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Abstract 

Hydraulic fracturing is a process of fluid injection into the well. This process creates tensile stresses in the rock 

in order to overcome the tensile strength of the formation. In this study, a three-phase hydro-mechanical model 

is developed for simulating hydraulic fracturing. The three phases include: porous solid, fracturing fluid and 

reservoir fluid. Two numerical simulators (ANSYS Fluent for fluid flow and ANSYS Mechanical for 

geomechanical analysis) are coupled together to model multiphase fluid flow in hydraulically fractured rock 

undergoing deformations, ranging from linear elastic to large, nonlinear inelastic deformations. The two solvers 

are coupled, using system coupling in ANSYS Workbench. The coupled problem of fluid flow and fracture 

propagation is solved numerically. The fluid flow model involves solving the Navier-Stokes equations using the 

finite volume method. The flow model is coupled with the geomechanics model to simulate the interaction 

between fluid flow inside the fracture with rock deformations. For any time step, the pore pressures from the 

flow model are used as input for the geomechanics model for the determination of stresses, strains, and 

displacements. The strains derived from the gomechanics model are in turn used to calculate changes to the 

reservoir parameters that are fed as input to the flow model. This iterative process continues until both (fluid and 

solid) models are converged. A parametric study is conducted by changing various model parameters to study 

their effects on the hydraulic fracturing process. The results show that changes in rock mechanical properties as 

well as fluid parameters could lead to significant changes in the hydraulic fracture propagation. 

Keywords: Rock Mechanics; Fluid Mechanics; Energy; Failure; Coupling 
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1-Introduction 

The technology of hydraulic fracturing has been widely used for reservoir stimulation, 

especially for unconventional reservoirs (Economides and Nolte, 2000). Coupled rock 

deformation and fluid flow in fractured porous media is important for reservoir simulation 

because rock deformation exerts an important influence on reservoir production. 

Optimal design of hydraulic fracturing is a fundamental problem in Petroleum Engineering 

and plays a critical role in many applications within the oil and natural gas industry. The 

process of hydraulic fracturing can be generally defined as initiation and propagation of 

fractures due to the pressurization of fluid flow within existing fractures. Hydraulic fracturing 

involves the interaction between four different phenomena: 

(1) Porous medium deformation; 

(2) Pore fluid flow; 

(3) Fracturing fluid flow; and 

(4) Fracture propagation. 

The equations and constitutive relations governing these coupled processes are Biot’s theory 

of poroelasticity for porous media, Darcy’s law for pore fluid flow, Reynold’s lubrication 

theory for fracturing fluid flow and the cohesive zone model to characterize fracturing. The 

focus of this study is the effect of fluid flow and formation properties on hydraulic fracturing 

process. 

The interaction between fluid and solid processes, commonly known as coupling, arises in 

geological media due to the presence of deformable, fluid-filled pores and discontinuities. 

Depending on the type of processes involved, the hydromechanical (HM) response of a rock 

mass can be fully reversible if associated with elastic deformations only, or irreversible if 

associated with processes such as yielding, fracturing, and frictional slipping along 

discontinuities. Advances in theoretical and numerical modelling in coupled HM processes 

have been driven by several geomechanical applications, including: 

Rock engineering: e.g., landslides and slope instabilities, dam foundation failures, and 

stability of underground and surface excavations; 

Nuclear waste management: e.g., design and performance assessment of underground nuclear 

waste repositories; 

Oil and gas exploration and production: e.g., borehole stability, reservoir compaction and 

subsidence, and hydraulic fracturing and stimulation; 

Geothermal energy extraction: e.g., enhanced geothermal systems; 

Mining: e.g., coal mining and coal methane extraction; and 

Storage of fluid underground: e.g., carbon sequestration, geological storage of natural gas, 

and liquid waste disposal (Mahabadi, 2012). 

The interaction between fluid and structure occurs in a system where flow of a fluid causes a 

solid structure to deform which, in turn, changes the boundary condition of the fluid system. 

This can also happen the other way around where the structure makes the fluid flow 

properties to change. This kind of interaction occurs in many natural phenomena and man-

made engineering systems. It becomes a crucial consideration in the design and analysis of 

different engineering systems. Fluid-structure interaction simulations are also conducted to 

avoid flutter on aircraft and turbo-machines (Yun and Hui, 2011). 

In this study, the development of an incremental approach to evaluate the hydraulic fracturing 

is investigated in a shale reservoir. A numerical method is developed to simulate the hydro-
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mechanical evolution of the fracture and of the surrounding rock in the finite element analysis 

framework. The propagation and the exchanges of fluid with the low permeable porous 

medium are considered. The ability of cohesive elements to model fluid-driven crack 

propagation in the viscosity-dominated regime is investigated. Hydraulic fractures for 

reservoir stimulation typically propagate in the viscosity-dominated regime. In this study, we 

focus on the governing equations of the coupled problem: lubrication equation, pressure 

continuity and cohesive zone model. 

2-Hydraulic fracturing models 

The first simplified theoretical models for hydraulic fracturing were developed in the 1950s 

(Crittendon 1950, Harrison et al. 1954 and Hubbert and Willis 1957). One of the most 

important papers that were published in this area was by Perkins and Kern who adapted the 

classic Sneddon plane strain crack solution to develop the so-called PK model (Figure 1). 

Later, Nordgren adapted the PK model to formulate the PKN model, which included the 

effects of fluid loss. Khristianovic and Zheltov, and Geertsma and de Klerk independently 

developed the so-called KGD (plane strain) model (Figure 2). The radial or penny-shaped 

model (Figure 3) with constant fluid pressure was solved by Sneddon. The problem of a flat 

elliptical crack under constant loading was studied by Green and Sneddon (Adachi et al, 

2007). 

The PKN and KGD models differ in one major assumption: the way in which they convert a 

three-dimensional solid and fracture mechanics problem to a two-dimensional plane strain 

model. Khristianovic and Zheltov assumed plane strain in the horizontal direction i.e. all 

horizontal cross sections act independently or equivalently, which is equivalent to assuming 

that the fracture width changes much more slowly vertically along the fracture surface from 

any point on the fracture surface than it does horizontally. In practice it is true if the fracture 

height is much greater than the length or if free slip occurs at the boundaries of pay zone. 

Perkins and Kern, on the other hand, assumed that each vertical cross section acts 

independently (Figure 1), which is equivalent to assuming that the pressure at any section is 

dominated by the height of the section rather than the length of the fracture. This is true if the 

length is much greater than the height. This difference in one basic assumption has lead to 

two different ways of solving the problem. In the case of the PKN model, the effect of the 

fracture tip is not considered; the concentration is on the effect of fluid flow and the 

corresponding pressure gradients. In the KGD model, however, the tip region plays a much 

more important role (Dahi, 2009). 

3-Computational analysis 

The analysis of hydraulic fracturing has gained a wide interest in the petroleum engineering 

community. As the importance of hydraulic fracturing treatment rapidly increases, some 

modelling tools have been developed to estimate the progressive failure phenomenon in 

unconventional reservoirs. The finite element method (FEM) is the most widely used 

numerical tool in fracture mechanics. Several improvements, such as singularity or interface 

elements have been suggested to improve the linear elastic fracture mechanics modelling in 

the FEM. In the FEM, individual elements are connected together by a topological mapping, 

and local polynomial representation is used for the fields within the element. The solution 

obtained is a function of the quality of mesh, and the mesh has to conform to the geometry. 

Therefore, the displacements near fracture tip have to be captured by refining the mesh 
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locally (Chan et al,1975). 

The finite element method is an efficient way to calculate the stress intensity factor due to the 

complexity of the geometry and boundary conditions. In this study the finite element software 

ANSYS is used to simulate the hydraulic fracturing process. In ANSYS, there are 3 main 

ways to evaluate fracture mechanics parameters: 

 Stress intensity factors (K) 

 J-integral JINT (J) 

 Energy release rate VCCT (G) 

3.1-Stress Intensity Factors (SIF) 

Crack propagation analysis requires the evaluation of the parameters such as the energy 

release rate and stress intensity factors (SIF) to determine the length, velocity and orientation 

of the crack propagation. The stress intensity factor is used in fracture mechanics to 

accurately predict the stress state near the tip of a crack caused by loads. The stress intensity 

factor is the magnitude of stress singularity at the crack tip (Anderson 1994). 

The stress-intensity factor, K, is a parameter to characterize the stress field ahead of a sharp 

crack in a test specimen or a structural member. The parameter, K, is related to the nominal 

stress level (σ) in the structural member and the size of the crack, and has the unit of 

(MPa.mm
0.5

). In general, the relationship is represented by: 

   √                                                        (1) 

where p is a geometrical parameter that depends on the structural member and crack size, a is 

the crack length. All structural members or test samples that have flaws can be loaded to 

different levels of K. This is similar to the situation where unflawed structural can be loaded 

to different levels of stress (σ) (Barsom and Rolfe, 1999). 

The magnitude of stress intensity factor depends on sample geometry, the size and location of 

the crack, and the magnitude and the modal distribution of loads on the material. The energy 

release rate for crack growth or strain energy release rate is the change in elastic strain energy 

per unit area of crack growth. The well-known criteria for crack propagation are maximum 

circumferential (hoop) stress (Erdogan and Sih 1963), maximum energy release rate 

(Nuismer 1975), and maximum strain energy density criterion (Sih 1974). 

3.2-J-integral JINT (J) 

The J-Integral evaluation is based on the domain integral method proposed by Shih. The 

domain integration formulation applies area integration for 2-D problems and volume 

integration for 3-D problems. Area and volume integrals offer much better accuracy than 

contour integral and surface integrals, and are easier to implement numerically (Shih and et 

al, 1986). 

3.3-Energy release rate VCCT (G) 

Energy release rate is based on the assumption that the energy needed to separate a surface is 

the same as the energy needed to close the same surface. The approach for evaluating the 

energy-release rate is based on the virtual crack-closure technique (VCCT) (Delorenzi, 1982). 
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4-Mechanics of fluid flow in the fracture 

The major fluid flow parameters are the fluid viscosity μ and injection rate qi. Consider a 

Newtonian fluid flowing laterally through a narrow slit (Figure 4). In the case of laminar flow 

(the general case for flow inside hydraulic fractures), the pressure drop along some length Δx 

of the slit is: 
     

  
 

    

    
                                               (2) 

where hf is fracture height, Δpnet is pressure drop and w is fracture width ̅. 

The fracture is essentially a channel of varying width over its length and height. The local 

pressure gradient within the fracture is determined by the fracturing fluid rheology, fluid 

velocity and fracture width. Equations governing fluid flow within the fracture can be derived 

using the principle of conservation of momentum and lubrication theory applied to a fluid 

travelling in a narrow conduit. The rheology of fracturing fluids is generally represented by a 

power law model that incorporates two parameters K and n. In recognition that fluid flow 

within a fracture is laminar for most fracturing applications (Perkins and Kern, 1961), the 

global pressure gradient along the length of a fracture can be expressed as: 

                 
  

  
 

   
 

 ̅   
                                                   (3) 

where vx is the average fluid velocity along the length of the fracture and is defined in terms 

of the volumetric injection rate qi, fracture height hf and height-averaged fracture width  ̅. 

Material balance or conservation of mass suggests that vx is proportional to qi/ ̅hf. Equation 3 

then becomes 
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                                                       (4) 

In the special case of a Newtonian fluid (n = 1 and K = μ, where μ is the fracturing fluid 

viscosity), equation 4 reduces to 

            
  

  
 

 

 ̅ (
  

 ̅  
)                                                    (5) 

where the term  ̅ hf is readily recognized as the average fracture cross-sectional area. 

Equation 5 is essentially Darcy’s law with the permeability proportional to  ̅2
. Equations 3 

and 4 are formulated in terms of the average velocity and implicitly ignore change in the 

fracture width over its height. The varying width profile has an effect on the flow resistance 

relative to the case of a constant-width channel. The increase in the flow resistance is 

accentuated during periods of fracture height growth into barriers at higher stress. The 

varying width profile affects other physical phenomena that are highly sensitive to the 

velocity (Economides, 2000). 
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5-Numerical Tools 

5.1-Finite Element Method 

Discretizing the equivalent model with finite elements as shown in Figure 5, we can achieve a 

finite element equation for the solid medium as 

                                                                 (6) 

where Ku is the global stiffness of the solid elements, U is the global nodal displacement, and 

F is the equivalent global nodal force of the net pressure. 

As only net pressure has contribution to F, equation (6) can be rewritten as 

                                                           (7) 

where P is a vector of nodal net pressure, and matrix B transfers the net pressures into 

equivalent nodal forces. The conservation of the incompressible fluid in the fracture leads to 

its weak form as 
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where δp is any allowable testing function, and S is the collection of boundary conditions of 

flow. Therefore, a finite element equation for fluid flow within the fracture is cast as 

  ( )                                                 (9) 

where W is a vector formed by the widths of the nodes on the fracture surface, Kw is the 

assembly of the flux stiffness of the fluid elements and is a function of W, L is the assembly 

of the length stiffness of the fluid elements, and H concludes the contributions of the fluid 

leak-off and the fluid injection (Devloo et al, 2006). 

Taking time integration with equation (9), we have 

∫  
    

  
   ( )                                  (10) 

The backward Euler scheme for time difference is used in this paper. So according to 

equation (10) we have 

  (    )        (       )            (11) 

where Wn+1 and Pn+1 are the unknown fracture width and net fluid pressure at the (n + 1)-th 

step, respectively, Wn is the known fracture width at the n-th step, and Δt is the time step 

between the n-th step and the (n + 1)-th step. 

Equation (11) can be rewritten in an alternative way as  
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  (    )        ́(    
    

 )                 (12) 

where U
f

n+1 and U
f

n are the displacements of the nodes on the fracture surface at the (n + 1)-

th step and n-th step, respectively, and  ́ determines the contribution of nodal displacements 

on the fracture surface to fracture widths. Note that U
f

n+1 is a subset of Un+1, and U
f

n is known 

a priori. 

In every step, Equation (11) leads to a new equation written as 

                                                              (13) 

Un+1 and Pn+1 can be obtained by solving the coupled equations (12) and (13) (Bao et al, 

2014). 

5.2-Computational Fluid Dynamics 

The Computational Fluid Dynamics (CFD) code, FLUENT, was used for numerical analysis 

of fluid flow. The code uses a finite volume-based technique to convert the governing 

mathematical equations to algebraic equations that can be solved numerically. The code is 

supplemented by a proprietary ANSYS based geometry construction and meshing engine, 

which allows users to build and mesh complex flow models to be used by the solver 

(Versteeg and Malalasekara, 1995). 

Like most CFD programs, Fluent is based on the finite volume method (FVM). The finite 

volume method is a generalization of the finite difference method to unstructured meshes. 

Unlike the finite element method, FVM yields values across the entire volume contained 

within a cell. This has a particular advantage in preserving the flux of state variables across 

intercellular surfaces (Wilkes, 1999). 

We are interested in using CFD to solve the Navier–Stokes equations or some coherent 

simplified subset of these. These are the set of equations which, taken together, completely 

describe continuum hydrodynamics. The momentum conservation equations are: 
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(14) 

The associated continuity equation is 
  

  
 

  

  
 

  

  
                         (15) 

where, u, v, w are x, y, z components of velocity respectively. The continuity equation 

(equation 15), and the Navier-Stokes equations (equation 14) completely describe the motion 

of an incompressible fluid in a continuum medium in 3D (Wilkes, 1999). 
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Broadly, the strategy of CFD is to replace the continuous problem domain with a discrete 

domain using a grid. In the continuous domain, each flow variable is defined at every point in 

the domain. Appropriate initial and boundary conditions need to be applied in order to solve 

the Navier-Stokes equations and continuity equations. The boundary conditions in a 2D crack 

on the wall of a production well, which are used in this study, are as follows: 

- No-slip boundary condition is used to bound fluid and solid regions. 

- Velocity inlet boundary conditions are used to define the velocity and scalar 

properties of the flow at inlet boundaries. 

- Pressure inlet boundary conditions are used to define the total pressure and other 

scalar quantities at flow inlets. 

- Pressure outlet boundary conditions are used to define the static pressure at flow 

outlets. 

In addition, material properties including density and viscosity for each zone are specified. It 

is important to accurately represent a boundary layer or fully developed turbulent flow at the 

inlet but in this study laminar flow is used. Multiple upstream meshes can be used in Fluent, 

giving users the flexibility to select the most efficient mesh combinations for different 

applications but Tetrahedral mesh, is used in this study. 

The advantage of using tetrahedral mesh is that it gives an indication of how the mesh is 

likely to respond to the deformations experienced during simulation. This is in contrast to 

many traditional methods that may produce an initial mesh with good quality measures, but 

also with hidden deficiencies that can be revealed during simulation leading to poor accuracy 

or element collapse. 

6-Coupling 

Multi-physics problems are very difficult to solve by analytical methods and using numerical 

or experimental methods is the best way to solve them. Advanced techniques and the 

availability of powerful commercial software tools in both fluid and solid parts have made 

this numerical simulation possible. There are three different coupling methods for solving 

coupled problems: full coupling, loose coupling and one-way coupling 

6.1-One-way Coupling 

In one-way coupling, two separate sets of equations are solved independently over the same 

total time interval. Periodically, output from one simulator is passed as input to the other; 

however, information is passed in only one direction. For example, pore pressures might be 

sent from the flow code to the mechanical simulation code as input load to calculate the 

mechanical responses such as stresses, strains, and displacements. No information would be 

passed back from mechanical model to flow model, however. In most practical applications, 

the two simulators are in fact run independently. One can often gain valuable insight into the 

physical situation from one-way coupling, and it is clearly preferable to fluid flow alone 

(Fredrich et al., 1996, 1998). 
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6.2-Two-way coupling 

This type of coupling is applied to problems where the motion of a fluid influences a solid 

structure and at the same time the flow of fluid is influenced by reaction of the solid structure. 

During the first time step, converged solutions of the fluid calculation provide the forces 

acting on the solid body. Then the forces are interpolated to the structural mesh like in one-

way coupling and the solution from the structural solver is obtained with those fluid forces as 

boundary conditions. As a consequence, the mesh is deformed according to the response of 

structure. These displacement values are interpolated to the fluid mesh, which results in 

deformation of the fluid domain. This process is repeated until both force and displacement 

values are converged below the pre-determined limit (Benra et al, 2011). 

6.3-Full Coupling 

To develop a fully coupled simulator, a single set of equations incorporating all of the 

relevant physics must be solved simultaneously. As an example, the traditional porous flow 

equations for a rigid matrix would be modified to include terms for mechanical deformation. 

Full coupling is often the preferred method for simulating multi-physics problems since it 

should theoretically produce the most realistic results. Unfortunately, deriving a fully coupled 

multiphase flow simulator that models nonlinear, inelastic mechanical deformations is 

extremely difficult. Thus with fully coupled models, often the mechanical part is simplified 

by the assumption of linear elasticity (Lewis and Sukirman, 1993a,b; Lewis and Ghafouri, 

1997; Osorio et al., 1999). 

The present study describes a loose coupling approach, which is somewhere between full and 

one-way coupling. In loose coupling, there are two sets of equations, which are solved 

independently, but information is passed at designated time intervals in both directions 

between the two simulators. Laminar flow was used in this study. The existing crack length 

and width were 200 mm. The borehole diameter and length were 30 cm and 200 cm 

respectively and it was drilled in a shale formation. Figure 6 shows the horizontal borehole 

and the fracture inside a shale reservoir. 

Workbench can be used to perform coupled simulations using two or more systems (ANSYS 

Mechanical and ANSYS Fluent in this case) using a System Coupling component. One-way 

or two-way fluid-structure interaction analysis can be set up in Workbench by connecting a 

System Coupling component to the Mechanical system and to the ANSYS Fluent fluid flow 

analysis system. 

The fluid pressure at the start of pumping was 9 MPa and fluid velocity was 5 m/s. Young’s 

modulus, Poisson’s ratio and fluid viscosity were respectively 25 GPa, 0.2 and 0.0003 pa.s. 

Figure 8 shows the hydraulic fracture after pumping high-pressure fluid and coupling of two 

solvers. 
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7-Numerical Results 

Rock mechanical properties such as Young’s modulus, and Poisson’s ratio have significant 

influences on hydraulic fracturing operation. It is important to note that, these parameters are 

uncontrollable and are totally dependent to the rock formation properties, which arise from 

geological conditions. Meantime, other parameters such as fluid viscosity and leak-off 

coefficients play important roles in designing a hydraulic fracturing fluid, which can simply 

change the hydraulic fracturing opening. By knowing the influences of the above parameters 

on opening of cracks, the capability of proppant transport and the probability of bridging and 

eventually any job failure can be somehow predicted. 

Figure 9 shows the variation of stress intensity factor as a function of the crack length along 

the cohesive elements in reservoir domain. Despite complex loading conditions and various 

loads in hydraulic fracturing, stress intensity field in the crack tips, created from any source 

of loading, can be formulated using the principle of superimposition of stress intensity 

factors. 

J-integral is a parameter that can be used for crack propagation analysis. Figure 10 shows the 

variation of J-Integral with crack length. It is seen that J-Integral increases with increasing the 

crack length. This can be attributed to the concept that with a growth in crack length, 

component of released elastic energy in J-Integral ascends. The figure shows, that in the first 

stage, the rate of variation of J-integral has a descending trend and after reaching a minimum 

value, the trend changes the course and adopts an ascending approach. 

The reason for this phenomenon can be explained by the fact that in the first stages, the 

released energy is consumed to propagate and develop the cracks and to overcome the surface 

crack energy. Minimum value of J-integral in this figure shows that the crack has reached its 

final propagation phase and after which, by increasing fluid injection, the crack does not 

propagate and causes an increase in elastic strain energy in the rock that makes the potential 

energy grow up. 

Figure 11 shows the variation of critical pressure of crack propagation with changes in crack 

length growth at different pressures. As can be seen, by increasing the crack length, the 

critical crack propagation pressure decreases. It shows that the bottom hole pressure drops 

with time while the fracture length increases. This result is a consequence of assuming an 

infinite height for the fracture (KGD geometry), which indicates that longer fractures require 

less pressure to maintain the same opening. 

In general, increasing the fracturing fluid viscosity in injection operation can considerably 

increase the fracture stress intensity factor. Based on Figure 12, as viscosity increases from 

0.3 to 0.9 Pa.s, a meaningful increase in stress intensity factor that can be easily observed. 

The higher fluid viscosity leads to increasing net wellbore pressure that acts on the fracture 

surface area, which results in further opening of the fracture. 

Figure 13 shows the effect of Young’s modulus on crack propagation. The results show that, 

by increasing elastic modulus from 25 to 50 GPa, the stress intensity factor has steeply 

increased from 0.25 to 1.2 MPa.√mm. It can be concluded that rocks with higher elastic 

modulus can be fractured easier. 
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Poisson’s ratio indicates how much a rock that is shortened in one direction expands in the 

other two directions. The results show that increasing Poisson’s ratio from 0.2 to 0.5, 

increases the stress intensity factor from 0.5 to 1.7 MPa.√mm (Figure 14). So, based on the 

definition of Poisson’s ratio, it can be concluded that any increase in this parameter would 

affect the local stresses as well as the extent of strain level and deformation near the crack tip, 

which can significantly increase the crack propagation. 

8-Validation and Discussion 

The results of numerical simulations show that the numerical plan is well conducted and 

keeps a high rate of convergence. In this part, results for different cases are presented in order 

to show the validity of the model. 

There is no exact solution for verification of the model accuracy beyond simple examples due 

to the complexity of the hydraulic fracturing problem. Geertsma and de Klerk (1969) 

presented an approximate solution for a two dimensional fracture with a Newtonian fluid.  In 

this solution, the fracture length, fracture opening at the wellbore, and net pressure can be 

derived as: 
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where  ́ is plane-strain modulus of elasticity ( ́ =2G/1- ν), and q0 is the injection rate per 1−ν 

 unit height of the fracture (q0 =Q0 /hf ). Geertsma’s model usutilizes the assumption of 

smooth closing surfaces as the boundary condition at the fracture tip (∂w(L,t)/∂x = 0), which 

is in accordance with Barenblatt’s model for cohesive cracks. Therefore, results are not 

necessarily similar to the results of the model with the zero pressure boundary condition at 

the tips. Geertsma also assumed that the flow rate is equal to the injection rate everywhere. 

The fluid storage in the fracture (as the width changes with time) is neglected in Geertsma’s 

model. Since pressure in Geertsma’s model is net pressure, no in situ stress was assumed in 

this model to make the comparison easier. The FE model indicates good agreement with the 

analytical solution for a 10 minute constant rate injection of a Newtonian fluid (Figures 15 

and 16). The fracture length and net pressure results are in close agreement, while the FE 

model predicts a slightly higher width at later time than the Geertsma’s model. 

Figure 14 shows that the pressure decreases with time while the fracture length increases. 

This result is a consequence of assuming an infinite height for the fracture (KGD geometry), 

which implies that longer fractures require less pressure. In the KGD model, the net pressure 

gradient drops rapidly with fracture length and reaches an almost constant value. 

The fracture mechanics solution of Rummel and Winter was used to calculate the stress 

intensity factor. In this approach, the peak pressure (PC), is expressed as (Rummel and 

Winter, 1982): 
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where Sh and SH are minimum and maximum in-situ pressures, respectively. PC is the critical 

hydraulic pressure and f, g and h, are dimensionless functions of stress intensity factors that 

are calculated from normalized crack length of a/r, r being diameter of the borehole and a 

crack length. 
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In addition to the confining pressure, the injected fluid pressure is applied on borehole wall 

and fracture plane. Despite such complex stress conditions, stress intensity factor around the 

crack tip can be easily formulated using the superimposition principle of stress intensity 

factors. 

  (       )    (  )    (  )    ( )    (  )        (24) 

In the above equation, KI specifies the stress intensity factor for mode I. P is the applied 

pressure and Pa which is expressed by Pa= P(x,0) determines the pressure distribution in 

fracture direction from x=(R,-R) to x=(R+a, R-a) (Dos Santos, et al. 2011). 

The variations of stress intensity factor as a function of the crack length in the reservoir 

domain are shown in Figure 17. The results show a good agreement between the analytical 

and FEM results. Despite complex loading conditions and various loads in hydraulic 

fracturing, stress intensity field in the crack tips, created from any source of loading, can be 

formulated using the principle of superimposition of stress intensity factors. 

9-Conclusion 

Hydro-mechanical coupling is crucial to account for the effect of fluid injection on hydraulic 

fracture propagation. A loose coupling of hydraulic and mechanical processes was presented 

in this study.  Loose coupling is somehow simple to implement like one-way coupling, but it 

holds promise for capturing much more of the complex nonlinear physics, thus is similar to a 

fully coupled method. The hydraulic fracturing has been investigated numerically through a 

FEM-based model in different stress intensity factors, J-Integral, elastic modulus, Poisson’s 

ratio, fluid pressure and fluid viscosity. The model couples the fluid flow with fracture 

propagation while damage initiation and evaluation criteria have also been presented. The 

results show that Increasing stress intensity factor and J-Integral would increase crack 

propagation. 

The variation of critical pressure of crack propagation according to crack length growth in 
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different pressures was studied. By increasing crack length, critical crack propagation 

pressure decreases. This shows that the bottom hole pressure drops with time while the 

fracture length increases. Mechanical properties of reservoir including elastic modulus and 

Poisson’s ratio, would affect hydraulic fracturing directly. The results from the model suggest 

that increasing elastic modulus and Poisson’s ratio of rock increases the crack propagation as 

the stress intensity factor also increases. Generally, increasing the fracturing fluid viscosity in 

injection operation can considerably increase the fracture stress intensity factor. In fact, 

higher fluid viscosity leads to increasing net wellbore pressure that acts on the fracture 

surface area, which results in further opening of the fracture. The results from this work can 

be applied in the analysis and optimization of hydraulic fracturing to avoid proppant bridging 

or job failure, especially where formation modulus contrast is a challenge such as fracturing 

in multi-layer reservoirs or shale formations. 

Numerical simulations were carried out and the results were compared with analytical 

solutions. A high rate of convergence is observed which indicates the validity of the model. 

In the KGD model, the net pressure gradient drops rapidly with fracture length and reaches an 

almost constant value. The fracture mechanics solution of Rummel and Winter (1982) was 

used to calculate the stress intensity factor. The variation of stress intensity factor as a 

function of the crack length in the reservoir domain shows a good agreement between the 

analytical and FEM results. 
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Notation List 

a   Crack length 

B   matrix, which transfers the net pressures into equivalent nodal forces 

H   to conclude the contributions of fluid leak-off and fluid injection 

fh   fracture height 

E   plane train modulus of elasticity 

F   equivalent global nodal force of net pressure 

K   stress intensity factor 

uK   global stiffness of solid elements 

wK   global flux stiffness of fluid elements 

L   global length stiffness of fluid elements 

( )L t   fracture length changes with time 

L   to determine the contribution of node displacements on fracture surface to fracture width 

n   power law model parameter 

n 1, P P  node net pressure and node net pressure at the n + 1-th step 

Δ netp   pressure drop 

0q   injection rate per 1−ν  unit height of the fracture 

iq   injection rate 

S  collection of boundary conditions of flow 

t   time 

f

i (i n,n 1) U  node displacement with contribution to fracture width at the i-th step 

U   global nodal displacement 

u  component of velocity in x axis 

v  component of velocity in y axis 

xv   average fluid velocity 

w   fracture width 

W   a vector formed by the widths on of the nodes on fracture surface 

i (i n,n 1) W  fracture width at the i-th step 

wellW ( )t   width of fracture 

w   height-averaged fracture width 

w   component of velocity in z axis 

Δx   length 

Greek letters 

pδ   allowable testing function 

   stress 

ν   Poisson’s ratio 
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μ   fluid viscosity 
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Figure captions 

Figure 1: PKN fracture Geometry 

Figure 2: KGD fracture Geometry 

Figure 3: penny-shaped fracture Geometry 

Figure 4: Fluid flowing laterally through a narrow fracture 

Figure 5: Discretization with finite elements 

Figure 6: Semi-elliptical fracture and horizntal borehole inside a shale reservoire 

Figure7: System coupling in Workbench 

Figure 8: Fracture inside borehole after coupling 

Figure 9: Stress intensity factor vs Crack length 

Figure 10: J-Integral vs Crack length 

Figure 11: Pressure vs Crack length 

Figure 12: Stress intensity factor vs Viscosity 

Figure 13: Young's modulus vs Stress intensity factor 

Figure 14: Poisson’s ratio vs Stress intensity factor 

Figure 15: Variation of pressure with crack length 

Figure 16: Variation of crack length with time 

Figure 17: Variation of stress intensity factor with crack length 
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