bottom-up” process-oriented terrestrial 100	

biosphere model, ii) a “top-down” atmospheric CO2 inversion, and iii) satellite 101	

observations of photosynthetic activity and vegetation structure. We allocate net land 102	

carbon uptake amongst specific geographic regions and provide a mechanistic 103	

explanation for the climatic and CO2 response of net primary production (NPP), 104	

heterotrophic respiration (Rh), and disturbance that sum up to define net ecosystem 105	

exchange (NEE).  106	

 107	

We find high agreement among the three different terrestrial carbon sink estimates 108	

that robustly support record 2011 land carbon uptake (Fig. 1a; with uncertainty 109	

presented as ±1 standard deviation). The LPJ dynamic global vegetation model 110	

(DGVM; ref8) estimates a 2011 land sink of 3.9±1.3 PgC yr-1, a 1.3±0.6 PgC yr-1 111	

anomaly compared to the 2003-2012 mean sink of 2.6±0.9 PgC yr-1 (Fig. 1a and 112	
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Extended Data Table 1). Our atmospheric inversion (MACC-II; ref.9) yields a 3.7±0.4 113	

PgC yr-1 2011 land sink, equivalent to a 1.0 PgC yr-1 anomaly above the 2.7±0.4 PgC 114	

yr-1 inversion average for 2003-2012. The 2011 land sink estimates by the LPJ 115	

DGVM and MACC II inversion were greater than the 97.5th percentile over the period 116	

1981-2012 suggesting a convergence of particularly novel ecosystem and climate 117	

states. 118	

 119	

Both the atmospheric inversion and DGVM model demonstrate an increased 120	

contribution from Southern Hemisphere ecosystems to global net carbon uptake 121	

beginning in 2011 (Fig. 1b). These patterns are supported by a large observed positive 122	

anomaly in the 2010–2011 inter-hemispheric CO2 concentration gradient between 123	

Mauna Loa (MLO, 19°N) and the Cape Grim (CGO, 40°S) monitoring stations10. An 124	

increase in global net primary production (NPP) appears to be the main driving 125	

mechanism behind the 2011 land sink. Global NPP anomalies within the range of 1.7 126	

PgC simulated from the LPJ model forced with climatic data from CRU TS3.2111 and 127	

1.6 PgC by the Moderate Resolution Imaging Spectroradiometer (MODIS) NPP 128	

algorithm (Fig. 2a), using NCEP-Reanalysis climate data and a light use-efficiency 129	

model12 provide parallel support for this conclusion. Further investigation shows 79% 130	

(MODIS) to 87% (LPJ) of the global net primary production anomaly is explained by 131	

just 3 semi-arid regions, Australia (AUST), Temperate South America (SAmTe) and 132	

Southern Africa (SAf), where ecosystem respiration tends to lag productivity, 133	

inducing large net carbon uptake (Fig. 2b, and Extended Data Fig. 1 for regions)13-15. 134	

In Australia, for example, compared with the 2003-2012 average, LPJ simulated a 135	

45% increase in NPP for 2011, from an average of 1.75 to 2.54 PgC yr-1, but only a 136	

9% increase in Rh (from 1.48 to 1.61 PgC yr-1). Moreover, wetter conditions decreased 137	
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modeled fire-emissions by 29% (from 0.13 to 0.09 PgC yr-1) yielding a net 0.84 PgC 138	

2011 sink. Similarly, we find our conclusions for the greater sensitivity of NPP to 139	

precipitation, and lags in Rh, extend to SAfr and SAmTe. In fact, 51% of the global 140	

2011-net carbon sink was attributed to the three Southern Hemisphere semi-arid 141	

regions (Extended Data Table 2), while Australia alone contributed to 57% of the total 142	

global LPJ-NEE anomaly. 143	

 144	

In addition to MODIS, the AVHRR-FPAR3g satellite product (ref.16) provides a long-145	

term record of space-borne observations of the fraction of photosynthetic active 146	

radiation. Vegetation greening was widespread globally in 2011, with Austral winter 147	

(June–August; JJA) FPAR reaching the highest values ever observed in the entire 148	

satellite period (1982-2011). In the Southern Hemisphere, record greening (Fig. 1c) 149	

centralized over the same three Southern Hemisphere semi-arid regions (AUST, 150	

SAmTe and SAf) and was sustained for nine months spanning 2010 to 2011 151	

(December–February, DJF; March–May, MAM; and JJA). Seasonal FPAR increases 152	

over Australia ranged from 4.6% in DJF, 8.7% in MAM, to 5.1% in JJA with all 153	

anomalies being prominent extremes in the context of an observed 0.8-1.9% 154	

interannual variability over the past 30 years. Notably, 46% (34%) of the land area in 155	

Australia experienced increases in FPAR in 2011 of more than 2.5 (3.0) standard 156	

deviations from normal in MAM, with positive FPAR anomalies first developing in 157	

eastern Australia in DJF, extending to all of Australia in MAM, then remaining in 158	

northern Australia in JJA (Extended Data Fig. 2). 159	

 160	

To identify proximate causes for the role of semi-arid regions in the 2011 global sink, 161	

we performed a full set of LPJ factorial model simulations to isolate the temperature, 162	
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precipitation, cloud cover and CO2 contribution to NEE (Extended Data Table 1; 163	

methods). An additional ‘memory’ simulation was conducted to evaluate previous-164	

year climate effects that might have contributed to the extraordinary sink in 2011; the 165	

2010 climate was replaced with a near-neutral year (2009) for the El Niño Southern 166	

Oscillation (Extended Data Fig. 3). With respect to pre-industrial CO2 concentrations 167	

(287 ppm), the LPJ simulations suggest CO2-fertilization enhanced the 2011 net 168	

carbon uptake by 4.8 PgC. High precipitation during 2010 and 2011 contributed to 169	

0.62 and 0.52 PgC of the global sink, respectively (Fig. 2c), or ~12%, thereby helping 170	

to offset land to atmosphere CO2 fluxes driven by long-term negative temperature (-171	

0.84 PgC) and direct radiative contributions (-0.32 PgC). In addition, ‘memory’ 172	

effects from 2010 added to the 2011 sink, with the largest difference being a threefold 173	

increase in tropical South American NEE when using 2009 climate before 2011. The 174	

increase in Amazonian NEE in 2011 was mainly due to recovery from the 2010 175	

Amazon drought17 that caused a reduction in LPJ-NPP and an increase in LPJ-Rh in 176	

2010, leading to reduced short lived litter carbon pools available for respiration and 177	

fire in 2011. While 2011 precipitation explained most of the NEE increase in 178	

Australia (a 0.56 PgC yr-1 contribution), the climate memory effect also explained 179	

0.21 PgC of the 2011 Australian sink because of high precipitation in 2010 that 180	

recharged soil moisture and plant carbohydrate reserves to the benefit NPP in 2011. 181	

Among an ensemble of climate indices, the Multivariate El Niño Index (MEI; ref. 18) 182	

consistently explained the highest amount of year-to-year variability over Australia 183	

for annual carbon uptake (r=-0.49, p<0.01) and DJF FPAR greening (r=-0.52, p<0.01) 184	

between 1981 and 2011 (Extended Data Figs 4a-d). This extends earlier findings that 185	

found Pacific sea surface temperature as a significant predictor of precipitation-driven 186	

greening anomalies as far as South Africa and Australia19,20. Notably, the 2010/2011 187	
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La Niña, i.e., the MEI negative phase, took place over an especially long time period, 188	

as observed from multiple satellite, rain gauge and reanalysis data sources (TRMM, 189	

CRU and NCEP-DOE; Extended Data Figs 5a-b), and even lowered global sea 190	

levels21, in addition to altering global carbon uptake12. 191	

 192	

Available evidence points toward an enhanced climatic effect of the 2010/2011 La 193	

Niña from interactions with long-term semi-arid region greening trends beginning 194	

since at least the early 1980s. For example, since 1982, we found an expansion of 195	

vegetation across the Australian landscape (p<0.01 for one-sided Kolmogorov-196	

Smirnov test) where land area with FPAR>20% (30%) increased by 5.6% (3.5%) in 197	

the MAM growing-season. The greening trend in semi-arid regions has been 198	

previously associated with a range of drivers that include altered precipitation 199	

frequency and intensity22, increased water-use efficiency due to elevated CO2 effects 200	

on leaf stomatal conductance23, and woody-encroachment following land-use and 201	

grazing22,24. Over this same 1982-2011 time period, we observed a statistically 202	

significant increase in the sensitivity of LPJ net carbon uptake (p<0.001) and 203	

AVHRR-FPAR3g vegetation activity (p<0.02) to austral-summer precipitation for the 204	

Australian continent (Fig. 3a). The observed change in ecosystem sensitivity over 205	

Australia meant that an additional 100 mm of growing season (MAM) precipitation 206	

led to a four-fold increase in net carbon uptake when comparing sensitivities before 207	

(0.2 PgC yr-1 per 100mm) or after (0.8 PgC yr-1 per 100mm) 1997, the midpoint of 208	

current observational records (1982-2011). An independent data-driven model of net 209	

ecosystem production25, which excluded disturbance processes, confirmed the same 210	

statistically robust increase over time in carbon uptake per unit precipitation for 211	

Australia (Fig. 3b, p<0.001). Long-term observations from passive-microwave 212	
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vegetation optical depth (VOD)26 suggest that the enhanced vegetation sensitivity to 213	

climate is a result of both increases in grass cover as well as from woody 214	

encroachment (Fig. 3c). 215	

 216	

The 2011 land carbon sink anomaly indicates a novel climate response of the 217	

biosphere where interactions between possibly human-caused extremes in austral-218	

precipitation27 and changes in land cover23 are contributing to non-analog ecosystem 219	

behavior with global biogeochemical significance. As such, we propose that the 220	

current paradigm, whereby tropical rainforest ENSO coupling dominates inter-annual 221	

variability of the atmospheric CO2 growth rate3,28, may become less relevant in the 222	

future. We explored whether such semi-arid carbon-cycle climate sensitivity 223	

feedbacks exist among an ensemble of 15 earth system models, contributed to the 224	

Coupled Model Intercomparison Project Phase 5 (CMIP5; ref.29).  In contrast to our 225	

observations, we found that for semi-arid regions, modeled carbon-uptake and 226	

precipitation sensitivity remains relatively stable from the 1990 to 2090 period for the 227	

CMIP5 ensemble (p=0.33, one-sided t-test, Fig. 4). This suggests that processes 228	

contributing to the novel ecosystem dynamics identified here may be overlooked in 229	

future climate change scenarios. As the dynamics of semi-arid systems, which cover 230	

45% of the earth’s land surface, increase in global importance, more research is 231	

needed to identify whether enhanced carbon sequestration in wet years is particularly 232	

vulnerable to rapid decomposition or loss through fire in subsequent years, and thus 233	

largely transitory. Such behavior may already be reflected by a larger than average 234	

atmospheric growth rate in 201230 that was associated with a return to near-normal 235	

terrestrial land sink conditions (Fig. 1a). 236	

 237	
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Methods Summary 238	

We use multiple data sources, including carbon accounting methods, carbon-cycle 239	

model simulations, and satellite-based vegetation products to investigate the 240	

magnitude and mechanisms driving variability in the terrestrial carbon sink. Net 241	

Primary Production (NPP), or the total photosynthesis minus plant autotrophic 242	

respiration losses, is simulated by the LPJ DGVM and also estimated independently 243	

with the MODIS NPP algorithm, MOD17A3. The balance between carbon uptake 244	

from net primary production and losses from soil respiration and disturbance (i.e., net 245	

ecosystem exchange; NEE), is quantified from the Global Carbon Project, the LPJ 246	

Dynamic Global Vegetation Model (DGVM), and the MACC-II atmospheric 247	

inversion system. Net ecosystem production (NEP), i.e., the balance between gross 248	

carbon inputs from photosynthesis and losses from ecosystem respiration, excluding 249	

disturbance, is estimated from upscaled FLUXNET observations. Optical and passive 250	

microwave satellite data are employed to assess vegetation greenness trends (AVHRR 251	

FPAR3g) and vegetation structure or vegetation optical depth (VOD). Monthly and 252	

seasonal precipitation fluctuation is quantified from the Tropical Rainfall 253	

Measurement Mission (TRMM 3B43v7) and NCEP-DOE Reanalysis II, and the 254	

Climatic Research Unit (CRU) TS3.21. Regional summaries of the global gridded 255	

data followed boundaries from the eleven TRANSCOM atmospheric inversion land 256	

regions. We further differentiate North and South Africa to distinguish between wet 257	

and semi-arid climates with the ratio of precipitation (P) to potential evaporation 258	

(PET) set to 0.7. Historical (1860-2005) simulations of net biome production (NBP), 259	

equivalent to NEE, from the Fifth Coupled Model Intercomparison Project (CMIP5) 260	

are merged with the Representative Concentration Pathway 8.5 (RCP8.5) to create 261	

temporal composites spanning 1860-2099 for 15 earth system models. 262	
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 263	

Full Methods and any associated references are available in the online version of the 264	

paper at www.nature.com/nature. 265	

 266	
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Figure 1:  411	

Interannual variability of NEE and FPAR anomalies. (a) Annual NEE, where 412	

positive values represent carbon uptake, blue is LPJ, red is MACC-II, and the residual 413	

land sink is in grey. The standard deviations are ±0.58 PgC yr-1 for LPJ, ±0.4 Pg C yr-414	

1 for the inversion, and ±0.8 Pg C yr-1 for the residual (see methods), (b) average, 415	

2003-2012, annual NEE for Northern and Southern hemispheres estimated by LPJ and 416	

the inversion, and (c) AVHRR FPAR anomalies for the southern (S) and northern (N) 417	

hemispheres with respect to the 1982-2011 long-term average where the seasonal 418	

anomalies were calculated as the z-score for each season (s) and each grid cell (i,j) for 419	

each year (y); 𝐴𝑉𝐻𝑅𝑅%&'(%)*,,(.,/) =
234556,7(8,9):23455;<=>?>@;;,7(8,9)

A23455;<=>?>@;;,7(8,9)
. 420	

 421	

Figure 2: 422	

Global anomalies of NPP and NEE, and the precipitation effect. (a) Annual NPP 423	

anomaly, as z-score (defined in Fig. 1), estimated by the MOD17A3 algorithm that 424	

uses MODIS LAI (MOD15 Collection 5)12. (b) Annual NEE anomaly, as z-score, 425	

estimated by the LPJ-DGVM, where a positive z-score equals larger sink; the 426	

reference period is 2000-2011. (c) Spatial pattern of the contribution of precipitation 427	

to net ecosystem exchange in 2011 calculated as the difference between NEE with the 428	

all climate forcing varied and NEE simulated with the precipitation climatology (see 429	

Extended Data Figs 6a-b for NPP and Rh component fluxes). 430	

 431	

Figure 3: 432	

Change in climate sensitivity of observations for Australia. (a) Climate sensitivity 433	

of annual LPJ-NEE anomalies to March-April-May precipitation anomalies for 434	

Australia. The empty circles and/or dashed line are the points and regression line for 435	
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1982-1996 (𝛽C) and the filled circles and solid line for 1997-2011 (𝛽C+𝛽D), from the 436	

following the linear regression model using NEE and precipitation anomalies (𝑃%&'() 437	

where A is a ‘dummy’ variable for the different time periods: (𝑁𝐸𝐸%&'( =438	

𝛽H+𝛽C𝑃%&'(+𝛽J𝐴+𝛽D𝑃%&'(𝐴). (b) Climate sensitivity of annual NEE from the 439	

MACC-II inversion (black symbols) and the upscaled NEP product using the same 440	

linear model as in Fig. 3a. (c) Climate sensitivity of annual VOD (light green 441	

symbols) and Mar-Apr-May FPAR (dark green symbols) also using same model 442	

described in Fig. 3a. 443	

 444	

Figure 4: 445	

Change in climate sensitivity of CMIP5 models for Australia. Distribution of the 446	

change in sensitivity between the 1979-2005 and 2069-2095 in net biome production 447	

to annual precipitation for four biomes (n=15 CMIP5 earth system models). 448	

Precipitation sensitivity was estimated as 𝛽C while controlling for changes in 449	

sensitivity due to CO2 and temperature 𝑁𝐵𝑃%&'( = 𝛽H+𝛽C𝐶𝑂2%&'(+𝛽J𝑃%&'( +450	

𝛽D𝑇𝑎𝑖𝑟%&'(. The different lines refer to tropical (green), temperate (brown), semi-arid 451	

(tan), and boreal (purple) biomes.  452	
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Methods 462	

Carbon fluxes and their uncertainties: We follow the carbon-cycle definitions 463	

summarized by Chapin et al.31 when describing the net land carbon sink in terms of 464	

net ecosystem exchange (NEE) or net ecosystem production (NEP) and associated 465	

component fluxes. Data for estimating the airborne fraction, the residual land sink and 466	

its anomalies were obtained online from the Global Carbon Project2 (Version 1.5) for 467	

years 1959-2011. Uncertainties are presented as ±1 standard deviation (σ), assuming 468	

Gaussian error and a 68% likelihood that the true value is within this range. The LPJ 469	

dynamic global vegetation model (DGVM) was run with the GlobFirm fire module 470	

enabled and fully prognostic dynamic natural vegetation (excluding land-cover 471	

change). The Climatic Research Unit (CRU) TS 3.21 climate dataset11 was used for 472	

LPJ-model simulations starting in 1901 and ending in 2012 with observed rising CO2 473	

concentrations from ice-core measurement of CO2 and then the Mauna Loa 474	

Observatory after 1958. Uncertainty in LPJ NEE was estimated using a Latin 475	

Hypercube (LHC) approach to generate 200 parameter sets and corresponding 476	

simulations at 1-degree spatial resolution for 13 of the most important parameters32. 477	

The observed linear relationship between the LHC model ensemble global mean NEE 478	

and its standard deviation (R2=0.62) was used to predict the 2011 land sink 479	

uncertainty for the 0.5-degree simulation and presented as ±1 standard deviation. 480	

Uncertainty from climate forcing was considered by comparing different climate 481	

datasets (see Climate datasets) and is not likely to affect annual anomalies or trends in 482	

carbon fluxes33. LPJ simulates semi-arid plant functional types (PFT) by a mix of 483	

grasses with C3 and C4 photosynthetic pathways and, in lesser abundance, tropical 484	

and temperate trees. Carbon cycle fluxes simulated by LPJ were in close agreement 485	

with regionally parameterized models for Australia, such as CABLE14, and regional 486	
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NPP from satellite-based estimates of MODIS (Extended Data Table 2). Simulated 487	

losses of carbon from fire and their anomalies were benchmarked with the GFAS 488	

v1.034 and GFED v3.135 datasets that use satellite-observed fire radiative power and 489	

burned area, respectively, to estimate carbon emissions (Extended Data Table 3). The 490	

atmospheric inversion was based on the MACC-II inversion system version 12.1, 491	

described in Chevallier et al.9, using atmospheric CO2 data from NOAA/ESRL, 492	

WDCGG, CarboEurope and RAMCES, with a climatological prior for NEP land-493	

surface carbon fluxes from the ORCHIDEE DGVM9 and fire emissions from GFED 494	

v3.036 until 2011, and the long-term mean substituted for 2012. The inversion is 495	

applied on a 3.75x2.5 degree grid with fluxes inverted at weekly resolution and 496	

nighttime and daytime fluxes separated. The MACC-II inversion minimizes a 497	

Bayesian objective function, assuming errors are Gaussian (posterior errors presented 498	

here as ±1 standard deviation), and error correlation implied by off-diagonal elements 499	

in the posterior error covariance matrix. Upscaled flux tower observations were the 500	

basis for the data-derived NEE model of Jung et al.25 representing monthly 0.5 degree 501	

fluxes from 1982-2011. The MODIS (MOD17A337) product provided annual net 502	

primary production data at 1km resolution and was resampled to 8km resolution to 503	

match AVHRR-FPAR3g prior to analysis. Net biome production from CMIP5 504	

Representative Concentration Pathway (RCP) 8.529,38 ensemble was merged with the 505	

corresponding historical simulations to create temporal composites covering years 506	

1860-2099 for 15 earth system models (Extended Data Table 4). 507	

Vegetation activity Measurements of the fraction of photosynthetic active radiation 508	

(FPAR) were modeled from surface reflectance observed aboard the Advanced Very 509	

High Resolution Radiometer (AVHRR) and incorporated into the FPAR3g16 dataset 510	

(1981 to 2011). The FPAR3g bimonthly dataset was first filtered for low values, 511	
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within the range of uncertainty (<2.5%), before compositing to monthly values using 512	

a maximum values approach. Gridded passive-microwave measurements of 513	

Vegetation Optical Depth (VOD) from39 were aggregated from 0.25 degree resolution 514	

to each of the thirteen regional means at a monthly resolution from 1988-2011. The 515	

VOD is an indicator of water content in both woody and leaf components of 516	

aboveground biomass. The VOD time-series is based on a multi-source dataset 517	

consisting of harmonized passive microwave measurements from SSM/I (Special 518	

Sensor Microwave Imager, 1988–2007), TMI (the microwave instrument onboard the 519	

Tropical Rainfall Measuring Mission satellite, 1998–2008) and AMSR-E (the 520	

Advanced Microwave Scanning Radiometer – Earth Observing System, July 2002–521	

08) sensors39. 522	

Climate datasets Precipitation data from satellite (Tropical Rainfall Measurement 523	

Mission, TRMM 3B43v7), reanalysis (NCEP-DOE Reanalysis II40, 1979-2012), and 524	

ground-based observations (CRU TS3.2111) were compared with one another for 525	

annual and seasonal similarities (Figs Extended Data 5a-b). Over Australia, annual 526	

precipitation was observed as up to +205±54 mm (in 2010) and +178±71 mm (in 527	

2011) above the long-term annual average of 555±23 mm yr-1, with uncertainties 528	

presented as the standard deviation of the three products. An ensemble of climate 529	

indices were evaluated (Figs Extended Data 4a-d) with data for the MEI from Wolter 530	

et al.18, where negative values indicate the La Niña climate mode. 531	

 532	

  533	
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Extended Data 534	

Extended Data Table 1: Global summary of annual net ecosystem exchange 535	

(NEE=NPP-RH-FIRE) and its component fluxes estimated from LPJ, the residual, the 536	

MACC-II inversion, and from MODIS, GFED, and GFAS. All units are in PgC yr-1. 537	

 538	

Extended Data Table 2: Annual LPJ-derived net ecosystem exchange and 539	

component flux anomalies (PgC yr-1) for each of the 11 TransCom regions (see 540	

Extended Data Fig. 1 for region map). The annual LPJ anomalies for 2011 and 2012 541	

are calculated relative to the 2003 to 2012 time period. MODIS-NPP anomalies, with 542	

respect to 2000-2011, are provided in grey text for comparison (but not used in the 543	

NEE calculation). A positive NEE anomaly indicates an increase in the carbon sink 544	

strength and negative fire anomalies mean a decrease in fire emissions. The total 545	

global LPJ NEE anomaly for 2011 was 1.4 PgC yr-1. 546	

 547	

Extended Data Table 3: Total carbon emissions from wildfire for each TransCom 548	

region estimated from LPJ, GFAS and GFED for the overlapping 2002-2012 549	

averaging period, and for years 2011 and 2012. Units are PgC yr-1. 550	

 551	

Extended Data Table 4: CMIP5 Earth system models from PCMDI node 9 that were 552	

accessed and where the RCP8.5 scenario (2005-2099) was merged with the historical 553	

simulation (1860-2005). Of the total ensemble, 15 models were used in the analysis 554	

because a full suite of historical and RCP8.5 simulations were available for the net 555	

biome production, air temperature and precipitation variables. 556	

 557	
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Extended Data Figure 1: The thirteen regions used throughout the analysis, 11 from 558	

TRANSCOM, and 2 additional for the African continent to distinguish semi-arid 559	

regions (see Methods Summary). 560	

 561	

Extended Data Figure 2: Seasonal AVHRR FPAR anomalies (z-score) for year 562	

2011. The z-score is calculated relative to the long term seasonal mean and standard 563	

deviation of FPAR (1982-2011), see legend in main text for Fig. 1c. The seasons DJF, 564	

MAM, JJA, and SON and defined by the first letter of each month. 565	

 566	

Extended Data Figure 3. Full climate attribution of the global land sink simulation 567	

by the LPJ DGVM (bars) and the Multivariate El Nino Index (MEI) and Pacific 568	

Decadal Oscillation (PDO). 569	

 570	

Extended Data Figure 4a-d: Correlation coefficient (r) between climate modes and 571	

(a) MAM, and (b) JJA net ecosystem exchange simulated by LPJ for each of the 572	

TransCom regions. FPAR correlations between climate modes are shown for (c) 573	

MAM and (d) JJA. The correlations were made for 1982-2011. White/blank boxes 574	

indicate correlation between -0.1 and 0.1. 575	

 576	

Extended Data Figure 5a-b: (a) global temperature and precipitation anomalies from 577	

CRU TS 3.2 data. The anomalies are with respect to 1979-2012 seasonal means. (b) 578	

seasonal precipitation anomalies (z-score) for year 2010 (upper panel) and 2011 579	

(lower panel). The z-score is calculated relative to the long term seasonal mean and 580	

standard deviation of precipitation (1979-2011). The seasons DJF, MAM, JJA, and 581	

SON and defined by the first letter of each month. 582	
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 583	

Extended Data Figure 6a-b: Spatial pattern of the contribution of precipitation to net 584	

ecosystem exchange in 2011 calculated as the difference between NPP (a) and RH (b) 585	

with the all climate forcing varied and NEE simulated with the precipitation 586	

climatology. This is the same as in Fig. 2c (main text) but for component fluxes of 587	

NEE. 588	


