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Abstract Vaccines induce memory B-cells that provide high affinity secondary antibody

responses to identical antigens. Memory B-cells can also re-instigate affinity maturation, but how

this happens against antigenic variants is poorly understood despite its potential impact on driving

broadly protective immunity against pathogens such as Influenza and Dengue. We immunised mice

sequentially with identical or variant Dengue-virus envelope proteins and analysed antibody and

germinal-centre (GC) responses. Variant protein boosts induced GCs with a higher proportion of

IgM+ B cells. The most variant protein re-stimulated GCs with the highest proportion of IgM+ cells

with the most diverse, least mutated V-genes and with a slower but efficient serum antibody

response. Recombinant antibodies from GC B-cells showed a higher affinity for the variant antigen

than antibodies from a primary response, confirming a memory origin. This reveals a new process

of antibody memory, that IgM memory cells with fewer mutations participate in secondary

responses to variant antigens, demonstrating how the hierarchical structure of B-cell memory is

used and indicating the potential and limits of cross-reactive antibody based immunity.

DOI: https://doi.org/10.7554/eLife.26832.001

Introduction
Antibody-based immunity is underpinned by memory B-cells that have undergone antibody somatic

hyper-mutation (SHM) and selection for improved antigen binding in germinal centres (GCs)

(MacLennan et al., 1997). Re-challenge with the same antigen stimulates a rapid, higher affinity,

secondary antibody response.

Protective immunity to highly mutable viruses, like Dengue and Influenza, can be induced by vac-

cination but the high level of variation often leads to immune escape (Nabel and Fauci, 2010), lead-

ing to a focus on generating vaccine responses against conserved antigenic regions (Wu et al.,

2010; Corti et al., 2011; Wang et al., 2015).

Memory B-cells of IgM and IgG isotypes can also re-instigate GCs after secondary exposure

(Dogan et al., 2009; Pape et al., 2011; McHeyzer-Williams et al., 2015), but how this happens

against variant antigens is poorly understood despite its potential impact on driving the most

broadly protective immunity.

Several studies suggest diversity in the memory B-cell population, showing that cells can express

IgM or IgG (Dogan et al., 2009; Pape et al., 2011), be mutated or non-mutated (Kaji et al., 2012)

and have low affinities (Smith et al., 1997), but still persist in GCs (Kuraoka et al., 2016).

It has long been speculated that this diversity may facilitate the recognition of antigenic variants

(Herzenberg et al., 1980; Pape et al., 2011; Kaji et al., 2012) which could stimulate secondary
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GCs derived from less mutated, naı̈ve-like, memory B-cells that still had an advantage over naive

B-cells due to their increased numbers, pre-selected V-genes and lower activation thresholds

(Good and Tangye, 2007; Good et al., 2009).

By sequentially immunizing mice with the same or different Dengue-virus envelope proteins, and

analyzing serum antibodies and GC B-cells, we provide evidence that supports the hypothesis that

less developed memory B-cells are used in secondary responses to variant antigens.

Results

E-protein variants elicit secondary serum antibody responses with
different speed and cross-reactivity
We chose Dengue-3 envelope protein (E3) for all priming immunisations. Boost immunisations were

performed 38 days later with identical E3 protein or variant E2 or E4 proteins which have 68% and

63% overall sequence identity with E3, respectively.

The cross reactivity of E3-primed mouse serum IgG correlated with sequence identity

(Figure 1A), and overall cross-reactivity also correlated (Figure 1B).

Boosting with homotypic E3 antigen induced a rapid antibody memory response with anti-E3

titres rising rapidly to day 7, and not increasing further (Figure 1D). E-protein boosted antisera was

not reactive with an irrelevant His-tagged protein (PR8 HA)(Figure 1C).

Heterotypic boosting with E2 induced a rapid and significant increase in anti-E3 titre, as might be

expected if cross-reactive memory antibodies against the priming E3 antigen were recalled

eLife digest Many devastating infectious diseases are caused by viruses that change over time.

When a vaccine exists, it usually protects against a particular strain of virus, but often fails to defend

against new versions of the microbe. This is why the flu vaccine has to be ‘updated’ every year, for

example.

Vaccines rely on the memory of our immune system. When a virus enters the body, a group of

immune cells known as B cells gets activated. Certain B cells can recognise the invader and produce

specific proteins, the antibodies, which can target and kill the invader. During the infection some of

these B cells become ‘memory B cells’, having gone through a maturation process that hones their

ability to specifically recognize this particular microbe. If the same virus enters the organism again,

the memory B cells rapidly identify it and produce a quicker and more efficient immune response

than during the first attack. This is how vaccines work. However memory B cells may not be able to

recognize a previous intruder if it has changed too much.

The memory B cell population is diverse. Some cells are fully mature and can quickly recognize

the original virus. But others have not finished their maturation process: these cells are less focussed,

and cannot target the original microbe with the same exact precision shown by mature memory

cells. For almost forty years it was thought that this reduced focus might make the immature cells

better at identifying new versions of the original attacker, but up until now, it was not clear what

these memory cells could do.

Here Burton, Tennant et al. injected a group of mice with proteins from the Dengue virus, which

prompted an immune reaction. After several weeks, the animals received either the same proteins

again, or proteins that were different. Compared to the fully mature cells, the immature memory B

cells were much better at recognizing the variants of the proteins, and these cells then multiplied

and mounted an immune response. Without the original protein injection, the response without the

immature memory B cells was not as efficient. The body therefore has a pool of memory B cells that

can recognise a wider range of virus protein variants than the ones that caused the first immune

reaction.

Understanding the role of immature memory B cells in immunity could help design vaccines that

protect against several strains or fast-evolving viruses. This could have the potential to reduce the

severity of diseases that affect hundreds of millions of people every year.
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(Figure 1D), that did not increase further by day 17. E4 boosting induced a modest but not statisti-

cally significant increase in the anti-E3 titre, even by day 17, showing the E4 variant boost had not

induced a significant anti-E3 antibody memory response, or the induced antibodies had a low affinity

for E3 (see discussion).
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Figure 1. Serum antibody responses after boosting with Dengue envelope protein variants. (A) Cross-reactivity of

E3 primed serum IgG with E-protein variants. Red bar shows mean value. Serum used was from mice mock-

boosted with PBS 37 days after E3 priming and obtained 7 days later; E3, Dengue-3 envelope protein; E2,

Dengue-2 envelope protein; E4, Dengue-4 envelope protein; % identity, sequence identity between E3 envelope

protein and respective protein; end-point titre (EPT) values plotted are log2 of 1/(end point dilution x 100), each

unit increase represents a doubling of titre. (B) E3 primed mouse serum cross-reactivity with E2 versus E4. (C)

Control. Anti-PR8 HA serum IgG titre of E3 day 7boost serum. (D) Anti-E3 serum IgG titre after boosting with

respective proteins. Red bar shows mean value. n = 6 from two independent experiments for each group except

boost only, n = 3; first set of data points reproduced from panel A for comparison; numbers 3, 2 and 4 refer to

serotype of Dengue-envelope protein used for boost; BO, adjuvant primed, E3 boosted, analysed 7 days later;

Day, days after boosting. p-values calculated using two-tailed Students t-test after testing for equality of

variance. (E) Anti-E2 serum IgG titre after E2 boost. Red bar shows mean value. n = 6 from two independent

experiments for each group; labeling and statistics as for panel D. (F) Anti-E4 serum IgG titre after E4 boost. Red

bar shows mean value. n = 6 from two independent experiments for each group; labeling and statistics as for

panel D.
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The anti-E2 titre induced by the E2 boost increased about 120-fold by day 7 (Figure 1E), and did

not increase further by day 17, further indicating that E2 boosting induced a rapid memory-like

serum IgG response against E2 derived from cross-reactive E3 primed memory B-cells. Conversely

the anti-E4 titre, induced by E4 boosting, rose significantly but to a lower level, about 20-fold, by

day 7 (Figure 1F) and showed a further rise by day 17. A boost alone did not induce a detectable

antibody titre however, (‘BO’, Figure 1D) suggesting a role for memory B-cells of some type and/or

cross-reactive T-cell memory, facilitating the E4 boost response.

Increased levels of IgM+ GC B-cells with fewer mutations after variant
protein boosting
E3 and E2 boosting induced early GC B-cell levels similarly by day 7, to 4.5–5.5% of total lympho-

cytes, which then reduced by two-thirds by day 17 (Figure 2B). E4 boosting induced GC B-cell levels

about a third as high, which then reduced similarly by about 60% at day 17, remaining 4-fold higher

than controls.

Analysis of the proportion of IgM+ GC B-cells showed a highly significant trend at day 7 after

boosting, with the proportion of IgM+ GC B-cells correlating with increasingly variant challenge

(Figure 2C). This trend continued to day 17. The proportion of IgM+ B cells was also consistent

between individuals in an experimental group (Figure 2D).

Overall levels of VH mutations increased in all groups from day 7 to day 17 (Figure 2E), consistent

with secondary affinity maturation. Sequences are available in Supplementary file 1.

There were lower levels of SHM in IgM+ GC B-cells 7 days after the variant boosts, particularly

with the most variant protein E4, compared to the homotypic E3 boost (Figure 2F). Boosting with

variant proteins, therefore, induced early GCs with increased proportions of IgM B-cells that had

fewer VH mutations.

Analysis of the VH clonality of GC B-cells after E-protein boosts showed that almost every VH

sequence was from a distinct B-cell clone (Figure 2G). These data also showed that the two variant

boosts elicited different repertoires of VH. 40% of the VH sequences sampled at day 7 from E2

boosted mice were either VH14-3 or the closely related VH14-4 (black dots, Figure 2G), suggestive

of a secondary response more focused on a particular epitope (see discussion). Some of these VH

were also present in the homotypic E3 boost day 7 samples, but neither were detected at day 7 after

E4 boosting (Figure 2G).

Changes in serum affinity/avidity after variant antigen boosting
E2-variant boosting induced an immediate and significant increase in avidity by day 7 (Figure 3A)

which did not detectably change until perhaps day 32, although data variability is high. A modest

but significant increase in serum affinity, however, was detected by day 17, with a further increase

detected by day 32 (Figure 3C). We interpret this to mean that a relatively small portion of serum

IgG underwent affinity maturation by day 17 in response to the E2 boost and was not detectable by

the Urea avidity assay due to high variability and the high pre-existing IgG titres (Figure 1E), or

other limitations of the Urea assay (Alexander et al., 2015). Boosting with the E4 variant elicited

slower increases in relative affinity and avidity, only detectable by day 32, but by then representing

an equivalent, if not greater, increase compared to that induced by E2 (Figure 3B and D).

Similar memory T-cell stimulation by variant dengue E-proteins
Memory T-cells are necessary for memory B-cell responses against haptens and viral proteins

(Aiba et al., 2010; Hebeis et al., 2004). We found no evidence that the memory T-cell response to

re-stimulation by variant E-proteins was any different from re-stimulation by E3 (Figure 3E). These

data imply that a deficiency in T-cell recognition of these antigens cannot explain the differences in

response to E2 and E4 challenge, and supports the idea that either T-cell receptors can recognize

antigenic peptides from regions with around 50% sequence difference (see discussion) or, more

likely, B-cells present peptides from different, more conserved regions than those their antibodies

bind to.
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Figure 2. GC B-cell levels, isotypes, VH mutation and clonality after boosting with E-protein variants. (A) FACS gating strategy used to identify and sort

GC B-cells and determine isotype. (B) GC B-cell levels after E-variant boosting, expressed as % total lymphocytes; Red bar shows mean value; numbers

3,2 and 4 refer to serotype of Dengue-envelope protein used for boost; BO, boost only, adjuvant primed, E3 boosted day 37, analysed 7 days later;

Day, days after boosting. (C) % IgM+ GC B-cells, of total GC B-cells, after boosting. Red bar shows mean value. n = 6 from two independent

Figure 2 continued on next page
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The primary antibody and GC response to E4
For comparison with the E4 boost response, we performed primary immunisations with E4 and ana-

lysed serum antibodies and GC B-cells at day 7 and day 17. Serum levels of anti-E4 IgG rose to a

moderate level by day 17 (mean EPT = 3.6, Figure 4A), being less than seen after E4 boosting

(Figure 1F). GC B-cell levels rose to a mean of 0.8% lymphocytes at day 7 after E4 priming, half as

much as after the E4 boost, then fell similarly to the post boost samples by around 60% by day 17

(Figure 4B). As with the E-boost GCs, the proportion of IgM+ GC B-cells fell over time (Figure 4C)

and levels of VH mutation in all B-cells and IgM+ B cells increased (Figure 4D and E). The median

level of VH mutation in IgM+ GC B-cells at day 7 after E4 priming is less (=2) than after E4 boosting

(=3) suggesting, not conclusively, that GC Bells at day 7 after E4 boosting are memory derived. Anti-

body titres were insufficient to do a relative affinity competition ELISA and no 7M Urea-resistant IgG

was detected 7 or 17 days after E4 priming (data not shown).

IgM antibodies from E4 boost GC show evidence of prior selection
If E4 boost induced B-cells are memory derived the antibodies should show evidence of pre-selec-

tion by the E3 prime. We made 48 recombinant antibodies (rAbs), 38 of which were IgM

(supplementary file 2), 24 from E4 primed mice (day 7 and day 17) and 24 from E4 boosted mice

(day 7). Figure 4F and Supplementary file 2, show the results from the initial screen of all rAbs

against E4, indicating that the efficiency of detection of positive binding (deemed as O.D. > 0.1, use-

ful for subsequent titration) was quite low but consistent with the 30–50% binding frequency of GC

rAbs previously observed (Kuraoka et al., 2016), except for E4 prime day 7, which has only 2/13

rAbs binding strongly enough to be titrated. This might be expected of antibodies from a day 7 pri-

mary response GC, and indicated they were overall of lower affinity. Other rAbs from this group

showed evidence of weak binding (supplementary file 2), indicating that the rAb cloning efficiency

for this group was not reduced and only the two strongest binders were above the ELISA titration

threshold. All but one of the positive binding rAbs were IgM. Figure 4G shows the ELISA titration

and Figure 4H the derived endpoint titres, which we are using as a proxy of affinity. A more strongly

binding IgM rAb from E4 boost day 7, B5, and the only positive binding IgG1 rAb, G6, are indicated

on Figure 4H. The positive-binding rAbs from E4 prime day 17 show a higher affinity than those

from prime day 7, consistent with affinity maturation. Six of the seven positive-binding IgM rAbs

from E4 boost day 7 show a higher affinity than the two strongest binding IgM rAbs from E4 prime

day 7. This is consistent with pre-selection by the E3 prime immunization, and also considering the

higher proportion of rAbs with an anti-E4 O.D. > 0.1, implies the GC B-cells expressing these anti-

bodies are memory derived. rAb affinities were generally low, which might be expected of IgMs par-

ticularly in early GCs. We estimated the Kd of rAbs B5 and G6 (an IgG1) as around 150 nm and 1 mm

respectively (see Materials and methods). Other rAbs would be in the super-micromolar range.

Figure 4I shows the cross reactivity of rAbs with E3. Binding to E3 correlates with binding to E4, but

because of the generally low rAb affinities we suggest that the antibodies cannot discriminate

between similar epitopes. The higher affinity of E4 boost rAbs B5 and G6, and binding to E3, sug-

gest they may have genuine specificity for E3, thus consistent with their derivation from anti-E3

memory. That rAb B5 is an IgM with only one VH (and one Vkappa) mutation, provides further sup-

port for the proposal of this study.

Figure 2 continued

experiments for each group; labels as for panel B except % identity which refers to sequence identity between E3 and other variants; p-values

calculated using two-tailed Students t-test after testing for equality of variance. (D) Levels of IgM+ and IgM- GC B-cells in individual boosted mice. (E)

Number of mutations detected in VH of all isotypes of GC B-cells, from n = 3 mice except E4 boost day 17, n = 2. Red bar is median value. VH region

sequenced is CDR1 to FR3; labeling as panel B. (F) Number of mutations detected in VH of IgM+ GC B-cells, from n = 3 mice except E4 boost day 17,

n = 2. Red bar is median value. (G) Clonality of sequences from single GC B-cells 7 days after boosting; colours indicate different mice in each group;

thin sectors, unique sequences; thicker sectors two or three clonal sequences according to sector size; black dots, VH 14–3 or VH14-4 sequences;

numbers in circles, number of sequences from that mouse; Identical VH clones had the same: V-gene, CDR3 length, J-gene, D-gene if assigned,

D-reading frame, three or fewer differences in CDR3 amino acid sequence.
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Figure 3. Relative serum affinity and avidity after boosting with E-protein variants, and T-cell re-stimulation. (A)

Relative avidity of E2 boost serum for E2, measured by resistance to 7M Urea. Red bar shows mean value; Day,

days after E2 boosting; Day 0 sample was from mice mock-boosted with PBS 37 days after priming with E3 and

obtained 7 days later. (B) Relative avidity of E4 boost serum for E4, measured by resistance to 7M Urea. Labeling

as for panel A; Day 0 sample was from mice mock-boosted with PBS 37 days after priming with E3 and obtained 7

days later (C) Relative affinity of E2 boosted serum for E2. Inhibition by lower concentration of competitor implies

higher affinity of serum for competitor. Maximum competitor amount 2 mg in 50 ml followed by six-fold dilutions of

competitor; timepoint of samples and numbers of individuals in group indicated. Open circles, E2 boost day 17

serum competed with irrelevant His-tagged protein measured on E2 target (D) Relative affinity of E4 boosted

serum for E4. Labeling as for panel A. (E) T-cell proliferation measured by 3H incorporation 96 hr after re-

stimulation in vitro with indicated amounts of E-protein variants; error bars indicate standard error of the mean;

n = 4 or five from two independent experiments (see source data). Closed symbols, E3 primed mouse splenocytes

re-stimulated with indicated E-protein variant. Open symbols, adjuvant primed mouse splenocytes re-stimulated

with indicated E-protein variant.

DOI: https://doi.org/10.7554/eLife.26832.005

The following source data is available for figure 3:

Source data 1 Source data for Figure 3 panels C, D and E.
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Discussion
The most variant protein we boosted with, E4, stimulated GCs with the highest proportion of IgM

+ cells and with the lowest levels of VH gene mutation, greater VH-gene diversity, and a slower,

more specific, serum IgG response that resulted in equivalent if not higher affinity, compared to the

heterotypic E2 boost. This response was higher than the primary response to E4. IgM rAbs cloned

from E4 boost day 7 GC showed a higher affinity for E4 than those from E4 primed day 7 GC, imply-

ing they were memory derived. This demonstrates that IgM memory cells with fewer mutations,

from ‘lower’ levels of the memory compartment, participate in secondary responses to variant anti-

gens, and further challenges the hypothesis that highly mutated, class-switched cells elicited by

homotypic antigen boosting are a ‘mirror’ of the antibody memory compartment (Weiss and Rajew-

sky, 1990). The slower nature of the E4 boost serum response also suggests a lower level of
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DOI: https://doi.org/10.7554/eLife.26832.007
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immediate differentiation of memory cells into AFCs than seen with for example the homotypic or

E2 response, and is consistent with reduced numbers of high affinity class-switched memory cells

recognizing E4.

The serum antibody response to the closer variant, E2, was more rapid, more cross-reactive and

evidenced some earlier affinity maturation. These observations are consistent with a response

derived more from the ‘higher’ layers of the E3 specific memory compartment. The IgM +cells

induced by E2 boosting have more mutations than after E4 boosting, indicating they are memory

derived. As there are higher proportions of these IgM+ GC B-cells, with fewer mutations relative to

the homotypic E3 boost, this provides further support for the hypothesis that IgM+ B cells with

fewer mutations furnish memory responses to variant antigens

Naı̈ve B-cells may contribute to the IgM+ GC B-cells we observe after E4 boosting, although the

higher affinities of the rAbs from this group suggest many are memory derived. Also, the slightly

higher median level of VH mutation and the higher levels of IgM+ GC B-cells after E4 boosting (2x)

compared to priming, suggest IgM +memory B-cells are involved in the boost response consistent

with the well established presence of IgM +memory cells with few or no mutations (Dogan et al.,

2009; Pape et al., 2011; Kaji et al., 2012) and the known lower activation threshold of memory

B-cells in response to antigen (Good and Tangye, 2007).

Whilst E3 specific memory cells may be expected to increase the anti-E3 titre when stimulated by

a cross-reactive E4 boost, the small but not significant effect we observe (Figure 1D) is consistent

with the lowest affinity, least mutated, E3-specific memory cells being stimulated by an E4 boost.

Antibodies from such cells may, therefore not add much to the already high, affinity matured, anti-

E3 titre induced by E3 priming. The 14-fold higher anti-E4 titre at day 7 after boost (Figure 1F) ver-

sus day 17 after prime (Figure 4A) also argues for a significant contribution from B-cell memory.

The fusion-loop epitope in domain 2 of the dengue envelope protein is 100% conserved between

strains and in humans, antibodies against this are prevalent in cross-reactive secondary responses

(Lai et al., 2013; Chaudhury et al., 2017). The E2 boost response is consistent with this effect, espe-

cially considering the restricted clonality seen in VH sequences, but the low anti-E3 titre induced by

E4 is not. A recent study (Chaudhury et al., 2017) showed that the mouse response to recombinant

E-protein is predominantly focused on domain 3 of the protein, and so cross reactivity with the

fusion loop epitope (domain 2) should be less dominant. While E2 and E4 are 68% and 63% overall

identical to E3, in domain 3, a focus of mouse antibodies, they are 62% and 51% identical, a bigger

difference in differences, helping explain the responses we observe here.

Materials and methods

Animals, immunisations and antigens
Female 8–11 week old BALB/c mice were purchased from Charles River, U.K. Primary immunisations

were intra-peritoneal (IP) with 25 mg recombinant Dengue envelope protein (Biorbyt, UK) precipi-

tated in alum with 2 � 107 heat-killed B.pertussis. Secondary immunisations were IP with 25 mg

recombinant Dengue envelope protein (Biorbyt) dissolved in phosphate-buffered saline (PBS). At

designated time points mice were anaesthetized and bled for collection of serum and then humanely

sacrificed for collection of spleen cells. Dengue envelope (E) proteins were C-terminal His-tagged

and expressed in E-coli prior to purification. Dengue proteins were tested for endotoxin by LAL

assay (Fisher Scientific, UK) and contained it at a low level: E2, 5.4EU/mg; E3, 2.5EU/mg; E4, 3.1EU/m

g. Endotoxin in this range does not give a detectable physiological response in mice

(Copeland et al., 2005).

ELISA for serum and rAbs
ELISA plates (Nunc Maxisorp, Fisher Scientific, UK) were coated overnight at 4˚C with 1 mg/ml pro-

tein in 0.1M bicarbonate buffer pH 9.3. Plates were washed three times in PBS/0.05% Tween-20

(Sigma, UK) (PBST) and blocked for 30mins at room temperature with PBST/2% bovine serum albu-

min (BSA, Sigma). Plates were then washed three times and incubated with serum dilutions in PBST/

1.0% BSA for two hours at room temperature. After three washes plates were incubated with alka-

line-phosphatase conjugated goat anti-mouse IgG (Sigma) for one hour at room-temperature,

washed three times and developed with pNPP substrate (Sigma) for one hour. Absorbance was
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measured at 405 nm. For the initial rAb screen, rAbs were incubated at 100mgml�1 in PBST/1.0%

BSA for 2 hr at room temperature on plates coated with E4 and blocked as above, and subsequently

treated as above except with use of anti-human IgG second layer (Sigma). Background binding to

plates was determined using binding of non-specific polyclonal human IgG at 100mgml�1, because

the rAbs were expressed as chimeric constructs with human constant regions, and this was sub-

tracted from the rAb O.D. Positive binding rAbs were deemed to be those with O.D. > 0.1 that

could be subject to an ELISA endpoint titration. For the ELISA titration and endpoint analysis, dou-

bling dilutions of positive binding rAbs, and polyclonal IgG background subtraction control, were

used starting at 100mgml�1. Endpoint titre was set at O.D. = 0.1 and calculated using interpolation

on Graphpad Prism. The assay was repeated using E3 coated plates to determine the rAB cross

reactivity. The affinity (Kd) of rAbs B5 and G6 (the two strongest binding rAbs) was estimated from

the inflection point of the ELISA titration curve as indicating 50% maximal binding, and on the

assumption that at these higher antibody concentrations binding of rAB to immobilized antigen will

have a minor effect on concentration of unbound rAb. We estimated the B5 inflection point to be at

approximately 25ugml�1 (=approx. 150 nM) and the G6 inflection point to be just above 100ugml�1

(=approx. 1 uM)

Competition ELISA
ELISA plates were coated as above with target protein, then washed, blocked and washed as above

except the blocking was done at 37˚C for one hour. Mouse serum samples were diluted in PBST/1%

BSA to twice the concentration of the maximum dilution that gave an absorbance at 405nm = 1.0 in

ELISA to the target protein. Serial six-fold dilutions of competitor protein were made in PBST/1%

BSA, such that the highest concentration of competitor was 2.4 mg in 30 ml. 30 ml of diluted serum

was mixed with 30 ml of each competitor protein dilution and incubated in a polypropylene 96-well

plate at 37˚C for 1 hr. Serum/competing antigen mixture (50 ml) was then added to each well of the

target antigen coated plate and incubated at 37˚C for one hour. Plates were washed as above and

then 50 ml of alkaline–phosphatase conjugated anti-mouse IgG (Sigma) was added to each well fol-

lowed by incubation at 37˚C for one hour. Plates were washed as above and incubated with 75 ml

per well of p-nitrophenyl phosphate substrate (Sigma) for one hour at room temperature. Absor-

bance was measured at 405 nm. All individual serum dilutions were also reacted in the absence of

competitor, against BSA coated wells, following the same incubation protocol. These background

values were subtracted from the competition ELISA values obtained above. The readings were then

normalized so that the samples with the maximum competitor dilution gave a value of 1.0

Urea avidity ELISA
Adapted from Puschnik et al., 2013. Assay plates were coated with antigen and blocked as for the

ELISA protocol. 1/200 dilutions of serum in PBST/1% BSA were incubated on plates for 2 hr at room

temperature. Wells were washed once with PBST, incubated for 10 min at room temperature with

PBST or PBST/7M Urea, washed a further two times with PBST and then treated as for standard

ELISA. The avidity index was calculated by dividing readings from 7M Urea treatment by readings

from PBST-only treatment, after subtraction of background absorbance.

Flow cytometry
Whole spleen cell-suspensions were red-cell depleted with Pharm-Lyse (BD Biosciences, UK) and

incubated with anti-CD16/32 monoclonal antibody (Fc-block, BD Biosciences) for 15 min at 4˚C. Cells
were then stained with APC anti-B220, BV421 anti-CD38, PE anti-CD95/Fas (all BD) and FITC anti-

IgM (eBioscience, Thermofisher Scientific, UK) for 45 min at 4˚C. After washing, cells were re-sus-

pended in PBS 5% FCS (Gibco, Thermofisher Scientific) and analysed or single-cell sorted on a FACS

Aria II (BD).

GC B-cell antibody sequencing, cloning, expression and purification
Single GC B-cells were sorted into half a 96 well PCR plate (less three control wells) containing10ml

of chilled 10 mM Tris pH 8.0, 1 U/ml RNAsin (Promega, UK) and placed on dry ice then at �80˚C.
One-Step RT-PCR (Qiagen, UK) was performed according to manufacturers instructions, by adding

15 ml RT-PCR master mix, using first-round primer sets described in Tiller et al. (2009), with heavy-
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chain and kappa-chain primers, for 50 cycles, annealing at 53.6˚C. Heavy-chain second-round PCRs

were performed using 2 ml first-round product and the nested/semi-nested primer sets from

Tiller et al. (2009), with Hot Star Taq polymerase (Qiagen) for 50 cycles annealing at 56˚C. Second
round PCR product (4 ml) was analysed on a 1.2% agarose gel. Successful PCRs were then Sanger

sequenced. For this study the sequencing primer was the pan VH primer 5’MsVHE (Tiller et al.,

2009) which leaves part of the 5’ of FR1 unsequenced. For this reason the FR1 sequence was not

included in the analysis. VH sequence identification and SHM analysis was done using the IMGT

V-Quest online platform. VH sequences are in Supplementary file 1. Further cloning, construction

and expression of antibodies as chimeric IgG1 rAbs was done according to Tiller et al. (2009).

Briefly, second round PCRs of in-frame VH and VK sequences were repeated with V-gene specific

primers that included a restriction site for sub cloning (Tiller et al., 2009). These PCR products were

purified (Qiagen), restriction digested, purified (Qiagen) and ligated (instant sticky-end ligase,

NEB, UK) into the appropriate expression vector containing either human IgG1 or Kappa constant

regions, prior to transformation into E. Coli NEB5-alpha (NEB). Expression constructs in transformed

colonies were verified by sequence analysis prior to preparation of plasmid mini-preps (Qiagen).

293A cells were split and grown to 80% confluence in DMEM with ultra-low IgG FCS (PAN

Biotech, Germany) in 150 mm plates prior to replacement of medium with 20 ml Panserin 293A

serum free medium(PAN Biotech). 15 ug each of matched VH and VKappa constructs were added to

2 ml saline with 90 ug PEI, briefly vortexed and rested for 10mins. Transfection solution was added

to plates and mixed gently. After 3 days medium was collected, centrifuged at 800 g for 10mins to

clear debris, and further medium added. After a further 3 days medium was collected, cleared of

debris as before and pooled. 100 ul protein-G sepharose (GE Healthcare, UK) was added to super-

natants and incubated with rocking overnight at 4˚C. Protein G sepharose was collected by centrifu-

gation at 800 g for 10 mins and transferred in PBS to a PBS equilibrated spin column (Bio-Rad, UK).

After 3 rounds of washing with 800 ul of PBS, rAbs were eluted in two 200 ul passes of 0.1M Glycine

(pH2.9) into a tube with 40 ul of 1M Tris pH 8.0, 0.5% Sodium Azide. Antibody concentrations were

determined by O.D. on a Nanodrop instrument (Thermo) and corrected for an extinction co-efficient

of 1.36.

T-cell proliferation assay
Spleens were harvested from female BALB/c AnCrl mice 39 days after challenge. Splenocytes (5 �

105) were cultured in triplicate with the indicated concentration of E-protein in X-VIVO 15 medium.

Cells were cultured for 96 hr and 0.5 mCi of [3H] thymidine was added to wells for 16 hr before mea-

surement with a 1450 MicroBeta counter (Wallac, Perkin Elmer, UK).

Statistics
For statistical analysis sample sizes were chosen to address group size reductions that observe the

ARRIVE guidelines. Cages of three mice were randomly allocated to treatment groups. These group

treatments were independently biologically replicated to give a sample size of 6. Where statistical

analysis was applied, data points were analysed with Levene’s test for equality of variance and where

violated they were subject to a two-tailed Students t-test for unequal variance, otherwise the two-

tailed t-test for equal variance.
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