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An investigation of mining impacts on bats in South-West England  
 

 

Abstract: 

The extraction of minerals through open-pit mining can result in sudden and 

extensive land use change, often posing threats to local biodiversity. Bats are 

particularly vulnerable to the impacts of mining, but their metapopulation 

structure and wide-ranging roosting habits can make it challenging to monitor 

local populations. Here, we investigated the impacts of habitat loss and 

disturbance at Drakelands open-pit mine, the first new metal mine to be 

established within Britain in the past 45 years. This was addressed in two parts, 

firstly by analysing data collected by contracted ecologists at the site, in order to 

identify potential short-term shifts in bat activity and to evaluate the efficacy of 

mitigation measures. Secondly, by monitoring bat activity in the wider landscape 

to identify potential further-ranging impacts of the mine on local bat populations. 

In conjunction with this work we incorporated a field trial of a novel bat detector 

designed for long-term monitoring of bat activity. The results highlighted the 

multitude of factors which influence bat activity at a local level, and may provide 

a platform for continued research into the impacts of habitat fragmentation and 

anthropogenic noise at a species/ genus level. The information presented here 

will help to inform management decision making in regards to bat conservation, 

both at the Drakelands site and potentially at mining operations elsewhere.  
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Chapter 1: Introduction 

 

1.1 Order Chiroptera 

With more than 1300 species, bats (order Chiroptera) represent the second 

largest mammalian order next to Rodentia (Voight and Kingston, 2016). Bats 

occupy a wide range of habitats from deserts to tropical forests and exist on 

every continent other than Antarctica, including many oceanic islands (Kunz 

and Parsons, 2009). It is therefore not surprising that bats display huge trophic 

diversity, with seven feeding associations recognised (piscivory, sanguivory, 

nectarivory, frugivory, omnivory, carnivory, and insectivory) (Segura-Trujillo et 

al. 2016). Traditionally bats were divided into two suborders, Microchiroptera 

(microbats) and Megachiroptera (megabats). Microchiroptera use their larynx to 

emit echolocation pulses for navigation and prey capture, while Megachiroptera 

have well developed vision (although several Megabats also echolocate using 

tongue clicks) (Springer, 2013). However, more recent examination of 

morphological, molecular, fossil and behavioural evidence has led the scientific 

community to adopt a new chiropteran classification system, of suborders 

Yinpterochiroptera and Yangochiroptera (Lei and Dong, 2016). 

Yinpterochiroptera comprises the Old World fruit bats (previously Megabats) 

plus four microbat families in Rhinolophoidea, while Yangochiroptera includes 

12 microbat families. Crucially, this arrangement implies that laryngeal 

echolocation evolved in the common ancestor of Chiroptera (and was 

subsequently lost in Old World fruit bats) or evolved independently within two 

different groups of microbats (Springer, 2013).  

 

Unfortunately, many bat populations are under severe threat worldwide as a 

result of human activities and some face a growing risk of extinction (Racey, 

2009). Economic evaluations of the benefits provided to humans by nature, 

termed ‘ecosystem services’ are frequently being used to support arguments for 

species conservation. Recent evaluations of the ecosystem services that bats 

provide have validated the valuable and unique roles they play in arthropod 

suppression, pollination, seed dispersal and forest regeneration (Kunz et al. 

2011). 
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Over two thirds of known bat species are either obligate or facultative 

insectivores; however the extent of their control of agricultural pests is not well 

documented (Kunz et al. 2011). Despite there being limited research in 

quantifying the economic value of these ecosystem services, several studies 

have focussed on approximating the worth of pest control services provided by 

Tadarida brasiliensis in North America. During the summer T. brasiliensis forms 

enormous breeding colonies in Texas and Northern Mexico, acting as pest 

control for the cotton industry by feeding on the larvae of destructive agricultural 

pests such as the cotton bollworm Helicoverpa zea. Research by Cleveland et 

al. (2006) estimated that the value of avoided damage to cotton per year is 

$638,000 with an additional value of $100,000 saved on the avoided use of 

pesticides within an eight county region of southwestern Texas. However, 

updated estimates of the forging bat population in this region using thermal 

imaging suggest that the value of the avoided costs of pesticides in this region 

may be as high as $500,000 (Betke et al. 2008).   

 

In addition to the ecosystem services provided through insect suppression, 

some bat species play crucial roles in pollination and seed dispersal in tropical 

and subtropical ecosystems. Approximately 528 species of flowering plant are 

known to be pollinated by bats, predominantly by species within the families 

Pteropodidae (Old World fruit bats) and Phyllostomidae (New World leaf-nosed 

bats) (Kunz et al. 2011). Bats disperse over long-distances and carry large 

pollen loads relative to many other pollinator groups, therefore depositing a 

wider variety of pollen genotypes onto plant stigmas. This promotes 

outcrossing, and maintains the genetic continuity of plant populations of 

considerable ecological and economic importance (Fleming et al. 2009). The 

fruit eating bats of Phyllostomidae and Pteropodidae further assist with plant 

propagation through seed dispersal within tropical forests. Research suggests 

that fruit eating bats are more likely to disperse seeds within clearings than 

birds, and therefore play a crucial role in forest regeneration following timber 

operations and fire (Altringham, 1996; Gorchov et al. 1993).   

 

Further, bat guano collected from roost sites can provide a valuable organic 

fertiliser, particularly in regions such as Cambodia where arable land is 

frequently nutrient deficient and access to fertiliser is critical for national food 
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security (Sothearen et al. 2014). Containing high concentrations of nitrates bat 

guano acts as an effective soil cleanser, fungicide, nematocide and compost 

activator and is only required in small quantities to increase the efficiency of 

plant growth (Shetty et al. 2013). The properties of other bat products are being 

explored in medicine, with ongoing research into the fibrinolytic agent 

Desmoteplase isolated from the saliva of sanguivorous bats (Jauch et al. 2013). 

Desmoteplase acts as an anticoagulant, and therefore has potential 

applications in the treatment of ischemic strokes and the prevention of heart 

attacks (Fernandez et al. 1999). 

 

While evaluating the human benefits provided by bats may be beneficial for the 

conservation of some species (such as the pollinators and pest regulators) 

others which do not contribute to human wellbeing but have important 

ecological functions will not be prioritised by the ecosystem services approach 

(Ingram et al. 2012). For example, bats are vital in sustaining cave ecosystems 

where primary productivity is minimal. In these habitats, the nutrients derived 

from bat guano is critical for the continuation of fish and salamander populations 

and invertebrate communities (Kunz et al. 2011). Further, the high trophic level 

occupied by bats means that they are valuable bio indicators as they are 

particularly responsive to bioaccumulation of toxins, changes in arthropod prey 

populations and habitat loss. Changes in the abundance and activity of bats 

may be related to deterioration of water quality, habitat fragmentation, climate 

change, disease, agricultural intensification and pesticide use, therefore 

reflecting a wide range of pressures that affect other taxa (Jones et al. 2009).  

 

1.2 Bat conservation 

The assessment of mammalian data by the IUCN Red list in 2008 classed five 

bat species as extinct, 15.4% of species as threatened (categories critically 

endangered, endangered or vulnerable), 6.7% of species as near threatened 

and 17.7% as data deficient (IUCN Red List, 2008). Arguably one of the most 

serious threats to bat species worldwide is habitat destruction, which results in 

direct loss of foraging resources and roost sites. Remaining habitat patches 

must be large enough to sustain viable populations and habitat corridors are 

essential in enabling exchange of individuals between populations (Altringham, 

1996). Evidence suggests that bat communities are more sensitive to the 
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impacts of habitat degradation than other animal groups. A study by Muylaert et 

al. (2016) estimated that when forest fragmentation reduces forest cover 

beyond a threshold value of 47% bat species richness will experience steep 

declines (relative to a fragmentation threshold of 30% for birds and non-flying 

mammals). The global rate of land-use change may be exacerbated by the 

agricultural intensification that is predicted over the next 50 years, which in 

addition to removing roosting and foraging habitat may impact bat populations 

through the bioaccumulation of pesticides and by changing the availability of 

arthropod prey (Tilman et al. 2002; Voigt and Kingston, 2016; Swanepoel et al. 

1999; Neuweiler, 2000; Kannan et al. 2010; Secord et al. 2015). 

 

While habitat destruction has resulted in large-scale loss of natural roosts, 

urbanisation has led to the adoption of man-made structures as alternative 

roosting sites for some species. Structures such as barns, attics and churches 

are favoured by maternity colonies due to the fact they are heated quickly by 

the sun, while mine shafts can provide important hibernation, maternity and 

migration rest stops due to their cave-like microclimates (Neuweiler, 2000; 

Ducummon, 2000). Species which are able to thrive among the challenges and 

opportunities created by urban areas have been termed ‘synurbic’ and often 

show refined behavioural or ecological traits allowing them to exploit these 

niches (Russo and Ancillotto, 2015).  The success of bats in responding to 

urbanisation is highly species-specific; those that possess high wing loadings 

and aspect ratios (indicators that they forage in open areas) and roost largely in 

man-made structures appear to adjust relatively well, provided there is sufficient 

tree cover (Voight and Kingston, 2016). However, even for synurbic species 

there is evidence that urban sites may act as ecological traps for bats; with 

factors such as human conflict, high levels of opportunistic predators and higher 

competition for food leading to negative responses to the urban environment 

and increased mortality rates (Russo and Ancillotto, 2015; Lintott et al. 2016).  

 

Increasing urbanisation has contributed considerably towards dramatic 

increases in artificial lighting at night, with global levels rising by 6% per year 

(Hölker et al. 2010). Responses to artificial lighting by bats are species-specific, 

reflecting differences in flight morphology and performance. For light-tolerant 

species artificial lighting may act as a feeding resource by attracting high 
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densities of insects. However, for light-shy species artificial lighting can result in 

spatial avoidance, habitat fragmentation and disruptions in the abundance and 

composition of insect prey (Stone et al. 2015). The illumination of buildings has 

been shown to delay roost emergence times and may reduce reproductive 

success by slowing juvenile growth rates (Mathews, 2015). Along roads the 

impacts of artificial lighting, noise and chemical pollution degrade habitat and 

contribute towards habitat fragmentation, barrier effects and edge effects. This 

is reflected in decreased levels of bat activity and diversity in proximity to roads, 

and lower reproductive output in areas where critical commuting routes have 

been severed (Berthinussen and Altringham, 2012b).  

 

In response to the wide range of threats that bat populations face some 

countries have granted legal protection to bats, however the level of protection 

varies widely among nations. There are currently only two international 

agreements which have been specifically created to protect bats: The 

Agreement on the Conservation of Bats in Europe and the Program for the 

Conservation of Migratory Bats of Mexico and the United States (Mickleburgh et 

al. 2002; Hutson et al. 2001). In order to stimulate the creation of further action 

to protect bats at a regional or local level, two IUCN Action Plans 

(Megachiroptera and Microchiroptera) have been created, which identify 

conservation priorities and recommend conservation actions (Hutson et al. 

2001; Mickleburgh et al. 1992). Non-governmental organisations (such as the 

Bat Conservation Trust, Bat Conservation International and The Lubee Bat 

Conservancy) now play a significant role in bat conservation globally, by 

drawing attention to the threats faced by bat populations, supporting research 

and conservation and funding local wildlife officers and public outreach services 

(Racey, 2009).  

 

Within Europe, all bat species and their roost sites are protected by law under 

the Convention on the Conservation of European Wildlife and Natural Habitats 

(making it illegal to deliberately capture, keep, disturb, sell or kill a bat) and the 

Agreement on the Conservation of Populations of European Bats (Bern 

Convention, 1979; Bonn Convention, 1983; EUROBATS, 1994). Further, when 

deciding habitat conservation priorities, governments must aim to protect 

foraging areas and habitats that may be important to local bat populations. All 
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European bat species are also protected under the Habitats Directive, and 

additional protection is afforded to 4 species which are listed under Annex II, 

making it a requirement to designate roosts and foraging sites as Special Areas 

for Conservation (SACs) (Council Directive, 1992). Other international treaties 

such as the Ramsar Convention and the Rio Convention indirectly protect bats 

by protecting their foraging and roosting habitats (Hutson et al. 2001). Within 

the European Union environmental impact assessments are mandatory for 

many large developments, to determine the potential impacts that proposed 

development projects may have on local biodiversity, including habitat loss and 

pollution (The Environmental Impact Assessment Directive, 2014; Racey, 

2009). Any development which may have a detrimental impact on bats or their 

roost sites must apply for a European Protected Species Licence, which if 

granted will permit these activities to proceed under certain conditions.   

 

When a European Protected Species Licence is granted the applicant must 

demonstrate that the work conducted will not have a negative impact on the 

conservation status of any bat population. Frequently, the licence will specify 

that mitigation measures proportionate to the scale of works are implemented in 

order to reduce or compensate for any impacts that the development may have 

on local bat populations (Mitchell-Jones, 2004). Long term management and 

maintenance of mitigation measures is usually requested, in addition to post-

development population monitoring to assess the success of the scheme. 

Despite the importance of post-development monitoring in informing future 

impact assessments and maximising the success of mitigation, research within 

England found that post-develop monitoring was only carried out at 19% of 

sites, and only 33% of licensees submitted post-development reports (Stone et 

al. 2013). Depending on the type and scale of impact and the significance of the 

population affected, mitigation may require sensitive timing of operations, or 

adhering to a specified lighting regime and particular methods of work. Within 

the wind energy sector mitigation may include adhering to specified operational 

parameters, such as stopping turbine blades in periods of low wind to reduce 

bat fatalities, as trialled in Canada (Baerwald et al. 2009).  

 

Where natural roosts have been lost, mitigation may include the creation of 

artificial roosts such as bat boxes and bat houses. The adoption rates of bat 
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boxes have been shown to range from 7% to 100% across studies, however it 

is important that the type of box selected matches the requirements of the target 

species and is designed to exclude non-target species including other 

mammalian groups, birds, and insects (Mering and Chambers, 2014). Although 

bat boxes are considered suitable mitigation for the loss of tree roosts, they are 

not generally considered sufficient compensation for loss of maternity roosts 

located in buildings (McAney and Hanniffy, 2015). Other compensation 

measures include the creation and restoration of habitats and foraging areas, 

and the strengthening of linear features such as hedgerows for commuting 

purposes. Features such as bat gantries, underpasses, and habitat bridges may 

be constructed to promote connectivity where development and transport links 

result in the fragmentation of existing habitats. Evidence suggests that bat 

gantries are ineffective and bats continue to use select severed but unmitigated 

commuting routes, however underpasses which are built on pre-construction 

commuting routes have demonstrated greater success (Berthinussen and 

Altringham, 2012a). Habitat bridges designated across Europe to connect 

woodland for medium to large mammals such as deer have been found to act 

as guiding features for bats, allowing flight paths to cross highways without risk 

of collision with vehicles (O’Connor and Green, 2011).  

 

The United Kingdom has 18 resident species of bat, 17 of which sustain known 

breeding populations (Russ, 2012). Of these, the IUCN Red List classifies 

Myotis bechsteinii and Barbastella barbastellus as ‘near threatened’, and the 

remaining species are listed as ‘least concern’ (Bat Conservation Trust, 2016a). 

All UK bat species and roosts are protected by law, although differences in 

legislation exist between the constituent countries. Both Rhinolophus 

ferrumequinum and Myotis myotis were legally protected in 1975, but protection 

was later afforded to all UK species in 1981 with the implementation of the 

Wildlife and Countryside Act, which was transposed from the Bern Convention 

as a result of UK obligations (Wildlife and Countryside Act, 1981; Bern 

Convention, 1979; Stebbings, 1988). This was later updated by the UK 

government to include additional clauses and levels of protection for bats, 

including the Countryside and Rights of Way Act (2000) and the Natural 

Environment and Rural Communities Act (2006). All UK bat species are also 

protected under the Conservation (Natural Habitats, &c.) Regulations (1994), 
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which was later updated to The Conservation of Habitats and Species 

Regulations (2012). This legislation was transposed into UK law as a result of 

the Habitats Directive (1992), and requires additional protection under the 

Natura 2000 Network for the roosts and foraging sites of Rhinolophus 

hipposideros, Rhinolophus ferrumequinum, Barbastella barbastellus and Myotis 

bechsteinii which are listed as Annex II species (Council Directive, 1992). 

 

Within the UK, the Natura 2000 Network is comprised of Special Areas of 

Conservation (SACs) and Special Protection Areas (SPAs) (European 

Commission, 2016; JNCC, 2014). It is the responsibility of the UK government 

to designate SACs to protect the range of species and habitats listed as Annex I 

and II under the Habitats Directive. The following sites have been designated to 

protect the maternity and hibernacula roosts of Annex II listed species: R. 

hipposideros (13 sites), R. ferrumequinum (11 sites), B. barbastellus (9 sites), 

and M. bechsteinii (9 sites) (JNCC, 2016). Other forms of protected areas within 

the UK declared under the Wildlife and Countryside Act (1981) include Ramsar 

sites, Sites of Special Scientific Interest (SSSIs) and National Nature Reserves 

(NNRs), which may be designated to safeguard significant bat roost sites or 

feeding grounds but may also indirectly conserve general bat habitat (JNCC, 

1989). 

 

1.3 Bats in relation to mining activities 

The long-life span of bats makes them particularly susceptible to the effects of 

bioaccumulation of toxins such as heavy metals, pyrites and clays (Wilkinson 

and South, 2002). These contaminants are frequently produced as mining 

residue, and upon contact with water can form acid mine drainage which may 

be ingested by animals through drinking water or contaminated food chains. 

Assessments of the heavy metal contents in the liver of insectivorous bats in 

Southern Brazil identified higher levels of chromium, nickel, copper and lead in 

Molossus molossus and of copper and iron in Tadarida brasiliensis in 

individuals living in coal mining areas relative to individuals living in control 

areas (Zocche et al. 2010). A recent assessment of heavy metal concentrations 

in Pipistrellus species sampled from across Britain suggests that intake of these 

contaminants is due to both recent and long-term exposure. This study found 

that 21% of the individuals sampled contained high enough concentrations of at 
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least one metal to evoke toxic effects associated with kidney damage (Hernout 

et al. 2016). Metal contamination may act as an additional stressor involved in 

the continuing bat population declines observed worldwide. Further 

investigation into water contamination as a result of mining is needed, 

particularly in Africa where mining activity is abundant but very little research 

has been carried out regarding water quality (Voigt and Kingston, 2016).  

 

Bodies of open water in desert landscapes form important resources for bats by 

providing drinking opportunities and foraging sites of emerging aquatic insects. 

Unfortunately, toxins associated with mining are a major anthropogenic source 

of water contamination (Voigt and Kingston, 2016). In gold extraction both the 

processes of vat and heap leaching require the use of cyanide which is 

commonly stored in open mill-tailings ponds which can stretch over 200 acres in 

size. Investigation into mammalian deaths at cyanide ponds based on data from 

1984-1989 across 75 mines in Arizona, California and Nevada revealed that 

34% of fatalities were bats, based on a sample size of 519 mammals. Although 

not feasible for the larger ponds, netting of tailings ponds to prevent wildlife from 

coming into contact with contaminated water appears to be the most effective 

method of mitigation (Clark, 1991).  

 

Despite the negative impacts that mining can have on the environment, 

abandoned mines serve as important year round sanctuaries for bats. Urban 

and agricultural developments, deforestation, human disturbance of caves and 

cave commercialisation have led to the displacement of bats from their 

traditional roosts. Many displaced bats have gradually moved into abandoned 

mines, which offer stable microclimates similar to cave environments (Tuttle and 

Taylor, 1998). The colonial nature of many bat species and their instinctive 

commitment to certain sites makes populations particularly vulnerable to the 

closure of mines, and hundreds of thousands of individuals may be lost with a 

single closure. Until relatively recently, few mines were evaluated for their 

importance to bats before being permanently closed by backfilling, capping, or 

blasting (Ducummon, 2000). Presently, abandoned mines are only permanently 

closed as a last-resort such as when the mine is unstable and in danger of 

collapse or there is a risk of contaminant release (Brown, Altenbach and 

Sherwin, 2000). The installation of bat gates can allow bats to continue 
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accessing abandoned mine sites while preventing human entry, however it is 

crucial that the gate design is tailored to suit the resident species (dependent on 

the colony size and flight path gates may still be rejected by bats) (Tuttle, 1977; 

Voigt and Kingston, 2016; Pugh and Altringham, 2005). Further research is 

needed into the responses of species to gating worldwide, as well as the 

potential for gates to alter cave and mine microclimates.  

 

At an active mine site the principal physical disturbance is the open pits and 

associated mine waste facilities (MWF). Underground mining generally results 

in a relatively small MWF ranging in size from a few acres to tens of acres. 

However in open pit mining the waste rock to ore ratio is commonly 1:3, 

therefore very large volumes of waste rock are removed from the pits and 

deposited in a nearby MWF (Hudson et al. 1999). Following the closure of the 

mine, the disturbed areas are stabilised and habitat is commonly restored either 

through vegetation activities or conservation offsets (Sonter et al. 2014). 

Comparisons of restored open-pit mine areas with nearby undisturbed areas 

have found that successful restoration of vegetative communities can occur 

within 30-50 years (Kuter, 2013; Nielsen and Kelly, 2016). However, for bat 

species which rely on microhabitat features such as deadwood and tree hollows 

which require at least 100 years to develop, restored habitat in mining areas 

may initially have limited value (Vesk, 2008). Several studies have used radio 

telemetry to track bats to their diurnal roosts and established that many species 

select tall, mature trees of 150-200 years of age which are in the mid-late 

stages of decay with exfoliating bark. One such study tracking Nyctophilus 

gouldi and Vespadelus regulus in a post-mining landscape in Southwestern 

Australia found that despite bats travelling through restored forest, all of the 

tagged individuals roosted in un-mined remnant forest (Burgar et al. 2015; 

Watrous et al. 2006).  

 

In the long-term, there is hope that the majority of restored forest will be 

preserved and allowed to develop into quality roost habitat. Surveys of 

reclaimed mine sites in the Midwestern United States found that following bond 

release only 2% of private landowners engaged in the clearing of replanted 

woodland, which in all cases was to convert the land for either residential or 

commercial use (Briggeman et al. 2007). Additionally, the lack of tree-roost 
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opportunities in young forests can be supplemented with bat boxes to enhance 

the area for bats (Bat Conservation Trust, 2016b). The landscapes resulting 

from open-pit mining often contain a highly fragmented mix of forest, agricultural 

land, water features and wildlife habitat which can offer valuable foraging and 

roosting opportunities for a wide range of bat species (Briggeman et al. 2007).  

 

Despite the potential for site restoration local bat populations in proximity to an 

active mine site may suffer from habitat loss, shifts in prey availability and 

fragmentation of the surrounding landscape by link-roads providing access to 

the mine. Further, there may disturbance impacts associated with mining 

including noise pollution and vibrations from vehicles, processing machinery 

and surface mine blasting (ELAW, 2010). Relatively little is known about the 

effects of anthropogenic noise on bats, and research into the thresholds and 

characteristics of sound and vibration which influence the daily and seasonal 

movement of bats is lacking (Player and Keim, 2015). Therefore, this project will 

investigate the impacts of disturbance, land-use change and efficacy of habitat 

enhancements on the spatial distribution of local bat populations at the active 

Drakelands open-pit mine in Southwest England.  

 

1.4 Introduction to the study site: Drakelands Mine 

Drakelands Mine is located near the village of Hemerdon in Southwest Britain, 

in close proximity to China clay mines operated by Imerys Minerals and Sibelco 

UK Ltd. The tungsten deposit at Drakelands Mine (previously known as 

Hemerdon) was first discovered in 1867, and mineral working was subsequently 

carried out during the First and Second World Wars between 1919-1920 and 

1934-1944. Following an extended period without mining activity, an application 

to was submitted to Devon County Council to reopen and extend the mine by 

Amax Exploration and Hemerdon Mining and Smelting Ltd. However, this 

application was eventually refused following a public inquiry in 1984. The 

following year, Amax Exploration submitted a revised application comprising of 

an opencast pit, a mineral processing plant and associated tip and the 

construction of a ‘Link Road’ (Michel Hughes Associates, 2009). Although 

Devon County Council approved the application, due to low tungsten prices the 

project did not proceed. The planning permission at Drakelands remained valid 
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and the project was later acquired by Australian company Wolf Minerals Ltd in 

2007.  

 

Wolf Minerals was established as a metals exploration and development 

company in 2006, and Drakelands Mine remains their core asset with over 200 

permanent on-site employees. Site construction began in 2014 with full 

production commencing in 2015. The processing plant was first fed in July 2015 

with August 2015 being the first full month of production, and currently operates 

24 hours per day (McGlinchey, pers.comm, 2017). The final pit will measure 

850 metres long, 450 meters wide and ultimately reach a depth of 260 metres 

(Figure 1.1) (Wolf Minerals Ltd, 2016). A three million tonne per year operation 

is scheduled for the ten year duration of the mine-life, although this period is 

likely to be extended further through the conversion of resources to reserves. 

This translates to the processing of 26.7 million tonnes of ore for a wolframite 

recovery of approximately 66%, in addition to the annual production of 1,000 

tonnes of tin concentrate (Micon International, 2016). This will render the United 

Kingdom a globally significant tungsten exporter, and as the first metal mine to 

be established within Britain in the last 45 years Drakelands will provide 

valuable income to local economies.  

 

Discovered in 1758, tungsten occurs naturally only in the form of chemical 

compounds and was not isolated as a metal until 1783. Although over 20 

tungsten bearing minerals are known to occur, only wolframite and scheelite are 

important for industrial use. At 3410°C, tungsten has the highest melting point of 

any metal as well as the highest tensile strength. Tungsten is also a good 

thermal and electrical conductor, has good resistance to corrosion and 

possesses the smallest compressibility of any metal (Wolf Minerals Ltd, 2016). 

Worldwide demand for tungsten continues to grow, with usage in a wide range 

of industries including mining and construction, chemistry, aviation, and 

electronics. Cemented tungsten carbides have a diamond-like hardness and are 

commonly used in cutting and grinding tools for the shaping of metals, alloys, 

ceramics and plastics. Tungsten metal products include lighting filaments, 

electrodes, wires, rods and electrical contacts (International Tungsten Industry 

Association, 2011). Tungsten was recently named as one of 14 critical raw 

minerals essential for the economy of the European Union; the significant 
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deposit at Drakelands has the potential to meet this demand for the United 

Kingdom for many years to come (Wolf Minerals Ltd, 2016).   

 

 

Compensating for the impacts that a development may have on local bat 

populations often poses management challenges for mining companies and the 

relevant regulatory agencies (Sonter et al. 2014). It is understood that the 

Drakelands mine development has and will result in significant landscape 

modification and have an impact on local biodiversity in both the short and 

medium term. However, Wolf Minerals Ltd are working to minimise adverse 

environmental impacts to ensure that there is no net loss of biodiversity (Michel 

Hughes Associates, 2009). Baseline habitat surveys of the site by contracted 

ecologists in 2009 revealed two ecologically distinct but contiguous zones 

(Figure 1.2). The first, identified as the ‘Hemerdon Mine’ area was 

predominantly scrub and improved grassland, and included the disused 

Hemerdon Mine and associated buildings. The second zone identified as the 

‘Crownhill Down’ area predominantly consisted of acid grassland, with patches 

of broadleaf woodland, heath and mire (Michel Hughes Associates, 2009). 

Planning permission for Drakelands mine spans both the Hemerdon Mine and 

Crownhill Down area. 

Figure 1.1  

Aerial view of the study site, Drakelands Mine. The location of: a) the mine 

waste facility b) offices c) processing plant d) open pit (Photograph credit to 

Wolf Minerals Ltd, 2016). 

a 

b 

c 
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Baseline bat surveys conducted from 2008-2013 identified at least 11 species 

utilizing the proposed site of development with low to moderate levels of activity, 

which was largely dominated by Pipistrellus pipistrellus and to a lesser extent 

Pipistrellus pygmaeus and Myotis species (Appendix A: table 1) (SLR 

Consulting Ltd, 2013). Further surveys identified two tree roosts for five 

Pipistrellus pygmaeus, a building roost site for three Plecotus auritus, and within 

a disused mine building a non-breeding summer roost for five P.pipistrellus and 

a hibernation roost for seven R.ferrumequinum (Michel Hughes Associates, 

2014). Three EPSLs were granted by Natural England to permit the destruction 

of these roost sites between 2013 and 2015 (Appendix A: figure 1). In order to 

compensate for the loss of roost sites at Drakelands mine a total of 81 bat 

boxes were installed prior to June 2014 within retained areas of woodland. A 

variety of box types were selected to supply potential roost sites for a wide 

range of bat species, including larger boxes selected to provide breeding and 

Key: 
Crownhill Down planning consent 
area 

Hemerdon Mine planning consent 
area 

Hedge 

Heathland 

Mire 

Scrub 

Broadleaf woodland 

Watercourse/ water body  

Grassland - acid, species poor 
(plus variable % gorse and 
bracken) 

Grassland - improved and semi 
improved, species poor 

Tin streaming area: mosaic scrub/ 
acid grassland/ heathland (70:25:5) 

Tin streaming area: mosaic scrub/ 
acid grassland/ heathland 
(50:25:15) 

Former heathland transitional to 
acid grassland (20:80) 

Former heathland transitional to 
acid grassland (50:50) 

 

1000m 400m 600m 800m 200m 

Figure 1.2 

Results of the phase 1 habitat survey conducted by Michel Hughes Associates 

in 2009. This survey revealed two ecologically distinct but contiguous zones, 

referred to as Crownhill Down and Hemerdon Mine. Planning permission for 

Drakelands mine spans both regions (Aerial image © Google Earth, 2010) 
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hibernation roost opportunities. In addition, 12 remaining buildings identified as 

being used by roosting bats were retained from demolishment, one of which 

was modified to provide a new roost provision (Gillingham, 2014).  

 

In order to maintain and strengthen foraging and commuting habitat for local bat 

populations, significant habitat creation is being undertaken at Drakelands mine 

(Gillingham, 2014). This includes the planting of approximately 9 ha of native 

broadleaf woodland across the Drakelands site, which commenced in 2014 

(Michel Hughes Associates, 2013) (approximately 87 ha of pre-existing habitat 

was lost in the construction of the mine, the majority of which was grassland, 

heathland and scrub). Standing deadwood obtained from woodland clearing has 

been transplanted to these nurseries to provide roosting opportunities during 

the juvenile stages of tree growth (Gillingham, 2014). The areas of woodland 

planting have been incorporated into a framework of 56 Biodiversity 

Enhancement Zones, to create a mosaic of appropriately managed habitats 

which will enhance the site for bats. These zones are made up of retained 

habitat patches as well as newly created habitats, consisting of woodland, 

grassland, heath, mire, freshwater habitats and boundary strengthening (Michel 

Hughes Associates, 2013). 

 

In addition to the impacts of habitat loss and fragmentation, the installation of 

artificial lighting at the site has the potential to affect the abundance and 

distribution of local bat populations (Stone et al. 2015). In order to minimise 

impacts a lighting strategy will be implemented throughout the lifetime of the 

mine, to ensure that habitats potentially used by light-sensitive species remain 

unlit. Where possible lighting regimes will be triggered by motion sensors and 

where permanent lighting is required the lamps will be cowled to limit light spill. 

Lux levels will be monitored at five locations across the site, while levels along 

boundary vegetation will remain below 4 lux (Gillingham, 2014).  

 

Wolf Minerals believe that long-term success hinges on sustainable 

development and proactive environmental management. They therefore 

provided funding for this degree of Masters by Research to explore the potential 

impacts of Drakelands Mine on local bat populations, as part of the offsite 

opportunities as required by the Environment Agency (SLR Consulting Ltd, 
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2013). This project seeks to evaluate the impacts of disturbance and land-use 

change and efficacy of habitat enhancements on local populations by assessing 

trends in species abundance and richness in the surrounding area. In addition, 

analysis will be carried out on the annual monitoring data collected by 

contracted ecologists following commencement of operations. The deepened 

understanding into the impacts of open pit mining on local bat populations 

achieved through this study will allow recommendations to be made for future 

management and monitoring of this site, while the insight gained into 

disturbance effects and habitat fragmentation may be relevant across a wide 

range of developments.  
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Chapter 2: Investigating short-term trends in bat activity at a new open-

pit mining development 

 

2.1 Abstract 
 

Historically, the extraction of minerals through open-pit mining has usually resulted in 

long-term environmental impacts. However, conserving biodiversity through all 

stages of a mine’s lifecycle is now an industry priority, with environmental mitigation, 

monitoring and appropriate site restoration forming an integral part of operations. 

Bats are particularly vulnerable to the impacts of mining, but their metapopulation 

structure and wide-ranging roosting habits make it challenging to monitor local 

populations. Here, we outline the monitoring and mitigation work conducted from 

2014 to 2016 for bats at the first new metal mine to be established within Britain in 

the past 45 years. No significant change was identified in the number of bats 

emerging from retained building roosts. Data collected by contracted ecologists 

using remote detector monitoring was used to assess bat activity at the site and to 

identify potential short-term shifts in the activity levels of local bats. Although species 

richness was not found to vary over the three year monitoring period, total bat 

activity was lower in 2016 relative to 2015 due to decreased activity of P. pipistrellus 

and P. pygmaeus, thought to be the result of shifts in prey availability. Further, 

Plecotus species experienced sharp declines in activity which may be linked to 

increased susceptibility to the impacts of disturbance at the mine site, as a result of 

their foraging ecology. This assessment can be used to inform management 

decisions on future developments both at this site and elsewhere.  

 

2.2 Introduction 

The dramatic alteration of ecosystems by human populations, particularly since the 

industrial revolution has led to significant impacts on biodiversity worldwide (Díaz et 

al. 2006; Steffen et al. 2011). The mining industry has been instrumental in the 

development of civilisation; playing a crucial role in the iron and bronze ages, the 

industrial revolution and the infrastructure of today’s digital age (MBendi, 2016). 

However the discovery, extraction and processing of minerals is widely regarded as 

an environmentally disruptive activity, with impacts potentially persisting long after 
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the closure of a mine (Bebbington et al. 2008). Mining currently occurs on every 

continent other than Antarctica, and exploration emphasis is now shifting toward 

areas that have been little explored or previously had restricted accessibility due to 

politics, legislation or infrastructure (Jébrak, 2012). As a result of this expansion, 

mining is currently a major anthropogenic source of environmental contamination 

and habitat loss worldwide (Holden and Jacobson, 2012).  

 

At an active mine site the principal physical disturbance is a result of the open pits 

and associated mine waste facilities where waste rock is disposed. Open pit mining, 

in which material is extracted from an open pit to access strategic minerals, 

commonly results in the production of very large quantities of waste rock (Hudson, 

Fox and Plumlee, 1999). The resulting mine waste facilities and areas of excavation 

almost always experience biodiversity loss and habitat fragmentation through the 

destruction and displacement of resident species (Environmental Law Alliance 

Worldwide, 2010). Further, the surrounding landscape may be impacted by soil 

degradation, the release of pollutants, the use of scare water and disturbance 

impacts such as noise and vibration (Campbell, 2009).  

 

Globally, it is estimated that mining threatens nearly 40 percent of undeveloped 

tracts of forest (Whitmore, 2006). Even for highly mobile animals such as bats, 

declines in the size of forest patches can lead to decreased roost availability and 

foraging opportunities (Campbell et al. 1996). The scarcity of population estimates 

and lack of life history knowledge for many bat species presents a significant 

challenge when considering the impacts of mining on local populations (Barclay, 

2014; Morrison and Fox, 2009). Due to their longevity, low reproductive output and 

high metabolic rates bats are particularly vulnerable to the impacts of 

bioaccumulation of toxins produced by mining (Voigt and Kingston, 2016; Wilkinson 

and South, 2002). Despite the negative impacts that mining may have on bat 

populations, the landscapes resulting from open-pit mining often contain a highly 

fragmented mix of habitats and water features which can offer valuable foraging and 

roosting opportunities for a range of bat species (Briggeman et al. 2007). Further, 

abandoned underground mines provide stable microclimates which act as valuable 

roost sites (Tuttle and Taylor, 1998).  
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Although bats make up one fifth of extant mammal species, many populations are 

now in decline with over 20 percent of species classified as threatened or near-

threatened (Gunnel and Simmons, 2005, IUCN Red List, 2008). The Bat Specialist 

Group of the IUCN Species Survival Commission has compiled global Action Plans 

for Microchiropteran and Megachiropteran bats, which provide a global framework 

for bat conservation (Mickleburgh et al. 2002). National legislation for bat protection 

varies widely, from no protection to full protection of both roosts and individuals. Bat 

conservation can benefit greatly from international collaboration, proper enforcement 

of regulations and the protection of foraging grounds and roost sites (Hutson et al. 

2001; Mickleburgh et al. 1992).  

 

Within the United Kingdom, all 18 resident bat species and their roost sites are 

protected by both domestic and international legislation (Russ, 2012; Zeale et al. 

2016). In addition many large developments, including mining operations, must also 

undertake and Ecological Impact Assessment, with the level of survey required 

dependent on the size of the development footprint and prior information regarding 

bat activity at the site (Mclean, 2010). Proposed developments with a large footprint 

such as mineral extraction operations are required to undertake thorough baseline 

surveys for bat activity and a desk study of the surrounding area, to identify roost 

sites, important foraging areas and strategic flyways (Hundt, 2012). If potential 

detrimental impacts to local bat populations or their roosts sites are identified, then a 

European Protected Species Licence may be granted to allow the proposed activities 

to proceed. Frequently, the licence will specify that mitigation measures 

proportionate to the scale of works are implemented in order to reduce or 

compensate for any impacts (Natural England, 2010; Mitchell-Jones, 2004). 

 

The rising standards required by both regulators and the general public means that 

environmental protection is now a priority within the mining industry. As a result, 

‘best practice methodologies’ now make up approximately five percent of the capital 

and operating costs of new mining developments (Environment Australia, 2002). In 

addition to carrying out habitat restoration following the closure of the mine, 

environmental enhancement often occurs while mining is still underway (Braker et al. 
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2013). Ecological compensation for local bat populations includes the erection of bat 

boxes to provide roosting opportunities, the creation of habitat corridors and 

measures to enhance foraging resources by creating invertebrate habitat (Nielsen 

and Kelly, 2016; Bat Conservation Trust, 2016).  

 

It is important that the effectiveness of mitigation measures implemented for bats are 

evaluated throughout the lifetime of large scale mining developments (Berthinussen 

and Altringham, 2012b). Long-term monitoring using appropriate techniques may 

minimise the ineffective use of financial resources, by identifying species-specific 

responses by bats to the impacts of habitat loss and disturbance on a local scale 

(Grift et al. 2013). Here, we analyse data collected by contracted ecologists over a 

three year period at Drakelands mine, the first new metal mine to be established 

within Britain in the last 45 years. Ideally, we would determine the effectiveness of 

mitigation measures in maintaining local bat populations by comparing activity levels 

post-development to those collected at the site pre-development. However, variation 

in the data collection methods pre and post-development means that this 

comparison is not possible. Instead, we identify potential short term trends in local 

bat activity on a species/ genus level following development of the site, by analysing 

remote detector and roost survey monitoring data, with the aim to inform 

management decision making at this site and other future mining developments.   

 

2.21 Mitigation for bats at the study site 

Compensating for the impacts that a development may have on local bat populations 

often poses management challenges for mining companies and the relevant 

regulatory agencies (Sonter et al. 2014). It is understood that the Drakelands mine 

development has and will continue to result in significant landscape modification, 

impacting on local biodiversity in both the short and medium term (Michel Hughes 

Associates, 2009). However, Wolf Minerals Ltd are working to minimise adverse 

environmental impacts to ensure that there is no net loss of biodiversity. 

Construction of the Drakelands site was completed in 2013, although the transfer of 

waste material from the pit to the mine waste facility is ongoing. The habitats that 

were cleared in the construction of the site were predominantly grassland (acid, 

improved and semi improved) with smaller patches of scrub and broadleaf woodland. 
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Three EPSLs were granted by Natural England, to permit the destruction of roost 

sites within woodland and existing buildings. Collectively, these sites provided roosts 

for up to three Plecotus auritus, seven Rhinolophus ferrumequinum and ten 

Pipistrellus pipistrellus (for further details of EPSLs and initial habitat composition 

see Chapter 1 section 1.5)  (Michel Hughes Associates, 2014). 

 

In order to compensate for the loss of these roost sites a total of 81 bat boxes were 

installed at the site prior to June 2014 (Gillingham, 2014). Further, 12 buildings 

identified as being used by roosting bats were retained and one new building roost 

provision was created (Gillingham, 2014). Significant habitat creation has also been 

undertaken at Drakelands mine, including the planting of approximately 9ha of native 

broadleaf woodland which commenced in 2014 (Gillingham, 2014; Michel Hughes 

Associates, 2013). These areas of planting have been incorporated into a framework 

of 56 Biodiversity Enhancement Zones, to create a mosaic of appropriately managed 

habitats including woodland, grassland, heath and freshwater habitats which will 

enhance the site for bats. In order to minimise the effects of artificial lighting on bat 

activity a lighting strategy has been implemented across the site, to ensure that 

habitats potentially used by light-sensitive species remain unlit (Gillingham, 2014).  

 

2.3 Methods 

2.31 Data collection 

Evening emergence surveys were conducted at 12 retained roosts and one new 

roost provision within the Drakelands site by contracted ecologists, from 2014-2016. 

Surveys were conducted biannually between May and August, in order to identify 

potential breeding colonies (Gillingham, 2014). Surveying began 15 minutes before 

sunset and terminated 90 minutes after sunset. Emerging bats were identified to a 

species level, based on visual observations and the subsequent analysis of 

echolocation calls recorded using a range of ultrasonic detectors. Of the two 

sampling sessions, the greater number of individuals observed of each species was 

recorded as the annual emergence figure for each roost (Gillingham, 2013).   

 

From 2014-2016 remote monitoring was conducted simultaneously at 14 locations 

around the Mine Waste Facility by contracted ecologists. However, one location was 
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not monitored during 2014 due to construction activity. In total, 122 five-night 

sampling sessions were conducted, totalling 610 nights of monitoring. For the 

purpose of analysis, monitoring locations were classified as ‘grassland’ or ‘woodland’ 

depending on the habitat in which the detector was situated (note: all woodland 

monitoring locations were well-established, none were recently planted) (Figure 2.1). 

Three monitoring sessions were scheduled annually; once during spring, summer 

and autumn. A Song Meter SM2 detector (Wildlife Acoustics, Massachusetts, USA) 

was positioned at each monitoring location and left to record from 30 minutes before 

sunset until sunrise, for five continuous nights. In the case heavy rainfall, high wind 

speeds or low temperature, detectors were left to record for additional nights and the 

period of less extreme weather was selected for analysis, as these environmental 

factors are known to affect levels of bat activity (Voigt et al. 2011; Cryan et al. 2014; 

Barros et al. 2014). 

 

Data were visualised in Song Scope Bio-acoustics software (Wildlife Acoustics, 

Massachusetts, USA). Echolocation calls were visually inspected and assigned to a 

species or genus based on comparison to a reference library of known species. 

Echolocation calls assigned to Myotis and Plecotus were only identified to a genus 

level, due to similarities in call parameters (Kunz and Parsons, 2009; Russ, 2012; 

Jennings et al. 2008). Echolocation calls lasting up to 20 seconds were defined as a 

single ‘pass’. Species richness was calculated for each five night monitoring session, 

consisting of the sum of the number of species detected (or genus for Myotis and 

Plecotus). Total bat activity was calculated for each five night monitoring session as 

the sum of the number of passes of all species, and was used as an index of bat 

activity at each sampling location rather than quantifying actual abundance (Ober 

and Hayes, 2008). Nightly totals of bat activity were not available, therefore 

environmental data such as temperature, wind speed and rainfall could not be 

included in any of the statistical models (unless calculated as a five night average, 

which was decided to have limited value).  
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Figure 2.1  

Positioning and habitat classification of remote detector monitoring locations at the 

Drakelands site (Aerial image © Google Earth, 2015).  

 

2.32 Analysis  

Statistical analyses were conducted using R version 3.3.1 (R Core Team, 2016). All 

response variables were assessed for normality, homogeneity of variance and over 

dispersion using standard diagnostic procedures. Assumptions were checked and 

appropriate transformations were made to reduce residual variance where necessary 

(Grueber et al. 2011). 

 

Emergence survey data: 

Emergence survey data were analysed on a species level, using a Kruskal-Wallis 

test to examine whether the number of individuals identified leaving the retained 

roosts varied by monitoring year at the p < 0.05 significance level. Monitoring year 

was entered as a categorical variable, in order to identify non-linear trends in species 

richness and activity over the three year monitoring period.  
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Remote monitoring data:  

General Linear Mixed Models (GLMs) were constructed using the package “lme4” to 

investigate whether bat species richness and total activity levels (totals per five night 

sampling session) varied by monitoring year at Drakelands mine (Bates et al. 2015). 

The response variable of total activity was transformed to ln (passes + 1) to reduce 

heterogeneity resulting from large variation in activity levels between nights while 

also accounting for nights with zero passes (Berthinussen and Altringham, 2012a). 

All global models contained the fixed effects of monitoring year and habitat type. 

Monitoring year was entered as a categorical variable, in order to identify non-linear 

trends in species richness and activity over the three year monitoring period. The 

global models also included an interaction between monitoring year and habitat type, 

as activity and richness trends may differ within habitat types over the monitoring 

period. Models were fit using maximum likelihood and a normal error distribution. All 

models contained the random effect of location (to account for pseudo-replication as 

multiple monitoring sessions were conducted across 14 locations), and month (to 

account for temporal autocorrelation as the month of monitoring sessions differed 

among years). Assessing the potential impacts of spatial autocorrelation at the study 

site is difficult, because the results are likely to be confounded by the close grouping 

of woodland monitoring locations in the western area of the site, and the grouping of 

grassland monitoring locations in the eastern area of the site (Figure 2.1).  

 

Bat activity was also analysed on a species/ genus level using GLMs for P. 

pipistrellus, P. pygmaeus and Myotis species which were identified most frequently. 

The response variable of number of passes was transformed to ln (passes + 1) to 

reduce heterogeneity resulting from large variation in activity levels between nights 

while also accounting for nights with zero passes. Again, the global models 

contained the fixed effects of monitoring year and habitat type with an interaction 

between the two variables, plus the random effects of location and month. Models 

were fit using maximum likelihood and a normal error distribution. 

 

GLMs were built using all possible combinations of predictors using the package 

“MuMIn” and then ranked using Akaike’s Information Criterion corrected for small 

sample size (AICc), which penalizes models with many explanatory variables 
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(Burnham and Anderson, 2010). Each model was then given an Akaike weight 

(ΔAICc), based on the difference in AICc value for that model compared with the AICc 

value of the best fitting model. Models for which ΔAICc ⩽2 were considered to have 

equivalent support and were validated by visual examination of residuals and q-q 

plots (Burnham et al. 2011; Bolker et al. 2009). According to the rules of parsimony, 

where multiple models received equivalent support the simplest model containing the 

fewest factors was selected as the minimum adequate model (Busemeyer et al. 

2015). The minimum adequate model was then fit using restricted maximum 

likelihood estimation to obtain unbiased parameter estimates. Tukey’s honest 

significant difference test (HSD) was computed using the “multcomp” package to 

determine which treatment combinations differed significantly, with p < 0.05 

considered statistically significant.  

 

On a species/genus level, activity by N. noctula, R. ferrumequinum and Plecotus 

species was detected less frequently. Therefore, the response variable of activity 

was converted to binary data of presence/absence, per five night sampling session. 

We investigated whether monitoring year had an effect on the likelihood of detecting 

each species/genus by building Generalised Linear Models (GLzMs), with a binomial 

error distribution. Models were constructed using the package “lme4” and fit using 

maximum-likelihood with a logit-link function. The global models contained the fixed 

effects of monitoring year and habitat type. Again, monitoring year was entered as a 

categorical variable, in order to identify non-linear trends in species richness and 

activity over the three year monitoring period. All models contained the random 

effects of location and month.  

 

Using a Chi-Squared difference test the global model was compared with a null 

model containing only the fixed effect of habitat type and the random effects of 

location and month. A value of p < 0.05 indicted that the global model had a 

significantly better fit than the null model, and therefore monitoring year was an 

important predictor of the response variable of presence/ absence. A post-hoc 

Tukey’s honest significant difference test (HSD) was computed using the “multcomp” 

package with the best-fitting model, to determine whether treatment combinations 

differed significantly within the variables of year or habitat type. 
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The following species were detected infrequently: E. serotinus, R. hipposideros, N. 

leisleri, B. barbastellus, and P. nathusii. Due to insufficient data, performing mixed 

modelling to identify changes in activity levels by monitoring year was not possible. 

Therefore percentage change was calculated between monitoring years, using the 

proportion of five-night sessions in which each species was detected.  

 

2.4 Results 

Over the three year monitoring period a total of 118,268 bat passes and at least 11 

species were identified. Bat species were Pipistrellus pipistrellus, Pipistrellus 

pygmaeus, Pipistrellus nathusii, Rhinolophus ferrumequinum, Rhinolophus 

hipposideros , Barbastellus barbastellus, Nyctalus noctula, Nyctalus leisleri, 

Eptesicus serotinus, Myotis species and Plecotus species (Table 2.1).  

 

Table 2.1  
Summary table for number of bat passes per species, and detection frequency over 
the sampling period. Sampling was conducted from 2014-2016, over 122 five-night 
sampling sessions, totalling 610 nights of monitoring.  
 

Bat species Number of passes % of total passes % of sampling 
sessions detected 

P. pipistrellus 94,364 79.79 94.26 
P. pygmaeus 17,700 14.97 76.23 
P. nathusii 31 0.03 2.46 
R. ferrumequinum 190 0.16 46.72 
R. hipposideros  92 0.08 17.21 
B. barbastellus 18 0.02 8.20 
N. noctula 737 0.62 54.10 
N. leisleri 66 0.06 7.38 
E. serotinus 124 0.10 25.41 
Myotis species 4,637 3.92 74.59 
Plecotus species 309 0.26 29.51 

 

 

2.41 Effect of monitoring year on emergence counts 

Three species were identified emerging from the retained roost buildings; P. 

pipistrellus, P. auritus, and R. hipposideros (Figure 2.2). The mean number of 

emerging individuals was not found to differ significantly between monitoring years 
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for P. pipistrellus (H(2) = 1.663, p = 0.4354), P. auritus (H(2) = 1.487, p = 0.476) or R. 

hipposideros (H(2) = 1.028, p = 0.598).  

Figure 2.2  

The number of bats observed emerging from the retained roost buildings during 

summer monitoring sessions from 2014-2016. Two sampling sessions were 

conducted annually, and the results of the sampling session with the greater number 

of emerging bats of each species is displayed here. Note: no bats were observed 

emerging from two of the retained roosts during any of the monitoring years so these 

are not displayed.  
 

2.42 Effect of monitoring year on bat species richness    

Monitoring year was not retained in the minimum adequate model investigating the 

factors which influence species richness, and therefore may not be considered a 

significant predictor of species richness (Model 1b, Table 2.2; Table 2.3). Post-hoc 

analysis revealed that species richness was lower in grassland than woodland 

monitoring locations (Tukey’s test: p < 0.001). However, given that year was retained 

within the model with the lowest AICc (Model 1a, Table 2.2) the predicted values of 

species richness using this model have been presented in Figure 2.3. Species 

richness declines within both woodland and grassland locations over the three year 

monitoring period. Using alternative statistical methods such as model averaging this 

trend may have been found to be significant (Burnham and Anderson, 2010).  
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Table 2.2  

The full set of models for species richness. Shown is the deviance (Dev), the number 

of model parameters (K), the Akaike’s Information Criterion (AICc) and the difference 

in Akaike’s Information Criterion between each model and the top-ranked model 

(ΔAICc) and the Akaike weight (wi) of each model. Of the top model set (ΔAICc ⩽ 2), 

the most parsimonious model (with the fewest parameters) was selected as the 

minimum adequate model and is shown in bold.  

 

 
 
Table 2.3  
Summary of parameter estimates for the minimum adequate model for species 
richness. Shown is the estimates, standard error (SE), and the lower and upper 
confidence intervals (5%, 95%) for parameters and the variance of random effects.  
 

Response: Species richness, random effects = location and month 

Parameter Estimate SE Confidence interval (5,95) 

Intercept† 3.553 0.459 2.805, 4.308 
Habitat: woodland 1.775 0.379 1.151, 2.401 

   Random Effects (variance) 

Location   0.231 

Month     0.806 
†Habitat: grassland was the reference category.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3  

Species richness over the three year monitoring period within habitat type, predicted 

by model 1a (Table 2.2) with standard error.  

Model 
rank 

Model 
name 

Response = species richness; 
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/3 1a Year + Habitat 462.9 4 476.9 0.0 0.63 
2/3 1b Habitat 468.7 3 478.7 1.8 0.25 
3/3 1c Year * Habitat 462.2 5 480.2 3.3 0.12 
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2.43 Effect of monitoring year on total bat activity  

Monitoring year and habitat type were retained in the minimum adequate model for 

the factors which influence total bat activity and therefore may be considered 

significant predictors (Model 2a, Table 2.4; Table 2.5). The model predicts that total 

bat activity was significantly lower in 2016 relative to 2015 (Tukey’s test: p < 0.001) 

(Figure 2.4a), but that total activity in 2014 was not significantly different to activity in 

2015 or 2016. Total activity was found to be lower in grassland than woodland 

monitoring locations (Tukey’s test: p < 0.002). Model 2b contained an interaction 

between year and habitat and was supported by AICc (Table 2.4), but was not 

selected as the top model using the minimum adequate model method. However, the 

raw data have been displayed in Figure 2.4b to allow visualisation of the interaction. 

The trends appear similar to the model 2a predicted values, with the reduction in 

activity from 2015 to 2016 within both habitat types remaining apparent.  

 

Table 2.4  

The full set of models for total bat activity. Shown is the deviance (Dev), the number 
of model parameters (K), the Akaike’s Information Criterion (AICc) and the difference 
in Akaike’s Information Criterion between each model and the top-ranked model 
(ΔAICc) and the Akaike weight (wi) of each model. Of the top model set (ΔAICc ⩽ 2), 
the most parsimonious model (with the fewest parameters) was selected as the 
minimum adequate model and is shown in bold.  

 

Table 2.5  

Summary of parameter estimates for minimum adequate model for total bat activity. 

Shown is the estimates, standard error (SE), and the lower and upper confidence 

intervals (5%, 95%) for parameters and the variance of random effects.  

Response: ln(total bat activity + 1), random effects = location and month 

Parameter Estimate SE Confidence interval (5, 95) 

Intercept † 3.825      0.701 2.740, 4.910 
Year: 2015      0.416      0.629 -0.586, 1.420 
Year: 2016 -0.798      0.628 -1.799, 0.204 
Habitat: woodland 2.457 0.781 1.195, 3.719 

   Random Effects (variance) 

Location   1.910 

Month     0.445 
†Year: 2014 and Habitat: grassland was the reference category  

Model 
rank 

Model 
name 

Response = ln(total activity + 1); 
random effects = date and location 

Dev K AICc ΔAICc wi 

1/3 2a Year + Habitat 462.3 4 476.3 0.0 0.61 
2/3 2b Year * Habitat 459.2 5 477.2 0.9 0.39 
3/3 2c Habitat 477.3 3 487.3 10.0 0.00 
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Figure 2.4  

a) Total activity levels over the three year monitoring period, predicted by the 

minimum adequate model within habitat type (Table 2.5) with standard error. Total 

activity was transformed to ln(passes + 1) to reduce heterogeneity.  

b) Total activity levels over the three year monitoring period (raw data) with standard 

error. Total activity was transformed to ln(passes + 1) to reduce heterogeneity. 
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2.44 Effect of monitoring year on bat activity on a species/ genus level 

 
Monitoring year and habitat type were retained in the minimum adequate models for 

P. pipistrellus and P. pygmaeus activity and therefore may be considered significant 

predictors of activity for these species (Table 2.6a, model 3b; Table 2.6b, model 4a; 

Table 2.7a, b). For Myotis species the minimum adequate model included habitat 

type but did not include monitoring year, indicating that year was not a significant 

predictor of Myotis activity (Table 2.6c, model 5b; Table 2.7c). 

 

Post-hoc analysis revealed that P. pipistrellus activity was significantly lower in 2016, 

relative to 2015 (Tukey’s test: p < 0.001) (Figure 2.5a). P. pygmaeus activity was 

found to be significantly lower in 2016 relative to 2014 and 2015 (Tukey’s test: 

p<0.02, p < 0.002 respectively) (Figure 2.5b). Across all species, activity was found 

to be significantly lower at grassland monitoring locations relative to woodland 

monitoring locations (Tukey’s test: P. pipistrellus p<0.004, P. pygmaeus p<0.001, 

Myotis p<0.002).  
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Table 2.6  

The full set of models for bat activity on a species/ genus level: a) P. pipistrellus b) P. 

pygmaeus c) Myotis species. Shown is the deviance (Dev), the number of model 

parameters (K), the Akaike’s Information Criterion (AICc), the difference in Akaike’s 

Information Criterion between each model and the top-ranked model (ΔAICc) and 

the Akaike weight (wi) of each model. Of the top model set (ΔAICc ⩽ 2) the most 

parsimonious model (with the fewest parameters) was selected as the minimum 

adequate model and is shown in bold.  

a) 

 

b) 

 

c) 

 

 

 

 

 

 

 

 

 

 

 

Model 
rank 

Model 
name 

Response = ln (P. pipistrellus 
passes+1); random effects = date 
and location 

Dev K AICc ΔAICc wi 

1/3 3a Year * Habitat 460.4 5 478.4 0.0 0.63 
2/3 3b Year + Habitat 465.5 4 479.5 1.1 0.37 
3/3 3c Habitat 484.1 3 494.1 15.7 0.00 

Model 
rank 

Model 
name 

Response = ln (P. pygmaeus 
passes+1); random effects = date 
and location 

Dev K AICc ΔAICc wi 

1/3 4a Year + Habitat 446.3 4 460.3 0.0 0.70 
2/3 4b Year * Habitat 444.0 5 262.0 1.7 0.30 
3/3 4c Habitat 460.7 3 470.7 10.4 0.00 

Model 
rank 

Model 
name 

Response = ln (Myotis passes+1); 
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/3 5b Habitat 395.3 3 405.3 0.0 0.51 
2/3 5a Year + Habitat 391.7 4 405.7 0.4 0.42 
3/3 5c Year * Habitat 391.2 5 409.2 3.9 0.07 
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Table 2.7  

Summary of parameter estimates for the minimum adequate models (ΔAICc ⩽ 2) for 

bat activity on a species/ genus level: a) P. pipistrellus b) P. pygmaeus c) Myotis 

species. Shown is the estimates, standard error (SE), and the lower and upper 

confidence intervals (5%, 95%) for parameters and the variance of random effects.  

a) 

Response: ln(P. pipistrellus passes+1), random effects = location and month 

Parameter Estimate SE Confidence interval (5,95) 

(Intercept) † 3.463 0.782 2.254, 4.671 
Year: 2015 0.512      0.727 -0.646, 1.671 
Year: 2016 -0.853      0.726 -2.010, 0.305 
Habitat: woodland  2.439      0.846 1.069, 3.809 

   Random Effects (variance) 

Location   2.283 

Month     0.646 
†Year: 2014 and Habitat: grassland was the reference category.  

 

b) 

Response: ln(P. pygmaeus passes+1), random effects = location and month 

Parameter Estimate SE Confidence interval (5,95) 

(Intercept) †  1.951      0.568 1.063, 2.839 
Year: 2015  -0.332      0.475 -1.098, 0.433 
Year: 2016 -1.329      0.474 -2.092, -0.565 
Habitat: woodland 2.507      0.663 1.439, 3.575 

   Random Effects (variance) 

Location   1.332 

Month     0.203 
†Year: 2014 and Habitat: grassland was the reference category.  

 
c) 

Response: ln(Myotis passes+1), random effects = location and month 

Parameter Estimate SE Confidence interval (5,95) 

(Intercept) † 1.095 0.399 0.453, 1.739 
Habitat: woodland 1.528      0.467 0.768, 2.289 

   Random Effects (variance) 

Location   0.629 

Month     0.286 
† Habitat: grassland was the reference category.  
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Figure 2.5  

The activity levels of a) P. pipistrellus b) P. pygmaeus over the three year monitoring 

period, predicted by the minimum adequate models within habitat type, with standard 

error (Table 2.7a, b). Activity levels were transformed to ln(passes + 1) to reduce 

heterogeneity.  
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Monitoring year was found to be a significant predictor of N. noctula and Plecotus 

presence (χ2
(2) = 6.769, p = 0.033 and χ2

(2) = 8.228, p = 0.016 respectively, Table 

2.8a, c). Post-hoc analysis revealed that N. noctula was more likely to be detected in 

2016 relative to 2015 (Tukey’s test: p=0.039) and that Plecotus species were more 

likely to be detected in 2014, relative to 2015 (Tukey’s test: p=0.027) (Figure 2.6a, 

b). As zero Plecotus passes were identified in 2016 it was not possible to calculate a 

pairwise comparison for this year, however the lack of passes indicates a substantial 

decrease in activity. Monitoring year was not found to be a significant predictor of R. 

ferrumequinum presence (χ2
(2) = 0.892, p = 0.640, Table 2.8b).  

 

Post-hoc analysis revealed that R. ferrumequinum was more likely to be detected in 

woodland than grassland (Tukey’s test: p<0.001). Habitat type was not a significant 

predictor of presence of N. noctula or Plecotus species. The proportion of monitoring 

sessions in which R. hipposideros, B. barabastellus, E. serotinus and P. nathusii 

were detected increased in 2015 relative to 2014 (Table 2.9). Only N. leisleri was 

detected less frequently in 2015 relative to 2014. P. nathusii and N. leisleri were 

detected more frequently in 2016 relative to 2015, while R. hipposideros, B. 

barabastellus and E. serotinus were detected less frequently.  

 

 

Table 2.8  

Summary of parameter estimates for the best fitting model for a) N. noctula b) R. 

ferrumequinum c) Plecotus species presence. Shown is the estimates, standard 

error (SE), and the lower and upper confidence intervals (5%, 95%) for parameters 

and the variance of random effects.  

 

a) 

Response: Probability of detecting N. noctula, random effects = location and month 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † -0.415    0.645 -1.631, 0.760 
Year: 2015 0.018     0.813  -1.534, 1.569 
Year: 2016      1.216     0.829 -0.324, 2.818 
Habitat: woodland 0.431     0.462  -0.363, 1.269 

   Random Effects (variance) 

Location   0.172 

Month     0.631 
†Year: 2014 and Habitat: grassland were the reference category.  
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b) 

Response: Probability of detecting R. ferrumequinum, random effects = location and month 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † -0.943    0.397 -1.693, -0.271 
Habitat: woodland 1.512    0.468 0.762, 2.400 

   Random Effects (variance) 

Location   0.146 

Month     0.242 
†Habitat: grassland was the reference category. 

 
c) 

Response: Probability of detecting Plecotus species, random effects = location and month 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † 1.115         1.562 * 
Year: 2015 -5.181         2.099 * 
Year: 2016      -48.503   0.000 * 
Habitat: woodland 1.889         1.023 * 

   Random Effects (variance) 

Location   1.856 

Month     5.193 
†Year: 2014 and Habitat: grassland were the reference category. 
* Unable to compute confidence interval due to singularity, because no Plecotus passes were 
identified in 2016.  

 

 

 

 

Figure 2.6  

The probability of detection of a) N. noctula and b) Plecotus species over the three 

year monitoring period (within a five day monitoring session) within habitat type, 

predicted by the best fitting model (Table 2.8a, c). For the standard error of model 

parameters refer to Table 2.8a, c. 
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Table 2.9  

The proportion of sampling sessions in which species were detected per year and 

the associated percentage change between monitoring years. Where a species was 

not detected during an entire monitoring year percentage change could not be 

calculated, and is represented by N/A.  

 

Proportion of sessions detected Percentage change  

Species 2014 2015 2016 2014-2015 2015-2016 

P.nathusii 0.00 0.02 0.05 N/A 95.2 
R.hipposideros 0.15 0.22 0.14 42.7 -34.9 
B.barbastellus 0.03 0.17 0.05 565.9 -72.1 
N.leisleri 0.15 0.00 0.07 -100 N/A 
E.serotinus 0.18 0.34 0.24 90.2 -30.3 

 

 
2.45 Environmental conditions 

Although the incorporation of weather parameters into statistical models was not 

possible due to the lack of nightly activity data, summary statistics are presented in 

Figure 2.7 to enable a visual examination of annual trends which may have 

influenced bat activity at the site. The monitoring season of 2015 experienced the 

lowest average temperature (2014=15.8°C, 2015=14.6°C, 2016=15.6°C), the greatest 

total rainfall (2014=284mm, 2015=295mm, 2016=242mm) and the greatest average 

wind speeds (2014=2.9mph, 2015=4.4mph, 2016=4.1mph) (Plymouth Live Weather 

Station, 2018).  
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Figure 2.7 

Summary statistics for the monitoring season from 2014-2016, displaying a) average 

wind speed, b) total rainfall, c) average temperature by month (Plymouth Live 

Weather Station, 2018).  
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2.5 Discussion 

At Drakelands open-pit mine in southwest England the impacts of habitat loss, 

disturbance and the destruction of roosts within trees and retained buildings may 

have resulted in recent shifts in the activity of local bat populations. In order to 

minimise these impacts mitigation has been implemented on-site in the form of 

habitat creation, bat boxes, bat houses, sensitive lighting strategies and retained 

building roosts (Gillingham, 2014). Here, we assess the short-term effectiveness of 

these mitigation measures by analysing data collected by contracted ecologists over 

a three year period. Analysis of the remote detector monitoring results revealed 

potential short-term changes in the local abundance of some species; the possible 

causes of these shifts will be discussed in the following section.  

 

Species richness at the site was found to be higher at woodland monitoring locations 

than grassland monitoring locations. During the three year monitoring period, 

woodland areas continued to be cleared to allow for expansion of the mine waste 

facility and diverted link road. Therefore, it is surprising that species richness did not 

significantly decline over the three year period and that monitoring year was not a 

significant predictor of species richness. The tree planting which commenced in 2013 

may have provided some additional foraging resources, helping to maintain species 

richness; to date approximately 38,000 trees have been planted across the site (SLR 

Consulting Ltd, 2013). As these juvenile woodland areas mature, the foraging and 

commuting opportunities they provide to local bat populations should be enhanced 

(Garland and Markham, 2007). Although roosting opportunities within these young 

woodlands will be limited until microhabitat features such as deadwood and tree 

hollows develop, roost opportunities are supplemented by the 81 bat boxes which 

were installed prior to 2014 within retained woodlands, supporting species richness 

at the site (Vesk, 2008; Burgar et al. 2015; Watrous et al. 2006; Gillingham, 2014). 

The bat boxes have been adopted by at least six species, with the rate of adoption 

rising steadily over the three year monitoring period (See Appendix B: figure 1 for 

maps displaying the position of adoption of bat boxes by species) (Gillingham, 2016).  

 

In contrast to species richness, monitoring year was found to be a significant 

predictor of overall bat activity at the site. Total activity remained similar from 2014 to 
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2015, but then decreased significantly in 2016. Total activity at the site was heavily 

influenced by P. pipistrellus and P. pygmaeus passes, which respectively accounted 

for 79.8 and 15.0 percent of the total number of passes recorded. The number of P. 

pipistrellus individuals observed emerging from the retained roost buildings was not 

found to differ significantly between monitoring years, therefore the shifts in activity 

may have been due to prey availability. A substantial component of the diet of both 

P. pipistrellus and P. pygmaeus consists of Chironomidae and other families within 

the order Diptera, many of which have an aquatic larval stage (Vaughan, 1997; 

Bartonička et al. 2008). Therefore, the distribution of P. pipistrellus and P. pygmaeus 

and the duration of foraging is likely to be influenced by the availability of water 

bodies at the site, which are required by Dipteran prey for the early life stages 

(Kusch et al. 2004; Jong and Ahlén, 1991; Altringham, 1996). 

  

The aquatic larval stages of Diptera are able to colonise new water bodies quickly, 

occurring in both pristine and extremely degraded ecosystems and can progress 

from egg to flying adult in as little as four days (Sundermann et al. 2007; AMCA, 

2014). During the summer of 2015 significant new waterbodies were created at the 

Drakelands site in the form of stream and pool systems, storage ponds and diversion 

channels (SLR Consulting Ltd, 2013). The rapid colonisation of these habitats by 

Diptera species would have provided additional foraging resources at the site, which 

might explain the observed increase in total bat activity in 2015 relative to 2014. 

However, the subsequent colonisation of the new waterbodies by predators of 

aquatic Diptera larvae such as Corixidae and Utricularia species, Anura tadpoles, 

Odonata larvae, newts and fish may have resulted in fewer emergent adults the 

following year (Reilly and McCarthy, 1990; Martens and Grabow, 2011; Klecka and 

Boukal, 2012; Fasola and Canova, 1992). This reduction in foraging resources may 

partially explain the observed reduction in P. pipistrellus activity and therefore total 

bat activity in 2016 relative to 2015.  

 

Despite the potential increase in foraging resources linked to the creation of new 

water bodies, P. pygmaeus activity at the site was found to be significantly lower in 

2016 than in the previous two years of monitoring. Both P. pygmaeus and P. 

pipistrellus activity was found to be higher at woodland than grassland monitoring 
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locations, therefore the reduction in optimum foraging and commuting habitat 

through the continued clearance of woodland areas could have had led to reductions 

in the activity levels of both species over the monitoring period. The impacts of 

woodland clearance may be more significant for P. pygmaeus, as it is less mobile 

and occupies a smaller home range than P. pipistrellus (Fuentes-Montemayor et al. 

2013). In subsequent years P. pygmaeus and P. pipistrellus activity may begin to 

increase as mitigation measures such as the woodland planting, bat boxes and 

habitat corridors become better established (Jenkins et al. 1998).  

 

In contrast, only habitat type was found to be a significant predictor of Myotis activity, 

which was higher at woodland than grassland monitoring locations. However, as 

echolocation calls were only identified to the genus level it is difficult to assess how 

Myotis species are reacting to the site-wide changes, as species-level trends may be 

present but impossible to detect (Voigt and Kingston, 2016). For example, research 

suggests that the ‘passive listening’ M. bechsteinii may be particularly vulnerable to 

the impacts of broadband noise such as that produced by the mine’s processing 

plant, but without being able to identify echolocation calls to a species level it is 

impossible to monitor potential shifts in activity (Schaub et al. 2008; Clarke, 

pers.comm, 2017). Although Myotis forage using a range of feeding strategies 

across varying habitat types, all species tend to favour deciduous woodland habitats 

close to water (Russ, 2012). While the woodland clearance may have had negative 

impacts on Myotis activity, this could have been offset by the creation of new 

waterbodies resulting in increased foraging resources, in particularly for M. 

daubentonii, M. nattereri and M. brandti which frequently consume insect taxa which 

are associated with water (Vaughan, 1997; Shiel et al. 1991; Flavin et al. 2001). 

Following the creation of the Tory pond (the most substantial new waterbody) in 

2015, the colonisation of two nearby bat boxes in 2016 by a breeding colony of 17-

25 M. nattereri and a single hibernating M. daubentonii suggests that Myotis species 

are indeed utilizing this enhanced foraging habitat (Gillingham, 2016). Further, the 

adoption of these bat boxes is a positive sign that the Drakeland’s lighting strategy is 

not deterring these light-sensitive species from foraging and roosting within the mine 

site (Gillingham, 2014; Stone et al. 2012).  
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Unlike Myotis species, N. noctula and N.leisleri are not considered light-shy and may 

utilize artificial lighting as a feeding resource by preying on insect congregations 

(Mathews et al. 2015). N. noctula and N.leisleri have also been identified foraging 

along major roads and using road brides as roost sites, suggesting they may be 

relatively more tolerant of anthropogenic impacts such as noise (Waters et al. 1999; 

Ceľuch et al. 2008). The probability of detecting N. noctula during a sampling 

session was found to be significantly greater in 2016 than 2015, while N. leisleri was 

detected on 15%, 0% and 7% of sampling sessions from 2014-2016 respectively. 

Monitoring years in which detection rates were low may reflect reduced on-site prey 

availability or habitat loss, potentially due to woodland clearance and earthworks 

around the Mine Waste Facility resulting in loss of grassland habitat and woodland 

disturbance and therefore fewer Lepidoptera and Coleoptera prey items (Vaughan, 

1997; Dodd et al. 2012). In response, N. noctula and N. leisleri may have shifted 

their foraging patterns to more productive areas in the surrounding landscape, as 

both are capable of commuting long distances; frequently foraging at distances of 

more than 10km and 13km from the roost respectively (JNCC, 2007; Waters et al. 

1999). The subsequent increase in detection rates in 2016 relative to 2015 may 

reflect an increase in local prey availability, which may be due to the establishment 

of plants in the previously moved earth, leading to a rise in Lepidoptera and 

Coleoptera prey items in 2016.  

 

The probability of detecting Plecotus species decreased over the three year 

monitoring period, with significantly lower detection rates in 2015 than 2014 and no 

passes identified in 2016. This drop in activity is reflected in the retained roost 

monitoring, in which the maximum number of emerging P. auritus fell from 13 to five 

to one individual over the three year monitoring period. Due to the overall low 

numbers of emerging individuals this trend was found to be non-significant, however 

it will be interesting to see whether the number of emergent P. auritus remains low in 

subsequent years. The identified reduction in Plecotus activity may be in response to 

the continued loss of woodland and hedgerows across the site resulting in reduced 

foraging and commuting opportunities (JNCC, 2007). Further, the ongoing loss and 

disturbance of woodland and grassland habitats in the development of the link-road 

and Mine Waste Facility may have impacted the local abundance of Lepidoptera 
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species, which forms the majority of diet for both P. auritus and P. austriacus (Dodd 

et al. 2012; Vaughan, 1997). In addition to the impacts of habitat loss, anthropogenic 

noise from the processing plant may be degrading the foraging efficiency of the 

passive listening P. auritus, by masking insect generated sounds in the surrounding 

area (Razgour et al. 2013; Anderson and Racey, 1993; Schaub et al. 2008; Siemers 

and Schaub, 2010; Eklof and Jones, 2003). The processing plant at Drakelands 

operates for 24 hours per day and commenced production in July 2015, coinciding 

with the fall in Plecotus detection rates (McGlinchey, pers.comm, 2017). As only 

three years of monitoring data are available this downward trend may be short-lived; 

Plectous activity may begin to rise as the juvenile woodland areas and hedgerow 

planting matures, providing additional foraging and commuting opportunities on-site 

(Garland and Markham, 2007). 

 

In contrast, year of monitoring was not a significant predictor of the likelihood of 

detecting R. ferrumequinum. It would be interesting to assess whether the detection 

rate of R. ferrumequinum at the site has changed relative to levels recorded in 2013 - 

prior to the removal of a hibernation and potential transitional building roost for seven 

R. ferrumequinum under a EPSL and the development of the mine waste facility 

(Gillingham, pers.comm, 2017). Unfortunately, differences in the sampling 

methodology mean that this is not possible. In order to mitigate for the loss of this 

roost a replacement roost provision was created, which has been adopted by both R. 

ferrumequinum and R. hipposideros since 2015 (Gillingham, 2016).  

 

Unlike R. ferrumequinum, R. hipposideros has been identified using one of the 

retained roost buildings, with the number of emerging individuals increasing from 

zero to two to four over the three year monitoring period. The proportion of sessions 

on which R. hipposideros was detected peaked in 2015, with levels in 2014 and 

2016 remaining similar. This peak coincides with the creation of new waterbodies at 

the site, which could be particularly beneficial for this species given that they may 

spend half of their active flight time foraging within 600 metres of the roost site and 

that aquatic-linked Diptera form a substantial part of their diet (JNCC, 2007; 

Vaughan, 1997; Mitschunas and Wagner, 2015). Although R. ferrumequinum may 

take some Diptera prey, the majority of their diet is composed of Lepidoptera and 
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Coleoptera (Flanders and Jones, 2009; Vaughan, 1997). The local abundance of 

Lepidoptera and Coleoptera may have been impacted by the ongoing loss and 

disturbance of grassland habitats due to the earthworks around the Mine Waste 

Facility. While the sensitive lighting strategy, new roost sites and maturing woodland 

planting may help to maintain local R. ferrumequinum and R. hipposideros 

populations, their effective conservation of R. ferrumequinum  in particular will 

depend on the sensitive management of farmland in the 4km surrounding the roost 

sites (Froidevaux et al. 2017; Flanders and Jones, 2009; JNCC, 2007).  

 

A nationally rare species, B. barbastellus was only detected once during the 2014 

remote detector monitoring, 11 times during 2015 and six times during 2016 (Harris 

et al. 1995). The continued clearance of vegetation in areas surrounding the Mine 

Waste Facility is likely to have negative impacts on the local abundance of 

Lepidoptera which accounts for a substantial proportion of B. barbastellus diet 

(Andreas et al. 2012). However, the new waterbodies will have resulted in a local 

increase in aquatic larval-stage Diptera, of which Tipulidae and Nematocera are 

commonly taken as prey (Rydell et al. 1996). As B. barbastellus is a crevice dwelling 

species, the preservation of the remaining broadleaf woodland at the site is particular 

import for retaining roosting opportunities (Greenaway and Hill, 2005). However, a 

breeding colony of B. barbastellus has been identified in the nearby Dendle’s Wood 

nature reserve in Dartmoor. Given that the reserve is less than 5km from the 

Drakelands site and the average foraging range of B. barbastellus is 6.8km, it is 

possible that the individuals detected on site were commuting from this location and 

only use the Drakelands area for foraging or commuting purposes (Zeale et al. 2012; 

Dartmoor National Park Authority, 2009). Finally, local activity levels may be higher 

than they appear; B. barbastellus emits echolocation calls 10-100 times lower in 

amplitude relative to other aerial hawking bats in order to maximise the success rate 

of catching tympanate moths, which also reduces their detectability on acoustic 

equipment (Goerlitz et al. 2010).  

 

Similarly to B. barbastellus, E. serotinus will very rarely adopt bat boxes. However, 

as this species favours building roosts located in areas with a high proportion of 

improved grassland and arable land, E. serotinus may adopt the retained roost 
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buildings in subsequent years (Tink et al. 2014; Bat Conservation Trust, 2010). The 

proportion of sessions on which E. serotinus was detected peaked in 2015, with 

levels in 2016 remaining slightly higher than those in 2014. This peak coincides with 

the creation of new waterbodies at the site and may be a result of increased 

availability of aquatic-linked Diptera, which are commonly taken as prey by E. 

serotinus during the spring months (Zukal and Gajdosik, 2012). The remainder of the 

diet consists of Coleoptera (particularly chafers and Aphodius beetles) and 

Lepidoptera (Kervyn and Libois, 2008). While the availability of these prey items may 

have been affected by the loss of grassland habitats around the mine waste facility, 

their abundance will also be affected by the local agricultural land management 

practices and livestock in the surrounding area (Catto et al. 1996).  

 

P. nathusii has only been detected on three sampling sessions; once in May 2015, 

May 2016 and September 2016. These timings coincide with peak recordings 

elsewhere in England, in keeping with the probable migration period of a journey 

from Britain to continental Europe (Hargreaves et al. 2015). All of the monitoring 

points at which P. nathusii was recorded lie on the western boundary of the site; a 

trend which may be confirmed with data from subsequent monitoring years.  

 

Although the incorporation of weather parameters into statistical models was not 

possible due to the lack of nightly activity data, summary statistics indicate that the 

activity trends identified may not be a result of variation in environmental conditions 

among monitoring seasons. The monitoring season of 2015 received the lowest 

annual temperatures, greatest total rainfall and greatest average wind speeds –

factors which generally correlate with lower insect densities and therefore reduced 

bat activity (Cryan et al. 2014; Horn et al. 2008; Barros et al. 2014; Taylor, 1963). 

Despite this, total bat activity and P. pipistrellus activity was significantly greater in 

2015 relative to 2014, and P. pygmaeus activity was significantly greater in 2014 and 

2015 than 2016. Subsequent monitoring of the site should collect nightly activity 

data, in order to enable a more reliable understanding into the potential influence of 

environmental conditions on bat activity.  
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While daylight blasting may have some impact on bats roosting in proximity to the 

mine site, the rate of blasting has remained consistent throughout the three year 

monitoring period, so is not likely to account for any variation in bat activity. 

Laboratory studies suggest that bats in torpor are particularly sensitive to 

anthropogenic noise in the period before dusk, and responded by elevating their skin 

temperature (in cases where torpid temperature was 10°C lower than their active 

skin temperature) (Luo et al. 2014). Blasting at the Drakelands site occurs at 15:00, 

therefore the potential impacts of blasting may be elevated during the winter months 

when the air temperature is lower and dusk occurs earlier. Despite this, case studies 

have noted annual increases in cave-roosting bat populations in proximity to blast 

locations, suggesting that that torpid bats rapidly habituate to regular and prolonged 

noise exposure and seismic vibration (West Virginia Department of Environmental 

Protection, 2006; Player and Keim, 2015; Luo et al. 2014).  

 

2.6 Conclusion 

In order to conserve local bat populations throughout large-scale development, it is 

crucial that the impacts of development and effectiveness of mitigation measures are 

evaluated using appropriate monitoring techniques. By identifying short-term trends 

in bat activity at a new open-pit mine, we discuss potential species-specific 

responses to mitigation, habitat loss and disturbance on a local scale. While some 

species appear to be befitting from the implemented mitigation measures, Plecotus 

species in particular have experienced sharp declines in activity which may be linked 

to their foraging ecology and the impacts of anthropogenic noise. Although the 

potential impacts of anthropogenic noise on some passive listening bat species has 

been demonstrated, we could not identify research relating specifically to P. auritus 

which may represent an area for future research (Radford et al. 2012; Razgour et al. 

2013; Anderson and Racey, 1993; Schaub et al. 2008; Siemers and Schaub, 2010). 

As well as informing management decision making at this site, this study may 

provide insight to other projects involving large scale habitat loss. However, as the 

data were collected over a short time frame and don’t allow a comparison with bat 

activity pre-mining they should be treated with caution. Where possible, future mining 

developments should consider standardising data collection methods for monitoring 

conducted pre and post development, in order to allow comparison of subsequent 
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bat activity to baseline levels. Finally, this study was limited by the inability to include 

weather data into statistical models due to the lack of nightly activity totals, as these 

factors may have had a significant influence on bat activity.  
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Chapter 3: Investigating the impacts of open pit mining on bats in the 

wider landscape 

 

3.1 Abstract: 

Areas used in open-pit mining often undergo sudden and extensive landscape 

changes, including habitat fragmentation and disturbance. With mining activity 

predicted to expand, understanding the impacts of habitat loss on wildlife is 

fundamental to developing effective mitigation at new developments. Despite this, 

research into the impacts of open-pit mines on bat populations, a significant 

component of global biota, is lacking. In order to promote informed management 

strategies, we investigated potential impacts of a newly established open-pit mine in 

southwest Britain on bat activity in the surrounding landscape, using remote 

monitoring techniques. Distance from the site boundary was found to be an 

important predictor of total bat activity and species richness, with effects varying with 

habitat type. Within woodland both total bat activity and species richness increased 

with distance from the site boundary with the effect potentially extending to 400-500 

metres, whereas within grassland habitats there was no clear trend. The loss of 

foraging habitat within the site boundary may reduce the movement of bats in the 

direction of the mine, leading to habitat fragmentation and barrier effects. In line with 

other studies, our results suggest that bat species that are adapted to forage within 

clutter may be more susceptible to barrier effects than species which are adapted to 

forage within open environments. Further, this study highlights a range of factors 

which might influence bat activity. This highlights the need for further research into 

the species-specific responses to habitat fragmentation in the wider landscape.  

 

3.2 Introduction 

During the past century increasing anthropogenic pressures have greatly altered the 

habitat composition of the majority of landscapes, with land use change currently 

posing the greatest threat to global biodiversity (Fischer and Lindenmayer, 2007; 

Pekin and Pijanowski, 2012). Mining often causes sudden and extensive land use 

change, particularly through the process of open-pit mining, which requires the 

removal of vegetation and overburden (the natural soil and rock that sits above the 
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ore body) prior to accessing the ore body (Sonter et al. 2014; ELAW, 2010). Open-pit 

mines generally operate over a large spatial-scale, with the area of landscape 

degradation frequently 2-11 times greater than that of underground mining projects 

(Miao and Marrs, 2000; Kuter, 2013). 

At an active mine site local habitats will be directly impacted by the removal of native 

vegetation and top-soil to form the pit and associated mine waste facility, with the 

area of degradation potentially extending over several dozen km2 depending on the 

mineral being excavated (Edwards et al. 2013). Establishing a mine also promotes 

indirect effects at the landscape level, such as urbanisation and the building of 

access roads and transport links which may lead to habitat fragmentation and 

facilitate the spread of invasive species (Castro Pena et al. 2017; Calinger et al. 

2015). Mining can have particularly devastating effects on aquatic ecosystems as a 

result of leaked mine contaminants, sedimentation and alteration of watercourses 

(Durand, 2012; Holden and Jacobson, 2012). Mining may also impact the 

surrounding landscape through acoustic disturbance effects caused by the blasting, 

transportation and processing of material (Donoghue, 2004; Manwar et al. 2016). For 

acoustic predators such as bats these impacts may result in compromised foraging 

efficiency, leading to reduced activity levels in the areas most heavily affected by 

noise (Senzaki et al. 2016). 

 

Relatively little is known about the effects of anthropogenic noise on bats, and 

research into the thresholds and characteristics of sound and vibration which 

influence the daily and seasonal movement of bats is lacking (Player and Keim, 

2015). Studies suggest that species which echolocate at low frequencies (<35kHz) 

or use passive listening to locate prey may be at greater risk from the impacts of 

anthropogenic noise (Schaub et al. 2008; Bunkley et al. 2015; Berthinussen and 

Altringham, 2012a). There is very little published information on the effects of mine 

blasting on bats, and the research to date has primarily focused on the effects of 

vibrations generated by mine blasting on bat hibernacula (Pritchard et al. 2012; 

Player and Keim, 2015). Habitat loss and degradation may also have detrimental 

impacts on local bat populations if roost sites, important foraging areas and strategic 

flyways are lost (Hundt, 2012). Further, bats are particularly susceptible to the effects 

of bioaccumulation of toxins such as heavy metals, pyrites and clays associated with 
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mining, and the impacts of these on bat health and mortality are well documented 

(Wilkinson and South, 2002; Voight and Kingston, 2016). Due to their long life span 

and low fecundity, any impacts of mining which increase bat mortality or reduce 

reproductive success may result in severe population declines and slow rates of 

recovery (Voight and Kingston, 2016).  

 

As a result of bat population declines over the past century, in many countries it is 

now mandatory to consider the potential impacts of new mining developments on 

local bat populations throughout the planning and Ecological Impact Assessment 

process (Berthinussen and Altringham, 2012a; CIEEM, 2016). In addition to 

identifying the impacts in the immediate vicinity of developments, it is crucial to 

evaluate the potential impacts of new open-pit mines on bat populations in the wider 

landscape, in order to enable informed management recommendations (Brown and 

Berry, 1997; Buehler and Percy, 2012; Gorresen and Willig, 2004). Despite this, 

research investigating the impacts of land use change and disturbance on local bat 

populations in the wider landscape as a result of open-pit mines is lacking (Voight 

and Kingston, 2016; Ducummon, 2000).  

 

Studying the spatial distribution of bat populations in relation to landscape level 

disturbance from noise, vibration and habitat loss is therefore an important step in 

developing effective programs for management and conservation in areas of open pit 

mining (Russel et al. 2014; Senzaki et al. 2016). Using remote monitoring techniques 

we assess the potential impacts of a new open pit mine on local bat populations in 

southwest Britain, by measuring activity and species richness in relation to distance 

from the site boundary. With areas of the mining sector predicted to expand in the 

coming years, this information will be valuable in developing informed management 

programs, which include mitigating the impacts of open pit mining on local bat 

populations in the wider landscape (UK Minerals Forum, 2014).  

 

3.3 Methods 

3.31 Sampling location:  

The study site Drakelands Mine is located near the village of Hemerdon in southwest 

Britain, in close proximity to China clay mines operated by Imerys Minerals and 
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Sibelco UK Ltd and borders Dartmoor National Park. Established in 2014, the open-

pit tungsten and tin mine has a three million tonne per year operation scheduled for 

the duration of the mine-life (Wolf Minerals Ltd, 2016). Baseline surveys conducted 

in 2009 revealed that the planning permission area predominantly consisted of 

grassland, with patches of broadleaf woodland, mire and heathland (Michel Hughes 

Associates, 2009). Bat surveys of the planning permission area conducted in 2009 

regarded species composition at the site as typical for rural Devon, with a total of 11 

species detected (Michel Hughes Associates, 2009a). Development of the site 

required the destruction of three roosts used by low numbers of Pipistrellus 

pipistrellus, Pipistrellus pygmaeus, Rhinolophus ferrumequinum and Plecotus 

auritus, carried out under European Protected Species Licences (Gillingham 2013a; 

Gillingham 2013b; Gillingham 2013c). In order to compensate for the roost loss, 

extensive bat mitigation measures have been implemented across the site including 

habitat creation, the strengthening of commuting routes by limiting hedge trimming 

and installation of bat boxes and buildings (Gillingham, 2014; Michel Hughes 

Associates, 2013). The majority of these measures are contained within the area of 

the planning boundary, and it is hoped that they will partially offset the habitat loss 

within the mine site and lessen the impacts of the mining development on bat activity 

and species richness in the surrounding landscape.  

 

The majority of land within the planning permission boundary has been converted to 

form the pit and the MWF with the remainder designated to the processing plant, 

offices, link-roads, storage ponds and wildlife compensation (Michel Hughes 

Associates, 2013a). Light pollution across the site is strictly controlled, with levels 

along boundary vegetation consistently below 4 lux (Gillingham, 2014). The 

processing plant operates for 24 hours per day and is therefore the primary source of 

noise pollution during the bat active period.  Noise emitted from the processing plant 

largely falls within the low frequency range of 16-140 Hz and the high frequency 

range of 12-40 kHz (Clarke, pers.comm, 2017). The latter falls within the auditory 

range of European bat species, which are thought to be most sensitive to 

frequencies above 10 kHz (Luo et al. 2014). Blasting is another significant source of 

noise and vibration, and occurs several times per week. Although it is conducted 

during daylight hours, this disturbance could potentially have a subsequent effect on 
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the spatial distribution and activity levels of local bats. Therefore, this study will also 

investigate whether blasting has an effect on species richness and bat activity the 

following night.  

 

3.32 Bat activity and species richness:  

A series of 17 line transects was designed in order to evenly sample the landscape 

surrounding the Drakelands site (Figure 3.1). Each transect consisted of 5 sampling 

locations, positioned at approximately 20, 270, 520, 770 and 1020 metres from the 

planning permission boundary of the mine. A maximum distance of 1020 metres was 

selected in order to minimise the potential confounding impacts of the nearby town of 

Plympton on bat activity. Also, the landscape to the north of the Drakelands site was 

not sampled, in order to avoid confounding impacts of the adjacent Lee Moor China 

clay pits. Bat activity at each sampling location was monitored using stationary 

acoustic detectors, which recorded from 30 minutes before sunset until sunrise for a 

duration of five consecutive nights. Within each transect all five points were sampled 

simultaneously in order to avoid bias due to differing weather conditions between 

locations. Transects were completed in a random order, with four transects sampled 

from 31st September - 31st October 2016 and the remaining 13 transects sampled 

from 9th March - 19th May 2017. This sampling period was selected to identify year-

round resident species as well as potential seasonal migrants (Hargreaves et al. 

2015).  

 

The exact location of each sampling point was determined upon deployment with 

effort made to position detectors close to tree lines, linear features, water sources 

and habitat boundaries where the activity of foraging and commuting bats may be 

more concentrated (Russ, 2012; Altringham, 1996). The final placement and 

elevation (m) of each acoustic detector was recorded with a Garmin eTrex 10 GPS 

(Garmin Ltd, Southampton, United Kingdom) and the actual distance to the planning 

permission boundary and was calculated for each location using Google Earth 2016. 

Due to difficulty obtaining permission from a small number of landowners, the 

placement of some detectors had to be adjusted to accommodate this. Therefore the 

maximum distance sampled was 1434 meters from the site boundary. The total 

precipitation (mm), average temperature (°C) and average wind speed (mph) were 



  

61 
 
 

calculated for each night of sampling using the weather forecasting programme Wind 

Guru (which uses the Global Forecast System), as these factors are known to 

influence levels of bat activity (Voigt et al. 2011; Cryan et al. 2014; Barros et al. 

2014). Average nightly humidity levels (%) were also calculated, as greater 

atmospheric absorption of echolocation calls at high humidity levels is thought to 

result in lower detection rates (Broken-Brow and Corben, 2015).  
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Figure 3.1  

Aerial map detailing the 17 proposed monitoring transects, with recording locations positioned at 20, 270, 520, 

770, and 1020 metres from the Drakelands site boundary.   
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The habitat type of each sampling location was recorded and classified into 

three categories; woodland, grassland and bracken. No other habitat types 

were identified, however monitoring points located within the solar farm were 

classed as grassland habitats (Figure 3.2). Although bat activity and species 

richness has been shown to vary among coniferous, riparian and broadleaf 

habitats the woodland areas sampled largely consisted of broadleaf, 

occasionally interspersed with coniferous or riparian habitat (Kirkpatrick et al. 

2017). Therefore, for the purpose of analysis all woodland habitat types were 

grouped into one category. Effort was made to place detectors within one of 

these three habitat types, however occasionally sampling locations were 

bordered by multiple habitat types, and in these cases the classification of the 

predominant habitat type was selected (i.e. a small group of trees (15%) 

surrounded by grassland (85%) would be classified as grassland). Of the 

locations sampled 9.9% were classed as habitat type bracken, 33.8% as 

woodland and the remaining 56.3% sites as grassland.  

 

Figure 3.2  

Habitat classifications for sampling points: a) woodland b) grassland c) bracken. 

Where a sampling location was bordered by multiple habitat types the 

classification of the predominant habitat type was selected. Some grassland 

sites contained livestock, but none were used for arable purposes. Areas of 

juvenile tree planting were classed as woodland when the height of the trees 

exceeded 2m.  

 

Acoustic monitoring was conducted using Anabat ultrasonic detectors (models 

SD1 and SD2, Titley Scientific, Lancashire, United Kingdom) with directional 

microphones and internal ZCAIM storage units. Detectors were placed in 

weatherproof boxes and elevated to 1m above ground level on a tripod, tilted 

upwards at an angle of approximately 45°. In order to account for potential 

differences in sensitivity between the detectors a randomised schedule was 

a) b) c) 
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determined, so that each of the transect distance classes were measured 

equally by each of the five detectors. Due to environmental factors and 

equipment failure no data was obtained for 14.1% of the sampling locations. 

Livestock interfering with the equipment appeared to be the leading cause of 

data loss, followed by excessive wind speeds; both of which commonly resulted 

in the tripod falling over. Data obtained on nights preceding this event was 

included in the analysis, but where data loss occurred part way through a 

recording session data from the night itself was not included in the analysis.  

 

Data were visualised in AnalookW (Titley Scientific, Lancashire, United 

Kingdom). Echolocation calls were visually inspected and assigned to a species 

or genus based on comparison to a reference library of known species and the 

echolocation parameters provided in the literature by Russ (2012). Echolocation 

calls for which confident identification was not possible were labelled ‘unknown’ 

(due to echolocation calls being too faint or in the case that only a short 

segment of a call was detected)blas and occasionally because the parameters 

of a call fell between those of two species. Echolocation calls assigned to 

Myotis and Plecotus were only identified to a genus level, due to similarities in 

call parameters (Kunz and Parsons, 2009; Russ, 2012). All echolocation calls of 

the same species identified within a one minute period were classed as one 

‘pass’. Species richness was calculated for each night of monitoring, consisting 

of the sum of the number of species detected (or genus for Myotis and 

Plecotus) and excluding those labelled ‘unknown’. Total activity was calculated 

for each night of monitoring as the sum of the number of passes of all species, 

including those labelled ‘unknown’ and was used as an index of bat activity at 

each sampling location (Ober and Hayes, 2008). While bat activity cannot 

confer abundance, the number of bat passes detected within a unit of time can 

be a useful measure for comparing the relative functional importance of areas 

within a study site.  
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3.33 Analysis:  

Statistical analyses were conducted using R version 3.3.1 (R Core Team, 

2016). All response variables were assessed for normality, homogeneity of 

variance and over dispersion using standard diagnostic procedures. 

Assumptions were checked and appropriate transformations were made to 

reduce residual variance where necessary (Grueber et al. 2011). Further, prior 

to all analyses the potential for spatial autocorrelation of species richness and 

bat activity among sampling locations was assessed using Moran’s I ( Paradis, 

Claude and Strimmer, 2004). Spatial autocorrelation was found to be non-

significant in all analyses (p<0.05), with the exception of species richness 

(Moran’s I: 0.050; p<0.001). Therefore, the variable of ‘Transect ID’ was 

included as a random effect in all species richness models, to account for 

spatial autocorrelation.  

 

Generalised Linear Mixed Models (GLzM) were constructed using the package 

“lme4” to investigate whether distance from the site boundary had an effect on 

bat species richness and total activity (total number of passes) (Bates et al. 

2015). Species richness models were fit using GLzMs by Laplace 

Approximation with a Poisson error distribution, BOBYQA optimization and a 

“log” link function. Total activity models were fit using GLMs by restricted 

maximum likelihood (REML), with a Normal error distribution. The response 

variable of total activity was transformed to ln (passes + 1) to reduce 

heterogeneity resulting from large variation in activity levels between nights 

while also accounting for nights with zero passes (Berthinussen and Altringham, 

2012b).  

 

Activity was also analysed on a species/ genus level for P. pipistrellus, P. 

pygmaeus, Myotis and R. ferrumequinum which were identified most frequently. 

P. pipistrellus, P. pygmaeus, and Myotis activity was transformed to ln (passes 

+ 1) and modelled using GLMs by restricted maximum likelihood (REML) with a 

Normal error distribution. R. ferrumequinum was detected less frequently, 

therefore the response variable of total number of passes was converted to 

binary data of presence/ absence per night and modelled using GLzMs with a 

Binomial error distribution, fit by maximum-likelihood with a logit-link function.  
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All global models contained the fixed effects of distance from the site boundary 

(km), habitat type, average wind speed (mph), total precipitation (mm), average 

temperature (°C), average humidity (%) and whether blasting was conducted 

during the preceding day. The global models also included an interaction 

between distance and habitat type. All models contained the random effects of 

date (to account for seasonal variation) and location (to account for pseudo 

replication as multiple nights of monitoring were conducted at each location 

within a successive five day period). The random effects of date and location 

also help to mitigate temporal autocorrelation, by accounting for similarities in 

observations that are due to proximity in the time of sampling. Detector I.D. was 

not included in models, as preliminary analysis revealed that there was no 

significant differences in performance between detectors in the range of species 

detected or the total number of calls detected (Appendix C: Table 1a, b). Where 

the global model was unable to fully converge, parameters were removed to 

reduce its complexity using backwards step-wise selection (Grueber et al. 

2011). Models were validated by visual examination of residuals and q-q plots 

(Bolker et al. 2009).  

 

Models were built using all possible combinations of predictors using the 

package “MuMIn” and then ranked using Akaike’s Information Criterion 

corrected for small sample size (AICc), which penalizes models with many 

explanatory variables (Burnham and Anderson, 2010). Each model was then 

given an Akaike weight (ΔAICc), based on the difference in AICc value for that 

model compared with the AICc value of the best fitting model. Models for which 

ΔAICc ⩽2 were considered to have equivalent support and were validated by 

visual examination of residuals and q-q plots (Burnham et al. 2011; Bolker et al. 

2009). According to some model selection methods (including the principles of 

parsimony), the model containing the fewest parameters of those with 

equivalent support would have been selected as the optimal model (Busemeyer 

et al. 2015; Kadane and Lazar, 2004; Forster, 2000). However, given that this is 

an ecological study with substantial noise, where more than one model received 

equivalent support the top-ranked models (ΔAICc ⩽2) were averaged to create 

the final model (Whittingham et al. 2006). 
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Model averaging was performed by combining parameter estimates from 

different models in a weighted average to generate a predictive model. This was 

carried out using the natural average method; the parameter estimate for each 

fixed effect was only averaged over models which also contained that predictor, 

and then weighted by the total weight of these models (Grueber et al. 2011). 

Confidence intervals were calculated for all parameters included in the final 

averaged model. Parameters for which the confidence intervals did not include 

zero were considered useful predictors of bat species richness and activity 

levels.  

 

Simple generalised additive models were built in order to demonstrate the 

potential for a non-linear relationship between distance to the site boundary and 

species richness/ activity within a particular habitat type. Models used a 

regression spline with a Gaussian family and identity link function, and were 

represented visually.  

 

3.4 Results 

A total of 13,726 bat passes and at least 11 species were identified. Bat species 

were Pipistrellus pipistrellus, Pipistrellus pygmaeus, Pipistrellus nathusii, 

Rhinolophus ferrumequinum, Rhinolophus hipposideros , Barbastellus 

barbastellus, Nyctalus noctula, Nyctalus leisleri, Eptesicus serotinus, Myotis 

species and Plecotus species (Table 3.1).  
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Table 3.1  
a) Summary table for the number of bat passes per species and detection 
frequency  
b) Summary table for the number of monitoring locations per habitat type and 
the number of monitoring nights conducted in each habitat.  
 

Bat species Number of passes % of total passes % of nights detected 

P. pipistrellus 10802 78.70 71.94 
P. pygmaeus 1776 12.94 48.36 
P. nathusii 16 0.12 2.39 
R. ferrumequinum 102 0.74 17.61 
R. hipposideros  18 0.13 4.78 
B. barbastellus 42 0.31 7.16 
N. noctula 109 0.79 10.15 
N. leisleri 12 0.09 2.69 
E. serotinus 2 0.01 0.30 
Myotis species 827 6.03 45.07 
Plecotus species 20 0.15 5.07 
Unidentified 132 0.96 19.70 

 

 

 

 

 

3.41 Effect of distance from the mine on bat species diversity 

Species richness ranged from 0-8 species/genus identified per night, with an 

average value of 2.16 across all locations. Three of the models generated were 

considered to have equivalent support (ΔAICc ⩽2) (Table 3.2a). Following 

model averaging, the final model contained an interaction between distance and 

habitat type, plus the parameters precipitation, temperature and wind (Table 

3.2b).  

 

Increasing levels of precipitation and wind correlated with lower species 

richness, while increasing temperature correlated with higher species richness. 

Species richness also appears to decrease with proximity to the site boundary 

within woodland and bracken habitats, and remain fairly constant regardless of 

distance within grassland habitats (Figure 3.3a). However, as only 9.9% of the 

monitoring locations were classed as bracken, this trend is easily influenced by 

Habitat type 
Number of monitoring 

locations 
Number of 

monitoring nights 

Woodland 24 111 

Bracken 7 34 

Grassland 41 189 

Total: 72 334 

a) 

b) 
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outliers. One bracken monitoring location surrounded by woodland positioned at 

668 metres from the site boundary appears to be driving this trend, with 

consistently higher levels of species richness detected over four nights of 

monitoring than in the other bracken locations. To visualise the influence of 

these outliers, the interaction plot was reproduced without the data from this 

monitoring location (Figure 3.3b). With these four influential points removed 

from the dataset, only two models received equivalent support (ΔAICc ⩽2). Of 

these, one model contained distance as a fixed effect but neither contained an 

interaction between distance and habitat type (Appendix C: Table 2). Therefore 

the interaction should be interpreted with caution.   

 

The confidence intervals for the parameters precipitation, temperature, wind 

and habitat did not include zero. These parameters may therefore be 

considered the most important predictors of bat species richness at the study 

site (Table 3.2b). Further, the confidence intervals for the distance: habitat 

interaction revealed that the trends for both woodland and grassland were 

significantly different to the trend of the reference category bracken.  

 

Contrary to the interaction plots (Figure 3.3a, b), graphical visualisation of the 

raw data suggested that within woodland habitats the relationship between 

species richness and distance from the site boundary may follow an asymptotic 

rather than linear trend (Figure 3.4). To investigate this further, a simple 

generalised additive model was used to visually represent species richness 

within woodland habitats, based on distance from the site boundary. The 

relationship was found to be significant (F2.11, 107.89 = 2.74, p < 0.001) and 

showed that species richness appears to plateau at approximately 400m from 

the site boundary (Figure 3.5).  
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Table 3.2  

a) The full set of models for species richness for which ΔAICc ⩽ 2, which were 

included in model averaging. Shown is the deviance (Dev), the number of 

model parameters (K), the Akaike’s Information Criterion (AICc) and the 

difference in Akaike’s Information Criterion between each model and the top-

ranked model (ΔAICc) and the Akaike weight (wi) of each model.  

 

 

 

b) Model-averaged parameter estimates: effects of each parameter on species 

richness in the area surrounding Drakelands mine. Shown is the model-

averaged means (Estimate), associated standard error (SE) and confidence 

intervals (10%, 90%). 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † 0.05892     
 

0.35782 -0.400, 0.518 
  

Distance (km) 0.71359     
 

0.80836 -0.323, 1.750 
  

Habitat (grassland) 0.46545     
 

0.35588 0.009, 0.922 
  

Habitat (woodland) 0.78916     
 

0.37125 0.313, 1.265 
  

Distance: habitat (grassland) -1.40338     
 

0.71447 -2.321, -0.486 
 

Distance: habitat (woodland) -1.24249     
 

0.71950 -2.166, -0.319 
 

Precipitation -0.56496     
 

0.15578 -0.765, -0.365 
  

Temperature 0.46341     
 

0.11151 0.320, 0.607 
  

Wind -0.32582     
 

0.11576 -0.474, -0.177 
 

†Habitat (bracken) was the reference category.  
 
 

 

 

 

 

 

Model 
rank 

Model 
name 

Response = species 
richness;  
random effects = date, 
location and transect 

Dev K AICc ΔAICc wi 

2/3 Model 1a Distance + habitat + wind + 
precipitation + temperature  

1068.3 8 1088.3 0.5 0.313 

3/3 Model 1b Distance * habitat + wind + 
precipitation + temperature  

1064.4 8 1088.4 0.6 0.254 

1/3 Null model Habitat + wind + 
precipitation + temperature  

1069.7 7 1087.8 0.0 0.433 
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Figure 3.3 

The relationships between species richness and distance from the mine in the 

various habitat types.  

a) The predicted relationship based on model 1b (Table 3.2a).  

b) The same predicted relationship, but with the influential bracken monitoring 

location removed from the data set.   

 

 

Figure 3.4 

The relationship between mean species richness and distance from the site 

boundary within habitat type, using raw data and displaying standard error bars. 

While distance was used as a continuous variable in analyses, here it is 

displayed as a categorical variable.    

 

 

a) b) 
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Figure 3.5  

A simple generalised additive model was used to visually represent species 

richness within woodland habitats, based on distance from the site boundary, 

with 95% confidence interval shown in grey. In demonstrating the potential for a 

non-linear relationship between species richness and distance, the model 

suggested that richness may plateau at approximately 400m from the site 

boundary.  

 

3.42 Effect of distance from mine on total bat activity 

Total bat activity ranged from 0-163 passes identified per night, with an average 

of 41.3 passes identified across all locations. Five of the models generated 

were considered to have equivalent support (ΔAICc ⩽2) (Table 3.3a). Following 

model averaging, the final model contained an interaction between distance and 

habitat type, plus the parameters precipitation, temperature, wind, humidity and 

blasting.  

 

The confidence intervals indicate that the distance: habitat interaction (bracken 

and grassland) and the parameters precipitation, temperature and wind are the 

most important predictors of total bat activity at the study site (Table 3.3b).  

Increasing levels of precipitation, wind and humidity correlated with lower total 

activity, while increasing temperature correlated with higher total activity. 
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Although total bat activity on nights following blast activity was lower than nights 

on which blasting did not occur, this effect was at best very small and had little 

statistical support as confidence intervals overlapped zero. (Appendix C: Figure 

1a). 

 

Based on the model predicted trends, total bat activity appears to decrease with 

proximity to the site boundary within woodland and bracken habitats, and 

remain fairly constant regardless of distance within grassland habitats (Figure 

3.6a). As with the species richness data, the low proportion of bracken 

monitoring locations mean that this trend was susceptible to outlier effects. 

Consistent with this, one bracken monitoring location surrounded by woodland 

positioned at 668 metres from the site boundary appears to be driving this 

trend, with consistently higher levels of total bat activity detected over four 

nights of monitoring than in the other bracken locations. To visualise the 

influence of these outliers, the interaction plot was reproduced without the data 

from this monitoring location (Figure 3.6b). With these four influential points 

removed from the dataset, seven models received equivalent support (ΔAICc 

⩽2) and only one of these contained an interaction between distance and 

habitat type (Appendix C: Table 3). Therefore the interaction effect displayed in 

Figure 3.6a should be interpreted with caution.   

 

Graphical visualisation of the raw data suggested that within woodland habitats 

the relationship between total activity and distance from the site boundary may 

follow an asymptotic rather than linear trend (Figure 3.7). To investigate this 

further, a simple generalised additive model was used to visually represent log 

(total activity+1) within woodland habitats, based on distance from the site 

boundary. The relationship was found to be significant (F2.12, 107.88 = 4.61, p < 

0.01) and showed that total activity appears to plateau at approximately 500m 

from the site boundary (Figure 3.8).  
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Table 3.3  

a) The full set of models for total bat activity for which ΔAICc ⩽ 2, which were 

included in model averaging. Shown is the deviance (Dev), the number of 

model parameters (K), the Akaike’s Information Criterion (AICc) and the 

difference in Akaike’s Information Criterion between each model and the top-

ranked model (ΔAICc) and the Akaike weight (wi) of each model.  

 

b) Model-averaged parameter estimates: effects of each parameter on total bat 

activity in the area surrounding Drakelands mine. Shown is the model-averaged 

means (Estimate), associated standard error (SE) and confidence intervals 

(10%, 90%).  

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † 2.209     
 

0.819 1.158, 3.260 
 

Distance (km) 2.213 
 

1.524 0.258, 4.168 
 

Blasting -0.151    
 

0.211 -0.422, 0.121 
 

Habitat (grassland) 0.029     
 

0.829 -1.035, 1.093 
 

Habitat (woodland) 0.671     
 

0.871 -0.447, 1.789 
 

Distance: habitat (grassland) -2.661     
 

1.397 -4.454, -0.867 
 

Distance: habitat (woodland) -1.726     
 

1.428 -3.560, 0.108 
 

Precipitation -0.715     
 

0.250 -1.036, -0.393 
 

Temperature 0.869    
 

0.241 0.560, 1.178 
 

Wind -0.735     
 

0.231 -1.031, -0.438 
 

Humidity -0.202     0.242 -0.512, 0.108 
†Habitat (bracken) was the reference category.  

Model 
rank 

Model 
name 

Response = total activity;  
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/5 Model 2a Distance * habitat + wind + 
precipitation + temperature  

1086.5 8 1111.5 0 0.359 

2/5 Model 2b Distance * habitat + wind + 
precipitation + temperature 
+ humidity  

1085.9 9 1112.9 1.4 0.178 

3/5 Model 2c Distance * habitat +  wind + 
precipitation + temperature 
+ blasting 

1086.0 9 1113.0 1.5 0.170 

4/5 Model 2d Distance + habitat + wind + 
precipitation + temperature 

1092.2 8 1113.2 1.7 0.154 

5/5 Null model Habitat + wind + 
precipitation + temperature 

1094.9 7 1113.4 1.9 0.139 
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Figure 3.6 

The relationship between total bat activity and distance from the mine in the 

various habitat types.  

a) The predicted relationship based on model 2a (Table 3.3a). 

b) The same predicted relationship, but with the influential bracken monitoring 

location removed from the data set.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 3.7  

The relationship between mean bat activity and distance from the site boundary 

within habitat type, using raw data and displaying standard error bars. While 

distance was used as a continuous variable in analyses, here it is displayed as 

a categorical variable. 
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Figure 3.8  

A simple generalised additive model was used to visually represent total bat 

activity within woodland habitats, based on distance from the site boundary with 

95% confidence interval shown in grey. In demonstrating the potential for a non-

linear relationship between activity and distance, the model suggested that 

activity may plateau at approximately 400m from the site boundary.  

 

 
3.43 Effect of distance from mine on bat activity at a species level 

The three most commonly identified species/ genus were P. pipistrellus, P. 

pygmaeus and Myotis (identified on 71.9%, 48.4% and 45.1% of sampling 

sessions respectively). R. ferrumequinum was only identified on 17.6% of 

sampling sessions.  

 

The models which were considered to have equivalent support (ΔAICc ⩽2) 

within each analysis are displayed in Table 3.4. All eight of the top models for P. 

pipistrellus contained distance to the site boundary as a fixed effect, and three 

models also contained an interaction between distance and habitat type (Figure 

3.9a). Given that P. pipistrellus passes accounted for 81.7% of total bat activity, 

it is unsurprising that the model predicted trends for the distance: habitat 
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interaction are largely similar in both analyses (Figure 3.6a, 3.9a). P. pipistrellus 

activity appears to decrease with proximity to the site boundary within all habitat 

types, but with a steeper trend predicted within woodland and bracken habitats. 

Again, the low proportion of bracken monitoring locations mean that this trend is 

easily influenced by outliers. One bracken monitoring location surrounded by 

woodland positioned at 668 metres from the site boundary appears to be driving 

this trend, with consistently higher levels of P. pipistrellus activity detected over 

three nights of monitoring than in the other bracken locations. To visualise the 

influence of these outliers, the interaction plot was reproduced without the data 

from this monitoring location (Figure 3.9b). With these four influential points 

removed from the dataset, four models received equivalent support (ΔAICc ⩽2) 

and only one of these contained an interaction between distance and habitat 

type (Appendix C: Table 4). Therefore the interaction effect displayed in Figure 

3.9a should be interpreted with caution.   

 

Contrary to the interaction plots (Figure 3.9a, b), graphical visualisation of the 

raw data suggested that within woodland habitats the relationship between P. 

pipistrellus activity and distance from the site boundary may follow an 

asymptotic rather than linear trend (Figure 3.10). To investigate this further, a 

simple generalised additive model was used to visually represent log(P. 

pipistrellus activity+1) within woodland habitats, based on distance from the site 

boundary. The relationship was found to be significant (F2.79, 107.21 = 6.83, p < 

0.001) and showed that P. pipistrellus activity appears to plateau at 

approximately 400m from the site boundary (Figure 3.11).  

 

Within the P. pygmaeus, Myotis and R. ferrumequinum analyses, none of the 

models with equivalent support (ΔAICc ⩽2) contained an interaction between 

distance and habitat type, however a proportion of the top models contained 

distance to the site boundary as a fixed effect (Table 3.4b, c, d).  

 

Following model averaging the parameter estimates for the final models 

predicting bat activity on a species/ genus level are displayed in Table 3.5. 

Parameters for which the confidence intervals did not include zero were 

considered the most important predictors of species activity at the study site. 
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Distance from the site boundary was found to be a significant predictor of P. 

pipistrellus activity, with differing effects depending on the habitat type of the 

monitoring location. The confidence intervals indicated that the distance: habitat 

interaction trend within grassland habitats differed significantly from the trend 

within bracken habitats. 

 

Distance from the site boundary was found to be a significant predictor of R. 

ferrumequinum activity, with increasing distance from the site boundary 

correlating with a higher probability of detecting R. ferrumequinum. Graphic 

visualisation indicates that relative to the site boundary, R. ferrumequinum is 

approximately twice as likely to be detected in areas 0.8 km from the boundary 

and three times as likely to be detected in areas 1.4 km from the boundary 

(Figure 3.12). Distance from the site boundary was found not to be a significant 

predictor of P. pygmaeus and Myotis activity.  
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Table 3.4 

The full set of models for bat activity on a species level a) P. pipistrellus b) P. 

pygmaeus c) Myotis species d) R. ferrumequinum for which ΔAICc ⩽ 2, which 

were included in model averaging. Shown is the deviance (Dev), the number of 

model parameters (K), the Akaike’s Information Criterion (AICc) and the 

difference in Akaike’s Information Criterion between each model and the top-

ranked model (ΔAICc) and the Akaike weight (wi) of each model.  

 

a) 

 

 

 

 

 

 

 

 
 

Model 
rank 

Model 
name 

Response = ln (P. 
pipistrellus passes+1);  
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/8 Model 3a Habitat * distance + 

precipitation + 

temperature + wind 

1103.7 8 1128.7 
 

0.0 0.200 

2/8 Model 3b Habitat + distance + 

precipitation + 

temperature + wind 

1108.3 8 1129.0 
 

0.3 0.173 

3/8 Model 3c Distance + precipitation + 

temperature + wind  

1112.8 7 1129.2 
 

0.5 0.156 

4/8 Model 3d Habitat * distance + 

humidity + precipitation + 

temperature + wind 

1102.9 9 1130.0 
 

1.3 0.105 

5.5/8 Model 3e Habitat + distance + 

precipitation + 

temperature + wind + 

blasting  

1107.3 9 1130.1 
 

1.4 0.100 

5.5/8 Model 3f Habitat * distance + 

precipitation + 

temperature + wind 

1103.0 8 1130.1 
 

1.4 0.100 

7/8 Model 3g Habitat + distance + 

humidity + precipitation + 

temperature + wind 

1107.6 9 1130.4 
 

1.7 0.086 

8/8 Model 3h Distance + precipitation + 

temperature + wind + 

blasting 

1111.9 8 1130.5 
 

1.8 0.081 
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b) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
rank 

Model 
name 

Response = ln (P. 
pygmaeus passes+1);  
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/7 Model 4a Habitat + precipitation + 

temperature 

855.1 6 871.5 
 

0.0 0.245 
 

2/7 Model 4b Habitat + humidity + 

precipitation + 

temperature 

853.5 7 872.1  
 

0.6 0.181 
 

3/7 Model 4c Habitat + blasting + 

precipitation + 

temperature 

854.2 7 872.7 
 

1.2 0.134 
 

4.5/7 Model 4d Habitat + humidity + 

precipitation + 

temperature + wind 

852.3 8 873.0 
 

1.5 0.116 
 

4.5/7 Model 4e Habitat + blasting + 

humidity + precipitation + 

temperature 

852.3 8 873.0 
 

1.5 0.116 
 

6.5/7 Model 4f Habitat + precipitation + 

temperature + wind 

854.6 7 873.2 
 

1.7 0.105 
 

6.5/7 Model 4g Habitat + distance + 

precipitation + 

temperature 

854.7 7 873.2 
 

1.7 0.105 
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c) 

d) 

Model 
rank 

Model 
name 

Response = ln (Myotis 
passes+1);  
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/8 Model 5a Habitat + precipitation + 

temperature 

738.0 6 754.5 
 

0.0 0.207 
 

2.5/8 Model 5b Precipitation + 

temperature 

742.8 7 755.1 
 

0.6 0.153 
 

2.5/8 Model 5c Habitat + precipitation + 

temperature + wind 

736.6 7 755.1 
 

0.6 0.153 
 

4/8 Model 5d Precipitation + 

temperature + wind 

741.1 6 755.5 
 

1.0 0.125 
 

5/8 Model 5e Habitat + humidity + 

precipitation + 

temperature 

737.1 7 755.7 
 

1.2 0.113 
 

6/8 Model 5f Humidity + precipitation + 

temperature 

741.8 6 756.2 
 

1.7 0.088 
 

7.5/8 Model 5g Blasting + habitat + 

precipitation + 

temperature 

737.8 7 756.4  
 

1.9 0.080 
 

7.5/8 Model 5h Distance + precipitation + 

temperature 

742.1 6 756.4 
 

1.9 0.080 
 

Model 
rank 

Model 
name 

Response = 
Presence/absence of R. 
ferrumequinum;  
random effects = date and 
location 

Dev K AICc ΔAICc wi 

1/10 Model 6a Distance + temperature + 
wind 

274.7 
 

6 286.9 
 

0.0 0.160 
 

2/10 Model 6b Temperature + wind 276.8 
 

5 287.0 
 

0.1 0.152 
 

3/10 Model 6c Habitat + temperature + 
wind 

272.8 
 

6 287.2 
 

0.3 0.138 
 

4/10 Model 6d Habitat + temperature 275.8 5 288.0 
 

1.1 0.092 
 

5/10 Model 6e Distance + temperature 277.9 5 288.1 
 

1.2 0.088 
 

6/10 Model 6f Temperature 280.1 
 

4 288.2 
 

1.3 0.084 
 

7/10 Model 6g Habitat + distance + 
temperature + wind 

271.8 
 

7 288.3 
 

1.4 0.080 
 

8/10 Model 6h Habitat 278.2 
 

4 288.4 
 

1.5 0.076 
 

9/10 Model 6i Habitat + wind 276.3 
 

5 288.5 
 

1.6 0.072 
 

10/10 Model 6j Distance + wind 278.7 5 288.9 2.0 0.059 
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Figure 3.9 

The relationship between P. pipistrellus activity and distance from the mine in 

the various habitat types. 

a) The predicted relationship based on model 3a (Table 3.4a). 

b) The same predicted relationship, but with the influential bracken monitoring 

location removed from the data set.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  

The relationship between mean P. pipistrellus activity and distance from the site 

boundary within habitat type, using raw data and displaying standard error bars. 

While distance was used as a continuous variable in analyses, here it is 

displayed as a categorical variable.    
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Figure 3.11  

A simple generalised additive model was used to visually represent P. 

pipistrellus activity within woodland habitats, based on distance from the site 

boundary with 95% confidence interval shown in grey. In demonstrating the 

potential for a non-linear relationship between P. pipistrellus activity and 

distance, the model suggested that activity may plateau at approximately 500m 

from the site boundary.  
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Table 3.5 

Model-averaged parameter estimates for bat activity on a species level  a) P. 

pipistrellus b) P. pygmaeus c) Myotis species d) R. ferrumequinum in the area 

surrounding Drakelands mine. Shown is the model-averaged means (Estimate), 

associated standard error (SE) and confidence intervals (10%, 90%).  

a)  

Response: ln(P. pipistrellus passes+1), random effects = date and location 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † 2.006    
 

0.694 1.116, 2.896 
 

Distance (km) 1.531     
 

1.395 -0.259, 3.321 
 

Blasting -0.206     
 

0.219 -0.487, 0.075 
 

Habitat (grassland) -0.086     
 

0.798 -1.109, 0.938 
 

Habitat (woodland) 0.393     
 

0.839 -0.685, 1.470 
 

Distance: habitat (grassland) -2.529     
 

1.466 -4.412, -0.647 
 

Distance: habitat (woodland) -1.652     
 

1.499 -3.577, 0.273 
 

Precipitation -0.628    
 

0.260 -0.961, -0.294 
 

Temperature 0.682     
 

0.256 0.354, 1.011 
 

Wind -0.771     
 

0.239 -1.078, -0.465 
 

Humidity -0.221     
 

0.250 -0.542, 0.100 
 

†Habitat (bracken) was the reference category.  
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b) 

†Habitat (bracken) was the reference category.  
 

c) 

†Habitat (bracken) was the reference category.  

 

 

 

 

 

 

Response: ln(P. pygmaeus passes+1), random effects = date and location 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † 0.220      
 

0.275 -0.133, 0.572 
 

Distance (km) 0.115      
 

0.179 -0.115, 0.345 
 

Blasting 0.113      
 

0.111 -0.029, 0.255 
 

Habitat (grassland) 0.365      
 

0.296 -0.015, 0.744 
 

Habitat (woodland) 1.333      
 

0.315 0.929, 1.737 
 

Precipitation -0.336      
 

0.118 -0.487, -0.184 
 

Temperature 0.366      
 

0.139 0.188, 0.544 
 

Wind -0.114      
 

0.129   -0.279, 0.051 
 

Humidity -0.173      
 

0.128 -0.337, -0.010 
 

Response: ln(Myotis passes+1), random effects = date and location 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † 0.432    
 

0.275 0.080,  0.784 
 

Distance (km) 0.010    
 

0.055 -0.065, 0.322 
 

Blasting -0.003    
 

0.029 -0.163, 0.081 
 

Habitat (grassland) 0.210    
 

0.267 0.055, 0.707 
 

Habitat (woodland) 0.321    
 

0.353 0.236, 0.930 
 

Precipitation -0.267    
 

0.104 -0.401, -0.133 
 

Temperature 0.351    
 

0.113 0.206, 0.497 
 

Wind -0.036    
 

0.081 -0.268, 0.004 
 

Humidity 0.0216    
 

0.065 -0.033, 0.246 
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d) 

†Habitat (bracken) was the reference category.  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 

The likelihood of detecting R. ferrumequinum in relation to distance from the site 

boundary. The location of data points for presence/ absence are displayed as 

marks along the top and bottom of the plot. The continuous variable of 

“distance” was split into seven categories, with the markers showing the 

likelihood of detection for each, with associated standard error bars. The logistic 

regression is shown in grey. 
 
 
 

 

 

 

 

 

Response = Presence/absence of R. ferrumequinum, random effects = date and location 

Parameter Estimate SE Confidence interval (10,90) 

(Intercept) † -3.689      
 

1.543 -5.668, -1.709 
 

Distance (km) 0.853      
 

0.625 0.051, 1.655 
 

Habitat (grassland) 2.289      
 

1.443 0.436, 4.141 
 

Habitat (woodland) 2.671      
 

1.501 0.744, 4.598 
 

Wind -0.830      0.520 -1.498, -0.161 
 

Temperature 0.968      
 

0.533     0.284, 1.652 
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3.44 Effect of blasting on bat activity 

The categorical variable ‘blasting’ was included as a fixed effect in the global 

models for all analyses, to determine whether blasting has an effect on bat 

species richness and activity levels the subsequent night. Within the analysis of 

total activity, P. pipistrellus, P. pygmaeus, and Myotis activity, blasting was 

retained as a fixed effect within a small proportion of the top models (ΔAICc ⩽2) 

(1/5, 2/8, 2/7, and 1/8 respectively: Table 3.3a, 3.4a, b, c). Sampling sessions 

on which blasting was conducted during the previous day had marginally lower 

bat activity than sessions on which blasting did not occur (Appendix C: Figure 

1). However, as indicated by the estimate, standard error and confidence 

intervals following model averaging, there is little support for this effect and 

blasting is not considered an important predictor of bat activity at the study site 

(Table 3.3b, 3.5a, b, c).  

 

3.5 Discussion:   

Using simple generalised additive models we found that bat activity and species 

richness decreased with proximity to the site boundary. However, using model 

averaging techniques we identified varying trends depending on the habitat type 

of monitoring location (Grueber et al. 2011). Within grassland habitats, both 

species richness and total activity remained fairly consistent regardless of 

distance to the site boundary. However within woodland habitats both species 

richness and total activity were found to increase with distance from the site 

boundary, with the effect potentially extending to 400 and 500 metres 

respectively. Based on the model predictions, species diversity within woodland 

habitats increased by 20% between 0 and 400 meters from the mine boundary 

(Figure 3.3a). Further, total bat activity within woodland habitats increased by 

73% between 0 and 400 meters from the mine boundary based on the model 

predictions (Figure 3.6a). By comparison, a study by Berthinussen and 

Altringham (2012) found that total bat activity increased by 100% between 0 

and 500 meters from a major road (within the highest grade of habitats 

sampled, at 60 minutes after sunset). Within bracken habitats, an increase in 

species richness and total activity was also observed, but due to the small 

sample size of bracken monitoring locations this trend may be unreliable. Within 
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habitat type, there was a strong correlation between the model predicted trends 

for species richness and total activity, indicating that areas of high species 

richness also had high levels of bat activity. This association between richness 

and activity has been observed in other studies of disturbance and 

fragmentation (Medellín et al. 2000; Estrada et al. 1993).  

 

Potential reasons for lower species richness and total bat activity in proximity to 

the site boundary include habitat degradation due to light, noise and chemical 

pollution and habitat loss within the site boundary resulting in reduced foraging 

and commuting opportunities. The impacts of chemical contamination on bat 

populations as a result of mining are well documented, including the 

bioaccumulation of metals in prey items such as Chironomidae which may pose 

threats to Chiroptera over vast areas (Voight and Kingston, 2016; Cain et al. 

1992).  However, chemical contaminants at Drakelands mine are strictly 

controlled with water sources regularly checked for leached contaminants; 

therefore pollutants do not explain the decrease in bat activity and richness in 

proximity to the site boundary. Light pollution is also regulated across the site, 

with many areas remaining unlit and light levels along boundary vegetation kept 

below 4 lux (Gillingham, 2014). Although lighting levels as low as 3.6 lux have 

been shown to significantly reduce activity levels of both R. hipposideros and 

Myotis species, any potential impacts of on-site lighting would be limited to 

areas adjacent to and within the site boundary (Stone et al. 2012). However, the 

range of artificial lighting and noise may have a wider reaching impact within 

more open habitats such as grassland, relative to more cluttered habitat such 

as woodland where absorption of light and sound would be more rapid.  

 

The primary source of noise pollution at Drakelands mine is the processing 

plant which currently operates for 24 hours per day. High frequency noise 

emitted from the processing plant largely falls within the range of 12-40 kHz; 

well within the auditory sensitivity range of bat species present at the study site 

(Luo et al. 2014; Clarke, pers.comm, 2017). Studies suggest that anthropogenic 

noise has the potential to degrade habitats by reducing the foraging efficiency of 

species which use passive listening or low frequency echolocation (<35 kHz) to 

locate prey (Schaub et al. 2008; Siemers and Schaub, 2010; Bunkley et al. 
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2015). Although anthropogenic noise from the processing plant may be 

degrading the suitability of habitats for some bat species at the study site, the 

potential impacts are likely to be short-ranging and largely affect habitats within 

the site boundary rather those in than the wider landscape. While the impacts of 

anthropogenic noise may contribute to the observed reduction in species 

richness and total bat activity in areas close to the processing plant, this does 

not explain the observed trends which may potentially extend to 400 metres.  

 

However, the loss of foraging areas and commuting routes within the site 

boundary may explain the reduced species richness and total bat activity 

observed over greater distances. By reducing the movement of bats in the 

direction of the mine, this may lead to habitat fragmentation and barrier effects 

(Rico et al. 2009). Evidence suggests that by restricting access to foraging 

habitats and potentially reducing the size and quality of the home range, barrier 

effects may lead to lower reproductive output in bats (Voight and Kingston, 

2016). On a much larger scale than that of Drakelands, barrier effects could 

potentially reduce gene flow between populations of rarer bat species with lower 

mobility, resulting in inbreeding (Meyer et al. 2009; Kerth and Petit, 2005). 

Although there may be barrier effects present at the Drakelands site which 

restrict the home-range size of individuals roosting near the site boundary, the 

surrounding landscape remains reasonably well connected therefore 

metapopulations should be maintained. Furthermore, mitigation measures 

implemented at Drakelands mine would hope to soften the impacts of the 

barrier effect, by providing additional foraging and commuting opportunities 

within the site boundary. These measures include the preservation of habitat 

fragments, the creation of new habitat corridors via woodland planting, the 

creation of new water bodies and the installation of 81 bat boxes (Michel 

Hughes Associates, 2013a). While bat boxes may be occupied quickly, it often 

take several years for regular occupation to be established and for breeding 

groups to form (McAney and Hanniffy, 2015). Installation of bat boxes at 

Drakelands began during the winter of 2013 therefore these boxes should 

currently be supplementing roost opportunities for established groups, provided 

the potential impacts of anthropogenic noise form the mine site do not act as a 

deterrent (Michel Hughes Associates, 2014).  
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The trends observed at Drakelands mine are unlikely to be due to differences in 

the quality of woodland habitat, as all sampling locations were within mature, 

predominantly broadleaf woodlands, with detectors positioned along edges or 

rides. The woodland sampling locations closer to the boundary generally had 

more numerous water bodies nearby, which may enhance these areas for bats 

which prey on insects that are associated with water (Figure 3.1) (Vaughan, 

1997). The largest woodland patch was also located close to the site boundary, 

although size of woodland patch is not necessarily correlated with the level of 

bat species richness it supports (Estrada and Coates-Estrada, 2002; Law et al. 

1999; Fuentes-Montemayor et al. 2013). The woodland edges nearest the mine 

are likely to experience higher levels of disturbance, including the felling of 

nearby trees (for example to create the link roads). Woodland disturbance has 

been associated with lower abundance of Lepidoptera, an important prey item 

for several British bat species (Dodd et al. 2012; Vaughan, 1997).  

Interestingly, distance from the site boundary did not appear to influence 

species richness within grassland habitats. This may be because the wing 

morphology and foraging strategies of species adapted for open habitats makes 

them less susceptible to the impacts of habitat fragmentation, relative to species 

which forage close to surfaces and within cluttered habitats and are therefore 

reluctant to fly in the open (Jones et al. 2003). This is supported by a study by 

Kerth and Melber (2009) which identified species-specific barrier effects of a 

motorway on B. barbastellus which forages in open spaces and M. bechsteinii 

which gleans insect prey from vegetation. They found that five out of six tagged 

B. barbastellus crossed the motorway both by flying over and using 

underpasses for foraging and roost switching purposes. In contrast, only three 

of 34 tagged M. bechsteinii crossed the motorway using an underpass, solely 

for foraging purposes. These results suggest that manoeuvrable species with 

broad, short wings which are adapted to forage within cluttered environments 

may be more at risk from barrier effects than long winged, less manoeuvrable 

species which forage within open environments (Kerth and Melber, 2009; Russ, 

2012). This theory is supported by other studies which have observed Nyctalus 

species which forage in open spaces commuting over habitat barriers such as 
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roads more frequently than bats of other genus (Berthinussen and Altringham, 

2012a; Berthinussen and Altringham, 2012b).  

Further, the foraging flight range for species within the genus Nyctalus is 

typically larger than that of species within the genus Plecotus, Myotis and 

Rhinolophus which frequently forage within woodland habitats (Smith and 

Racey, 2014; Entwhistle et al. 2011; Razgour et al. 2013; Fisher et al. 2005; 

Shiel et al. 2006; Robinson and Stebbings, 1997). A recent study suggests that 

variation in the size of home range among bat species may explain the 

identified physiological differences in response to habitat disturbance, 

depending on roost preference (Seltmann et al. 2017). Therefore, open-space 

specialists such as Nyctalus may be less at risk from the impacts of habitat 

fragmentation and barrier effects than woodland specialists due to their greater 

mobility; this may contribute to the differing trends observed within woodland 

and grassland habitat types (Meyer et al. 2009). The presence of artificial 

lighting within the mine site may further aggravate barrier effects for woodland 

specialists, as species that are reluctant to cross open spaces are commonly 

averse to lighting (Voight and Kingston, 2016). Species within the genus 

Rhinolophus, Myotis and Plecotus are thought to be less tolerant of artificial 

lighting than open-air foragers such as Pipistrellus, Nyctalus and B. 

barbastellus. Therefore, while artificial lighting within the site boundary may 

increase the foraging efficiency of open-space specialists, it may result in 

spatial avoidance and competitive exclusion of some woodland species (Stone, 

2013).  

 

Bat activity in relation to distance from the site boundary was examined on a 

species/ genus level for P. pipistrellus, P. pygmaeus, R. ferrumequinum and 

Myotis species. Using model averaging techniques, distance from the site 

boundary was found to be a predictor of P. pipistrellus activity, with differing 

effects depending on the habitat type of the monitoring location. The model 

predicted trends revealed that although P. pipistrellus activity decreased with 

proximity to the site boundary within all habitat types, the strength of this trend 

was greater within woodland habitats than grassland habitats (while a lack of 

data meant that the bracken predicted trends may be unreliable). The observed 
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decrease in P. pipistrellus activity in proximity to the mine within all habitat types 

may be in response to the lack of foraging and commuting opportunities within 

the site boundary, leading to barrier effects (Berthinussen and Altringham, 

2012b). Further, artificial lighting at the nearby town of Plympton (2km 

southwest of the site boundary) may act as a feeding resource by attracting 

high densities of insects, therefore leading to elevated P. pipistrellus activity 

levels in the nearby habitats (Stone et al. 2012). P. pipistrellus passes 

accounted for 81.7% of total bat activity, and the model predicted trends for the 

distance: habitat interaction were largely similar in both analyses. Therefore, 

these factors may also explain the increase in total bat activity observed in 

relation to the distance from the site boundary. 

 

However, the differing strength of this trend for P. pipistrellus activity dependent 

on habitat type was unexpected. The elevated levels of P. pipistrellus activity 

within woodland areas further from the site boundary may be a result of inter-

specific habitat partitioning with P. pygmaeus, leading to spatial segregation of 

their foraging ranges (Nicholls and Racey, 2006). Contrary to P. pipistrellus, 

distance from the site boundary was not found to be a significant predictor of P. 

pygmaeus activity, which was predominantly detected within woodland areas. 

Due to differences in dietary composition, P. pygmaeus is more strongly 

associated with water than P. pipistrellus; therefore woodland patches located 

in proximity to the water bodies within the site boundary may provide more 

optimal foraging habitat for this species (Russ and Montgomery, 2002; Boughey 

et al. 2011). Further, relative to P. pipistrellus, studies have found that P. 

pygmaeus is more likely to be detected in landscapes containing a high 

proportion of woodland and a low proportion of urban grey space (Lintott et al. 

2015). Despite both species being well adapted to forage within woodland edge 

and interior habitats, P. pygmaeus may preferentially select woodland habitats 

closer to the site boundary due to the greater proportion of woodland and water 

bodies. In turn, this may result in spatial avoidance of these foraging areas by 

P. pipistrellus; shifting activity further from the site boundary and towards the 

areas of urban grey space which are less appealing to P. pygmaeus. Several 

studies have suggested that differential habitat use P. pipistrellus and P. 

pygmaeus may be a result of partitioning to avoid competition for foraging 
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resources (Nicholls and Racey, 2006, Lintott et al. 2015). However, further 

research into the habitat preferences of P. pipistrellus living in allopatry is 

needed to assess the extent of this phenomenon (Rachwald et al. 2016).  

Similarly to P. pygmaeus, distance to the site boundary was found not to be a 

significant predictor of Myotis species activity, which was predominantly 

detected within woodland areas. Some Myotis species are thought to favour the 

interior of dense deciduous woodland in proximity to water, reflecting their 

gleaning foraging strategies and the increased availability of Diptera prey 

(Fuentes-Montemayor et al. 2013; Russ and Montgomery, 2002). Further, 

research suggests that woodland patches smaller than 1km2 do not provide 

suitable habitat for woodland-adapted bat species (Lesiński et al. 2007). 

Therefore, while Myotis species may be experiencing boundary effects in 

proximity to Drakelands mine, the woodland habitat sampled closer to the mine 

may represent more optimal habitat (larger woodland patch with greater interior 

area, located close to water bodies), resulting in elevated Myotis species activity 

in these areas. This is supported by the uptake of roost boxes by M. 

daubentonii and a significant breeding colony of M. nattereri, located within the 

largest woodland patch close to the site boundary and the water bodies 

(Gillingham, 2016a).  

Due to low detection rates, R. ferrumequinum activity was examined in a 

binomial analysis of presence/ absence. Increased distance from the mine was 

found to correlate with an increase in the likelihood of detection, with R. 

ferrumequinum approximately twice as likely to be detected in areas 0.8 km 

from the boundary and three times as likely to be detected in areas 1.4 km from 

the boundary. Studies suggest that R. ferrumequinum tends to forage within 

4km of the roost site, flies close to commuting features such as hedges, walls 

and tree lines and is averse to artificial lighting (Flanders and Jones, 2009; 

Jones and Rayner, 1989; Stone et al. 2012). These characteristics may make 

R. ferrumequinum particularly sensitive to habitat loss, fragmentation and 

disturbance, potentially resulting in a restricted home-range and barrier effects 

in areas close to the site boundary. Further, insect prey with an aquatic larval 

stage only makes up a small component of the diet of R. ferrumequinum, so the 

new water bodies created will not provide a significant feeding resource (Jones, 
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1990).  Despite this, R. ferrumequinum has adopted a new roost provision for 

hibernation and continues to utilize the retained roost buildings on the periphery 

of the site (Gillingham, 2016a). The maturation of woodland planting and 

hedgerows will enhance the site interior for this species in the coming years, 

particularly as moth abundance (which forms a substantial part of the diet of R. 

ferrumequinum) is thought to be positively associated with woodland patch size 

(Fuentes-Montemayor et al. 2012; Vaughan, 1997).  

Blasting was included as fixed effect in a proportion of the top-ranked models 

for the analysis of total activity, P. pipistrellus activity, P. pygmaeus activity and 

Myotis species activity. However, following model averaging there was little 

support for this effect in any analysis, therefore blasting may not be considered 

an important predictor of bat activity at the study site. If an effect was present, 

this may have been masked by weather bias; blasting is only carried out at 

Drakelands mine on days with low wind speeds and good visibility, conditions 

which also correlate with higher levels of bat activity (Clarke, pers.comm, 2017). 

While studies have examined the effects of noise and vibration from mine 

blasting on daily roosting and hibernation, to our knowledge no other study has 

investigated the potential for delayed effects of blasting on subsequent nightly 

foraging activity (Player and Keim, 2015; Luo et al. 2014; West Virginia 

Department of Environmental Protection, 2006). Although blasting was not 

found to be a significant predictor of bat activity, our data was collected over a 

relatively wide spatial scale. Therefore, in the analysis of subsequent bat activity 

data that is collected in proximity to blast locations, it may be worthwhile 

including blasting as a factor in the analysis to investigate potential short-range 

effects.  

Environmental conditions were included in all global models to account for 

variation in weather among sampling nights. Increasing wind speeds correlated 

with reduced species richness, total activity, P. pipistrellus activity and R. 

ferrumequinum presence. Other studies have observed that bats are detected 

more frequently at lower wind speeds and suggest that this may be linked to 

high insect activity during periods of low wind (Cryan et al. 2014; Horn et al. 

2008). Insect activity is also dependent on temperature, and may explain why 

higher temperatures correlated with increased levels of species richness, total 
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activity and activity on a species level (or increased presence in the case of R. 

ferrumequinum) (Barros et al. 2014; Taylor, 1963). This may also be a result of 

low ambient temperatures leading to more rapid heat loss in active bats, 

therefore making foraging during lower temperatures less energetically 

profitable (Reichard et al. 2010). Rainfall may also impair bat flight by increasing 

energetic costs, in addition to imposing sensory constraints on echolocation 

(Voigt et al. 2011). In line with this, we identified lower levels of species 

richness, total activity and activity on a species level on sampling nights with 

higher total rainfall. Finally, lower P. pygmaeus activity was detected on nights 

with higher levels of humidity; this may be a result of high humidity reducing the 

maximum distance of bat echolocation, therefore resulting in decreased 

microphone sensitivity (Schnitzler et al. 2001). 
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3.6 Conclusion:  

Evaluating the potential impacts of habitat loss and fragmentation on bat 

populations is crucial in order to enable informed management 

recommendations for effective conservation. By examining the effect of distance 

from an open pit mine on activity and species richness in the surrounding 

landscape, this study suggests that the impacts of habitat loss on bat species 

may vary depending on their foraging ecology. Our results suggest that species 

with greater manoeuvrability which are adapted to forage close to vegetation 

clutter are more susceptible to barrier effects than species which are adapted to 

forage within open environments. The reduced foraging flight range of woodland 

adapted bats and aversion to artificial lighting may further contribute towards 

this effect. Of the four Annex II listed bat species occurring within the UK, R. 

hipposideros, R. ferrumequinum and M. bechsteinii all forage close to 

vegetation clutter (JNCC, 2016; Russ, 2012). With areas of the mining sector 

predicted to expand, this research highlights that habitat fragmentation may 

pose an elevated risk in the wider landscape to already-threatened species (UK 

Minerals Forum, 2014). At new mining developments bat mitigation should seek 

to develop substantial commuting routes to connect isolated woodland habitat 

patches with the wider landscape and consider enhancing existing woodland 

habitats that are in proximity to the site boundary. Further, during link-road 

construction underpasses created on existing commuting routes may reduce 

barrier effects for clutter-specialists that fly close to ground-level. Clearly, further 

research into the species-specific responses of bats to barrier effects is needed, 

in order to better predict the responses of bat populations in the wider 

landscape to new developments.  
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Chapter 4: Field trial of a novel bat detector 

 

4.1 Abstract: 

Increasing concern about recent declines in bat populations has highlighted the 

need for population monitoring over extended time periods. This may be 

achieved using ultrasonic detectors, but in order to sample over large temporal 

and spatial scales equipment must be energy efficient and able to store large 

amounts of data. Using a unique recording technology, the BatBug is a novel 

bat detector with a huge range of potential applications in the field of long-term 

monitoring. Therefore, it is important to quantify performance in line with other 

commercially available bat detectors, to identify potential variation in results and 

equipment limitations. Here, we assessed the relative sensitivity of the BatBug 

Ranger against the Anabat SD1 and SD2 models from industry leading brand 

Titley Scientific, by sampling bat activity in the field. While some differences 

were observed between the results of paired detectors, detector model was not 

found to have a significant effect on the levels of species richness and total bat 

activity detected per night. Due to their low power consumption, compact data 

storage, high quality waterproofing and competitive pricing, the BatBug models 

from Chelonia Limited represent a valuable new tool in long-term 

microchiropteran monitoring.   

 

4.2 Introduction 

With over 1,300 species, bats make up more than twenty percent of extant 

mammal species, and most of these are Microchiroptera (Teeling et al. 2005; 

Voight and Kingston, 2016). Despite being widespread, the cryptic nature and 

metapopulation structure of microbats makes it difficult to monitor changes in 

abundance over large spatial and temporal scales using traditional techniques 

such as mark-recapture (Ingersoll et al. 2013). Ultrasonic detectors which 

identify high frequency echolocation calls provide researchers with an 

invaluable non-invasive tool to investigate bat ecology and these have been 

employed in a range of studies, from the identification of cryptic species to 

investigating mating systems and ecological impacts (Parsons, 1996; Jahelkova 

and Horacek, 2011; Lintott et al. 2016). Increasing concern about recent 
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declines in bat populations has highlighted the need for population monitoring 

over extended time periods (Meyer et al. 2010). This may be achieved using 

passive acoustic monitoring, but in order to sample over large temporal and 

spatial scales ultrasonic detectors must be energy efficient and able to store 

large amounts of data, in order to minimise maintenance.  

 

A wide selection of bat detectors are now commercially available. Although 

prices and features vary widely, the ability to detect bats will primarily be 

determined by key features such as microphone quality, recording technology 

and sampling rate (Adams et al. 2012). Here, we present the results of a field 

trial of a novel bat detector - the BatBug©, created by acoustic monitoring 

specialists Chelonia Limited. Chelonia Ltd initially developed acoustic data 

loggers (C-POD©) designed to be left at sea unattended for the purpose of 

monitoring toothed cetaceans based on their echolocation click trains (Pierpoint, 

1999). Other developments include the Banana Pinger©, a cost effective fishery 

tool which emits sound pulses for the reduction of ceteacean by-catch. The 

BatBug represents Chelonia’s first development of an ultrasonic bat detector, 

and is the initial step in a project seeking to develop robust instruments for 

accurate long term monitoring of microbat activity (Tregenza, pers.comm, 

2017).  

 

Detectors that are currently widely used in static monitoring include the various 

Anabat models (Titley Scientific), the SM2BAT and successive SM4BAT 

(Wildlife Acoustics), various Batlogger models (Elekon) and the D500X 

(Petterson). Previous research has evaluated the relative performance of these 

commonly used bat detectors, therefore this study will focus on comparing the 

sensitivity of the prototype BatBug Ranger to the Anabat SD1 and successive 

SD2 models from industry leading brand Titley Scientific, which are frequently 

used by researchers and ecological consultants (Adams et al. 2012; Parsons, 

1996; Fenton et al. 2001; Stahlschmidt and Brühl, 2012). The SD1 and SD2 

Anabat models were selected for use in this comparative study because their 

compact data format and low power use makes them suitable for long-term 

static monitoring (Britzke et al. 2013). Therefore, these shared attributes mean 

that the BatBug Ranger and the Anabat SD2 may occupy a similar niche in the 
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market. The features and parameters of each detector model are listed in Table 

4.1.  

 

Today’s commercially available bat detectors generally operate using one of 

three recording technologies; heterodyne, frequency division and time 

expansion (Russ, 2016). However, the BatBug operates using a different 

approach, currently termed ‘high resolution cycle logging’. This process involves 

high speed acoustic sampling within the range of 17-220 kHz at the effective 

rate of 4 MHz per second, termed a cycle. With real-time call detection and 

storage of the amplitude and wavelength of every cycle in a call, this allows the 

parameters of bat echolocation calls to be visualised in high resolution. 

Additionally, continuous sound analysis known as ‘micro-triggering’ means that 

sound between bat calls is not recorded, therefore greatly reducing the file size 

and hence storage needs. The recorded bat calls are then compressed to 

wavelength, amplitude and bandwidth data; this compact format means that a 

single SD card can potentially hold up to one year’s worth of monitoring data. In 

addition to compact data storage, the low power consumption of the BatBug 

enables long-term monitoring, therefore minimising maintenance and facilitating 

deployment in remote monitoring locations. 

 

Similarly, the AnaBat SD1/SD2 has highly efficient data storage capabilities and 

uses little power (using an external power supply the Anabat will operate for 1 

day per Amp hour of battery) (Hourigan and Corben, 2012). The Anabat 

technology focuses on capturing and analysing information on call structure, 

using frequency division to reduce the true frequencies of a sound and make 

bat echolocation calls audible, and zero-crossings analysis to make bat calls 

visible, with no lag between call detection and audio output or visual display (if 

the Anabat is connected to a laptop). While this process retains the original 

structure of the call, some detail such as call amplitude is not preserved. 

Further, harmonics are not always visible in Analook files, as the zero crossings 

technology that is used only displays the loudest part of a signal at a given time 

(Russ, 2012).  
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Two BatBug models are currently in development. The Ranger, which is 

intended for mobile or static surveys and the Endurance which is suitable for 

very long static deployments. Powered by internal lithium primary batteries and 

operating on a dark-only cycle, the Ranger and Endurance have a running time 

of approximately nine months and 2.8 years respectively. Both models also 

record temperature and light levels every minute, and these data are visualised 

alongside an overview of bat activity in the dedicated BatBug.exe software 

(Figure 4.1). Given that the BatBug has a huge range of potential applications in 

the long-term monitoring of bat populations, it is important to quantify 

performance in line with other commercially available bat detectors.  

 

Although some studies suggest that the Anabat SD2 may detect fewer 

echolocation calls than detectors which operate using time expansion 

technology, overall the Anabat is thought to provide a sufficient picture of bat 

activity and remains a highly effective tool for long-term static monitoring 

(Fenton, 2000; Adams et al. 2012). Identifying variation in recording technology 

is an important step in assessing the suitability of different ultrasonic detectors 

for the research questions being addressed. Here, we assess the relative 

performance of the prototype BatBug Ranger against the Anabat SD1/SD2, by 

comparing the levels of species richness and total bat activity recorded by each 

detector model. 

 

Calculating the species richness and total activity detected using each detector 

model will provide an overview of relative sensitivity. As well as varying in 

sensitivity, the relative performance of different bat detector models will depend 

on the frequency of the echolocation call, which may result in detection bias 

(Adams et al. 2012). This detection bias is also influenced by interspecific 

variation in the structure, frequency and intensity of echolocation calls, leading 

to under-representation of some species when using acoustic monitoring 

techniques (Neuweiler, 1989). Therefore, in this study we will compare the total 

number of passes detected using each detector model on a species level, to 

investigate potential sensitivity bias among detector types. We will also 

calculate a Shannon-Weiner diversity index score for each detector type, as this 
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measure accounts for both the number of species detected and the evenness of 

species present (Spellerberg, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1  

Screen shot of the BatBug.exe software displaying five nights of monitoring data. In 

this low-resolution view, temperature and light intensity data are displayed alongside 

an overview of bat activity data. In this view echolocation calls are colour-coded 

according to frequency, while the black line provides a measure of activity levels by 

displaying the number of octets (a measure of data) of bat data logged. Within 

BatBug.exe, data from up to three BatBugs may be viewed within one window.  
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Table 4.1  

Summary of the features and parameters of the Anabat SD2 (Titley Electronics) 

and BatBug Ranger (Chelonia Ltd). Multiple battery options are denoted with a 

superscript number, which matches that of the corresponding running time. 

Other models of bat detectors are available from both manufacturers.  
 

Feature Anabat SD1/SD2 BatBug Ranger 

Battery type 1 4 AA NiMH/ 4 AA Alkaline 

2 12V lead acid external battery 

1 18 AA NiMH   or  

2 12 AA Alkaline 

3 12 AA Lithium primary  

Running time (night only) 1 Up to 2 days  

2 1 day per Amp hour 

1 72 days 

2 90 days 

3 9 months 

Recording technology  Zero-crossing High resolution cycle logging 

Sampling rate N/A 4 MHz 

Sound file Anabat BB1 

Storage system Compact Flash Card (CF) Secure Digital Card (SD) 

Microphone type Condenser Condenser (Electret) 

Frequency range 5-200 kHz 17-220 kHz 

Microphone directionality 45° from the axis 45° from the axis 

Post-process tools AnaLookW BatBug.exe 

Weatherproof casing No Yes 

Weatherproof microphone No Yes 

Light sensor No Yes: internal 

Temperature sensor No Yes: internal 

Price from manufacturer £1,794  To be announced, 

approximately £750 
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4.3 Methods   

4.31 Field set-up 

We simultaneously deployed the prototype BatBug Ranger alongside AnaBat 

models SD1 and SD2. Two BatBug Ranger detectors were tested over four 

sampling sessions, with each BatBug paired with one of four Anabat detectors 

for each session. Each sampling session lasted for five consecutive nights, with 

detectors set to record from 30 minutes before sunset until sunrise. Testing was 

conducted in a rural area close to the town of Plympton in southwest Britain, 

during spring 2017. The Anabat detectors were placed in weatherproof boxes 

and elevated to 1m above ground level on a tripod, tilted upwards at an angle of 

approximately 45°. The Anabat stainless steel microphone was protected from 

water damage with a single sheet of plastic food wrap, which is thought to have 

no significant effect on microphone sensitivity (Moyes, pers.comm, 2016). The 

BatBug Ranger was fastened onto the paired Anabat detector, with the 

corresponding microphones positioned less than ten centimetres apart. The 

detector settings used in all trials are listed in Table 4.2; for a description of 

these settings please refer to the relevant detector manuals. Sensitivity on the 

Anabat is adjusted using the ‘gain’ control, which may be set to a maximum 

value of ten. However, insect noise and electromagnetic interference may 

require the sensitivity to be reduced to minimise undesired signals. Following 

advice within the Anabat SD2 user manual, a value of 6.5 was selected for 

these trials (Hourigan and Corben, 2012). 

 

Table 4.2  

The detector settings used in this trial relating to the collection and storage of 

data. Settings were selected according to recommendations within the 

respective detector manuals.  

Anabat SD1 and SD2  BatBug Ranger 

Gain: 6.5 

Audio Div: 16 

Data Div: 8 

Max data chunk size: 16,384 

High pass filter: 20 kHz 

N of data chunks per min: 4 
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4.32 Analysis 

Recordings from the Anabat detectors were visualised in AnalookW (Titley 

Scientific, Lancashire, United Kingdom), while recordings from the BatBug 

Ranger were visualised in BatBug.exe (Chelonia Ltd, Cornwall, United 

Kindgom). Echolocation calls were visually inspected and assigned to a species 

or genus based on comparison to a reference library of known species and the 

echolocation parameters provided in the literature by Russ (2012). Echolocation 

calls for which confident identification was not possible were labelled ‘unknown’ 

(due to echolocation calls being too faint or in the case that only a short 

segment of a call was detected) and occasionally because the parameters of a 

call fell between those of two species. Echolocation calls assigned to Myotis 

and Plecotus were only identified to a genus level, due to similarities in call 

parameters (Kunz and Parsons, 2009; Russ, 2012). All echolocation calls of the 

same species detected within a one minute period were classed as one ‘pass’. 

Species richness was calculated for each night of monitoring, consisting of the 

sum of the number of species detected (or genus for Myotis and Plecotus) and 

excluding those labelled ‘unknown’. Total activity was calculated for each night 

of monitoring as the sum of the number of passes of all species, including those 

labelled ‘unknown’. Using the total number of passes detected for each species, 

we calculated the overall Shannon-Weiner diversity for each detector model, 

and compared these two values using the Hutcheson t-test (Krebs, 1985; 

Hutcheson, 1970).  

 

All other statistical analyses were performed using R statistical software version 

3.3.1 (R Core Team, 2016). General Linear Models (GLMs) were constructed 

using the package “lme4” to investigate whether species richness and total bat 

activity varied by detector type (Bates et al. 2015). Species richness and total 

activity formed the response variable in each respective analysis, and detector 

type (Anabat/BatBug) was listed as a fixed effect. The response variable of total 

bat activity was square-root transformed to reduce heterogeneity resulting from 

large variation in activity levels between nights. As four Anabat detectors and 

two BatBug detectors were used in this trial, ‘detector ID’ was included as a 

random effect. Each BatBug was paired individually with each Anabat for a 

duration of five nights. Therefore ‘pair ID’ and ‘location’ were also included as 
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random effects, to identify each individual pairing and account for the non-

independence of monitoring in the same location for multiple nights. The model 

was fitted using restricted maximum likelihood (REML) and normal error 

distribution, and was validated by visual examination of residuals and q-q plots 

(Bolker et al. 2009). To determine if detector type had a significant effect on the 

level of species richness and total activity detected, a likelihood ratio test 

(ANOVA) was used to compare the global models with intercept-only models 

(Crawley, 2014). We present the predicted species richness and predicted 

transformed total activity calculated for each detector type ± standard error, 

using the global models.  

 

Linear regressions were calculated to see whether the species richness and 

total activity detected by the Anabat detectors could be predicted by the species 

richness and total activity detected by the Batbug detectors. 

 

4.4 Results 

A total of 4,892 bat passes and at least ten species were identified. Bat species 

were Pipistrellus pipistrellus, Pipistrellus pygmaeus, Pipistrellus nathusii, 

Rhinolophus ferrumequinum, Rhinolophus hipposideros, Nyctalus noctula, 

Nyctalus leisleri, Barbastellus barbastellus, Myotis species and Plecotus 

species.  

The total number of calls detected using each detector model over the 40 night 

sampling period are displayed by species/genus in Figure 4.2.  

 

The Shannon-Weiner diversity index values calculated for each detector model 

were not found to differ significantly (Anabat = 0.659 ± 0.031, BatBug = 0.670 ± 

0.034, t (79) = 0.377, p = 0.706). 
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Figure 4.2 

The total number of bat passes detected by the BatBug Ranger and the Anabat 

SD1/SD2 ultrasonic detectors over the 40 night sampling period, displayed by 

species/genus. The percentage difference in the number of calls detected by 

Anabat relative to BatBug for each species/ genus is displayed above the bars.  

 

Detector model did not significantly predict the species richness detected, 

therefore the null model was accepted (χ2
(1) = 2.010, p = 0.156). The predicted 

species richness detected using the Anabat detector was 2.900 ± 0.357, 

compared to a value of 2.725 ± 0.124 detected using the BatBug (Table 4.3a). 

Species richness detected by the Anabat detectors could be predicted by 

species richness detected by the BatBug detectors (F(1,38) = 93.17, p < 0.001). 

Variation in the BatBug detector explained 71% of variation in the Anabat 

detector, with Anabat species richness predicted by the following equation: 

Anabat richness = 0.451*(BatBug richness) + 0.899, R2 = 0.710 (Figure 4.3a).  

 

Detector model also did not significantly predict total bat activity (χ2
(1) = 1.52, p 

= 0.218). The total activity (back-transformed) detected using the Anabat 

detector was 45.738 ± 1.016, compared to 38.812 ± 0.210 with the BatBug 

(Table 4.3b). Total activity detected by the Anabat detectors could be predicted 
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by total activity detected by the BatBug detectors (F(1,38) = 1170, p < 0.001). 

Variation in the BatBug detector explained 96% of variation in the Anabat 

detector, with Anabat total activity predicted by the following equation: Anabat 

activity = 6.757*(BatBug activity) + 1.011, R2 = 0.969 (Figure 4.3b). 

 

 

Table 4.3  

Output of GLMMs investigating whether detector model (Anabat/BatBug) had 

an effect on the level of a) species richness b) total bat activity detected. As four 

Anabat detectors and two BatBug detectors were used in this trial, ‘Detector ID’ 

was included as a random effect. Each BatBug was paired individually with 

each Anabat for a duration of five nights. Therefore ‘Pair ID’ and ‘Location’ were 

also included as random effects, to identify each individual pairing and account 

for the non-independence of monitoring in the same location for multiple nights. 

 

a) 

†Anabat SD1/SD2 was the reference category.  

 
 
b) 

†Anabat SD1/SD2 was the reference category. 

 

 
 

 

 

 

 

Parameters Estimate  SE 

Fixed effects:   

(Intercept)† 2.900 0.357 

BatBug Ranger -0.175 0.124 

Random effects SD 

Pair ID  0.959 

Location  0.879 

Detector ID  0.000 

Parameters Estimate  SE 

Fixed effects:   

(Intercept)† 6.763 1.008 

BatBug Ranger -0.533 0.458 

Random effects SD 

Pair ID  3.806 

Location  2.156  

Detector ID  0.507 
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Figure 4.3   

Correlation plot showing a) species richness b) total number of bat passes, 

detected per night by paired BatBug and Anabat detectors. The density of 

points is indicated by shade of grey, and the regression line is displayed in 

black.  

 

 

4.5 Discussion 

Regardless of the recording technology, the microphones of ultrasonic bat 

detectors will only detect a subset of the echolocation calls present in the 

environment (Adams et al. 2012). However, greater microphone sensitivity 

allows a larger volume of space to be sampled with a single detector, therefore 

enabling more echolocation calls to be detected (Corben and Fellers, 2001). In 

comparing the relative sensitivity of the prototype BatBug Ranger against the 

Anabat SD1/SD2, we demonstrate that there were no significant differences in 

the levels of species richness and total bat activity detected using the two 

detector models. A significant regression equation was found for both species 

richness and total bat activity detected between the paired detectors, indicating 

that individual detectors within each model consistently performed to a similar 

standard. Further, the Shannon-Weiner diversity index scores which account for 

both the number of species detected and the evenness of species present, 

were not found to differ significantly by detector model (Spellerberg, 2008). 

While the BatBug failed to detect Plecotus passes, the lower number of 
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Pipistrellus pipistrellus passes detected resulted in a greater equitability among 

the species detected than within the Anabat sample and therefore led to a 

marginally higher diversity index score.  

 

While differences in the amplitude and frequency of bat echolocation calls leads 

to variation in their detectability, this detection bias may be further compounded 

by variation in the performance of an ultrasonic detector model over a range of 

frequencies (Murray et al. 2009). Research comparing the detection efficacy of 

ultrasonic detectors using synthetic call playback found that the Anabat SD2 

was less effective at detecting frequencies of 85 kHz, relative to the various full-

spectrum detectors tested (Adams et al. 2012). Within the United Kingdom, the 

echolocation calls of Rhinolophus ferrumequinum most closely match this 

frequency, with a maximum energy of 81.3 kHz (Russ, 2012). The Anabat 

detectors recorded 6.1% fewer R. ferrumequinum passes than the BatBug 

detectors, indicating that a similar detection bias may also be present in this 

comparison. However, the BatBug detectors recorded fewer P. pipistrellus and 

Myotis passes than the Anabat (12.8% and 26.7% respectively), which may 

indicate that the BatBug samples a marginally smaller area than the Anabat. 

Although rarely detected, the Anabat also recorded a greater number of 

Barbastellus barbastellus and Plecotus passes. Relative to other bat species of 

Britain, the echolocation calls of B. barbastellus, Plecotus auritus, Plecotus 

austriacus and Myotis species are lower in amplitude, and in the case of 

M.daubentonii highly directional (Goerlitz et al. 2010; Waters and Jones, 1995; 

Surlykke et al. 2009; Russ, 2012; Schaub et al. 2008). Based on the total 

number of passes detected for each species, the BatBug may be less sensitive 

in detecting quieter calls and those with strong directionality than the Anabat; 

this could be investigated further in a study of longer duration with more 

statistical power.  

 

Alternatively, the variation in the number of passes detected may be a result of 

differences in the detection algorithms between the two models, rather than 

microphone sensitivity. While both the Anabat and BatBug use sound analysis 

to select and store ambient sounds that resemble bat echolocation, the BatBug 

further filters this raw data into files which have been automatically marked as 
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belonging to bat calls. Although this process may result in a slightly more 

conservative file set, it saves the researcher from having to sift through potential 

recordings from insects, birds and traffic. With developments in the automated 

analysis of sound files, automated bat identification software may allow the 

unbiased processing of large volumes of data (Russo and Voigt, 2016). The 

BatBug.exe software currently allows the user to filter bat passes based on a 

large selection of call parameters, but an automated classifier for British bat 

species is also in development. Although automatic identification programs 

have been shown to successfully classify some bat species with characteristic 

echolocation calls, other species are commonly misidentified resulting in high 

rates of false positives (Russo and Voigt, 2016; Rydell et al. 2017; Stathopoulos 

et al. 2018). One way for researchers to minimise this risk is to use classifiers to 

identify easily recognisable species such as P. pipistrellus and Pipistrellus 

pygmaeus, and then manually identify the remaining files (Rydell et al. 2017). 

Alternatively, species can be classified into broader groups such as genus, but 

social calls and files containing multiple species may still present problems for 

automatic identification software. The performance of any automatic classifier 

will depend on the trade-off between sensitivity and specificity, which may be 

visualised using receiver operating curves (Andreassen et al. 2014). 

 

Despite widespread deforestation and habitat fragmentation leading to declines 

in bat populations in tropical ecosystems, long term monitoring in these 

geographical areas is lacking (Meyer et al. 2010). Due to their low power 

consumption, compact data storage, high quality waterproofing and competitive 

pricing, the BatBug models may help to facilitate microchiropteran research in 

remote monitoring locations such as the rainforest canopy, or at inaccessible 

locations such as oil rigs and wind turbines. Further, the ability to view data from 

up to three BatBugs in sync within the BatBug.exe software, alongside 

temperature and light intensity data could be a valuable tool in identifying 

seasonal or longer-term trends. On a finer scale, the ability of the BatBug to 

preserve harmonics and retain the amplitude information of recorded 

echolocation calls may be valuable in species identification and for studies 

examining the fine-scale characteristics of acoustic signals (Britzke et al. 2013). 
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4.6 Conclusion 

Ultrasonic detectors provide researchers with an invaluable non-invasive tool to 

investigate bat ecology. However, differences in performance among detector 

models will provide researchers with varying pictures of bat activity. Identifying 

variation in recording technology is therefore an important step in assessing the 

suitability of different ultrasonic detectors for the research questions being 

addressed. Here, we assessed the relative sensitivity of the novel BatBug 

Ranger from Chelonia Ltd against the Anabat SD1 and SD2 models from Titley 

Scientific. While some differences were observed between the results of paired 

detectors, detector model was not found to have a significant effect on the 

levels of species richness and total bat activity detected per night. Due to their 

low power consumption, compact data storage, high quality waterproofing and 

competitive pricing, the BatBug models represent a valuable new tool in long-

term Microchiropteran monitoring. Areas for further investigation could include 

assessing the durability and performance of the BatBug under varying 

conditions such as high humidity and rainfall, and testing the battery life in areas 

of high bat activity.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

112 
 
 

Chapter 5: Summation 

 
 

The extraction of minerals through open-pit mining can result in sudden and 

extensive land use change, often posing threats to local biodiversity (Sonter et 

al. 2014). Bats are particularly vulnerable to the impacts of mining, but their 

metapopulation structure and wide-ranging roosting habits make it challenging 

to monitor local populations (Voigt and Kingston, 2016; Wilkinson and South, 

2002). The primary goal of this thesis was to investigate the impacts of habitat 

loss and disturbance on local bat populations at Drakelands open-pit mine, the 

first new metal mine to be established within Britain in the past 45 years. This 

goal was addressed in two parts, firstly by analysing data collected by 

contracted ecologists at the site, in order to identify potential short-term shifts in 

the activity levels of local bats and evaluate the efficacy of mitigation measures. 

Secondly, by monitoring bat activity in the wider-landscape to identify potential 

further-ranging impacts of the mine on local bat populations. In conjunction with 

this work I also incorporated a field trial of a novel bat detector designed for 

long-term monitoring of bat activity. Detailed discussions are provided at the 

end of each chapter. Here, I summarise and aggregate my findings from these 

sections, discuss potential implications and suggest directions for future 

research.  

 

In analysing the data collected by contracted ecologists at the Drakelands site 

over a three year period, potential short term trends in local bat activity were 

identified. While some species appear to be benefitting from the implemented 

mitigation measures, the on-site detection rate of Plecotus species declined 

sharply over the monitoring period. Coinciding with the commencement of ore-

processing (24 hours per day), this reduction may be a result of acoustic 

masking of prey resulting in reduced foraging efficiency and therefore spatial 

avoidance of the local area by the passive listening Plecotus auritus (Schaub et 

al. 2008; Siemers and Schaub 2010; Moretto and Francis, 2017; Clarke, 

pers.comm, 2017). Despite research supporting the use of passive listening by 

P. auritus, to our knowledge no study has investigated the impacts of 

anthropogenic noise on the foraging efficiency of this species (Eklof and Jones, 
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2003; Radford et al. 2012; Razgour et al. 2013; Anderson and Racey, 1993; 

Schaub et al. 2008; Siemers and Schaub, 2010). Although P. auritus remains 

common and widespread throughout Europe, the creation of busy roads and 

other anthropogenic sources of noise in proximity to broadleaf woodland could 

have more significant consequences for local P. auritus populations relative to 

species which forage using alternative strategies (Hutson et al. 2008). 

Investigation into the impacts of anthropogenic noise on P. auritus may 

therefore represent an important area for future research.  

 

The development of an open pit mine and associated infrastructure will 

inevitably lead to habitat loss in the immediate vicinity, often resulting in 

reductions in local bat activity and diversity (ELAW, 2010; Brown and Berry, 

1997). Interestingly, at the Drakelands site species richness did not significantly 

decrease over the three year monitoring period. We conclude that this may be 

due to the creation of significant new waterbodies within the site, providing 

enhanced Dipteran foraging resources and softening the impacts of lost 

woodland and grassland foraging habitats. The potential short term trends at a 

species/ genus level identified in this assessment will be useful in guiding 

management decision making at the Drakelands site, particularly if the trends 

observed are confirmed with data from subsequent monitoring years. However, 

due to the limited time frame of data collection (three years), these results 

should be treated with some caution until further data has been included in the 

analysis. This study was also limited by the inability to compare post-

development bat activity with data collected before the mine was established, 

due to variation in sampling methodology. Where possible, future mining 

developments should consider standardising data collection methods for 

monitoring conducted pre and post development, in order to allow comparison 

of subsequent bat activity to baseline levels. Ideally, this would also extend to 

the data collection methodology used in monitoring the site following its 

restoration. A recent review of derogation licenses granted within England found 

that post-developmental monitoring was conducted at less than one fifth of 

sites, and of these only one third of licensees submitted post-development 

reports (Stone et al. 2013). Despite the rapid and widespread impacts that open 

pit mining can have on local biodiversity, published or openly available work 
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documenting the response of local bat populations to mitigation measures and 

subsequent restoration is lacking. I feel that disseminating bat mitigation 

research is a crucial step in maximising the success of future mitigation work at 

developments involving large scale habitat loss, in order to achieve effective 

conservation outcomes (Fazey et al. 2004).  

In addition to assessing the impacts of Drakelands mine on bat activity within 

the site, I monitored bat activity in the surrounding landscape in order to identify 

potential further-ranging impacts on local populations. Distance from the site 

boundary was found to be an important predictor of species richness and total 

bat activity, with effects varying with habitat type. Interestingly, within grassland 

habitats species richness and total bat activity remained fairly constant 

regardless of distance to the mine, whereas within woodland habitats increasing 

species richness and total activity correlated with increasing distance from the 

site boundary. In line with other studies, these findings suggest that bat species 

which are adapted to forage within clutter may be more susceptible to barrier 

effects (caused by the loss of foraging and commuting habitat within the site 

boundary) than species which are adapted to forage within open environments 

(Kerth and Melber, 2009; Berthinussen and Altringham, 2012a; Berthinussen 

and Altringham, 2012b).  

Within the UK, three of the four Annex II listed bat species forage close to 

vegetation clutter: R. hipposideros, R. ferrumequinum and M. bechsteinii, in 

addition to Myotis and Plecotus species (JNCC, 2016; Russ, 2012). With areas 

of the mining sector predicted to expand, this research highlights that habitat 

fragmentation may pose an elevated risk in the wider landscape to already-

threatened species depending on their foraging ecology (UK Minerals Forum, 

2014). At new mining developments bat mitigation should seek to develop 

substantial commuting routes to connect isolated woodland habitat patches with 

the wider landscape and consider enhancing existing woodland habitats that 

are in proximity to the site boundary. Further, during link-road construction 

underpasses created on existing commuting routes may reduce barrier effects 

for clutter-specialists that fly close to ground-level. As highlighted in Chapter 2, 

both P. auritus and M. bechsteinii may be particularly vulnerable to the impacts 

of anthropogenic noise due to their passive listening foraging strategy. Both 
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these species also forage close to vegetation clutter, and as identified in 

Chapter 3 may be more susceptible to experiencing barrier effects as a result of 

habitat loss (Schaub et al. 2008). Therefore, at new developments which will 

result in both habitat loss and anthropogenic noise it could be beneficial for 

mitigation for these species to be placed at a greater distance from the 

development, in areas that are less severely impacted. 

Bat activity was also analysed in relation to distance from the mine for the more 

commonly detected species/ genus. Among the trends identified, P. pipstrellus 

activity was found to increase with distance from the site boundary, with the 

gradient differing according to habitat type. In contrast, P. pygmaeus activity did 

not vary with distance from the mine. We suggest that this may be a result of 

inter-specific habitat partitioning between the two cryptic species, leading to 

spatial segregation of their foraging ranges. As proposed by Nicholls and Racey 

(2006), P. pipistrellus may actively avoid the foraging sites of P. pygmaeus in 

favour of similar sites that are more distantly located, in order to avoid 

excessive competition. This theory is supported by studies from Lintott et al. 

(2015; 2016) which suggested that habitat partitioning between P. pipistrellus 

and P. pygmaeus occurs within habitat types, at a fine spatial scale. Our results 

further support this hypothesis, and highlight the complexity of assessing 

species specific responses to habitat loss and fragmentation in Microchiroptera.  

Further investigation of this potential phenomena at the Drakelands site would 

require designing transects that cover a larger spatial scale, in order to include 

the surrounding urban areas. To my knowledge, this study was the first to 

investigate the potential for delayed effects of blasting on levels of 

Microchiropteran foraging activity the following evening. Although blasting was 

not a significant predictor of bat activity in any analysis, the data was collected 

over a relatively wide spatial scale. Therefore, in subsequent studies that are 

conducted in proximity to blast locations, it may be worthwhile including blasting 

as a factor in the analysis to investigate potential short-range effects on bat 

activity. 

In conjunction with the monitoring work carried out in Chapter 3, a field trial of a 

novel bat detector (the “BatBug”) designed for long-term monitoring of bat 

activity was incorporated, by comparing sensitivity relative to the Anabat SD1 
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and SD2 models. The levels of species richness and total bat activity identified 

in the trial did not differ between the two detector types. However, the Batbug 

may be less sensitive than the Anabat in detecting quieter calls and those with 

strong directionality. Due to funding constraints this study was conducted in 

early spring, and therefore the levels of bat activity were relatively low. 

Repeating this study later in the year or for a longer duration would result in 

greater statistical power and may provide greater insight into potential variation 

between the BatBug and commercially available detectors. The ability of the 

BatBug to preserve detailed information about the structure of echolocation 

calls would be valuable in the development of dedicated automated bat 

identification software. Automated identification software has the potential to 

allow unbiased processing of large volumes of data, and paired with the 

BatBug’s low power consumption, compact data storage and competitive pricing 

this would make it a valuable tool in the cost effective long-term monitoring of 

Microchiroptera (including at active and restored mine sites) (Russo and Voigt, 

2016).  

To conclude, mitigating the impacts of mining on biodiversity is now an industry 

priority. Increasing awareness of the vulnerability of Microchiroptera to 

anthropogenic threats has led to increasing levels of legal protection in many 

countries. However, implementing effective mitigation for bats at mine sites 

requires an understanding into how impacts such as habitat loss and 

disturbance may affect the distribution and activity of local populations. The 

results of my thesis have highlighted the multitude of factors which influence bat 

activity at a local level, and may provide a platform for continued research into 

the impacts of habitat fragmentation and anthropogenic noise at a species/ 

genus level. I hope that the information presented here will help to inform 

management decision making in regards to bat conservation, both at the 

Drakelands site and potentially at mining operations elsewhere.  
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Appendix A: Chapter 1 supplementary material 
 

Table 1 

At least 11 bat species have been recorded within the Drakelands site. Details 

of their foraging and commuting habitat and foraging flight range are provided in 

the table below. References are provided in the footnote.  

Species Ecology 

Pipistrellus pipistrellus  

 

Foraging and commuting habitat: Wide variety of habitats including 

gardens, farmland, parkland, and deciduous woodland rides. Frequently 

forages along edge habitat and avoids open areas.1  

Flight range: Usually within 2 km of roost.2 

Pipistrellus pygmaeus 

 

Foraging and commuting habitat: Common near bodies of water and 

associated riparian habitat, in addition to broadleaf and mixed 

woodland edges. Generally less common in farmland.1  

Flight range: Usually within 1.5 km of roost.3 

Pipistrellus nathusii 

 

Foraging and commuting habitat: Lowland woodland rides (deciduous, 

occasionally coniferous) and meadows. Almost always recorded within 

a few km of large bodies of water.1 

Flight range: Unknown. 

Myotis species Foraging and commuting habitat: Myotis may be found within a range 

of habitats including woodland, riparian vegetation, parkland, 

meadows, gardens, and coniferous forests. All Myotis species tend to 

favour deciduous woodland and habitats close to water bodies.1 

Flight range: Up to 12 km.4 

Plecotus species Foraging and commuting habitat: Plecotus forages in open deciduous 

woodland, occasionally coniferous. Other habitats include parkland, 

gardens, hedges, treelines, and overgrown banks and streams. Plecotus 

austriacus will also hunt in open habitat such as meadows, and 

occasionally around streetlights and human settlements.1 

Flight range: Up to 8.7 km, but commonly 1-5 km.5,6 

Rhinolophus 
ferrumequinum  

 

Foraging and commuting habitat: Parkland, meadows and woodland, 

particularly near water. Commutes along rides and footpaths in 

woodland, and within 10m of hedges and treelines over pasture.1  

Flight range: Within 4 km of roost.7 

Rhinolophus 
hipposideros  

 

Foraging and commuting habitat: Largely deciduous woodland and 

wetlands, but also pasture, woodland edge, and hedgerows. 

Shows preference for broadleaf woodland but also forages along 

riparian vegetation bordering riverbanks.1 

Flight range: Usually within 2.5 km but up to 6.4 km.7 

Barbastella barbastellus  

 

Foraging and commuting habitat: Prefers wooded countryside, 

generally near bodies of water. Also forage around gorse and mercury 

vapour streetlights.1 
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1 Russ, 2012; 2 JNCC, 2007; 3 SLR Consulting Ltd, 2013; 4 Smith and Racey, 

2014; 5 Entwhistle et al., 2000; 6 Razgour et al. 2013; 7 Fisher et al. 2005; 8 Zeale 

et al. 2012; 9 Shiel et al. 2006; 10 Robinson and Stebbings, 1997.  

 
 
 
 
 
 
 
 
 
 
  

Flight range: Average 6.8 km.8 

Nyctalus leisleri  

 

Foraging and commuting habitat: Common above parkland, cattle 

pasture, meadows, and habitat borders. May be observed foraging over 

water bodies and around white streetlights.1 

Flight range: Up to 13.4 km.9 

Eptesicus serotinus  

 

Foraging and commuting habitat: Woodland edge, parkland, pasture 

and tall hedgerows. Also forages along rivers, lake shores, and above 

streetlights.1 

Flight range: Average 8 km, but up to 41 km.10 

Nyctalus noctula  

 

Foraging and commuting habitat: Found in a wide range of open 

habitats including deciduous woodland, pasture, parkland, marshland 

and rivers.1 

Flight range: Up to 26 km.5 
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Appendix B: Chapter 2 supplementary material  

 

Figure 1. Cumulative results of the roost box monitoring at the Drakelands site 

from 2014-2016 during a) summer b) winter. Where bats were absent but 

droppings were present, identification was carried out to a genus level. (Aerial 

image © Google Earth, 2015)  

a) 
 

b) 
 

1000m 400m 600m 800m 200m 

1000m 400m 600m 800m 200m 

Key: 
 

Pipistrellus 

R. hipposideros 

Plecotus 

M.nattereri 

Unidentified  

No sign of bats  

2 species identified 

3 species identified 

Key: 
 
Pipistrellus 

R. hipposideros 

R. ferrumequinum 

Plecotus 

M. daubentonii 

Unidentified  

No sign of bats  

2 species identified 

4 species identified 
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Appendix C: Chapter 3 supplementary material 
 

Table 1a  

Output of GLzM investigating the performance of each Anabat detector in 

detecting species richness. The model was fit using Laplace Approximation, 

with poisson error distribution, BOBYQA optimization and a “log” link function. 

Random effects included in the model were date and location. Post hoc Tukey 

HSD tests showed that there was not significant variation in the levels of 

species richness detected between Anabat detectors.   

 

†Anabat (A) was the reference category.  

 

 

Table 1b 

Output of GLM investigating the performance of each Anabat detector in 

detecting total bat activity. The model was fit using restricted maximum 

likelihood (REML) and normal error distribution. The response variable total 

number of passes was transformed to ln (passes+1) to reduce heterogeneity 

resulting from large variation in activity levels between nights while also 

accounting for nights with zero passes. Random effects included in the model 

were date and location. Post hoc Tukey HSD tests showed that there was not 

significant variation in the levels of total activity detected between Anabat 

detectors.   

†Anabat (A) was the reference category.  

Parameters Estimate  SE 

Fixed effects   

(Intercept)† 0.712 0.166 

Anabat (B) -0.273 0.229 

Anabat (C) 0.020 0.234 

Anabat (D) -0.079  0.250  

Anabat (E) -0.071    0.225 

Random effects  SD 

Date  0.247 

Location  0.526 

Parameters Estimate  SE 

Fixed effects   

(Intercept)† 2.490  0.335 

Anabat (B) -0.361    0.441 

Anabat (C) 0.290    0.460 

Anabat (D) -0.127    0.488 

Anabat (E) -0.008    0.440 

Random effects  SD 

Date  0.890 

Location  1.125  
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Table 2  

The full set of models for species richness (with the dataset modified to remove 

outlying points) for which ΔAICc ⩽ 2, which were included in model averaging. 

Shown is the deviance (Dev), the number of model parameters (K), the Akaike’s 

Information Criterion (AICc) and the difference in Akaike’s Information Criterion 

between each model and the top-ranked model (ΔAICc).  

 

 

 

 

 

Table 3 

The full set of models for total bat activity (with the dataset modified to remove 

outlying points) for which ΔAICc ⩽ 2, which were included in model averaging. 

Shown is the deviance (Dev), the number of model parameters (K), the Akaike’s 

Information Criterion (AICc) and the difference in Akaike’s Information Criterion 

between each model and the top-ranked model (ΔAICc).  

 

 

 

Model 
rank 

Model 
name 

Response = species richness;  
random effects = date and 
location 

Dev K AICc ΔAICc 

2/2 Model 1a Distance + habitat + wind + 

precipitation + temperature  

1059.9 8 1077.9 1.3 

1/2 Null 

model 

Habitat + wind + precipitation 

+ temperature  

1060.6 7 1076.6 0.0 

Model 
rank 

Model 
name 

Response = total activity;  
random effects = date and 
location 

Dev K AICc ΔAICc 

3/7 Model 2a Distance * habitat + wind + 

precipitation + temperature  

1074.7 8 1098.7 0.9 

7/7 Model 2b Distance + habitat + wind + 

precipitation + temperature + 

humidity  

1077.5 9 1099.5 1.7 

6/7 Model 2c Distance + habitat +  wind + 

precipitation + temperature + 

blasting 

1077.4 9 1099.4 1.6 

2/7 Model 2d Distance + habitat + wind + 

precipitation + temperature 

1078.0 8 1098.0 0.2 

5/7 Model 2e Habitat + wind + precipitation 

+ temperature + humidity 

1079.3 8 1099.3 1.5 

4/7 Model 2f Habitat +  wind + precipitation 

+ temperature + blasting 

1079.1 8 1099.1 1.3 

1/7 Null 

model 

Habitat + wind + precipitation 

+ temperature 

1079.8 7 1097.8 0 
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Table 4 

The full set of models for P.pipistrellus activity (with the dataset modified to 

remove outlying points) for which ΔAICc ⩽ 2, which were included in model 

averaging. Shown is the deviance (Dev), the number of model parameters (K), 

the Akaike’s Information Criterion (AICc) and the difference in Akaike’s 

Information Criterion between each model and the top-ranked model (ΔAICc).  

 

 

 

Figure 1 

Boxplot displaying the range, upper and lower quartiles, mean and outliers for 

a) total bat activity b) P.pipistrellus activity c) P.pygmaeus activity and d) Myotis 

species activity, in relation to whether blasting occurred on the previous day. 

Model 
rank 

Model 
name 

Response = ln (passes+1);  
random effects = date and 
location 

Dev K AICc ΔAICc 

1/4 Model 3b Habitat + distance + 

precipitation + temperature + 

wind 

1093.8 8 1113.8 
 

0.0 

2/4 Model 3c Habitat + distance + 

precipitation + temperature + 

wind + blasting  

1093.0 9 1115.0 
 

1.2 

3/4 Model 3d Habitat + distance + humidity 

+ precipitation + temperature 

+ wind 

1093.2 9 1115.2 
 

1.4 

4/4 Model 3a Habitat * distance + 

precipitation + temperature + 

wind 

1091.2 8 1115.3 
 

1.5 

a) b) 

c) d) 
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