ENSO drives interannual variation of forest woody growth across the tropics

Sami W. Rifai1*, Cécile A.J. Girardin1, Erika Berenguer1,19, Jhon del Aguila-Pasquel2, Cecilia A.L. Dahlsjö1, Christopher E. Doughty3, Kathryn J. Jeffery4,5,6, Sam Moore1, Imma Oliveras1, Terhi Riutta1, Lucy M. Rowland7, Alejandro Araujo Murakami8, Shalom D. Addo-Danso9, Paulo Brando10,15, Chad Burton1, Fidèle Evouna Ondo6, Akwasi Duah-Gyamfi9, Filo Farfán Amézquita11, Renata Freitag12, Fernando Hancoc Pacha11, Walter Huaraca Huasco1, Forzia Ibrahim9, Armel T. Mbou13, Vianet Mihindou Mihindou6,14, Karine S. Peixoto12, Wanderley Rocha15, Liana C. Rossi16, Marina Seixas17, Javier E. Silva-Espejo18, Katharine A. Abernethy4,5, Stephen Adu-Bredu9, Jos Barlow19, Antonio C.L. da Costa20, Toby Gardner21, Beatrix S. Marimon12, Ben H. Marimon-Junior12, Patrick Meir22,23, Daniel B. Metcalf24, Oliver Phillips25, Lee J.T. White4,5 and Yadvinder Malhi1

*Author for correspondence (sami.rifai@ouce.ox.ac.uk).
†Present address:
1 [Rifai, Berenguer, Dahlsjö, Girardin; Moore; Oliveras; Riutta; Burton; Huaraca Huasco; Malhi] Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK
2 [del Aguila Pasquel] Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Perú
3 [Doughty] School of Informatics, Computing and Cyber systems, Northern Arizona University, Flagstaff, AZ 86011 USA
4 [Abernethy; Jeffery; White] Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
5 [Abernethy; Jeffery; White] Institut de Recherche en Écologie Tropicale, CENAREST, BP 842, Libreville, Gabon
6 [Jeffery; Mihindou; White] Agence Nationale des Parcs Nationaux (ANPN), BP 20379, Libreville, Gabon
7 [Rowland] Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK;
8 [Araujo Murakami] Museo de Historia Natural Noel Kempff Mercado Universidad Autónoma Gabriel Rene Moreno, Avenida Irala 565 Casilla Postal 2489, Santa Cruz, Santa Cruz, Bolivia
9 [Adu-Bredu ; Addo-Danso; Forzia Ibrahim] The Forestry Research Institute of Ghana, Kumasi, Ghana
10 [Brando] Woods Hole Research Center, Falmouth, MA, USA.
11 [Farfán Amézquita; Hancoc Pacha] Universidad Nacional San Antonio Abad del Cusco, Cusco, Perú
12 [Freitag; Peixoto; Marimon-Junior; Marimon] Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, CEP 78600-000, Nova Xavantina, MT, Brazil
13 [Mbou] Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce, Italy
15 [Brando & Wanderley Rocha] Amazon Environmental Research Institute (IPAM), Canarana, Mato Grosso, Brazil
16 [Rossi] Departamento de Ecología, Universidad Estadual Paulista, 13506-900, Rio Claro, SP, Brazil
17 [Seixas] Embrapa Amazônia Oriental, Trav. Dr. Encas Pinheiro, s/n, CP 48, 66095-100, Belém, PA, Brazil
18 [Silva-Espejo] Departamento de Biologia, Universidad de La Serena, , La Serena, Chile
19 [Barlow] Lancaster Environment Centre, Lancaster University, Lancaster, UK
20 [ACL da Costa] Instituto de Geociências, Universidade Federal do Pará, Belém, Brazil

Keywords: El Niño, tropical forests, woody net primary production, drought, meteorological anomalies, climatic water deficit, vapour pressure deficit
Summary

Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large scale empirical validation of this expectation. We collected a large high temporal resolution dataset (for 1-13 years depending upon location) of more than 172,000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPP$_{stem}$) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is < 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit, and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapor pressure deficit, water deficit, and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C year$^{-1}$, with an interannual range 1.96-2.26 Pg C year$^{-1}$ between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of SE Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation ($r = -0.75$) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapor pressure deficit, and shortwave radiation.

1. Introduction

Tropical forest productivity is amongst the highest of terrestrial ecosystems [1,2], but the amount of carbon allocated to woody stems (NPP$_{stem}$) within tropical forests is highly variable [3-6]. We here define NPP$_{stem}$ as the productivity of above-ground woody tissue including trunks and branches, but excluding fine woody material such as twigs, and woody coarse roots. NPP$_{stem}$ is not the largest component of carbon allocation, typically accounting for only 20-30% of NPP and 5-10% of gross primary productivity (GPP) [7], but, because woody material is long-lived, it is a major determinant of forest biomass and carbon residence time.

In this paper we examine the seasonal and interannual variation of woody growth (NPP$_{stem}$) across the tropical forest biome. Meteorological variation is likely to be an important control on seasonal changes in NPP$_{stem}$ and has only rarely been tested [8-11], but never so at a pantropical scale. Examination of NPP$_{stem}$ variation has largely been limited to coarse temporal variation at interannual or multi-year time scales. NPP$_{stem}$ is usually estimated by repeat census of tree diameters coupled with the use of allometric equations to translate changes into above-ground biomass. However forest census intervals typically span multiple years, and this obscures the relation of NPP$_{stem}$ to seasonal meteorological variation and meteorological extreme events. Dendrometers enable much higher resolution tracking of tree growth (typically monthly resolution for manual dendrometers, daily for automatic dendrometers), but have not previously been employed in a consistent multi-site and multi-regional analysis. Here we present and analyse a uniquely extensive pantropical dataset of tree growth comprising more the 8,725 trees. The standardized protocol for measuring NPP$_{stem}$ from the Global Ecosystem Monitoring network (www.gem.tropicalforests.ox.ac.uk) is unique for its use of manual dendrometers to provide high temporal resolution (~ 1-3 months), enabling examination of seasonal and interannual variation in NPP$_{stem}$.

At an individual level, carbon allocation to NPP$_{stem}$ is thought to be affected by several biological processes, including photosynthetic uptake [7], its balance with respiration [12-14], tradeoffs in carbon allocation between woody parts, canopies and roots[7,15-17], source vs. sink driven biological cues[18,19], and most especially the crown exposure to light[20,21]. However when aggregated to the stand level, many of these individual-level biological drivers of growth are marginalized. After all, the amount of light
and rainfall a forest receives and utilizes is not so much a function of its stand structure, but of seasonality in weather and its geographic location. Here we do not specifically address the non-climatic components of spatial variation in \(\text{NPP}_{\text{stem}} \), because this is an inherently more complicated question where the allocation of carbon to \(\text{NPP}_{\text{stem}} \) is dependent upon a number of interacting factors and processes such as soil fertility, species composition, and carbon use efficiency \([12,20]\). In this study, we purposely do not aim to explain the biological, disturbance related \((\text{e.g.} \text{ catastrophic tree mortality events})\), or other spatially varying abiotic controls \((\text{e.g.} \text{ soil fertility})\) upon \(\text{NPP}_{\text{stem}} \), but rather how month-to-month meteorological variation can explain seasonal changes in \(\text{NPP}_{\text{stem}} \).

Seasonal differences in \(\text{NPP}_{\text{stem}} \) (or xyleogenesis) are likely to be concentrated towards the transition between the dry to the wet seasons because xyleogenesis is inhibited when cell turgor is low \([18]\), and trees recovering from extreme drought stress may improve their hydraulic conductivity by replacing xylem that have cavitated over the dry season \([22]\). This pattern may be stronger in highly seasonal forests that experience annual drought stress, whereas differences in the temporal allocation of carbon to woody growth may be non-existent in aseasonal forests where few droughts occur to impair stem hydraulic conductivity. The extent to which a seasonal increase in woody stem growth reflects an increase in overall productivity, or simply a shift in carbon allocation among roots, wood, the canopy, and non-structural carbohydrate storage pools remains uncertain. In lowland Amazonia, allocation shifts were found to be more important than overall changes in carbon assimilation in explaining interannual variability in canopy, wood, and fine root growth rates \([16,17]\).

Here, we utilize the anomalous drought conditions produced by El Niño events to examine how much spatial and temporal variation in \(\text{NPP}_{\text{stem}} \) can be explained by purely meteorological variation. El Niño events tend to increase temperatures and atmospheric water vapour deficit (VPD) across the tropics, and cause strong declines in precipitation in some regions, most notably Amazonia and insular SE Asia \([23]\). These meteorological factors are likely to affect \(\text{NPP}_{\text{stem}} \) through underlying ecophysiological mechanisms. We focus on relating temperature, VPD, cloudiness, and precipitation metrics to \(\text{NPP}_{\text{stem}} \). First, negative precipitation anomalies and soil water deficits are likely to impede growth by increasing soil-root hydraulic resistance \([24]\) and reducing stem conductance through cavitation \([25]\). Precipitation deficits from drought can eventually lead to declines in NPP \([26]\; \text{but see} \; [11] \). Relating precipitation to forest growth can be challenging because monthly precipitation can be decomposed into numerous metrics with greater ecophysiological relevance, but here we focus on four aspects: a one dimensional Thornthwaite-Mather water balance model from a high resolution climate product \([27]\), climatic water deficit (CWD) which is a simpler proxy for sub annually varying soil water deficit, the maximum climatic water deficit (MCWD) which represents that maximum CWD for the preceding 12-months \([28]\), and lagged differences in monthly precipitation which can serve as a proxy for the transition between dry and wet seasons. Second, temperature, even in the tropics, can control or act as a cue for much of the seasonality of growth and carbon allocation \([29,30]\), yet reductions in photosynthesis occur when trees are exposed to temperatures beyond their optimum for photosynthesis \([31–33]\). A recent comparison of an evergreen and semi-deciduous forest in Panama found that the community temperature optimum closely mirrored the mean maximum daytime temperature \([33]\). Thus positive temperature anomalies during drought events may push leaves over their optimum temperature for photosynthesis, increase respiration costs \([34]\), and by extension reduce the amount of plant expendable carbon that can be allocated to \(\text{NPP}_{\text{stem}} \). Alternatively, higher temperatures may push forest canopies into or beyond their optimal temperature range and either leading to an increase or saturation of gross primary productivity \([35]\). Third, high temperatures with invariant or reduced atmospheric humidity lead to high VPD, which can induce stomata to close \([36–38]\) even when soil moisture is non-limiting \([39]\). Of course stomatal conductance does not work independent of leaf energy balance, so positive VPD anomalies may result in a reduction of leaf conductance which may induce higher leaf surface temperatures and VPDs, and perhaps further reduce photosynthesis. Finally, shortwave radiation is highly correlated with photosynthetic assimilation of \(\text{CO}_2 \). El Niño events can reduce cloudiness in the same regions where it reduces precipitation, which results in increased shortwave irradiance. A positive shortwave anomaly could increase photosynthesis in tropical regions with weak dry seasons, such as northwest Amazonia, and Borneo \([30]\), although prior evidence suggests an increase in carbon assimilation may not necessarily manifest in higher \(\text{NPP}_{\text{stem}} \) \([5,7,40]\).

Specifically we address the following questions:

1. How much variation in tropical \(\text{NPP}_{\text{stem}} \) can be explained by meteorological variation?
2. What meteorological drivers most affect \(\text{NPP}_{\text{stem}} \) during El Niño associated drought events?
3. What is the total annual woody production of the tropical forest biome, how much does it decline during El Niño events, and which regions contribute most strongly to these declines?
2. Methods

2.1 Scaling from individuals to forest stand

We employed the standard protocols of the Global Ecosystems Monitoring (GEM) network, described at gem.tropicalforests.ox.ac.uk. Simply, constructed manual dendrometer bands were installed on trees and measured at intervals typically ranging from 1-3 months across 14 geographic regions encompassing a large rainfall gradient from highly seasonal dry tropical forests to aseasonal wet tropical forests (Fig. 1 & SM Fig. 1), encompassing 50 individual plots. In total, 8,725 trees were attached with dendrometers, and more than 187,000 readings were taken over 65 plot-years of data. The duration of measurement and number of observations varied across plots (See Table 1). Dendrometers were installed on a subset of adult trees (≥10 cm DBH). The sample coverage and size distribution of trees with dendrometer bands varied across plots, and rarely matched the corresponding size distribution from the full plot census of all adult trees. A nonlinear height allometry was derived for each site, and used to update tree height with every dendrometer measurement (detailed in SM section 1). The biomass was estimated for each tree using allometric equation 4 from Chave et al. (2014)[41], with wood density derived from the Global Wood Density Database [42,43] for each species or regional-genus mean. The mean individual growth rate in Mg C was calculated using a dry-biomass carbon content of 47.8%. This growth rate was multiplied by the number of individuals (≥10 cm DBH) in each plot when the number of trees with dendrometers was >50% of the number of trees in the plot. We also applied the mean growth rate to all trees in the plot when 30-50% of the trees had dendrometer bands and the median DBH of trees with dendrometer bands matched the median DBH of all trees in the plot to within 5%. When measurements did not meet these criteria, but still had at least 60 individuals with dendrometer measurements - size, wood density, and estimated height were used to construct non-linear generalized additive models to predict growth for each date, which were then used to predict total carbon accumulation for each tree in the plot that did not have a dendrometer. The resulting NPP_stem observation is the scaled forest-level woody growth (in carbon units Mg C month⁻¹ ha⁻¹) estimated by summing the observed growth rates from trees with dendrometer bands, and the sum of tree level growth predictions over trees in the plot lacking dendrometer bands. The effects of stochastic tree mortality events are large upon month-to-month changes in forest biomass. Our goal was to isolate the climatic signal upon only live woody tree growth so we removed the demographic responses of carbon entering the plot from tree recruitment, and carbon leaving the plot from tree mortality. To do so, the regression growth models of each date were applied to a single fixed date census corresponding to each forest plot. Finally it is worth noting that the error from scaling the individual growth to plot-level NPP_stem are not propagated throughout subsequent analyses on the plot-level estimates of NPP_stem.

2.2 Deriving meteorological predictors

Temperature and VPD data time series for each site were derived from a gridded climate product (TerraClimate) [27]. The TerraClimate product is a statistically downscaled (~4 km) merge between the CRU TSv4.01 empirical climate interpolation [44] and the JRA-55 climate reanalysis product [45]. Meteorological time series from TerraClimate were compared with downscaled site-level meteorological predictions from local automatic weather stations and the ERA-Interim climate reanalysis product (detailed in SM section 2) [46]. The monthly meteorological estimates from TerraClimate corresponded well with the downscaled site level meteorological records for most sites (SM Section 2; SM Figs. 2 & 3) with the exception of shortwave radiation at the Borneo sites. Surface level shortwave radiation over wet tropical forest regions is not well estimated by most climate reanalysis products, so we calculated the 3-month moving mean cloud fraction using the satellite derived NOAA CDR PATMOS-X v5.3 cloud properties product [47] and the 3-month moving surface level shortwave radiation estimates from the Clouds and the Earth’s Radiant Energy Budget product [48].

2.3 Estimating the effects of meteorological drivers upon NPP_stem

We calculated the long-term monthly means (µ) of monthly diurnal min/mean/max values for air temperature (2 m height), VPD, and shortwave radiation. We also calculated precipitation metrics of water deficit (CWD and MCWD), and a metric of the wet-dry season transition (detailed in SM Section 2). The monthly anomalies of each meteorological variable were calculated, and divided by their location specific interannual monthly standard deviation. The resulting anomaly terms are expressed in units of standard deviation (σ) from their long-term monthly mean. It is important to note that both the µ and σ terms vary by month and the corresponding forest plot’s location. For example, a 1 °C increase above the mean temperature in the month of August would be less than one unit σ at the Kenia site in the (highly seasonal) Bolivian Amazon, whereas it would be more than three units σ across all of the (relatively aseasonal) Borneo sites. Therefore both the µ and σ terms have an inherent spatial context.
We fit generalized linear mixed models (GLMMs) and Generalized Additive Models (GAMs) to examine how NPP$_{stem}$ is affected by seasonal meteorological variables and their corresponding anomalies. Several of the meteorological covariates used in the model comparison process were highly correlated, so we restricted the inclusion of terms with pairwise correlations to be <0.6 (SM Fig. 4) for the final models. GLMMs and GAMs for nonlinear effects were examined with the MGCV and rstanarm packages for R [49,50]. We found that most non-linear terms could be sufficiently represented by piecewise linear terms by separation of the monthly anomaly term into a positive or negative anomaly (e.g. see the dry and wet anomaly terms in Fig. 2). The exception to this is the shortwave anomaly term in the seasonal forest model, which most improved model performance with the usage of a penalized spline function (Fig. 2e). The intercept of each observation was allowed to vary by corresponding plot (i.e. a random intercept model). Some amount of stem shrinkage was apparent in the dendrometer band data in the dry season, but it is not straightforward to determine the amount of dendrometer band movement from negative change due to stem desiccation and positive change due to growth. Thus we opted to allow the stand-level estimates of woody NPP to be < 0. In these negative instances, carbon is not actually lost from the plot but the stems shrink due to desiccation in the dry season. The posterior predictions of NPP$_{stem}$ were best modeled by a shifted Gamma distribution (to account for negative NPP$_{stem}$) with a log link function. The final GLMMs were fit within a Bayesian framework using the rstanarm package for R [50]. Regularizing priors centered over 0 with a standard deviation of 1 were used in the model in an effort to reduce overfitting. The final models presented here were selected by comparing and joining the monthly mean and anomaly terms of each meteorological variable. The median R2 from the posterior predictive distribution was calculated for each site with and without the random intercept term (Table 1; SM Tables 1 & 2). We found that no single model could predict NPP$_{stem}$ well across all sites: a model that performed well over seasonal sites had no predictive ability over aseasonal wet forest sites that lack a discernible dry season (by convention, when rainfall < 100 mm month$^{-1}$). Therefore we split the data by a precipitation seasonality metric (S) where higher values indicate greater seasonality of precipitation [51] (Table 1). We developed and tested separate candidate models for seasonal sites (S > 0.05) with a distinct dry season (SM Table 1), and aseasonal wet forest sites (S < 0.05) with no consistent dry season (SM Table 2).

2.4 Scaling to the Pantropics

Our final aim was to use the wealth of GEM NPP$_{stem}$ observations to develop predictions of total wood production across the tropics and its interannual variability. The final two seasonal and aseasonal statistical models were used with the TerraClimate product and the CERES shortwave radiation product to generate spatially, time varying predictions at 0.5 degrees spatial resolution across grid cells with at least 50 km2 of tropical forest (detailed in SM Section 3). The time series of meteorological variables in the gridded TerraClimate product were truncated at the ranges from the meteorological conditions estimated across the GEM sites NPP$_{stem}$ data used in the model fitting process. Anomaly terms were calculated in the same way as for the climate time series used for model fitting, where each individual grid cell’s anomaly was calculated from a long-term climate record in units of standard deviation. Because the GLMMs were constructed in a Bayesian framework, they are inherently generative in the sense that they can be used to generate a predictive distribution of outcomes, conditional upon the observed data used to fit the models. We extracted 1000 draws from the predictive posterior distribution to propagate the uncertainty of meteorologically driven impacts upon predicted NPP$_{stem}$ and projected onto a 0.5 degree grid, corresponding with the CRU Tsv.4.01 product [44]. The 1996-2016 predictions were deseasonalized and linearly detrended to calculate the temporally moving mean anomaly of interannual predicted NPP$_{stem}$. The magnitude of the predictions were scaled downward to correspond with the near current (2016) existing amount of forest cover as determined by the Global Forest Cover product v1.4 [52]. Because we used a fixed canopy cover through time, earlier in time estimates of predicted NPP$_{stem}$ are slightly negatively biased due to the decline in tropical forest cover over the prediction period (1996-2016). The median of the detrended predictions was projected spatially over two strong El Niño events to show the spatial distribution of meteorologically produced anomalies in predicted NPP$_{stem}$. We compared the detrended and deseasonalized predictions of the annual mean of tropical forest predicted NPP$_{stem}$ with the El Niño 3.4 Index [53].

3. Results

3.1 Quantifying the individual meteorological components of drought that affect observed NPP$_{stem}$

Overall, in the seasonal tropical forests the seasonal (monthly) means of vapour pressure deficit (VPD$_{mean}$), temperature (T$_{mean}$), and shortwave radiation (SW$_{mean}$) structured the seasonal variation of NPP$_{stem}$ (Fig. 2a,g). The interannual anomalies of the water deficit anomalies (Wet and Dry anomaly) and the 3-month shortwave anomaly (SW$_{3}$) best explained the interannual variation of NPP$_{stem}$ (Fig. 2a,c,e &
SM Table 1). In the aseasonal wet forests, by contrast, none of the mean seasonal (monthly) varying meteorological terms could predict any seasonal variation in NPPstem (SM Table 2). Variation in NPPstem was better explained, with the 3-month VPDmean anomaly and to a lesser extent the water deficit anomaly and the shortwave anomaly being the most influential factors (Fig. 2a,b,f,h & SM Table 2). Other terms such as CW Dmit, CWDinit, MCWDinit, MCWDinit, and the 3-month Tmean were useful as individual predictors, yet their effect size was reduced when combined with the other terms in the final models (SM Tables 1 & 2).

3.2 Overall explanatory power of the meteorologically driven model
Our meteorologically driven final statistical models explained approximately 52% (35% excluding random effects) and 41% (20% excluding random effects) of observed NPPstem seasonal variation for tropical seasonal forests and aseasonal wet forests, respectively. The range in the amount of variation explained (R²) was large across sites (Table 1), but the predictive distribution of the models generally covered the observed range of NPPstem (Fig. 2). The R² of aseasonal wet forest sites improved the most when allowing random effects (i.e. variation in plot-specific mean values of NPPstem) which is due to the general lack of seasonal variation in NPPstem. Despite the improved performance, the plot specific intercept (random effect) acts as a categorical variable that cannot be applied for up-scaling the model across the tropics so we present conditional model predictions without random effects (Fig. 2c-h). A higher degree of predictive ability was found for sites with strongly pronounced dry seasons (e.g. the Kenia plots in Bolivia and the Santarém region plots in eastern Amazonia; Fig. 3a,c) while the R² was poorest for the more aseasonal sites (e.g. in Borneo) where there was less seasonal variation in woody growth to explain (e.g. MLA, SAF; Table 1; Fig. 3f,g & SM Fig. 5). Despite this apparent increase in explained variation with increasing precipitation seasonality, this may be because the aseasonal wet forest model was estimated using far fewer observations (N = 110) than the seasonal forest model (N = 674).

3.3 Predicted tropical forest NPPstem and its response to El Niño events
Overall, our pantropical scaling predicts that the mean total annual above-ground woody production of the tropical forest biome is 2.16 Pg C yr⁻¹, and this varied interannually in the range 1.96-2.26 Pg C (i.e. 12 %) between years 1996-2016. Global minima occur during El Niño events, with Amazonia and insular Southeast Asia being the most impacted (Figs. 4 & 5). The spatial anomalies of predicted NPPstem are not consistent across El Niño events (Fig. 4). For example different parts of Amazonia were most strongly affected by the El Niño events in 1997/1998 and 2015/2016. Conversely the pronounced negative impact seems spatially consistent across eastern Borneo, whereas equatorial Africa may have been moderately negatively affected by the 1997/1998 El Niño but less so during the 2015/2016 event (with an important caveat that climatological products for this data-poor region are particularly unreliable).

The detrended long-term anomaly in predicted NPPstem is highly correlated with the moving annual average of the El Niño 3.4 Index (r = -0.7; Fig. 5). Hence interannual variation of the total woody growth of the tropical forest biome can be at least partially predicted from the El Niño 3.4 Index. The interannual anomaly of predicted NPPstem is most highly correlated with the annual anomalies of VPD (r = -0.59), but also correlates with water deficit (r = -0.51), temperature (r = -0.49) and shortwave radiation (r = -0.38). This finding is consistent with inversion modelling results that show that the carbon cycle of the terrestrial tropics is strongly correlated with tropical land surface temperatures; however, our analysis suggests that the local mechanistic drivers are more linked to water deficits, VPD and shortwave radiation than to temperature (Fig. 2a, b).

4. Discussion
4.1 How much variation in tropical NPPstem can be explained by meteorological variation?
Using our statistical models, as much as 55% of monthly woody growth can be predicted for seasonal tropical forests, and 45% for aseasonal wet forests. This amount of explained variation on high temporal resolution changes in NPPstem is not so dissimilar from the variation in forest biomass changed explained over much longer periods of time by considerably more sophisticated forest simulation models (e.g. [54,55]). However the GLMMs presented here should not be viewed as authoritative, but rather as an initial attempt to understand and separate the effect of the long-term mean of month-to-month meteorological seasonality from interannual meteorological variation upon tropical forest woody growth. These statistical models are simplistic representations of complex biological responses. Tropical forests have to mitigate several forms of ecophysiological stress from meteorological variation and in many cases the underlying ecophysiological mechanisms of tropical forests response to drought are still not well understood [56]. So it is noteworthy that the models presented here do have predictive ability across all
sites, and that this predictive ability is greater across the vast majority of tropical forest regions with rainfall seasonality (Figs. 1, 2 & 3; Table 1).

There are many opportunities to improve the model. The data used to fit the model are imbalanced across sites (Table 1), with notable data limitations for the aseasonal wet tropics. By extension the uncertainty and poorer predictive performance in the aseasonal wet forest regions is likely due to data deficiency, which will in many cases improve over time. The meteorological variables used in this study are often highly correlated, which precludes the incorporation of all relevant variables into a linear predictor because standard statistical methods cannot identify effects that are highly collinear. The environmental drivers used to model here also fail to capture temporal directionality. For example, the water deficit anomaly makes no distinction whether a soil is on a trend towards drying or wetting. The representation of temperature in the model also makes no distinction between short temporal pulses, versus longer sustained warming trends where acclimation may be more likely to occur. Next, non-linear relationships are ubiquitous in plant ecophysiology. Stomatal conductance [37,38,57], photosynthesis [58], plant tissue respiration [34], hydraulic impairment [25], and soil water conductance [59] are best described by strongly non-linear relationships with their corresponding environmental drivers. Yet here we attempt to model an emergent property of tropical forests (stand level NPPstem) with two GLMMs, which are more effective at capturing the mean field relationships than they are at predicting the extremes. We acknowledge that modeling NPPstem from a linear set of meteorological predictors may be biologically unrealistic and limiting. Future attempts to model the impact of environmental extremes on NPPstem may be much improved by joining mathematical models of plant ecophysiological components into a more process based statistical hybrid model.

4.2 What meteorological drivers most affect NPPstem during El Niño associated drought events?

We can only make cautiously qualified statements about the most important meteorological drivers affecting growth because this question is hindered by both uncertainty in the true meteorological conditions, and by insufficient data at both ends of the extremes of a meteorological variable (e.g. where observations are needed during both anomalously wet and anomalously dry conditions). The effects of VPD are consistent and large across both the seasonal and aseasonal wet tropics, but in different ways. In the seasonal forest model, the effect of VPD only has explanatory power in the seasonal component, while the interannual anomaly does not appear to be important. Conversely in the aseasonal wet tropics, VPD has no effect upon the seasonal component (as variation is low in the aseasonal tropics; SM Fig. 6), but has a large effect in the interannual anomaly term (Fig. 2b & 2h). The impediment of VPD upon NPPstem is consistent with stomatal conductance models where VPD incurs a non-linear stomatal limitation which restricts CO₂ assimilation rates [36,38]. The inability of the seasonal forest model to isolate a consistent VPD anomaly effect could be due to the fact that the monthly range of VPD is far larger in seasonal forest sites (SM Fig. 6), and that the dry season anomalies would have to be very large in absolute units of kPa to significantly impact stomatal conductance, because the VPD reduction on stomata closure may have largely already been exerted (a visual diagram is shown in SM Fig. 7).

Both the seasonal forest and aseasonal wet forest models indicate that the effect of VPD (either seasonal or anomaly) is especially compounded with anomalies in short wave radiation. Although the effect of a short wave anomaly effect seems important across tropical forests, it appears to reduce NPPstem far more in seasonal forests than it does for aseasonal wet forests. Some caution is warranted with respect to ranking of the effects of the VPD, water deficit, and shortwave anomalies because these are correlated, and their relative importance could change with prediction error from the gridded climate products. Also despite not presenting an effect of temperature anomalies, the long-term increase in air temperature is increasing VPD and may also be pushing tree communities above their normal acclimated optimum temperatures for photosynthesis [31–33]. In combination, an El Niño event that reduces rainfall and increases VPD, temperature and shortwave radiation will likely work in conjunction to limit transpiration, increase leaf temperatures, and by extension reduce photosynthesis [33]. It is noteworthy that there is little evidence that positive shortwave anomalies increase NPPstem, as would perhaps been expected in aseasonal forests [60,61].

The effect of soil water deficit is negative upon woody growth, but this effect is less identifiable in the aseasonal wet tropics where soil water deficit seldom deviates from zero. CWD and MCWD have been highly effective metrics of water deficit in previous studies [11,62], but here we found TerraClimate’s water deficit estimates to offer greater predictive ability than (M)CWD. The Thornthwaite-Mather water balance model used to produce the water deficit estimates in the TerraClimate product may be more effective than our calculation of (M)CWD because its calculation of water deficit includes information on soil water
holding capacity and infiltration, and calculates a runoff term. However all metrics of water deficit are likely hindered by both uncertainty in rainfall estimates, and the current state of high uncertainty around how tropical forest vary their rates of evapotranspiration both seasonally and interannually [63].

4.3 How much do El Niño events suppress tropical woody growth and what can this tell us about how tropical forests are likely to respond to climate change?

The pantropical model predicts pronounced declines in global tropical forest NPPstem over two strong El Niño events (8.3% in 1997/1998, and 9% in 2015/2016). The impacts were largest in the Americas (Fig. 5) highlighting the importance of Amazonia in dominating the global signal because it accounts for around half of total tropical forest area and is adjacent to the eastern Pacific warm anomaly during El Niño events. Insular SE Asia also has a substantial influence on the global anomaly, but Africa appears to have a negligible role as El Niño signals are weaker and less consistent there. The meteorological teleconnections caused by El Niño events are not spatially consistent across events [64]. Similar to other findings that have correlated tropical air temperatures and El Niño indices to atmospheric CO2 growth rates [65,66], we have demonstrated that the variability of total woody production of the tropics can be well-predicted from the ENSO 3.4 index. We should note that our study period does not include a major stratospheric aerosol volcanic eruption, the last major one of which being that of Mt. Pinatubo in 1991, and some models suggest that such eruptions alter vegetation productivity through increasing diffuse light [67] (not tested as meteorological predictor in our analysis) which could weaken the correlation with ENSO. While NPPstem is not necessarily a good proxy for overall gross primary productivity or net ecosystem exchange, as there are likely to be concurrent shifts in plant respiration and carbon allocation [7], a depression in NPPstem still probably indicates ecophysiological stress imposed upon the ecosystem [11].

Our analysis is driven by growth responses to seasonal variation and interannual anomalies, whereas growth responses to short term variation in VPD and temperature may not be the same as long-term growth responses to secular shifts in these meteorological variables. It is possible that ecosystems acclimate to longer term shifts (either through within-individual acclimation within limits, or on longer timescales through turnover in community dominance). Our analysis also does not consider changes in demography, so shifts in either recruitment or mortality could either act to counterbalance or exacerbate the magnitude of our predictions. For example, Qie et al (2017) [68] did not find an impact upon woody productivity over a network of Borneo plots during the 1997/8 El Niño, but did find marked increases in mortality. The discrepancy between these two different approaches to estimating the effect of El Niño upon live tree woody productivity over Borneo is not surprising because temporally punctuated depressions of growth are difficult to quantify with multi-year census intervals, our methodological approach removes the contribution of recruitment to NPPstem and because the effect of the 1997/8 El Niño may have been spatially heterogeneous over Borneo (Fig. 4). Finally additional environmental variables come into play, in particular the secular increase in atmospheric CO2, which may boost productivity and increase water use efficiency. Nevertheless, our analysis does highlight the potentially important role of increasing temperatures and VPD. Changes in atmospheric water demand may be more important than changes in seasonal water supply in driving ecosystem water stress in the aseasonal wet tropics, and deserve more analytical attention. It is worth noting that the peak temperatures and VPDs experienced during the 2015/6 El Niño were higher than for the 1997/8 El Niño (SM Fig. 8), because of the long-term warming trend between these events. The baseline upon which each anomaly sits is consistently shifting towards a hotter, higher VPD atmosphere, pushing ecosystems into new climate space.

Moving forward, the predictions here need to be challenged so we encourage collection and development of similar seasonally monitored dendrometer band datasets that can be applied to the same stem-to-stand scaling techniques used here. It should also be possible to draw on a wide set of dendrometer data collected by unconnected studies (some in the grey literature) to improve the span of the dataset. Because these predictions deal with a specific component of ecosystem carbon, few empirical measures are available to test our model predictions. Ecosystem models still struggle to simulate realistic ecophysiological impacts from drought [69], while they also have vastly different approaches to carbon allocation that may produce unrealistic predictions [3,70–72]. Earth System Models typically represent the entirety of the tropical forest biome with a very few plant functional types. Our analysis highlights a key difference between seasonal and aseasonal wet forests in the underlying meteorological drivers that suppress woody growth during drought events. This message is consistent with Guan et al., (2015) [73] who highlighted different phenological and photosynthetic responses between tropical forests receiving more or less than 2000 mm yr⁻¹ in precipitation, suggesting an important functional ecotone in the tropical forest biomes. The "empirical upscaling" spatiotemporal products developed from applying ensembles of machine learning models to global FluxNet data [74] have served as a benchmark of sorts to ecosystem
models in recent years. However comparison to our NPP_{stem} predictions may not be straightforward because NPP_{stem} is a poor proxy for both GPP and total NPP in the wet tropics [3,7,16], and there are very few eddy covariance time series in the tropics outside of Brazil. Thus we reiterate the need for more collection of seasonally monitored tropical forest NPP_{stem} data, because the causal attribution of what drives variability in carbon allocation is still an emerging science. A logical next step is also to expand this analysis to other components of NPP and respiration, and thereby to total NPP and carbon balance. This will be the focus of our forthcoming analyses.

Additional Information

Acknowledgments

This paper is a product of the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk). We are grateful to the many individuals who contributed and collected measurements to make this work possible. We acknowledge Paulo Brando for dendrometer data from Tanguru. In Gabon we acknowledge Natacha N’ssi Bengone, Josue Edzang Ndong, Carl Ditouchou, Edmond Dimoto, Leandre Oyeni Amoni, JT Dikangadissi, Joachim Dibakou, Napo Heididy Milamizokou, Amede Pacome Dimbonda, Arthur Dibambo. We are grateful to the Gabonese Government (Agence Nationale des Parcs Nationaux (ANPN) and Centre National de la Recherche Scientifique et Technologique) for research authorisations and to ANPN for hosting the study. Establishment and monitoring of plots in Gabon was supported by core funding from the University of Stirling and the Gabon National Parks Agency (ANPN) and work on the GEM plots project was authorised under research permit XXX. In Malaysia we acknowledge Rostin Jantan, Rohid Kailoh, Suhaaini Patik, SAFE Project staff. Dr. Noreen Majalap, Professor Charles Vairappan, the Maliau Basin and Danum Valley Management Committees, Sabah Foundation, Sabah Biodiversity Centre, Sabah Forestry Department and Forest Research Centre, Benta Wawasan and the Royal Society South East Asia Rainforest Research Partnership for logistical support and permission to carry out research in the sites. In Ghana we acknowledge Emmanuel Amponsah Manu, Gloria D. Djagbletey, Akwasi Duah-Gyamfi, Emmanuel Amponsah Manu, Gloria D. Djagbletey. We would like to thank the Large Scale Biosphere-Atmosphere Program (LBA) for logistical and infrastructure support during field measurements. We are deeply grateful to our parabotanists Nelson Rosa and Jair Freitas, as well as our field and laboratory assistants: Gilson Oliveira, Josué Oliveira, Renilson Freitas, Marcos Oliveira and Josiane Oliveira. We are also grateful for the methodological advice of Sihan Li and Christopher Wilson.

Data Accessibility

Stand-level NPP_{stem} used in this study will be uploaded as supplemental material.

Authors’ Contributions

Competing Interests

Funding

This work was primarily supported by UK Natural Environment Research Council Grant NE/P001092/1 and a European Research Council Advanced Investigator Award (GEM-TRAIT, # 321131) to Y.M, and a grant from The Nature Conservancy-Oxford Martin School Climate Partnership supporting S.W.R. It also heavily utilizes previous data collection funded by NERC (NE/I014705/1 for African sites, NE/K016369/1 for Asian sites, NE/F005776/1, NE/K016385/1, NE/J011002/1 for Amazonian sites), by CNPq (CNPq grant 457914/2013-0/MCTI/CNPq/FNDC/LBA/ESECAFLO) and support for the Amazonian sites from the Gordon and Betty Moore Foundation, and for the Asisian sites from the Sime Darby Foundation. The site in Nova Xavantina, Brazil was funded by grants from Project PELD-CNPq (403725/2012-7; 441244/2016-5); CNPq/PPBio (457602/2012-0); productivity grants (PQ-2) to B. H. Marimon-Junior and B. S. Marimon; Project USA-NAS/PEER (#PGA-200005316) and Project ReFlor FAPEMAT 0589267/2016. The sites in Santarem, Brazil have been supported by Instituto Nacional de Ciência e Tecnologia – Biodiversidade e Uso da Terra na Amazônia (CNPq 574008/2008-0), Empresa Brasileira de Pesquisa Agropecuária – Embrapa (SEG: 02.08.06.005.00), the European Research Council (H2020-MSCA-RISE-2015 - Project 691053-ODYSEE), the UK government Darwin Initiative (17-023), The Nature Conservancy, and the UK Natural
References

