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Much of the uncertainty in estimates of the anthropogenic forcing of
climate change comes from uncertainties in the instantaneous effect
of aerosols on cloud albedo, known as the Twomey effect or the ra-
diative forcing from aerosol-cloud interactions (RFaci) a component
of the total or effective radiative forcing (ERFaci). As aerosols serv-
ing as cloud condensation nuclei (CCN) can have a strong influence
on the cloud droplet number concentration (Nd), previous studies
have used the sensitivity of the Nd to aerosol properties as a con-
straint on the strength of the RFaci. However, recent studies have
suggested that relationships between aerosol and cloud properties
in the present day climate may not be suitable for determining the
sensitivity of the Nd to anthropogenic aerosol perturbations.
Using an ensemble of global aerosol-climate models, this study
demonstrates how joint histograms between Nd and aerosol prop-
erties can account for many of the issues raised by previous stud-
ies. It shows that if the anthropogenic contribution to the aerosol is
known, the RFaci can be diagnosed to within 20% of its actual value.
The accuracy of different aerosol proxies for diagnosing the RFaci is
investigated, confirming that using the aerosol optical depth (AOD)
significantly underestimates the strength of the aerosol-cloud inter-
actions in satellite data.

Aerosols | Clouds | Radiative Forcing

The radiative forcing due to anthropogenic aerosols is the
the most uncertain component of the anthropogenic ra-

diative forcing [1], with the interaction between aerosols and
clouds generating much of this uncertainty. As cloud droplets
form on aerosol particles, changes in the aerosol number con-
centration can change the cloud droplet number concentration
(Nd), generating an instantaneous radiative forcing by increas-
ing the cloud brightness known as the “Twomey effect” [2] or
RFaci [1] (referring only to liquid clouds in this work). To-
gether with other changes in cloud properties due to changes
in Nd [eg. 3], the RFaci is a component of the ERFaci.

Due to the sparse nature of pre-industrial observations
of cloud properties, the influence of aerosols on cloud prop-
erties is often inferred from observations of the present-day
spatio-temporal variability of aerosol and cloud properties [eg.
4–7]. While much of the variation between aerosol and cloud
properties can be attributed to variations of meteorological
factors [eg. 8, 9], the sensitivity of Nd to aerosol optical depth
(AOD) is thought to be largely independent of these factors.
It is therefore often used in observational estimates of the
strength of aerosol-cloud interactions [7, 10, 11]. This sensitiv-

ity [5] has been shown to be a useful “emergent constraint” on
the strength of the ERFaci in general circulation models [12],
providing a method to calculate the change in Nd from the
pre-industrial (PI) to the present day (PD), when combined
with an estimate of the corresponding anthropogenic change in
AOD (such as [13]). Two main assumptions are made in this
process, firstly that the AOD is a suitable proxy of the cloud
condensation nuclei (CCN) concentration at the cloud base.
Second, that the relationships between aerosol and the Nd in
the present day (determined by spatio-temporal variability)
are indicative of the actual sensitivity of cloud properties to
aerosol perturbations.

Recent work has called both of these assumptions into
question. Observational [14] and model-based [15] studies
have shown a disconnect between AOD and CCN. As the
AOD is a column integrated measurement, it does not provide
vertical information about the location of the aerosol. It also
lacks information about the composition of the particles and
is weighted preferentially towards larger particles [4], missing
information about smaller aerosol particles that are often
emitted from anthropogenic activities [16].

Second, it has been shown that the PD AOD-Nd relation-
ship may not be representative of the true strength of the
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Fig. 1. Joint histograms between aerosol properties (AOD and CCN1km, respectively, x-axis) and cloud top Nd (y-axis) for each of the GCMs used in this study. The first and
second columns show the AOD-Nd joint histograms for the present day and the pre-industrial simulations respectively. The histograms are normalised so each column sums to
one, such that the histograms show the probability of observing a specific cloud top Nd, given a certain AOD (or CCN1km). The black line shows the mean Nd at each AOD
and grey regions indicate missing data. The third column shows the difference between the present day and the pre-industrial relationships. The second set of three columns
are the same as the first three, but use CCN1km at 0.3% supersaturation instead of AOD as the independent variable.

interaction between aerosols and cloud properties due to the
differing PI and PD aerosol environments [17]. Additionally,
it has been shown [18] that in many global aerosol-climate
models, the PD sensitivity of Nd to CCN variations (the slope
of the linear regression between Nd and CCN concentrations)
is in many cases not representative of the sensitivity of Nd to
the anthropogenic perturbation of CCN (the PD-PI change
in Nd divided by the corresponding change in CCN evaluated
from climate simulations). This suggests that it would be
challenging to constrain the magnitude of the RFaci using only
PD observations of the sensitivity of Nd to aerosol variations.

In this work, new techniques are presented to address these
challenges. To account for non-linearity in the aerosol-Nd

relationship and the differing PI and PD aerosol environ-
ments, normalised joint histograms are used to characterise
the relationship [following 11]. A variety of different global
aerosol-climate models that contributed to the AeroCom inter-
comparison [18, 19] are used to investigate the utility of differ-
ent aerosol proxies for diagnosing the anthropogenic change
in cloud-top Nd. Together with joint histograms, this work
investigates how accurately the RFaci could be diagnosed un-
der ideal conditions, using present day relationships between
aerosol and cloud properties.

Results

Aerosol-Nd relationships. Two-dimensional (“joint”) his-
tograms of Nd and aerosol properties are used in this work to
account for the influence of non-linearities in the relationship
[11]. Each column of the joint histogram is normalised so that
it sums to one, such that it becomes an array of conditional
probabilities. For example, the top left histogram in Fig. 1
shows the probability of finding a specific Nd, given that a
certain AOD has been observed.

Joint histograms of cloud top Nd versus an aerosol proxy
for a selection of models from the Aerocom intercomparison
[18, 19] (gridded to 2.5◦ by 2.5◦) are shown in Fig. 1. While
there is a general increase in cloud top Nd with increasing
AOD (Fig. 1, first and second columns), the nature of this
increase varies significantly amongst the models. Some of the
models (the CAM5 variants) show a strong increase in Nd at
lower AOD, followed by a saturation at higher AOD, where
the Nd only weakly increases with increasing AOD. Others
show a weak AOD-Nd relationship at low AOD, followed by a
stronger relationship as the AOD increases (ECHAM6-HAM,
SPRINTARS). The enforced lower bound to the Nd apparent in
some simulations may be responsible for the lower sensitivity
of Nd to AOD ( dNd

dln(A) ) at low AODs in these models [12],
although low sensitivities at low AOD have also been observed
in satellite data [11].

All of the models show some difference in the AOD-Nd

relationship between the PD and the PI (Fig. 1, third column),
mostly with higher Nds for a given AOD in the PD simulation
compared to the PI. It is stronger at high AODs, suggesting
that this effect is due to the different composition of aerosols
in the PD compared to the PI. When the atmosphere is clean
(low AOD), the aerosol composition is similar in the PI and
the PD simulations. However, high AOD conditions occur
mainly in dusty regions in the PI simulation (where the aerosol
is a poor CCN), but in the PD simulation, these high AOD
conditions are often the result of anthropogenic pollution
(which on average is a much better CCN).

The situation is very different when using CCN at 1 km
altitude and 0.3% supersaturation (CCN1km) instead of the
AOD as the parameter representing the aerosol (Fig. 1, fourth
column). The CCN1km-Nd relationships are still mostly non-
linear, although there is less variation between the models than
for the AOD-Nd joint histograms. Importantly, the PD and
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Fig. 2. Using joint histograms of CCN1km vs. Nd from 15◦ by 15◦ regions to diagnose ∆Nd (Hist CCN regional). For each model used, the first column shows the
annual-mean “actual” ∆Nd (the Nd difference between the PI and PD simulations). The second shows ∆Nd diagnosed using the present day CCN1km-Nd joint histogram
and the change in the CCN1km between the PI and PD simulations. The third column shows the relationship between the actual and the diagnosed ∆Nd, whilst the final
column shows the absolute difference between the diagnosed and the actual ∆Nd, with red indicating an overestimation in ∆Nd diagnosed from the present day relationships
compared to the actual value. The same color scale is used for all maps and all the Nd units are cm−3.

PI CCN1km-Nd relationships are very similar, showing much
smaller differences in the joint histograms than are evident
for the AOD-Nd relationship (Fig. 1, sixth column). At lower
supersaturations (0.1%) the CCN is weighted towards larger
particles and the PD and PI relationships are not as close (Fig.
S10). However, the PD global CCN1km-Nd joint histogram is
a reasonable indicator of the PI relationship, as long as there
is enough data at low CCN concentrations to properly create
a joint histogram.

It is also clear that the non-linearity of these relationships
will influence any calculations made using a linear regression,
where the sensitivity would otherwise depend on the prevailing
aerosol environment [17]. By normalising the joint histograms
by the aerosol occurrence, this dependence is removed and
with the appropriate choice of aerosol proxy (such as CCN1km),
the PD spatio-temporal variability is a good approximation of
the PI variation and thus the actual sensitivity of clouds to
aerosol perturbations.

Diagnosing ∆Nd. Using regional joint histograms (15◦ by 15◦
regions), similar to those from Fig. 1, and probability his-
tograms for CCN1km from the PI and PD simulations, a pre-
diction for the geographic distribution of ∆Nd is constructed
in Fig. 2. The “actual” ∆Nd for each model (the difference
in Nd between the PD and PI simulations) is shown in the
first column of Fig. 2. Both the PI and PD simulations are
nudged to the same horizontal winds, such that the “actual”
∆Nd is due to the difference in aerosol emissions. The ∆Nd

diagnosed using the PD CCN1km-Nd joint histogram and the
PD-PI CCN1km change (Eq. 1) is shown in the second column.

There is a good correspondence between the diagnosed
and the actual ∆Nd (Fig. 2, third column). The correlation
coefficients between the diagnosed and actual ∆Nd are between

0.84 and 0.92, explaining between 70% and 85% of the variance
(Fig. 3a). These correlations decrease slightly if a single global
joint histogram is used (Fig. 3a). The difference between
the diagnosed and the actual ∆Nd in the fourth column of
Fig. 2 varies between the models, partially due to remaining
difference between the daily mean CCN1km and the cloud base
CCN. This appears to be important for the ECHAM6-HAM
simulation over ocean (Fig. 2), where the 1km level is more
often above the cloud tops in stratocumulus regions [20] than
in the other models. Repeating the analysis using the total
column CCN at 0.3% supersaturation (“colCCN”) improves
the ∆Nd and RFaci diagnosis for ECHAM6-HAM (Fig. 3b,c),
possibly due to the extra information provided about cloud
base CCN. Regime dependent updraughts may also play a role
in controlling the remaining 20% of the variability in ∆Nd

(Fig. 3b). It is possible that there is further variability in
∆Nd from PI-PD differences in the parametrised updraughts
(which might be reduced by the nudging procedure) but this is
a small component of the total variability and so is not further
considered in this analysis. These results show that through
the ability of the PD CCN1km-Nd relationship to provide
information on the “actual” CCN1km-Nd relationship, the PD
relationship can be used to provide an accurate estimate of
the ∆Nd due to anthropogenic aerosol perturbations, as long
as that perturbation is known.

Comparison of aerosol proxies. Although ∆Nd can be diag-
nosed through the PD CCN1km-Nd relationship, observations
of CCN1km are sparse in both space and time, necessitating
the use of other aerosol proxies for diagnosing ∆Nd. The
aerosol index (“AI” - AOD multiplied by Angström exponent
[4]) is routinely observed by satellites and provides more in-
formation about aerosol size than the AOD. Although not
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mean RFaci, with a percentage less than 100% indicating an underestimate in the
estimated RFaci. The horizontal bars are at 80% and 120%. The plots summarised in
this figure are shown in Figs. S1-9.

currently retrieved by satellites, colCCN provides extra infor-
mation about the aerosol chemistry. For each of these proxies,
the determination coefficient (r2) between the diagnosed and
the actual ∆Nd is shown in Fig. 3a (see Figs. S1-9 for other
aerosol proxies). For comparison with earlier work, linear
regressions between the Nd and aerosol proxies are also used
to characterise the PD aerosol-Nd relationship (“OLS”). The
relationships are determined at several different scales: 2.5◦
by 2.5◦ degree - “local”; 15◦ by 15◦ - “regional” and a single
global relationship “global”. The “local” scale is only used
with the OLS method, as there is not enough data within each
gridbox to generate a full joint histogram.

Using separate regional PD joint histograms between
CCN1km and Nd (Fig. 3a, Hist regional) is best able to pre-
dict ∆Nd for each of the models investigated here (excluding
ECHAM6-HAM). A single global joint CCN1km-Nd histogram
(Hist global) results in a slight decrease in the ability to predict
∆Nd. There is again a slight weakening in predictive ability
when moving to the colCCN as a proxy for diagnosing ∆Nd.
The AI also provides a reasonable parameter for characterising
the aerosol, in many cases producing an accurate estimate
of ∆Nd (Fig. 3b). Using regional AI-Nd joint histograms for
diagnosing ∆Nd gives r2 values between the diagnosed and the
actual ∆Nd (0.61 to 0.81) approaching those of the CCN1km.
As the models do not provide the RFaci, the relative error
in the RFaci is estimated by weighting ∆Nd by the observed
liquid cloud fraction and cloud albedo susceptibility (Fig. 3c,
see methods section for details). In general, the regional joint
histograms provide a more accurate diagnosis of RFaci, al-
though using a single global histogram results in only a small
increase in the error, even though the r2 value decreases for all

the models (Fig. 3a). The AOD performs worst as a parameter
for characterising aerosol in the models when diagnosing ∆Nd

and RFaci. The local linear regressions have the lowest r2

values of all the methods and proxies investigated, although
the RFaci estimate when using AOD is slightly improved com-
pared to the regional linear regression, possibly due to the
reduced aerosol type variability for a local regression (Fig. 3c).

From these results, it is clear that estimates of the aerosol
forcing that rely on the relationship between AOD and Nd for
characterising the strength of aerosol cloud interactions (such
as many observational estimates) are likely to underestimate
the anthropogenic perturbation of Nd by at least 30% (up to
90%). This would lead to an underestimate in the strength
of the radiative forcing from aerosol indirect effects in these
studies of at least 20% (up to 90%).

Satellite based estimate. Although using the AOD as an
aerosol proxy can lead to an underestimate when diagnos-
ing the aerosol forcing, the AI is almost as good a proxy for
the aerosol as the CCN1km when attempting to diagnose ∆Nd

and the RFaci (Fig. 3c). Given this improved accuracy when
compared to using AOD as an aerosol proxy, MODIS AI and
Nd data is used to generate both regional joint histograms
(Hist AI regional, 15◦ by 15◦ regions) and a single global joint
histogram (Hist AI global), using 10 years of data (2004-2013).
These are then combined with the annual mean MODIS liq-
uid cloud fraction and the cloud susceptibility derived from
MODIS and CERES (Eq. 3) to provide an updated estimate
of the RFaci (Fig. 4).

Using the PI to PD AI changes from each of the models gives
a range of RFaci estimates for the regional method between
-0.18 and -0.58Wm−2 and between -0.29 and -1.01Wm−2 if
using a single global AI-Nd joint histogram (Fig. S11). The
RFaci is generally higher over the ocean due to the higher liquid
cloud fraction and cloud susceptibility, despite the smaller
oceanic ∆Nd (Fig. 2). Although this is not a large selection of
models, the mean value of -0.29Wm−2 for the regional method
and -0.49Wm−2 for the global histogram are instructive to
compare to the -0.2Wm−2 mean value using a single global
AOD-Nd histogram (Fig. 4c), -0.2Wm−2 using local OLS with
AOD [7] and -0.4Wm−2 using local OLS and AI [21].

There are some caveats to this estimate. First, the MODIS
AI has little quantitative skill over land [22] and in some
regions a positive RFaci is diagnosed from changes in the Nd

(Fig. 4). This has a larger impact on the regional histogram
method and may result in a reduction in the strength of the
implied aerosol forcing. However, only a small fraction of the
forcing comes from continental regions, similar to the findings
from [7], so this may not result in a large bias in the global
mean RFaci. Also, the global histogram method is more likely
to overestimate the RFaci (Fig. 3c), suggesting that the actual
value is between the two estimates, perhaps around -0.4Wm−2

(this only includes changes to cloud albedo and not other rapid
cloud adjustments). It is also possible that systematic biases in
the MODIS AI or Nd retrieval could further impact this result,
although the magnitude and sign of these effects is unclear. It
should also be noted that this estimate is strongly dependent
on the estimate of the anthropogenic aerosol fraction. As
all the AeroCom models in this work use the same emissions
database, the diversity in the forcing estimates from the models
is unlikely to fully represent the full uncertainty in the radiative
forcing from changes in cloud albedo.
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data to create a)Regional histograms, b)a single global AI-Nd histogram and c) a
single global AOD-Nd histogram, combined with model estimates of the anthropogenic
AI/AOD contribution.

Discussion

Previous work has shown that the present day CCN-Nd re-
lationship sampled from spatio-temporal variability is not
necessarily representative of the “actual” sensitivity of Nd to
aerosol changes since pre-industrial times. This is partially
due to the large errors in the sensitivity of the Nd to CCN in
clean regions, where there is little CCN variation and conse-
quently little Nd variation in the PD climate. However, these
regions are usually regions with a small anthropogenic CCN
contribution and so make only a small contribution to the
global ∆Nd. Although the nudging process might reduce the
variability in ∆Nd from variations in the in-cloud updraughts,
this work demonstrates that the CCN1km-Nd relationship is
representative enough in regions where there is a large ∆Nd

to make an accurate prediction of the global ∆Nd and RFaci.
It is also interesting to note that the big increases in Nd oc-

cur in regions with large changes in CCN (over land, the north-
ern hemisphere) in all the models investigated here (Fig. 2).
While these models implement aerosol activation parametri-
sations that result in a saturation of the Nd at high CCN
concentrations, this behaviour is not evident in many of the
joint histograms of Fig. 1 for the CCN1km versus the Nd. Al-
though there are other non-linearities in the pathway between
CCN changes and a change in top of atmosphere albedo [eg.
11], strong aerosol-cloud interaction effects also occur in re-
gions of stronger aerosol perturbation for the CMIP5 models
(albeit less concentrated in the northern hemisphere) [23], sup-
porting the idea that the RFaci in remote regions such as the
southern ocean does not dominate the total RFaci.

Finally, the results of this work demonstrate the importance
of including aerosol size information when making estimates
of the aerosol impact on cloud properties. Previous work has
shown that the AI correlates better than the AOD with the
cloud base CCN [15]. This work shows that it also offers
significant benefits as an aerosol proxy when calculating ∆Nd

and the radiative forcing from aerosol-cloud interactions. The
large increase in predictive ability of ∆Nd when moving from
AOD to AI for characterising the aerosol shows the importance
of a measure of aerosol size, especially given the strong changes
in aerosol type between the PI and the PD simulations. While

there is also a clear benefit from including vertical information
(CCN1km is a better proxy than colCCN for most GCMs),
this increase in the accuracy when diagnosing the radiative
forcing is smaller than that when using AI compared to AOD.
The change in predictive ability when moving from AI to
column integrated CCN is the smallest change, suggesting
that information on aerosol composition is the least important
of the three factors (vertical location, size distribution and
composition) that limit the ability of the AOD-Nd relationship
to characterise the strength of aerosol-cloud interactions [24].

Conclusions

In this work, multiple aerosol-climate models have been used
to investigate how a change in cloud droplet number concen-
tration (Nd) can be predicted from present day aerosol-cloud
relationships.

The use of joint histograms normalised by aerosol occur-
rence is demonstrated, accounting for non-linearities in the
aerosol-Nd relationship. It also removes the influence of the
aerosol environment on the strength of the aerosol-Nd relation-
ship, such that the present day and pre-industrial aerosol-Nd

relationships are nearly identical with the correct choice of
aerosol proxy (Fig. 1).

Although diagnosing the true sensitivity of Nd to cloud
condensation nuclei (CCN) remains a difficult problem using
only present day relationships [18], determining ∆Nd is much
easier as it weights the calculation towards regions with a larger
change in CCN, where the relationship can be determined with
greater accuracy in (Fig. 2). If the change in CCN at 1km
altitude (CCN1km) between the pre-industrial (PI) and the
present day (PD) is known, then the PD relationship between
CCN1km and the Nd is enough to diagnose the PD-PI change
in Nd (∆Nd) to within 20% of the value determined by the
climate simulations (Fig. 3). Using joint histograms to account
for non-linearities in the CCN-Nd relationship, a single global
relationship between CCN1km and Nd can be used, with only
a small reduction in the accuracy of diagnosing ∆Nd and the
instantaneous radiative forcing due to changes in cloud albedo
(RFaci).

While vertical information is shown to be important in
predicting ∆Nd, these results imply that information about
the aerosol size distribution makes a dominant contribution
to the accuracy of the predictions of ∆Nd, with the aerosol
index (AI) showing significant gains over the aerosol optical
depth (AOD), similar to previous work [15]. The estimates
of the anthropogenic change in AI provided by the models in
this work combined with AI-Nd joint histograms from satellite
data provide a revised RFaci estimate of around -0.4Wm−2,
although there is a large diversity between the model estimates,
ranging from -0.18 to -1.01Wm−2. The larger ∆Nd suggested
by this work also suggests a larger ERFaci than previous stud-
ies [11], but this not investigated here. As estimates of the
PD-PI aerosol environment are often generated from models,
estimates of the PD-PI AI change could be calculated along-
side AOD changes. Using AI has the advantage over using
CCN since it is currently retrieved by satellite instruments
(although retrieving CCN may be possible in certain situations
[25]). This suggests that the AI is potentially a useful param-
eter to use when calculating observational constraints on the
strength of RFaci in liquid clouds and where possible should
be considered for future observation-based investigations.
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Materials and Methods

Throughout this work, output from several global aerosol-
climate simulations performed as part of the AeroCom model inter-
comparison project [18, 19] is used to provide simulations of the PD
and PI atmospheres. Both PD and PI simulations are nudged to
the same horizontal winds (2006-2010) and include PD greenhouse
gases, sea surface temperatures and natural forcings. All of the
models include interactive aerosol modules, that interact with the
cloud via a modification of Nd, ice crystal number concentration
and radiative fluxes. This affects the radiation as well as the pre-
cipitation formation in liquid clouds via autoconversion, leading
to more complex effects on the cloud properties. The model data
is regridded to a 2.5◦ by 2.5◦ resolution and averaged to daily
temporal resolution. As this analysis focuses on liquid water clouds,
only gridboxes with an ice water path of less than 5 gm−2 are used.
Six of the nine available simulations were selected to provide a
wide selection of models and microphysics schemes. The models
themselves are self-consistent, such that an imperfect modelling of
the aerosol or the cloud properties does not affect the conclusions.

∆Nd is diagnosed for each 2.5◦ by 2.5◦ gridbox using the PD
relationship between the aerosol parameter (A) and the Nd and
the known change in the aerosol parameter between the PD and
PI simulations. Eq. 1 shows how ∆Nd is diagnosed within each
gridbox using a joint probability histogram between the aerosol and
Nd created from PD relationships and the probability histograms
of the PI and PD aerosol parameter in each gridbox.

∆Nd =
∑
Nd

Nd

∑
A

P (Nd|A)P D ×
(
P (A)P D − P (A)P I

)
[1]

If the OLS method is used, the calculation for ∆Nd is conceptu-
ally similar, using the ACI metric ( dNd

dln(A) P D
) from [5].

∆Nd = ACIA ×
(
ln(AP D)− ln(AP I)

)
[2]

where the overbar denotes an average over a distribution. To
investigate the impact that errors in diagnosing ∆Nd have on the
RFaci, the Twomey formula [26] is used to calculate the change in
cloud albedo (αcld). The cloud albedo is calculated from the CERES
TOA SW all-sky albedo and the MODIS Aqua L3 (MYD08_D3)
collection 6 cloud optical properties cloud fraction [27], using only
gridboxes with zero ice cloud. This is combined with the MODIS
annual mean liquid cloud fraction (fliq) and the downwelling solar
flux (F ↓) to produce a simple estimate of the RFaci (∆F ↑) [28].

∆F ↑ = −F ↓fliq
αcld(1− αcld)

3Nd
∆Nd [3]

The MODIS AI is used to provide an observational constraint
on the RFaci by generating AI-Nd joint histograms from observa-
tions. For these histograms, the Nd is calculated using the adi-
abatic approximation, as specified in [11]. The AI is calculated
from the AOD-Angström exponent joint histogram in the MODIS
MYD08_D3 product using only gridboxes where no ice cloud is
detected (to reduce possible cirrus contamination). As the relative
error of the MODIS AOD and hence the Angström exponent and
AI is large at low AOD (<0.03), the Nd is assumed constant at AI
values below 0.03.

ACKNOWLEDGMENTS. The model data was provided through
the AeroCom initiative. The MODIS data was provided by the
NASA Goddard Space Flight Center and the CERES data from
the NASA Langley Research Center. This work received funding
from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreements no. FP7-306284 (“QUAERERE”), FP7-280025 (“AC-
CLAIM”) and FP7-603445 (“BACCHUS”), the United Kingdom
Natural Environment Research Council Grant NE/I020148/1, the
Austrian Science Fund (J 3402-N29, Erwin Schrödinger Fellowship
Abroad). the Environment Research and Technology Development
Fund (S-12-3) of the Ministry of the Environment, Japan and JSPS
KAKENHI Grant Number JP15H01728 and JP15K12190, the Na-
tional Natural Science Foundation of China (grant no.. 41575073
and 41621005), the Swiss National Supercomputing Centre (project
s431) and the supercomputer system of the National Institute for
Environmental Studies, Japan. The Pacific Northwest National Lab-
oratory (PNNL) is operated for the Department of Energy (DOE) by
Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
Work at PNNL was supported by the US DOE Decadal and Regional
Climate Prediction using Earth System Models program and by the
US DOE Earth System Modeling program. The ECHAM6-HAM
model was developed by a consortium composed of ETH Zurich,
Max Planck Institut für Meteorologie, Forschungszentrum Jülich,
University of Oxford, the Finnish Meteorological Institute, and the
Leibniz Institute for Tropospheric Research, and is managed by
the Center for Climate Systems Modeling (C2SM) at ETH Zurich
which also provided technical and scientific support. The authors
would like to thank Helen Brindley (Imperial College London) for
her comments on the manuscript.

1. Boucher O et al. (2013) Clouds and Aerosols, eds. Stocker T et al. (Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA), p. 571–658.

2. Twomey S (1974) Pollution and the planetary albedo. Atm. Env. 8:1251–1256.
3. Albrecht B (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science

245:1227–1230.
4. Nakajima T, Higurashi A, Kawamoto K, Penner J (2001) A possible correlation between

satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 28:1171–
1174.

5. Feingold G, Eberhard W, Veron D, M P (2003) First measurements of the Twomey indirect
effect using ground-based remote sensors. Geophys. Res. Lett. 30:1287.

6. Koren I, Kaufman Y, Rosenfeld D, Remer L, Rudich Y (2005) Aerosol invigoration and restruc-
turing of Atlantic convective clouds. Geophys. Res. Lett. 32:L14828.

7. Quaas J, Boucher O, Bellouin N, Kinne S (2008) Satellite-based estimate of the direct and
indirect aerosol climate forcing. J. Geophys. Res. 113:D05204.

8. Quaas J, Stevens B, Stier P, Lohmann U (2010) Interpreting the cloud cover - aerosol optical
depth relationship found in satellite data using a general circulation model. Atmos. Chem.
Phys. 10:6129–6135.

9. Grandey BS, Gururaj A, Stier P, Wagner TM (2014) Rainfall-aerosol relationships explained
by wet scavenging and humidity. Geophys. Res. Lett. 41:5678–5684.

10. Jones TA, Christopher SA, Quaas J (2009) A six year satellite-based assessment of the
regional variations in aerosol indirect effects. Atmos. Chem. Phys. 9:4091–4114.

11. Gryspeerdt E, Quaas J, Bellouin N (2016) Constraining the aerosol influence on cloud fraction.
J. Geophys. Res. 121(7):3566–3583.

12. Quaas J et al. (2009) Aerosol indirect effects - general circulation model intercomparison and
evaluation with satellite data. Atmos. Chem. Phys. 9:8697–8717.

13. Bellouin N et al. (2013) Impact of the modal aerosol scheme GLOMAP-mode on aerosol
forcing in the Hadley Centre global environmental model. Atmos. Chem. Phys. 13:3027–
3044.

14. Shinozuka Y et al. (2015) The relationship between cloud condensation nuclei (CCN) con-
centration and light extinction of dried particles: indications of underlying aerosol processes

and implications for satellite-based CCN estimates. Atmos. Chem. Phys. 15:7585–7604.
15. Stier P (2016) Limitations of passive remote sensing to constrain global cloud condensation

nuclei. Atmos. Chem. Phys. 16(10):6595–6607.
16. Kaufman YJ et al. (2005) Aerosol anthropogenic component estimated from satellite data.

Geophys. Res. Lett. 32:17804.
17. Penner JE, Xu L, Wang M (2011) Satellite methods underestimate indirect climate forcing by

aerosols. Proc. Natl. Acad. Sci. USA 108:13404.
18. Ghan S et al. (2016) Challenges in constraining anthropogenic aerosol effects on cloud ra-

diative forcing using present-day spatiotemporal variability. Proc. Nat. Acad. Sci. 113:5804–
5811.

19. Zhang S et al. (2016) On the characteristics of aerosol indirect effect based on dynamic
regimes in global climate models. Atmos. Chem. Phys. 16(5):2765–2783.

20. Nam C, Bony S, Dufresne JL, Chepfer H (2012) The ‘too few, too bright’ tropical low-cloud
problem in CMIP5 models. Geophys. Res. Lett. 39(21):L21801.

21. Lebsock M, Stephens G, Kummerow C (2008) Multisensor satellite observations of aerosol
effects on warm clouds. J. Geophys. Res. 113:D15205.

22. Levy R et al. (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products
over land. Atmos. Chem. Phys. 10:10399–10420.

23. Zelinka MD, Andrews T, Forster PM, Taylor KE (2014) Quantifying components of aerosol-
cloud-radiation interactions in climate models. J. Geophys. Res. 119:7599–7615.

24. Dusek U et al. (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol
particles. Science 312:1375–1378.

25. Rosenfeld D et al. (2016) Satellite retrieval of cloud condensation nuclei concentrations by
using clouds as ccn chambers. Proc. Nat. Acad. Sci. 113(21):5828–34.

26. Twomey S (1991) Aerosols, clouds and radiation. Atm. Env 25:2435–2442.
27. Platnick S et al. (2003) The MODIS cloud products: algorithms and examples from Terra.

IEEE T. GeoSci. Remote 41:459.
28. Charlson RJ et al. (1992) Climate forcing by anthropogenic aerosols. Science 255:423–430.

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

Gryspeerdt et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

	Materials and Methods
	ACKNOWLEDGMENTS

