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Abstract 
 

 Predictable, robust genetic parts including constitutive promoters are one 
of the defining attributes of synthetic biology. Ideally, candidate promoters 
should cover a broad range of expression strengths and yield homogeneous 
output, whilst also being orthogonal to endogenous regulatory pathways. 
However, such libraries are not always readily available in non-model 
organisms, such as the industrially relevant genus Geobacillus.  
 
 A multitude of different approaches are available for the identification and 
de novo design of prokaryotic promoters, although it may be unclear which 
methodology is most practical in an industrial context. Endogenous promoters 
may be individually isolated from upstream of well-understood genes, or 
bioinformatically identified en masse. Alternatively, pre-existing promoters may 
be mutagenised, or mathematical abstraction can be used to model promoter 
strength and design de novo synthetic regulatory sequences.  
 
 In this investigation, bioinformatic, mathematic and mutagenic 
approaches to promoter discovery were directly compared. Hundreds of 
previously uncharacterised putative promoters were bioinformatically identified 
from the core genome of four Geobacillus species, and a rational sampling 
method was used to select sequences for in vivo characterisation. A library of 
95 promoters covered a 2-log range of expression strengths when 
characterised in vivo using fluorescent reporter proteins. Data derived from this 
experimental characterisation were used to train Artificial Neural Network, 
Partial Least Squares and Random Forest statistical models, which quantifiably 
inferred the relationship between DNA sequence and function. The resulting 
models showed limited predictive- but good descriptive-power. In particular, the 
models highlighted the importance of sequences upstream of the canonical -35 
and -10 motifs for determining promoter function in Geobacillus.  
 
 Additionally, two commonly used mutagenic techniques for promoter 
production, Saturation Mutagenesis of Flanking Regions and error-prone PCR, 
were applied. The resulting sequence libraries showed limited promoter activity, 
underlining the difficulty of deriving synthetic promoters in species where 
understanding of transcription regulation is limited. As such, bioinformatic 
identification and deep-characterisation of endogenous promoter elements was 
posited as the most practical approach for the derivation of promoter libraries in 
non-model organisms of industrial interest. 
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Extended Abstract 
 
 Predictable output is a defining aspiration of synthetic biology, and 
collections of thoroughly characterised genetic parts are a fundamental 
requirement if this predictability is to be achieved. Libraries of robust promoter 
sequences, for example, can be used to precisely trigger the expression of a 
transgene or synthetic pathway. Ideally, candidate promoters for synthetic 
biology applications should yield consistent output in a range of genetic and 
environmental contexts, whilst also being orthogonal to endogenous regulatory 
pathways. Although collections of promoters with the required attributes have 
been reported in model organisms such as Escherichia coli, promoter activity is 
often poorly conserved between species, hindering the application of previously 
characterised promoters in alternative hosts. The development of species-
specific promoters is therefore necessary if the synthetic biology approach is to 
be applied in non-model organisms, such as the industrially relevant genus 
Geobacillus.  
 
 Different approaches are available for the identification and de novo 
design of species-specific promoters. Endogenous promoters may be 
individually isolated from upstream of well-understood genes, or 
bioinformatically identified en masse. Alternatively, previously identified 
promoter sequences may be mutagenised, potentially resulting in novel activity. 
The data that result from the characterisation of these promoter libraries can 
also potentially be used to derive mathematical models of the relationship 
between DNA sequence and promoter function. Such models could accelerate 
promoter discovery by making pre hoc predictions of promoter activity and 
could also potentially enhance our fundamental knowledge of genetic regulation 
in complex systems.  
 
 To expand the Geobacillus promoter toolkit, 636 putative promoters were 
bioinformatically identified from the core genome of four Geobacillus species. 
Low transformation efficiencies precluded the in vivo characterisation of all 636 
sequences. To maximise the portion of the promoter design space that was 
empirically explored, a phylogeny of the putative promoters was used to 
rationally select sequences for in vivo characterisation in G. thermodenitrificans 
and G. thermoglucosidans. Two fluorescent reporter proteins, GFP and the RFP 
derivative mOrange, were used to quantify promoter activity.  
 
 In total, 105 promoter::GFP fusions and 82 promoter::mOrange fusions 
were characterised in G. thermoglucosidans. Although a 2-log range of 
expression levels was observed for both reporter proteins, promoter activity was 
generally poorly conserved between the reporters. However, seven promoters, 
covering a four-fold range of expression levels, were shown to function 
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consistently regardless of the downstream coding sequence. Five of these 
seven sequences were also shown to function independently of culture 
aeration.  
 
 Data derived from the in vivo characterisation of the bioinformatically-
identified promoters were used to train Artificial Neural Network (ANN), Partial 
Least Squares (PLS) and Random Forest partition models that quantifiably 
linked promoter DNA sequence to function. Although ANN and PLS models 
were obtained that returned accurate fits of training, validation and primary test 
data sets, predictive accuracy was low when the sequence-function models 
were applied to predicting activity levels of secondary test sets of 
bioinformatically identified putative promoters or de novo designed synthetic 
promoter sequences. The lack of predictive power displayed by the models was 
hypothesised to be the result of a lack of significant sequence homology in the 
training data and the relatively small size of the training data set as compared to 
the dimensionality of the promoter design space.  
 
 Although the obtained ANN and PLS models displayed limited predictive 
power, Random Forest partitioning produced useful descriptive models. By 
identifying sequence positions that were key in determining promoter output, 
the partition models served to increase understanding of Geobacillus promoter 
structure. In particular, sequence positions upstream of the canonical -35 and    
-10 motifs were shown to strongly influence promoter activity. This result 
suggested that UP-elements, which had previously been identified in Bacillus 
subtilis and E. coli promoters, play a role in regulating transcription in 
Geobacillus.  
 
 Additionally, two commonly used mutagenesis-based techniques for 
promoter production, error-prone PCR (epPCR) and Saturation Mutagenesis of 
Flanking Regions (SMFR), were applied. In both instances, the G. 
thermodenitrificans ldhA promoter, which had previously been applied for 
metabolic engineering in various Geobacillus species, was used as the 
template sequence. However, only 5% of the characterised epPCR-derived 
sequences and 10% of the characterised SMFR sequences showed statistically 
significant promoter activity. Additionally, both epPCR and SMFR showed a 
proclivity to reduce promoter strength as compared to the wild-type template. 
This tendency was corroborated by a review of 21 published mutagenesis-
derived promoter libraries.  
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and subsequently used to evaluate the ability of the model to generalise to an 
independent data set.  
 
Cvar 

 
Coefficient of variance 

A measure of the relative variability of individual data points in a data series 
around the mean value.  
 
ddH2o 

 
Double distilled water 
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dGTP 
 

Deoxyguanosine triphosphate 
An oxidised derivative of the nucleoside deoxyguanosine. Used to induce 
transversion mutations (i.e. purine ! pyrimidine) in error-prone PCR. 
 
DNA 

 
Deoxyribonucleic acid 

dNTP 
 

Deoxynucleotide 
DoE 

 
Design of Experiments 

The statistical, typically multivariate, approach to planning, conducting and 
analysing the results of tests to determine the relationships between factors 
that affect a process and the output of that process. 
 
dPTP 

 
2'-Deoxy-P-nucleoside-5'-Triphosphate 

A triphosphate derivative of the mutagenic nucleoside dP. Used to induce 
transition mutations (i.e. purine ! purine or pyrimidine ! pyrimidine) in error-
prone PCR. 
 
dsDNA 

 
Double stranded DNA 

epPCR 
 

Error-prone polymerase chain reaction 
A method for randomly inserting nucleotide mutations into a template DNA 
sequence. 
 
FACS 

 
Fluorescence Activated Cell Sorting 

A specialised form of flow cytometry that allows a heterogeneous mixture of 
cells to be analysed and sorted into separate containers based on the specific 
light scattering or fluorescence properties of each cell.  
 
Fmol 

 
Femtomole 

Fwd 
 

Forward 
g 

 
Gramme 

g 
 

Centrifugal acceleration 
GFP 

 
Green fluorescent protein 

h 
 

Hour 
Kb 

 
Kilobases 

kcal/mol 
 

Kilocalorie per mole 
l 

 
Litre 

LB 
 

Lysogeny broth 
LLB 

 
Lennox lysogeny broth 

LV 
 

Latent variable 
Variables that are not directly observed or measured, but are instead inferred 
by a mathematical or statistical model. 
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M 
 

Molar 
MCS 

 
Multiple cloning site 

A sequence of DNA containing multiple restriction enzyme recognition sites. 
Used to insert DNA fragments into a plasmid. 
min 

 
Minute 

ml 
 

Millilitre 
mLB 

 
Modified lysogeny broth 

mM 
 

Millimolar 
ng 

 
Nanogrammes 

NIPALS 
 

Nonlinear iterative partial least squares 
An algorithmic variant of Partial Least Squares regression. 
 
nm 

 
Nanometer 

nM 
 

Nanomolar 
OD 

 
Optical density 

OFAT 
 

One-factor-at-a-time 
An approach to experimental design in which a single experimental variable (or 
factor) is changed and the effect on the response(s) of interest is observed. All 
other factors are held constant.  This procedure is repeated in turn for each of 
the factors of interest in a particular study.   
 
Oligo 

 
Oligonucleotide 

OMCL 
 

Orthogonal Markov cluster  
A clustering algorithm used to identify homologous gene families from the 
genomes of multiple species of interest.   
 
PBS 

 
Phosphate buffered saline  

PCN 
 

Plasmid Copy Number 
The average or expected number of a given plasmid per host cell 
 
PCR 

 
Polymerase chain reaction 

PLS 
 

Partial least squares  
A specialised form of linear regression that can be used to infer the 
relationship between a matrix of predictor variables (X) and a matrix of 
response variables (Y). Latent variables are extracted from the original 
predictor and response matrices in a way that maximises the covariance 
between X and Y.  
 
PRESS  Predicted residual sum of squares 
A summary statistic used in regression analysis as a measure of the fit of a 
model to a validation or test data set. Specifically, PRESS represents an 
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estimate of the squared prediction error between an empirically measured 
response value and the value predicted by the model. 
 
PWM 

 
Position weight matrix  

A method by which motifs in biological sequence data can be represented. A 
PWM for a given sequence has the dimension 4 x L, where L is the length of 
the DNA sequence and the four rows represent the four DNA nucleotides. The 
matrix is populated with the probabilities of the given nucleotides being present 
at the defined sequence position.  
 
qPCR 

 
Quantitative polymerase chain reaction 

A molecular biology technique for the quantification of nucleic acids. A 
fluorescent dye is used that intercalates with double-stranded DNA during the 
amplification phase of the PCR, resulting in a fluorescence signal that is 
proportional to the number of amplicons in a sample. Comparing this signal to 
a standard curve allows the concentration of the amplicon of interest to be 
calculated.  
 
RBS 

 
Ribosome binding site 

The DNA sequence immediately upstream of the start codon of an adjacent 
mRNA transcript to which the 16S subunit of the ribosome is recruited during 
translation initiation.  
 
Rev 

 
Reverse 

RFP 
 

Red fluorescent protein  
rpm 

 
Revolutions per minute 

SAM 
 

Sequence alignment map 
A text-based bioinformatic file format. Used to store the alignment of biological 
sequence data to a reference sequence.  
 
sec 

 
Second 

SIMPLS 
 

Statistically inspired modification of PLS  
An algorithmic variant of Partial Least Squares regression. 
 
SMFR 

 
Saturation mutagenesis of flanking regions 

A mutagenesis-based approach to the production of synthetic promoter 
libraries, in which promoter consensus regions are maintained while flanking 
sequences surrounding the core motifs are mutagenised.  
 
TFBS 

 
Transcription factor binding site 

The sequence of DNA within a promoter to which regulatory proteins 
(transcription factors) bind. Transcription factors can promote or block the 
recruitment of RNA polymerase to a given promoter, hence up- or down-
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regulating the transcription rate of the downstream coding sequence.  
 
TSS 

 
Transcription start site  

The DNA sequence at the 5’ end of a gene, at which transcription of DNA to 
RNA begins.  
 
U 

 
Units 

UV 
 

Ultraviolet  
V 

 
Volts 

VIP 
 

Variable importance in projection 
A summary statistic used in Partial Least Squares (PLS) modelling. Provides a 
measure of the contribution of a given predictor variable (X) to the observed 
variation in the response variable(s) (Y).  
 
µg  Microgramme 
µl 

 
Microlitre 

µm  Micrometre 
1G  First generation 
2G  Second generation 
3G  Third generation 
4G  Fourth generation 
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1 Introduction 

Summary 
 

 The use of synthetic biology to produce biofuels that are chemically and 

structurally identical to the fossil fuels that they are intended to replace is of 

considerable industrial interest. Although model organisms are invaluable in 

proof-of-principle studies, they are not necessarily industrially applicable, partly 

due to the environmental extremes that can characterise industrial-scale 

bioproduction. However, engineering in non-model organisms such as the 

thermophilic bacterium Geobacillus is restricted by the limited availability of 

genus- or species-specific synthetic biology tools. For example, promoter 

sequences that allow varied and predictable control of transcription are a 

desirable feature of any synthetic biology toolkit. Promoters with the desired 

characteristics can be individually isolated from upstream of well-understood 

genes, or bioinformatically identified en masse using the genome or 

transcriptome of the organism of interest. Alternatively, pre-existing, well-

understood promoters may be altered by mutation to generate synthetic 

sequences with novel activity. Statistical learning approaches that can decipher 

the effect of individual DNA bases or motifs on promoter output also have the 

potential to aid in promoter characterisation. Such models could be used to 

make predictions of promoter activity or de novo design synthetic promoter 

sequences. However, it is not clear which approach to promoter discovery and 

design is most applicable in an industrial context. This study therefore aims to 

provide a direct comparison between promoter discovery and design methods, 

and in particular to assess the applicability of statistical learning methods to 

promoter discovery and characterisation in Geobacillus.  

 

1.1 Biofuels 
 

 Practical, political and environmental considerations have rendered 

current global fossil fuel consumption (and the resultant carbon dioxide 

emissions) unsustainable. The 2016 “Paris Agreement” resulted in a 
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commitment from 197 countries to limit global temperature increase to 1.5 °C 

above pre-industrial levels by the year 2100 (Kibria et al., 2018), a target which 

requires a widespread reduction in emissions of greenhouse gasses. However, 

energy-related carbon dioxide emissions are projected to reach 43.2 billion 

metric tons by 2040, a 34% increase compared to the 2012 level (US Energy 

Information Administration, 2016). Given the current dependence of global 

economic activity on the combustion of fossil fuels (approximately 80% of all 

primary energy is derived from oil, coal or natural gas), the development of 

alternative energy sources that are renewable, sustainable and minimally 

disruptive to existing infrastructure is clearly necessary (International Energy 

Agency, 2017, Wojcik et al., 2017).  

 

 The replacement of fossil fuels in the energy mix by biofuels 

(combustible fuels derived from biological material, primarily plant biomass) is 

an attractive proposition. Biofuels are of particular interest in the transport 

sector, where current infrastructure necessitates liquid, energy dense fuels 

(Shell International BV, 2016). The combustion of fossil fuels is deemed carbon-

positive, as fuel combustion releases carbon into the atmosphere that was 

captured by ancient photosynthesis (Aro, 2015). In contrast, biofuels are 

considered carbon-neutral, as carbon dioxide that is removed from the 

atmosphere during plant growth is released during biofuel combustion; there is 

no net increase in atmospheric carbon (Mathews, 2008, Wojcik et al., 2017). 

Although questions concerning the truly carbon-neutral nature of biofuels 

persist given the use of fossil fuels in the production process (Mathews, 2008, 

Aro, 2015), global demand for biofuel is predicted to reach 500 billion litres per 

year by 2040 (Cook et al., 2017).  

 

 Biofuels are typically categorised as either first, second, third or fourth 

generation, depending on the origin of the feedstock and technological methods 

employed during their production, although these classifications have no legal 

or regulatory definition (Hoekman et al., 2012). First generation (1G) biofuels 

are typically defined as those fuels that are produced by converting feedstocks 

that are primarily used as human food-sources, such as sugarcane, corn and 

wheat (Hoekman et al., 2012, Wojcik et al., 2017). Examples of 1G biofuel 
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include ethanol derived from the fermentation of plant sugars (bioethanol) and 

biodiesel derived from the transesterification of triglycerides from vegetable oils 

or animal fats (Hoekman et al., 2012).  

 

 However, the diversion of food crops and the arable land used to grow 

them to biofuel production is controversial, and has led to the “Food vs. Fuel” 

debate (Tenenbaum, 2008, Bryant & Hughes, 2017). Second generation (2G) 

bioethanol and biodiesel aim to mitigate this issue by using lignocellulosic 

feedstock derived from the waste products of agriculture or forestry, or through 

the use of dedicated “energy crops” that do not impinge on human food supply 

and that are capable of growing on non-arable land (Carriquiry et al., 2011).  

Both 1G and 2G bioethanol and biodiesel have been successfully 

commercialised, and are typically available to the consumer as 

petroleum/biofuel blends (Demirbas, 2009).  

 

 Despite the presence of 1G and 2G biofuels in the consumer energy mix, 

the use of such fuels is not without issues. For example, although the use of 

lignocellulosic feedstock in 2G biofuels mitigates “Food vs. Fuel” concerns, 

lignocellulose is highly recalcitrant to degradation and so typically requires 

energy- and chemical- intensive pre-treatment to liberate sugars that are 

subsequently fermented to produce bioethanol (Hess et al., 2007, Wojcik et al., 

2017). Additionally, the hygroscopic nature of ethanol can cause corrosion to 

transportation infrastructure, an issue that can be compounded by the presence 

of contaminants such as halide or chloride ions (Howard, 2017). Biodiesel is 

also mildly hygroscopic and can form waxes at cold temperatures, restricting its 

use in cold climates or at high altitude (Brown et al., 2018). The hygroscopicity 

of bioethanol and biodiesel also reduces their combustion temperature and 

energy density compared to fossil fuels (Oh et al., 2018). As a result of these 

issues, 1G and 2G biofuels are typically restricted to a 10-15% blend with 

petroleum (Howard, 2017). This restriction is known as the blend wall (Tyner, 

2015).  

 

 To circumvent the blend wall, so-called “advanced biofuels” make use of 

biogenic hydrocarbons that are chemically and structurally identical to the fossil 
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fuels that they are intended to replace (Brown et al., 2018). In contrast to 1G 

and 2G biofuels, which use microbes as biocatalysts to convert feedstocks into 

fuel, third generation (3G) biofuels exploit oleaginous microbes as a source of 

naturally occurring hydrocarbons (Wojcik et al., 2017). Algae (Cook et al., 

2017), cyanobacteria (Brown et al., 2018), fungi (Leong et al., 2018) and 

heterotrophic yeasts (Sargeant et al., 2017) have all been identified as natural 

producers of hydrocarbons, and are of considerable academic and industrial 

interest (Cook et al., 2017).   

 

 In contrast to the naturally occurring hydrocarbons that characterise 3G 

biofuels, fourth generation (4G) biofuels make use of synthetic biology for the 

design and construction of fuel-producing pathways (Howard et al., 2013, 

Wojcik et al., 2017). The synthetic biology approach can potentially facilitate 

optimisation of metabolic pathways for the production of tailored fuels or 

platform chemicals that are suited to existing infrastructure and engines 

(Howard, 2017), thus overcoming the blend wall. Additionally, microbes can 

potentially be engineered to degrade lignocellulosic biomass through the 

expression of heterologous saccharolytic enzymes (Bokinsky et al., 2011), 

reducing the need for feedstock pre-treatment.  

 

 If 4G biofuels are to be produced on an industrial scale, careful 

consideration must be given to the choice of host organism. Although model 

organisms such as Escherichia coli and Saccharomyces cerevisiae are 

invaluable for laboratory-scale proof-of-principle studies (Bokinsky et al., 2011, 

Howard et al., 2013), these organisms may prove insufficiently robust for 

industrial-scale production. The development of alternative synthetic biology 

chassis organisms with the relevant characteristics is therefore of considerable 

scientific and industrial interest. Ideally, the chosen chassis organism should 

thrive under the potential environmental extremes (such extreme temperatures, 

pH and resource availability) that characterise large-scale industrial 

bioproduction (Adams, 2016). Additionally, certain organisms possess useful 

native metabolic pathways that are not found in model organisms (Lee & Kim, 

2015). For example, the homologous expression of saccharolytic enzymes 

could facilitate host growth on lignocellulosic biomass, potentially reducing the 
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complexity of the heterologous pathways required to fabricate an industrially 

viable biofuel-producing microbe.  

 

1.2 Geobacillus 
 

 The Geobacillus genus consists of Gram-positive, rod-shaped endospore 

forming bacteria that were initially classified as part of the genus Bacillus 

(Zeigler, 2014, Kananavičiūtė & Čitavičius, 2015). Geobacillus species are 

capable of growth at temperatures between 40 °C and 70 °C (Chen et al., 2015) 

and appear to be globally ubiquitous, with representatives isolated from all 

seven continents (Zeigler, 2014). Geobacillus cultures have been isolated from 

environments as extreme as the Bolivian Andes and the Mariana trench, the 

deepest point in the world’s oceans. Geobacillus species have also been 

extracted from subterranean oil fields and natural gas wells, although their 

presence in such locations may not be endogenous; the drilling process may 

lead to the introduction of bacterial species that are subsequently mistakenly 

identified as native (Struchtemeyer et al., 2011).  

 

 It is hypothesised that such ubiquity may be a result of the spore-forming 

ability of Geobacillus, with life-cycles characterised by extensive growth in 

favourable environments, followed by sporulation and wide spread distribution 

(Hussein et al., 2015). The most commonly reported natural sources of 

Geobacillus, however, reflect the thermophilic nature of the genus; compost 

piles, hot springs, geothermal soils and hydrothermal vents have all yielded 

isolates (Zeigler, 2014).  

 

 Geobacillus species have previously garnered interest for various 

biotechnological applications, typically as a source of thermostable enzymes for 

heterologous expression in mesophilic hosts. However, a number of 

Geobacillus species display key genomic and phenotypic attributes which 

render them potentially applicable for use as potential chassis organisms for 

industrial biotechnology or synthetic biology (Kananavičiūtė & Čitavičius, 2015). 
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 The thermophilic nature of the genus is of particular interest, as large 

metabolic loads, and therefore high temperatures, are generated by 

fermentation at industrial scales. Increased temperatures also serve to reduce 

the risk of biotic contamination and increase the rate of feedstock conversion. 

Furthermore, cooling costs are reduced and the recovery of volatile products is 

simplified (Chen et al., 2015). Additionally, a high growth rate, comparable to 

that of Escherichia coli or Bacillus subtilis (Suzuki et al., 2013), and an ability to 

reach high cell densities mean that Geobacillus species could potentially 

produce large volumes of product from engineered pathways in a relatively 

short time (Kananavičiūtė & Čitavičius, 2015). 

 

 The catabolic versatility of Geobacillus also provides a potential 

advantage with regards to their application in large-scale industrial bio-

production. Species in the genus have the reported ability to metabolise 

pentose and hexose sugars into ethanol, lactate, formate and acetate (Bezuidt 

et al., 2015, Raita et al., 2016, Zhou et al., 2016). Furthermore, G. 

thermoglucosidans DSM2542 is able to utilise cellobiose and short-chain 

oligosaccharides such as xylan (Bartosiak-Jentys et al., 2013). Expression of 

cellulases has additionally been reported in Geobacillus sp. T1 (Assareh et al., 

2012) and Geobacillus sp. R7 (Zambare et al., 2011), and a xylanase has been 

isolated from G. stearothermophilus  and engineered for improved 

thermostability (Zhang et al., 2010).  

 

 The native expression of saccharolytic enzymes, coupled with the 

potential for the heterologous expression of engineered variants, raises the 

possibility of utilising Geobacillus species for the synthesis of desirable 

products, directly fuelled by the catabolism of a cheap, readily available 

lignocellulose-derived feedstock (Bhalla et al., 2014).  

 

 The genetic tractability of Geobacillus is also advantageous, with 

successful engineering of the genus having previously been reported for a 

number of purposes. A highly cited example reports the production of enhanced 

ethanol yields by an engineered strain of G. thermoglucosidans (Cripps et al., 

2009). Ethanol yields were increased by 0.32 g per g of glucose substrate, as 
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compared to wild-type G. thermoglucosidans. Ethanol production was also 

reported at a yield of 0.47 g per g of cellobiose, as was successful fermentation 

of a mixed hexose and pentose feedstock. Subsequent metabolic flux analysis 

of the engineered strain suggested that yield could be increased in fed-batch 

fermentation to as much as 5.2 g ethanol per litre of culture per hour, based on 

growth media containing 12% weight/volume cellobiose (Niu et al., 2015). 

Heterologous Isobutanol production has also been demonstrated in G. 

thermoglucosidans, with yields of 3.3 g per litre of culture from a feedstock 

containing glucose (Lin et al., 2014a).  

 

 Engineering of Geobacillus has been rendered more practical by the 

development of a limited synthetic biology toolkit. One study, for example, 

reported two origins of replication, kanamycin and chloramphenicol selection 

markers, three reporter proteins, a 20 member synthetic promoter library (SPL) 

covering a 100-fold activity range and a four-member RBS library (Reeve et al., 

2016). Additional SPL and RBS libraries (Pogrebnyakov et al., 2017), shuttle 

vectors (Taylor et al., 2008, Bartosiak-Jentys et al., 2013) and transformation 

methodologies (Kananavičiūtė & Čitavičius, 2015) can also be found in the 

literature, as can strategies for the development of gene knock-in and knock-out 

mutants (Cripps et al., 2009, Sheng et al., 2016), although off-target single-

nucleotide polymorphisms and insertion/deletion mutations are not uncommon.  

 

 As a result of the characteristics and burgeoning genetic toolkit 

discussed above, Geobacillus was selected by the sponsor (Shell Research 

Ltd.) as the target host genus for the development of 4G biofuel (Howard et al., 

2013), translating the proof of principle study performed in E. coli to a more 

industrially relevant host.  

 

 The required pathways are complex, involving the coordinated 

expression of nine genes for alkane production. If additional sugar catabolism is 

required, more pathways must be expressed, increasing the requirement for 

different control systems such as a battery of promoter sequences that are 

significantly insulated from endogenous metabolism. Without an array of 

sufficiently characterised parts, the synthetic biology approach of combining 
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genetic modules to confer novel functionality to an organism cannot be applied 

in Geobacillus. Engineering in the strain would therefore remain the ad hoc 

process that has characterised biological engineering in the pre-synthetic 

biology era, with all of the caveats that process implies (Endy, 2005) and  

lacking the abstraction, standards and composition frameworks that define and 

expedite more mature engineering disciplines (Canton et al., 2008). An 

expansion of the Geobacillus synthetic biology toolkit is therefore necessary to 

fully exploit the industrial potential shown by the genus.  

 

1.3 Predictable system output for synthetic biology 
 

 Predictable output is a defining aspiration of synthetic biology. A number 

of factors affect the output from synthetic gene networks to a greater or lesser 

extent, including transgene copy number (Ajikumar et al., 2010), integration into 

the genome or expression from plasmids (Tyo et al., 2009), promoter activity 

(Blazeck & Alper, 2013), ribosome binding sites (Ravasi et al., 2012, Lin et al., 

2014b, Markley et al., 2015), codon bias of the host (Quax et al., 2015), 

transcription rate and tRNA abundance (Angov, 2011), half-life of mRNA 

(Curran et al., 2013), substrate and co-factor availability (Jones et al., 2015), 

adjustment of enzyme kinetics (Bloom et al., 2005), protein scaffolding (Dueber 

et al., 2009) and sub-cellular localisation through the use of microcompartments 

(Parsons et al., 2010, Boyle & Silver, 2012). The use of RNA as a control 

mechanism, either through the application of riboswitches (Mellin & Cossart, 

2015) or toehold switches (Green et al., 2014) has also emerged as a powerful 

tool for pathway control. Each of these aspects can be investigated and 

improved individually and subsequently be integrated by a model, a suite of 

experiments, or, ideally, using the combination of modelling and empiricism that 

defines synthetic biology. 

 

 Controlling transcription is often the simplest way to trigger expression of 

a transgene or synthetic pathway, and constitutive promoters with different and 

predictable activation characteristics are a desirable feature of any synthetic 

biology toolkit.  Indeed, promoters with different and, most importantly, 

predictable effects on transcription may be used to regulate complex gene 
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circuits, balance engineered metabolic pathways and exploit new chassis for 

industrial-scale applications. However, in practice, promoter availability tends to 

be restricted to relatively few sequences (Lu et al., 2009), which do not always 

perform as required and may not necessarily be transferrable to new microbial 

chassis. The fact that many promoters are characterised as merely “weak” or 

“strong” (Ellis et al., 2009) highlights this issue; such definitions are hardly 

sufficient to allow adequate promoter selection for complex pathway 

engineering. 

 

 In lieu of a library of constitutive promoter elements with a broad range of 

activity, inducible promoter elements may appear superficially attractive as a 

possible alternative. By modulating the concentration of inducer, the desired 

level of protein production can, in theory, be achieved (Siegele & Hu, 1997). 

However, although the use of inducible promoter systems has been successful 

in some instances, in others it can prove inadequate. Promoter hypersensitivity 

to the inducer (Hammer et al., 2006), the cost of adding large quantities of 

inducer to an industrial-scale fermenter (Jensen & Hammer, 1998b) or 

heterogeneous expression levels across a population (Khlebnikov et al., 2001) 

all complicate the use of inducible promoters in industrial-scale cultures. 

Consequently, for large-scale production applications, constitutive promoters 

with “hard-wired”, predictable properties are often preferred, and are therefore 

the focus of this study.  

 

1.4 The structure of cis-regulatory elements  

1.4.1 Prokaryotic cis-regulatory elements 
 

 A promoter can be broadly defined as a cis-regulatory element 

containing a suite of key sequence motifs that control the transcription of 

individual open reading frames (ORFs) or operons. In prokaryotes, the structure 

and organisation of natural promoter motifs is relatively well understood (Figure 

1.1). Two conserved hexamers, located at approximately 10 and 35 base pairs 

(bp) upstream of the Transcription Start Site (TSS) serve as key binding regions 

for RNA polymerase (Kanhere & Bansal, 2005). No such conserved motifs have
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Figure 1.1: Schematic representation of a typical prokaryotic promoter 
element. 

 

The Transcription Start Site (TSS) is shown in red. Two conserved hexamers, at 
approximately 10 and 35 bp upstream of the TSS are shown in blue. An 
upstream (UP) element is shown in turquoise. Such regions are typically rich in 
Adenine (A) and Thymine (T) residues, and may not be present in all promoter 
sequences. UP element consensus sequence is as derived by Estrem et al. 
(1998), and consensus regions within the core region are reproduced from 
Blazeck & Alper (2013) and Ross et al. (1998). N represents any 
deoxyribonucleotide. W represents A or T residues. G and C represent Guanine 
and Cytosine, respectively.  The promoter represented in this figure is of 
arbitrary length. The length of promoters for synthetic biology applications is not 
rigidly defined. For example, short sequences such as the 35 bp Anderson 
promoters are available that contain only -10 and -35 motifs (iGEM, 2018). 
Alternatively, promoter sequences of 100 bp or greater containing insulator 
sequences or defined UP elements are also available (Davis et al., 2011). 
 
 
been identified in the region of sequence separating the two conserved regions, 

although a consensus length of 17 bp has been observed in some species (Nair 

& Kulkarni, 1994). Together, the consensus regions and the spacer DNA 

between them is often referred to as the core promoter. 

 

In addition to these core promoter elements, an upstream region is 

present in some promoters. Typically rich in adenine and thymine residues, 

these UP elements boost transcription rate by facilitating binding with the C-

terminal domain of the RNA polymerase α-subunit (Estrem et al., 1998), and 

may also play a role in the subsequent process of transcription initiation, 

including open complex formation (Strainic et al., 1998). 
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 Once transcribed by the RNA polymerase, the mRNA transcript 

istranslated to protein. Interactions between the Ribosome Binding Site (RBS) 

and the ribosomal RNA are key for determining the efficiency of translation 

initiation (Laursen et al., 2005). As such, the judicious choice of RBS represents 

one of the major synthetic biology control points (Reeve et al., 2014).   

 

The role of the core promoter  

 
The importance of consensus regions in conferring promoter activity to a 

sequence is well understood. Randomly generated, 103 bp sequences with no 

promoter activity have been shown to be only one or two mutations away from 

becoming active promoters, with such mutagenesis typically resulting in near-

canonical -35 or -10 regions (Yona et al., 2017).  

 

 Consensus regions are key to transcription initiation due to their 

interactions with RNA polymerase (Figure 1.2). The supply of RNA polymerase 

within a cell is one of the major limiting factors for the rate of translation 

initiation; the efficiency with which a given promoter or group of promoters can 

bind RNA polymerase is therefore a major determinant of promoter activity 

(Browning & Busby, 2004).   

 

 The RNA polymerase enzyme is comprised of subunits ββ’α2ω, with a 

temporary interaction between these core subunits and a σ factor being 

required for the formation of a holoenzyme capable of initiating transcription 

(Browning & Busby, 2004). It is the σ factor that serves to confer promoter 

specificity; by encoding multiple σ factors, bacteria are able to broadly globally 

modulate transcription patterns in response to environmental stimuli through up- 

or down-regulation of specific promoter families. Finer levels of control are 

subsequently achieved by activation or repression of specific transcripts 

through the action of transcription factors (Gruber & Gross, 2003). 

 

 Studies of Thermus aquaticus σA have shown that the anchoring of RNA 

polymerase to the promoter sequence is the result of extensive interactions 

between the protein and the phosphate backbone of the DNA. In particular, 
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Figure 1.2: Schematic representation of the interaction between 
prokaryotic promoter sequence and RNA polymerase holoenzyme. 

 

Promoter consensus regions are shown in dark blue, the upstream (UP) 
element is shown in turquoise and the Transcription Start Site (TSS) is shown in 
red. The RNA polymerase α subunits are shown in pink, β subunits are shown 
in orange and the bound σ factor is shown in yellow. 
 
 

σ factor domains 2.4 and 4.2 bind the -10 and -35 elements respectively 

(Campbell et al., 2002). In addition, consensus sequences may play a part in 

other aspects of transcription initiation. For example, the stabilisation of the 

open complex is a function of promoter elements within and downstream of the 

-10 region and their interaction with σ1 (Ruff et al., 2015). 

 

Once the RNA polymerase has bound to the promoter, large scale 

conformational changes result in the DNA being moved into the active site cleft 

of the enzyme (Ruff et al., 2015). Promoter DNA spanning from the -10 region 

to 2 bases downstream of the TSS is subsequently unwound to form an open 

complex (Gries et al., 2010) in a process known as isomerisation. Thereafter, 

RNA synthesis initiates in an abortive, stochastic fashion, with the polymerase 

releasing short RNA transcripts (fewer than 10 nucleotides) and returning to the 

TSS. Abortive initiation continues until the nascent RNA molecule exceeds a 

critical length of approximately 11 nucleotides, at which stage the RNA 

polymerase successfully clears the promoter sequence (Saecker et al., 2011). 

  

The efficiency of promoter clearance is, in part, a function of the 20-

nucleotide sequence immediately downstream of the TSS (Davis et al., 2011). 
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Post-escape, the sigma factor is released and transcript elongation can 

proceed.  

 

Although important in the initiation of prokaryotic transcription, it is by no 

means requisite for a promoter to have both consensus elements in order to be 

functional, and it is rare for an individual promoter sequence to have a fully 

canonical set of conserved domains (Browning & Busby, 2004). In some 

instances, for example, the presence of an extended -10 element is sufficient to 

offset the absence of σ domain 4, and therefore interactions between the σ 

factor and -35 consensus region, likely due to interactions between σ domain 3 

and the extended -10 region (Brown et al., 1997). The activity of a promoter 

with sub-optimal consensus sequences can also be increased through the 

actions of activating transcription factors, which can recruit RNA polymerase to 

the promoter (Browning & Busby, 2016).  

 

Furthermore, it appears that certain positions within the consensus 

sequences are of greater importance than others; in the -35 region of E. coli 

promoters, for instance, -35T, -34T and -33G are the most heavily conserved 

residues (Lisser & Margalit, 1993). Also in E. coli, within the -10 region an 

Adenine residue at -11 is thought to play a key role in open complex formation 

(Cook & deHaseth, 2007), with a Thymine residue at -7 also thought to be key 

in stimulating promoter melting (Heyduk & Heyduk, 2014). It should be noted, 

however, that neither residue is mandatory, with similar initiation kinetics being 

observed when the -10 element as a whole is AT rich (Heyduk & Heyduk, 

2014). 

 

The DNA sequence between the two consensus regions does not 

typically contain any conserved motifs, with spacer sequence length instead 

regulating spatial alignment of the consensus regions and therefore facilitating 

interactions between promoter DNA and the RNA polymerase (Sztiller-Sikorska 

et al., 2011). Optimal spacer length is therefore key in determining the efficiency 

of both RNA polymerase binding and open complex formation. It is 

hypothesised that the inefficiency of many natural promoter sequences is, at 

least in part, a result of sub-optimal spacer length. Such naturally inefficient 
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promoters in many cases therefore rely on additional promoter motifs, such as 

UP elements, or the activity of activator proteins, to boost transcription (Adhya 

et al., 1993). In addition, the GC content of the spacer has also been shown to 

play a role in determining the expression level of the gene of interest (Deng et 

al., 2018).  

 

The role of upstream elements 

 

 In certain promoters, transcription levels are boosted by a region of DNA 

sequence located upstream of the -35 consensus region termed the UP 

element (Ross et al., 1993). The most widely studied wild-type UP element, that 

of the E. coli rrnB P1 promoter, for example, spans positions -40 to -60, with two 

key motifs centred at -42 and -52, and has been shown to increase promoter 

activity by approximately 30-fold (Ross et al., 1993).  

 

 Given the role of UP elements in boosting transcription and their 

apparent modularity (Rao et al., 1994), the inclusion of such elements in 

synthetic promoter sequences is an interesting prospect. In one study, a 

synthetic consensus 24 bp UP element was placed immediately upstream of 

the -35 sequence of 17 constitutive E. coli promoters from the Anderson 

promoter collection, and the resulting synthetic promoters were characterised 

upstream of a GFP reporter. The presence of said UP element increased 

promoter activity in 15 out of the 17 characterised sequences by between 

approximately one- and 95-fold compared to the core promoter alone, with the 

percentage increase typically being greatest in promoters of moderate strength 

(Yan & Fong, 2017). 

 

 Interestingly, UP element insertion also appeared to reduce the 

stochastic fluctuation in promoter activity that can prove a hindrance when 

designing synthetic constructs and pathways (Yan & Fong, 2017). 70% of 

characterised promoter constructs displayed a statistically significant decrease 

in the coefficient of variation for GFP fluorescence when an UP element was 

placed upstream of a core promoter, as compared to the core promoter alone. 

Reduced expression variability may be a consequence of increased binding 
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affinity between RNA polymerase and promoter, and hence tighter control of 

mRNA levels (Yan & Fong, 2017).  

 

 However, a study of synthetic promoter sequences in Pseudomonas 

putida has shown that the presence of UP elements in a promoter is not a 

guarantee of increased protein expression. The integration of a rRNA promoter 

UP element either boosted observed fluorescence from the reporter protein 

mNeonGreen by up to five-fold, or reduced fluorescence by up to 23-fold, 

dependent on the promoter sequence into which the UP element was integrated 

(Elmore et al., 2017). Additionally, the location at which UP elements are 

inserted into a synthetic promoter sequence must be carefully considered. 

Displacement of the E. coli rrnB P1 UP element by as little 5 bp is sufficient to 

abolish UP element dependant transcription (Meng et al., 2001). 

 

The role of the Ribosome Binding Site 

 

 Post-transcription, the control of translation initiation represents a major 

control point for synthetic biology. The Ribosome Binding Site (RBS), located 

upstream of the start codon in the 5’ untranslated region of the mRNA 

transcript, facilitates the initiation of translation by recruiting ribosomes to the 

mRNA transcript, specifically through hybridisation of the RBS Shine-Dalgrano 

sequence to the 16S ribosomal RNA (Shine & Dalgarno, 1974, Boyle & Silver, 

2012, Singh, 2014). By altering the RBS on a given mRNA transcript, the 

efficiency of translation initiation, and therefore protein output, can be modified 

(Ang et al., 2013). Given that, in most instances, initiation is the rate limiting 

step in prokaryotic translation (Gualerzi & Pon, 1990, Laursen et al., 2005), the 

judicious selection of RBS is a key consideration for regulating the output of 

synthetic pathways.  

 

 RBS sequences for synthetic biology applications can either be 

molecularly or bioinformatically identified from the species or genus of interest, 

or random mutation of well understood sequences can be used to generate 

libraries of RBS sequences with a range of activity levels (Anderson et al., 

2006, 2007). To facilitate the prudent selection of RBS for synthetic biology 
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projects, a number of computational models have also been developed that 

design custom RBS sequences that provide the desired translation initiation 

rate for a specified gene (Boyle & Silver, 2012, Reeve et al., 2014). The most 

widely cited example, the RBS calculator developed by Salis et al., is based on 

a thermodynamic model that quantifies the strength of interactions between the 

ribosomal RNA and the mRNA transcript and therefore predicts the translation 

rate of a given RBS sequence (Salis et al., 2009).  

 

1.4.2 Eukaryotic promoters  
 

Eukaryotic promoters are more complex than their prokaryotic 

counterparts (Figure 1.3), with localisation of the transcriptional apparatus 

resulting from interactions between highly specific transcription factors, the 

promoter elements and co-activators (Hahn & Young, 2011). Broadly speaking, 

two regions are present: a core promoter element and an upstream enhancer 

(Blazeck & Alper, 2013). Both elements may be modified in order to modulate 

expression levels. The core region provides the basal sequence necessary for 

transcription initiation and may contain key motifs, the most widely studied of 

which is the TATA box, which typically occurs 40 to 120 bp upstream of the TSS 

(Hampsey, 1998). However, such motifs are by no means requisite for 

transcription initiation, as TATA boxes have been shown to appear in only 20% 

of Saccharomyces cerevisiae promoter elements (Basehoar et al., 2004).  

 

Upstream of the core promoter, the enhancer element serves to localise 

transcription factors, with the interactions between bound transcription factors 

and the transcriptional machinery serving as a determinant of promoter strength 

and control (Blazeck et al., 2012). Transcription factor binding sites do not 

display uniform distribution across the enhancer element. The highest 

concentration of such binding motifs has been reported between 50 and 150 bp 

upstream of the TSS (Hughes et al., 2000), although they may be present as 

much as 500 bp upstream of the TSS.   
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Figure 1.3: Schematic representation of a typical Saccharomyces 
cerevisiae promoter element. 

 

The Transcription Start Site (TSS) is highlighted in red, and the core promoter 
element is shown in blue. Diagonal lines represent the area of the core 
promoter in which TATA boxes are most commonly found. The upstream 
enhancer is shown in turquoise, with transcription factor binding sites 
represented by yellow boxes in arbitrary positions.  
 

 

1.5 Characteristics of cis-regulatory elements for synthetic biology  
 

From an industrial perspective, it is preferable to have a production 

system that displays little variation, even if the overall output of that system is, 

on average, slightly less than that of an alternative that displays irregularities; 

synthetic biology aims to be boringly predictable rather than wonderfully 

complex. 

 

 Candidate cis-regulatory elements for synthetic biology must therefore 

be well characterised and yield homogeneous, consistent output, while also 

being insulated from background metabolisms and molecular control systems. 

However, consistency is often confounded by the inherently stochastic nature of 

gene expression, which subjects both cis-regulatory elements and any 

downstream proteins used in their characterisation to large degrees of noise 

(Rudge et al., 2016). Expression noise can be broadly classified as either 

intrinsic (a consequence of the properties of the regulatory sequence and 

downstream gene) or extrinsic (variables which are not a direct result of the 

regulatory sequence but impact upon it, such as cellular concentrations of RNA 

polymerase or mRNA degradation) (Elowitz et al., 2002). A useful example of 
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the stochasticity of gene expression is the all-or-nothing phenomenon (De Mey 

et al., 2007), wherein expression reaches the expected level in a sub-set of the 

population, whilst the remaining cells display no expression. Well understood as 

a characteristic of inducible promoter systems (Siegele & Hu, 1997, Keasling, 

1999, Morgan-Kiss et al., 2002), all-or-nothing performance may also affect 

some constitutive promoter elements.  

 

 Multiple approaches are available for the identification of potentially 

applicable natural promoters, or for the development of synthetic constitutive 

promoter elements. These range from the more conventional PCR-based 

techniques and hybrid promoter engineering to the use of computational 

analysis and modelling for the de novo design of promoter elements with 

defined functionality. 

 

1.6 Endogenous promoter sequences 
 

The promoters available for use in synthetic systems have generally been 

limited to those endogenous elements isolated from model organisms, for 

instance, the Escherichia coli lac promoter and derivatives thereof (de Boer et 

al., 1983, Makoff & Oxer, 1991, Jensen et al., 1993, Terpe, 2006), and the 

arabinose-inducible PBAD (Cagnon et al., 1991, Guzman et al., 1995, Wycuff & 

Matthews, 2000) promoter.  

 

Phage genomes can also be used to generate novel promoters.  For 

example, the pL promoter, isolated from bacteriophage lambda, provides 

medium to high expression levels, and is tightly thermally-regulated by the cI 

repressor (Terpe, 2006, Valdez-Cruz et al., 2010). pL has been successfully 

employed to increase yield of various proteins in E. coli expression systems 

(Mellado & Salas, 1982, Simons et al., 1984, Elvin et al., 1990).  Similarly, the 

T7 RNA Polymerase-based promoter system, also initially isolated from 

bacteriophage, has been widely adopted (Studier & Moffatt, 1986, Terpe, 2006). 

 

 Perhaps unsurprisingly, the native genome remains, to date, the most 

commonly mined source of promoter elements for engineering application in 
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Geobacillus. The G. kaustophilus sigA promoter, for example, has been used 

for the heterologous expression of an α-amylase and a β-galactosidase 

integrated into the G. kaustophilus HTA426 genome (Suzuki et al., 2012).  

 

 Additionally, the promoter of the lactate dehydrogenase (ldh) gene has 

been isolated from both G. thermodenitrificans and G. stearothermophilus and 

utilised for heterologous expression. The ldh promoter from G. 

thermodenitrificans, for example, was used to facilitate heterologous production 

of Isobutanol in G. thermoglucosidans. Expression of the genes for a 

Lactococcus lactis ketoisovalerate decarboxylase, a G. thermodenitrificans 

ketol-acid reductoisomerase and a Bacillus subtilis acetolactate synthase as an 

operon under the control of the G. thermodenitrificans ldh promoter resulted in a 

yield of 3.3 g Isobutanol per litre of culture, when grown on 0.2 M glucose (Lin 

et al., 2014a). Likewise, the G. stearothermophilus DSM2027 ldh promoter was 

used for the upregulation of the G. thermoglucosidans pyruvate dehydrogenase 

operon, resulting in increased ethanol yields (Cripps et al., 2009).  

 

 Expression levels under the G. stearothermophilus ldh promoter have 

been shown to be highly dependent on culture aeration (Bartosiak-Jentys et al., 

2012), with oxygen dependence also evident in the G. thermodenitrificans ldhA 

promoter (Figure 1.4). Given the largely anaerobic nature of fermentation, the 

ability to induce enzymatic expression under oxygen limitation may be 

advantageous in certain scenarios (Kananavičiūtė & Čitavičius, 2015). 

However, the inherent variability of ldh promoter activity renders its use 

inadequate for more complex metabolic engineering, where constitutive, 

predictable output under a range of environmental conditions is required.  

 

 In addition to the constitutive Geobacillus promoter sequences discussed 

above, a number of inducible systems have also been identified in the genus, 

such as the temperature sensitive G. stearothermophilus sgsE promoter. 

Natively responsible for the induction of surface layer protein when culture 

incubation temperature is increased, the promoter was reported to upregulate 

expression of enhanced GFP (EGFP) in B. subtilis when temperature was 

increased from 28 °C to 45 °C (Novotny et al., 2008).  
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Figure 1.4: G. thermoglucosidans cultures expressing GFP under the 
control of the G. thermodenitrificans ldhA promoter. 

 

G. thermoglucosidans was cultured in non-baffled (A) or baffled (B) 250 ml 
conical flasks. Cultures were incubated at 60 °C, with shaking at 220 rpm for 24 
h, from an intial OD 600 nm of 0.1. Growth media was modified Lennox Broth 
(mLB: 10 g l-1 tryptone, 5 g l-1 NaCL, 5 g l-1 yeast extract, 1.05 mM C6H6NO6, 
0.91 mM CaCl2., 0.59 mM MgSO4 and 0.04 mM FeSO4).  
 
Baffles increase culture agitation, and therefore oxygen transfer. Increased 
GFP expression is clearly visible when cultures are grown in non-baffled flasks, 
highlighting the oxygen dependence of the G. thermodenitrificans ldhA 
promoter.  
 
 

 Ligand inducible promoter sequences in Geobacillus have also been 

reported, with a particular emphasis in the literature on sugar-inducible systems. 

Analysis of the G. kaustophilus HTA426 genome, for example, resulted in the 

isolation of promoters inducible through the addition of D-galactose, lactose, 

mannose and myoinositol (Suzuki et al., 2013). Similarly, the G. 

stearothermophilus NUB3621 surP promoter has been shown to be sucrose-

inducible when cloned upstream of an α-galacosidase gene (Blanchard et al., 

2014), although α-galacosidase activity was seen in the absence of inducer. 

Whilst the surP promoter may be therefore applicable in instances where 
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upregulation of a gene of interest is required, it may prove inadequate in 

situations where tight control is necessary.  

 

 A cellobiose-inducible promoter, Pβglu, isolated from upstream of the 

operon encoding the G. thermoglucosidans DSM2542 cellobiose-specific 

phosphotransferase system, has also been reported. Inducer-dependent 

promoter activity was confirmed by characterisation with the reporter gene 

pheB, with an approximately 600-fold up-regulation of catechol C2,3-

dioxgenase activity in the presence of cellobiose observed in G. 

thermoglucosidans DSM2542. However, Pβglu provided inadequate levels of 

promoter activity when used to express a second gene, a Thermotoga maritima 

endoglucanase. A constitutive alternative isolated from upstream of the G. 

thermoglucosidans uracil phosphoribosyltransferase gene was therefore used 

in the place of Pβglu in a final engineered pathway (Bartosiak-Jentys et al., 

2013). This serves to highlight the risk in selecting a promoter based solely on 

characterisation upstream of a single reporter protein; the inherent context-

dependency of promoter elements renders such an approach inadequate.  

 

1.7 Molecular approaches to producing synthetic promoter libraries  
 

 Historically, identification of natural bacterial promoter elements has 

relied upon characterisation experiments consisting of labour intensive cloning 

of putative promoters upstream of a reporter gene (Zhou et al., 2017). Whilst 

large numbers of native promoter elements have been identified in this manner, 

engineering projects have typically relied on promoters from the small subset of 

thoroughly characterised, widely employed sequences such as those discussed 

above. Whilst the success of projects employing these promoters cannot be 

doubted, the lack of diversity in promoter choice may be restrictive; just 

because a given promoter is readily available to the experimenter it does not 

necessarily follow that said promoter will be optimal in the context of interest.  

 

Additionally, the inherent characteristics of natural promoter sequences 

render their use in synthetic biology applications potentially problematic. Natural 

promoter activity is often context-specific (Blazeck & Alper, 2013) and subject to 
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interaction with a multitude of regulatory proteins, complicating prediction of 

activity levels under varying conditions (Collado-Vides et al., 1991). As a result 

of these inherent limitations, researchers have increasingly turned to libraries of 

Synthetic Promoter Libraries (SPLs) to meet their needs. The most commonly 

employed methods for SPL generation are discussed below, and summarised 

in  Figure 1.5. 

 

1.7.1 Saturation Mutagenesis of Flanking Regions 
 

A key method of forming SPLs is based on the observation that the 

flanking regions surrounding consensus motifs within the promoter sequence 

have a role in determining activity (Jensen & Hammer, 1998a).  Degenerate 

oligonucleotides allow known consensus motifs to be maintained while the 

flanking regions are mutagenised, leading to altered promoter activity. Promoter 

function is maintained in the synthetic sequences due to the preservation of the 

key consensus motifs, with altered expression levels likely being the result of 

minor changes in DNA confirmation within the randomised flanks (Jensen & 

Hammer, 1998a). For example, saturation mutagenesis of flanking regions 

(SMFR) was successfully used to produce a SPL with a 400-fold activity range 

in Lactococcus lactis, although some of the diversity in promoter activity levels 

was a result of synthesis errors in the consensus sequences and alteration to 

flank length (Jensen & Hammer, 1998a, 1998b).  

 

 However, the initial approach taken to saturation mutagenesis by 

Jensen and Hammer does not take into account the context-dependant nature 

of promoter activity (Jensen & Hammer, 1998a, 1998b). Consequently, current 

SPL generation uses a single PCR stage, with degenerate oligonucleotides 

coupled to either a full-length or truncated version of the gene that the promoter 

is intended to drive. This improvement allows for ectopic analysis or 

replacement of a wild-type promoter with a synthetic alternative, while 

maintaining the 5’ mRNA of the target gene (Solem & Jensen, 2002, Hammer et 

al., 2006). 
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 Figure 1.5: Summary of commonly employed molecular approaches for 
the production of synthetic promoter libraries in A) Prokaryotes and B) 

Eukaryotes. 

 

A) Schematic representation of a typical prokaryotic promoter sequence shown, 
with consensus sequences highlighted in dark blue, and the Transcription Start 
Site in red. Saturation Mutagenesis of Flanking Regions (SMFR) employs 
degenerate oligonucleotides for the production of SPLs, wherein the consensus 
regions are maintained whilst the flanking regions are mutated (mutations are 
represented by pink circles). In contrast, error prone PCR (epPCR) results in 
the random introduction of mutations across the entire promoter sequence, 
including the consensus regions. 
 
B) Schematic representation of a typical eukaryotic synthetic promoter. A core 
sequence (shown in dark blue) with known promoter activity is combined with 
multiple Upstream Enhancer Elements (UEEs) to achieve the desired strength. 
Figure adapted from Blazeck & Alper (2013).  
 
 
 SMFR has been successfully applied in a variety of prokaryotes and 

eukaryotes, including Cornebacterium glutamicum (Rytter et al., 2014) and 

Streptomyces coelicolor (Sohoni et al., 2014), yielding robust libraries with 

broad expression profiles.  The methodology is also applicable to S. cerevisiae, 

wherein screening of an initial large library of colonies ultimately yielded 20 

characterised promoters, displaying expression levels of yeast-enhanced green 
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fluorescent protein (GFP) that varied by approximately 22-fold (Ellis et al., 

2009).  

 

 In a separate study, a selection of constitutive promoters was initially 

isolated from the S. cerevisiae genome, and expression levels were 

subsequently characterised using expression profiles available from public 

databases. The promoter of the gene PFϒ1 was chosen as a starting-point for 

its robust expression profile (Blount et al., 2012). Knowledge of PFϒ1 structure 

enabled identification of a rDNA enhancer-binding protein and a ploy-dT that 

were important for transcription initiation (Angermayr et al., 2003). These 

regions were therefore held constant whilst a 48 base pair (bp) section of the 

promoter core was randomised, providing a library of 36 promoter elements with 

a broad range of expression levels.  

 

It must be noted that none of the new sequences provided higher 

expression levels than the original PFϒ1 promoter (Blount et al., 2012). This 

inability to produce a synthetic promoter with higher expression levels than a 

natural alternative was also reported in Francisella novicida (McWhinnie & 

Nano, 2013). 

 

A SMFR-type approach has also been successfully employed in the 

generation of a collection of synthetic promoter sequences with potential cross-

genus applicability (Yang et al., 2017c). The starting point was the strong 

synthetic minimal promoter Pmin, from S. cerevisiae. Given that the -35 and -10 

consensus sequences of E. coli and B. subtilis are identical, Pmin required only 

four insertion mutations and one substitution to encode consensus regions for 

both species and a 17 bp spacer. The resulting promoter displayed comparable 

activity to that of Pmin when characterised in S. cerevisiae, and had activity 

levels comparable to existing “strong” promoters in both E. coli and B. subtilis. 

Subsequent mutation of the flanking regions and library screening yielded three 

characterised promoter sequences, with a range of expression levels covering 

approximately an order of magnitude (Yang et al., 2017). Crucially, all 

promoters maintained their relative activity levels across each of the three 
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species of interest, opening up possibilities for potential cross-host pathway 

optimisation. 

 

SMFR has also been applied in Geobacillus, with the “strong” promoter 

from the Geobacillus sp. GHH01 groESL operon being mutagenised 

(Pogrebnyakov et al., 2017). The region of the promoter responsible for 

temperature dependent expression of the operon was removed, and the 

flanking regions randomised, with selected bases immediately up and 

downstream of the consensus motifs being limited to Adenine or Thymine 

residues only. The groESL RBS was left unaltered. Promoter elements were 

cloned upstream of superfolder GFP (sfGFP) and characterised in G. 

thermoglucosidans strain C56-YS93, resulting in a library of 17 sequences with 

a reported 76-fold activity range.  

 

A separate study also used the Geobacillus sp. GHH01 groESL promoter 

as the starting sequence for the generation of an SPL by SMFR (Jensen et al., 

2017). In this instance, the SPL was used for the expression of G. 

stearothermophilus β-galactosidase BgaB in G. thermoglucosidans. A five-fold 

variation in activity levels was observed across 28 characterised variants.  

 

Although SMFR has successfully provided many new promoters, the 

technique requires labour intensive cloning and an a priori knowledge of 

promoter structure in the organism of interest, something that may not be 

immediately available in industrially relevant microbes.  Furthermore, as many 

libraries use composite promoter scaffolds as a starting point, establishing a 

definitive wild-type reference expression baseline is impossible.  Definitively 

stating whether SMFR will improve wild-type expression capability pre hoc, is 

therefore problematic (Blazeck & Alper, 2013). Additionally, by restricting 

mutagenesis to only the flanking regions, SMFR fails to take into account 

alterations to consensus sequences, which are known to play a significant role 

in modulating expression strength.  
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1.7.2 Error-prone PCR 
 

Generating a SPL by applying error-prone PCR (epPCR) to an entire 

promoter sequence obviates any a priori knowledge of functional motif location 

and can potentially result in promoters with entirely new characteristics (Blazeck 

& Alper, 2013).   

 

For example, the epPCR methodology was successfully used to 

mutagenise a bacteriophage PL-λ promoter. Promoter mutants were cloned 

upstream of a GFP coding sequence and transformed into E. coli, resulting in a 

library containing approximately 9,000-12,000 functional clones (Alper et al., 

2005, Fischer et al., 2006).  Visual analysis of the transformants was initially 

used to identify 200 clones that covered “a wide range of fluorescence 

intensity”. Subsequent cytometric analysis resulted in the identification of 27 

clones, representing 22 discrete promoter sequences, which gave homogenous 

expression levels. Thorough characterisation of these 22 promoters resulted in 

a promoter library which was successfully employed to modulate levels of 

phosphoenolpyruvate carboxylase and lycopene production in E. coli (Alper et 

al., 2005). The technique has also been successfully applied in yeast (Nevoigt 

et al., 2006). 

 

epPCR for promoter production has also been employed in Geobacillus 

(Reeve et al., 2016). Here, the “strong”, 245 bp, constitutive wild-type promoter 

pRpls from the G. thermoglucosidans genome was mutagenised, and 

amplicons were subsequently combined with the wild-type RBS sequence from 

the G. thermoglucosidans PheB gene. The complete cis-regulatory elements 

were characterised using sfGFP as a reporter. Screening of 100 colonies 

resulted in a characterised library of 20 promoter sequences, with a range of 

expression strengths of approximately 100-fold and a single promoter sequence 

of greater strength than wild-type pRpls. Further modulation of gene expression 

was subsequently achieved by replacing the wild-type RBS sequence with 

alternatives designed using the RBS calculator software tool developed by the 

Salis lab (Salis et al., 2009). 
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However, although corrected for media autofluorescence, the data as 

reported by Reeve et al. lacked a true negative control such as would have 

been provided by transformants containing an empty vector. It is therefore 

difficult to ascertain whether several of the weaker members of the promoter 

library are truly active.  

 

Additionally, although the rate at which mutations were incorporated into 

the promoter sequence was reported as approximately 10% (Reeve et al., 

2016), further analysis of the published promoter library revealed that a number 

of promoters were mutated at a much lower rate. For example, three promoter 

sequences displayed significantly different activity levels to the wild-type pRpls 

promoter, despite differing from the wild type by only one base pair at the 

sequence level. This result highlighted the complexity of the promoter design 

space, where relatively minor modifications at the sequence level can have 

significant impacts on the overall output of a system. High levels of sequence 

homology also increase the risk of homologous recombination between the 

mutated promoter sequence and the wild-type original, which remains within the 

G. thermoglucosidans genome (Pogrebnyakov et al., 2017).  

 

Despite these successful examples, the epPCR approach to SPL 

production has certain limitations:  A reliance on a selection of a small subset of 

colonies for further analysis (Alper et al., 2005, Yim et al., 2013) renders 

discovery of a true optimum problematic. Moreover, the extensive screening 

required to isolate said subset should not be underestimated; it is typical for 

initial libraries of hundreds or thousands of bacterial colonies to ultimately yield 

relatively few fully characterised promoters.  Both these problems become less 

of an issue if visual selection of colonies is replaced by high-throughput 

analytical techniques such as fluorescent assisted cell sorting and/or imaging 

cytometry, but they remain a non-trivial consideration. 

 

1.7.3 Hybrid promoter engineering  
 

In addition to the two mutagenic techniques discussed above, the 

generation of synthetic promoters through hybridisation of existing promoter 
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elements provides an alternative strategy for promoter genesis.  More 

commonly employed in eukaryotes, hybrid promoter engineering combines 

minimal core promoter elements with various combinations of modular 

upstream activating sequences (UAS).   

 

Blazeck et al. demonstrated the applicability of this approach to promoter 

design in S. cerevisiae, by showing that the addition of UAS to a core promoter 

resulted in increased expression levels compared to a wild-type baseline 

(Blazeck et al., 2012). A roughly linear relationship was observed between the 

number of UAS modules added and promoter strength, with the addition of four 

such elements boosting expression of a weak constitutive promoter to levels 

comparable with the strongest endogenous promoter (Blazeck et al., 2012). The 

magnitude of transcriptional increase was shown to depend both on the core 

element and UAS, but all core promoters were amenable to improvement 

(Blazeck et al., 2012).  

 

1.8 Computational methods for promoter discovery and design 
 

 In addition to the molecular methods for promoter discovery and SPL 

production discussed above, modern in silico techniques have broadened the 

promoter discovery pipeline. The proliferation of high quality “omics” data sets, 

for example, has served to expedite the discovery of endogenous promoters in 

a range of species, whilst mathematical abstraction of promoter sequences in a 

number of model organisms has expanded the promoter design space to allow 

for de novo design of synthetic promoter elements.  

 

1.8.1 In silico, high-throughput discovery of endogenous promoters  
 

Modern bioinformatics based approaches have rendered the discovery of 

large numbers of putative transcription control elements relatively trivial. 

BPROM software, for example, identifies putative promoter sequences 

regulated by E. coli sigma factor σ70, based upon the presence and nucleotide 
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composition of functional motifs, with a claimed recognition accuracy of 80% 

(Solovyev & Salamov, 2011).  

 

Although motif-based predictive models have proved successful for a 

limited number of model organisms, they may not always prove immediately 

applicable in non-model organisms, where understanding of species-specific 

regulatory motifs may be minimal (Umarov & Solovyev, 2017). Machine learning 

algorithms may present an alternative approach in such instances. 

Convolutional Neural Networks (CNN), for example, have been used to infer 

promoter activity in both prokaryotic and eukaryotic species at the sequence 

level (Umarov & Solovyev, 2017), thus obviating the need for detailed 

knowledge of motif structure and location. The resultant models were 

subsequently applied to classification of promoter and non-promoter 

sequences. Species-specific classification accuracy was observed, with error 

rates broadly comparable to those reported by BPROM (Solovyev & Salamov, 

2011).  

 

The proliferation of high-quality “omics” data sets has also served to 

broaden the promoter discovery pipeline. In Streptomyces coelicolor, for 

example, screening of transcriptome microarray data for genes whose 

expression profile remained constant under multiple growth conditions resulted 

in the identification of 166 putative global promoter elements in a species where 

the promoter toolbox was previously lacking (Li et al., 2015). The same 

approach has been applied in S. albus, where 32 candidate promoters were 

identified, ten of which exhibited stronger activity than the strongest previously 

available Streptomyces promoters when characterised upstream of the reporter 

gene xylE (Luo et al., 2015). 

 

Transcriptome analysis has also been successfully applied for the 

identification of promoter elements in E. coli (Mendoza-Vargas et al., 2009), 

where RNA-seq data aligned against the genome permitted robust identification 

of transcription start sites. Using the observation that the distance between 

promoter sequences and transcription start sites is highly conserved, this 

process permitted the identification of approximately 1,500 genome regions 
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likely to contain promoter sequences. These regions were subsequently 

analysed using a Position Weight Matrix (PWM) for the identification of probable 

promoter motifs and to determine which E. coli sigma factor was most likely to 

be responsible for their regulation. In total, approximately 800 putative promoter 

elements were reported (Mendoza-Vargas et al., 2009). 

 

Although the in silico approaches described above have certainly provided 

new promoters, they do not represent a systematic, theoretical examination of 

the promoter design space.  If, for arguments sake, a promoter sequence is 100 

bp in length, there are 4100 potential promoter sequences. Therefore, although 

the best sequence discovered by screening of natural promoter sequences may 

be sufficient for some experimental purposes, it is possible that other optima 

are present in a region of promoter design space which nature has not 

explored. 

 

Mathematical models that are capable of deciphering the effect of 

individual DNA bases and motifs, or predicting promoter activity level in 

advance of in vivo characterisation have, in this context, considerable potential 

(Jensen et al., 2006). Conventionally, the use of computational techniques in 

pathway design and optimisation has been limited to post hoc data analytics 

(Ellis et al., 2009). However, computational modelling for the design and 

optimisation of biological systems is becoming more widespread, and a number 

of computational methodologies are available to facilitate the de novo design of 

synthetic cis-regulatory sequences. Given that the strength of the cis-regulatory 

sequence is one of the key determinants of system output, the potential ability 

of mathematical approaches to accurately determine promoter activity has 

broad reaching implications for the field of synthetic biology. The application of 

computational modelling to promoter design can potentially enhance and 

accelerate the design phase of the synthetic biology design-build-test cycle, and 

ultimately enhance our fundamental knowledge of genetic regulation in complex 

systems. 
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1.8.2 Position weight matrix models 
 

 Position weight matrix (PWM) models have been widely applied for the 

detection of transcription factor binding sites (Stromo, 2000, Sinha, 2006), and 

have also shown some promise in prediction promoter strength. By breaking 

promoter sequences down into constitutive motifs, PWM models were able to 

predict the strength of E. coli core promoter sequences recognised by sigma 

factor σE to a relatively high degree of accuracy (Rhodius & Mutalik, 2010). The 

core promoter PWM was subsequently combined with a score describing the 

activity of upstream elements to provide a model capable of predicting the 

strength of entire promoter sequences (Rhodius et al., 2012). In addition to this 

predictive power, PWM models can potentially provide increased understanding 

of promoter structure, something that is often limited in novel microbial chassis. 

 

 Although PWM models have the potential to be applied to de novo 

sequence design, and their application for the pre hoc determination of strength 

in certain promoter families should not be overlooked, they are not without 

limitations. PWMs may prove inadequate for modelling in promoter families with 

a less conserved nature than those that interact with σE, as poorly conserved 

sequences require greater complexity within the model (Rhodius & Mutalik, 

2010). Additionally, by assuming that the contribution of individual nucleotides 

to DNA-protein binding is independent and additive (Rhodius et al., 2012), 

PWMs fail to account for the effect of interactions between positions. 

 

  Because of these potential limitations, the application of PWMs in novel 

microbial chassis, where knowledge of interactions between proteins and 

promoter sequences might be limited, is potentially challenging. PWMs should 

therefore be superseded in such situations by computational techniques that do 

not rely to such an extent on a priori knowledge of the system to which they are 

to be applied. Statistical models and machine learning approaches provide 

attractive alternatives in this instance, as they obviate the requirement for a 

priori understanding of the complex biological mechanisms that drive promoter 

activity (Bedbrook et al., 2017). 
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1.8.3 Partial Least Squares regression  
 

 Partial Least Squares regression (PLS, alternatively referred to as 

Projection to Latent Structures) is a family of statistical methods that combine 

dimensionality reduction and linear regression to infer the relationship between 

multiple variables (Rosipal & Krämer, 2006). PLS has been successfully applied 

for modelling in a broad range of fields, including economics, genomics, political 

science and spectroscopy (SAS Institute Inc., 2016a). PLS models cope well 

with high dimensionality, and are particularly suited to dealing with “squat” data 

sets, where the predictors outnumber the observations. The ability to deal with 

high levels of correlation between predictors, known as multicollinearity, is also 

a feature of PLS algorithms. Experimental practicalities mean that the number 

of characterised cis-regulatory sequences that are available for model 

construction is unlikely to outnumber the number of nucleotides in a promoter 

sequence. Furthermore, the presence of conserved motifs within promoter 

sequences makes high levels of multicolinearity likely. The inherent 

characteristics of PLS therefore make it an attractive choice for the modelling of 

promoters.  

 

 The use of PLS modelling to quantitatively link DNA sequence to 

function is not a new concept (Jonsson et al., 1993), although as a method for 

the generation of synthetic promoters it remains underutilised. In a pioneering 

study, 25 E. coli promoters were analysed using a Partial Least Squares (PLS) 

methodology, resulting in a statistical model that inferred the contribution of 

each individual nucleotide at any given position in the DNA sequence. In order 

to test the model, two synthetic sequences with high predicted activity levels 

were synthesised.  The -35, -10 and +1 motifs were determined using the 

consensus sequence of the training set of 25 promoters, whilst the remainder of 

the synthetic sequences were determined using regression coefficients 

provided by the modelling process (Jonsson et al., 1993). 

 

 In vivo characterisation of the synthetic promoters revealed activity 

levels within approximately 8% of the strength predicted by the model.  

Furthermore, the synthetic sequences were shown to provide higher expression 
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levels than any of those sequences found within the training set (Jonsson et al., 

1993). The application of PLS models for the design of synthetic promoter 

sequences can therefore be considered, in this respect, superior to molecular 

approaches to promoter production, where the activity levels of mutagenised 

sequences are rarely greater than the wild-type starting point.  

 

 Similar statistical methods were later applied to quantitatively link 

promoter DNA sequence and function for a library of synthetic E. coli promoters 

that were generated through SMFR (De Mey et al., 2007). The generated PLS 

model was able to predict, with reasonable accuracy, the strength of promoter 

sequences that had not been used in the construction of the model (De Mey et 

al., 2007).   

 

 In further validation of this computational technique, the predictive 

model was subsequently utilised to predict the strength of an endogenous E. 

coli promoter, that of the ppc gene (De Mey et al., 2010). Based on this 

information, stronger promoters were selected from the previously characterised 

promoter library to fine tune ppc expression levels (De Mey et al., 2007). This 

knock-in approach resulted in an increase in expression levels roughly in line 

with the model’s predictions, with a three- to four-fold increase in mRNA levels 

seen at flask scale (De Mey et al., 2010). Although the PLS regression 

doubtlessly aided in the optimisation process, it was not applied, in this instance 

to the de novo design of synthetic promoter sequences.  

 

1.8.4 Artificial Neural Networks 
 

 The linear nature of PLS modelling is a potential drawback when applied 

to the analysis of promoter sequences, as the effects of any interactions 

between nucleotides may be confounded with the main effects for each 

individual nucleotide position (Jonsson et al., 1993). PLS models therefore may 

not fully account for the complexity inherent in promoter structure, thereby 

increasing the probability of prediction errors and resulting in inadequate 

generality (Meng et al., 2013). Indeed, many such models lack robust prediction 

accuracy (Meng & Wang, 2015), rendering their use in de novo sequence 
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design challenging.  

 

 Artificial Neural Networks (ANN) may provide a solution to these issues.  

Based upon a network of interconnected nodes designed to act as a 

rudimentary mimic of the brain, ANNs permit machine learning, as the order and 

force of connections between individual nodes may be altered (Buscema et al., 

2014).   

 

 By systematically altering node structure during the analysis of a training 

data-set, ANN models can potentially better represent the complex, non-linear 

interactions that occur within a promoter sequence than linear PLS models 

(Meng et al., 2013). ANN modelling has previously proven successful for de 

novo promoter design (Meng et al., 2013); using a set of synthetic promoters 

derived from the random mutagenesis of a wild-type E. coli promoter as a 

training set for an ANN model, strength predictions of sequences generated by 

in silico mutagenesis were used to select 16 synthetic sequences for in vivo 

characterisation (Meng et al., 2013).   

 

 The expression levels predicted by the ANN displayed good correlation 

with the empirically measured in vivo activity of the 16 synthetic sequences, 

suggesting that such models are indeed applicable to synthetic promoter 

design. 

 

 Although ANNs have potential for predicting promoter activity and the de 

novo design of synthetic promoter sequences, their use in this context is not 

without limitations. The inherent mathematical complexity of such models 

renders ANNs something of a “black-box”, wherein promoter sequence 

information is transformed to a prediction of strength. The use of ANNs as 

explanatory models to improve understanding of promoter structure is therefore 

impossible. This is in direct contrast to linear regression techniques such as 

PLS, where the model coefficients provide a readily interpretable measure of 

the importance of a given nucleotide or motif to overall promoter strength. 

Careful consideration must therefore be given to the ultimate aim of the 

modelling process; a combination of the predictive power of ANNs with the 
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more readily interpretable output of PLS or PWM models may provide a useful 

trade-off between predictive and explanatory modelling power.  

 

No matter which in silico approach is ultimately applied to de novo 

promoter design, the underlying principle remains, broadly speaking, the same. 

Models are trained on a known set of promoter sequences, using empirically 

gathered characterisation data to infer relationships between sequence and 

function. The accuracy of these inferences can subsequently be validated using 

a secondary group of sequences that were withheld from the training process. 

Once a model of sufficient predictive power has been obtained, it can then be 

applied to the de novo design of synthetic promoter sequences, or to the 

prediction of promoter strength. 
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1.9 The promoter discovery pipeline summarised  
 

 Industrial production systems that rely on biocatalysts require 

predictable outputs. As the complexity of engineered metabolic pathways 

increases, so too must the sophistication of the control systems which regulate 

them. For example, batteries of promoters that are orthogonal to endogenous 

metabolism and that provide predictable expression levels provide a potential 

technique for tuning synthetic pathways.  

 

 A multitude of different approaches are available for the identification 

and de novo design of promoter elements in prokaryotes (Figure 1.6). 

Endogenous promoters may be individually isolated from upstream of well-

understood genes or operons, or identified en masse if genomic or 

transcriptomic data of sufficient quality is available in the species of interest. 

Once identified, natural promoters may be subjected to random mutagenesis for 

the production of SPLs, or mathematical abstraction of the promoter sequence 

can be used to model promoter strength or design de novo synthetic promoter 

elements with defined functionality.  

 

 The data that are obtained from the derivation of promoter libraries can 

potentially enhance our fundamental knowledge of genetic regulation in 

complex systems. For example, the effects of mutations in specific locations 

within the promoter sequence can be assessed, or mathematical models that 

infer the contribution to promoter activity of a given nucleotide at a given 

position could be use to gain insights into the interaction between DNA and 

protein. However, the extent to which such opportunities are exploited will 

depend on the objectives of specific projects. Stated alternatively, projects with 

an application-based objective might be more focused on “the recording and 

reporting of measurements and not on deeper mechanistic understanding” 

(Mutalik et al., 2013b).  
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Figure 1.6: Workflow for promoter discovery in prokaryotes. 

The discovery and design of prokaryotic promoters for synthetic biology applications typically 
begins with the isolation of endogenous regulatory sequences from the genus or species of 
interest. Putative regulatory sequences may either be individually isolated from upstream of 
previously characterised genes or operons, or bioinformatically identified en masse. The most 
commonly employed strategies for the design of synthetic promoters are mutagenesis-based 
(left-hand workflow). Thoroughly characterised, well-understood promoter sequences can be 
mutagenised using techniques like Error-prone PCR (epPCR) or Saturation Mutagenesis of 
Flanking Regions (SMFR). The resulting libraries of mutated sequences should subsequently 
be screened for promoter activity in vivo. Alternatively, the in vivo characterisation of large 
numbers of bioinformatically-identified putative promoters can be used to derive quantitative 
mathematical or statistical models of the relationship between promoter DNA sequence and 
function (right-hand workflow). Artificial Neural Networks (ANN) and Partial Least Squares 
(PLS) regression have both been employed by prior studies to model promoter activity in E. coli. 
Regardless of which modeling type is used, the accuracy of predictions of promoter activity 
should be assessed in vivo. Data derived from the in vivo characterisation of mutagenised 
promoter sequences can also potentially be used to train models of promoter function (dashed 
line). Multiple iterations of mutagenesis or mathematical modeling, with the associated in vivo 
characterisation, may be required to obtain a library of promoter sequences that meet the 
requirements of a given study. Flow chart rendered with LucidChart.  
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1.10 Hypothesis & Project aims 
 

 It is not clear which of the multitude of available approaches to promoter 

discovery and design is most appropriate in an industrial context. A direct 

comparison is necessary to identify which method represents the most practical 

approach to expanding the synthetic biology toolkit in non-model organisms. In 

particular, computational approaches to de novo promoter design remain 

underutilised aside from proof-of-principle studies in model organisms; we 
hypothesise that statistical learning approaches to promoter discovery 
are applicable to non-model organisms, and will accelerate the discovery 
and characterisation of promoter libraries in Geobacillus.  
 

 To that end, the specific aims of this investigation are;  

 

1. To rationally bioinformatically isolate constitutive cis-regulatory elements 

from the Geobacillus core genome (Chapter 3).  

 

2. To thoroughly characterise the in vivo activity of these regulatory 

elements in a range of genetic and environmental contexts (Chapters 3, 

4 & 5).  

 

3. To use these characterisation data to develop robust statistical models 

that quantitatively link DNA sequence to promoter activity, and to 

subsequently assess the capability of these models to make accurate 

predictions of in vivo activity for synthetic and endogenous promoters 

(Chapters 3 & 4). 

 

4. To use two commonly employed mutagenesis-based approaches, 

Saturation Mutagenesis of Flanking Regions and Error-prone PCR, to 

derive libraries of synthetic Geobacillus promoters (Chapter 6). 

 

5. To identify which of the above methods is the most generally applicable 

in industrially relevant, non-model organisms (Chapter 7). 
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2 Materials & Methods 

2.1 Materials 

2.1.1 Media 
 

Unless otherwise stated, all media were purchased as ready-made 

stocks from Becton Dickinson UK Limited (Berkshire, United Kingdom). All 

media were sterilised by autoclaving at 121 °C for 20 min before use. 

 

Lysogeny Broth (LB) contained 10 g l-1 tryptone, 10 g l-1 NaCl and 5 g l-1 

yeast extract. Lennox Lysogeny Broth (LLB) contained 10 g l-1 tryptone, 5 g l-1 

yeast extract and 5 g l-1 NaCl.   

 

For Geobacillus growth, modified Lysogeny Broth (mLB) used a basal 

9of LLB. Once autoclaved, this was supplemented with 1.05 mM C6H9NO6, 0.91 

mM CaCl2, 0.59 mM MgSO4 and 0.04 mM FeSO4 (Zeigler, 2001). 

 

For all media types, agar was supplemented as required to 15 g l-1. 

When required, ampicillin was added to a final concentration of 100 µg ml-1, and 

kanamycin to a final concentration of 12.5 µg ml-1 for transgenic Geobacillus 

culture, and 50 µg ml-1 for transgenic E. coli culture.  

 

2.1.2 Chemicals  
 

Chemicals were purchased from Fisher Scientific UK Ltd (Loughborough, 

United Kingdom) and Sigma-Aldrich Company Ltd (Dorset, United Kingdom), 

unless otherwise stated.  
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2.2 Bioinformatic methods   

2.2.1 Hardware 
 

Bioinformatic analysis was performed using a local server containing 32 

3.1 GHz CPUs and 256 GB RAM. The system was installed with Fedora version 

2.1 Linux operating system.  

 

2.2.2 Identification of putative cis-regulatory sequences from the 
Geobacillus core genome 

 

The Geobacillus strains listed in Table 2-1 were sequenced de novo and 

genomes assembled by the Exeter Microbial Biofuels group prior to the start of 

the project. 

 

 Size (bp) Number of features 

G. kaustophilus DSM7263 3,517,923 3,528 

G. stearothermophilus DSM22 2,821,937 2,976 

G. thermodenitrificans K1041 3,548,326 3,526 

G. thermoglucosidans DSM2542 3,961,895 3,886 

   

Table 2-1: Geobacillus species used in the prediction of a core 
Geobacillus genome. 

 

The core genome of the four Geobacillus species was determined using 

the GET_HOMOLOGUES software package (Contreras-Moreira & Vinuesa, 

2013). Three clustering algorithms were used to cluster homologous gene 

families: Bidirectional best blast hit (BDBH), COGtriangles (COG) and 

OrthoMCL (OMCL). In all cases, the default software parameters were used.  

 

To isolate only those clusters which contained single-copy proteins 

present in all four Geobacillus species, the –t option was used. Single-copy 
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protein coding sequences were isolated as they were likely safer orthologues 

(Contreras-Moreira & Vinuesa, 2015).  

 

Once isolated, single-copy protein coding sequences were extracted 

from the four genomes. Output files were parsed, reformatted to fasta format 

and imported into the Artemis programme (Rutherford et al., 2000). For each 

entry, the 100 bp immediately upstream of the start codon was extracted. 100 

bp sequences were isolated for analysis as the majority of elements that are 

known to affect transcription initiation in prokaryotes occur within 100 bp of the 

start codon (Mendoza-Vargas et al., 2009, Davis et al., 2011). 

 

To identify putative promoter elements, extracted sequences were 

analysed using BPROM bacterial promoter prediction software (Solovyev & 

Salamov, 2011). To isolate promoter sequences that were likely to be 

orthogonal to endogenous regulatory pathways, those sequences containing 

known transcription factor binding sties (TFBS) were discarded. 

 

Once identified, nucleotide sequences of all putative promoters were 

aligned using MUSCLE software (Edgar, 2004), with resultant alignments used 

to build a phylogenetic tree using FastTree software (Price et al., 2009). 

Putative promoter sequences were subsequently manually clustered into 21 

clades using FigTree (Rambaut, 2017). 

 

Putative promoter sequences were selected for synthesis at random from 

each clade. True randomness was achieved by using a random number 

generator that converted atmospheric noise to numerical values (Haahr & 

Haahr, 1998). In early iterations, selected sequences were manually validated 

using Artemis to ensure that they did not overlap with any adjacent coding 

sequences (CDS). Later, to expedite this process, BEDTools intersect (Quinlan 

& Hall, 2010) was used to identify those putative promoter sequences which 

were non-overlapping.  

 

Putative promoter sequences were aligned to transcripts of each of the 

four Geobacillus species using Bowtie 2 (Langmead & Salzberg, 2012). Indexes 
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of the genome files were prepared using the ‘build’ command. Putative 

promoters were then aligned to each genome using Bowtie 2, with the resultant 

alignments provided in Sequence Alignment Map (.sam) format. The alignment 

.sam files produced were converted to Binary Alignment Map (.bam) format, 

sorted and indexed using SAMtools (Li et al., 2009).  

 

The resultant alignments were compared against the four Geobacillus 

genomes using BEDTools intersect. The ‘–v’ command was used to report only 

those putative promoter sequences which were non-overlapping with any 

annotated features in the genome transcripts. Output files were provided in 

.bam format, and were subsequently converted to fasta format using bam2fastx 

(Kim et al., 2013).  

 

2.2.3 Identification of putative cis-regulatory sequences from 
bacteriophage 

 

 The genomes of two bacteriophage, Thermus phage phi OH2 and 

Geobacillus phage GBSV1 (Liu et al., 2009) were selected for analysis based 

on their ready availability from GenBank (National Centre for Biotechnology 

Information, https://www.ncbi.nlm.nih.gov/genbank/). The Artemis programme 

was used to identify intergenic regions of at least 100 bp length. The 100 bp 

nucleotide sequences immediately upstream of the adjacent CDS were 

subsequently extracted and analysed using BPROM to identify putative 

promoter elements.   

 

2.3 General molecular genetic methods 

2.3.1 Microbial strains 
 

Geobacillus thermoglucosidans (type strain, DSM2542) was obtained 

from the DSMZ (Brunswick, Germany). Cultures were freeze-dried ampoules, 

and rehydrated as required following the DSMZ standard protocol.  
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 NEB 5-alpha (New England Biolabs, Massachusetts, United States of 

America) chemically competent Escherichia coli strain (genotype: fhuA2 

D(argF-lacZ)U169 phoA glnV44 f80D(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 

hsdR17) was used for microbiological cloning, storage and amplification of 

plasmid vectors.  

 

E. coli S17-1 was a gift from ZuvaSyntha Ltd. (Hertfordshire, United 

Kingdom) and was used as the mobilisation host for conjugal transformation of 

Geobacillus (genotype: recA pro hsdRm RP4-Tc::Mu-Km::Tn7). Transfer genes 

from the RP4 plasmid are integrated into the genome of E. coli S17-1, allowing 

for the conjugal transfer of plasmids containing the requisite mobilisation 

elements (Simon et al., 1983). 

 

2.3.2 Preparation of chemically competent Escherichia coli 
 

E. coli NEB 5-alpha and S17-1 were made chemically competent using a 

modified version of the protocol described by Hanahan (Hanahan, 1985). Single 

E. coli colonies of the relevant strain were used to inoculate 5 ml LB broth and 

incubated at 37 °C for 16 h, with shaking at 220 rpm. 400 µl of the resulting 

stationary phase culture was used to inoculate 40 ml LB broth. Cultures were 

incubated at 37 °C, with shaking at 220 rpm, until an OD600 of 0.4-0.5 was 

reached.  

 

Cells were harvested by centrifugation at 4,500 g for 8 min at 4 °C, and 

the supernatant discarded. The resultant pellet was re-suspended in 8 ml 

Transformation buffer 1 (TF1), and incubated on ice for 15 min. (TF1: 150 g l-1 

Glycerol; 30 ml l-1 1 M CH3CO2K pH 7.5; 0.1 M KCl; 0.01 M CaCl2.2H2O. 

Adjusted to pH 6.4 with CH3COOH, autoclaved, then supplemented with 50 ml l-

1 filter sterilised 1 M MnCl2.4H2O). 

 

Cells were subsequently harvested as before, the supernatant was 

removed and the pellet re-suspended in 4 ml Transformation buffer 2 (TF2: 150 

g l-1 Glycerol; 0.075 M CaCl2.2H2O; 0.01 M KCl. Autoclaved, then 

supplemented with 20 ml l-1 filter sterilised 0.5 M MOPS-KOH pH 6.8). 100 µl 
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aliquots of competent cells were flash frozen in liquid nitrogen and stored at       

-80 °C until required.  

 

2.3.3 Escherichia coli transformation 
 

100-200 ng plasmid DNA was added to chemically competent E. coli of 

the relevant strain. Samples were incubated on ice for 40 min, then heat 

shocked at 42 °C for 2 min and incubated on ice for a further 5 min. 700 µl pre-

warmed LB broth was subsequently added and the resulting samples were 

incubated at 37 °C with shaking at 220 rpm for 60 min.  

 

After incubation, samples were centrifuged at 4300 g for 5 min, and 500 

µl of the supernatant was removed. The cell pellet was re-suspended in the 

remaining supernatant, and 200 µl of the culture was plated out onto LB agar 

plates, with antibiotic selection as required. Plates were incubated at 37 °C for 

16 h.  

 

2.3.4 Geobacillus transformation 
 

Chemically competent E. coli S17-1 was transformed as described in 

section 2.3.3.  

 

Approximately 5 µl of transformed E. coli S17-1 was collected from a 

confluent plate-culture using a microbiological loop, suspended in 600 µl LLB 

broth and centrifuged at 4300 g for 5 min. The supernatant was removed and 

the resultant pellet re-suspended in a further 600 µl LLB broth. Approximately 

10-15 µl of wild-type Geobacillus was collected from a confluent plate-culture 

using a microbiological loop, added to the E. coli suspension and re-suspended. 

The resulting bacterial mix was dispensed onto LLB agar plates, in drops of 

approximately 10 µl.  

 

LLB plates were incubated at 37 °C for 7 h, followed by incubation at 60 

°C for 1 h. The resulting biomass was re-suspended in 1 ml LLB broth, and 

used to create dilutions of 1:10 and 1:5 biomass to sterile LLB broth, 200 µl 
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aliquots of which were spread onto mLB agar plates containing 12.5 µg ml-1 

kanamycin. Plates were incubated at 55 °C for approximately 65 h.  

 

2.3.5 Culture & plasmid maintenance & storage  
 

NEB 5-alpha E. coli, made chemically competent as described in 2.3.2, 

was used for microbiological storage and amplification of plasmid vectors. 

Single colonies were used to inoculate 5 ml LB broth, with antibiotic selection as 

required, and incubated at 37 °C, in the case of E. coli and 60 °C in the case of 

Geobacillus. All cultures were incubated with shaking at 220 rpm.  

 

For long-term microbial storage, 500 µl stationary phase culture was 

added to 500 µl 50 % w/v sterile glycerol and thoroughly mixed by inversion. 

Samples were snap frozen in liquid nitrogen and stored at -80 °C.   

 

2.3.6 Plasmid minipreps 
 

Plasmid minipreps were performed from 5 ml overnight cultures.  

Extractions were performed using a GeneJet plasmid miniprep kit (Thermo 

Scientific, Loughborough, United Kingdom), according to the manufacturer’s 

protocol. Eluted plasmid DNA was stored at -20 °C until required.  

 

Eluted plasmid DNA was quantified using a QubitTM Fluorometer 

(Thermo Scientific, Loughborough, United Kingdom) using the broad range 

double stranded DNA assay kit, according to the manufacturer’s instructions.  

 

2.3.7 Plasmid vectors 
 

Plasmids were constructed, manipulated and visualised in silico using 

Clone Manager Professional edition version 9 (Scientific & Educational 

Software, Colorado, United States of America). All characterised putative 

promoter constructs used the pS797 backbone (Figure 2.1). A gift from 

ZuvaSyntha Ltd, (Hertfordshire, United Kingdom), pS797 contained some of the
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Figure 2.1: Plasmid map of pS797 expression vector used for 
characterisation of putative promoter elements. 

 

The origin of transfer, ORI T, which contains the machinery necessary for 
mobilisation of the vector during conjugation, is shown in green. Antibiotic 
resistance genes are shown in red. Two origins of replication are present: ORI 
ColE for replication in E. coli, and ORI BST1, for replication in Geobacillus. Both 
are shown in blue. The binding sites of primers used for sequence verification 
are highlighted in purple.  
 
The promoter of interest, shown in cyan, is located between multiple cloning 
sites (MCS) containing the listed restriction sequences. Also located between 
the MCS is the reporter protein (in this case Dasher GFP), highlighted in dark 
blue, and a terminator sequence, indicated by a red box. 
 
 

required genes for the conjugal transformation of Geobacillus; the origin of 

transfer, ORI T, contains the Nic region and traJ gene from the conjugal plasmid 

RP4. The remaining genes required for conjugation were provided trans by E. 

coli S17-1. 

 
pS797 also contained two origins of replication, ColE and BST1, to allow 

for replication in E. coli and Geobacillus respectively. Two antibiotic selection 
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markers were also present, allowing for selection by Ampicillin in E. coli and by 

Kanamycin in Geobacillus.  

 

Unless otherwise stated, expression vectors were synthesised and the 

sequence verified by ATUM (previously DNA 2.0, California, United States of 

America).  

 

2.3.8 “One pot” type IIS restriction cloning 
 

The cloning methodology used for the production of expression vectors 

was adapted from (Engler et al. (2008)) and Kirchmaier et al. (2013). The 

methodology made use of the type II endonuclease BsaI, which cuts outside its 

DNA recognition site. The sequence between enzyme recognition and cleavage 

sites can be user defined, resulting in unique post-digestion overhangs. By 

matching the 3’ overhang of one part to the 5’ overhang of the part which was to 

be immediately downstream in the final construct, digested fragments were only 

able to ligate in a defined manner (Figure 2.2) (Engler et al., 2008).   

 

All enzymes used for cloning were purchased from Thermo Scientific 

(Loughborough, United Kingdom), from either the FastDigest or Anza brands, 

unless otherwise specified. 

 

 For DNA parts to be utilised in the cloning strategy, prefixes and 

suffixes containing the requisite restriction endonuclease recognition sites were 

added to the parts of interest (Figure 2.3).  Bases highlighted in red varied 

depending on the DNA part to which the affix sequence was attached to permit 

ligation of parts in the specified order. Part-specific sequences are summarised 

in Table 2-2. 

 

Cloning affixes were added in silico to the part sequence, and the 

composite DNA parts were synthesised by ATUM (previously DNA 2.0, 

California, United States of America). Parts were synthesised in the ATUM 

cloning vector pJ201, a high copy number plasmid encoding kanamycin 

resistance.  
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Figure 2.2: Schematic representation of one-pot cloning protocol. 

DNA parts to be combined were flanked with unique five base pair sequences and 
BsaI restriction sites. Prior to cloning, parts were typically inserted into pEX1C3 
entry vectors (A). Alternatively, parts were used in the form of linear double 
stranded DNA fragments produced by PCR or DNA synthesis. The destination 
vector (B) contained the gene encoding DNA toxin ccdB (dark blue), to act as a 
negative selection marker, flanked by BsaI sites and unique five base pair 
sequences. As a further selection mechanism, destination and entry vectors carried 
different antibiotic resistance genes. 
 
Digestion with type II endonuclease BsaI resulted in parts with specific overhangs 
(C). The 5’ overhang of each part was only compatible with the 3’ overhang of the 
part immediately upstream, and vice versa. Ligation with T4 DNA ligase resulted in 
a completed plasmid (D), with 4 bp scar sequences between the parts. 
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Figure 2.3: DNA sequences of A) prefixes and B) suffixes added to DNA 
parts for use in one-pot cloning. 

 

BsaI restriction sites shown in green. Biobrick restriction sites are shown in 
blue, and allowed for the insertion of DNA parts into entry vectors. Sequences 
that allowed for the production of unique overhangs post digestion with BsaI are 
highlighted in red. Bases coloured black were present to act as spacers. 
 

 

DNA Part 5’ Overhang (5’ " 3’) 3’ Overhang (5’ " 3’) 

Promoter TACT TGGA 

RBS ACCT TTAC 

CDS AATG GACG 

Terminator CTGC AAGC 

Destination vector TTCG ATGA 

 

Table 2-2: DNA sequences of unique overhangs that resulted from the 
digestion of DNA parts with BsaI. 

 

 

For reasons of cost and turn-around time, putative promoter sequences 

to be cloned were synthesised as linear double stranded DNA fragments 

(gBlocks) by Integrated DNA Technologies (Iowa, United States of America). 

Linear fragments were either used directly in cloning reactions, or were inserted 
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into the pEX1C3 entry vector (Figure 2.4) by digestion with EcoR1 and Pst1 and 

ligation with T4 DNA ligase, all following the manufacturer’s standard protocol.  

 

 pEX1C3 was adapted from the pSB1C3 sequence available from the 

iGEM registry of standard biological parts. BsaI restriction sites were removed 

from the Ampicillin resistance gene, and BsaI sites were inserted into the 

Multiple Cloning Sites (MCS). Additionally, the RFP coding sequence was 

replaced with the gene encoding DNA gyrase toxin ccdB to act as a negative 

selection marker during cloning (Huang et al., 2010). All alterations were made 

using a QuikChange Lightning site-directed mutagenesis kit (Agilent 

Technologies, California, United States of America), according to the 

manufacturer’s protocol. 

 

 The bioinformatically determined 100 bp Geobacillus putative cis-

regulatory sequences were assumed to contain both promoter and RBS 

elements. Consequently, the scar sequence that would have resulted from 

cloning disparate promoter and RBS sequences together (ACCT) was inserted 

into the putative promoter sequences in silico. The promoter-RBS boundary 

was determined by alignment of putative cis-regulatory sequences to identify 

conserved regions using WebLogo version 2.8.2 (Crooks et al., 2004). A highly 

conserved region of 15 base pairs at the 3’ terminus of the 100 bp sequence 

space was identified as the putative RBS. The cloning scar sequence ACCT was 

therefore inserted between these 15 bases and the remaining 85 bp of putative 

promoter elements. The composite promoter-RBS sequences with cloning 

affixes were subsequently synthesised as single parts. 

 

 A modified version of the pS797 plasmid was used as a destination 

vector (Figure 2.5). To make pS797 compatible with the cloning methodology, 

BsaI restriction sites were removed from the ampicillin resistance gene by point 

mutation. Additionally, sequences containing BsaI sites and overhangs 

compatible with the 5’ overhang of the promoter block and the 3’ overhang of 

the terminator block were inserted into the MCS. Finally, the gene for the DNA 

gyrase toxin ccdB was inserted between the BsaI sites to act as a negative 

selection marker (Huang et al., 2010). All modifications were made using a 



Chapter 2 - Materials & Methods 

71 

 

 

Figure 2.4:  Plasmid map of pEX1C3, used as an entry vector for one-pot 
cloning. 

 

The origin of replication, ORI ColE is shown in light blue. The chloramphenicol 
resistance cassette is shown in red, and the binding sites of primers used for 
sequence verification are highlighted in purple. The negative selection marker 
ccdB is shown in dark blue and is located between the multiple cloning sites 
(MCS) that contain the listed restriction sequences. 
 
 

QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies, 

California, United States of America), according to the manufacturer’s protocol. 

 

Cloning reactions consisted of 20 fmol of each entry vector or linear DNA 

fragment and 20 fmol of the destination vector, with 10 U Eco31I restriction 

endonuclease (a BsaI isoschizomer) and 1 U T4 DNA ligase in 2 µl ligation 

buffer (10x Thermo Scientific FastDigest buffer supplemented with 0.5 mM 

ATP) to a final reaction volume of 20 µl with ddH2O (Kirchmaier et al., 2013).  
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Figure 2.5: Plasmid pS797 as used as a destination vector for "one pot" 
cloning reactions. 

 

The origin of transfer, ORI T, which contains the machinery necessary for 
mobilisation of the vector during conjugation, is shown in green. Antibiotic 
resistance cassettes are shown in red. Two origins of replication were present: 
ORI ColE for replication in E. coli, and ORI BST1, for replication in Geobacillus. 
Both are shown in blue. The binding sites of primers used for sequence 
verification are highlighted in purple.  
 
A negative selection marker, the gene encoding the DNA gyrase toxin ccdB, is 
shown in dark blue and is located between multiple cloning sites (MCS) 
containing the listed restriction sequences.  
 
 

 Reactions were incubated for 50 cycles of 37 °C for 2 min then 20 °C for 

5 min. This was followed by final incubation steps of 50 °C for 5 min then 80 °C 

for 5 min. 

 

 10 µl of the incubated cloning reaction mix was used to transform 

chemically competent NEB 5-alpha E. coli, following the protocol described in 

section 2.3.3. Constructs were selected for using ampicillin, as ampicillin 
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resistance was carried by none of the entry vectors. Further selection pressure 

was provided by the presence of the DNA gyrase toxin ccdB in the un-digested 

destination vector 

 

Plasmid construction was verified by diagnostic digest and visualisation 

by gel electrophoresis as described in sections 2.3.9 and 2.3.10 respectively. 

Constructs were also verified by sequencing, as described in section 2.3.11. 

 

2.3.9 Diagnostic digests 
 

Restriction endonucleases were purchased from Thermo Scientific 

(Loughborough, United Kingdom), from either the FastDigest or Anza brands. 

Digests were preformed using one of the four restriction endonucleases with a 

single restriction site in the pS797 MCS (Figure 2.5). All digests were performed 

according to the manufacturer’s protocol.  

 

2.3.10 Gel electrophoresis  
 

Gel electrophoresis was performing using a 1 % w/v agarose gel (10 mg 

ml-1). Gels were formed of broad separation grade agarose (Fisher Scientific, 

Loughborough, United Kingdom) and TAE electrophoresis buffer (TAE buffer: 

40 mM Tris; 20 mM CH3COO-; 1 mM EDTA in ddH2O) to a final volume of 50 ml 

or 100 ml, dependent on the number of samples to be run. Gels were stained 

with either 10 µg ml-1 ethidium bromide or 1 µl ml-1 10, 000 X SYBRTM safe DNA 

gel stain (Thermo Scientific, Loughborough, United Kingdom). 

 

5 µl HyperLadderTM 1kb (Bioline Reagents Ltd., London, United 

Kingdom) was loaded to each gel as a size reference marker, and gels were 

run at either 80 V (50 ml gels) or 120 V (100 ml gels) for 1 h.  

 

DNA bands were visualised and photographed using a UV 

transilluminator.  
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2.3.11 DNA sequencing  
 

Where required, constructs were verified by DNA sequencing (Sanger et 

al., 1977), as performed by Source BioScience (Nottingham, United Kingdom). 

Primer sequences utilised are listed in Table 2-3. 

 

 Sequence (5’ " 3’) Notes 

M13F TGT AAA ACG ACG GCC AGT Provides forward strand sequence. 

Used to sequence verify constructs 

in pS797. 

M13R CAG GAA ACA GCT ATG ACC Provides reverse strand sequence. 

Used to sequence verify constructs 

in pS797. 

VF2 TGC CAC CTG ACG TCT AAG AA 
 

Provides forward strand sequence. 

Used to sequence verify constructs 

in pEX1C3. 

VR ATT ACC GCC TTT GAG TGA GC 
 

Provides reverse strand sequence. 

Used to sequence verify constructs 

in pEX1C3. 

 

Table 2-3: Primers used for sequence verification of plasmid DNA. 

 

Results were evaluated for coverage and sequence using a combination 

of SnapGene Viewer version 3.1.4 (SnapGene, Illinois, United States of 

America) and Clone Manager Professional edition version 9 (Scientific & 

Educational Software, Colorado, United States of America).   

 

2.3.12 Determination of Plasmid Copy Number (PCN) by quantitative PCR 
(qPCR) 

 

Cultures for which PCN was to be determined were aliquoted and 

harvested by centrifugation at 4300 g for 5 min. Two aliquots were stored per 

culture, one of 10 µl and one of 400 µl.  The supernatant was removed and 

pellets were flash frozen in liquid N2 and stored at -80 °C until required.  
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Immediately before analysis, sample pellets were thawed on ice and re-

suspended in 0.2 culture volume of 10 mM Tris-HCL pH 8.5. Suspensions were 

incubated at 95 °C for 5 min to lyse cells. qPCR reactions were set up using a 

Corbett Robotics CAS-1200 (Qiagen, Netherlands). 

 

 qPCR reactions consisted of 10 µl DyNAmo Flash SYBR green qPCR 2x 

master mix (Thermo Scientific, Loughborough, United Kingdom), 2 µl sample 

and 1 pM each of the forward & reverse primers, to a final volume of 20 µl with 

ddH20. Disparate reactions were performed for the amplification of plasmid and 

genome amplicons, using the PCR primers listed in Table 2-4. Each reaction 

was performed in triplicate. 

 

 Sequence (5’ " 3’) Amplicon size 

(bp) 

Notes 

Plas_F CTA TGT GGC GCG GTA TTA TC 177 Amplified region of 

ampicillin resistance 

gene in pS797. 
Plas_R CGC AGT GTT ATC ACT CAT GG 177 

Gen_F GCT GGC GTT CTC TTA GTA CC 177 Amplified unique region 

of G. thermoglucosidans 

genome. 
Gen_R GCT GAG ACG GCT GTT ATC AC 177 

 

Table 2-4: Primers used in determination of plasmid copy number by 
qPCR. 

 

Reactions were incubated using a Corbett Research Rotor Gene 6000 

(Qiagen, Netherlands) using the following conditions: 95 °C for 7 min, followed 

by 40 cycles of 95 °C for 10 s then 60 °C for 20 s. Data were acquired during 

the 60 °C incubation step, using an excitation and emission wavelength of 470 

nm and 510 nm respectively. The gain of the instrument was set at 5.  

 

Melt analysis was performed immediately after the final extension cycle. 

Samples were held at 50 °C for 30 s, followed by pre-melt conditioning of 50 °C 

for 90 s. Temperature was subsequently ramped to 99 °C in 1 °C increments, at 

a rate of 5 s per 1 °C.  
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Plasmid and genomic standard curves were included with each qPCR 

run. Plasmid standard curves were generated using pS797 extracted by 

miniprep from NEB 5-alpha E. coli as described in section 2.3.6. Genomic 

standard curves were generated using G. thermoglucosidans genomic DNA 

extracted from 10 ml overnight cultures using a GeneElute Bacterial Genomic 

DNA kit (Sigma-Aldrich Company Ltd, Dorset, United Kingdom), according to 

the manufacturer’s protocol.  

 

Standard curves contained plasmid or genomic DNA diluted with ddH2O 

to fall within the range 2-7 ng µl-1. From these initial concentrations, four ten-fold 

serial dilutions with ddH2O were produced and also served as standards.  

 

If a qPCR reaction for a given sample failed to provide a quantifiable 

result, the secondary pellet from that culture was thawed on ice and re-

suspended in 0.1 culture volume of 10 mM Tris-HCL pH 8.5. Cell lysis and 

qPCR analysis was then performed as before. 
 

All data analysis was performed using Rotor Gene 6000 Series software 

version 1.7 (Qiagen, Netherlands). Threshold cycle (Ct) values were calculated 

using automatic baseline adjustment. DNA concentrations were reported in ng 

µl-1.  

To convert DNA concentrations to a measure of plasmid copy number, 

the following formula was used (Integrated DNA Technologies, 2016): 

 

 

 

 

where x is the amount of amplicon in ng and N is the length of the dsDNA 

amplicon in bp. PCN was then calculated by the formula: 
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2.4 Molecular methods for synthetic promoter production 

2.4.1 Generating promoter libraries by Saturation Mutagenesis of 
Flanking Regions (SMFR) 

 

To identify consensus motifs within Geobacillus promoter sequences, 34 
sequences that had been previously shown to have promoter activity were 

aligned and the resulting alignment visualised using WebLogo version 2.8.2 

(Crooks et al., 2004). This alignment led to the identification of three conserved 

motifs, which were hypothesised to be putative RBS, -10 and -35 regions. 

Relative to the start codon of the upstream CDS, these regions spanned from -1 

to -18 inclusive (putative RBS), from -25 to -31 inclusive (putative -10 motif) and 

from -37 to -43 inclusive (putative -35 motif).  

 

 Degenerate oligonucleotides were designed which encoded the 

sequence of the G. thermodenitrificans ldhA promoter in the three putative motif 

locations. The remainder of the 150 bp sequence was degenerated, with 

requisite cloning affixes at the 5’ and 3’ termini to permit use in the type IIS 

cloning strategy. At each position where degeneracy was specified in the 

oligonucleotide sequence, all four nucleobases had an equal probability of 

occurring.  

 

 The length of the final promoter sequence and the requisite cloning 

affixes prohibited synthesis as a single oligonucleotide. As such, two 

oligonucleotides were designed (Figure 2.6). The first encoded the antisense 

strand of the final promoter sequence, up to and including the putative -35 

motif, as well as a BsaI site and the requisite overhang sequence to allow for 

use in one-pot cloning. The second oligonucleotide encoded the sense strand 

of the remaining promoter sequence and cloning suffix, including the putative -

35 motif, to allow for annealing of the two oligonucleotides.   

 

 Degenerate oligonucleotides were synthesised by Eurofins Genomics 

(Ebersberg, Germany). A complete list of oligonucleotides and the DNA primers 

used for their conversion to dsDNA is provided in Table 2-5. 
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Figure 2.6: Schematic representation of degenerate oligonucleotides used 
in synthetic promoter production by Saturation Mutagenesis of Flanking 

Regions. 

 

Cloning affixes are highlighted in green. Degenerate regions are shown in red, 
with consensus regions shown in blue. The putative -35 consensus motif was 
present on both oligonucleotides to permit the two sequences to be annealed 
together. Primer binding sequences to allow for conversion to dsDNA are 
indicated.  
 
 

 Sequence (5’ " 3’)  

Degenerate Oligo 1 CCAGAGTATGAN103ATTTTA 

Degenerate Oligo 2 TAAAATAN5TGAATGTN6ACCTATAAGAAGGGAGAATAGTAATG

TGAGACCACGAAGTTA 

PCR Primer (Fwd) GGT CTC ATA CT 

PCR Primer (Rev) TAA CTT CGT GGT CTC ACA TT 

 

Table 2-5: Oligonucleotide and primer sequences used for synthetic 
promoter production by Saturation Mutagenesis of Flanking Regions. 

 

 Degenerate oligonucleotides were annealed using a modified version of 

the protocol described by Cronn et al. (2008); oligonucleotides were suspended 

at 200 µM in Annealing buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA, 50 mM 

NaCl). Equal volumes of each degenerate oligonucleotide were combined, and 

the resultant mix was heated at 95 °C for 2 min and then cooled to 30 °C at a 
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rate of 1 °C min-1. Annealed oligonucleotides were snap cooled to 4 °C, diluted 

to 15 µM in 10 mM Tris-HCL pH 8.5 and stored at -20 °C until required. 

 
SMFR PCR reactions used Phusion High-Fidelity DNA polymerase 

(Thermo Scientific, Loughborough, United Kingdom). Reactions comprised 5x 

Phusion HF buffer combined with 1 µl annealed oligonucleotides, 200 µM each 

of dNTPs, 0.5 µM each of the forward and reverse primers and 0.02 U µl-1 

Phusion polymerase, made up to a total volume of 20 µl with ddH2O. 

 

Reactions were incubated using the following cycling conditions: 47.6 °C 

for 30 s, 72 °C for 10 s, followed by 30 cycles of 98 °C for 10 s, 47.6 °C for 30 s 

then 72 °C for 10 s. This series was followed by a final incubation at 72 °C for 

10 min.  

 

The resultant mutated promoter sequences were cloned into pS797 with 

the GFP reporter sequence and the pS718 terminator. The cloning protocol was 

performed as described in section 2.3.8. Promoter and RBS entry vectors were 

replaced in the cloning master mix by 1 µl PCR product from the above 

reaction.  

 

Finally, 10 µl of the incubated cloning reaction mix was used to transform 

chemically competent E. coli NEB 5-alpha, according to the protocol described 

in section 2.3.3. 

 

2.4.2 Generating synthetic promoter libraries by error prone Polymerase 
Chain Reaction (epPCR) 

 

Error-prone Polymerase Chain Reaction (epPCR) was performed using 

the G. thermodenitrificans ldhA promoter sequence as a template. The scar 

sequence ACCT was inserted in silico between the promoter and putative RBS 

sequence to mimic the effect of combining promoter and RBS by molecular 

methods. The requisite cloning prefix and suffix were added to the ldhA 

promoter sequence in silico to allow for use in the cloning strategy detailed in 

section 2.3.8. 
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The ldhA promoter sequence with cloning affixes was synthesised as a 

linear gBlock gene fragment by Integrated DNA Technologies (Iowa, United 

States of America).  PCR primers were designed to allow error-prone 

amplification of the complete ldhA promoter sequence whilst leaving the BsaI 

restriction sites from the cloning affixes unaltered. The sequences of the 

promoter, cloning affixes and PCR primers are summarised in Table 2-6.  

 

The synthesised ldhA promoter gene fragment was cloned into the 

pEX1C3 entry vector by restriction enzyme digest with FastDigest EcoRI and 

PstI and ligation with T4 DNA ligase (Thermo Scientific, Loughborough, United 

Kingdom), according to the manufacturer’s standard protocol. Entry vector 

construction was verified by restriction enzyme digest and gel electrophoresis 

as described in sections 2.3.9 and 2.3.10 respectively.  

 

 Sequence (5’ " 3’)  

G. thermodenitrificans 

ldhA promoter 

CTGCCTCGTCCATTTTTTTGCTTAATGGAGGTTGTCATGAAAA

TGACAAACAACGTCCAAACAATTGCCATAATCGTTTACGCATA

GTTTCGATTTCATCGCGTAAAATAATTTGTGAATGTATTCACA

CCTATAAGAAGGGAGAATAGT 
Cloning prefix CAGGAAACAGCTATGACCATGGAATTCGCGGCCGCTTCTAGAG

ACTCTGTGGTCTCATACT 
Cloning suffix AATGTGAGACCACGAAGTTACTAGTAGCGGCCGCTGCAGGACT

GGCCGTCGTTTTACA 

PCR Primer (Fwd) AGA CTC TGT GGT CTC ATA CT 

PCR Primer (Rev) TAA CTT CGT GGT CTC ACA TT 

 

Table 2-6: DNA sequences and primers used for synthetic promoter 
production by error-prone PCR. 

 

  Mutagenic PCR reactions utilised a commercially available mix of 8-oxo-

dGTP and dPTP to promote transversion and transition mutations respectively 

(Zaccolo et al., 1996, Paul et al., 2013). Reactions comprised 5x GoTaq 

reaction buffer (Promega, Wisconsin, United States of America), 2 mM MgCl2, 

0.5 mM Mutagenesis dNTP mix (TriLink Biotechnologies, California, United 

States of America), 500 nM of each of the forward and reverse primers and 
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1.25 U GoTaq DNA polymerase (Promega, Wisconsin, United States of 

America). The final reaction volume was made up to 25 µl with ddH2O. 

 

Reactions were incubated using cycling conditions adapted from Reeve 

et al. (Reeve et al., 2016): 95 °C for 2 min , followed by cycles of 92 °C for 1 

min, 55 °C for 1.5 min, 72 °C for 5 min for 20 cycles, and a final incubation of 72 

°C for 10 min.  

 

To digest any remaining template DNA, the resulting reactions were 

supplemented with 10x FastDigest Buffer and 1 µl FastDigest Dpn1 (both 

Thermo Scientific, Loughborough, United Kingdom) to a final reaction volume of 

30 µl with ddH20. Reactions were incubated at 37 °C for 10 min, followed by 

heat inactivation of the Dpn1 enzyme at 80 °C for 5 min.  

 

Any remaining non-natural dNTPs were removed from the mutated 

sequences by a further PCR cycle using Phusion High-Fidelity DNA polymerase 

(Thermo Scientific, Loughborough, United Kingdom). 5x Phusion HF buffer was 

combined with 1 µl of the product from the above reaction,   200 µM each of 

dNTPs, 0.5 µM each of the forward and reverse primers and 0.02 U µl-1 

Phusion polymerase, made up to a total volume of 20 µl with ddH2O. 

 

Reactions were incubated using the following cycling conditions: 98 °C 

for 30 s, followed by 30 cycles of 98 °C for 10 s, 52.3 °C for 30 s then 72 °C for 

10 s. This series was followed by a final incubation at 72 °C for 10 min. 

 

The resultant mutated promoter sequences were cloned into pS797 

upstream of the GFP reporter sequence and the pS718 terminator. The cloning 

protocol was performed as described in section 2.3.8. Promoter and RBS entry 

vectors were replaced in the cloning master mix by 1 µl PCR product from the 

above reaction.  

 

Finally, 10 µl of the incubated cloning reaction mix was used to transform 

chemically competent E. coli NEB 5-alpha, according to the protocol described 

in section 2.3.3.  
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2.4.3 Initial screening of synthetic promoter libraries 
 

Prior to characterisation in Geobacillus, synthetic promoter libraries were 

pre-screened in E. coli NEB 5-alpha to identify active promoter elements. The 

transformation plates that resulted from both SMFR and epPCR library 

production methods were visually examined using a blue-light transilluminator 

and amber filter (Labtech International Ltd, East Sussex, United Kingdom). 

Visibly fluorescing individual colonies were picked and used to inoculate 5 ml 

LB broth, laced with 100 µg ml-1 Ampicillin.  

 

Cultures were incubated at 37 °C with shaking at 220 rpm for 16 h, 

whereupon plasmids were extracted by miniprep and constructs verified by 

diagnostic digest, gel electrophoresis and DNA sequencing, as described in 

sections 2.3.6, 2.3.9, 2.3.10 and 2.3.11 respectively.  

 

 Once visibly fluorescing colonies had been picked from the E. coli 

transformation plates, the remaining colonies were resuspended in 1 ml LB 

broth and used to inoculate 250 ml conical flasks containing 40 ml LB broth 

laced with 100 µg ml-1 Ampicillin. Cultures were subsequently incubated at   37 

°C, with shaking at 220 rpm, for 16 h.  

 

100 µl of the resulting stationary phase culture was diluted 10-fold with 

sterile phosphate buffered saline (PBS; 0.01 mM Na2PO4.7H2O, 3mM KCl, 140 

mM NaCl, pH 7.4) for analysis by BD FACS Aria II Fluorescence Activated Cell 

Sorter (FACS) (BD Biosciences, California, United States of America). The 

cytometer was fitted with a 100 nm nozzle, and a sheath fluid of PBS was used. 

Culture fluorescence was excited at 488 nm and fluorescence intensity was 

recorded using the 530/30 nm detector.  

 

A negative control, E. coli NEB 5-alpha transformed to contain an empty 

pS797 vector, was used to provide baseline fluorescence. Any cell events with 

fluorescence values falling within a gate created around the control population 

were ignored; a lack of fluorescence indicated either a failed cloning reaction or 
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the mutated promoter sequence within the analysed cell having no promoter 

activity.  

 

To isolate mutated promoter sequences with a range of activity levels, 

the remaining fluorescence range was divided into eight gates of equal size. 

Single cell events from each gate were individually sorted directly into a well of 

a 96-well microplate containing 200 µl LB broth containing 100 µg ml-1 

Ampicillin. “Sweet Spot” monitoring was used to ensure droplet formation 

efficiency, and sorting purity was set to “Single Cell”.  

 

Microplates were subsequently incubated for 16 h at 37 °C, with shaking 

at 800 rpm, using PHMP Thermoshakers (Grant Instruments, Cambridgeshire, 

United Kingdom). After incubation, culture fluorescence and absorbance was 

analysed by a Tecan plate reader, as described in section 2.5.4. Culture 

fluorescence was normalised to absorbance, and any cultures with a resulting 

fluorescence value greater than that of the pS797 negative control were plated 

onto LB agar plates with the relevant antibiotic selection, and incubated at 37 

°C for 16 h.  

 

Subsequently, single colonies were subsequently picked and grown 

overnight in 5 ml LB broth. Putative promoter constructs were extracted by 

miniprep and verified by diagnostic digest, gel electrophoresis and Sanger 

sequencing, as described in sections 2.3.6, 2.3.9, 2.3.10 and 2.3.11 

respectively. 

 

 Once the DNA sequence of the putative promoters was verified, the 

sequences were characterised for activity in G. thermoglucosidans and E. coli 

NEB 5-alpha, as described in section 2.5. 

 

2.5 Characterisation of putative promoter activity 

2.5.1 Starter culture preparation  
 

 Fluorescent reporter proteins were used for promoter characterisation. In 

the case of putative promoters that were bioinformatically identified from the 
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Geobacillus core genome, both GFP and mOrange reporters were used. 

Synthetic promoters generated by epPCR and SMFR mutagenesis were 

characterised upstream of GFP. 

 

In the case of cultures expressing GFP, colonies were manually pre-

screened for fluorescence using a blue-light transilluminator with an amber filter 

(Labtech International Ltd, East Sussex, United Kingdom). When both 

fluorescing and non-fluorescing colonies were observed on the same petri dish, 

only those colonies that were visibly fluorescing were picked for further analysis.  

 

For characterisation of promoter activity in E. coli strains NEB 5-alpha 

and S17-1, single transformed colonies were picked and used to prepare 

overnight cultures as described in section 2.3.5.  

 

For characterisation in Geobacillus, transformed colonies were picked 

and restreaked on mLB agar plates, with antibiotic selection as required. Plates 

were incubated at 55 °C for 16 h. The resulting biomass was subsequently re-

suspended in 5 ml mLB broth.  

 

2.5.2 Culture growth in 250 ml Conical flasks 
 

Starter cultures, prepared as described in section 2.5.1, were used to 

inoculate 60 ml of the relevant media, with antibiotic selection as required, to an 

OD600 of 0.1. Flasks were incubated at either 37 °C in the case of E. coli 

cultures or 60 °C in the case of Geobacillus cultures, with shaking in all cases at 

220 rpm.  

 

At the required time points, 200 µl sample aliquots were loaded to 96-

well plates for analysis of culture absorbance and reporter fluorescence by a 

Tecan plate reader, as described in section 2.5.4. 
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2.5.3 Culture growth in 96-well plates 
 

Sterile, black 96-well microplates with clear, flat bottom wells with lids 

were purchased from Corning (Flintshire, United Kingdom). Starter cultures, 

prepared as described in section 2.5.1, were used to inoculate 1 ml of the 

relevant media, with antibiotic selection as required, to an OD600 of 0.1. 200 µl 

sample aliquots were loaded onto 96-well plates using either a Corbett Robotics 

CAS-1200 (Qiagen, Netherlands) or a Gilson Pipetemax 268 (Gilson Inc, 

Wisconsin, United States of America).  

 

To minimise the effect of position dependent bias, to which assays 

performed in 96-well plate format can be susceptible (Liang et al., 2013), 

sample aliquots were loaded in a Latin rectangle design (Figure 2.7); no starter 

culture was represented more than once on any given row or column (Falcón, 

2015). Starter cultures were allocated position groups at random, with aliquots 

from either 10 (Figure 2.7A) or 20 (Figure 2.7B) separate starter cultures loaded 

per plate.  

 

 96-well plates with lid covers have been shown to suffer from significant 

loss of culture in the outermost wells through evaporation (Chavez et al., 2016). 

To account for such edge effects, wells at the plate periphery were filled with 

200 µl aliquots of sterile mLB broth. 

 

 Microplates were incubated using PHMP Thermoshakers (Grant 

Instruments, Cambridgeshire, United Kingdom). Incubation was at 37 °C in the 

case of E. coli cultures or 60 °C in the case of Geobacillus cultures, with 

shaking in all instances at 800 rpm.  

 

2.5.4 Quantification of putative promoter activity  

Tecan plate reader  

 

Population level absorbance and fluorescence measurements were 

taken using a Tecan Infinite 200 PRO microplate reader (Tecan, Switzerland).  
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Figure 2.7: Schematic representation of Latin rectangle 96-well plate 
design. 

 

96-well plates containing culture aliquots from A) 10 or B) 20 starter cultures. 
Disparate colours and patterns represent aliquots taken from the same starter 
culture. In both cases the outermost wells, highlighted in red, contain sterile 
growth media to reduce edge effects.  
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For measurements of GFP activity, fluorescence excitation and emission 

values were 477 nm and 515 nm respectively. For measurements of mOrange 

activity, excitation and emission values were 546 nm and 576 nm respectively. 

In both cases, gain was set to 56. Absorbance of all cultures was measured at 

600 nm.  

 

 In all instances, well fluorescence or absorbance was reported as the 

mean of five individual reads: one read from the well centre, and one read from 

each of the four cardinal points of the well. A border between the edge of the 

well and the edge of the read zones was 300 µm in the case of absorbance 

measurements and 500 µm in the case of fluorescence measurements.  

 

Flow cytometry  

 

Flow cytometry was performed using a BD FACS Aria II Fluorescence 

Activated Cell Sorter (FACS), equipped with a 100 µm nozzle (BD Biosciences, 

California, United States of America). Cell fluorescence was excited at 488 nm 

and fluorescence intensity was recorded using the appropriate detectors: 

530/30 nm in the case of cultures expressing GFP and 585/42 nm in the case of 

cultures expressing mOrange. 

 

A sheath fluid of phosphate buffered saline (PBS) (0.01 mM 

Na2PO4.7H2O, 3mM KCl, 140 mM NaCl, pH 7.4) was used for analysis of all 

samples. Cultures were diluted 10-fold with sterile PBS immediately prior to 

analysis. In the case of cultures grown in 96-well plate format, culture aliquots 

from the same starter culture were recombined and briefly vortexed to mix prior 

to dilution with PBS.  

 

Unless otherwise stated, 100,000 events were recorded per population. 

Flow cytometry data were analysed using FlowJo version 10.2 (FlowJo LLC, 

Oregon, United States of America). 
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2.6 Experimental design, statistical analysis and predictive modelling  
 

All statistical analysis and predictive modelling was performed using a 

combination of Prism versions 6 & 7 (GraphPad Software Inc., California, 

United States of America) and JMP pro versions 12 & 13 (SAS Institute Inc., 

North Carolina, United States of America). 

 

 All Design of Experiments (DoE) was performed using JMP pro versions 

12 & 13.  DoE is an empirical statistical approach to the design and analysis of 

experiments that allows the simultaneous alteration of multiple variables 

(Lendrem et al., 2015b, Brown et al., 2018b). Statistical models are 

subsequently applied to model the experimental response surface and to 

identify the optimal settings for each variable (Kumar et al, 2013). DoE aims to 

avoid the pitfalls of more classical One Factor at a Time (OFAT) 

experimentation, in which the final result may vary depending on the starting 

point used for each variable, and in which the true optimum combination of 

variables may be missed (Tye, 2004, Lendrem et al., 2015a).  
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3 Bioinformatic identification of putative promoters & their 
characterisation in G. thermodenitrificans 

Summary 
 

 Species from the genus Geobacillus have potential as microbial chassis 

for large-scale industrial bio-production. However, their widespread application 

is hampered by the relative lack of species-specific synthetic biology parts like 

reliable promoter sequences. To expand the number of regulatory sequences 

available for use in the genus, putative promoters were bioinformatically 

identified from upstream of genes that were shown to have homologues in four 

Geobacillus species. The genomes of two bacteriophage were also analysed to 

identify putative promoters. A rationally selected group of the putative regulatory 

sequences was subsequently characterised in vivo in G. thermodenitrificans, 

using GFP fluorescence as a measure of promoter activity. The in vivo 

characterisation of libraries of candidate promoters using reporter proteins is 

commonplace. However, in silico approaches to accurately determine the 

output of previously uncharacterised promoters, or to aid in the de novo design 

of synthetic promoter sequences, can potentially enhance and accelerate the 

design phase of the synthetic biology design-build-test cycle. Data derived from 

the experimental characterisation of Geobacillus promoters were therefore used 

to train a Partial Least Squares model to quantifiably link promoter DNA 

sequence to GFP output. This model was subsequently used to make 

predictions of activity for 12 novel synthetic putative promoter sequences. The 

accuracy of these predictions was assessed in vivo.  

 

3.1 Introduction 
 

 Despite the potential of Geobacillus species as microbial chassis for 

large-scale industrial bio-production (Kananavičiūtė & Čitavičius, 2015), their 

widespread application is hampered by the lack of a diverse toolkit of robust 

genetic parts to expedite a synthetic biology approach to engineering in the 

genus. In particular, the ability to select a reliable promoter of known activity is 
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of paramount importance. Promoters that have previously been used for 

metabolic engineering in Geobacillus species, such as the G. kaustophilus sigA 

promoter (Suzuki, 2012), were typically isolated from the genome. The lactate 

dehydrogenase promoters from both G. stearothermophilus and G. 

thermoglucosidans have also both been applied for metabolic engineering in 

the genus (Cripps et al., 2009, Lin et al., 2014), although the oxygen dependent 

nature of the ldh promoter is well documented (Bartosiak-Jentys et al., 2012). 

Alternatively, mutagenesis of previously characterised Geobacillus promoters 

has yielded libraries of synthetic promoter sequences. An approach based on 

Saturation Mutagenesis of Flanking Regions (SMFR), for example, yielded a 

library of 17 sequences, covering a reported green fluorescent protein (GFP) 

expression range of 76-fold (Pogrebnyakov et al., 2017). Additionally, a 

Synthetic Promoter Library (SPL) generated using epPCR contained 20 

promoter sequences, covering a 100-fold range of GFP expression strengths 

(Reeve et al., 2016). 

 

 To expand the library of natural promoter sequences available for use in 

Geobacillus, the core genome of four species (G. kaustophilus DSM7263, G. 

stearothermophilus DSM22, G. thermodenitrificans K1041 and G. 

thermoglucosidans DSM2542) was bioinformatically identified. 100 bp putative 

promoters were subsequently isolated from immediately upstream of the start 

codon of coding sequences (CDS) in the core genome. 100 bp sequences were 

chosen as the majority of elements that are known to affect transcription 

initiation in prokaryotes occur within 100 bp of the start codon (Mendoza-Vargas 

et al., 2009, Davis et al., 2011). Putative promoter sequences were also 

isolated from two species of bacteriophage. 31 putative promoter sequences 

were synthesised upstream of GFP in the pS797 vector and characterised in 

vivo in G. thermodenitrificans, which was selected as the host organism by the 

sponsor, Shell Research Ltd.   

 

 Data derived from the experimental characterisation of these 31 putative 

promoters were then used to train a Partial Least Squares (PLS) model to 

quantifiably link promoter DNA sequence to GFP output.  

 



Chapter 3 - Promoter identification & initial characterisation  

 91 

3.1.1 Partial Least Squares modelling  
 

 Partial Least Squares (PLS, alternatively referred to as “Projection to 

Latent Structures”) models are used to infer the relationship between matrix of 

predictor variables, X (in this instance promoter DNA sequence) and a matrix of 

empirically measured responses, Y (in this instance GFP fluorescence) (Wold et 

al., 2009).  

 

 PLS can be viewed as a specialised form of multivariate linear 

regression. Two features of the PLS algorithm render it particularly suited to 

modelling promoters. Firstly, PLS was designed to accurately model high-

dimensional data sets, and is particularly adapted to scenarios where variables 

outnumber responses (Wold et al., 2001). Given that each promoter sequence 

consisted of 100 independently modelled nucleotides (giving a total of 4100 

potential sequences), hyper-dimensionality was an inherent characteristic of the 

promoter design space. 

 

 Secondly, PLS has been shown to produce accurate predictive models in 

instances where correlation between X variables, also known as 

multicolinearity, is high (Palermo et al., 2009). Given the presence of DNA 

sequence motifs within promoters, multicolinearity was also likely to be a 

feature of the promoter data set. A PLS modelling approach was therefore 

selected to infer the relationship between promoter DNA sequence and 

function.  

 

Mathematical principles of PLS 

  

 A number of algorithmic variants of PLS are available, but the underlying 

mathematical principles remain generally the same. PLS resolves the issues 

that result from high dimensional data by applying the assumption that the 

relationship between X and Y can be accurately inferred through a smaller 

number of underlying, or latent, variables (LVs) which are not directly observed 

or measured (Rosipal & Krämer, 2006). In brief, a matrix of individual x values, 

X, is decomposed to two secondary matrices. T (also called the X-scores) 
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consists of LVs of X, whilst P’ (the X-loadings, alternatively termed coefficients) 

is used to relate T to X (Formula 1). A matrix of errors, E, is also calculated, and 

represents the residual information remaining in X once the LVs have been 

extracted (Gowen et al., 2010). Y is also decomposed to comparable matrices 

of latent variables, coefficients (Q’) and errors (F) (Formula 2). Throughout the 

process, LVs are calculated in a manner that attempts to minimise error whilst 

maximising the covariance between the LVs of X and Y. 

 

 X = TP’ + E (1) 

 Y = TQ’ + F (2) 

 

 T is calculated through a linear transformation of X via a matrix of 

weights, W: 

 T = XW (3) 

 

 Once T has been calculated, it can be used to generate an equation for 

general predictions of Y by substituting equation (3) into equation (2) (Gowen et 

al., 2010): 

 Y = ( XW )Q’ + F (4) 

 

Model validation and interpretation 

 

 The optimum number of LVs to extract from X must be carefully 

considered. Models containing large numbers of LVs risk being overfit to the 

training data, providing an accurate description of the relationship between X 

and Y, but performing poorly when applied to making predictions based on 

observations that were not present in the training data set. Equally, extracting 

too few LVs will result in a model with insufficient statistical power (Gowen et 

al., 2010). To optimise the number of LVs extracted and therefore calculate the 

most parsimonious model, the van der Voet T2 test is applied (van der Voet, 

1994). Multiple models are constructed, with a different number of LVs being 

extracted from the original data set by each model, up to a given maximum. The 

optimum model is judged to be the one with the smallest number of LVs, whose 
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prediction error is not statistically significantly greater than the model with the 

minimum error (Tobias, 1995).  

 

 In addition to optimising the number of LVs in candidate models, 

predictive power must also be assessed. To prevent the model being overfit to 

the training data set, candidate models should be used to predict Y for an 

independent validation data set, and the resulting errors assessed. In data sets 

where the number of individual x values is small, withholding large quantities of 

data from model training to use for model validation is likely to result in poor 

statistical power, reducing the probability of extracting useful information from 

the data (Button et al., 2013). The selection of cross-validation (CV) methods 

must therefore be carefully considered to maximise the statistical power of 

candidate models whilst maintaining predictive accuracy. 

 

 In KFold CV, the data set is divided at random into K portions, ideally of 

equal size. A model is trained on K – 1 parts of the data set and subsequently 

evaluated on the withheld data. Each of the K parts of the data set is iteratively 

used for model validation (Jung & Hu, 2015). A total of K models are therefore 

fit, and model performance is subsequently evaluated using the root mean 

PRESS statistic (Predicted Residual Sum of Squares). Root mean PRESS 

provides a measure of the squared prediction error between the observed 

values for a given K and the values predicted by the model; a lower root mean 

PRESS is indicative of more accurate prediction. The model with the lowest root 

mean PRESS is typically selected for more detailed interrogation. The 

underlying assumption of KFold CV is that models constructed on a proportion 

of the data set are not statistically significantly different to those models 

constructed on the complete set of data (Beleites & Salzer, 2008). 

 

 Once models have been satisfactorily trained and validated, 

interpretation of the model parameters can provide useful insights to the system 

being analysed. Both weights and coefficients can be interpreted as quantitative 

measures of the impact of a given predictor on the measured response. In this 

instance, weights and coefficients can be used to determine whether a given 
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nucleotide at a given position within the promoter DNA sequence is increasing 

or decreasing GFP fluorescence.  

 

  The PLS algorithm also calculates a summary statistic to determine the 

importance of a given variable in determining the model prediction. The 

Variable Importance score (VIP) is calculated as the weighted sum of squares 

of the PLS weights, and takes into account the amount of explained y variance 

in each extracted LV (Wold et al., 2001, Farrés et al., 2015). A threshold VIP of 

0.8 is commonly accepted, below which variables are judged to have an 

statistically insignificant impact on model output (Eriksson et al., 2006). 

Variables with a small VIP and a small model coefficient are candidates for 

removal from subsequent models to increase model parsimony (SAS Institute 

Inc., 2016). Conversely, x values with a high VIP, large weights and large 

coefficients are judged to have statistically significant impacts on model output.  

 

Generating synthetic promoter sequences  

 

 Once a PLS model is trained and validated, it can be used to make 

predictions of Y for novel x values. In this instance, a PLS model was applied to 

making predictions of GFP fluorescence, Y, for a group of putative synthetic 

promoter sequences, X. The accuracy of these predictions was subsequently 

assessed in vivo.  
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3.2 Results 

3.2.1 Bioinformatic identification of putative promoters 

Identification of putative promoters from the Geobacillus core genome 

 

 Four Geobacillus species, G. kaustophilus DSM7263, G. 

stearothermophilus DSM22, G. thermodenitrificans K1041 and G. 

thermoglucosidans DSM2542 were sequenced de novo and their genomes 

assembled. To identify proteins common to all four Geobacillus species, single-

copy proteins were clustered into homologous gene families using the 

GET_HOMOLOGUES software package (Contreras-Moreira & Vinuesa, 2013). 

To increase prediction robustness, three separate clustering algorithms were 

used and the resulting gene families compared. Bidirectional best blast hit 

(BDBH), COG triangles (COG) and OrthoMCL (OMCL) algorithms returned 

1,924, 1,914 and 1,902 gene clusters respectively, with 1,886 clusters being 

identified by all three algorithms (Figure 3.1). The core genome of the four 

Geobacillus species of interest was therefore shown to contain 1,886 genes. 

Given that homologues of these core genes were shown to be present in each 

of the four Geobacillus species, a total of 7,544 core genes were therefore 

identified. 

  

 The 100 bp immediately upstream of the start codon was extracted from 

each of the 7,544 core genes, and BPROM software was used to identify 

putative cis-regulatory sequences. DNA sequences were scored on the basis of 

the presence and nucleotide composition of functional motifs, with sequences 

being identified as putative promoters if they scored higher than a pre-

determined threshold (Solovyev & Salamov, 2011). To isolate promoter 

sequences that were likely to be orthogonal to endogenous regulatory 

pathways, those sequences containing known transcription factor binding sites 

(TFBS) were discarded.  
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Figure 3.1: Venn diagram showing the number of homologous gene 
families identified in the genomes of the four Geobacillus species of 

interest by Bidirectional best blast hit (BDBH), COG triangles (COG) & 
OrthoMCL (OMCL) clustering algorithms. 

 

Rendered using GET_HOMOLOGUES software. 
 
 

 1,489 putative 100 bp promoters 1  that did not contain TFBS were 

identified. The number of sequences isolated from each of the four Geobacillus 

species of interest is summarised in Table 3-1. 

 

                                            
1 Throughout the remainder of this thesis, the 100 bp, bioinformatically identified 
cis-regulatory elements are referred to as promoters, unless otherwise 
specified. Given that the 100 bp sequences were isolated from immediately 
upstream of the start codon of the adjacent CDS, the cis-regulatory sequences 
contained both promoter and RBS putative sequences, but the term promoter is 
used as shorthand. 
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 Abbreviation Putative promoters 

G. kaustophilus DSM7263 GKAU 403 

G. stearothermophilus DSM22 GSTEA 370 

G. thermodenitrificans K1041 GTDN 345 

G. thermoglucosidans DSM2542 GTGNS 371 

 

Table 3-1: Number of putative promoters isolated from the four 
Geobacillus species of interest. 

 

 A phylogeny consisting of 21 clades was constructed from the identified 

putative promoters (Figure 3.2A). This phylogeny was then used to select 

sequences at random for in vivo characterisation. A compromise was required 

between a desire to maximise the sequence diversity of the characterised 

promoters and a need to ensure that in vivo characterisation of the number of 

sequences selected was experimentally feasible. Two putative promoters were 

therefore selected at random from each of the 13 clades of the phylogeny that 

contained more than 50 sequences (Figure 3.2B). 

 

 Once selected, putative promoters were manually checked to ensure that 

they did not overlap with any adjacent CDS. If a putative regulatory sequence 

was found to overlap with a CDS, the promoter was discarded and a 

replacement sequence was selected at random from the same clade as the 

original. In total, 26 putative promoter sequences were selected to be 

synthesised upstream of GFP in the pS797 vector. The bioinformatic pipeline 

used for putative promoter discovery is summarised in Figure 3.3. 

 

Identification of putative promoter sequences from bacteriophage 

 

 Intergenic regions of at least 100 bp were identified in two 

bacteriophage, Thermus phage phi OH2 and Geobacillus phage GBSV1. From 

these intergenic regions, the 100 bp sequences immediately upstream of the 

start codon of the adjacent CDS were extracted. The extracted sequences were 

subsequently screened to identify putative promoter sequences using BPROM.  
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Figure 3.2: Phylogeny of putative promoter sequences. 

A) Sequences were aligned using MUSCLE. The phylogeny was rendered 
using Figtree software and is rooted at the midpoint. 
 
B) Bar chart showing the number of putative promoter sequences in each of the 
21 clades of the promoter phylogeny. The dashed line shows the threshold of 
50 sequences. Clades were discarded if they contained fewer than 50 
sequences. 
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 Figure 3.3: Bioinformatic pipeline for the identification of putative 

promoters. 

 

A) shows the generalised bioinformatic pipeline, with relevant software named. 
B) shows the results of the pipeline when applied to four Geobacillus species, 
as discussed in the text. Rendered using Lucidchart. 
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 Any putative promoters containing known TFBS were discarded. The 

number of intergenic regions and putative promoters identified in each phage is 

summarised in Table 3-2. Two putative promoters were selected at random 

from each phage for in vivo characterisation upstream of GFP in pS797.  

 

 Intergenic regions 

≥100 bp 

Putative promoters 

Geobacillus phage GBSV1 9 9 

Thermus phage phi OH2 12 7 

 

Table 3-2: Number of intergenic regions and putative promoters identified 
in the two phage of interest. 

 

3.2.2 Putative promoter characterisation in G. thermodenitrificans  

Wild-type Geobacillus growth characteristics 

 

 To ascertain the time points at which promoter characterisation 

measurements should be taken, wild-type G. thermodenitrificans and G. 

thermoglucosidans were cultured in both 96-well plate and 250 ml flask growth 

formats (Figure 3.4). Both G. thermodenitrificans and G. thermoglucosidans 

displayed typical bacterial exponential growth, with both species reaching 

stationary phase after between 7 and 8 h incubation in either culture format. 

Maximum growth rate was achieved between 3 h and 4 h incubation in 96-well 

plate format, and between 2 h and 3 h incubation in 250 ml flask format. For 

both species, a higher final optical density at 600 nm (OD 600 nm) was reached 

by cultures grown in 96-well plates than those cultures in flasks, although 

analysis of the data by ordinary two-way ANOVA revealed no significant 

difference in final OD 600 nm between growth formats or species.  

 

 For promoter characterisation experiments, measurements of culture 

absorbance and fluorescence were therefore taken after 2.5 h (mid-log phase), 

7 h (early stationary phase) and 24 h (late stationary phase) incubation. 
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Figure 3.4: Growth curves of wild-type A) G. thermodenitrificans & B) G. 
thermoglucosidans in 96-well plate and 250 ml conical flask growth 

formats. 

Geobacillus were cultured in mLB broth. To prepare starter cultures, single 
Geobacillus colonies were restreaked on mLB agar plates and incubated 
overnight at 55 °C. The resultant biomass was resuspended in 5 ml mLB broth 
and used to inoculate cultures to an initial OD 600 nm of 0.1. Incubation was at 60 
°C, with shaking at 220 rpm in the case of cultures grown in flasks, and 800 rpm 
in the case of cultures grown in 96-well plates. Points represent the mean 
growth of three starter cultures arising from independent colonies, with standard 
deviation error bars shown, unless hidden by the point. The curves represent 
the best fit of the data using a four parameter logistic sigmoidal equation, 
rendered using Prism software. 
 



Chapter 3 - Promoter identification & initial characterisation  

 102 

 For promoter characterisation experiments, measurements of culture 

absorbance and fluorescence were therefore taken after 2.5 h (mid-log phase), 

7 h (early stationary phase) and 24 h (late stationary phase) incubation. 

 

Characterisation of putative promoters 

 

 G. thermodenitrificans was chosen as the host species for in vivo 

characterisation by the industrial sponsor (Shell Research Ltd.). Experimental 

practicalities restricted the number of bioinformatically identified putative 

promoter sequences that could be feasibly characterised in vivo. High-

throughput approaches to promoter characterisation, combining flow cytometry 

with multiplexed DNA and RNA sequencing, have previously been successfully 

employed to characterise libraries of thousands of regulatory sequences in 

species including Bacillus subtilis and E. coli (Kosuri et al., 2013, Johns et al., 

2018). However, these cytometric methods require sufficiently large numbers of 

transformants: approximately 50-fold coverage of the promoter library being 

characterised is required for accurate characterisation. Low transformation 

efficiencies in G. thermodenitrificans precluded such high-throughput screening, 

as obtaining the required number of transformants was impractical.  

 

 In lieu of characterising all 1,489 of the bioinformatically identified 

putative Geobacillus promoters, a subset of sequences was selected. In order 

to maximise the sequence diversity of the chosen promoters, two putative 

promoters from each of the clades of the Geobacillus phylogeny that contained 

more than 50 sequences (Figure 3.2B) were selected at random. Additionally, 

four putative phage promoters were selected at random. Characterisation of the 

resulting group of 30 sequences was hypothesised to allow empirical 

exploration of a sufficient portion of the promoter design space whilst being 

experimentally feasible. 

 

 Of the 30 selected putative promoter sequences, one could not be 

immediately synthesised by ATUM (previously DNA 2.0, California, United 

States of America). As a result, an additional sequence was chosen at random 

for synthesis. Ultimately however, the problematic sequence was successfully 
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synthesised. The initial promoter library therefore contained 31 characterised 

sequences. 

 

Comparing relative fluorescence of cultures grown in 96-well plate & 250 ml 

conical flasks 

 

 Growth of wild-type G. thermodenitrificans revealed no significant 

difference in culture OD 600 nm between cultures grown in 96-well plate and 250 

ml conical flask format (Figure 3.4). To investigate any potential difference in 

fluorescence of cultures grown in the two growth formats, and hence to 

determine a growth format for subsequent promoter characterisation 

experiments, the initial group of putative promoters was characterised in G. 

thermodenitrificans cultured in both 250 ml flask and 96-well plate format 

(Figure 3.5). 

 

 A linear regression of the data returned a R2 value of 0.626, indicating a 

positive correlation in culture fluorescence between the two growth formats. 

Additionally, multiple t-tests were used to compare the relative fluorescence of 

each promoter::GFP fusion in each growth format, corrected for multiple 

comparisons using the Holm-Šidák method. Only the promoter GSTEA_02162 

was found to cause significantly different GFP expression between the two 

growth formats, with a higher mean fluorescence being recorded when cultures 

were incubated in 250 ml flasks. Given the lack of significant difference in 

fluorescence between growth formats for the majority of the characterised 

promoter sequences and the increased throughput afforded by growth in 96-

well plates, subsequent characterisation experiments were performed in 96-well 

plate format only. 

 

Promoter activity when cultured in 96-well plate format. 

 

 Of the 31 putative promoter sequences, only four (GSTEA_02364, 

GTDN_00966, N352_gp54 and GTGNS_00505) resulted in GFP expression 

that was statistically significantly different from the negative control, 
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Figure 3.5: Comparing fluorescence output of promoters in G. 
thermodenitrificans cultured in 96-well plate and 250 ml flask growth 

formats. 

 
Fluorescence and absorbance measurements after 24 h incubation. Points 
represent the mean fluorescence output of each promoter, from three starter 
cultures arising from independent transformants in each format. The solid line 
represents a linear regression of the data, with 95% confidence limits shown by 
the dashed lines. Fluorescence output for each promoter::GFP fusion in each 
growth format were compared using multiple t-tests, using the Holm-Šidák 
method to correct for multiple comparisons and a significance level of 0.05. The 
point coloured red indicates the promoter GSTEA_02162, which showed a 
statistically significant difference in GFP fluorescence between the two growth 
formats.  
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G. thermodenitrificans transformed with the empty pS797 vector (Figure 3.6). 

Significance was determined by ordinary one-way ANOVA with Dunnett’s 

multiple comparisons test and a significance level of 0.05. Only one promoter, 

GTGNS_00505, resulted in mean GFP expression that was greater than that of 

the positive control; this difference was not statistically significant. It could 

therefore be argued that only 13% of the characterised sequences were active 

promoters.  

 

 In total, the promoter library covered a 18.6-fold range of expression 

strengths, although this range dropped to only 1.6-fold if only the four “active” 

promoters were considered. 

 

3.2.3 Modelling the relationship between promoter sequence and 
function 

 

 To account for any batch effects introduced by technical sources of 

variation between replicates, all promoter fluorescence2 measurements were 

normalised to a measurement of fluorescence from the positive control, the G. 

thermodenitrificans ldhA promoter, cultured on the same 96-well plate as the 

promoter of interest. The PLS platform of the JMP software (SAS Institute, 

North Carolina, United States of America) was used to model the relationship 

between promoter DNA sequence (X) and GFP fluorescence output in G. 

thermodenitrificans (Y). Each of the 100 nucleotide positions in the promoter 

DNA sequence was modelled as an individual x variable. Promoter::GFP 

fluorescence output was as measured after 24 h incubation (Figure 3.6). For 

each of the 31 characterised promoter sequences, measurements from three 

starter cultures arising from independent transformants were included in the 

modelled data set, giving a total of 93 y values.  The NIPALS (nonlinear 

iterative PLS) algorithm was used, with a maximum of 15 LVs permitted. KFold 

CV was used, with K = 7, (i.e. the default value recommended by the JMP 

software).  

                                            
2 The term “promoter fluorescence” is used throughout this thesis to refer to the 
fluorescence activity of promoter::reporter fusions. Obviously, it is the reporter, not the 
promoter, from which fluorescence arises. However, the term “promoter fluorescence” 
provides useful shorthand.  
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Figure 3.6: 31 putative promoters characterised upstream of GFP in G. 
thermodenitrificans cultured in 96-well plate format. 

 

Fluorescence and absorbance measurements after 24 h incubation in 96-well 
plate format. The positive control, the G. thermodenitrificans ldhA promoter, is 
represented by the hatched bar. The negative control, G. thermodenitrificans 
transformed with an empty pS797 vector, is highlighted in black. Bars represent 
the mean of n = 3 independent starter cultures, except in the case of the two 
controls, where n = 12. Standard deviation error bars shown, unless hidden by 
the bar. Promoter sequences with mean relative fluorescence output that was 
statistically significantly different to the negative control are labeled with an 
asterisk. Significance was determined by ordinary one-way ANOVA with 
Dunnett’s multiple comparisons test, using a significance level of 0.05.  
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 Within the characterised promoter library, all four DNA nucleotides were 

represented at all 100 positions within the promoter sequence, with one 

exception. The -11 position (relative to the start codon of the upstream CDS) 

lacked a cytosine residue (Figure 3.7). The modelled promoter sequence space 

therefore contained a total of 399 x variables. In theory, the PLS model should 

have consequently been able to determine the contribution to GFP fluorescence 

of (almost) any nucleotide at any position within the promoter sequence. 

 

 The most parsimonious PLS model that was obtained used two LVs to 

model the relationship between X and Y, and explained 8.573% of the variation 

observed in X and 80.251% of the variation observed in Y. 69.844% of the 

variation observed in Y was explained by the first LV alone.  

 

 

 

 

Figure 3.7: Percentage frequency of nucleotides at all positions within the 
set of 31 characterised putative promoters. 
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 Diagnostics plots of the model performance when applied to the CV data 

set appeared indicative of good predictive power. A strong positive correlation 

was seen between empirically measured fluorescence values and values 

predicted by the model (Figure 3.8A). A linear regression of the data returned 

an R2 value of 0.803. However, analysis of the model residuals (the difference 

between empirically measured and predicted y values) questioned the model’s 

predictive power. The model residuals were clearly heteroscedastic – residuals 

increased in magnitude as the predicted GFP fluorescence increased. (Figure 

3.8B). This result suggested that the predictive accuracy of the model 

deteriorated as promoter strength increased. Additionally, model residuals were 

shown to not be normally distributed by a Shapiro-Wilk W test, at a significance 

level of 0.05 (Figure 3.8C). The W value returned by the analysis was 0.780 

(3sf), and Prob<W was <0.0001. PLS, like all conventional multivariate linear 

regression models, operates under the assumption that model residuals will be 

uncorrelated, have a mean of 0 and will be normally distributed. The lack of 

normality in the prediction residuals was therefore potentially indicative of 

underlying structural biases within the model (Eck, 2018, Schmidt & Finan, 

2018). 

 

 Inaccurate prediction of fluorescence output for the stronger promoters 

was potentially the result of the skewed nature of the training data set. Of the 31 

characterised sequences, only four promoters displayed mean activity levels 

that were statistically significantly greater than the negative control (Figure 3.6). 

As such, strong promoters were potentially under-represented in the training 

data set, reducing the predictive power of the model. 

 

3.2.4 Generating putative synthetic promoters 
 
 The simulator function of the JMP software was used to generate 5,000 

synthetic putative promoter sequences. To generate a synthetic promoter, 

nucleotides were selected at random at each of the 100 sequence positions. To 

increase the probability of including any key consensus motifs from the original 

training set of 31 wild-type promoters in the synthetic sequences, the probability 

of including any key consensus motifs from the original training set of 31 



Chapter 3 - Promoter identification & initial characterisation  

 109 

 

Figure 3.8: Partial Least Squares model diagnostics. 

 

A) Empirically measured promoter::GFP fluorescence output, normalised to the 
positive control, the G. thermodenitrificans ldhA promoter, plotted against the 
normalised fluorescence as predicted by the PLS model. The solid line 
represents a linear regression of the data, with 95% confidence limits 
represented by the dashed lines. 
 
B) Normalised fluorescence as predicted by the PLS model, plotted against the 
prediction residual (the difference between empirically measured and predicted 
fluorescence values). The dashed line is shown at the point where prediction 
residual is equal to 0. 
 
C) Histogram of model residual distribution. Analysis of the data by Shapiro-
Wilk W test at the 0.05 significance level revealed that the data were not 
normally distributed. The W value returned was 0.780 (3sf), and Prob<W was 
<0.0001.   
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wild-type promoters in the synthetic sequences, the probability of a nucleotide 

being assigned to a given sequence position was weighted based on the 

distribution of nucleotides found in the 31 characterised promoters (Figure 3.7). 

The optimum obtained PLS model was subsequently used to make a prediction 

of GFP fluorescence for the synthetic sequences.  

 

 12 synthetic sequences, with predicted normalised fluorescence output 

in the range 0.525-0.570 (i.e. approximately half the fluorescence output of the 

G. thermodenitrificans ldhA promoter) were selected for in vivo characterisation. 

Given the observed weakness of the PLS model at making predictions of 

fluorescence output for strong promoters (Figure 3.8), only those synthetic 

putative promoters with moderate predicted strength were selected for in vivo 

characterisation. BLAST queries raised against each of the 12 synthetic 

sequences returned no hits, indicating an absence of similar sequences in the 

GenBank database.  

 

 The 12 synthetic putative promoter sequences were synthesised 

upstream of GFP in the pS797 vector by ATUM. Empirical measurements of 

GFP fluorescence after 24 h incubation of G. thermodenitrificans transformants 

showed minimal correlation between the predicted and empirically measured 

GFP fluorescence values (Figure 3.9). Of the 12 characterised synthetic 

putative promoters, none resulted in normalised GFP expression that was 

significantly different to the pS797 negative control, as determined by ordinary 

one-way ANOVA with Dunnett’s multiple comparisons test. Only one synthetic 

putative promoter, GSYN_00011, had an empirical normalised GFP output that 

fell within one standard deviation of the predicted value. 
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Figure 3.9: Empirically measured fluorescence output of putative 
synthetic promoter sequences, plotted against fluorescence as predicted 

by the Partial Least Squares model. 

 

Points represent individual putative synthetic promoter sequences. Empirical 
measurements are the mean of three starter cultures arising from independent 
G. thermodenitrificans transformants, characterised after 24 h incubation. All 
fluorescence measurements were normalised to the positive control, the G. 
thermodenitrificans ldhA promoter. Standard deviation error bars are shown. 
The dashed line represents the point at which empirically measured and 
predicted fluorescence values are equal.  
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3.3 Discussion 
 

 Bioinformatic analysis of four species of Geobacillus and two species of 

bacteriophage resulted in the identification of 1,515 putative promoter 

sequences. Of these putative regulatory sequences, 31 were characterised 

upstream of GFP in G. thermodenitrificans (Figure 3.6). GSTEA_02364::GFP, 

GTDN_00966::GFP, N352_gp54::GFP and GTGNS_00505::GFP were the only 

promoter::reporter fusions for which mean fluorescence output was significantly 

greater than that of the negative control, G. thermodenitrificans transformed to 

contain the empty vector pS797. It could therefore be argued that only four of 

the 31 promoters were truly “active” in G. thermodenitrificans, giving BPROM a 

specificity of only 13% for identifying Geobacillus promoter sequences. This 

result compared poorly with BPROM’s claimed specificity of 80% in E. coli 

(Solovyev & Salamov, 2011).  

 

 BPROM’s lack of specificity for Geobacillus promoters was perhaps not 

surprising. The promoter classification algorithm described putative functional 

motifs and scored their oligonucleotide composition on the basis of a training 

set of E. coli sigma70 promoters (Solovyev & Salamov, 2011). However, 

transcription regulatory motifs that are active in E. coli may not be 

representative of the regulatory mechanisms of Geobacillus (Cardinale & Arkin, 

2012).  

 

 Alternative in silico methods for prokaryotic promoter identification have 

been posited, including machine learning techniques such as Hidden Markov-

models (Mann et al., 2006) and artificial neural networks (Umarov & Solovyev, 

2017).  Application of these in silico techniques could potentially have increased 

the accuracy of putative promoter identification in Geobacillus as compared to 

BPROM. However, de novo motif identification approaches can be time 

consuming, and sophisticated machine learning techniques for promoter 

identification require prior understanding of the underlying statistical and 

biological characteristics of the sampled DNA sequences to provide a robust 

training set (Song, 2011). Such machine learning techniques are therefore not 
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always immediately applicable in non-model organisms, such as Geobacillus, 

for which promoter motifs may not have been previously described.  

 

 The relative inaccuracy of BPROM in identifying Geobacillus promoters 

did not necessarily preclude future application of the approach. BPROM can 

provide a “quick and dirty” screening technique to isolate a large set of putative 

promoter elements in a genus of interest. Given the ease and relatively low cost 

of DNA synthesis, in vivo characterisation can subsequently be used to further 

refine promoter selection, as was shown in this chapter. 

 

 The 31 putative promoter sequences that were characterised in G. 

thermodenitrificans displayed a total range of GFP expression of 70-fold (Figure 

3.6). This result compared favourably with libraries of Geobacillus promoters 

described in the literature, which covered 100- (Reeve et al., 2016) and 76-fold 

(Pogrebnyakov et al., 2017) ranges of expression levels when characterised 

upstream of GFP. However, whilst the two published libraries contained 

promoter sequences with expression levels spanning the entirety of their stated 

range, the library described in this chapter was mostly comprised of sequences 

with no statistically significant promoter activity.  

 

 This discrepancy in the number of active sequences in the published 

promoter libraries and the promoters described in this chapter was potentially a 

result of differences in the way in which the libraries were conceived. The two 

published libraries used an a posteriori approach, in which previously 

characterised promoter sequences were mutagenised. By maintaining known 

consensus regions (Pogrebnyakov et al., 2017) or keeping the rate at which 

mutations were incorporated by epPCR low  (an average error rate of 10% was 

reported by Reeve et al., although three of the 245 bp promoter sequences 

differed from the wild-type starting promoter by only one nucleotide) (Reeve et 

al., 2016), the probability of maintaining promoter activity in mutant sequences 

was likely increased.  

 

 The failure of the initial PLS model to accurately predict the in vivo 

activity of 12 synthetic putative promoter sequences (Figure 3.9) may have 
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been the result of the sparsity of promoter activity levels in the training data set. 

Deficiencies in model predictive power resulting from sparse data sets are well 

understood (Beleites & Salzer, 2008). The heteroscedastic nature of the model 

residuals (Figure 3.8B) was also possibly the result of an over representation of 

weak or inactive promoters in the characterised promoter sequences; the 

training set only contained a limited amount of information regarding active 

promoter sequences, thus increasing prediction variance and model instability 

(Beleites & Salzer, 2008).  

 

 Prediction accuracy might have been improved by increasing the number 

LVs that were extracted from the data to reduce any underlying systematic 

biases; the optimal obtained PLS model extracted only two LVs from the 

training data, from a maximum permitted number of 15 LVs. However, such an 

increase in model complexity carried the risk of overfitting the model to the 

training data (Deng et al., 2015). In lieu of increasing model complexity, an 

expansion of the training data set was deemed necessary to increase model 

predictive power. Theoretically, the more times a given nucleotide was 

observed at a given position within the promoter sequence, the more accurately 

the effect of that nucleotide on promoter output could be calculated (Liao et al., 

2007). The in vivo characterisation of a greater number of putative promoter 

sequences was also thought likely to increase the range of expression levels in 

the characterised library of Geobacillus regulatory sequences.  

 

 The need for a training data set containing a greater number of active 

promoter sequences was corroborated by studies that had previously used PLS 

to model promoter function. De Mey et al., for example, required a training set 

of 42 E. coli promoter sequences, of 57 bp length, to accurately infer the 

relationship between DNA sequence and promoter function (De Mey et al., 

2007). Additionally, Jonsson et al. required 25 68 bp promoter sequences, all of 

which showed in vivo activity, to obtain an accurate model of E. coli promoter 

function (Jonsson et al., 1993). Both of the published studies required a greater 

number of active promoters than were described in this chapter to model a 

design space of comparatively reduced dimensionality (i.e. sequences that 

were 57 bp or 68 bp long, rather than the 100 bp sequences that were modelled 



Chapter 3 - Promoter identification & initial characterisation  

 115 

in this investigation). The size of the training data set used in this investigation 

was therefore hypothesised to be inadequate to accurately infer the relationship 

between promoter sequence and function.   

 

3.4 Summary 
 

 Bioinformatic analysis of the core genome of four Geobacillus species, 

(G. kaustophilus DSM7263, G. stearothermophilus DSM22, G. 

thermodenitrificans K1041 and G. thermoglucosidans DSM2542) and the 

genomes of two bacteriophage (Thermus phage phi OH2 and Geobacillus 

phage GBSV1) resulted in the identification of 1,515 putative promoter 

sequences. Data derived from the experimental characterisation of 31 putative 

promoters in G. thermodenitrificans were used to train a PLS model that 

inferred the relationship between DNA sequence and promoter function. 

Despite providing an accurate fit of the training data, the PLS model was unable 

to accurately predict the in vivo regulatory activity of 12 synthetic putative 

promoter sequences.  

 

 It was hypothesised that the number of in vivo characterised promoter 

sequences was inadequate to provide a significantly robust training data set: 

previous studies that had successfully used PLS to model promoter function 

were trained on a greater number of promoter sequences than were 

characterised in this chapter. In vivo characterisation of additional putative 

promoter sequences was therefore deemed necessary.  
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4 Modelling promoter activity as a function of nucleotide 

sequence in G. thermoglucosidans 

Summary 

 

  The lack of predictive power shown by the Partial Least Squares (PLS) 

model discussed in Chapter 3 was hypothesised to be a result of the small size 

of the training data set as compared to the scale of the promoter design space. 

Three progressively larger sets of bioinformatically identified putative promoter 

sequences were therefore characterised in vivo, and the resulting 

characterisation data were used to derive PLS models of the relationship 

between promoter DNA sequence and function.  

 

 The linear nature of PLS modelling was also hypothesised to have 

contributed to the inaccuracy of the model discussed in Chapter 3. This linearity 

may have rendered PLS models unable to accurately account for any non-

linearity in the promoter design space, increasing the probability of prediction 

errors. The address this possible deficiency, Artificial Neural Networks (ANNs) 

with non-linear activation functions were applied to training promoter sequence-

function models. ANNs have previously been shown to perform poorly when the 

system under investigation is complex and the number of observations in the 

training data set is small. Partition modelling was therefore used to identify 

those positions within the promoter sequence that were predicted to be having 

the largest impact on promoter output. Downstream ANNs, derived from the 

same training data sets as the PLS models, were restricted to modelling 

promoter activity as a function of only those sequence positions that were 

identified as important by the partition models, thereby reducing the 

dimensionality of the promoter design space.  

 

 ANN and PLS models trained on each of the training data sets were 

used to predict pre hoc the activity of either putative synthetic promoter 

sequences or bioinformatically identified putative promoters. In all instances, 

the accuracy of these predictions was subsequently assessed in vivo.  
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4.1 Introduction  

 

 Chapter 3 discussed the in vivo characterisation of 31 putative promoter 

sequences in G. thermodenitrificans. The data that were derived from this 

experimental characterisation were subsequently used to fit a Partial Least 

Squares (PLS) model that attempted to infer the relationship between promoter 

DNA sequence and function.  

 

 Analysis of the optimal PLS model obtained suggested an accurate fit of 

the training data. However, when tested using 12 predicted synthetic promoter 

sequences, the model was unable to accurately predict in vivo promoter activity. 

The lack of predictive power was hypothesised to be a result of the small size of 

the training data set as compared to the scale of the promoter design space 

(4100 potential 100 bp sequences) and an over-representation of inactive 

promoter sequences in the training data set.  

 

 In addition to the size of the training data set, the personality of the 

model used to infer the relationship between promoter sequence and function 

may also have contributed to the lack of predictive power of the models 

discussed in Chapter 3. PLS is a linear regression method which assumes a 

linear relationship between the X and Y matrices (Wold et al., 2009) and in 

which the model weights and coefficients are calculated as linear combinations 

of the original x and y variables. This linearity may have confounded the effects 

of any interactions between nucleotides within the promoter sequence with the 

main effects for each individual nucleotide position (Jonsson et al., 1993). The 

mathematical abstraction of the relationship between promoter sequence and 

function afforded by PLS models might therefore have been too simplistic to 

accurately account for the complexity inherent in promoter structure, increasing 

the probability of prediction errors (Meng & Wang, 2015). To address this 

possible deficiency, non-linear Artificial Neural Networks (ANNs) were applied 

to training promoter sequence-function models. 
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4.1.1 Artificial Neural Networks and Partition Modelling 

 

 Artificial Neural Networks (ANNs) provide an alternative strategy for 

training promoter sequence-function models that can avoid the potential issues 

caused by the linearity of PLS models. The term “ANN” is somewhat of a catch-

all for a family of algorithmic variants, although the underlying principles remain 

generally the same (Buscema et al., 2014). Based around a rudimentary model 

of a mammalian brain, ANNs feed linear combinations of input matrices, X, into 

hidden layers consisting of multiple nodes (Figure 4.1). 

 

 At each node of the hidden layer, non-linear functions (known as 

activation functions) are applied to the input data. A linear combination of the 

hidden nodes is subsequently used to map the data to either additional hidden 

layers, or to an output layer containing the response matrix, Y (SAS Institute 

Inc, 2016b). During this training phase, the strength of the connection between 

nodes, known as the connection weight, is calculated in order to obtain a model 

which best describes the design space of interest (Prieto et al., 2016). In 

addition to optimising model weights, the number of nodes and hidden layers 

can be varied during the training process, as can the activation function 

personality. Training therefore results in a learning process that maps the input 

data to predictions of response for the system under investigation (Buscema et 

al., 2014). 

 

 The JMP software fits ANNs using a multilayer perceptron algorithm and 

backpropagation. During training, the model weights are initially assigned 

normally distributed random starting values. Predictions of Y are made from this 

initial network, and cross-validation (CV) statistics are calculated on a validation 

data set. The model parameters are then systematically altered by gradient 

descent in order to optimise model performance. When altering the model 

weights no longer improves the CV statistics (i.e. when altering the model 

weights no longer reduces prediction error), model fitting is stopped (Gotwalt, 

2011). Finding a combination of weights that globally minimises prediction error 

is likely to result in an ANN that is overfit to the training data (Hastie et al., 

2009). A penalty term is therefore applied. Penalty terms aim to constrain the 
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Figure 4.1: Schematic representation of an Artificial Neural Network. 

 

Each layer consists of multiple nodes. Nodes are represented by the 
individual boxes. Hidden layers are numbered, with the 1st hidden layer being 
closest to the output layer. 
 
Input data matrices (shown in blue) are linearly combined and fed into the 2nd 
hidden layer. At each node in the hidden layer (shown in green) a non-linear 
transformation of the input data is applied. Once calculated, the results of 
these transformations are linearly combined and fed into the 1st hidden layer, 
where more non-linear transformations are applied. The results from the 1st 
hidden layer are then linearly combined and fed into the output layer (shown 
in red), which gives a prediction of y from the values of x given in the input 
matrix.  
 
In this example, two hidden layers and a single y value are shown, but this is 
arbitrary; in theory, any number of hidden layers with any number of nodes 
can be combined to map the response surface of interest.  
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model fit process so that weights do not converge to excessively large values 

(Setiono, 1997). Once the learning process is complete, a test set of data that is 

completely unknown to the ANN is applied in order to quantify network 

predictive performance (Pasini, 2015). 

 

 The structure and inherent flexibility of ANNs potentially affords a high 

degree of predictive power. Theoretically, ANNs have universal approximation 

capability; given sufficient training data, hidden layers and nodes, any response 

can be predicted to any accuracy (Hornik, 1989, SAS Institute Inc, 2016b).  

 

 However, whilst the non-linearity of ANNs can potentially provide a more 

accurate mathematical abstraction of the promoter design space than a PLS 

modelling approach, interpretation of the model output is confounded by the 

inherent complexity of the ANN hidden layers. Whereas the weights and 

coefficients of PLS models can be readily interpreted to provide a measure of 

the contribution of individual nucleotides to promoter activity, analysis of the 

underlying structure of ANNs does not provide readily interpretable information 

about the system being modelled (Sjöberg et al., 1995). As such, the potential 

increase in predictive power afforded by ANNs comes at the expense of a 

reduced insight into promoter structure and the relationship between DNA 

sequence and function, as can potentially be provided by PLS models.  

 

4.1.2 A Design of Experiments approach to ANN design.  

 

 Backpropagation and CV maximise the performance of individual 

networks, not network structure; activation function personality, the number of 

hidden layers and the number of nodes in each hidden layer must be defined. 

The JMP software has the capability of fitting ANNs with either one or two 

hidden layers, each containing any number of nodes. The nodes can run one of 

three activation functions: Gaussian, Linear or TanH. Furthermore, three 

penalty functions (Absolute, Squared or Weight Decay) are also available (SAS 

Institute Inc, 2016b).  
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 Given the multi-factorial nature of the optimisation problem posed by 

ANN design, a statistical Design of Experiments (DoE) approach was applied. 

DoE systematically alters multiple variables simultaneously, allowing multi-

dimensional design spaces to be efficiently explored (Lendrem et al., 2015b). 

Statistical models are subsequently applied to model the experimental response 

surface to identify the optimal settings for each variable (Kumar et al., 2013). 

DoE aims to avoid the pitfalls of more classical One Factor at a Time (OFAT) 

experimentation, in which the final result may vary depending on the starting 

point used for each variable, and in which the true optimum combination of 

variables may be missed (Tye, 2004, Lendrem et al., 2015a).   

 

 In this instance, ANN parameters were defined as variables in the DoE, 

with the R2 and Root Average Squared Error (RASE) values that were returned 

when ANNs were applied to a test data set serving as responses. In each 

instance where DoE was applied to ANN design, the DoE custom design 

platform in the JMP software was used to define a group of 20-30 ANN 

architectures. The results of these initial architectures were then analysed using 

standard least squares and partial least squares statistical modelling to identify 

the combination of variables that was predicted to maximise R2 value and 

minimise the RASE value returned when candidate models were applied to the 

test data. 

 

4.1.3 Dimensionality reduction  

 

 Although ANNs can potentially provide a more precise mathematical 

abstraction of the promoter design space than PLS models, the amount of data 

required to provide a robust training data set for neural models is possibly 

restrictive. When the system under investigation is complex, ANNs typically 

perform poorly if the training data set contains a small number of observations 

(Bataineh & Marler, 2017). If robust ANN models of Geobacillus promoters were 

to be obtained, the training data set therefore needed to be either expanded to 

contain more observations (i.e. more characterised promoter sequences) or 

reduced in terms of number of x variables (i.e. the number of nucleotide 

positions within promoter sequence being modelled).  
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 In the case of PLS models, high-dimensional design spaces (i.e. those 

with many x variables) are modelled by incorporating regression and 

dimensionality reduction through the extraction of latent variables (LVs) from 

the initial training data (Boulesteix & Strimmer, 2006). However, ANNs contain 

no such inherent mechanism for reducing the dimensionality of the design 

space (Tobias, 1995). Feature selection techniques were therefore required to 

identify sub-regions of the promoter design space which contained the most 

relevant information, thereby maximising the predictive power of downstream 

sequence-function models, and reducing the risk of overfitting (Liu et al., 2017).  

 

 Partition, or decision tree, modelling was the method by which the 

dimensionality of the promoter design space was reduced. By applying 

algorithms that fit binary decision trees through recursive partitioning, partition 

models provide a powerful classification technique that can also be applied to 

data discovery (SAS Institute Inc, 2016b). Partitioning of the training data set 

allows the relationship between a response variable and a set of factors to be 

described without the use of a mathematical model (Figure 4.2) (Baltagi & 

Kussener, 2014).   

 
 During partition model training, a randomly selected portion of the data 

set is split into groups that differ maximally in terms of the response of interest. 

For example, the maximum difference in fluorescence output from two groups 

of promoters might be obtained by splitting the training set into a group of 

promoters which contain guanine residues at the -15 position, and another 

group where adenine, cytosine or thymine residues are present at -15 (Figure 

4.2B).  

 
 The resulting sub-groups can be further split, resulting in the formation of 

a tree-like structure (Figure 4.2C). The process is then repeated multiple times 

on different randomly selected portions of the original training data set, so that a 

“forest” (Ho, 1995) of decision trees is formed (Figure 4.2D-E). Across the entire 

forest, the more times a given factor causes a split in the data set, the better 

that factor is predicted to be at explaining variation in the response of interest. 
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Figure 4.2: Schematic representation of a random forest partition model, as 
applied to promoter sequences. 
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 By training multiple trees that are all randomly different from one another, 

the correlation between individual tree predictions is reduced. Individual trees 

risk producing splits that are overfit to the training data and which therefore 

display inadequate generality and poor explanatory power when applied to 

novel data points. However, given the Law of Large Numbers, increasing the 

total number of trees and averaging their predictions reduces the likelihood of 

overfitting (Breiman, 2001), resulting in improved generality and increased 

robustness, especially if the input data is noisy (Criminisi et al., 2012).  

 

 Random forest algorithms were suitable for application to the promoter 

data set as the models are non-parametric and make no assumptions about the 

underlying distribution of the data being analysed. Additionally, random forests 

can be applied in instances when the number of x variables (in this case 

promoter sequence position and nucleotide) is greater than the number of 

observations, y (GFP fluorescence) (Manilich et al., 2011). Promoter sequence 

positions causing large numbers of splits in a random forest were predicted to 

explain a greater amount of the observed variance in fluorescence output than 

those positions causing fewer splits.  

 

 Downstream promoter sequence-function models, using either ANN or 

PLS algorithms, were subsequently restricted to modelling only those sequence 

positions that were identified as important by partition models. In this way, 

promoter strength was modelled on a design space of reduced dimensionality, 

potentially allowing models of improved predictive power to be obtained. 

  

 The strategy of training models based on a reduced portion of the 100 bp 

promoter DNA sequence was supported by the results of the PLS modelling 

discussed in Chapter 3. The optimum PLS model that was obtained suffered 

from a lack of predictive power when applied to synthetic promoter sequences 

that were not part of the training data (Figure 3.9), but did return a good fit of 

the training data set. 80.251% of the variation observed in the empirically 

measured GFP fluorescence levels (Y) was explained using only 8.573% of the 

variation in the promoter sequence matrix (X). This result suggested that only a 
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small fraction of the total promoter sequence was responsible for the majority of 

the observed fluctuation in GFP output. 

 

  Provided the partition models accurately identified key sequence 

positions, sequence-function models that did not use the entire 100 bp promoter 

should therefore have been capable of satisfactorily explaining the majority of 

empirically observed fluctuations in GFP activity.  

 

4.1.4 Model Averaging 

 

 An additional strategy that was applied to improve model predictive 

power was model averaging. Although single “best” performing models are 

most often presented in support of conclusions, this approach falsely assumes 

that only one model explains the data (Clyde, 2002). Model averaging is 

analogous to calculating a mean value of a continuous measurement of interest 

from biological replicates in order to obtain a measure with less variance to the 

true or ideal value.  As long as incorrect predictions are in the minority and 

model stability (i.e. the tendency for predicted values to change based on 

alterations to the training data) is not unduly affected, model aggregation should 

improve the accuracy of the final predicted value (Beleites & Salzer, 2008).  

 

 When applied to ANNs, the process of model averaging by combining 

multiple individual networks is known as “ensembling” (Hansen & Salamon, 

1990). By training a series of networks on the same task and then combining 

the outputs of these ANNs, ensembling attempts to exploit information about 

the design space that was captured by ANNs that might otherwise have been 

judged redundant if only a single best performing ANN were isolated (Sharkey, 

1996). Theoretically, individual members of the ensemble can counteract 

deficiencies in other members, thereby improving the generalisation 

performance of the ensemble as compared to the performance of the individual 

constituent networks (Yang et al., 2013).  
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 Famously, “all models are wrong but some are useful” (Box & Draper, 

1986); by combining multiple “useful” models, aggregation aims to decrease the 

degree to which model predictions are “wrong”. 

 

4.1.5 Sponsor mandated change in host organism 

 

 The promoter characterisation experiments described in Chapter 3 

utilised G. thermodenitrificans as the host organism. However, the 

transformation efficiency of G. thermodenitrificans was low, hindering the high-

throughput screening of potential regulatory sequences and other genetic parts 

of interest. Research performed by a collaborator, the industrial biotechnology 

company ZuvaSyntha Ltd. (Hertfordshire, United Kingdom), suggested that G. 

thermoglucosidans, a close relative to G. thermodenitrificans, was more 

amenable to transformation than G. thermodenitrificans. A change in host 

organism was therefore mandated by the industrial sponsor (Shell Research 

Ltd.) As such, G. thermoglucosidans was used as the chassis organism for all 

subsequent promoter characterisation.  

 

4.1.6 Deriving sequence-function models with improved predictive power 

 

 To expand the training data set beyond that reported in Chapter 3, three 

progressively larger sets of putative promoter sequences, termed A, B and C, 

were characterised in G. thermoglucosidans. Empirical data derived from these 

characterisation experiments were used to derive sequence-function models, 

using ANN, PLS and random forest models. Once trained and validated, these 

models were applied to the generation of synthetic promoter sequences and to 

predicting pre hoc the promoter activity of bioinformatically identified putative 

Geobacillus promoter sequences that had not been previously characterised. 

The accuracy of these predictions was subsequently assessed in vivo.  
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4.2 Results 

4.2.1 Characterisation and modelling of data set A 

Characterisation of putative promoter sequences in G. thermoglucosidans 

 

 To comply with the change in host organism mandated by the industrial 

sponsor (Shell Research Ltd.), the 31 putative promoter sequences that were 

characterised in G. thermodenitrificans and discussed in Chapter 3 were re-

characterised in G. thermoglucosidans.  

 

 Additionally, to increase the proportion of the promoter design space 

explored by the empirical data set, putative promoters that had not previously 

been characterised in G. thermodenitrificans were selected for synthesis. 100 

bp sequences were randomly selected, one from each of the 13 promoter 

phylogeny clades (Figure 3.2), so that a total of three putative promoters from 

each clade of the Geobacillus promoter phylogeny were empirically 

characterised. The exception was clade seven, as three sequences from this 

clade had already been selected in the first modelling iteration. Of the 12 

sequences that were selected, one putative promoter could not be synthesised.  

A total of 11 previously uncharacterised putative promoters were therefore 

added to the Geobacillus promoter library, giving a total of 42 sequences.  

 

 Three starter cultures arising from independent transformation events for 

each promoter::GFP fusion were initially characterised. If the mean 

fluorescence of a given promoter was greater than that of the positive control, 

the G. thermodenitrificans ldhA promoter, a further six independent 

transformants of that promoter were characterised. 

 

 As measured by GFP fluorescence, the 42 characterised sequences 

displayed a total expression range of 126-fold (Figure 4.3). 14 sequences had a 

significantly greater mean fluorescence than the negative control, as measured 

by ordinary one-way ANOVA with Dunnett’s multiple comparisons test. These 

14 sequences covered a range of expression of 5-fold. 
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Figure 4.3: Putative promoters characterised upstream of GFP in G. 
thermoglucosidans. 

 
Fluorescence and absorbance measurements after 24 h incubation in 96-well 
plate format. Promoters selected during the first iteration of characterisation 
performed in G. thermodenitrificans are shown in grey. Promoters selected at 
random for the second iteration of characterisation experiments are shown in 
white. The positive control, the G. thermodenitrificans ldhA promoter, is 
represented by the hatched bar. The negative control, G. thermoglucosidans 
transformed with an empty pS797 vector, is highlighted in black. Bars 
represent the mean of 3 ≤ n ≤ 9 starter cultures arising from independent 
transformants, except in the case of the two controls, where n = 23. Standard 
deviation error bars are shown, unless hidden by the bar. Promoter 
sequences with mean relative fluorescence values that were statistically 
significantly different from the negative control are labelled with an asterisk. 
Significance was determined by ordinary one-way ANOVA with Dunnett’s 
multiple comparisons test, using a significance level of 0.05. 
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 In Chapter 3, promoters were defined as “active” if their mean 

fluorescence output was statistically significantly greater than that of the 

negative control. However, this threshold was considered too harsh for 

partitioning active and non-active sequences in G. thermoglucosidans. Indeed, 

when characterised in G. thermoglucosidans, the G. thermodenitrificans ldhA 

promoter was judged to not be statistically significantly different from the 

negative control (adjusted P-value = 0.999). 

 

 However, the ldhA promoter was clearly active; G. thermoglucosidans 

cultures expressing GFP under the control of the ldhA promoter were 

fluorescent when observed using a blue light transilluminator with an amber 

filter (Figure 4.4). Using the ldhA promoter as the lower threshold for 

determining active promoters resulted in 17 sequences, covering a 22-fold 

range of expression levels, being defined as active.  

  

 In addition to the library of bioinformatically identified putative promoters, 

the 12 synthetic putative promoter sequences that were discussed in Chapter 3 

were also re-characterised in G. thermoglucosidans. None of the 12 sequences 

showed fluorescence output that was statistically significantly different from the 

negative control. Significance was determined by ordinary one-way ANOVA 

with Dunnett’s multiple comparisons test at the 0.05 significance level.  

 

Modelling the relationship between promoter DNA sequence and function 

 

 The lack of predictive power of the first PLS model iteration (Chapter 3) 

was hypothesised to be, in part, a result of an over-representation of inactive 

promoters in the training data set. PLS models were therefore trained on only 

those promoter sequences with a mean fluorescence output that was greater 

than that of the G. thermodenitrificans ldhA promoter. Four promoter sequences 

with a lower mean fluorescence output than the ldhA promoter, GSTEA_02851, 

GSTEA_02393, GTGNS_00189 and GTGNS_03187, were also included in the 

training data set to provide examples of DNA sequences with no acceptable 

levels of promoter activity. Within the training data set all four DNA nucleotides 

were represented at 95% of the promoter sequence positions. The -9, -10, -11, 
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 Figure 4.4: G. thermoglucosidans transformants cultured on mLB agar. 

 

Panel A shows G. thermoglucosidans transformants containing the empty 
vector pS797 (no visible fluorescence). Panel B shows G. thermoglucosidans 
transformants expressing GFP under the control of the G. thermodenitrificans 
ldhA promoter (visible fluorescence). G. thermoglucosidans was incubated at 
55 °C for 72 h. Cultures were illuminated using a blue light transilluminator with 
an amber filter. Images were taken using a Panasonic DMC T235, with ISO 800 
sensitivity. F-stop was set to 4.5. Exposure time was 0.25 s. 
 
 

-34 and -36 positions lacked a cytosine residue, and the -11 position also 

lacked a thymine residue. The training data set therefore contained 394 x 

variables. 

 

 For the first PLS model (Chapter 3), measures of GFP activity when 

fused to each promoter were normalised to a measurement of fluorescence of 

GFP under the control of the G. thermodenitrificans ldhA promoter, cultured on 

the same 96-well plate as the promoter of interest. Normalisation was intended 

to account for any batch effects introduced by technical sources of variation 

between measurements of biological replicates. However, the normalisation 

process may instead have resulted in an inaccurate quantification of promoter 

activity.  
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 As an example, Figure 4.5 shows replicate measurements of both the 

ldhA promoter and the promoter GSTEA_02393, grown from starter cultures 

arising from independent transformation events in two separate 96-well plates. 

The fluorescence activity of the ldhA::GFP fusion differed by approximately two-

fold between biological replicates, whilst expression from GSTEA_02393::ldhA 

remained broadly consistent. Normalisation therefore resulted in a quantification 

of GSTEA_02393 promoter activity that varied by approximately 3.6-fold 

between biological replicates, a difference that was not representative of the 

empirical fluctuation in GSTEA_02403 activity. All subsequent promoter 

sequence-function models were therefore trained on un-normalised 

fluorescence data. 

 

 PLS models have previously been shown to return improved predictive 

performance when the modelled data set contains few outliers, and when the 

modelled data have a somewhat symmetrical distribution (Cox & Gaudard, 

2013). Therefore, to remove any outlying points from the training data set, any 

fluorescence measurements for a given promoter that fell outside of one 

standard deviation of the mean for that promoter were excluded (Figure 4.6A). 

Additionally, to provide a symmetrically distributed training data set, the data 

were logarithmically transformed (Figure 4.6B & C), resulting in a training data 

set that was bi-normally distributed. 

 

 A total of 136 y values were available for model training. 20% of these y 

values were randomly selected and withheld from model training to serve as an 

independent test set for determining model predictive accuracy. A total of seven 

PLS models were constructed. The models varied in terms of the number of 

putative promoters included in the training data set, which of the PLS algorithms 

and validation methodologies were applied, and the number of Latent Variables 

(LVs) that were extracted. 

 

 An initial PLS model trained on the G. thermoglucosidans data set 

(hereafter referred to as PLS_iteration_A_1) utilised the NIPALS algorithm with 

holdback cross-validation. 80% of the available data were used for model
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Figure 4.5: The effect of normalising promoter activity measurements to 

the G. thermodenitrificans ldhA promoter. 

 

Fluorescence and absorbance measurements after 24 h incubation. The 
hatched bars represent the ldhA promoter. The grey bars represent the raw 
fluorescence output of GFP under the control of the promoter GSTEA_02393. 
The white bars, plotted on the right-hand y-axis, represent the fluorescence 
output of GSTEA_02393::GFP, normalised to the fluorescence output of 
ldhA::GFP. 
 
 

training, with the remaining 20% used for validation. The resulting model 

extracted 15 LVs from the data, and explained 76.971% of the variation 

observed in promoter sequence (X) and 97.612% of the observed variation in 

promoter fluorescence output (Y). 225 out of the 394 x variables exceeded the 

VIP threshold of 0.8 (Eriksson et al., 2006), suggesting that approximately half 

of the x variables were having a significant effect on model output. In an attempt 

to increase model parsimony, a second PLS model was trained using only the 

225 statistically significant x variables. However, the resulting PLS model 
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Figure 4.6: Data transformation for the first iteration of Partial Least 
Squares modelling in G. thermoglucosidans. 

A) ) GFP expression levels of the promoter sequences included in the PLS 
training data set. Bars represent the mean fluorescence of 9 starter cultures 
arising from independent transformation events, with standard deviation error 
bars shown unless hidden by the bar. Points represent fluorescence 
measurements of individual starter cultures. Points are highlighted red when 
they fall outside of 1 standard deviation of the mean for the given promoter. 
Data points that are coloured red were excluded from the PLS training data 
set.  
 
Histograms show the distribution of expression levels in the PLS training data 
set. B) shows the distribution of raw fluorescence data. C) shows the 
distribution of the data once a log(10) transformation had been performed.  
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extracted the same number of LVs as PLS_iteration_A_1 and did not show an 

improvement in the explained proportion of variation in promoter fluorescence 

output (97.611%, compared to 97.612% from PLS_iteration_A_1).  

 

 A PLS model was also trained using the SIMPLS variant of the PLS 

algorithm, again using holdback cross-validation with an 80%-20% split of 

training to validation data. However, the SIMPLS model did not return an 

improvement in statistical power as compared to the model trained using the 

NIPALS algorithm. This was consistent with previous observations that there is 

no significant difference between the performance of the two algorithms when Y 

is univariate (de Jong, 1993).  

 

 Although PLS_iteration_A_1 was shown to provide an optimal fit to the 

training data set as shown in Figure 4.6, analysis of the model suggested that 

predictive power could be further improved by removing the promoter sequence 

GPGV1_gp37 from the training data set (Figure 4.7). One measure of the 

overall impact a particular variable has on model performance is the Euclidean 

distance of that value from the model origin. If particular y values are outliers in 

comparison to the majority of y, then the outlying values may be having an 

unduly large effect on model output (Cox & Gaudard, 2013).  

 

 Figure 4.7A showed that measurements of GFP fluorescence under 

GPGV1_gp37 did not cluster with the majority of the training data set in terms of 

distance from the Y model. Additionally, the comparatively large residual values 

observed for GPGV1_gp37 as compared to the rest of the training data set 

(Figure 4.7B) were indicative of poor predictive accuracy for this promoter 

sequence.  

 

 The model PLS_iteration_A_1 may have assigned undue weight to 

promoter sequence GPGV1_gp37 due to the large variation in GFP expression 

that was observed between biological replicates expressing this promoter 

(Figure 4.7C). Of the eight biological replicates included in the model, five 

displayed no GFP expression, with the remaining three replicates resulting in 

expression levels between six and ten times greater than that of the 
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Figure 4.7: The effect of including promoter sequence GPGV1_gp37 on 
the model PLS_iteration_A_1. 

 
A) the Euclidean distance of individual measurements of promoter activity from 
the X and Y models . B) Fluorescence output predicted by the PLS model 
plotted against prediction residual (the difference between empirically measured 
and predicted fluorescence values). Dashed line shown at the point where 
model residual is equal to 0. In both A & B, measurements of GFP output from 
GPGV1_gp37 are highlighted in red. 
 
C) Empirically measured fluorescence output of GFP under the control of 
GPGV1_gp37. Points represent individual biological replicates from individual 
starter cultures, the bar represents the mean of n = 8 replicates, with standard 
deviation error bar shown.  
 
 

G. thermodenitrificans ldhA promoter. Across the remainder of the training data 

set, whilst promoters did display variation in GFP expression between biological 

replicates, (Figure 4.6), the apparent Boolean “on” or “off” nature of 

GPGV1_gp37 was not observed from other promoter sequences. Subsequent 

PLS models were therefore trained on a training data set from which all 

measurements of GPGV1_gp37 had been removed. 
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 PLS models were trained on the data set from which GPGV1_gp37 had 

been removed using the NIPALS algorithm and KFold cross-validation. To 

observe the effect of K size on model output, three individual PLS models were 

initially trained, using K values of 3, 7 and 10 respectively. Of the three PLS 

models obtained, the model that explained the greatest amount of the observed 

variation in promoter fluorescence output used K= 7. That model is hereafter 

referred to as PLS_iteration_A_2. 14 LVs were extracted from the data, and the 

model explained 75.201% of the variation observed in promoter sequence (X) 

and 93.404% of the observed variation in promoter fluorescence output (i.e. 

activity; Y). 235 x values returned VIP values that exceeded the 0.8 threshold. A 

model trained using only those 235 x values explained 6.187% more of the 

variation observed in X and 0.01% more of the variation observed in Y than 

PLS_iteration_A_2, but required 15 LVs to do so. Given the relatively minor 

differences in explanatory performance between the two models and the more 

parsimonious nature of PLS_iteration_A_2, the model PLS_iteration_A_2 was 

selected for further interrogation.  

 

 When applied to the CV data set, PLS_iteration_A_2 displayed good 

predictive power. A strong positive correlation was seen between empirically 

measured fluorescence values and values predicted by the model; a linear 

regression of the data had an R2 value of 0.964 (Figure 4.8A). Additionally, no 

significant patterns were observed in the model residuals (Figure 4.8B), which 

was suggestive of there being no underlying structural biases in the model 

(Cherkasov et al., 2014). Of the 27 y values in the independent test set, 59% 

had positive residuals, indicating that PLS_iteration_A_2 tended slightly to over-

predicting fluorescence values.  

 

 Analysis of the distribution of the model residuals by Shapiro-Wilk W test 

showed that there was insufficient evidence to reject the null hypothesis that the 

underlying distribution of the residuals was normal, at a significance level of 

0.05 (W = 0.948, Prob<W = 0.187) (Figure 4.8C). However, visual inspection of 

a histogram of the model residuals questioned this conclusion, as the residuals 

did not appear normally distributed, with a visible skew towards larger residuals 

(Figure 4.8C). Previous studies have shown that the Shapiro-Wilk test can be 
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Figure 4.8: Partial Least Squares model PLS_iteration_A_2 diagnostics. 

 

A) Empirically measured, Log10 transformed promoter fluorescence output, 
plotted against the Log10 transformed fluorescence predicted by the model. 
The solid line represents a linear regression of the data, with 95% confidence 
limits shown by dashed lines. The R2 value of the linear regression was 0.964. 
 
B) Log10 transformed fluorescence predicted by the model plotted against the 
prediction residual. The dashed line is shown at the point where the prediction 
residual is equal to 0. 
 
C) Histogram of model residual distribution. A Shapiro-Wilk W test showed that 
there was insufficient evidence to reject the null hypothesis that the underlying 
distribution was normal (W = 0.948, Prob<W = 0.187). The red line represents a 
Gaussian distribution of the data, as rendered by Prism software. The R2 value 
of the curve was 0.9807. 
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prone to type II errors (i.e. fail to reject a false null hypothesis) when the sample 

size is small (e.g. n < 50) (Razali & Wah, 2011, Le Boedec, 2016). In the case 

of the residuals for model PLS_iteration_A_2, n was equal to 27, raising the 

possibility that the failure of the Shapiro-Wilk test to reject the null hypothesis 

was erroneous. 

 

Generating synthetic putative promoters 

 

 Once trained and validated, PLS_iteration_A_2 was applied to the 

generation of synthetic putative promoter sequences. As with the synthetic 

sequences discussed in Chapter 3, the simulator function of the JMP software 

was used to generate 100 bp putative promoter sequences. The probability of a 

nucleotide being assigned to a given sequence position was weighted based on 

the distribution of nucleotides found in the training data set. Five putative 

synthetic promoter sequences were selected for in vivo characterisation. BLAST 

queries raised against each of the five sequences returned no hits, indicating an 

absence of similar sequences in the GenBank database. The GFP expression 

level predicted for these five sequences fell within the range of expression 

levels observed in the training data set (Figure 4.9A). Whilst PLS models are in 

theory capable of extrapolation beyond the training data set (Sanderson et al., 

2008), it was decided to first validate the model through interpolation.  

 

 The five putative synthetic promoter sequences were synthesised 

upstream of GFP in the pS797 vector. Additionally, to expand the library of 

characterised Geobacillus promoter sequences, five bioinformatically identified 

putative promoters that had not been previously characterised were selected for 

synthesis at random. 

 

 Measurements of fluorescence after 24 h incubation of G. 

thermoglucosidans transformants showed that none of the 5 synthetic putative 

promoter sequences had any in vivo promoter activity (Figure 4.9B); there was 

no significant difference between cultures expressing GFP under the control of 

the five putative promoter sequences and the pS797 negative control.  
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Figure 4.9: Fluorescence output of GFP under the control of synthetic 
putative promoters as A) predicted by the Partial Least Squares model 

PLS_iteration_A_2 & B) as empirically measured. 

A) Grey bars represent the fluorescence output of GFP under the control of promoters as 
used in model training. Bars represent the mean of n = 9 starter cultures arising from 
individual transformation events, with standard deviation error bars shown. Predicted 
fluorescence outputs of GFP under the control of putative synthetic promoter sequences are 
shown in green. 
 
B) The negative control, G. thermoglucosidans transformed with empty pS797 vector, is 
shown in black. The positive control, the G. thermodenitrificans ldhA promoter, is represented 
by the hatched bar. Bars represent the mean of 3 ≤ n ≤ 20 starter cultures arising from 
individual transformation events. Standard deviation error bars are shown. Synthetic putative 
promoters are shown in green. Previously uncharacterised natural Geobacillus promoters are 
shown in white.  
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Significance was determined by ordinary one-way ANOVA with Dunnett’s 

multiple comparisons test, at a significance level of 0.05.  

 

Sequence analysis of putative synthetic promoters  

 

 Of the 17 putative, synthetic promoters that were characterised in vivo 

(the five sequences modelled by PLS_iteration_A_2 and the 12 sequences 

discussed in Chapter 3), none displayed any in vivo promoter activity. To 

evaluate possible causes, a sequence logo of the 17 “active” promoters used in 

the training of PLS_iteration_A_2 (Figure 4.10A) was compared to a sequence 

logo of the 25 “inactive” characterised Geobacillus putative promoters, whose in  

vivo GFP output was less than that of the ldhA promoter (Figure 4.10B), and a 

sequence logo of the 17 synthetic putative promoters (Figure 4.10C). Promoter 

DNA sequences were aligned and visualised using WebLogo version 2.8.2 

(Crooks et al., 2004). 

 

 All three sequence logos showed a heavily conserved region of adenine- 

and guanine-rich sequence, located between 15 and 7 bp upstream of the start 

codon of the adjacent GFP CDS. Given the similarities of both the location and 

the sequence of these conserved regions to the canonical Shine-Dalgarno 

sequence (Shine & Dalgarno, 1974), they were hypothesised to be putative 

Ribosome binding sites. 

 

 Conserved regions upstream of the putative RBS were also observed in 

the aligned “active” promoter sequences (Figure 4.10A). Sequence motifs 

spanning from -36 to -32 and from -51 to -46 were hypothesised to be -10 and -

35 regions, respectively. Crucially, whilst these putative consensus regions 

were also present in the synthetic putative promoter sequences (Figure 4.10C), 

they were not observed in the alignment of “inactive” promoter sequences 

(Figure 4.10B). Likewise, regions spanning from -71 to -65 and from 

approximately -90 to -80 are more heavily conserved in the “active” and 

synthetic putative promoter sequences than in the “inactive” sequences. 
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Figure 4.10: V
isualisation of sequence alignm
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 Motifs and individual nucleotides that were conserved in the training data 

set were expected to be conserved in the synthetic promoter sequences. During 

the generation of the synthetic putative promoter sequences, the probability of 

nucleotides being assigned to each position within the sequence was weighted 

based on the distribution of nucleotides found in the training data set. As a 

group, the synthetic promoter sequences were also much more heavily 

conserved than either of the two groups of natural putative promoter sequences 

(as shown by greater stack height and nucleotide symbol size in Figure 4.10C 

as compared to Figure 4.10 A or B). 

 

 The lack of promoter activity observed in the synthetic sequences did not 

therefore appear to be caused by key motifs such as the RBS being omitted 

from the DNA sequences. Instead, it was hypothesised that the optimum PLS 

model that was obtained was unable to accurately infer the contribution of a 

given nucleotide or motif at a given sequence position, resulting in inaccurate 

predictions of synthetic promoter activity. 

 

4.2.2 Characterisation and modelling of data set B 

 

 Given the lack of predictive power of the model PLS_iteration_A_2 when 

applied synthetic promoter sequences, an expansion of the training data set 

was deemed necessary. A further 10 previously uncharacterised, 

bioinformatically identified putative promoter sequences were therefore selected 

for in vivo characterisation.  

 

 To exploit the structure of the promoter design space revealed by 

previous in vivo characterisation (Caschera et al., 2010), additional promoters 

were selected at random from clades of the promoter phylogeny that had 

previously yielded high-performing promoters. The eight promoters that resulted 

in the highest GFP expression in data set A (Figure 4.6A) represented five 

clades of the Geobacillus promoter phylogeny (Table 4-1). An additional two 

putative promoter sequences were therefore selected at random from each of 

these five clades.  
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Clade Sequences characterised in data set A 

6 GKAU_00959, GSTEA_02403, GTDN_00966 

11 GKAU_02512 

13 GTGNS_00505 

18 GSTEA_02364, GTGNS_03382 

21 GSTEA_02403 

  

Table 4-1: Clades of the Geobacillus promoter phylogeny containing 
strong promoter sequences, as characterised in data set A. 

 

 The 10 previously uncharacterised promoters were combined with the 26 

promoter sequences shown in Figure 4.9B to form data set B. In addition to the 

inclusion of the additional promoter sequences, four further alterations were 

made to the experimental design for promoter characterisation between data 

sets A and B. Firstly, to assess the functional reliability of the Geobacillus 

putative promoters, sequences were also characterised upstream of a second 

reporter protein coding sequence, the RFP derivative mOrange. Secondly, a 

type IIS restriction cloning system was implemented to facilitate the routine use 

of characterised putative promoter elements for the control of alternate CDS. 

Application of the cloning strategy resulted in a 4 bp scar being introduced 

between putative promoter and RBS sequences. The total length of the 

characterised Geobacillus regulatory elements therefore increased from 100 bp 

to 104 bp. The implications of both altered genetic context and the introduction 

of restriction cloning scar sequences are discussed in Chapter 5.  

 

 Alterations were also made to the way in which measurements of 

promoter activity were entered into the training data set for data set B. For both 

the PLS models derived from G. thermoglucosidans data set A and the models 

discussed in Chapter 3, the training data sets contained multiple measurements 

of fluorescence output for each promoter sequence. Given the relatively small 

number of characterised promoter sequences, fluorescence measurements 

from biological replicates were included to increase the amount of data that was 

available for model training. 
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 However, during the validation process, the data set was partitioned at 

random into training and CV sets. As such, identical promoter sequences were 

present in both the training and CV sets. Known as data twinning (Forman & 

Scholz, 2010), this duplication of data points may have artificially inflated the 

model’s predictive accuracy (Raccuglia et al., 2016), as the entry in the CV set 

could be fitted more accurately that it could have been if it were not also present 

in the training set (Clarke et al., 2009). To avoid data twinning in subsequent 

modelling iterations, single mean measures of activity for each promoter 

sequence were modelled.  

 

Characterisation of putative promoter sequences in G. thermoglucosidans 

 

 Of the 36 putative promoters that were initially included in data set B, two 

(GKAU_01563 and GSTEA_02851) contained restriction sites that were 

incompatible with the type IIS cloning strategy. 34 putative promoter sequences 

were therefore available for in vivo characterisation. When used to express 

GFP, the promoter library covered a 113-fold range of expression levels (Figure 

4.11A). 22 promoters, covering a 30-fold expression range, resulted in mean 

GFP expression that was higher than that of the G. thermodenitrificans ldhA 

promoter. 14 promoters resulted in mean GFP fluorescence that was 

statistically significantly greater than the pS797 negative control at the 0.05 

significance level, as determined by ordinary one-way ANOVA with Dunnett’s 

multiple comparisons test.  

 

  When cloned upstream of mOrange, two sequences, GSTEA_00342 

and GTGNS_02755, could not be transformed into G. thermoglucosidans. The 

resulting promoter library therefore contained 32 sequences, and covered an 

activity range of 47-fold (Figure 4.11B). 14 sequences resulted in mOrange 

fluorescence levels that were statistically significantly different to the negative 

control. These 14 sequences covered an expression range of three-fold. 

 

 Little correlation was observed in promoter activity levels between the 

two reporter proteins (Figure 4.12). A linear regression of the data returned an 

R2 value of 0.267. Eight promoter sequences, including the ldhA promoter, fell 
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Figure 4.11: Putative promoters characterised upstream of A) GFP & B) 
mOrange in G. thermoglucosidans. 

Fluorescence and absorbance measurements after 24 h incubation in 96-well 
plate format. Previously uncharacterised promoters are shown in white. The 
positive control, the G. thermodenitrificans ldhA promoter, is represented by 
the hatched bar. The negative control, G. thermoglucosidans transformed with 
an empty pS797 vector, is represented by the black bar. Bars represent the 
mean of n = 3 starter cultures arising from independent transformation events, 
except in the case of the two controls, where 3 ≤ n ≤ 9. Standard deviation 
error bars are shown, unless hidden by the bar. Promoter sequences with 
mean fluorescence values that were significantly different from the negative 
control are labelled with an asterisk. Significance was determined by ordinary 
one-way ANOVA with Dunnett’s multiple comparisons test, using a 
significance level of 0.05. 
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Figure 4.12: Fluorescence output of GFP and mOrange under the control 
of putative promoter sequences. 

 

Fluorescence and absorbance measurements after 24 h incubation in 96-well 
plate format. Points represent the mean fluorescence output of reporter proteins 
under the control of individual promoter sequences from 3 ≤ n ≤ 9 starter 
cultures arising from independent transformation events. The negative control, 
G. thermoglucosidans transformed to contain empty pS797 vector, is coloured 
red. The positive control, the G. thermoglucosidans ldhA promoter, is coloured 
green. The solid line represents a linear regression of the data, with 95% 
confidence limits represented by the dashed lines.  
 
 
within the 95% confidence limits of the linear regression, indicating a 

reasonable correlation in activity levels between the two reporters for these 

sequences. 
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Partition modelling 

 
 100 random forest models were generated for each of the promoter::GFP 

and promoter::mOrange fluorescence data sets. In all instances, 20% of the 

available promoter sequences were randomly selected and withheld from model 

training to serve as a validation set. Each random forest contained a maximum 

of 100 decision trees, with early stopping if the addition of further trees to the 

forest did not improve the validation statistic (SAS Institute Inc, 2016b). Each 

tree was trained on a data set containing 26 randomly selected promoter 

sequence positions, drawn with replacement.  

 

 Once partitioning was complete, the number of times each promoter 

sequence position caused a split in all 100 random forests was quantified 

(Figure 4.13A). In the case of the GFP reporter, the modelling suggested that 

the sequence positions with the biggest impact on promoter performance were 

distal to the CDS. Of the 10 sequences positions that resulted in the greatest 

number of splits, 7 were located in the 5’ half of the promoter sequence. The 

exceptions were the -49, -14 and -5 positions, which returned the 2nd, 8th and 9th 

most splits, respectively. This result was somewhat counterintuitive, given that 

the regions of promoter sequence that are canonically hypothesised to 

contribute the most the promoter activity (the RBS, -10 and -35 motifs) are 

located in the proximal end of the promoter sequence.  

 

 The results from the random forests trained using the mOrange data set 

showed minimal correlation to the GFP results (Figure 4.13B). For the mOrange 

data set, 7 out of the 10 sequence positions that resulted in the greatest 

number of splits were located in the 3’ half of the promoter sequence. The lack 

of correlation between the partitioning results for the two reporter proteins was 

likely a result of the lack of correlation observed in promoter activity for the two 

reporters (Figure 4.12). Given that fluorescence was used as the response 

variable in random forest construction, the difference in promoter activity 

between the two reporters would have resulted in different partition results. 

 

 For both reporter CDS, the promoter sequence positions that were 

identified as important in determining promoter activity showed minimal
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sequence conservation (Figure 4.14). Sequence positions with high degrees of 

homology across all 34 promoter sequences were likely to have little statistical 

power with regards to determining differences in promoter output, as promoters 

with significantly different activity levels could have the same nucleotide present 

at conserved positions. This explanation was proposed as the reason for the 

partition modelling identifying sequence positions outside of the canonical 

consensus regions as important in determining promoter activity. The partition 

modelling results therefore highlighted the importance of considering entire 

promoter sequences instead of only consensus regions when designing 

synthetic promoters de novo, as non-consensus regions were shown to have a 

significant impact on promoter activity. 

 

Partial Least Squares sequence-function models 

 

 The lack of correlation between the GFP and mOrange partition results 

precluded the construction of multivariate promoter sequence-function models 

that made simultaneous predictions of fluorescence output for both GFP and 

mOrange. Initial sequence-function models were therefore trained using only 

the GFP data set as a proof-of principle. 

 

 The predictive performance of sequence-function models derived from 

data set A was judged based on prediction error when models were applied to 

the CV data set (Figure 4.8). However, previous studies have shown that high 

predictive accuracy when applied to CV data does not necessarily correlate to 

adequate generality (Golbraikh & Tropsha, 2002). This lack of correlation was 

readily apparent in the models derived from data set A; the model 

PLS_iteration_A_2 returned an R2 value of 0.964 when applied to the CV data, 

but displayed poor predictive power when applied to making predictions of 

synthetic promoter activity (Figure 4.8). An external test set was therefore 

required to accurately quantify the predictive power of promoter sequence-

function models (Sheridan, 2013). 

 

 Five promoter sequences were selected to provide an independent test 

set on which to measure predictive power. So that the test set
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contained promoter sequences with a range of activity levels, the distribution of 

GFP fluorescence levels in data set B (Figure 4.11A) was analysed. One 

promoter sequence was chosen at random from each of the 1st and 3rd 

distribution quartiles, and three sequences were chosen at random from the 

interquartile range. The chosen sequences (ordered from strongest to weakest) 

were GSTEA_02403, GTDN_01886, GTDN_03093, GSTEA_00328 and 

GTGNS_00189. 

 

 Outlier analysis was performed to identify any promoter::GFP fusions 

that might have negatively impacted upon PLS model performance (Cox & 

Gaudard, 2013). Quantile range analysis with a Q value of 3 showed that none 

of the measurements of promoter::GFP activity were outliers. However, Huber 

M-Estimation with a K value of 4 returned two outlying measurements of 

fluorescence activity; the mean GFP output of the two strongest promoters, 

GSTEA_00548 and GTGNS_00505 was outlying with regards to the remaining 

32 promoter sequences. However, both sequences were included in the training 

data set, as the fact that there were certain promoters that resulted in extremely 

high GFP expression levels was deemed biologically relevant; any final 

sequence-activity model needed to be able to accurately predict promoter 

activity at all biologically feasible levels of activity.  

 

 By indicating which nucleotides within the promoter sequences were 

likely to contribute most to promoter strength, the partition modelling results 

provided a useful tool for dimensionality reduction. Downstream PLS models 

could be trained on data sets from which redundant sequence positions had 

been removed. However, the random forest results provided no indication as to 

how many sequence positions should be used as x variables to maximise the 

predictive power of the final sequence-function models.  

 

 PLS models were therefore trained using 3, 5, 7, 9, 11, 13 or 15 

sequence positions as x variables. Sequence positions were included in the 

PLS models in descending order of the number of splits caused in the 100 

random forest partition models (Figure 4.13). For each number of x variables 

that were considered, eight PLS models were fit, using the settings summarised 
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in Table 4-2. A total of 56 different PLS models were therefore trained. The 

optimal model was the one that returned the highest R2 value when applied to 

the test set of five promoter sequences. 

 

Model PLS algorithm Validation methodology 

1 SIMPLS KFold, K = 7 

2 NIPALS KFold, K = 7 

3 SIMPLS KFold, K = 5 

4 NIPALS KFold, K = 5 

5 SIMPLS KFold, K = 3 

6 NIPALS KFold, K = 3 

7 SIMPLS Holdback, proportion 0.33 

8 NIPALS Holdback, proportion 0.33 

   

Table 4-2: Summary of settings used in Partial Least Squares model 
construction. 

 

 The optimal PLS model that was obtained (hereafter referred to as 

PLS_iteration_B_1) modelled GFP fluorescence as a function of five promoter 

sequence positions. The sequence positions included in the model were -49,     

-73, -74 -95 and -104. The model used the SIMPLS PLS algorithm and 

holdback CV, and used one LV to explain 68.224% of the variation in GFP 

fluorescence observed in the training set. 

 

 When applied to the test data set, PLS_iteration_B_1 returned an R2 

value of 0.793 (Figure 4.15). The empirically measured GFP output from two of 

the five test promoter sequences fell within one standard deviation of the mean 

of the value predicted by the model. These results suggested that 

PLS_iteration_B_1 had reasonable predictive power when applied to previously 

unseen data. During analysis of the model, the mean GFP fluorescence caused 

by the promoter GTGNS_00505 was observed to be outlying in terms of 

Euclidean distance to the PLS model centre. However, removal of 

GTGNS_00505 from the training data set did not yield a model of improved 

predictive accuracy as compared to PLS_iteration_B_1. 
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Figure 4.15: Empirically measured GFP fluorescence levels plotted 
against GFP fluorescence levels as predicted by the Partial Least Squares 

model PLS_iteration_B_1. 

 
Points represent the activity levels of individual promoter sequences. 
Empirically measured fluorescence and absorbance after 24 h incubation in 96-
well plate format, Empirical values are the mean of n = 3 starter cultures arising 
from independent transformants, with standard deviation error bars shown, 
unless hidden by the points. The dashed line represents the point at which 
empirically measured and predicted fluorescence values are equal. 
 
 

 The second best performing PLS model obtained, PLS_iteration_B_2, 

was trained using 10 promoter sequence positions, the SIMPLS algorithm and 

KFold CV with K = 7. When applied to the test set, PLS_iteration_B_2 returned 

a R2 value of 0.680.  

 

 In attempt to further increase prediction accuracy, PLS_iteration_B_1 

and PLS_iteration_B_2 were aggregated. However, the R2 value that was 
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returned when the aggregate model was applied to the test set was 0.7819, i.e. 

smaller than the R2 value returned by PLS_iteration_B_1. This result suggested 

that aggregating the two PLS models did not increase predictive accuracy.  

 

Artificial Neural Network sequence-function models 

 

 ANNs were also applied to train promoter sequence-function models 

using the data derived from the empirical characterisation of promoter 

sequences in data set B.  

 

 The custom design DoE platform of the JMP software was used to define 

20 ANN architectures. All architectures consisted of a single hidden layer and 

used the squared penalty method. The number of nodes in the hidden layer, the 

number x variables (promoter sequence positions) modelled and the activation 

function personality were the factors included in the experimental design. As 

with the PLS models, sequence positions were included in the ANNs in 

descending order of the number of splits caused in the 100 random forest 

partition models (Figure 4.13). The performance of each of the 20 network 

designs was quantified using the R2 and the Root Average Squared Error 

(RASE) values that were returned when the ANNs were applied to an 

independent test data set (SAS Institute Inc, 2016b). 

 

 So that the test set contained promoter sequences with a range of 

activity levels, the distribution of GFP fluorescence levels in data set B (Figure 

4.11A) was analysed. One promoter sequence was chosen at random from 

each of the 1st and 3rd distribution quartiles, and three sequences were chosen 

at random from the interquartile range. The chosen sequences (ordered from 

strongest to weakest) were GTGNS_00505, GTDN_01886, GTDN_03093, 

GSTEA_00328 and GTGNS_00189. The remaining 29 promoter sequences 

were randomly split 70:30 into training and validation sets. The same training, 

validation and test sets were used to train all ANNs.  

 

 Given the random attribution of values to the ANN weights at the start of 

the learning process, the final solution to which an individual ANN converges is 
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dependent on the random seed used to generate the starting weight values 

(Hastie et al., 2009). 1,000 ANNs were therefore fit for each of the 20 network 

architectures, with each model using a unique, defined random seed. For each 

network architecture, an ensemble network was created. Ensembles contained 

the five ANNs of a given architecture that returned the highest R2 value when 

applied to the test set. The R2 and RASE values that were returned by the 20 

ensemble networks are shown in Figure 4.16.  
 
 The optimal ANN obtained modelled GFP fluorescence as a function of 

nine promoter sequence positions, using 11 nodes and linear activation 

functions. When applied to the test set, this ANN returned an R2 value of 0.955 

and a RASE value of 850.84. That model is hereafter referred to as ANN_1. 

The apparent high-performance of a linear network was somewhat surprising; 

when linear activation functions were used, ANNs decomposed to simple linear 

interpolators (Laudani et al., 2015). Completely linear ANNs therefore did not 

contain the non-linearity that was one of the major the reasons for their 

application to promoter sequence-function analysis.  

 

 The results from each of the 20 ANN architectures were analysed by 

standard least squares model with effect screening emphasis. The resulting 

analysis predicted that the R2 value of the test set would be maximised by an 

ANN that modelled eight promoter sequence positions using 11 hidden nodes 

and linear activation functions. However, this model architecture returned an R2 

value of 0.9346 when applied to the test set, which was lower than the R2 value 

returned by ANN_1 (0.9555).  

 
 In the 21 single layer ANNs discussed above, the dimensions of the 

promoter design space were reduced by predicting fluorescence output as a 

function of only those sequence positions that were predicted by the partition 

modelling to have strong predictive power. However, ANNs of increased 

complexity could potentially model design spaces of large dimensionality, 

without the need for partitioning. For example, ANNs with multiple hidden layers 

could potentially accurately model highly dimensional design spaces by using 

the 2nd layer (the layer closest to the original x variables) to identify key 
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Figure 4.16: R2 and Root Absolute Squared Error (RASE) values returned 
by 20 single layer Artificial Neural Network architectures when applied to 

a test data set. 

 
Bars representing R2 values are shown in black, and are plotted on the left hand 
y-axis. Bars representing RASE values are shown in grey, and are plotted on 
the right-hand y-axis. The dashed red and blue lines represent the R2 and 
RASE values returned by the optimal obtained ANN, which was trained using 
design 12. For each ANN design, the table shows the activation function 
personality, the number of nodes in the hidden layer (N(Nodes)) and the 
number of promoter sequence positions (N(x)) modelled. 
 

Design Activation 
function 

personality 

N 
(Nodes) 

N(x)  Design Activation 
function 

personality 

N 
(Nodes) 

N(x) 

1 Linear 3 6  11 Gaussian 3 8 
2 Linear 11 10  12 Linear 11 9 
3 Gaussian 5 10  13 Tan 3 10 
4 Linear 3 5  14 Gaussian 9 5 
5 Tan 5 6  15 Tan 9 9 
6 Gaussian 5 5  16 Tan 11 7 
7 Gaussian 11 6  17 Gaussian 11 10 
8 Gaussian 3 9  18 Tan 3 5 
9 Linear 9 6  19 Tan 9 10 
10 Tan 11 5  20 Linear 5 9 
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promoter sequence positions, in a role analogous to the dimension-reduction 

performed by the partition models (SAS Institute Inc, 2016b).  

 

 DoE-guided ANN optimisation was therefore applied to two-layer ANN 

design. The custom design platform in the JMP software was used to define 30 

ANN architectures. Five variables were included in the DoE: the number of 

nodes in the first hidden layer, the number of nodes in the second hidden layer, 

the activation function personality used in the hidden layers and the penalty 

function personality. All 30 network architectures modelled GFP activity as a 

function of the complete 104 bp promoter sequence, and all 30 network 

architectures were run 1,000 times, with each model using a unique defined 

random seed. For each network architecture, the five ANNs that returned the 

highest R2 value when applied to the test set were aggregated. 

 

 The R2 and RASE values that were returned when the 30 aggregated 

models were applied to the test set were analysed using a standard least 

squares model with effect screening emphasis. The R2 value of the test set was 

predicted to be maximised by an ANN in which both hidden layers contained 

seven nodes and used Gaussian activation functions. The optimal penalty 

method was predicted to be Weight Decay. The predicted optimal model 

architecture was fit 1,000 times using 1,000 different random seeds, and the 

five models that returned the highest R2 value when applied to the test data set 

were aggregated. The resulting ensemble model returned an R2 value of 0.9765 

when applied to the test set, and is hereafter referred to as ANN_2. 

 

 The training set R2 value returned by ANN_2 was higher than that 

returned by all of the two-layer network designs specified by the initial DoE 

design. The next best performing two-layer model, hereafter referred to as 

ANN_3, returned an R2 value of 0.948 when applied to the test set. ANN_3 also 

used the Weight Decay penalty term, but used a 13-node first hidden layer with 

Gaussian activation functions, and a three-node second hidden layer with TanH 

activation functions.  
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 ANN_1, ANN_2 and ANN_3 (Figure 4.17) all returned R2 values that 

were greater than 0.9 when applied to independent test data. This result 

suggested that all three of these ANN models had good predictive power. To 

further test the predictive power of the obtained models, ANN_1, ANN_2, 

ANN_3 and the PLS model PLS_iteration_B_1 were subsequently used to 

make predictions of activity for all of bioinformatically identified putative 

promoter sequences that had not been characterised in vivo. 

 

 In both data sets A and B and in Chapter 3, bioinformatically identified 

putative promoter sequences were examined manually to ensure that they did 

not overlap with any adjacent CDS. Whilst manual inspection was sufficient 

when the number of sequences being analysed was small, this approach was 

inadequate when in silico predictions of activity were required for all 1,489 

putative promoters. BEDTools intersect (Quinlan & Hall, 2010) was therefore 

used to isolate non-overlapping putative promoter sequences. In total, 636 of 

the 1,489 putative Geobacillus promoters were shown to be non-overlapping. 

The number of promoters identified in each of the 4 Geobacillus species of 

interest is summarised in Table 4-3. 

 

 Putative 

promoters 

Non-overlapping 

Putative promoters 

G. kaustophilus DSM7263  403 176 

G. stearothermophilus DSM22  370 187 

G. thermodenitrificans K1041  345 130 

G. thermoglucosidans DSM2542  371 143 

   

Table 4-3: Number of non-overlapping putative promoters isolated from 
each of the four Geobacillus species of interest. 

 

 Despite the three ANNs returning equally accurate predictions when 

applied to the test set of five promoter sequences (Figure 4.17), the predictions 

that were returned when the three ANNs and the PLS model PLS_iteration_B_1 

were applied to putative promoter sequences that had not been characterised in 

vivo showed little correlation (Figure 4.18). The two models that returned the
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Figure 4.17: Empirically measured fluorescence output of GFP under the 
control of the five promoters from the test data set, plotted against 

fluorescence as predicted by the three optimal Artificial Neural Network 
models obtained. 

 
Points represent individual promoter sequences. Empirical measurements were 
taken after 24 h growth in 96-well plate format and are the mean of n = 3 starter 
cultures, arising from independent transformation events. The dashed lines 
represent the point at which empirical and predicted values are equal. 
 
 
most similar predictions of activity were ANN_1 and PLS_iteration_B_1, 

although a linear regression of the two sets of predictions returned an R2 value 

of only 0.2463. 

 

  In the case of ANN_3, prediction clusters were also apparent, with 

putative promoter sequences predicted to either result in high or minimal GFP 
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Figure 4.18: Scatterplot matrix showing GFP fluorescence output of 
putative promoter sequences as predicted by high performing Artificial 

Neural Network & Partial Least Squares models. 

 

Points represent individual promoter sequences. Predictions of fluorescence 
output are as calculated by neural networks ANN_1, ANN_2 and ANN_3 and 
PLS_iteration_B_1. Red points represent promoter sequences used in the 
model training process. Black points represent bioinformatically identified 
putative Geobacillus promoters that were not characterised in vivo. The solid 
lines represent linear regressions of the data.  
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expression, with few sequences predicted to be of intermediate strength.   

 

 The lack of correlation between the predicted activity levels for promoter 

sequences that had not been characterised in vivo suggested that the predictive 

power of the four models was not as comparable as was implied by the similar 

R2 values that were returned by the test set. Had all four of the models truly had 

comparable predictive accuracy, strong positive correlations would have been 

expected between predictions of activity for uncharacterised putative promoters.  

 

 To ascertain which, if any, of the four promoter sequence-function 

models showed the greatest predictive accuracy, 14 previously uncharacterised 

putative promoter sequences were selected at random from across the 

Geobacillus promoter phylogeny for in vivo characterisation. Three promoters 

could not be successfully cloned upstream of GFP using the type IIS restriction 

cloning strategy. A secondary test set of 11 promoters was therefore available 

(Figure 4.19A) to assess the predictive accuracy of the four putatively powerful 

models. 

 

  None of the four models were able to accurately predict the in vivo 

activity levels of the 11 promoter sequences (Figure 4.19B-E). In particular, the 

models showed a tendency to over-predict the activity of sequences that had no 

in vivo activity, and under-predict the activity of functioning promoters. Of the 11 

promoters in the secondary test set, eight resulted in GFP fluorescence that 

was not statistically significantly greater than the negative control (Figure 

4.19A). However, all four of the models predicted that the majority of these eight 

sequences would have in vivo promoter activity. In contrast, two of the three 

promoters that did show in vivo activity (GKAU_03578 and GSTEA_01279) 

were stronger than predicted. The activity of the third active promoter, 

GTGNS_02828, was weaker than predicted by models ANN_1 & 

PLS_iteration_B_1, and stronger than predicted by models ANN_2 and ANN_3. 

The inability of the models to differentiate between active and inactive 

promoters was hypothesised to be the result of the models being unable to 

identify critical nucleotides or motifs that were not present in the training data.  
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Figure 4.19: Empirically measured promoter activity of a secondary test 
set of 11 putative promoters, as compared to the activity levels predicted 
by Artificial Neural Network & Partial Least Squares models derived from 

data set B. 

Points and bars represent the activity levels of individual promoter sequences. Empirical measurements 
of promoter activity taken after 24 h growth in 96-well plate format. In all cases, bars or points represent 
the mean of 3 ≤ n ≤ 9 independent starter cultures, with standard deviation error bars shown, unless 
hidden by the bar or point. A) Empirically measured activity of promoters in the secondary test set. The 
hatched bar represents the positive control & the black bar represents the negative control. Promoters 
for which mean fluorescence output was statistically significantly different to the negative control are 
indicated by an asterisk. Significance was determined by one-way ANOVA with Dunnett’s multiple 
comparisons test at a significance level of 0.05. B-E) Empirically measured promoter activity plotted 
against activity as predicted by models B) ANN_1, C) ANN_2, D) ANN_3 & E) PLS_iteration_B_1. The 
dashed lines represent the points at which empirically measured and predicted fluorescence values are 
equal.  
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4.2.3 Characterisation and modelling of data set C 

 

 The lack of predictive power shown by the PLS and ANN promoter 

sequence-function models derived from data set B was hypothesised to be a 

result of the size of the training data set. ANNs theoretically have universal 

approximation capability (Hornik, 1989), but such capability requires a 

significantly large training set. When the design space being modelled is 

complex, ANNs cannot provide an accurate abstraction unless the training data 

set explores a sufficiently large proportion of said space (Bataineh & Marler, 

2017). ANNs trained on small data sets are therefore likely to provide 

inadequate generality when applied to novel data. 

 
 A final expansion of the training data set was therefore performed. 

Including the 11 putative promoter sequences that were selected for model 

validation, a total of 45 putative promoter sequences had been characterised in 

vivo in data set B. 52 additional promoter sequences were selected at random 

from across all clades of the promoter phylogeny and synthesised upstream of 

GFP and mOrange in the pS797 vector by ATUM (previously DNA 2.0, 

California, United States of America). The three promoter sequences from data 

set B that could not be cloned upstream of GFP using the type IIS restriction 

cloning strategy were also synthesised by ATUM. Data set C therefore 

contained a total of 100 putative promoter sequences. 

 

 In total, 95 promoter sequences were characterised upstream of GFP in 

G. thermoglucosidans (Figure 4.20). Two promoter::GFP fusions could not be 

synthesised by ATUM, and three sequences could not be transformed into G. 

thermoglucosidans. The promoter library covered a total expression range of 

148-fold in steady increments. Of the 95 characterised sequences, 31, covering 

an expression range of 6.8-fold resulted in mean GFP expression levels that 

were statistically significantly greater than the negative control. The weakest 

promoter to exceed this threshold was the ldhA promoter. 

 

 During analysis of data set B, the ldhA promoter was used as the 

threshold for defining active sequences. 22 sequences, covering a 30-fold 

range in GFP expression levels, exceeded this threshold in data set B.
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 However, repeated measurements of ldhA promoter activity in data set C 

returned a higher mean GFP expression level for the ldhA promoter than was 

observed in data set B. (371.8 AU in data set B, 1414.3 AU in data set C). The 

ldhA promoter therefore provided a harsher threshold for defining promoter 

activity in data set C than in data set B. Using the mean fluorescence for the 

ldhA promoter from data set B as the cut-off for defining promoter activity in the 

data set C resulted in 44 promoters, covering a GFP expression range of 30-

fold, being defined as active. Increasing the number of characterised 

sequences in the Geobacillus promoter library did not therefore yield a 

significant increase in GFP expression range as compared to data set B, 

although the number of “active” sequences was doubled.  

 

 82 sequences, covering an expression range of 107-fold were 

successfully characterised upstream of mOrange in G. thermoglucosidans 

(Figure 4.21). Nine sequences could not be synthesised upstream of mOrange, 

and 11 promoter::mOrange fusions could not be transformed into G. 

thermoglucosidans. Of the 82 characterised sequences, 32, covering an 

expression range of 8.4-fold, resulted in mOrange expression that was 

statistically significantly greater than the negative control. The mean 

fluorescence of ldhA::mOrange was also statistically significantly greater than 

the negative control. The range of mOrange activity levels displayed by the 

“active” sequences in data set C was 2.8-fold greater than that observed in data 

set B. 

 

Homogeneity of expression 

 

 Ideally, cis-regulatory elements for synthetic biology applications should 

yield homogeneous, predictable expression of the protein of interest at the 

single-cell level (Gasser et al., 2015). However, the promoter characterisation 

data discussed up to this point were obtained at the population-level, using a 

Tecan Infinite 200 PRO microplate reader. These data did not therefore account 

for variation in promoter behaviour between individual cells (Beal et al., 2012). 

Flow cytometry was therefore used to analyse the intra-population variation in 

fluorescence activity displayed by the characterised promoter::reporter fusions. 
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 Expression of GFP and mOrange under the control of G. 

thermodenitrificans ldhA promoter was shown to be highly heterogeneic. 

Analysis of 11 starter cultures arising from independent transformation events 

for each reporter protein returned fluorescence intensities that covered a 3-log 

range for both ldhA::GFP (Figure 4.22C) and ldhA::mOrange (Figure 4.23C). 

Therefore, despite the comparatively widespread use of the sequence to control 

the expression of heterologous proteins in Geobacillus (Cripps et al., 2009, 

Bartosiak-Jentys et al., 2012, Lin et al., 2014, Kananavičiūtė & Čitavičius, 

2015), the ldhA promoter did not satisfy the synthetic biology requirement of 

homogeneous, predictable expression. 

 

 In contrast to the expression heterogeneity displayed by the ldhA 

promoter, the majority of the putative promoters that were identified in this study 

offered homogeneous expression at the single-cell level. To assess the intra-

population variation in expression levels, 100,000 events from each of three 

cultures arising from independent transformation events were combined to form 

a single “meta” population for each of the characterised promoter::reporter 

fusions. Of the 95 analysed promoter::GFP fusions, only two, GKAU_03003 and 

GTDN_01059 returned a robust Coefficient of Variance (CVar) that was greater 

than that returned by ldhA::GFP (Figure 4.22A). Of the 82 characterised 

promoter::mOrange fusions, 60 returned a CVar value lower than that returned 

by ldhA::mOrange (Figure 4.23A).  

 

 Five exemplar promoter sequences (GPGV1_gp37, GSTEA_00891, 

GSTEA_02364, GSTEA_02755 and GSTEA_03085) were identified that, when 

characterised upstream of GFP, cumulatively covered the same range of 

expression as the ldhA promoter, increasing in steady increments (Figure 4.22B 

and C). When characterised upstream of mOrange, the five promoters did not 

display the same rank order of expression levels, but did cumulatively cover the 

same expression range as the ldhA promoter, again increasing in steady 

increments (Figure 4.23B & C).   

 

 The characterised promoter library therefore contained promoter 

sequences that afforded tight control of protein expression across a three-log 
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Figure 4.22: FACS analysis of G. thermoglucosidans cultures expressing 
GFP. 

 

Bars, histograms and points represent individual promoter sequences. For each 
promoter::GFP fusion, 100,000 events from each of three starter cultures 
arising from independent transformation events were combined to form a single 
“meta” population of 300,000 events. The exceptions were the two controls; 
bars, histograms and points representing pS797 and the ldhA promoter 
represent 15 and 11 starter cultures, respectively. Cultures were excited at 488 
nm and fluorescence intensity was recorded using a 530/30 nm detector. 
 
 
range of fluorescence intensity. Members of the library were therefore 

potentially broadly applicable to synthetic biology and metabolic engineering 

projects in Geobacillus where expression homogeneity is required, and 

represented a significant improvement as compared to the ldhA promoter, 

which has previously been applied to pathway engineering in Geobacillus. 
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Figure 4.23: FACS analysis of G. thermoglucosidans cultures expressing 

mOrange. 

 

Bars, histograms and points represent individual promoter sequences. For each 
promoter::mOrange fusion, 100,000 events from each of three starter cultures 
arising from independent transformation events were combined to form a single 
“meta” population of 300,000 events. The exceptions were the two controls; 
bars, histograms and points representing pS797 and the ldhA promoter 
represent 15 and 11 starter cultures, respectively. Cultures were excited at 488 
nm and fluorescence intensity was recorded using a 585/42 nm detector. 
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Partition Modelling 

 

 100 random forests were fit to both the promoter::GFP and 

promoter::mOrange fluorescence data sets, using the same settings as applied 

the data from data set B, and the number of times each position caused splits in 

the data sets across all 100 forests was quantified. The results of the partition 

modelling are shown in Figure 4.24.  

 

 For both reporter proteins, the sequence positions that caused the 

greatest numbers of splits in the 100 random forests were spread across the 

entire promoter sequence. In the promoter::GFP data set, for example, the five 

promoter sequence positions that caused the greatest number of splits were, in 

descending order, -83, -88, -20, -95 and -5. In the promoter::mOrange data set, 

the five positions causing the most splits were -73, -43, -2, -20 and -25. This 

result again showed the importance of considering nucleotides and motifs 

outside of the canonical consensus regions when de novo designing synthetic 

promoter sequences or training sequence-function models.  

 

 The partition results also validated the use of 100 bp promoter 

sequences in Geobacillus. Although it may seem trivial to say so, the simplest 

way to reduce the dimensionality of the promoter sequence-function models 

would have been to characterise shorter promoters. Instead of bioinformatically 

isolating the 100 bp upstream of Geobacillus CDS as putative promoter 

elements, for example, 50 bp putative promoters could have been isolated. 50 

bp sequences would have been of sufficient length to contain the putative RBS, 

-10 and -35 consensus regions identified in Figure 4.10, and may therefore 

have displayed promoter activity. 

 

 However, the partition results (Figure 4.24) showed that sequence 

positions upstream of the -50 position were likely to be important in determining 

promoter activity. Putative promoter elements of reduced length would therefore 

not have contained vital upstream nucleotides or motifs, and may have 

therefore shown reduced promoter activity as compared to the 100 bp 

sequences.
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 Promoter sequence positions were included in downstream ANN & PLS 

sequence-function models in descending order of the number of splits caused 

in the 100 random forest partition models. As with data set B, the lack of 

correlation between the GFP and mOrange partition results (Figure 4.24B) 

precluded the construction of multivariate promoter sequence-function models 

that made simultaneous predictions of fluorescence output for both GFP and 

mOrange. 

 

Partial Least Squares sequence-function models 

 

 10 promoter sequences were selected to form an independent test set 

on which to measure model predictive power. So that the test set contained 

promoter sequences with a range of activity levels, the distribution of GFP 

fluorescence levels in data set C (Figure 4.20) was analysed. Two sequences 

were selected at random from the 1st distribution quartile, five promoters were 

selected from the interquartile range, and three sequences were selected from 

the 4th quartile.  

 

 Outlier analysis was performed to identify any promoter::GFP fusions 

that might have negatively impacted upon PLS model performance (Cox & 

Gaudard, 2013). Quantile range analysis with a Q value of 3 showed that none 

of the measurements of promoter::GFP activity were outliers. However, Huber 

M-Estimation with a K value of 4 returned four outlying measurements of 

fluorescence activity. GSTEA_00710::GFP, GSTEA_00988::GFP, 

GTDN_02924::GFP and GTGNS_00505::GFP, which returned the four highest 

mean fluorescence measurements in data set C, were calculated to be outliers 

with respect to the remaining 90 promoter::GFP constructs. As with the strong 

outlying promoter sequences discussed in data set B, the four outlying promoter 

sequences were included in the training set for sequence-function models, on 

the basis that their inclusion provided the models with biologically relevant data.  

 
PLS models were trained that modelled GFP fluorescence (y) as a 

function of varying numbers of promoter sequence positions (x). The number of 

sequence positions modelled was systematically increased from 10 to 50 in 
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increments of five. PLS models that fit GFP fluorescence as a function of the 

complete 104 bp promoter sequence were also analysed. For each of the 10 

potential groups of x variables, two types of Cross Validation (CV) were applied. 

Four models were fit using KFold CV, using K values of 4, 5, 7 or 10. Models 

were also fit with holdback CV. For each of the 10 groups of x variables, 2,000 

models were fit using holdback CV, with half of the models holding back 20% of 

the training data for model validation and the other half holding back 33%.  

 

 Given that Y (GFP fluorescence) was univariate, all models used the 

NIPALS PLS algorithm. CV was used to determine the optimum number of LVs 

to extract from the data, with a maximum of 10 LVs permitted per model. For 

each of the 10 groups of sequence positions, the single optimum model 

obtained using KFold CV and the single optimum model obtained using 

holdback CV was identified (Figure 4.25).  

 

 For both CV methodologies, the R2 value of the test set was highest 

when 20 promoter sequence positions were included in the PLS models (Figure 

4.25A), with prediction accuracy decreasing as the number of nucleotides 

included was increased beyond this point. At all model complexities, holdback 

CV provided more accurate predictions of GFP fluorescence output from the 

independent test set than KFold CV. As well as returning the highest observed 

R2 values, models trained on 20 nucleotides returned the lowest observed 

RASE values (Figure 4.25B). 

 

 The optimum PLS model that was obtained (hereafter referred to as 

PLS_iteration_C_1) modelled GFP fluorescence as a function of 20 promoter 

sequence positions, and held-back 33% of the training data for CV. 

PLS_iteration_C_1 returned an R2 value of 0.6024 when applied to the training 

and validation sets, and an R2 value of 0.8901 (Figure 4.26A) when applied to 

the test set. 

 

 No correlation was apparent in the model residuals (Figure 4.26b). 

Analysis by Shapiro-Wilk W test showed insufficient evidence at the 0.05 

significance level to reject the null hypothesis that the underlying distribution of
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Figure 4.25: R2 and Root Average Squared Error (RASE) values returned 
by Partial Least Squares (PLS) models when applied to a test data set. 

 

PLS models were trained using the NIPALS algorithm, with a maximum of 10 
Latent Variables (LVs) permitted per model. For each number of sequence 
positions modelled, PLS models were fit using KFold CV with K values of 4, 5, 7 
and 10, and holdback CV, with 20% or 33% of the training data set withheld to 
act as a validation set. Points represent the model that returned the highest R2 
value for the given number of promoter sequence positions. 
 
The square points and solid lines represent models trained using holdback 
Cross Validation (CV). The circular points and dashed lines represent models 
trained using KFold CV.  
 
 

the model residuals was normal (Figure 4.26C) (W = 0.993, Prob<W = 0.380). 

However, as was the case with the residuals for model PLS_iteration_A_2 

(Figure 4.8), visual analysis of a histogram of the model residuals questioned 

this conclusion, as the residuals were clearly not normally distributed (Figure 

4.26C). Given the small sample size (n = 10 in the test data set) and the 

previously reported poor power of the Shapiro-Wilk test when the sample size 

being assessed is small (Razali & Wah 2011, Le Boedec, 2016), the result of 

the Shapiro-Wilk test was judged inadequate for determining normality in the 

residuals of model PLS_iteration_C_1. Despite the potential lack of normality, 

the lack of correlation in the residuals (Figure 4.26B) suggested that 

PLS_iteration_C_1 did not contain significant underlying biases. Additionally, 
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Figure 4.26: Model diagnostics for optimal obtained Partial Least Squares 
model of data set C, PLS_iteration_C_1. 

 
A) Empirically measured GFP fluorescence, plotted against the GFP fluorescence as 
predicted by the model. Points represent the activity levels of individual promoter 
sequences. Empirically measured fluorescence and absorbance after 24 h incubation 
in 96-well plate format, Empirical values are the mean of n = 3 starter cultures arising 
from independent transformants, with standard deviation error bars shown, unless 
hidden by the points. The dashed line represents the point at which empirically 
measured and predicted fluorescence values are equal 
 
B) GFP fluorescence predicted by the model, plotted against prediction residual. 
Dashed line shown at the point where the prediction residual is equal to 0. 
 
C) Histogram of model residual distribution. A Shapiro-Wilk W test returned W = 0.993 
and Prob<W = 0.380. There was therefore insufficient evidence to reject the null 
hypothesis that the underlying distribution of the model residuals was normal at the 
0.05 significance level. However, visual analysis of the histogram questioned this 
conclusion, as the data were clearly not normally distributed.  
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the model provided a reasonable fit of the training data and had good predictive 

power when applied to previously unseen data. 

 

Artificial Neural Network sequence-function models 

 

 As with the ANNs that were trained on data set B, ANNs were trained 

using a statistical Design of Experiments (DoE) approach. ANNs were trained 

using only a single hidden layer. Whilst two-layer networks could potentially 

have been used to map the promoter response surface, the resulting increase 

in model complexity carried the risk of increasing model variance and overfitting 

the model to the training data (Hastie et al., 2009). Additionally, a single-layer 

network containing 19 nodes had previously been shown to be sufficiently 

complex to describe 224 bp regulatory sequences in E. coli (Meng et al., 2013).  

 

 A screening design was used to identify which of the ANN parameters 

were having the greatest impact on model performance. The ANN parameters 

that were included in the screening design are summarised in Table 4-4. The 

specified parameters were combined in a full-factorial manner, which resulted in 

81 ANN architectures being specified. Each of the 81 network architectures was 

fit 500 times, with each fit using a unique, specified random seed. All models 

used the squared penalty method. For each of the 81 ANN architectures, the 

single ANN that returned the highest R2 when applied to the test set was 

identified.  

 

Parameter Levels specified 

Activation function personality Gaussian, Linear or TanH 

Number of nodes in the hidden layer 3, 5 or 7 

Cross Validation (CV) methodology KFold, with K = 4, K = 5 or K = 8 

Number of promoter sequence positions 
modelled  

10, 20 or 100 

 

Table 4-4: Artificial Neural Network parameters included in screening 
experiment, and the values specified for each parameter. 
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 When applied to the test data set, the 81 ANNs returned R2 values 

ranging from 0.435 to 0.934. The optimum ANN obtained modelled GFP 

fluorescence as a function of 20 promoter sequence positions, using a five-

node hidden layer, the TanH activation personality and K = 5 CV. Of the 10 

models that returned the highest R2 values, eight used the TanH activation 

function personality, suggesting that a sigmoidal activation function provided the 

most accurate mathematical abstraction of the promoter design space. This 

result was concurrent with the literature, as sigmoidal activation functions had 

previously been used to train promoter sequence-function models in E. coli 

(Meng et al., 2013).  

 

 The results of the screening experiment were subjected to statistical 

analysis. A standard least squares model with effect screening emphasis 

showed that both the number of promoter sequence positions included in the 

ANN and the personality of the activation function were having a statistically 

significant impact on model performance at a significance level of 0.05 (number 

of sequence positions LogWorth = 7.632, P = 0.000, activation function 

personality LogWorth = 6.298, P = 0.000). The number of nodes in the hidden 

layer and the K value used in CV did not return statistically significant results   

(P = 0.582 and P = 0.671, respectively). 

 

 The screening results were also analysed by PLS model, using KFold CV 

where K = 7. The test set R2 value was used as the y variable and the 

parameters summarised in Table 4-4 were used as x variables. The resulting 

model extracted a single LV from the data, and was capable of explaining 

12.5% of the cumulative variation in X and 53.525 % of the cumulative variation 

in Y.  

 

 Four factors exceeded the VIP threshold value of 0.8 (Eriksson et al., 

2006), which suggested that these factors were having a statistically significant 

effect on ANN predictive power. The Linear and TanH activation functions both 

exceeded the VIP threshold, as did the effect of including 20 and 100 promoter 

sequence positions in the ANNs (Figure 4.27A). Analysis of the model 

coefficients showed that the TanH activation function was predicted to positively 
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Figure 4.27: Assessing the contribution of Artificial Neural Network model 
parameters to determining predictive power using a Partial Least Squares 

model. 
 

A) Variable Importance Plot (VIP) and B) VIP v Coefficient plot. 
 
In both panels the dashed red line represents the VIP threshold value of 0.8, 
above which x variables are predicted to have a statistically significant impact 
on model output.  
 
VIP and coefficient values were returned by a PLS model that modelled the R2 
value returned by ANNs when applied to a test data set, as a function of 
activation function personality (Personality), the number of promoter sequence 
positions included in the ANN design (Positions), the number of nodes included 
in the hidden layer (Nodes) and the value of K used in ANN Cross Validation 
(K).  
 
 

contribute to ANN predictive power, whereas the Linear activation function was 

predicted to negatively impact predictive power (Figure 4.27B). 

 

 Taken together, the results of the screening design suggested that the 

TanH activation function and the number of sequence positions included in 

theANN were likely to be vital in determining ANN predictive power. A second 

iteration of ANN design was therefore undertaken using only TanH activation 

functions. All ANNs used a single hidden layer and the squared penalty 

function. The number of promoter sequence positions that were included in the 

ANNs ranged from 10 to 100, increasing in increments of 10 positions, and the 
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number of nodes included in the hidden layers was between 3 and 15, 

increasing in increments of 2. The parameters were combined in a full-factorial 

manner. As such, a total of 70 ANN architectures were generated. Each of the 

70 ANN architectures were fit 1,000 times, using unique, specified random 

seeds. 500 runs of each network design used KFold CV where K = 4, and the 

remaining 500 runs used KFold CV where K = 5.  

 

 The individual ANN that returned the highest R2 value when applied to 

the test set was identified for each of the 70 network architectures (Figure 4.28). 

The best performing ANN that was obtained returned an R2 value of 0.9304 

when applied to the test set, and modelled GFP fluorescence as a function of 

20 promoter sequence positions, with 5 nodes in the hidden layer. However, the 

ANN design space did not contain an obvious single local optimum. Instead, 

ANNs returning high R2 values (> 0.8) were returned by at least 1 network 

design for each of the 10 groups of sequence positions that were analysed. 

 

 Model predictive power was shown to decrease when either 90 or 100 

promoter sequence positions were modelled (Figure 4.28). In the case of ANNs 

that modelled GFP fluorescence as a function of complete promoter sequences, 

the optimum network obtained used 9 nodes in the hidden layer and returned 

an R2 value of 0.8199 when applied to the test set. To test if ANNs of increased 

complexity could better model complete promoter sequences, single layer 

models were trained using 17, 19 or 21 nodes. Models containing more than 21 

nodes in the hidden layer were not trained, as highly complex networks (i.e. 

those with many nodes) are known to result in models which have high variance 

and that are overfit to the training data (Hastie et al., 2009). 1,000 ANNs were 

trained for each of the 17-, 19- and 21- node architectures, but none performed 

better than the nine-node model when applied to the test set, either in terms of 

R2 or RASE (Figure 4.29).  

 

 Model ensembling was applied to the ANNs in an attempt to improve 

predictive power. The ensembling strategy is summarised in Figure 4.30. For 

each number of promoter sequence positions that were modelled, the network 

architecture that returned the single ANN with the highest test set R2 value was 
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Figure 4.28: Response surface showing the R2 values returned by 
Artificial Neural Networks using the TanH activation function when 

applied to a test data set. 

 

ANNs varied in terms of the number of promoter sequence positions included in 
the model and the number of nodes in the ANN hidden layer. A total of 70 ANN 
architectures were generated. Each of the 70 ANN architectures was fit 1,000 
times, using unique, specified random seeds. 500 runs of each of the 70 
network architectures used KFold CV where K = 4, and the remaining 500 runs 
used KFold CV where K = 5. For each of the 70 architectures, the single model 
that returned the highest R2 value when applied to the test set was included in 
the response surface. 
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Figure 4.29: Model performance statistics for single layer Artificial Neural 
Networks modelling GFP fluorescence as a function of complete promoter 

sequences. 

R2 and Root Average Squared Error (RASE) values were returned when ANNs 
were applied to an independent test data set of 10 promoter sequences. For 
each number of nodes specified 1,000 ANNs were fit, with each fit having a 
unique, specified random seed. For each number of nodes, 500 models were fit 
using KFold CV with K = 4 and 500 models were fit using KFold CV with K = 5. 
Points represent the R2 and RASE values returned by the single highest 
performing model for each number of nodes. 
 
 

identified. Once the optimal network architecture was identified, ensemble 

models were created. The top 10 highest performing ANNs with the chosen 

architecture (as judged by the test set R2 value) were used to create nine 

progressively larger ensembles, with ANNs being included in the ensemble in 

descending order of their test set R2 value. Once formed, the ensemble models 

were applied to the test set of promoter sequences to quantify their predictive 

power. 

 

 Ensemble models did not always return higher R2 values than the best 

performing constituent model for the given number of promoter sequence 

positions. For example, the individual best performing ANN that modelled GFP 

fluorescence as a function of 30 promoter sequence positions returned an R2 

value of 0.8995 when applied to the test data set. The best performing 
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Figure 4.30: Schematic representation of the Artificial Neural Network 
ensembling strategy.  
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ensemble, however, returned an R2 value of 0.8766. Figure 4.31 summarises 

the test set performance of the optimal model, whether individual ANN or 

ensemble, that was obtained for each of the groups of promoter sequence 

positions that were analysed. 

 

 In total, five models were identified that returned an R2 value greater than 

0.9 when applied to the test data set (Table 4-5). All five of the models 

appeared to have good predictive power when applied to the test data set, and 

also returned high R2 values when applied to the training and validation test 

sets. These results suggested that the models provided both a good fit of the 

training data and performed well when applied to previously unseen data.  

 

Model Sequence 

positions (x) 

N(Nodes) R2 

(Training & Validation) 

R2 

(Test) 

10_Tan15 10 15 0.9251 0.9373 

20_Tan5 20 5 0.9746 0.9691 

50_Tan3 50 3 0.8979 0.9149 

60_Tan13 60 13 0.9753 0.9399 

70_Tan11 70 11 0.9930 0.9209 

     

Table 4-5: A summary of the architecture and performance of five high-
performing Artificial Neural Network models. 

 

 Modelling GFP fluorescence as a function of small numbers of promoter 

sequence positions carried the potential risk of data twinning. In the case of 

ANNs predicting GFP fluorescence as a function of 10 promoter sequence 

positions, for example, it was theoretically possible that the nucleotides at those 

10 sequence positions in a promoter in the test set would have been identical to 

the nucleotides at those 10 positions in a promoter in the training and validation 

sets. Predictive power would therefore have been artificially inflated (Clarke et 

al., 2009, Raccuglia et al., 2016). However, analysis of the promoter sequences 

showed that none of the promoters in the test set were an exact match for any 

of the promoters in the training and validation sets when the 10, 20, 50, 60 or 

70 sequence positions included in the high-performing ANNs were considered. 
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Sequence 
Positions (x) 

N (Nodes) Ensemble 
model? (Y/N) 

Number of 
constituent 

models  

Model name 

10 15 Y 2 10_Tan15 
20 5 Y 2 20_Tan5 
30 3 N - 30_Tan3 
40 11 Y 2 40_Tan11 
50 3 N - 50_Tan3 
60 13 Y 2 60_Tan13 
70 11 Y 3 70_Tan11 
80 5 Y 7 80_Tan5 
90 15 N - 90_Tan15 
100 9 N - 100_Tan9 

 

Figure 4.31: R2 and Root Absolute Squared Error (RASE) values returned 
by 10 single layer Artificial Neural Network designs when applied to a test 

data set. 

Bars representing R2 values are shown in black, and are plotted on the left hand 
y-axis. Bars representing RASE values are shown in grey, and are plotted on 
the right-hand y-axis. The dashed red and blue lines represent the R2 and 
RASE values returned by the optimal obtained ANN, which was trained on 20 
promoter sequence positions and had 5 nodes in the hidden layer. For each 
number of promoter sequence positions (x) modelled, the table shows number 
of nodes in the hidden layer (N(Nodes)) and whether or not multiple ANNs were 
aggregated to reach the final test statistics. If models were aggregated, the 
number of constituent models that went into the final prediction is shown.  
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 The high R2 values that were returned by the 5 high-performing models 

shown in Table 4-5 did not therefore appear to have been an artefact of data-

twinning, as was the case with the models that were trained on data set A. 

 

 A secondary test set was identified to further test the predictive power of 

the five high-performing ANNs and the PLS model PLS_iteration_C_1. 10 

putative promoter sequences were selected at random from across the 

Geobacillus promoter phylogeny and synthesised upstream of GFP by ATUM 

(previously DNA 2.0, California, United States of America). 

 

 When applied to the secondary test set (Figure 4.32), none of the 

isolated models showed the same level of predictive accuracy as had been 

observed in the primary test set (Figure 4.31). The model that returned the most 

accurate predictions was 10_Tan15, which returned an R2 value of 0.5211. 

(Figure 4.32C). The second highest R2 value was returned by the PLS model 

PLS_iteration_C_1 (Figure 4.32B, R2 = 0.3595). All six of the tested models 

performed particularly poorly when the empirically measured fluorescence 

output of a promoter::GFP fusion was low. 

 

 The best performing ANN of the complete promoter sequence, 

100_Tan9, did not show greater predictive accuracy than 10_Tan15 when 

applied to the secondary test set; 100_Tan9, returned an R2 value of -0.068. 

This result validated the use of partition modelling to identify key promoter 

sequence positions for inclusion in downstream ANN and PLS models. The 

partition models were capable of accurately identifying promoter sequence 

positions that were key in determining promoter output, thereby reducing the 

dimensionality of the design-space modelled by the downstream ANN and PLS 

models, boosting predictive power. 

 

 The model averaging approach that was initially applied to the ANNs 

derived from data set C could be defined homogeneous; the constituent ANNs 

for each ensemble used the same model architecture (i.e. they all had the same 

number of nodes in the hidden layer) but applied different model weights. 

However, heterogeneous ensembles, in which the constituent models use 
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different architectures and/or data sets (Yang et al., 2013) were not initially 

used. 

 

 Ensemble networks have previously been shown to be most useful when 

the constituent models return predictions that are as accurate but diverse as 

possible (Granitto et al., 2005). High levels of prediction diversity between the 

five high-performing ANNs and PLS_iteration_C_1 were apparent when the 

models were applied to bioinformatically identified putative Geobacillus 

promoters that had not been characterised in vivo (Figure 4.33). The predictions 

of promoter activity returned by even the two most similar models (60_Tan13 

and 70_Tan11) showed, at very best, minimal positive correlation. A linear 

regression of the two sets of predicted values returned an R2 of 0.4437. Linear 

regressions comparing the other 14 possible combinations of the six models 

returned R2 values ranging from 0.052 (PLS_iteration_C_1 v 50_Tan3) to 

0.3813 (PLS_iteration_C_1 v 20_Tan5). The extremely low R2 values that were 

returned by the linear regressions indicated that the predicted activity level of 

each previously uncharacterised putative promoter varied significantly 

depending on which model was used to make the prediction. Although such 

prediction diversity is known to be required for effective ensembling, it does not 

guarantee that an ensemble model will out-perform individual constituent 

models (Johansson et al., 2007).  

 
 To test if a heterogeneous ensemble could out-perform the optimal 

homogenous ensemble (the model 10_Tan15), all possible combinations of the 

five high-performing ANNs (Table 4-5) and PLS_iteration_C_1 were generated. 

The resulting 57 ensembles were then applied to the secondary test set. The 

best performing heterogeneous ensemble combined PLS_iteration_C_1 and 

the ANNs 10_Tan15 and 50_Tan3. When applied to the training and test sets, 

the ensemble returned R2 values of 0.8873 and 0.9402, respectively. However, 

when applied to the secondary test set the ensemble returned an R2 value of 

0.4779, and therefore did not show improved predictive power as compared to 

10_Tan15, which returned an R2 value of 0.5211.  
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Figure 4.33: Scatterplot matrix showing GFP fluorescence output of 
putative promoter sequences as predicted by high performing Artificial 

Neural Network and Partial Least Squares models. 

 

Points represent individual promoter sequences. Predictions of fluorescence 
output are as calculated by the ANNs 10_Tan15, 20_Tan5 50_Tan3, 60_Tan13 
and 70_Tan11, and by PLS_iteration_C_1. Red points represent promoter 
sequences that were included in the model training and validation process. 
Black points represent bioinformatically identified putative promoter sequences 
that were not characterised in vivo. The solid lines represent linear regressions 
of the data.  
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4.3 Discussion 

4.3.1 Identification and characterisation of putative promoters 

 

 Three progressively larger sets of bioinformatically identified putative 

promoter sequences were characterised in G. thermoglucosidans. In total, 105 

promoter::GFP fusions, covering a total expression range of 148-fold, were 

characterised (Figure 4.20, Figure 4.32A). Of these sequences, 47, covering an 

expression range of 30-fold, were defined as active promoters. 82 

promoter::mOrange fusions, covering a total expression range of 107-fold were 

also characterised (Figure 4.21), of which 32, covering an expression range of 

8.4-fold, were defined as active promoters. As discussed in Chapter 5, context 

effects meant that correlation in promoter activity between the two reporter 

proteins was minimal (a linear regression of the two data sets returned an R2 

value of 0.199). 

 

  At the start of this investigation, the constitutive promoters that had been 

applied to the control heterologous expression in the genus Geobacillus were 

three endogenous regulatory elements; the G. kaustophilus sigA promoter 

(Suzuki et al., 2012), the oxygen-dependent ldhA promoter, isolated from G. 

thermodenitrificans or G. stearothermophilus (Cripps et al., 2009, Bartosiak-

Jentys et al., 2012, Lin et al., 2014, Kananavičiūtė & Čitavičius, 2015) and the 

G. stearothermophilus ribonuclease HIII promoter (Blanchard et al., 2014). The 

endogenous Geobacillus promoters that were characterised in this investigation 

therefore represented a major expansion in the number of constitutive 

regulatory sequences available for synthetic biology and metabolic engineering 

projects in this genus of industrially relevant thermophiles.  

 

 In total, 58 promoter::GFP fusions and 50 promoter::mOrange fusions 

were classed as inactive. Furthermore, the mean fluorescence activity of 23% of 

promoter::GFP fusions and 17% of promoter::mOrange fusions fell within one 

standard deviation of the mean fluorescence of the negative control.  

 

 Alternative methods for promoter identification might have shown greater 

specificity in Geobacillus. “Omics” approaches, for example, (Mendoza-Vargas 
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et al., 2009, Li et al., 2015, Luo et al., 2015) could potentially have resulted in 

more accurate determination of transcription start sites. Alternatively, machine 

learning techniques could have been used to screen the Geobacillus genome 

for putative promoter elements (Mann et al., 2006, Umarov & Solovyev, 2017). 

However, these approaches can be time- and resource-intensive, and, in the 

case of the machine-learning approaches, require prior understanding of the 

biological and statistical characteristics of the sampled DNA sequences (Song 

et al., 2016). Such information is not always readily available in non-model, 

industrially relevant organisms.  

 

 In contrast, the bioinformatic approach to promoter discovery that was 

applied in this investigation allowed putative promoter sequences with a broad 

range of in vivo activity levels to be identified and characterised relatively 

quickly and easily. This approach is therefore potentially broadly applicable to a 

wide range of industrially relevant organisms.  

 

4.3.2 Promoter sequence-function modelling 

 

 Partition modelling revealed that regions outside of the canonical 

consensus regions (i.e. -10, -35 and RBS motifs) were key for determining 

promoter activity in Geobacillus (Figure 4.24). When promoter sequences were 

characterised upstream of GFP, sequence positions -83, -88 and -95 caused 

the 1st, 2nd and 4th most splits in 100 random forests, respectively. When 

characterised upstream of mOrange, positions -73, -70 and -87 caused the 1st, 

6th and 10th most splits, respectively. Additionally, a sequence alignment of 21 

promoter sequences that showed promoter activity in vivo showed regions of 

AT-rich conserved sequence towards the 5’ terminus of the promoter sequence 

that were not as heavily conserved in sequences that did not show promoter 

activity (Figure 4.10).  

 

 In E. coli, studies have shown that the canonical UP-element is typically 

AT-rich, and boosts transcription initiation through interactions with the C-

terminal domain of the RNA polymerase alpha subunit (Ross et al., 1993, Aiyar 

et al., 1998, Estrem et al., 1998). UP-elements have also been reported to 
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increase transcription activation in Bacillus subtilis (Meijer & Salas, 2004, Phan 

et al., 2012) The results of the partition models and sequence alignments 

suggested that promoter regions upstream of the -35 box also play an important 

role in boosting transcription initiation in Geobacillus.  

  

 The use of ANN and PLS models to infer a quantitative relationship 

between the DNA sequence of a promoter and in vivo function was only 

moderately successful. ANN and PLS models were trained using data derived 

from the characterisation of the three progressively larger sets of putative 

promoters. In data set C, 95 characterised promoter::GFP fusions were 

available for division into training, validation and initial test sets. To reduce the 

dimensionality of the promoter design space and thereby potentially increase 

the predictive power of the final models, GFP fluorescence was modelled as a 

function of varying number of promoter sequence positions. Five putatively 

high-performing ANNs were identified (Table 4-5), respectively using 10, 20, 50, 

60 or 70 promoter sequence positions to infer promoter activity. A putatively 

high-performing PLS model was also obtained (Figure 4.26).  

 

 When applied to training, validation and primary test sets the putatively 

high-performing ANN and PLS models all returned high (> 0.89) R2 values, 

which was suggestive of strong predictive capability. However, these measures 

of predictive power proved overly optimistic. When applied to secondary test 

sets, the six putatively high-performing models displayed inadequate generality 

(Figure 4.31). The best-performing ANN, which modelled GFP fluorescence as 

a function of 10 promoter sequence positions using the TanH activation function 

and 15 nodes in a single hidden layer, returned an R2 of 0.5211 when applied to 

a secondary test set. Prediction accuracy was particularly poor when a DNA 

sequence showed no in vivo promoter activity.  

 

 Although novel in Geobacillus, a small number of E. coli promoter 

sequence-function models that applied either ANNs or PLS and displayed good 

predictive power are described in the literature. For example, the PLS model 

described by De Mey et al. was successfully applied to pathway engineering in 

E. coli. Once trained, the model was used to make a prediction of strength for 
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the wild-type ppc promoter, which was not in the training data set. The wild-type 

promoter was subsequently replaced in vivo with promoter sequences that were 

predicted by the PLS model to have greater strength. The resulting upregulation 

of the ppc gene was broadly as predicted by the model (De Mey et al., 2010).  

 

 Successful derivation of accurate PLS models of the relationship 

between promoter sequence and function was also reported by Jonsson et al., 

who were able to accurately predict the in vivo expression strength of two 

synthetic promoters. The synthetic sequences were derived by selecting 

nucleotides at each sequence position based on which of the four nucleotides 

had the largest positive PLS model coefficient at that position (Jonsson et al., 

1993). Finally, the ANN derived by Meng et al. was used to design synthetic 

promoter sequences that were subsequently used to successfully upregulate 

expression of a small peptide toxin, BmK1, in E. coli (Meng et al., 2013).  

 

 The predictive power of the published sequence-function models was in 

contrast to the relative lack of predictive power shown by the models derived in 

this investigation (Figure 4.31). This discrepancy may have been a result of the 

way that the promoter libraries on which the models were trained were 

generated.  

 

 In this investigation, promoter sequences were selected for in vivo 

characterisation in a way that required no pre hoc understanding of Geobacillus 

regulatory elements. By selecting promoters from across the Geobacillus 

promoter phylogeny, this investigation aimed to maximise the sequence 

diversity of the characterised promoters, and therefore maximise the proportion 

of the promoter design space that was empirically explored. In contrast, the 

published studies employed an a posteriori approach, in which the 

characterised promoters either contained defined motifs or were highly 

homologous.  

 

 The PLS model reported by De Mey et al., for example, applied a training 

set derived from Saturation Mutagenesis of Flanking Regions (SMFR). E. coli    

-10 and -35 consensus regions were flanked with 12 semi-conserved and 20 
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fully degenerate nucleotides, resulting in a library of 49 characterised 57 bp 

sequences (De Mey et al., 2007). 42 of these sequences were used for model 

training. The remaining seven sequences were used as a test set, and the 

resulting PLS model was able to accurately predict promoter activity for six out 

of the seven sequences. The DNA sequences of the synthetic promoter 

sequences used for model training were not published. However, given the 

conserved nature of the degenerate oligonucleotide used for promoter 

derivation, significant sequence similarities were likely between the training and 

test data sets. 

 

 The neural network described by Meng et al, was also trained on a 

mutagenesis-derived promoter library. Mutations were introduced into the 224 

bp sequence of the E. coli wild-type Trc promoter using epPCR, with the error-

rate reported to have “reached up to about 20%” (Meng et al., 2013). However, 

analysis of the published promoter sequences revealed an average error rate of 

only 10%, with 18 sequences containing fewer than 10 mutations. 

 

 Finally, although the training set of 25 promoters that was applied by 

Jonsson et al. was not derived by mutagenesis, sequences were selected for 

inclusion in the training data only if they contained a 17 bp spacer between the   

-35 and -10 regions and a 7 bp spacer between the -10 region and the 

transcription start site (Jonsson et al., 1993). Four nucleotide positions from the 

68 bp sequences were also identical across all 25 promoters. 

 

 By maintaining consensus regions (De Mey et al., 2007), using epPCR 

with a low error rate to mutate a single promoter sequence (Meng et al., 2013), 

or by keeping spacing between key regions constant (Jonsson et al., 1993), the 

studies discussed above trained sequence-function models on promoter 

libraries with considerable sequence homology. Such homology ensured that 

key promoter sequence motifs, such as consensus and spacer sequences, 

were either identical or broadly consistent in promoters within the training data 

sets. Individual sequence positions within different promoter sequences were 

therefore likely to be more directly comparable than if such structures were not 

conserved (Jonsson et al., 1993).  
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 By characterising promoter sequences that were potentially not 

consistent with regards to consensus motif sequence or location, the 

Geobacillus promoter library that was discussed in this investigation likely 

lacked the underlying structure that was present in the published libraries. The 

ANN and PLS models of the Geobacillus promoter design space therefore had 

to account for changes in both promoter DNA sequence and motif structure, 

potentially resulting in reduced predictive power. 

 

 Promoter sequence-activity models trained on data sets containing large 

amounts of sequence homology potentially ignore regions of promoter design 

space that encode promoters with desirable characteristics (Jonsson et al., 

1991). However, it would appear that DNA sequence data alone is not sufficient 

to accurately predict promoter activity without such homology. Including 

biophysical or structural information for individual nucleotides or motifs could 

potentially have increased the predictive power of the sequence-function 

models. One study, for example modelled promoter activity as a function of the 

contribution of nucleotide 3-mers to the free energy barrier for RNA polymerase 

binding to the promoter sequence (Li & Zhang, 2014). Another study used 

Principle Components Analysis to derive nucleotide descriptors from 1,209 

structural descriptors, which were then used by a Support Vector Machine 

(SVM) model to derive predictions of promoter strength (Liang & Li, 2007). 

 

 Different statistical learning approaches may also have potentially 

yielded sequence-function models with greater predictive accuracy. For 

example, SVMs have been applied in E. coli to derive sequence-activity models 

from microarray data (Kiryu et al., 2005). SVMs were also used to derive 

predictions of activity from a library of 100 promoter sequences characterised 

upstream of GFP (Meng et al., 2017), although the training library was the same 

homologous, mutagenesis-derived library to which ANNs were  previously 

applied by Meng et al. (Meng et al., 2013). Gaussian Process models have also 

been shown to model peptide structure-activity relationships more accurately 

than ANN and PLS models (Zhou et al., 2009), and could potentially be applied 

to Geobacillus promoter sequences in future. 
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4.4 Summary 

 

 Three progressively larger sets of bioinformatically identified putative 

promoters were characterised in G. thermoglucosidans. The resulting 

characterisation data were used to derive ANN, PLS and Random Forest 

statistical models. In total, 105 promoter::GFP fusions and 82 

promoter::mOrange fusions were characterised. ANN and PLS models were 

obtained that returned accurate fits of training, validation and primary test sets, 

but predictive accuracy was low when the models were applied to predicting 

activity levels for secondary test sets of bioinformatically-identified putative 

promoters or de novo designed synthetic sequences. This lack of predictive 

power was hypothesised to be the result of a lack of significant sequence 

homology in the training data and the relatively small size of the training data 

set as compared to the dimensionality of the promoter design space. Random 

Forest partitioning provided useful descriptive models, which suggested that 

regions upstream of the -35 and -10 consensus regions play a key role in 

transcription regulation in Geobacillus. This conclusion was supported by the 

presence of a conserved AT-rich region in active Geobacillus promoters that 

was comparable to previously characterised UP-elements that have been 

reported in B. subtilis and E. coli.  

 

 Although 2-log ranges of expression levels were observed for both 

reporter proteins, promoter activity was generally poorly conserved between 

reporters. This result highlighted the necessity of thoroughly characterising 

promoter activity in multiple contexts. If promoters do not function consistently 

when used in genetic or environmental contexts other than those used in their 

initial characterisation, significant “re-tuning” may be required. As the complexity 

of synthetic pathways increases, such re-tuning quickly becomes prohibitive 

and truly modular, context-independent promoters become invaluable. To 

assess the modularity of the bioinformatically identified promoter sequences, 

four genetic and environmental factors with the potential to alter promoter 

activity were investigated concurrently with the characterisation experiments 

that were discussed in this chapter. The results of these characterisation 

experiments are discussed in Chapter 5.  
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5 Analysing the effect of environmental and genetic context 

on promoter activity 

Summary 

 

 The synthetic biology approach to metabolic engineering requires 

libraries of thoroughly characterised regulatory parts that function in a 

predictable, consistent manner. However, genetic and environmental context 

can significantly alter promoter output. This context-specificity can hinder the 

application of previously characterised promoters in novel scenarios, as the 

strength of a promoter in the conditions under which it was initially characterised 

may not be reflective of promoter performance in more industrially relevant 

scenarios. This discrepancy can necessitate time- and resource-consuming 

pathway re-tuning. As the complexity of synthetic pathways increases, such re-

tuning quickly becomes prohibitive and truly modular, context-independent 

promoters become increasingly desirable. Therefore, to assess the modularity 

of the bioinformatically identified Geobacillus promoters, four genetic and 

environmental factors with the potential to impact promoter activity were 

investigated. These factors were the method by which promoter::reporter 

fusions were cloned, the effect of fluctuations in plasmid copy number on 

culture fluorescence, the reporter protein used to characterise promoter activity 

and the effect of culture oxygenation. The experiments discussed in the 

following chapter were performed concurrently with the sequence-function 

modelling described in Chapter 4. 

 

5.1 Introduction  

 

 The promoter sequence-function models that were discussed in 

Chapters 3 & 4 assumed that the observed differences in fluorescence between 

disparate promoter::GFP fusions were the result of promoter effects. However, 

the environmental and genetic context in which regulatory parts are 

characterised can also impact upon gene expression (Cardinale & Arkin, 2012). 



Chapter 5 - The effect of context on promoter activity 

 197 

Ideally, the activity of a characterised regulatory sequence should be 

independent of context (Gilman & Love, 2016); given the effort that is expended 

in optimising a synthetic pathway at laboratory scale, said pathway should 

require minimal re-tuning when cultured at industrial scale (Segall-Shapiro et 

al., 2018). The context-independence of regulatory elements becomes 

particularly important as the complexity of synthetic pathways increases; as the 

number of genetic parts in a system increases, the number of potential designs 

grows exponentially (Davidsohn et al., 2014), precluding the use of trial-and-

error optimisation of individual components (Rudge et al., 2016). Truly modular, 

context-dependent genetic regulatory parts can facilitate such optimisation by 

reducing the number of candidate designs that must be analysed in vivo, and 

can aid the systematic, scalable, bottom-up design of genetic circuits that 

synthetic biology strives to achieve (Del Vecchio, 2015, Nielsen et al., 2016).  

 

 To analyse the context-independence of the characterised Geobacillus 

promoter library, four genetic and environmental factors with the potential to 

effect promoter activity were investigated. These four factors were the method 

by which promoter::reporter fusions were cloned, the effect of fluctuations in 

plasmid copy number on culture fluorescence, the reporter protein used to 

characterise promoter activity and the effect of culture oxygenation on promoter 

activity.  

 

5.1.1 Application of a type IIS restriction cloning strategy for 

promoter::reporter fusion 

 

 The promoter::GFP fusions that were characterised in G. 

thermodenitrificans and in G. thermoglucosidans data set A were synthesised 

as a single part and cloned directly into the pS797 vector by ATUM (previously 

DNA 2.0, California, United States of America). Whilst this approach expedited 

the characterisation process, it did not allow for routine switching of promoter 

elements between genetic contexts.   

 

 To facilitate routine application of promoter sequences for the control of 

CDS other than the GFP used in their characterisation, a type IIS restriction 
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cloning strategy was implemented (Engler et al., 2008, Kirchmaier et al., 2013). 

The requisite DNA parts (CDS, promoter, RBS, terminator and vector 

backbone) were flanked with unique 5 bp sequences that, when cut with the 

restriction enzyme BsaI, resulted in specific overhanging DNA sequences that 

ensured digested fragments could only ligate in the defined order.  

 

 Although the 100 bp Geobacillus cis-regulatory elements that are 

discussed in this study are referred to as promoters, they also contained 

Ribosome Binding Sites (RBS). The sequence-function models discussed in 

Chapters 3 & 4 treated promoter and RBS as a single regulatory unit. However, 

future applications of the regulatory sequences might require disparate 

promoter and RBS elements; the construction of multi-gene operons, for 

example, requires RBS sequences to be placed between individual CDS. The 

putative location of the RBS sequence was therefore identified, and regulatory 

elements were split in silico into 85 bp promoter and 15 bp RBS sequences. 

 

 The in vitro ligation of promoter, RBS and CDS parts by the type IIS 

cloning strategy resulted in the insertion of two scar DNA sequences. The 4 bp 

scar “ACCT” was inserted between the promoter and RBS sequence, and 

another 4 bp scar, “AATG” was inserted between the 3’ terminus of the RBS and 

the start codon of the adjacent CDS.  

 

 Previous studies have shown that novel cryptic functionality can 

potentially arise through the fusion of previously characterised genetic parts 

(Lou et al., 2012, Yao et al., 2013, Zong et al., 2017). In particular, any 

alterations to the mRNA secondary structure arising from scar sequences 

located between the RBS and CDS can potentially negatively impact the 

efficiency of translation initiation (Mirzadeh et al., 2015), thereby altering protein 

production. The regulatory sequences that were characterised without scar 

sequences in G. thermoglucosidans were therefore cloned upstream of GFP 

using the type IIS restriction cloning system and re-characterised so that the 

impact of cloning scar sequences could be assessed.  
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5.1.2 The effect of plasmid copy number on fluorescence activity  

 

 The use of plasmid-based gene expression to quantify promoter activity 

is ubiquitous (Urtecho et al., 2018). In this study, all promoter::reporter fusions 

were characterised in the pS797 vector, which used the repBST1 origin of 

replication for propagation in Geobacillus (Liao et al., 1986, Taylor et al., 2008). 

As compared to genome integration of heterologous pathways, multiple-copy 

plasmids offer increased signal (Jahn et al., 2014) and facilitate easy 

manipulation of heterologous pathways (Jones et al., 2000).  

 

 However, Plasmid Copy Number (PCN), and therefore transgene copy 

number, can fluctuate (Wong Ng et al., 2010, Segall-Shapiro et al., 2018). 

Given that the copy number of heterologously expressed genes is known to 

impact the level of output from gene networks (Jones et al., 2000), such 

fluctuations in copy number can potentially result in inaccurate quantifications of 

promoter activity. 

 

 To ensure that the observed differences in fluorescence output between 

G. thermoglucosidans cultures expressing GFP under the control of different 

promoter sequences were not the result of fluctuations in PCN, quantitative 

PCR (qPCR) was employed to determine PCN. The qPCR methodology used a 

fluorescent dye that intercalated to dsDNA during the amplification step of the 

PCR, resulting in a fluorescence signal that was proportional to the number of 

amplicons in a sample (Thornton & Basu, 2011). Sample fluorescence was then 

compared to a standard curve consisting of serial 10-fold dilutions of purified 

DNA, allowing the concentration of the amplicon of interest to be calculated 

(Lee et al., 2006b). 

 

 Two sets of PCR primers were designed, one set which amplified a 

unique region of the ampicillin resistance gene in the pS797 vector and one set 

which amplified a unique region of the G. thermoglucosidans genome. By 

calculating the ratio of plasmid- to genomic-amplicons, a per-genome estimate 

of PCN was calculated (Lee et al., 2006a, Skulj et al., 2008). 
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5.1.3 The effect of reporter sequence on promoter activity  

 

 The functional composability of regulatory sequences is a vital 

requirement for synthetic biology (Davis et al., 2011). However, the context-

specificity of regulatory sequences is well understood (Cardinale & Arkin, 2012, 

Kosuri et al., 2013, Mutalik et al., 2013b, Nielsen et al., 2016).  If promoter 

sequences do not display common functionality when placed upstream of CDS 

other than those used in their initial characterisation, the results of 

characterisation experiments can only ever have local validity. Therefore, to 

assess the contextual robustness of the putative Geobacillus regulatory 

elements, putative promoter sequences were characterised upstream of a 

second reporter protein CDS, the RFP derivate mOrange.  

 

5.1.4 The effect of oxygen concentration on promoter activity  

 

 The ldhA promoter, variants of which have been previously employed for 

genetic engineering projects in Geobacillus, has been shown to be oxygen 

dependent (Cripps et al., 2009, Bartosiak-Jentys et al., 2012, Lin et al., 2014, 

Kananavičiūtė & Čitavičius, 2015, Sheng et al., 2017). Whilst the ability to 

induce expression under oxygen limitation may be advantageous in certain 

scenarios (Kananavičiūtė & Čitavičius, 2015), consistent, predictable output is 

often required for complex metabolic engineering projects and industrial-scale 

bio-production. 

 

 To assess whether the characterised promoter sequences functioned 

independently of culture aeration, G. thermoglucosidans transformants 

expressing promoter::reporter constructs were cultured in different growth 

formats. Specifically, culture fluorescence in 250 ml baffled and non-baffled 

Erlenmeyer flasks was compared, as baffles have previously been shown to 

increase culture aeration (Gupta & Rao, 2003, Running & Bansal, 2016).  
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5.1.5 Data set composition 

 

 The experiments outlined in this chapter were performed concurrently 

with the Artificial Neural Network (ANN) and Partial Least Squares (PLS) 

sequence-function modelling that is described in Chapter 4. The sequence-

function modelling was performed using three progressively larger sets of 

putative promoter sequences, termed A, B and C. The experiments that are 

described in this chapter were therefore performed using one of these three 

data sets. The promoter set on which a given experiment was performed is 

specified in the relevant results section. A summary of data set composition is 

shown in Table 5-1.  
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5.2 Results and Discussion 

5.2.1 Application of a type IIS restriction cloning strategy for 

promoter::reporter fusion 

 

 Alignment of 17 sequences with empirically quantified in vivo promoter 

activity revealed a heavily conserved region of purine-rich sequence, located 

between 15 and 7 bp upstream of the start codon of the adjacent CDS (Figure 

5.1). Given the similarities in both location and sequence composition of this 

motif to the canonical Shine-Dalgrano sequence (Shine & Dalgarno, 1974), this 

motif was assumed to represent the location of the RBS.   

 

 In order to expedite in vivo characterisation, the 4 bp ACCT scar 

sequence that would have resulted from in vitro ligation of the promoter and 

RBS parts was inserted into each of the bioinformatically identified putative 

regulatory elements in silico, and the resulting 104 bp regulatory elements were 

synthesised as single parts. The regulatory sequences were then cloned 

upstream of GFP and inserted into the pS797 vector. 

 

 To assess the effect of the cloning scar sequences on promoter activity, 

the fluorescence activity of the 24 promoter::GFP constructs that were common 

to data sets A & B were compared. For the majority of cis-regulatory 

sequences, the insertion of scar sequences by the type IIS cloning strategy had 

no statistically significant impact on GFP fluorescence (Figure 5.2). Significance 

was determined by multiple t-tests, using the Holm-Šidak method to correct for 

multiple comparisons and a significance level of 0.05. Scar sequences 

significantly changed the activity levels of four promoter sequences. Activity 

was significantly decreased in three promoters (GKAU_00722, adjusted P value 

= 0.000; GKAU_00878, adjusted P value = 0.022; GSTEA_02162, adjusted P 

value = 0.024) and increased in one sequence (GSTEA_00548, adjusted P 

value = 0.009) when scar sequences were inserted. 

 

 The observed differences in fluorescence between scarred and un-

scarred regulatory sequences were hypothesised to be the result of alterations
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Figure 5.2: Fluorescence output of GFP under the control of scarred and 
un-scarred putative promoter sequences. 

 
Fluorescence and absorbance measurements after 24 h incubation in 96-well 
plate format. Points represent the mean GFP output of each promoter, from   3 
≤ n ≤ 9 independent starter cultures. The points coloured red represent 
promoters for which GFP fluorescence was statistically significantly changed 
when the cloning scar was introduced to the DNA sequence. Significance was 
calculated using multiple t-tests, using the Holm-Šidák method to correct for 
multiple comparisons and a significance limit of 0.05. For ease of visualisation, 
standard deviation error bars are shown only on the statistically significant 
points. The solid line represents a linear regression of the data, with 95% 
confidence limits represented by the dashed lines. The linear regression had an 
R2 value of 0.5216. 
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to mRNA secondary structure. To test this hypothesis, the free-energy 

associated with mRNA folding was calculated using the mFold zipfold server 

(Zuker, 2003). The default settings were used, with RNA 2.3 energy rules. 

Folding energies were returned in kcal/mol. The temperature at which folding 

was simulated was set to 60 °C, to match the temperature at which Geobacillus 

cultures were incubated. The sequence window in which folding was analysed 

stretched from -20 to +20, relative to the adenine residue of the GFP start 

codon. 

 

 Three of the promoter sequences for which fluorescence output was 

significantly altered by the inclusion of scar sequences also showed the 

greatest changes in mRNA secondary structure free energy (Figure 5.3). 

GSTEA_00548::GFP, for which fluorescence activity was statistically 

significantly increased by the inclusion of scar sequences, showed the greatest 

relaxation of mRNA secondary structure out of the 24 analysed sequences. 

GKAU_00878::GFP also showed an increase in fluorescence output after scar 

insertion and relaxation of the mRNA secondary structure. Conversely, 

GKAU_00959::GFP and GSTEA_02162::GFP showed a statistically significant 

decrease in fluorescence and an increase in mRNA secondary structure.  

 

 The correlation between relaxed mRNA secondary structure at the RBS-

CDS junction and increased protein production was corroborated by the 

literature (Kudla et al., 2009, Bentele et al., 2013, Mortimer et al., 2014, 

Mirzadeh et al., 2015). The presence of significant secondary structure 

surrounding the RBS is hypothesised to negatively impact on the ability of a 

mRNA transcript to sequester ribosomes, thereby reducing the rate at which 

transcripts are translated, although the strength of this correlation may be 

sensitive to genetic context and cellular concentrations of amino acids and 

tRNAs (Welch et al., 2009, Tuller & Zur, 2014).   

 

 These results showed that novel functionality could result from the 

insertion of scar DNA sequences. Altered regulatory element activity was 

observed in 8% of the 24 characterised sequences. In future, in silico screening 

of any potentially unfavourable alterations to mRNA secondary structure 
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Figure 5.3: Comparing the change in GFP fluorescence and the change in 
free energy of the mRNA secondary structure of promoter::GFP fusions 

once cloning scar sequences were inserted. 

 
Points represent individual promoter::GFP fusions. Fluorescence and absorbance 
measurements after 24 h incubation in 96-well plate format, from 3 ≤ n ≤ 9 starter 
cultures arising from independent transformants. The points that are coloured red 
represent promoters for which GFP fluorescence was statistically significantly different 
when the cloning scar was introduced to the DNA sequence. Significance was 
calculated using multiple t-tests, using the Holm-Šidák method to correct for multiple 
comparisons and a significance level of 0.05. The solid line represents a linear 
regression of the data, with 95% confidence limits represented by the dashed lines. 
The linear regression had an R2 value of 0.2407 
 
Free energies were calculated using the mFold zipfold server (Zuker, 2003), using 
default settings and RNA 2.3 energy rules. The sequence window for which secondary 
structure was calculated stretched from -20 to +20, relative to the adenine residue of 
the GFP start codon. The temperature at which folding was simulated was set to 60 °C, 
to reflect the temperature at which G. thermoglucosidans cultures were incubated. 
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resulting from the method of in vitro pathway construction could be employed to 

mitigate the need for the time-consuming in vivo optimisation. 

 

5.2.2 The effect of Plasmid Copy Number on fluorescence activity  

 

 PCN varied by 88-fold across different cultures in Data Set B (Figure 

5.4). However, no correlation was observed between PCN and population 

fluorescence. A linear regression of the data returned an R2 value of 0.023. 

Additionally, a F-test of the null hypothesis that the slope of the linear 

regression curve was 0 returned a P value of 0.2342, showing that the slope of 

the curve did not deviate significantly from 0. 

 

 Further analysis of the effect of PCN on culture fluorescence was 

provided by a PLS model. The promoter that was used to control GFP 

expression in a given G. thermoglucosidans culture and the PCN of that culture 

were used as x variables, with culture fluorescence used as the y variable.  The 

PLS model extracted eight Latent Variables (LVs) from the data, and was 

capable of explaining 98.089% of the empirical variation in GFP fluorescence. 

In total, nine x variables returned VIP values that were greater than the 

threshold value of 0.8, and were therefore judged to have statistically significant 

impact on determining GFP fluorescence (Figure 5.5A) (Eriksson et al., 2006). 

Of the nine statistically significant x variables, eight were promoter sequences 

and one was PCN.  

 

 The promoter sequences that returned a VIP of greater than 0.8 were the 

six strongest promoters in the data set and two sequences (GKAU_01463 & 

GTDN_02731) with no promoter activity. Sequences were judged to have 

promoter activity if their mean fluorescence activity was statistically significantly 

different from the negative control, G. thermoglucosidans transformed to 

contain the empty pS797 vector. Significance was determined by ordinary one-

way ANOVA with Dunnett’s multiple comparisons test, at a significance level of 

0.05.  
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Figure 5.4: The effect of Plasmid Copy Number (PCN) on G. 

thermoglucosidans culture fluorescence. 

 

Points represent individual populations of G. thermoglucosidans, expressing 
GFP under the control of one of 34 Geobacillus promoter sequences. The solid 
line represents a linear regression of the data, with 95% confidence limits 
represented by the dashed lines. The R2 value of the linear regression was 
0.023.  
 
 
 The six strong promoter sequences returned positive model coefficients, 

which suggested that the presence of these six sequences was having a 

statistically significant positive impact on culture fluorescence. The magnitude of 

the model coefficient was positively correlated with mean promoter:GFP 

fluorescence. The two sequences with no promoter activity returned negative 

coefficients.  
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Figure 5.5: Model coefficients and Variable Importance in Projection (VIP) 
scores returned by a Partial Least Squares (PLS) model examining the 

relationship between Plasmid Copy Number (PCN) and culture 
fluorescence. 

A) PLS VIP scores plotted against model coefficients. Circular points represent 
individual promoter sequences. The asterisk represents PCN. Points are coloured in 
red when their VIP value exceeded the threshold value of 0.8 
 
B) Empirically measured fluorescence of promoter::GFP fusions. Bars are coloured red 
when the given promoter returned a VIP value greater than the threshold value of 0.8. 
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 PCN returned a positive model coefficient, which suggested that 

variations in copy number were having a statistically significant positive impact 

on culture fluorescence. However, the model coefficient that was returned by 

PCN was of lesser magnitude than the coefficients of each of the six active 

promoters. PCN returned a model coefficient of 0.1258, whilst the six active 

promoter sequences returned coefficients in the range 0.1948 to 0.4952. This 

result suggested that although PCN did have a statistically significant impact on 

G. thermoglucosidans culture fluorescence, the magnitude of this effect was 

between 1.5- and 3.9-fold smaller than the effect of the strongest promoters.  

 

 The data were also analysed using a standard least squares model with 

effect screening emphasis. This model suggested that both promoter selection 

and PCN had a statistically significant impact on culture fluorescence, but that 

the effect of promoter sequence was greater than that of PCN (Promoter: FDR 

LogWorth = 21.865, FDR PVaule = 0.000, PCN: FDR LogWorth = 2.068, FDR 

PValue = 0.0085). 

 

 Taken together, these results suggested that fluctuations in PCN were 

having a statistically significant impact on G. thermoglucosidans GFP 

expression levels. However, both the PLS and standard least squares model 

attributed greater statistical significance to the effect of the strongest promoter 

sequences than PCN. This suggested that pathway tuning using strong 

promoters might be sufficient for simple overexpression of a heterologously 

expressed gene, but that sophisticated pathway tuning would require a more 

nuanced approach.  

 

 Integrating heterologous genes into the host genome offers a potential 

method by which copy number could be more tightly regulated than plasmid-

based expression. However, studies have shown that the position of the 

integrated gene relative to the origin of replication can impact copy number 

(Chandler & Pritchard, 1975, Block et al., 2012). The location within the genome 

at which synthetic pathways are integrated must therefore be carefully 

considered. Relatively simple synthetic pathways could be expressed from the 

same plasmid or be integrated into the same region of the genome such that 
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fluctuations in copy number effect all of the pathway components equally 

(Brophy & Voigt, 2014), although this approach would not necessary be 

applicable in the case of genetic circuits with large numbers of constituent parts. 

 

 For complex synthetic pathways, additional regulatory mechanisms, such 

as feedback loops that respond to fluctuations in copy number and regulate 

promoter activity accordingly, may be necessary to fully decouple regulatory 

sequence activity from the effects of copy number variation. For example, 

Segall-Shapiro et al. posited the use of transcription-activator-like effectors that 

bind to operator sequences within a promoter and repress expression of a gene 

of interest. By expressing the repressor from the same plasmid as the gene of 

interest, repressor concentration and copy number are positively correlated, 

such that any increase in copy number results in an increase in repressor 

concentration, thereby reducing expression of the gene of interest, offsetting the 

effect of the increased copy number (Segall-Shapiro et al., 2018).  

 

5.2.3 The effect of reporter sequence on promoter activity 

 

  In data set C, 80 regulatory sequences were characterised upstream of 

both GFP and mOrange (Figure 5.6). Moderate correlation was observed 

between promoter activity for the two reporter proteins; a linear regression of 

the data returned an R2 value of 0.447. 18 regulatory sequences, including the 

G. thermodenitrificans ldhA promoter, fell within the 95% confidence limits of the 

linear regression, suggesting that promoter activity for these sequences was 

well conserved between the two reporters. Of these 18 sequences, eight, 

including ldhA, displayed mean fluorescence output that was statistically 

significantly greater than the negative control for both reporters at the 0.05 

significance level. Significance was determined by ordinary one-way ANOVA 

with Dunnett’s multiple comparisons test. 

 

 To better identify promoters that functioned independently of genetic 

context, and to account for the difference in magnitude between GFP and 

mOrange fluorescence signals, the mean fluorescence output of each 

promoter::reporter fusion was normalised to the fluorescence of the relevant 
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Figure 5.6: Fluorescence output of GFP & mOrange under the control of 
putative promoter sequences. 

 

Fluorescence and absorbance measurements after 24 h incubation in 96-well 
plate format. Points represent the mean fluorescence output of individual 
promoter sequences from 3 ≤ n ≤ 9 independent starter cultures. The negative 
control, G. thermoglucosidans transformed to contain the empty vector pS797, 
is shown in red. The positive control, the G. thermodenitrificans ldhA promoter, 
is shown in green. Those promoter sequences for which mean fluorescence 
output was statistically significantly greater than pS797 for both reporter 
proteins are represented by diamonds. Significance was determined by ordinary 
one-way ANOVA with Dunnett’s multiple comparisons test, at a significance 
level of 0.05. The solid line represents a linear regression of the data, with 95% 
confidence limits represented by the dashed lines. The linear regression had an 
R2 value of 0.447.  
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negative control. Regulatory sequences were grouped into five clusters by K-

means clustering, based on their Euclidean distance from the line y = x (i.e. the 

point at which normalised GFP and mOrange fluorescence was equal) (Figure 

5.7A). The clustering algorithm identified 58 regulatory sequences that fell close 

to the line y = x (Cluster 1 in Figure 5.7A). Of these 58 sequences, seven 

displayed mean fluorescence output that was statistically significantly greater 

than the negative control. This result suggested that the Geobacillus promoter 

library contained seven active, context-independent regulatory sequences 

(Figure 5.7B). These seven regulatory sequences covered a range of activity of 

four-fold.  

 

 In addition to the seven context-independent active promoter sequences, 

the characterised promoter library also contained 20 sequences that showed no 

regulatory activity when placed upstream of either GFP or mOrange. The mean 

fluorescence activity of these 20 context-independent inactive sequences fell 

within two standard deviations of the mean of the negative control for both 

reporter proteins. Sequences that are known to never show regulatory activity, 

regardless of genetic context, could be of use in providing robust negative 

controls for future work (Mutalik et al., 2013b). 

  

 The number of characterised context-independent, active regulatory 

sequences in the characterised Geobacillus promoter library was relatively 

small: only 9% of the characterised sequences showed activity that was 

independent of the downstream CDS. Additionally, the range of expression 

strengths provided by the seven context-independent sequences (four-fold) 

compared poorly with the range of expression strengths shown by the active 

context-dependent regulatory sequences (30-fold when GFP was the reporter, 

8.4 fold when the reporter was mOrange). Future work could therefore focus on 

reducing the context-dependence of the characterised Geobacillus promoter 

library. 

 

 One approach by which the modularity of the Geobacillus promoter 

library could potentially be increased is through the insertion of insulating 

spacer DNA sequences that physically separate genetic parts (Davis et al., 
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Figure 5.7: Identifying promoter sequences that functioned independently 
of genetic context. 

A) GFP and mOrange fluorescence values are normalised to the negative control, pS797. 
Points represent individual promoter sequences. Colours represent groups of promoter 
sequences, determined by K-means clustering based on the Euclidean distance of the points 
from the line y = x. Diamond-shaped points represent active promoter sequences, i.e. those 
promoters for which both GFP and mOrange fluorescence was statistically significantly different 
from the negative control, G. thermoglucosidans transformed with pS797. 
 
B) GFP & mOrange fluorescence activity of the seven most active promoters from Cluster 1.  
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2011, Carr et al., 2017). For example, insulator sequences inserted between 

the promoter and RBS sequences aim to increase part modularity by defining 

the 5’ leader sequence of the mRNA transcript. The secondary structure of the 

5’ untranslated region (UTR) and downstream CDS, as well as interactions 

between the RBS and 5’ UTR sequences have been shown to play a role in 

determining translation efficiency (Kudla et al., 2009, Salis et al., 2009, Kosuri 

et al., 2013). By standardising 5’ UTR structure, insulator sequences therefore 

aim to normalise the rate at which a given regulatory element initiates 

translation, regardless of the genetic context.  

 

 Promoter sequences could also potentially be decoupled from the 5’ UTR 

through the use of a second translation initiation element, placed downstream 

of the primary RBS, to disrupt secondary structure across the 5’ UTR (Mutalik et 

al., 2013a). In a pioneering study, a core cis-regulatory element, consisting of -

35 and -10 consensus regions and an RBS were placed upstream of a leader 

sequence that contained a secondary Shine-Dalgrano sequence and that 

overlapped with the adenine residue of start codon of a downstream CDS of 

interest. The leader sequence was therefore translated by ribosomes that 

bound to the core RBS sequence, with the CDS of interest being translated 

from the secondary Shine-Dalgrano sequence. The core promoter sequence 

did therefore not contribute to the 5’ UTR of the CDS, resulting in decoupling of 

promoter and CDS. This method was shown to increase the modularity of 

regulatory sequences in E. coli (Mutalik et al., 2013a), and could potentially also 

be applied in Geobacillus.  

 

 Upstream of the promoter 5’ terminus, insulator sequences have also 

previously been applied to mitigate any interactions between sequence regions 

upstream of the promoter and the RNA polymerase alpha subunit (Davis et al., 

2011, Carr et al., 2017). However, given that the 100 bp Geobacillus promoter 

sequences are already of sufficient length to contain the promoter sequence 

region in which interactions with the RNA polymerase alpha subunit are most 

common (Ross et al., 1993, Aiyar et al., 1998, Estrem et al., 1998, Meijer & 

Salas, 2004, Phan et al., 2012), the utility of upstream insulator elements in this 

context was unclear.  
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 If insulator sequences are to be applied, care must be taken to ensure 

that insulators themselves do not contain cryptic regulatory sequences. 

Additionally, the insulating activity of a given spacer can itself be context-

specific (Carr et al., 2017), potentially necessitating intensive screening to 

identify a significantly robust insulator.  

 

 In lieu of inserting DNA sequences to physically separate genetic 

regulatory parts, RNA processing could be applied to increase the modularity of 

regulatory sequences. For example, riboszymes have previously been used to 

cleave the 5’ UTR from mRNA transcripts (Lou et al., 2012). By cleaving the 

mRNA transcript at a defined location between 5’ UTR and CDS, ribozymes 

remove any 5’ leader sequences that may differentially arise from different 

upstream sequences and cause context-dependent expression (Bashor & 

Collins, 2012). The output of individual regulatory sequences therefore remains 

constant regardless of the surrounding sequence (Lou et al., 2012, Nielsen et 

al., 2016). CRISPR-mediated RNA cleavage could also be applied to decouple 

RBS activity from the contextual sequence (Qi et al., 2012). Both ribozyme and 

CRISPR mediated insulation have proven capable of increasing the modularity 

of transcription and translation regulators in E. coli, and could also potentially be 

applicable in Geobacillus.  

 

5.2.4 The effect of oxygen concentration on promoter activity  

 

 The seven promoter sequences that were shown to function 

independently of genetic context (Figure 5.7) were characterised upstream of 

both GFP and mOrange in 250 ml baffled and non-baffled flasks (Figure 5.8).  

 

 Congruent with literature concerning the G. stearothermophilus ldhA 

promoter (Bartosiak-Jentys et al., 2012), the G. thermodenitrificans ldhA 

promoter resulted in differential expression between the two growth formats for 

both reporter proteins. A statistically significant decrease in GFP and mOrange 

expression (P = 0.0012 and P = 0.0257, respectively) was apparent when G. 

thermoglucosidans transformants were cultured in baffled flasks as compared 

to non-baffled flasks, indicating that expression from the ldhA promoter was 
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Figure 5.8: Fluorescence output of G. thermoglucosidans transformants 
expressing A) GFP and B) mOrange, cultured in baffled and non-baffled 

250 ml flasks. 

Fluorescence and absorbance measurements after 24h. Bars represent the 
mean of n = 3 starter cultures, arising from independent transformants. Each 
starter culture was used to inoculate one baffled and one non-baffled flask. 
Standard deviation error bars shown, unless hidden by the bar. Those promoter 
sequences for which mean fluorescence output was statistically significantly 
different between the two growth formats are indicated by an asterisk. 
Significance was determined by multiple t-tests at a significance level of 0.05, 
corrected for multiple comparisons using the Holm-Šidák method. 
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down-regulated in environments with increased oxygenation. Significance was 

determined by multiple t-tests at a significance level of 0.05, corrected for 

multiple comparisons using the Holm-Šidák method.  

 

 One of the seven characterised promoters showed a statistically 

significant difference in activity levels for both reporter proteins between the two 

growth formats. As compared to growth in non-baffled flasks, the promoter 

sequence GTDN_03161 caused a statistically significant increase in GFP 

fluorescence (P = 0.0021) and a statistically significant decrease in mOrange 

fluorescence (P = 0.0172) when cultured in a baffled flask. Additionally, the 

promoter sequence GKAU_01085 caused a statistically significant increase in 

GFP fluorescence (P = 0.0274) when cultured in non-baffled flasks, although 

the observed decrease in mOrange expression was not significant (P = 0.9534). 

The other five cis-regulatory sequences that were characterised in both flask 

growth formats showed no significant change in expression, suggesting that the 

activity of these five promoter sequences was independent of culture aeration. 

 

5.3 Summary  

 

 The results of this chapter highlighted the importance of characterising 

candidate parts for synthetic biology applications in a variety of genomic and 

environmental contexts. If synthetic biology parts, such as promoters, are to be 

truly modular and scalable, they must function consistently regardless of 

genetic context and the growth conditions under which they are employed. 

Without considering the effect of context on the performance of synthetic 

biology parts, any resulting characterisation data cannot be generalised, 

necessitating time consuming empirical testing and optimisation when 

designing synthetic pathways. 

 

 Further work is required to decouple the majority of the characterised 

Geobacillus promoter sequences from the effects of environmental and 

genomic context. The presence of cloning scar sequences, the reporter protein 

used for part characterisation and culture oxygenation were all shown to impact, 



Chapter 5 - The effect of context on promoter activity 

 220 

to a greater or lesser extent, on the performance of the bioinformatically 

identified Geobacillus cis-regulatory sequences. In particular, only 9% of the cis-

regulatory sequences that were characterised upstream of both GFP and 

mOrange showed promoter activity that was independent of the downstream 

coding sequence. The 73 characterised sequences for which promoter activity 

was dependent on CDS therefore require additional modularisation, potentially 

through the use of insulator sequences or ribozyme- or CRISPR-mediated RNA 

processing, if they are to become more generally applicable.  

 
 Furthermore, although PCN was not positively correlated with culture 

fluorescence, partial and standard least squares statistical models showed that 

PCN was having a statistically significant positive impact on culture 

fluorescence. However, the magnitude of this effect was less than the effect of 

six of the strongest and two of the weakest promoters characterised. This result 

had implications for potential future applications of the Geobacillus cis-

regulatory sequences, as it suggested that some manner of copy-number 

regulation would be required to achieve nuanced control of gene expression in 

Geobacillus. 

 

 The promoter sequences that were characterised in Chapters 3, 4, and 5 

were bioinformatically identified from the core genome of four Geobacillus 

species. The results of these characterisation experiments showed that 

bioinformatic prospecting of cis-regulatory elements, followed by deep empirical 

characterisation of in vivo activity, was an efficient method by which promoter 

toolkits can be expanded in non-model organisms. However, the bioinformatic 

approach to promoter identification is not the only method available for the 

identification of prokaryotic promoters. The mutagenesis of pre-existing, well-

understood promoters, for example, is a widely used technique and it is unclear 

which approach to promoter discovery and design is the most applicable in non-

model organisms such as Geobacillus. To provide a direct comparison between 

bioinformatic and mutagenic approaches to promoter discovery, two commonly 

employed methods, error-prone PCR and Saturation Mutagenesis of Flanking 

Regions, were investigated. The results of this investigation are discussed in 

the following chapter. 
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6 Comparing mutagenesis approaches for synthetic promoter 

production 

Summary 

 

 The results that were discussed in Chapters 3, 4 and 5 showed that 

bioinformatic prospecting of cis-regulatory elements, followed by deep 

characterisation of in vivo activity, represents an efficient, practical method by 

which the promoter toolkit can be expanded in non-model organisms. However, 

other methods are available for promoter discovery, including mutagenesis-

based approaches, and it is unclear which technique is most applicable in an 

industrial context. To provide a direct comparison between bioinformatic and 

mutagenic approaches to promoter discovery, two commonly employed 

mutagenic methods, Saturation Mutagenesis of Flanking Regions and error-

prone PCR, were investigated. In both instances, the G. thermodenitrificans 

ldhA promoter, which has previously been used for metabolic engineering in 

Geobacillus, was used as the template sequence.  

 

6.1 Introduction 

 

 The random mutation of pre-existing, well-understood promoter 

sequences or motifs has become a widely employed technique for the 

production of synthetic promoter libraries (SPLs) (Blazeck & Alper, 2013, 

Gilman & Love, 2016). The methods by which mutagenesis-derived SPLs are 

generated can be broadly split into two categories. In the first approach, 

Saturation Mutagenesis of Flanking Regions (SMFR), promoter consensus 

regions such as the -35, -10 and RBS motifs are held constant, while the 

flanking regions surrounding the core motifs are mutagenised (Jensen & 

Hammer, 1998a, 1998b). Alternatively, error-prone PCR (epPCR) may be used 

to introduce mutations throughout an entire promoter sequence (Alper et al., 

2005). 
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 Both of the approaches to promoter mutagenesis have specific 

advantages and disadvantages. SMFR, for example has been shown to yield 

SPLs with broad expression profiles in a diverse range of species and genera, 

including Clostridium acetobutylicum (Yang et al., 2017a), Corynebacterium 

glutamicum (Rytter et al., 2014), Francisella novicida, (McWhinnie & Nano, 

2013), Geobacillus thermoglucosidans (Jensen et al., 2017, Pogrebnyakov et 

al., 2017), Lactoccoccus lactis (Jensen & Hammer, 1998a, 1998b) 

Saccharomyces cerevisiae (Ellis et al., 2009, Blount et al., 2012, Yang et al., 

2017c)  and Steptomyces coelicolor (Sohoni et al., 2014), and is therefore 

potentially applicable in non-model organisms of industrial relevance.  

 

 However, SMFR requires a priori knowledge of the optimal location and 

nucleotide composition of functional motifs, which may not be readily available 

in non-model organisms. Additionally, given that studies that apply SMFR to the 

development of synthetic promoters often use composite promoter scaffolds as 

starting points, establishing a definitive wild-type reference expression baseline 

is impossible. Definitively stating whether SMFR will improve wild-type 

expression capability pre hoc is therefore problematic (Blazeck & Alper, 2013, 

Gilman & Love, 2016).  

 

 The second mutagenesis-based approach to SPL production, epPCR, 

has also previously been employed in diverse species, including Escherichia 

coli (Alper et al., 2005) Geobacillus thermoglucosidans (Reeve et al., 2016), 

Mycobacterium bovis (Kanno et al., 2016), Saccharomyces cerevisiae (Nevoigt 

et al., 2006) and Synechococcus sp. strain PCC 7002 (Markley et al., 2015). By 

introducing mutations across an entire promoter sequence, epPCR obviates 

any a priori knowledge of functional motif location (Gilman & Love, 2016). The 

epPCR approach to promoter derivation is therefore potentially more 

immediately applicable than SMFR in species in which the number of previously 

characterised promoter sequences is limiting; a single promoter sequence is 

required as a starting point, rather than multiple characterised sequences to 

permit the derivation of consensus motifs. However, if the rate at which epPCR 

introduces mutations is low, the resulting promoters can be highly homologous, 

potentially decreasing the stability of engineered pathways. For example, highly 
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homologous promoters could potentially recombine with the wild-type promoter 

in the host genome (Pogrebnyakov et al., 2017). Alternatively, if an engineered 

pathway were to require multiple promoters from the same SPL, significant 

homology could lead to recombination between mutated sequences (Hammer 

et al., 2006).  

 

 The selection of one method for SPL production over the other will 

depend, in part, on the aims of specific projects. Whichever method is selected, 

from an industrial perspective it is vital for the resulting SPL to contain robust 

promoters covering a wide range of expression levels. To provide a direct 

comparison between the two methods and to therefore assess which, if either, 

of the two approaches was best suited for use in an industrial context, libraries 

of synthetic Geobacillus promoters were generated using both SMFR and 

epPCR. In both cases, the G. thermodenitrificans ldhA promoter was used as a 

template sequence.  

 

 In the case of the SMFR-derived Geobacillus SPL, degenerate 

oligonucleotides were designed that maintained the putative -35, -10 and RBS 

motifs from the G. thermodenitrificans ldhA promoter, whilst randomising the 

remainder of the 150 bp sequence. At each position where degeneracy was 

specified, all four nucleobases had an equal probability of occurring. In the case 

of the epPCR-derived SPL, mutations were incorporated at random across the 

entire 150 bp sequence. 

 

 Previous studies have highlighted the relative inefficiency of random 

mutation as a strategy for deriving sequences with in vivo promoter activity. The 

screening of large numbers of mutated sequences is often necessary to identify 

a comparatively small number of sufficiently robust, active promoter elements. 

The number of screened mutants can, in some extreme cases, be three to four 

orders of magnitude greater than the number of fully characterised sequences 

in the final SPL (Alper et al., 2005, Fischer et al., 2006, Qin et al., 2011, Yim et 

al., 2013, Wei et al., 2018). 
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  Low transformation efficiencies precluded such large-scale screening of 

mutated sequences in G. thermoglucosidans. Therefore, to increase the 

number of mutated promoter sequences that could be analysed, E. coli was 

used as an intermediate host. Mutated promoter sequences were cloned 

upstream of the GFP CDS, and transformed into E. coli NEB 5-alpha en masse. 

FACS analysis was subsequently used to isolate mutated promoter::GFP 

fusions with in vivo fluorescence activity. Mutant promoter sequences were only 

selected for characterisation in G. thermoglucosidans if they resulted in GFP 

fluorescence in E. coli that was greater than the negative control, E. coli 

transformed to contain the empty vector pS797. A lack of fluorescence was 

assumed to indicate either a failed cloning reaction, or that the mutated within 

the analysed culture had no promoter activity. This pre-screening approach 

assumed that promoter activity in E. coli was representative of activity in G. 

thermoglucosidans. However, in vivo characterisation of promoter activity 

showed that this assumption was erroneous. 
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6.2 Results 

6.2.1 Saturation Mutagenesis of Flanking Regions  

 

 Approximately 4,000 E. coli transformants, expressing GFP under the 

control of SMFR-derived putative promoter sequences, were screened for 

fluorescence activity. 28 of these 4,000 transformants, displaying a range of 

fluorescence levels, were isolated as described in Chapter 2, Section 2.4.3. The 

putative promoters were subsequently extracted, sequenced and characterised 

in G. thermoglucosidans.  

 

 The final SMFR-derived SPL covered a total GFP expression range of 

19.4-fold when characterised in G. thermoglucosidans, and 53.7-fold when 

characterised in E. coli (Figure 6.1). However, the majority of the mutated 

sequences showed no promoter activity in E. coli. When characterised in G. 

thermoglucosidans, only two promoter::GFP fusions showed mean 

fluorescence that was statistically significantly greater than the negative control, 

G. thermoglucosidans transformed with the empty vector pS797. When 

characterised in E. coli, six promoters showed mean activity levels that were 

statistically significantly greater than that of the negative control. In all cases, 

significance was determined by ordinary one-way ANOVA, with Dunnett’s 

multiple comparisons test at a significance level of 0.05.  

 

 The two sequences that showed statistically significant promoter activity 

in G. thermoglucosidans, GSYN_SMFR_020 and GSYN_SMFR_030, were also 

active in E. coli. Overall, promoter activity levels between E. coli and G. 

thermoglucosidans showed moderate conservation; a linear regression of the 

two data sets returned an R2 value of 0.604.  

 
 Analysis of the DNA sequences of the mutated promoters showed that 

only five out of the 28 mutants had the correct sequence at all three of the 

conserved motifs (Figure 6.2). The particular dearth of sequences containing 

the specified -35 region may have been a result of the way in which the 

promoter sequences were cloned. 
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Figure 6.1: In vivo characterisation of a Synthetic Promoter Library 
derived by Saturation Mutagenesis of Flanking Regions. 

 

Fluorescence and absorbance after 24 h incubation in 96-well plate format. 
Bars represent the mean of 3 ≤ n ≤ 16 starter cultures arising from independent 
transformants. Standard deviation error bars are shown, unless hidden by the 
bar. The hatched bars represent the positive control, the G. thermodenitrificans 
ldhA promoter. The black bars represent the negative control, G. 
thermoglucosidans or E. coli transformed to contain the empty vector pS797. 
Asterisks indicate promoter sequences that resulted in mean fluorescence 
output that was significantly different to the negative control. Significance was 
determined by ordinary one-way ANOVA with with Dunnett’s multiple 
comparisons test, using a significance level of 0.05.  
 
 

 The length of the final promoter sequence and the requisite cloning 

affixes prohibited the synthesis of promoters as a single degenerate 

oligonucleotide. Two overlapping oligonucleotides were therefore annealed in 

vitro to form complete promoter sequences. The first oligonucleotide encoded 

the antisense strand of the final promoter sequence, up to and including the -35 

motif. The second oligonucleotide encoded the sense strand of the remaining 

promoter sequence, including the -35 motif so that the two oligonucleotides 
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could be annealed. However, the -35 motif was short, 7 bp, and was comprised 

solely of adenine and thymine residues. The -35 motif may therefore have been 

too short and AT-rich to allow for accurate ligation. 

 

 Interestingly, the mutated sequence that showed the strongest in vivo 

promoter activity in both E. coli and G. thermoglucosidans, GSYN_SMFR_020, 

showed significant deviation from the template in all three motifs (Figure 6.2). 

This result suggested that consensus sequences other than the putative motifs 

from the ldhA promoter were active in the Geobacillus promoter design space, 

and highlighted the limitations of applying SMFR in organisms for which 

regulatory motifs are not well understood; the sequences that were used for the 

production of the SMFR-derived SPL were likely inadequate, either with regards 

to nucleotide sequence or location, for efficient transcription initiation in G. 

thermoglucosidans.  

 

6.2.2 Error-prone PCR 

 

  Approximately 7,000 E. coli transformants, expressing GFP under the 

control of epPCR-derived putative promoter sequences, were screened for 

fluorescence activity. 39 of these 7,000 transformants, displaying a range of 

fluorescence levels, were isolated as described in Chapter 2, Section 2.4.3. 

When characterised in G. thermoglucosidans, the 39 ldhA promoter mutants 

covered a GFP expression range of 7.5-fold (Figure 6.3). However, as with the 

SMFR-derived library, the promoter activity of the majority of sequences was, at 

best, minimal; only two of the mutated sequences caused GFP expression that 

was statistically significantly greater than the negative control. Significance was 

determined by ordinary one-way ANOVA with Dunnett’s multiple comparisons 

test, at a significance level of 0.05. None of the mutated sequences resulted in 

GFP fluorescence that was stronger than the wild-type ldhA promoter. 

 

 The strongest mutant promoter, GSYN_EP_027, resulted in mean GFP 

expression that was approximately two-fold lower than that caused by the wild-

type ldhA promoter. No correlation was apparent between promoter activity 

levels as characterised in E. coli and G. thermoglucosidans. A linear regression
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Figure 6.3: In vivo characterisation of a Synthetic Promoter Library 

derived by error-prone PCR. 

 

Fluorescence and absorbance after 24 h incubation in 96-well plate format. 
Bars represent the mean of 3 ≤ n ≤ 8 starter cultures arising from independent 
transformants. Standard deviation error bars are shown, unless hidden by the 
bar. The hatched bars represent the positive control, the G. thermodenitrificans 
ldhA promoter. The black bars represent the negative control, G. 
thermoglucosidans or E. coli transformed to contain the empty vector pS797. 
Asterisks indicate promoter sequences that resulted in mean fluorescence 
output that was significantly different to the negative control. Significance was 
determined by ordinary one-way ANOVA with with Dunnett’s multiple 
comparisons test, using a significance level of 0.05.  
 
 

of the two data sets returned an R2 value of 0.03. When characterised in E. coli, 

the 39 mutant sequences covered an expression range of 91.6-fold. 14 of the 

sequences resulted in GFP expression in E. coli that was statistically 

significantly greater than the negative control.  
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 The mutation rate of the 39 ldhA promoter variants ranged from 8% to 

76%. The average mutation rate was 21.5%. The mutation rates of three 

sequences (GSYN_EP_014, 72%; GSYN_EP_015, 68.7%; GSYN_EP_037, 

76%) were outlying with regards to the other 36 sequences, as determined by 

Huber M-Estimation with a K value of 4. The 36 non-outlying sequences had an 

average error rate of 17.3%. In all of the characterised mutated promoter 

sequences, mutations were distributed throughout the complete 150 bp 

sequences, including within the putative consensus regions (Figure 6.4). No 

correlation was apparent between promoter mutation rate and activity level. A 

linear regression of the two data sets returned an R2 value of 0.014.  

 

6.3 Discussion  

 

 The sequence space explored by the two mutagenesis-derived SPLs did 

contain active Geobacillus promoters aside from the ldhA wild-type sequence, 

but at a low frequency; only 10% of the sequences characterised in the SMFR-

derived library and 5% of the sequences in the epPCR-derived library showed 

activity in G. thermoglucosidans that was statistically significantly different to the 

negative control (Figure 6.1 and Figure 6.3, respectively). This result suggested 

that functional Geobacillus promoter sequences were extremely stringent, with 

a relatively small deviation from the wild-type sequence sufficient to destroy 

promoter activity (Mordaka & Heap, 2018). The epPCR-derived sequence 

GSYN_EP_029, for example, differed from the wild-type ldhA promoter 

sequence at only 8% of the 150 sequence positions. However, GSYN_EP_029 

showed no in vivo promoter activity; mean GFP fluorescence under 

GSYN_EP_029 was within one standard deviation of the mean fluorescence of 

the negative control, G. thermoglucosidans transformed to contain the empty 

vector pS797.  

 

 The relatively high average error rates of both the SMFR- and epPCR-

derived SPLs may have contributed to the observed lack of in vivo promoter 

activity. Only five of the sequences in the final SMFR-dervied SPL, for example, 

contained all three of the putative motifs that were identified in the wild-type 



C
hapter 6 - P

rom
oter m

utagenesis 

 
231 

                

Figure 6.4: H
eat m

ap show
ing the location of m

utated nucleobases w
ithin sequences in the synthetic prom

oter 
library derived by error-prone PC

R
. 

P
ositions that m

atched the w
ild-type G

. therm
odenitrificans ldhA

 prom
oter are show

n in w
hite. S

equence positions that w
ere m

utated relative to the 
w

ild-type ldhA
 prom

oter are show
n in black. S

equences are ranked in descending order of in vivo G
FP

 expression strength, as m
easured in G

. 
therm

oglucosidans. The red dashed lines bound the locations of the putative -35, -10 and R
B

S
 m

otifs.  



Chapter 6 - Promoter mutagenesis 

 232 

ldhA promoter, and the 29 mutated sequences shared, on average, only 40% of 

their sequence with the wild-type ldhA sequence. Reducing the mutation rate of 

the SMFR template so that the resulting promoters were closer to the wild-type 

sequence may have resulted in a SPL in which promoter activity was better 

conserved.  

 

 Reducing the mutation rate of an SMFR-derived SPL to better conserve 

promoter activity has shown to be an applicable strategy in Clostridium, and 

may have been useful in Geobacillus. Instead of using an SMFR template in 

which mutated positions were fully degenerate, Mordaka & Heap applied an 

SMFR in which the probability of a given sequence position in the SMFR 

template matching the wild-type sequence was 79%, rather than 25% as is the 

case in fully degenerate SMFR. The resulting “tuned” SPL contained 10 

promoters with in vivo activity, as compared to a fully degenerate SMFR-derived 

SPL that contained no active promoters (Mordaka & Heap, 2018). 

 

 In addition to tuning the mutation rate of the SMFR-derived SPL to 

increase the number of active promoters, alternative -35, -10 and RBS motifs 

may have improved the in vivo activity of the G. thermoglucosidans SPL that 

was obtained in this investigation. Given that the promoter sequence from the 

SMFR-derived SPL with the strongest in vivo promoter activity matched the 

template sequence at only 34% of the conserved positions (Figure 6.2), the 

defined location and sequence composition of the putative motif sequences 

may itself have been sub-optimal.  

 

 In lieu of the sequence alignment that was used identify the location of 

putative Geobacillus -35, -10 and RBS consensus motifs, a DNA motif-locating 

software package, such as DMINDA 2.0 (Yang et al., 2017b) or MEME (Bailey 

et al., 2009) may have more accurately identified regulatory motifs. These 

motifs could then have been used to design the oligonucleotides that were used 

to generate the SMFR SPL, potentially increasing the characterised range of 

expression afforded by the SPL.  
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 In the case of the epPCR-derived library, the average error rate of 21.5% 

was double that reported by Reeve et al., whose SPL covered a reported GFP 

expression range of 100-fold in G. thermoglucosidans (Reeve et al., 2016). By 

reducing the rate at which mutations were incorporated into the wild type ldhA 

promoter sequence may therefore have better maintained promoter activity and 

resulted in broader expression range from the final SPL. It is worth noting, 

however, that the SPL published by Reeve et al. only contained one promoter 

sequence with a greater activity level than the wild-type sequence that was 

mutagenised, and the published error bars suggested that this difference was 

not statistically significant. Furthermore, the published figure lacked a negative 

control, and the weakest eight members of the library showed, at best, minimal 

in vivo activity. It was therefore unclear how much of the stated 100-fold range 

represented statistically significant promoter activity.   

 

 A greater proportion of the mutated sequences that were derived in this 

investigation showed promoter activity in E. coli than in G. thermoglucosidans; 

approximately 20% of the sequences in the SMFR-derived SPL and 

approximately 40% of the sequences in the epPCR-derived SPL showed 

activity that was statistically significantly different to the negative control when 

characterised in E. coli. The relative lack of conservation of promoter activity 

levels between E. coli and G. thermoglucosidans, especially in the case of the 

epPCR-derived SPL, was congruent with the lack of inter-species correlation 

shown by the bioinformatically identified, natural Geobacillus promoter 

sequences discussed in Chapter 3.  

 

 The lack of inter-species conservation of promoter activity shown by both 

the bioinformatically identified and mutagenised promoter sequences 

underscored the difficulty of transferring genetic parts between phylogenetically 

distant host organisms (Cardinale & Arkin, 2012). The lack of conservation in 

the DNA binding affinity of homologous cellular machinery such as RNA 

polymerases and transcription factors complicates the transfer of parts (Adams, 

2016), as it cannot be assumed that the characterised activity of a part in one 

host will be representative of activity in another. This inter-species variation in 

the activity of synthetic biology parts has been observed even when the two 
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host organisms being compared are closely related (Adams, 2016). Therefore, 

although collections of thoroughly characterised regulatory mechanisms of 

increasing sophistication are becoming commonplace in the literature, these 

collections cannot necessarily be easily used to facilitate metabolic engineering 

in species other than those in which they were initially developed. The lack of 

conservation in promoter activity between E. coli and Geobacillus therefore 

highlighted the necessity of the development of species-specific synthetic 

biology toolkits for non-model, industrially relevant organisms.  

 

 In addition to reducing the potential for inter-species transfer of synthetic 

biology tools, the lack of conservation in promoter activity levels between E. coli 

and G. thermoglucosidans may have inadvertently reduced the range of GFP 

expression levels shown by the SPLs when they were characterised in G. 

thermoglucosidans. By initially selecting for mutant sequences that showed 

promoter activity in E. coli, it is possible that promoters that were inactive in E. 

coli but active in G. thermoglucosidans were overlooked. Characterisation in G. 

thermoglucosidans of putative promoter sequences that showed no activity in E. 

coli may therefore have potentially increased the range of expression levels 

shown in the final SPLs.  

 

 Alternatively, bypassing the intermediate screening of mutated 

sequences in E. coli and assessing promoter activity directly in G. 

thermoglucosidans may have led to the identification of a greater number of 

active sequences. However, given the apparent stringency of Geobacillus 

promoters, the probability of identifying a randomly mutated sequence with in 

vivo promoter functionality in G. thermoglucosidans without screening large 

numbers of mutants was likely small.  

 

 Even if large numbers of mutated promoter sequences were screened in 

G. thermoglucosidans, a review of published mutagenesis-derived promoter 

libraries suggested that the resulting SPL would likely contain few promoter 

sequences of greater activity than the ldhA promoter starting point (Table 6-1).  
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A: 

 Organism Reference 
promoter 
(ref.) 

Number of 
promoters: 

Reference 

in SPL >ref. 

SMFR C. acetobutylicum p_THL 35 10 (Yang et al., 2017a) 

SMFR C. acetobutylicum p_thl 22 3 (Mordaka & Heap, 2018) 

SMFR Corynebacterium 
glutamicum 

p_tac 69 4 (Zhang et al., 2018) 

SMFR C. glutamicum p_Trc 35 31 (Wei et al., 2018) 

SMFR E. coli p_LacI 71 56 (De Mey et al., 2007) 

SMFR E. coli p_pgi 20 12 (Braatsch et al., 2008) 

SFMR F. novicida p_bfr 15 0 (McWhinnie & Nano, 2013) 

SMFR G. thermoglucosidans p_groES 17 2 (Pogrebnyakov et al., 2017) 

SMFR Homo sapiens ARPE-
19 & Rattus rattus 
HiB5 cell lines 

p_JeT 27 0 (Tornøe et al., 2002) 

SMFR Lactobacillus 
plantarum 

p_r-RNA3-a 33 0 (Rud et al., 2006) 

SMFR* Rhodococcus opacus p_ermEP1 25 1 (DeLorenzo et al., 2018) 

SFMR S. cerevisiae p_GAL1 20 0 (Ellis et al., 2009) 

SMFR S. cerivisiae PFϒ1 36 0 (Blount et al., 2012) 

SMFR Streptomyces. 
coelicolor 

p_act11 
orf4 

11 6 (Sohoni et al., 2014) 

SMFR S. lividans p_ermEP1 56 8 (Siegl et al., 2013) 

 
B: 

     
 
 

 Organism Reference 
promoter 
(ref.) 

Number of 
promoters: 

Reference 

in SPL >ref. 

epPCR E. coli p_Trc 99 20 (Meng et al., 2013) 

epPCR E. coli p_L-ϒ 22 13 (Alper et al., 2005) 

epPCR G. thermoglucosidans  p_Rpls 20 1  (Reeve et al., 2016) 

epPCR Pichia pastoris p_GAP 33 16 (Qin et al., 2011) 

epPCR S. cerevisiae p_TEF 11 5 (Alper et al., 2005, Nevoigt et 
al., 2006) 

epPCR Synechococcus sp. 
strain PCC 7002 

p_cpt 29 2 (Markley et al., 2015) 

      
Table 6-1: Improvement of promoter strengths reported by studies that 

applied A) Saturation Mutagenesis of Flanking Regions or B) error-prone 
PCR to the production of Synthetic Promoter Libraries. 

* Performed saturation mutagenesis of the -35 and -10 consensus regions, whilst 
holding the flanks constant. 
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 Given the widespread use of composite scaffolds for SMFR, defining a 

wild-type promoter strength baseline was not always possible (Blazeck & Alper, 

2013). However, out of 21 published SPLs for which a wild-type baseline could 

be established, 16 were predominately comprised of promoters of reduced 

strength compared to the baseline (Table 6-1). Five of these SPLs contained no 

promoters of greater strength than the wild-type reference. Furthermore, in 

instances when promoters of greater strength than the wild type were reported, 

the magnitude of the increase in strength was typically relatively small.  

 

 For example, Yang et al. reported a SMFR-derived Clostridium 

acetobutylicum SPL, in which 29% of the characterised mutants showed 

stronger promoter activity than the wild-type reference promoter, pTHL. 

However, the strongest of these mutated sequences afforded only a 0.4-fold 

upregulation in promoter activity as compared to pTHL (Yang et al., 2017a). 

 

 Likewise, Sohoni et al. reported a SMFR-derived SPL for Streptomyces 

coelicolor in which 55% of the characterised sequences were stronger than the 

reference, but a strongest promoter that was only 1.75-fold stronger than said 

reference (Sohoni et al., 2014). Approximate one- to three- fold increases in 

promoter strength were also reported in SPLs for C. acetobutylicum (Mordaka & 

Heap, 2018), E. coli (Meng et al., 2013), S. cerevisiae (Alper et al., 2005, 

Nevoigt et al., 2006) and S. lividans (Siegl et al., 2013). 

 

 A minority of SPLs did report large upregulation in promoter activity. In 

Pichia pastoris for example, Qin et al. screened 30,000 epPCR-derived mutants 

of the GAP promoter and isolated a SPL of 33 characterised promoters. 16 

members of the final SPL showed greater promoter activity than the wild-type 

GAP promoter. Of these 16 sequences, the strongest showed 74-fold stronger 

expression of lacZ at the transcript level than pGAP (Qin et al., 2011). Wei et al. 

also employed high-throughput screening in Corynebacterium glutamicum to 

ultimately isolate 31 promoters that were stronger than the wild-type reference 

at the transcript level from an initial library of approximately 5 x 106 clones (Wei 

et al., 2018). 
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 Finally, De Mey et al. reported an apparently large increase in promoter 

strength in E. coli. Approximately 80% of the mutant sequences in the SMFR-

derived SPL showed greater activity than the wild type reference, the LacI 

promoter. The strongest of these mutants showed an approximately 30-fold 

increase in GFP expression as compared to pLacI. However, the consensus 

regions that were used in the synthetic promoter sequences were not present in 

pLacI (De Mey et al., 2007). The extent to which the wild type pLacI served as a 

truly comparable baseline was therefore debatable.  

 

6.4 Summary 

 

 The SMFR- and epPCR- derived SPLs that were generated in this study 

contained few active promoters when characterised in G. thermoglucosidans. 

Although alterations to the experimental design (i.e. different conserved motifs 

in the SMFR-derived SPL, a lower average mutation rate in the epPCR-derived 

SPL) may have increased the number of sequences with in vivo promoter 

activity, a review of the literature highlighted the propensity of mutagenesis-

based approaches to promoter engineering to predominately decrease 

promoter strength.  

 

 Of course, maximising the expression strength of a heterologous gene is 

not always desirable. Indeed, promoters of moderate and low strengths are 

equally valuable, and permit the nuanced tuning of synthetic pathways 

(Goldbeck et al., 2012). However, given the proclivity of both SMFR and epPCR 

to reduce promoter activity, the final expression range of a mutagenesis-derived 

SPL is often highly dependent on the strength of the initial wild-type promoter or 

composite scaffold. In instances where the number of a priori characterised 

promoter elements in a species or genus of interest is low, or if the 

understanding of the location and functional composition of consensus motifs is 

limited, the use of a posteriori, mutagenesis-based approaches to promoter 

design is likely to be an inadequate method by which to explore the promoter 

design space.  
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 In contrast to the lack of promoter activity shown by the mutagenesis-

derived Geobacillus promoter libraries, the bioinformatic approach to promoter 

discovery that was discussed in Chapter 3 yielded libraries of endogenous 

promoter elements that covered two-log ranges of fluorescence, increasing in 

steady increments (Chapter 4). Bioinformatic promoter prospecting, followed by 

deep empirical characterisation of promoter activity, therefore represents a 

comparatively more efficient, practical method by which the promoter toolkit can 

be rapidly expanded in non-model industrially relevant organisms for which a 

priori knowledge of cis-regulatory elements is lacking.  
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7 General Discussion 

Summary 

 

 This investigation aimed to ascertain which method for promoter 

discovery and design was most applicable in an industrial context, and in 

particular to assess the applicability of statistical learning approaches to 

promoter identification and characterisation. To that end, a novel bioinformatic 

approach to promoter identification was developed, and promoter sequences 

were rationally selected for in vivo characterisation. Collectively, the 

characterised sequences resulted in a 2-log range of expression strengths 

when placed upstream of two fluorescent reporter proteins, and promoter 

sequences were shown to individually yield homogenous control of gene 

expression. Minimal conservation of activity between reporter proteins was 

observed for the majority of the characterised promoters, indicating that further 

work is required to reduce the context-dependency of the characterised 

promoters if they are to be used to facilitate bottom-up pathway design in 

industrial contexts. Although ANN and PLS models derived from the 

characterisation data showed inadequate generality, Random Forest partition 

models were shown to be a useful tool for increasing understanding of 

transcription regulation in non-model organisms.  

 

 The results of this investigation can potentially provide a foundation for a 

number of future studies. Future work could aim to increase the context-

independence of the characterised promoters, or make use of the increased 

understanding of the Geobacillus promoter design space provided by the 

Random Forest partition models to facilitate rational promoter optimisation. 

Alternatively, the novel bioinformatic approach to promoter identification that 

was developed, coupled with sequence-function statistical modelling, is 

potentially broadly applicable to expand promoter toolkits in other non-model 

synthetic biology host organisms. 
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7.1 Identification and characterisation of putative promoters 

 

 The aim of this investigation was to ascertain which method for promoter 

discovery and design was most applicable in an industrial context. In particular, 

we hypothesised that statistical learning approaches to promoter discovery 

were applicable to non-model organisms, and that such statistical models would 

accelerate the discovery and characterisation of promoter libraries. Industrial 

applicability was defined as the capability of a given method to produce libraries 

of promoter elements that collectively covered broad ranges of recombinant 

gene expression levels (i.e. “promoter strength”) and that individually yielded 

homogeneous gene expression that was orthogonal to endogenous metabolic 

regulatory pathways. To that end, bioinformatic, mathematic and mutagenic 

approaches to promoter discovery and design were applied in the industrially 

relevant chassis, Geobacillus.  

 

 Bioinformatic screening of G. kaustophilus DSM7263, G. 

stearothermophilus DSM22, G. thermodenitrificans K1041 and G. 

thermoglucosidans DSM2542 resulted in the identification of 636 putative 

constitutive promoters from the Geobacillus core genome (Chapters 3 & 4). By 

isolating the 100 bp immediately upstream of coding sequences in the 

Geobacillus core genome as putative promoter sequences, the requirement for 

any a priori understanding of the sequence composition or statistical properties 

of Geobacillus cis-regulatory elements was obviated. Such understanding is 

requisite for more sophisticated in silico approaches to prokaryotic promoter 

identification (Song, 2011, Umarov & Solovyev, 2017). The approach taken in 

this investigation is therefore potentially more broadly applicable than other in 

silico approaches in non-model organisms in which the a priori understanding of 

cis-regulatory elements is minimal.  

 

 To maximise the sequence diversity of in vivo characterised promoters, 

and thereby maximise the proportion of the sequence design space that was 

empirically explored, promoters were selected for characterisation from across 

the Geobacillus promoter phylogeny. In total, 105 putative promoters were 

characterised upstream of GFP in G. thermoglucosidans. To assess the 
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functional composability of the endogenous Geobacillus promoters, 82 of these 

sequences were also characterised upstream of mOrange (Chapters 4 & 5). A 

subset of seven promoters whose activity was shown to be independent of the 

downstream coding sequence (CDS) were also characterised with regards to 

their oxygen-dependence (Chapter 5). 

 

 Flow cytometry analysis showed that the characterised Geobacillus 

promoters afforded tight control of protein expression across a three-log range 

of expression strengths (Chapter 4). Crucially, promoter sequences were 

identified which showed significantly reduced expression variation as compared 

to the ldhA promoter, which has previously been applied in Geobacillus genetic 

engineering (Cripps et al., 2009, Lin et al., 2014). 98% of the characterised 

promoter::GFP fusions and 73% of the characterised promoter::mOrange 

fusions returned a lower coefficient of variance than the ldhA promoter, 

indicating that these sequences afforded tighter control of expression than ldhA. 

Members of the characterised promoter library were therefore potentially 

broadly applicable to Geobacillus synthetic biology and metabolic engineering 

projects where tight control of expression is required, such as the optimisation 

of the complex heterologous pathways that would enable the large-scale 

bioproduction of fourth generation biofuels (Howard et al., 2013). 

 

 In contrast to the broad range of activity levels shown by the 

bioinformatically identified endogenous Geobacillus promoters, the two 

mutagenesis derived promoter libraries contained few active promoters when 

characterised in G. thermoglucosidans; only 10% of the sequences 

characterised in the library derived through Saturation Mutagenesis of Flanking 

Regions and 5% of the sequences in the error-prone PCR-derived library 

showed activity in G. thermoglucosidans that was statistically significantly 

different to the negative control. This result was congruent with a review of the 

literature, which highlighted the proclivity of mutagenesis to reduce, rather than 

enhance, promoter activity (Blazeck & Alper, 2013) (Chapter 6).  
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7.2 Mitigating the effect of genetic and environmental context on gene 

expression 

 

 Standards such as SBOL (Galdzicki et al., 2014), in which engineered 

biological circuits are visualised in a manner analogous to an electrical wiring 

diagram, facilitate the view of synthetic biology as “building with legos” (Carlson, 

2010). The resulting abstraction hierarchy permits difficulties that are 

encountered at a given level of the engineering process to be ignored by those 

working at another level. For example, those working on whole-system 

optimisation can abstract beyond the difficulties inherent in the design and 

optimisation of individual genetic parts (Zong et al., 2017). Without this 

abstraction, the engineering of complex biological systems is, at best, 

challenging (Mutalik et al., 2013a). However, this hierarchical approach to 

biological engineering relies upon the composability of the constituent genetic 

parts.  

 

 If the characterisation of synthetic biology parts does not consider the 

potentially synergistic, antagonistic or neutral effects of environmental and 

genomic context (Cardinale & Arkin, 2012, Del Vecchio, 2015), the performance 

of individual parts cannot be generalised, necessitating time consuming 

empirical testing and optimisation when designing synthetic pathways. As the 

complexity of engineered pathways increases, such trial-and-error optimisation 

of individual parts becomes prohibitive (Davidsohn et al., 2014, Rudge et al., 

2016). Promoter sequences that display true modularity and functional 

composability in vivo would obviate, or at least reduce the scale of, large-scale 

in vivo tuning, thereby aiding the systematic, scalable, bottom-up design of 

genetic pathways that synthetic biology strives to achieve (Del Vecchio, 2015, 

Nielsen et al., 2016). 

 

 In model organisms such as E. coli and S. cerevisiae, studies have 

considered the effect of environmental (Keren et al., 2013, Johns et al., 2018) 

and genetic context on the activity of cis-regulatory elements (Davis et al., 

2011, Kosuri et al., 2013, Mutalik et al., 2013a, 2013b, Zong et al., 2017). 

However, the drive for composable, modular promoters in non-model organisms 
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is hindered by the fact that many studies still characterise the function of cis-

regulatory elements in a restricted number of genomic contexts or under a 

single growth condition. The general applicability of the promoter sequences 

characterised in these studies is therefore limited. For example, two libraries of 

Geobacillus promoter sequences that have been published to date used only 

GFP to characterise promoter performance (Reeve et al., 2016, Pogrebnyakov 

et al., 2017). Such characterisation is unlikely to be fully representative of the 

genetic context in which the regulatory elements may ultimately be employed 

(Moser et al., 2012). 

 

 In this investigation, two reporter proteins, GFP and mOrange, were used 

to assess the functional composability of the bioinformatically identified 

promoter sequences. Of the 80 promoters that were used to express both 

reporter proteins, only seven sequences (i.e. approximately 9% of the 

characterised cis-regulatory elements), covering an activity range of four-fold, 

showed promoter activity that was independent of the downstream CDS 

(Chapter 5). This result suggested that bioinformatic screening, followed by 

deep characterisation of in vivo promoter activity, represented a method by 

which endogenous cis-regulatory elements that function independently of the 

downstream CDS can be identified for synthetic biology or metabolic 

engineering applications. 

 

 Endogenous context-independent promoters occurred in the Geobacillus 

core genome at a low frequency; only 9% of characterised sequences showed 

consistent activity across the two reporters. Furthermore, the expression range 

of four-fold that was returned by the context-independent sequences compared 

poorly with the total expression range afforded by all the characterised 

sequences. When used to express GFP, for example, the 47 “active” promoters 

showed an expression range of 30-fold. When mOrange was the reporter, 31 

“active” promoters covered an expression range of 8.4-fold. Future work could 

therefore use approaches such as RNA sequencing to characterise the 

performance of promoters in the genetic context of the engineered circuit or 

pathway that they are intended to control. This in situ approach to 

characterisation could obviate the need for reporter-protein based 
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characterisation of candidate promoters, which may not always be fully 

representative of the performance of promoters when they are used in more 

industrially relevant genomic contexts (Gorochowski et al., 2017). Alternatively, 

work could focus on reducing the context-dependency of the Geobacillus 

promoter elements that were identified in this investigation, thereby increasing 

the range of predictable gene expression available for Geobacillus synthetic 

biology projects. 

 

 Mechanisms such as ribozyme or CRISPR mediated RNA processing of 

the 5’ untranslated region of mRNA transcripts could potentially be used to 

decouple the activity of regulatory elements from their genomic context (Lou et 

al., 2012, Qi et al., 2012). However, the activity of ribozyme- or CRISPR-based 

regulatory systems is more likely than not to be uncharacterised in non-model, 

industrially relevant organisms. From an industrial perspective, consideration 

should also be given to the effect complicated cis-regulatory mechanisms may 

have on the host organism. Heterologous pathways are known to place a 

quantifiable burden on host metabolism, potentially resulting in reduced growth 

and lower yields of the product of interest (Borkowski et al., 2016, Wu et al., 

2016, Borkowski et al., 2018). If the expression of heterologous regulatory 

mechanisms is also required, the resulting increase in metabolic burden on the 

host could potentially lead to loss-of-function mutations within the heterologous 

pathways (Sleight & Sauro, 2013), with a corresponding reduction in product 

yield.  

 

 Insulator DNA sequences that physically separate genetic regulatory 

parts, thereby disrupting context-specific mRNA secondary structures or 

preventing unintended DNA-protein interactions (Davis et al., 2011, Mutalik et 

al., 2013a, Carr et al., 2017), may offer a mechanism by which genomic 

context-dependency could be minimised without increasing burden on the host. 

However, care should be taken to ensure that such insulators are not 

themselves context-specific (Carr et al., 2017), and that they do not encode 

cryptic regulatory sequences (Yao et al., 2013, Zong et al., 2017).  

 



Chapter 7 - General Discussion 

 245 

 With regards to assessing the effect of environmental context on the 

performance of cis-regulatory sequences, further work is required. In this 

investigation, high-throughput screening of candidate cis-regulatory sequences 

was performed using growth in 96-well microplates. Although invaluable at the 

initial prospecting stage, microplate growth conditions are not necessarily 

representative of the conditions experienced by cultures in industrial-scale 

bioreactors (Schmidt, 2005, Moser et al., 2012). Therefore, once 

bioinformatically identified and initially screened in vivo, the performance of 

candidate promoters should be characterised in as close a facsimile as possible 

to the environmental conditions in which they will ultimately be used.  

 

 Of the seven Geobacillus promoters that were shown to function 

independently of the downstream CDS, five were also shown to function 

independently of culture aeration (Chapter 5). This result was in direct contrast 

to the G. thermodenitrificans ldhA promoter, which showed statistically 

significant variation in expression levels depending on culture aeration, 

congruent with previous studies (Bartosiak-Jentys et al., 2012, Kananavičiūtė & 

Čitavičius, 2015). Given that oxygen concentration can display spatial variation 

in large-scale bioreactors (Enfors et al., 2001), constitutive cis-regulatory 

elements that function consistently and predictably under varying oxygen 

concentrations are potentially valuable.  

 

 However, oxygen concentration is only one of many environmental 

conditions that are known to vary in a spatiotemporal manner in industrial 

bioreactors (Moser et al., 2012). Furthermore, the fed-batch fermentation 

process that can be used at larger scales can cause cultures to display different 

physiological and metabolic states than at laboratory scale (Chubukov et al., 

2016). Given that this investigation only examined the performance of cis-

regulatory elements under three different oxygenation levels (i.e. 96-well 

microplates, baffled and non-baffled 250 ml Erlenmeyer flasks), future work 

should focus on characterising the performance of the Geobacillus promoter 

library under environmental conditions that are more representative of 

industrial-scale culture. 
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 If screening of promoter activity in a range of industrially-relevant growth 

formats was combined with the suggested work on reducing the sensitivity of 

the 105 characterised Geobacillus promoters to any downstream CDS, the 

resulting library of cis-regulatory elements could potentially display consistent, 

predictable output under varying genetic and environmental contexts, thereby 

facilitating bottom-up engineering in this industrially relevant, non-model 

organism.  

 

7.3 Promoter sequence-function modelling 

 

 Mathematical models with the pre hoc capability to determine promoter 

activity would reduce the need for in vivo characterisation of individual cis-

regulatory elements. Once a training set of sufficient robustness was 

established, putative promoters of the desired strength could hypothetically be 

designed de novo. However, this investigation showed that sequence data 

alone was not sufficient to derive Artificial Neural Network (ANN) or Partial 

Least Squares (PLS) models with adequate predictive accuracy (Chapters 3 & 

4). Despite providing accurate fits of the training data, the ANN and PLS models 

showed limited predictive power when applied to secondary test sets. 

Furthermore, synthetic promoter sequences that were derived using the 

sequence-function models showed no in vivo promoter activity. Given that the 

synthetic promoter sequences contained the same conserved motifs as active 

promoter sequences in the training data set, the lack of correlation between 

predicted and empirically measured activity levels was hypothesised to be a 

result of the inability of the sequence-function models to accurately infer the 

contribution to promoter strength of given nucleotides at given sequence 

positions. 

 

 Although sequence-function models of sufficient predictive accuracy to 

determine pre hoc in vivo promoter activity could not be derived from the 

Geobacillus promoter data set, the potential for statistical modelling to enhance 

our fundamental knowledge of genetic regulation in complex systems should 

not be overlooked. Partition modelling of the relationship between promoter 
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sequence and the fluorescence activity of the reporter proteins GFP and 

mOrange yielded potentially useful insights into the structure of cis-regulatory 

elements in Geobacillus; regions upstream of the canonical -35, -10 and RBS 

consensus motifs were predicted to be important for determining promoter 

activity. Furthermore, a sequence alignment of 21 active promoter sequences 

revealed conserved regions of AT-rich sequence towards the 5’ terminus of the 

promoter sequence that were not as heavily conserved in sequences which did 

not show promoter activity. These results suggested that UP-elements similar to 

those described in E. coli (Ross et al., 1993, Aiyar et al., 1998, Estrem et al., 

1998) and B. subtilis (Meijer & Salas, 2004, Phan et al., 2012) may also play a 

role in determining transcription activation in Geobacillus.  

 

7.4 Potential future application of statistical learning approaches to 

promoter optimisation 

 

 The lack of generality that was shown by the ANN and PLS promoter 

sequence-function models that were derived in this investigation should not 

preclude the use of statistical learning approaches in future promoter 

optimisation studies. Statistical learning approaches to the design and 

optimisation of regulatory DNA have previously been most successful when the 

training data sets have been rationally designed. Design of Experiments (DoE) 

approaches to training set design, typically using full- or fractional-factorial 

libraries of sequence variants, have been used to characterise the activity and 

context-dependence of regulatory sequences in E. coli (Kosuri et al., 2013, 

Mutalik et al., 2013b), and have been successfully used to optimise translation 

efficiency, also in E. coli (Cambray et al., 2018). A DoE-based approach to 

promoter optimisation based on the rational design of variant libraries could 

therefore potentially be applied by future studies in Geobacillus.  

 

 Given the 100 bp length of the Geobacillus promoters that were 

characterised in this investigation, the number of sequence variants required for 

rational approaches to promoter optimisation could quickly become prohibitive; 

a full-factorial library of 100 bp promoters would contain 4100 sequences. 
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Although the proliferation of affordable DNA synthesis has increased the 

practicality of producing large sequence-variant libraries (Allert et al., 2010), the 

synthesis and subsequent characterisation of such vast part collections remains 

a non-trivial concern. Although analysing promoters of shortened length could 

mitigate this issue, removing regions of promoter sequence could also 

potentially remove useful promoter activity. Removing the 5’-most 50 bp from 

the characterised Geobacillus promoters, for example, would have maintained 

the putative RBS, -35 and -10 motifs whilst halving the size of the design space, 

but would have removed the UP-elements that were shown by Random Forest 

partition modelling to be key in determining Geobacillus promoter activity 

(Figure 4.24).  

 

 In lieu of shortening the characterised promoter sequences to facilitate 

future DoE-guided sequence optimisation, the novel bioinformatic approach to 

promoter identification that was developed in this investigation, coupled with 

Random Forest partition modelling, could provide an initial screen of the 

promoter design space. The in vivo characterisation of a comparatively limited 

number of putative promoters from all clades of a sequence phylogeny 

maximised the portion of the endogenous Geobacillus promoter design space 

that was empirically explored, whilst maintaining experimental feasibility. 

Random forest partition models derived from the resulting characterisation data 

subsequently allowed key promoter sequence positions or motifs to be 

identified. Future studies could make use of this increased understanding of the 

relationship between sequence and function to guide the rational design of 

sequence libraries with variation only at the identified key positions. These 

rationally designed variant libraries could subsequently be synthesised, 

characterised and modelled.  

 

 Any future applications of DoE to promoter optimisation in Geobacillus 

would benefit from an increased application of automated liquid handling and 

laboratory automation to facilitate the construction and characterisation of large-

scale sequence variant libraries (Rao, 2015). Although automated liquid 

handling was employed in this investigation, the scope of this automation was 

limited to loading Geobacillus culture aliquots onto 96-well microplates and 
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preparing qPCR reactions. In future, part characterisation could be expedited 

through the use of large-scale automated synthetic biology foundries (Clarke & 

Kitney, 2016), which use robotic arms to transfer microplates between 

automated liquid handling platforms, incubators and plate readers (Rao, 2015).  

 

 Future studies would also benefit from the development of a highly 

efficient protocol for the transformation of Geobacillus. In this investigation, the 

low efficiency of conjugal transformation proved to be a significant bottleneck to 

high-throughput part characterisation. The removal of this bottleneck could 

therefore expedite characterisation of large, rationally designed sequence 

libraries. The application of high-throughput characterisation techniques such 

as the combination of flow cytometry and multiplexed DNA or RNA sequencing 

(Kosuri et al., 2013, Johns et al., 2018) requires the acquisition of large 

numbers of transformants, as approximately 50-fold library coverage is required 

to achieve accurate characterisation of individual promoters (Kosuri et al., 

2013). A future study that rationally optimised either a conjugal transformation 

protocol, or an alternative method to transform Geobacillus such as 

electroporation (Kananavičiūtė & Čitavičius, 2015, Reeve et al., 2016), would 

therefore be of considerable value.  

 

 Finally, the combination of bioinformatics, in vivo characterisation and 

statistical modelling that was implemented in this investigation is theoretically 

broadly applicable beyond Geobacillus. As the approach requires no a priori 

understanding of the structure and function of species-specific promoters, it can 

potentially be applied to promoter optimisation studies in a broad range of 

synthetic biology host organisms, opening up synthetic biology solutions in non-

model systems.  

 

7.5 Planned and published manuscripts  

 

 A manuscript is in preparation that discusses the principle results of this 

investigation. The novel bioinformatic approach to promoter discovery will be 

covered, and the results of the in vivo characterisation of the bioinformatically-
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identified promoters will be outlined. The performance of the characterised 

promoters will be contrasted to the relative lack of activity that was observed in 

the mutagenesis-derived sequences. The results of the sequence-function 

statistical modelling will also be covered, and the general applicability of 

machine learning approaches to promoter optimisation will be discussed.  

 

 In lieu of a single paper, multiple publications discussing individual 

aspects of the investigation were also considered. For example, two separate 

manuscripts that covered the bioinformatic approach to promoter identification 

and the statistical sequence-function modelling approach respectively could 

have been prepared. However, it was felt that a single manuscript that 

discussed and directly compared each of the three approaches to promoter 

design and discovery (i.e. bioinformatic, mutagenic and mathematic) would be 

more compelling, and potentially more useful in guiding future studies aiming to 

develop promoter libraries in non-model organisms. Submission of the 

completed manuscript to Nature Communications is planned.  

 

 A review paper that summarised different strategies for promoter 

discovery was published in Biochemical Society Transactions in 2016 (Gilman & 

Love, 2016). In particular, the use of mutagenesis-based methods for promoter 

production was discussed, and the potential of in silico approaches to expedite 

promoter discovery and design was outlined. A copy of the review can be found 

in the appendix of this thesis.  
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8 Conclusion 

 

 This investigation hypothesised that statistical learning approaches to 

promoter discovery would be applicable in non-model organisms, and would 

accelerate the discovery and characterisation of promoter libraries in the 

industrially relevant chassis, Geobacillus.  

 

 A novel approach to bioinformatic promoter identification was employed, 

based upon the analysis of the Geobacillus core genome coupled with rational 

promoter selection based on phylogenetic analysis of putative promoter 

sequences that maximised the proportion of the promoter design space that 

was empirically explored. This approach to promoter discovery yielded libraries 

of endogenous promoter elements that covered two-log ranges of fluorescence, 

increasing in steady increments. Flow cytometry analysis of in vivo promoter 

activity showed that the characterised library afforded homogeneous expression 

of recombinant genes across a wide range of expression strengths.  

 

 Seven of the characterised promoters were also shown to function 

consistently regardless of the downstream coding sequence. Furthermore, five 

sequences were shown to function independently of culture oxygenation. Prior 

to this investigation, the constitutive promoters that were available for use in 

Geobacillus were limited to three endogenous regulatory elements (one of 

which, the ldh promoter, had been shown to be oxygen dependant) and three 

libraries of mutagenesis-derived synthetic promoters, all of which were only 

characterised in single genetic and environmental contexts. The promoters that 

were characterised in this investigation therefore represented an expansion of 

the synthetic biology toolkit in an industrially relevant host. 

 

 This investigation also demonstrated the utility of statistical modelling 

approaches to the design of synthetic promoter libraries in non-model 

organisms. Artificial Neural Network and Partial Least Squares models showed 

inadequate generality, possibly as a result of a lack of sequence homology in 

training data sets that were relatively small compared to the dimensionality of 
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the design space. The promoter DNA sequence alone was therefore not 

sufficient to derive statistical sequence-function models of adequate predictive 

accuracy to determine pre hoc in vivo promoter activity. However, the 

application of Random Forest partition models was shown to be a useful 

approach for increasing understanding of transcription regulation in non-model 

organisms. In particular, UP-elements, which have previously been reported in 

B. subtilis and E. coli, were suggested to play an important role in determining 

Geobacillus promoter activity. The increased understanding of the Geobacillus 

promoter design space that resulted from these models could potentially be 

used by future investigations to facilitate a rational, Design of Experiments 

approach to promoter optimisation.  

 

 In addition, the use of two a posteriori, mutagenesis-based approaches 

to promoter design, Saturation Mutagenesis of Flanking Regions and error-

prone PCR, highlighted the inefficiency of random mutation as a technique for 

deriving promoter libraries, especially in organisms for which a priori 

understanding of the structure of cis-regulatory elements is limited. The 

propensity for mutagenesis to reduce, rather than increase, promoter activity 

that was shown in this investigation and corroborated by a review of the 

literature inherently limits the capability of mutagenesis to yield libraries of 

promoter elements that collectively cover broad ranges of recombinant gene 

expression levels. 

 

 To conclude, this investigation has shown that bioinformatic prospecting 

of cis-regulatory elements, followed by deep empirical characterisation of in vivo 

activity, represents an efficient, practical method by which the promoter toolkit 

can be rapidly expanded in non-model, industrially relevant organisms. The 

combination of bioinformatics, in vivo characterisation and statistical modelling 

that was implemented in this investigation is theoretically broadly applicable. As 

the approach requires no a priori understanding of the structure and function of 

species-specific promoters, it can potentially be applied to promoter 

optimisation studies in a broad range of synthetic biology host organisms, 

opening up synthetic biology solutions in non-model systems.  
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Abstract
The judicious choice of promoter to drive gene expression remains one of the most important considerations
for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in
laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for
new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review
provides an overview of the opportunities and challenges for synthetic promoter discovery and design,
including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis
by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo
promoter design.

Introduction
Predictable output is a defining aspiration of synthetic
biology. A number of factors affect the output from
synthetic gene networks to a greater or lesser extent,
including transgene copy number [1], integration into the
genome or expression from plasmids [2], promoter activity
[3], ribosome-binding sites [4–6], codon bias of the host
[7], transcription rate and tRNA abundance [8], half-life
of mRNA [9], substrate and cofactor availability [10],
adjustment of enzyme kinetics [11], protein scaffolding
[12] and sub-cellular localization through the use of
microcompartments [13,14]. The use of RNA as a control
mechanism, either through the application of riboswitches
[15] or toehold switches [16] has also emerged as a powerful
tool for pathway control. Each of these aspects can be
investigated and improved individually, and then integrated
by a model, a suite of experiments or ideally, a combination
of modelling and empiricism.

Several investigations, including the now archetypal
‘repressilator’ [17] and the genetic toggle switch [18] have
modelled promoters and generated bacteria that display
patterns of gene expression consistent with mathemat-
ical predictions. However, despite these successes, when
individual bacteria are investigated, strong variations in
transgene expression levels become apparent, even within
clonal populations [19].

Controlling transcription is often the simplest way to
balance expression of a transgene or synthetic pathway,
and constitutive promoters with different and predictable
activation characteristics are a desirable feature of any

Key words: artificial neural networks, partial least squares modelling, promoter, synthetic

biology, systems biology.

Abbreviations: ANN, artificial neural network; epPCR, error-prone PCR; PLS, partial least squares;

PWM, position weight matrix; SMFR, saturation mutagenesis of flanking regions; SPL, synthetic

promoter library; TSS, transcription start site; UAS, upstream activation sequence.
1 To whom correspondence should be addressed (email J.Love@Exeter.ac.uk).

synthetic biology toolkit. However, in practise, promoter
availability tends to be restricted to relatively few sequences
[20], which do not always perform as required and may not
necessarily be transferrable to new microbial chassis. The fact
that many promoters are characterized as merely ‘weak’ or
‘strong’ [21] highlights this issue – such definitions are hardly
sufficient to allow adequate promoter selection.

A number of inducible promoter systems are available
for which the concentration of inducer can, in theory, be
modulated in order to achieve the desired level of protein pro-
duction [22]. Although the use of inducible promoter systems
has been successful in some instances, in others it can prove
inadequate. Promoter hypersensitivity to the inducer [23], the
cost of adding large quantities of inducer to an industrial-scale
fermenter [24] or heterogeneous expression levels across a
population [25] all complicate the use of inducible promoters
in industrial-scale cultures. Consequently, for large-scale
production applications, constitutive promoters with ‘hard-
wired’, predictable properties are often preferred and are the
focus of this review.

In this article, we review the potential and methodologies
for designing and characterizing new constitutive promoter
sequences with predictable outputs, including conventional
PCR-based techniques, hybrid promoter engineering and
the expanding use of computational analysis for de novo
promoter design.

Characteristics of promoters for synthetic
biology applications
A promoter can be broadly defined as a cis-regulatory
element containing a somewhat modular suite of key
motifs that control the transcription of individual ORFs
or operons. In prokaryotes, the structure and organization
of natural promoter motifs is relatively well understood
(Figure 1A). Eukaryotic promoters are somewhat more
complex than their prokaryotic counterparts (Figure 1B),

Biochem. Soc. Trans. (2016) 44, 731–737; doi:10.1042/BST20160042
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Figure 1 Schematic representations of typical promoter sequences

(A) Schematic representation of a typical prokaryotic promoter sequence. The transcription start site (TSS) is shown in red. Two

conserved hexamers, at approximately 10 and 35 bp upstream of the TSS [68], highlighted here in blue, serve as key binding

regions for RNA polymerase [69]. No such conserved motifs have been found in the region of sequence separating the two

hexamers, although a consensus length of 17 bp has been observed in some species [70]. In addition to these core promoter

elements, an upstream region (highlighted here in turquoise) is present in some promoters. Typically adenine/thymine

rich, these UP elements boost transcription rate through interactions with the C-terminal domain on the RNA polymerase

α-subunit [71]: Estrem, S.T., Gaal, T., Ross, W. and Gourse, R.L. (1998) Identification of an UP element consensus sequence

for bacterial promoters. Proc. Natl. Acad. Sci. U.S.A. 95, 9761–9766. The UP element consensus sequence is as derived by

[71]. − 10 and − 35 consensus sequences are from E. coli and are reproduced from [3]: Blazeck, J. and Alper, H.S. (2013)

Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol. J. 8, 46–58

and [72]: Ross, W., Aiyar, S.E., Salomon, J. and Gourse, R.L. (1998) Escherichia coli promoters with UP elements of different

strengths: modular structure of bacterial promoters. J. Bacteriol. 180, 5375–5383. N represents any deoxyribonucleotide. W

represents adenine (A) or thymine (T). G and C represent guanine and cytosine respectively. (B) Schematic representation

of a S. cerevisiae promoter sequence. The TSS is highlighted in red. Eukaryotic promoters can be broadly split into two

regions, a core promoter element (shown in blue) and an upstream enhancer [3] (shown in turquoise), both of which can

be modified in order to modulate expression levels. The core region provides the minimal sequence necessary for initiation

of basal transcription and may contain key motifs, the most widely studied of which is the TATA box, which typically occurs

40–120 bp upstream of the TSS [73]. However, such motifs are by no means requisite for transcription initiation, as TATA

boxes appear in only 20 % of S. cerevisiae promoter elements [74]. Diagonal lines represent the region in which TATA

boxes are most common. Upstream of the core promoter, the enhancer element serves to localize transcription factors, with

interactions between bound transcription factors and the transcriptional machinery serving as a determinant of promoter

strength and control [56]. Transcription factor binding sites do not display uniform distribution across the enhancer element,

and are represented here as solid vertical lines in arbitrary positions. The highest concentration of such binding motifs has

been reported between 50–150 bp prior to the TSS [75], although they may be present as much as 500 bases upstream of

the TSS [76].

with localization of the transcriptional apparatus resulting
from interactions between highly specific transcription
factors, the promoter elements and co-activators [26]. The
activity of promoters is typically quantified through measures
of cellular mRNA or reporter proteins [27], linking the
levels of promoter activity (or ‘strength’) to both tran-
scription and translation. In reality, the promoter regulates
only transcription but in practise, experimental constraints
use protein quantification as a useful proxy for promoter
activity.

From an industrial perspective, it is preferable to have a
system that displays little variation, even if the overall output
of that system is, on average, slightly less than that of an
alternative that displays irregularities; synthetic biology aims
to be boringly predictable rather than wonderfully complex.
Candidate promoters for synthetic biology must therefore
be well-characterized and yield consistent results, and also be
insulated from the background metabolisms and molecular
control systems. However, consistency is often confounded
by the inherently stochastic nature of gene expression, which

c⃝ 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence
4.0 (CC BY-NC-ND).
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subjects both promoters and any downstream proteins used
in their characterization to large degrees of noise [28], as well
as the all-or-nothing phenomenon [29] in inducible systems,
wherein expression is typically fully induced in a subset of the
population whereas the remaining cells display no expression
[22,30,31].

Natural promoter sequences
The promoters available for use in synthetic systems have
generally been limited to those endogenous elements isolated
from model organisms, for instance, the Escherichia coli lac
promoter and derivatives thereof [32–35] and the arabinose-
inducible PBAD [36–38] promoter.

Phage genomes can also be used to generate novel
promoters. For example the pL promoter, isolated from
bacteriophage lambda, provides medium to high expression
levels, and is tightly thermally-regulated by the cI repressor
[34,39]. pL has been successfully employed to increase yield
of various proteins in E. coli expression systems [40–42].
Similarly, the T7 RNA polymerase-based promoter system,
also initially isolated from bacteriophage, has been widely
adopted [34,43].

Although natural promoters are widely used in relatively
simple, laboratory applications, the relative paucity of
sufficiently characterized elements makes their use in control
in industrial contexts problematic. Additionally, natural
promoter activity is often context-specific [3] and subject to
interaction with a multitude of regulatory proteins, rendering
prediction of activity levels under varying conditions non-
trivial [44]. As a result of these inherent limitations,
researchers have increasingly turned to libraries of synthetic
promoter elements to meet their needs.

Molecular approaches for the production of
synthetic promoter libraries
Saturation mutagenesis of flanking regions
A key method of forming synthetic promoter libraries
(SPLs) is based on the observation that the flanking
regions surrounding consensus motifs within the promoter
sequence have a role in determining activity [45]. Degenerate
oligonucleotides allow known consensus motifs to be
maintained whereas the flanking regions are mutagenized,
leading to altered promoter activity. For example saturation
mutagenesis of flanking regions (SMFR) was successfully
used to produce a SPL with a 400-fold activity range in Lacto-
coccus lactis, with greater range being reported as a result of
synthesis errors in the consensus sequences and alteration to
flank length [24,45]. However, the initial approach taken
to saturation mutagenesis by Jensen and Hammer [24,45]
does not take into account the context-dependant nature of
promoter activity. Consequently, current SPL generation uses
a single PCR stage, with degenerate oligonucleotides coupled
to either a full-length or truncated version of the gene that the
promoter is intended to drive. This improvement allows for
ectopic analysis or replacement of a wild-type promoter with
a synthetic alternative, although maintaining the 5’ mRNA
of the target gene [23,46]. Promoter function is maintained

due to the preservation of the key consensus regions
within the sequence, with altered expression levels likely
being the result of minor changes in DNA confirmation
within the randomized flanks [45].

SMFR has been successfully applied in a variety of
prokaryotes and eukaryotes, including Corynebacterium
glutamicum [47] and Streptomyces coelicolor [48], yielding
robust libraries with broad expression profiles. The methodo-
logy has also shown applicability in Saccharomyces cerevisiae,
wherein screening of an initial large library of colonies
ultimately yielded 20 characterized promoters, displaying
expression levels of yeast-EGFP that varied by approximately
22-fold [21]. In a separate study, a selection of constitutive
promoters was initially isolated from the S. cerevisiae genome,
and expression levels were subsequently characterized using
expression profiles available from public databases. The
promoter of the gene PFϒ1 was chosen as a starting point
for its robust expression profile [49]. Knowledge of PFϒ1
structure enabled identification of a rDNA enhancer-binding
protein and a poly-dT that were important for transcription
initiation [50]. These regions were therefore held constant
whereas a 48 bp section of the promoter core was randomized,
providing a library of 36 promoter elements with a broad
range of expression levels. It must be noted that none
of the new sequences provided higher expression levels than
the original PFϒ1 promoter [49]. This inability to produce
a synthetic promoter with higher expression levels than a
natural alternative was also reported by McWhinnie and
Nano [51].

Although SMFR has successfully provided many new
promoters, the technique requires labour intensive cloning
and an a priori knowledge of promoter structure in the
organism of interest, something that may not be immediately
available in industrially relevant microbes. Furthermore, as
many libraries use composite promoter scaffolds as a starting
point, establishing a definitive wild-type reference expression
baseline is impossible. Definitively stating whether SMFR
will improve wild-type expression capability pre hoc,
is therefore problematic [3]. Additionally, by restricting
mutagenesis to only the flanking regions, SMFR fails to take
into account alterations to consensus sequences, which are
known to play a significant role in modulating expression
strength.

Error-prone PCR
Generating a SPL by applying error-prone PCR (epPCR) to
an entire promoter sequence obviates any a priori knowledge
of functional motif location and can potentially result in pro-
moters with entirely new characteristics [3]. This methodo-
logy was successfully used to mutagenize a bacteriophage PL-
λ promoter that was subsequently placed upstream of a green
fluorescent protein (GFP) coding sequence and transformed
into E. coli, resulting in a library containing approximately
9000–12000 functional clones [52,53]. Visual screening of the
colonies resulted in a subset of 200 promoters, of which
27, representing 22 discrete promoter sequences, were
found to give homogeneous expression levels. Subsequently,
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thorough characterization of this promoter subset resulted
in a promoter library which was successfully employed to
modulate levels of phosphoenolpyruvate carboxylase and
lycopene production in E. coli [53]. epPCR for promoter
production has also been employed in C. glutamicum,
where iterative rounds of high-throughput sorting and
analysis at the single-cell level ultimately yielded a library
of 20 well-characterized sequences from an initial library
of 105 mutagenized cells [54]. The technique has also been
successfully applied in yeast [55].

Despite these successes, the epPCR approach to SPL
production has certain limitations: a reliance on a selection
of a small subset of colonies for further analysis [53,54]
renders discovery of a true optimum problematic. Moreover,
the extensive screening required to isolate said subset should
not be underestimated; it is typical for initial libraries of
hundreds or thousands of bacterial colonies to ultimately
yield relatively few fully characterized promoters. Both these
problems become less of an issue if visual selection of colonies
is replaced by high-throughput analytical techniques such as
fluorescence-activated cell sorting and/or imaging cytometry.

Hybrid promoter engineering
In addition to the two mutagenic techniques discussed above,
the generation of synthetic promoters through hybridization
of existing promoter elements provides an alternative strategy
for promoter genesis. By combining minimal core promoter
elements with various combinations of modular upstream
activation sequences (UAS), Blazeck et al. [56] demonstrated
that expression levels could be increased compared with
a wild-type baseline in S. cerevisiae. A roughly linear
relationship was observed between the number of UAS
modules added and promoter strength, with the addition of
four such elements boosting expression of a weak constitutive
promoter to levels comparable with the strongest endogenous
promoter [56]. Transcriptional increase was shown to depend
both on the core element and UAS, but all core promoters
were amenable to improvement [56].

Computational methods for synthetic promoter
discovery
Although the above molecular methodologies have cer-
tainly provided new promoters of varying activities, these
approaches do not represent a systematic, theoretical
examination of the promoter design space. If, for arguments
sake, a promoter sequence is 100 bp in length, there are
4100 potential promoter sequences. Therefore, although the
best sequence discovered by molecular-based SPL may be
sufficient for some experimental purposes, it is possible that
other optima are present. In silico methods that are capable of
deciphering the effect of individual DNA bases and motifs,
or predicting promoter activity level in advance of in vivo
characterization have, in this context, considerable potential
[57]. Conventionally, the use of computational techniques
in pathway design and optimization has been limited to post
hoc data analytics [21]. However, computational modelling in
biological systems design and optimization is becoming more

widespread, and a number of computational methodologies
are available to facilitate the de novo design of synthetic
promoter sequences.

Position weight matrix models
Position weight matrix (PWM) models have been widely
applied for the detection of transcription factor binding sites
[58,59], and have also shown some promise in predicting
promoter strength. By breaking promoter sequences into
constitutive motifs, PWM models were able to predict the
strength of E. coli core promoter sequences recognized by
sigma factor σ E to a relatively high degree of accuracy
[60]. The core promoter PWM was subsequently combined
with a score describing the activity of upstream elements to
provide a model capable of predicting the strength of entire
promoter sequences [61]. In addition to this predictive power,
PWM models provide increased understanding of promoter
structure, something that is often limited in novel microbial
chassis.

Although PWM models certainly have the potential
to be applied to de novo sequence design, they are not
without limitations. PWMs may prove inadequate for
modelling in promoter families with a less conserved nature
than those which interact with σ E, as poorly conserved
sequences required greater complexity within the model [60].
Application of PWMs in novel microbial chassis, where
understanding of interactions between proteins and promoter
sequences can be limited, may therefore be challenging.

Additionally, by assuming that the contribution of indi-
vidual nucleotides to DNA-protein binding is independent
and additive [61], PWMs fail to account for the effect of
interactions between positions. Despite these limitations,
the application of PWMs for the pre hoc determination of
strength in certain promoter families carries great potential.

Partial least squares regression
The use of statistical modelling to quantitatively link DNA
sequence to function is not a new concept [62], although
as a method for the generation of synthetic promoters
it remains underutilized. In a pioneering study, 25 E.
coli promoters were analysed using a partial least squares
(PLS) methodology, resulting in a statistical model that
analysed the contribution of each individual nucleotide at
any given position in the DNA sequence. In order to validate
the model, two synthetic sequences with predicted high
activity levels were synthesized. The − 35, − 10 and + 1
sites were determined using the consensus sequence of the
training set of 25 promoters, whereas the remainder of
the synthetic sequences were determined using regression
coefficients provided by the modelling process [62]. In vivo
characterization of the synthetic promoters revealed activity
levels within approximately 8 % of the strength predicted
by the model. Furthermore, the synthetic sequences were
shown to provide higher expression levels than any of those
sequences found within the training set [62].

Similar statistical methods were later applied to quantit-
atively link promoter structure with function for a library
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of synthetic E. coli promoters that were generated through
the randomization of flanking regions [29]. The generated
model was able to predict, with reasonable accuracy, the
strength of promoter sequences that had not been used in the
construction of the model [29]. In further validation of this
computational technique, the promoter strength predictive
model was subsequently utilized to predict the strength of an
endogenous E. coli promoter, that of the ppc gene [63]. Based
on this information, stronger promoters were selected from
the previously characterized promoter library [29] in order
to fine-tune ppc expression levels. This knock-in approach
resulted in an increase in expression levels roughly in line with
the model’s predictions, with a 3–4-fold increase in mRNA
levels seen at flask scale [63]. Although the PLS regression
doubtlessly aided in the optimization process, it was not
applied, in this instance to the de novo design of synthetic
promoter sequences.

Artificial neural networks
The linear nature of PLS modelling is a drawback when
applied to the analysis of promoter sequences, confounding
the effects of any interactions between bases with the
main effects for each individual nucleotide position [62].
PLS models therefore may not accurately account for
the complexity inherent in promoter structure, thereby
increasing the probability of prediction errors and inadequate
generality [64]. Indeed, many such models lack robust
prediction accuracy [65], rendering their use in de novo
sequence design challenging.

Artificial neural networks (ANNs) may provide a solution
to these issues. Based upon a network of interconnected
nodes designed to act as a rudimentary mimic of the brain,
ANNs permit machine learning, as the order and force of
connections may be altered [66]. By systematically altering
node structure during the analysis of a training data set, ANN
models can potentially better represent the complex, non-
linear interactions occurring within a promoter sequence [64].
ANN modelling has proven successful for de novo promoter
design [64]; using a set of synthetic promoters derived from
the random mutagenesis of a wild-type E. coli promoter as
a training set for an ANN model, strength predictions of
sequences generated by in silico mutagenesis were used to
select 16 synthetic sequences for in vivo verification [64].
The predicted expression levels displayed good correlation
with empirical testing, suggesting that such models are indeed
applicable to synthetic promoter design. Indeed, the fact
that approximately 30 % of de novo designed sequences
displayed greater expression levels that the wild-type control
[64] compares extremely favourably to the more traditional
mutagenesis-based techniques discussed above, where much
lower success rates are not uncommon.

The importance of insulation
Whichever method is applied to the generation of SPLs,
promoter elements must be sufficiently insulated if they
are to be efficiently used in synthetic regulatory systems.
Empirical or predictive data regarding promoter strength

from characterization using a reporter protein must be
comparable to promoter performance when coupled to a
protein of interest within a synthetic pathway; context-
dependent effects should be minimal. However, achieving
context dependency is non-trivial, as fluctuation in promoter
activity levels may be the result of a wide array of
experimental and/or genetic factors [27,53].

A possible solution to this problem is to separate core
elements from their genetic context through the use of
insulator sequences, such as a defined 5’ mRNA sequence
[67]. By using such insulators, promoter elements from a
SPL can produce constant relative levels of various reporter
proteins when used for both plasmid and chromosomal
expression [67].

Conclusion
The ability to select a reliable promoter of known activity
is of paramount importance for synthetic biology. Indeed,
promoters with different and, most importantly, predictable
effects on transcription may be used to regulate complex
gene circuits, balance engineered metabolic pathways and
exploit new chassis for industrial-scale applications. As
reviewed here, a number of molecular and computational
methodologies are available for the discovery and design of
new constitutive promoters. Each technique has advantages
and weaknesses, and a selection of one over the other
will depend on the aims of specific projects. However, to
date, computational approaches to promoter design remain
underutilized aside from proof of principle studies in model
organisms. As the applications of synthetic biology become
more entrenched in the future bio-economy, which may
require the development of different chassis, the application
of computational modelling to promoter design can enhance
and accelerate the design process and ultimately enhance
our fundamental knowledge of genetic regulation in complex
systems.
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