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Abstract 7 

This paper examines the impact of weather conditions on pipe failure in water distribution networks 8 

using Artificial Neural Network (ANN) and Evolutionary Polynomial Regression (EPR). A number of 9 

weather related factors over four consecutive days are the input of the binary ANN model while the 10 

output is the occurrence or not of at least a failure during the following two days. The model is able to 11 

correctly distinguish the majority (87%) of the days with failure(s). The EPR is employed to predict the 12 

annual number of failures. Initially, the examined network is divided into six clusters based on pipe 13 

diameter and age. The data from the last year of monitoring data is used for testing while the remaining 14 

years since the beginning of the monitoring period are retained for model development. A distinctive 15 

EPR model is developed for each cluster based on the relevant training data. The obtained results 16 

indicate a strong relationship between the annual number of failures and frequency and intensity of low 17 

temperatures. The outputs from the EPR models are used to calculate the failures of the homogenous 18 

groups within each cluster proportionally to their length. 19 
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1. Introduction 24 

The optimal management strategy for a WDN balances issues of water safety, reliability, quality and 25 

quantity while exploiting the full extent of the useful life of pipes and reducing long-term costs through 26 

proactive management (Kleiner and Rajani 2001, Clair and Sinsha 2012). In order to enhance this 27 



strategy, the use of predictive models is fundamental since they provide insights into the relationships 1 

between pipe failure and all the factors influencing it. These factors can be split into pipe-intrinsic, 2 

operational and environmental. Environmental and pipe-intrinsic factors can be further divided into 3 

static and dynamic (time-dependent), while the operational factors are inherently dynamic. The pipe-4 

intrinsic factors such as the pipe material, diameter, length, age and the operational factors such as 5 

pressure, previous number of failures have been examined in several studies (e.g. Kleiner and Rajani 6 

2001, Clair and Sinsha 2012, Nishiyama. and Filion 2013). 7 

A few approaches have examined the impact of environmental factors on pipe failure trend in Canada 8 

and northern USA (Kleiner and Rajani 2002; Rajani et al. 2012; Laucelli et al. 2014), Australia (Gould 9 

et al. 2011), Netherlands (Wols and Thienen 2013) and Austria (Fuchs-Hanusch et al. 2013). 10 

Gould et al. (2011) conducted a statistical analysis to examine the impact of weather factors on the pipe 11 

failure of various material, diameter and soil type groups. The focus of the analysis was to relate the 12 

variation in the monthly failure rate with the dynamic weather factors. Wols and Thienen (2013) used 13 

a linear regression analysis to ascertain the relationship between weather data and pipe failure. The 14 

analysis was conducted separately for different cohorts, depending on the type of pipe material, year of 15 

installation, and diameter for a two months interval. Fuchs-Hanusch et al. (2013) examined the 16 

correlation between failure frequencies and climatic indicators. The winter and summer failure 17 

frequencies were examined separately. Rajani et al. (2012) used a non-homogenous Poisson-based pipe 18 

deterioration model to examine the impact of air temperature-based and water temperature-based 19 

covariates on breaks of homogenous groups of pipes with respect to pipe material, age and diameter. 20 

They examined a number of (non-overlapping) time steps lasting from 5 up to 90 days concluding that 21 

the best time step for data aggregation is 30 days. The proposed model was not validated on a test 22 

dataset since the analysis merely aimed at ascertaining the impact of temperature-based covariates on 23 

failure trends rather than using them for predictions. Laucelli et al. (2014) investigated the relationship 24 

between climate data and pipe bursts of 150mm cast iron pipes using the Evolutionary Polynomial 25 

Regression. They examined three non-overlapping time steps (5, 15 and 30 days) and concluded that 26 

the 30 days’ time step provides the most accurate results. The analysis was conducted separately for the 27 

warm and cold season.  28 



The failure frequency in a WDN is not constant due to the inherent nature of some of the factors 1 

affecting it. Hence, this paper examines the relationship between the annual number of pipe failures and 2 

time-dependent weather factors. The proposed approach does not require the distinction between cold 3 

and warm seasons to be made. The approach for making annual predictions is complementary to a 4 

previous one (Kakoudakis et al. 2017) which calculated the average failure rate for a specific period 5 

using pipe-related factors as explanatory variables. The failure frequency is the cumulative effects of 6 

several factors on the pipes, therefore the results of the two approaches are combined. Furthermore, a 7 

method is proposed to identify more vulnerable regions of the network and visualize them on a map. 8 

The occurrence of pipe failures requires the fast response of the network’s operators. The water 9 

companies aim to respond as soon as possible after a burst is reported to minimize the amount of lost 10 

water and the customer dissatisfaction that might result in need for compensation. The response time 11 

depends on several factors including, amongst other, the availability of human resources and the ability 12 

to predict time intervals with an above the normal failure frequency. Previously developed approaches 13 

have resulted in relationships with low accuracy (i.e. Rajani et al. 2012) for short-term predictions. This 14 

paper proposes a method to predict the occurrence of pipe failure(s) on a short-period without requiring 15 

knowledge of the weather). In addition, the weather-related factors are ranked based on their importance 16 

for predictions. 17 

It should be noted here that the annual predictions can be used in conjunction with long-term predictions 18 

for pipe maintenance/rehabilitation/replacement scheduling while the short-term predictions are strictly 19 

for operational use. Furthermore, the results for the annual predictive models are on a cluster level while 20 

the short-term predictions refer to the entire examined network (due to the small number of failures in 21 

some clusters) and do not associate the failure occurrence with specific pipes. 22 

The remainder of the paper is organized as follows: First the proposed methodologies are explained. 23 

Section 3 provides description of the software used. Then the process to evaluate the accuracy of the 24 

proposed methodology is explained. The main features of the case study are provided in section 5. This 25 

is followed by discussion of the results and the evaluation of their accuracy. Finally, the last section 26 

highlights the most important conclusions. 27 

 28 



2. Methodology  1 

2.1 Annual pipe failure prediction 2 

The annual failure rate is an important performance indicator for assessing the overall structural 3 

condition of a water distribution network (Fuchs-Hanusch et al. 2013) and therefore models that predict 4 

it are of significant interest. This paper presents a method for predicting the next year’s number of 5 

failures considering weather conditions as explanatory variables. Furthermore, outputs from the models 6 

are used to calculate the failure rates of individual pipes in order to identify regions of the network that 7 

are more prone to failure. The methodology consists of the following steps: 8 

1. First, individual pipes are aggregated into homogenous groups based on their diameter, the age 9 

and the soil type assuming that pipes that share the same characteristics are expected to have a similar 10 

failure rate (Kleiner and Rajani 2012). Soil type is used as an aggregation criterion because soil 11 

properties have been associated with the corrosion of the metallic pipes (Sadiq et al. 2004) which has 12 

been identified as a dominant factor contributing to their failure (Makar 2000). The original dataset 13 

containing a large number of individual pipes is converted to a new dataset containing homogenous 14 

groups of pipes. 15 

2. The created homogenous groups of pipes are allocated into six clusters using their attributes of 16 

diameter and age based on the findings of a previous analysis (Kakoudakis et al. 2017) that 17 

demonstrated how splitting the network into six clusters using the K-means clustering method could 18 

result in more accurate predictions. Instead of using a single model for making predictions for all the 19 

homogenous groups, six separate predictive models are developed. 20 

3. For each cluster the annual number of failures is equal to the sum of failures of the homogenous 21 

groups within. The candidate weather related explanatory variables are: average minimum air 22 

temperature (Eq. 1), average maximum air temperature (Eq. 2), average soil temperature (Eq. 3) and 23 

freezing index which is calculated only for the days below a predefined threshold (Eq. 4). 24 

AveTmin=
∑ Tminimum

jm
j=1

m
          (1) 25 

AveTmax=
∑ Tmaximum

jm
j=1

m
          (2) 26 



AveST=
∑ STjm

j=1

m
           (3) 1 

FI=∑ (θ− Tminimum
j

)m
j=1          (4) 2 

Where m is the number of days in the time step (i.e. 365 days), Tminimum
j

 is the minimum daily 3 

temperature of day j, Tmaximum
j

 is the maximum daily temperature of day j , STjis the average daily soil 4 

temperature of day j and θ is the predefined air temperature threshold 5 

 6 

4. The freezing index (Eq 4) is defined as the cumulative minimum daily temperature below a 7 

specified air temperature threshold and is considered as a surrogate for the severity of extreme air 8 

temperatures within a time step (Kleiner and Rajani 2002). The cross-correlation function in MATLAB 9 

(® R2014b) is applied to measure the similarity between the candidate thresholds and the number of 10 

failures. The thresholds examined range between -20C and 40C with a step of 10C. This process is 11 

repeated separately for each cluster. The threshold that provided the highest similarity (highest values 12 

of cross-correlation) was selected for data aggregation. 13 

5. The Evolutionary Polynomial Regression models are selected with respect to their goodness of 14 

fit, the minimization of model’s polynomial terms and the possibility to describe the physical 15 

phenomenon. The predicted numbers are used to calculate the number of failures for the homogenous 16 

groups within each cluster proportionally to their length. 17 

6. Then, it is assumed that all the pipes within those homogenous groups have the same failure 18 

rate for this specific year. These values are used in combination with the complementary approach 19 

(Kakoudakis et al. 2017) to calculate the final failure rate for this year. 20 

 21 

2.2 Daily prediction of the occurrence of pipe failures 22 

The proposed method aims to predict the occurrence of failure and consists of the following steps: 23 

1. Define the inputs and the output of the model. The inputs of the ANN model are: the minimum 24 

air temperature, the maximum air temperature, the mean air temperature, the soil temperature, the 25 

freezing index and the number of failures for a number of consecutive days while the targeted output of 26 

the model is 1 if there is at least a pipe failure the following few days and 0 if not. The temperature 27 



variation can occur relatively quickly whereas the potential pipe failure because of that might take 1 

longer (Rajani and Kleiner 2012). Therefore, different combinations of number of days are examined 2 

in order to obtain the models with the highest accuracy. Exhaustive trials were conducted leading to the 3 

conclusion that the use of four consecutive days as input and the following two days as output results 4 

in the highest accuracy. The first input is the set of variables for the first four days and the output is the 5 

occurrence of failure(s) in the fifth and sixth day. Respectively the second input is the set of variables 6 

from the second up to the fifth day, while the output is the failure in the sixth and seventh day.  7 

2. The inputs and the outputs are divided into two parts, for training (70%) and test (30%). The 8 

ANN model is built relying only on the training data.  9 

3. The actual output of the model is not an integer number; therefore the optimal threshold for 10 

converging to 1 (failure) or 0 (non-failure) has to be identified. The selection of the optimal threshold 11 

entails three steps: 12 

3a Initially a set of candidate thresholds covering the entire range between the model’s minimum 13 

and maximum responses for the test data is defined. Then, the model’s actual outputs are rounded (to 1 14 

or 0 respectively) for all the values of candidate thresholds. 15 

3b The True Positive Rate (TPR) and the False Positive Rate (FPR) are calculated for all the 16 

candidate thresholds. This iterative process provides a set of TPR/FPR pairs which are used to plot the 17 

Receiver Operating Characteristic (ROC) curve. Each point on the ROC plot (Figure 1) represents a 18 

specific TPR/FPR pair. A model with perfect discrimination has a ROC curve that passes through the 19 

upper left corner (optimal point) (Zweig and Campbell 1993). On the contrary, the closer the curve 20 

comes to the 45-degree diagonal of the ROC space, the less accurate the model is. Therefore, the most 21 

accurate curve is the C and the least accurate the A. 22 

3c The Euclidian distance (distance between each point on the curve and the optimal point) is 23 

calculated as follows: 24 

 25 

Euclidian distance=√(1 − TPR)2 + (FPR)2       (5) 26 

 27 



The threshold with the minimum Euclidian distance is selected since it provides the most accurate 1 

results by minimising the false positive rate and maximising the true positive rate. 2 

4. At the last stage, the influence of the inputs on the model’s response is assessed. The analysis 3 

is performed using the following equation (Duncan et al. 2013): 4 

Wio=W1*W2           (6) 5 

Where: Wio= input-to-output influence vector; W1= ANN hidden layer weight matrix; W2= ANN output 6 

layer weight vector. Thus Wio has dimensions of Nin*Nout where Nin is the number of inputs and 7 

Nout=1 is the number of output neurons 8 

 9 

3. Evolutionary Polynomial Regression 10 

Evolutionary Polynomial Regression (Giustolisi and Savic 2006) is a data-driven method which 11 

combines numerical and symbolic regression. The implementation of EPR returns a predefined number 12 

of models on a Pareto optimal front which is a trade-off between accuracy and parsimony. The accuracy 13 

criterion aims to maximise the model fit to the observed data and the parsimony to minimise the number 14 

of explanatory variables and/or polynomial terms in the model. The role of the parsimony rule is to 15 

prevent over-fitting of the model to data and thus capture the true underlying general phenomena 16 

(Laucelli et al. 2014). The user selects the generalised model structure and EPR employs a multi-17 

objective search strategy to estimate the unknown parameters. The model structure selected here for 18 

analysis of pipe failure is (Giustolisi and Savic 2006): 19 

Y=∑ aj ((X1)
E1j …κ

j=1 (Xi)
Eij) + a0        (7) 20 

Where: Y=predicted number of pipe failures; aj and  a0= the constant coefficients; Xi =is the 21 

explanatory variable i, Eij =the matrix of unknown exponents and k is the maximum number of 22 

polynomial terms 23 

 24 

The candidate exponent values (Eij) in Equation (7) were -2, -1, -0.5, 0, 0.5, 1 and 2 describing potential 25 

square, linear or square root exponents for explanatory variables of the EPR model. The positive and 26 

negative values were considered to describe potential direct and inverse relationship between the inputs 27 



and the output of the model while the value 0 was chosen to deselect input candidates without impact 1 

on the output. The maximum number of polynomial terms (k) was set to 1 excluding the constant term 2 

(a0) to ensure the best fit without unnecessary complexity as the addition of new terms that fit mostly 3 

random noise in the raw data rather than explain the underlying phenomenon (Savic et al. 2009). The 4 

Least Square (LS) parameter was constrained to search for positive polynomial coefficient values only 5 

(i.e. aj >0) because negative polynomial coefficients usually try to balance positive terms providing a 6 

better description of the noise (Giustolisi et al. 2007). 7 

 8 

4. Model performance assessment 9 

The performance indicator used to evaluate the accuracy of the EPR models is the Coefficient of 10 

Determination (R2) as a measure for correlation between predictions and observations. The 11 

mathematical relationship is expressed as follows (Moriasi et al. 2007): 12 

R2=
(∑ (yp,i−y̅p)(yo,i−y̅o)n

i=1 )2

∑ (yp,i−y̅p)2n
i=1 ∑ (yo,i−y̅o)2n

i=1

         (8) 13 

Where yp,i = prediction value for test sample i; yo,i = measurement value for test sample i, y̅p = mean 14 

value of predictions, y̅o= mean value of measurements and n = the number of test data samples 15 

 16 

The performance of the binary model is assessed using the True Positive Rate (Eq. 9), and True Negative 17 

Rate (Eq. 10). TPR measures the proportion of correctly identified positives while TNR measures the 18 

proportion of correctly identified negatives respectively. The mathematical expressions of TPR and 19 

TNR are defined as (Kohavi and Provost 1998): 20 

True Positive Rate=
True Positives

True positives+False negatives
       (9) 21 

True Negative Rate=
True Negatives

True negatives+False positives
       (10) 22 

 23 

5. Case study 24 

The proposed methodology is demonstrated in a case study which is part of a water distribution network 25 

(WDN) of a UK city. The database contains pipe failure data between the 1st of January 2003 and the 26 



31th of December 2013.Preliminary analysis showed that Cast Iron (CI) pipes which constitute 78% of 1 

the network’s total length have the highest pipe failure rate (expressed in number of failures/km/year) 2 

which is 0.264 compared to other pipe material types which are 0.194 for Asbestos Cement (AC) pipes, 3 

0.071 for Ductile Iron (DI) pipes, 0.030 for Polyethylene (PE) pipes and 0.113 for Polyvinyl chloride 4 

(PVC) pipes. Hence, only CI pipes are considered in this paper for construction of the predictive models. 5 

Table 1 shows their main features of the examined dataset. 6 

Daily climate data for the case study were obtained from the British Atmospheric Data Centre and 7 

consisted of the minimum air temperature, the maximum air temperature and the soil temperature on a 8 

daily basis in 0C. To avoid negative values, all temperatures are converted to Fahrenheit. 9 

Preliminary analysis of the data showed (Figure 2) that the majority of the failures occur during the 10 

coldest months. Therefore, in the development of the models, a particular emphasis is given to the 11 

factors that describe the severity of the cold period (i.e. freezing index). 12 

 13 

6. Results and discussion 14 

6.1 Results of the annual predictions approach  15 

Following the procedure described above for the data preparation, grouping of individual pipe failure 16 

data resulted in 148 homogenous groups for developing the EPR models. Those homogenous groups 17 

were split into six clusters as shown in Figure 3. The dataset created was split into two parts for model 18 

development and validation respectively. The last year (i.e. 2013) of the monitoring period was used 19 

for validation purposes. 20 

The implementation of the proposed methodology resulted in six EPR models each corresponding to 21 

the training data of the relevant cluster. The selected threshold for the freezing index is 00C degrees 22 

because it provided the highest correlation in the preliminary analysis. Table 2 lists the associated 23 

models and the coefficient of determination for the train dataset. 24 

The relationship between the number of failures and the freezing index is a direct indication that lower 25 

temperatures and consequently higher values of the freezing index cause an increase in the number of 26 

failures. The addition of more candidate explanatory variables (e.g. minimum air temperature, 27 



maximum air temperature, soil temperature) did not increase the model’s accuracy and therefore they 1 

were not selected. 2 

Figure 4 shows the predictions vs the observations for all the clusters with the test dataset (2013). The 3 

developed models are very accurate in predicting the number of failures for clusters 1 and 6 which have 4 

the lowest number of failures. The absolute difference between observations and predictions for clusters 5 

1 and 6 tends to zero whereas it varies between 3 and 6.5 for the rest of the clusters. The lowest error is 6 

achieved for clusters 1 and 6 which have the lowest failure rate. 7 

The predicted number of failures was used to calculate the number of failures for all the homogenous 8 

groups (i.e. diameter, age, soil type) within the clusters proportionally to their length. Then it was 9 

assumed that all the individual pipes within the homogenous groups share the same failure rate. The 10 

individual pipe failure rates were classified using the Jenks Natural Breaks (Jenks 1963) method into 11 

five ranges as ‘very low’ [0-0.091], ‘low’ (0.091-0.236], ‘medium’ (0.236-0.472], ‘high’ (0.472-0.75] 12 

and ‘very high’ [greater than 0.751] as shown in Figures 5 and 6 (observations and predictions 13 

respectively). 14 

The accuracy obtained in allocating the individual pipes in ranges is 46%, 73%, 78%, 87% and 76 % 15 

for the ‘very low’, ‘low’, ‘medium’, ‘high’ and ‘very high’ failure rates respectively when only weather-16 

related factors are used. The predictions have a high accuracy for the majority of the failure ranges 17 

(‘low’ to ‘very high’). The lowest accuracy is achieved for the pipes with a ‘very low’ observed failure 18 

rate. This low accuracy can be attributed to the fact that a number of homogenous groups of pipes have 19 

experienced zero number of failures. The predicted failures for each cluster are distributed to the 20 

homogenous groups proportionally to their length value leading to a slight overestimation for those 21 

groups. 22 

 23 

6.2 Results of Combined weather and pipe-intrinsic factors based approach 24 

The outputs of the proposed method are used in conjunction with the results of an approach which 25 

calculated the average failure rate for the entire monitoring period using pipe-intrinsic factors as 26 

explanatory variables (Kakoudakis et al. 2017) as shown in Figure 7. The final failure rate of the 27 

individual pipes is the combination of the two values. 28 



The examined WDN consists of a big number of individual pipes and the improvement achievement is 1 

highlighted in Figure 8. Figure 8 compares the accuracy of the predictions when only environmental 2 

variables are used and when they are combined with the physical variables. The inclusion of the physical 3 

factors increased the accuracy of the predictions for the majority of the ranges. The highest 4 

improvement is observed for the ‘very low’ range for which shifted to 69%. 5 

 6 

6.3 Results for the short-term predictions 7 

Following the approach described in the methodology section, the data preparation resulted in 3653 8 

data samples, 56.20% of which correspond to cases without failure(s) and the remaining 43.80% to 9 

failure(s). The model’s responses were compared to a set of threshold values and the generated pairs of 10 

TPR/FPR were used to plot the ROC curve (Figure 9). The selected threshold with the lowest Euclidean 11 

distance from the optimal point is 0.538. As shown in Figure 9 the majority of the non-failures are 12 

correctly identified (the FPR is 0.87) as such while a similar conclusion can be derived for the failures 13 

despite the lower accuracy (the TPR is 0.72). The value of AUC which is used as a measurement of 14 

model’s performance is 0.814 indicating that the model has a good accuracy. 15 

The influence of the inputs on the model’s response is assessed and they are ranked to identify the most 16 

influential. The result of the analysis input’s influence on the model’s responses is a column matrix 17 

with the weight of all the inputs (Table 3). The FI is shown to be the most influential factor. This 18 

observation is linked to the fact that the majority of the failures occur in the coldest months (also shown 19 

in Figure 2) when pipes are subject to frost actions which is a cause for axial causes on them (Rajani et 20 

al. 1996). The frost imposes additional load on the buried pipes and is influenced by frost penetration, 21 

trench width, soil type, soil stiffness, frost heave of trench fill and side fill as well as the interaction at 22 

the trench backfill–side fill interface (Rajani and Zhan 1996). The negative values indicate a reverse 23 

relationship between these variables and the occurrence of pipe failure(s). 24 

 25 

7. Conclusions 26 

This paper presents a method to predict the occurrence of pipe failure and its annual variation due to 27 

weather factors. Only CI pipes were considered due to their highest failure rate in the network. However, 28 



it can be applied to other pipe materials as well. For the annual predictions the individual pipes were 1 

allocated into homogenous groups. The created homogenous groups were then split into a predefined 2 

number of clusters and an individual EPR model was developed for each cluster using weather 3 

conditions as explanatory variables. The FI was selected as the most influential variable by the models. 4 

The mathematical relationship obtained between the number of failures and the FI is a direct indication 5 

that lower temperatures and consequently higher values of the FI cause an increase in the number of 6 

failures. The outputs of the proposed method were used in conjunction with a previous approach which 7 

calculated the average failure rate of the entire monitoring period using pipe-intrinsic explanatory 8 

variables in order to improve the quality of predictions. The final failure rate was calculated as the 9 

average failure rate of the two approaches which resulted in more accurate predictions. The highest 10 

improvement was achieved for the pipes with a ‘’very low’’ observed failure rate. 11 

The method for predicting the occurrence of failure(s) was implemented using an ANN binary model 12 

and was shown to be able to distinguish between the days with and without failure(s). The influence of 13 

inputs on the models' output responses was assessed showing that low temperatures have a strong 14 

influence. This approach can be used operationally to alert water utilities to manage pipe failures 15 

reducing potential water loss, associated costs and service disruption to consumers. Further research 16 

should be done to associate the short-term prediction of failure(s) with specific pipes. 17 
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