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ABSTRACT
In Europe and North America the prevailing model of ‘natural’ lowland streams is incised-
meandering channels with silt-clay floodplains, and this is the typical template for stream 
restoration. Using both published and new unpublished geological and historical data from Europe 
we critically review this model, show how it is inappropriate for the European context, and examine 
the implications for carbon sequestration and Riverine Ecosystem Services (RES) including river 
rewilding. This paper brings together for the first time, all the pertinent strands of evidence we now 
have on the long-term trajectories of floodplain system from sediment-based dating to sedaDNA. 
Floodplain chronostratigraphy shows that early Holocene streams were predominantly multi-
channel (anabranching) systems, often choked with vegetation and relatively rarely single-channel 
actively meandering systems. Floodplains were either non-existent or limited to adjacent organic-
filled palaeochannels, spring/valley mires and flushes. This applied to many, if not most, small to 
medium rivers but also major sections of the larger rivers such as the Thames, Seine, Rhône, Lower 
Rhine, Vistula and Danube. As shown by radiocarbon and optically stimulated luminescence (OSL) 
dating during the mid-late Holocene c. 4-2ka BP, overbank silt-clay deposition transformed 
European floodplains, covering former wetlands and silting-up secondary channels. This was 
followed by direct intervention in the Medieval period incorporating weir and mill-based systems – 
part of a deep engagement with rivers and floodplains which is even reflected in river and 
floodplain settlement place names. The final transformation was the ‘industrialisation of channels’ 
through hard-engineering – part of the Anthropocene great acceleration. The primary causative 
factor in transforming pristine floodplains was accelerated soil erosion caused by deforestation and 
arable farming, but with effective sediment delivery also reflecting climatic fluctuations. Later 
floodplain modifications built on these transformed floodplain topographies. So, unlike North 
America where channel-floodplain transformation was rapid, the transformation of European 
streams occurred over a much longer time-period with considerable spatial diversity regarding 
timing and kind of modification. This has had implications for the evolution of RES including 
reduced carbon sequestration over the past millenia. Due to the multi-faceted combination of 
catchment controls, ecological change and cultural legacy, it is impractical, if not impossible, to 
identify an originally natural condition and thus restore European rivers to their pre-transformation 
state (naturalisation). Nevertheless, attempts to restore to historical (pre-industrial) states allowing 
for natural floodplain processes can have both ecological and carbon offset benefits, as well as 
additional abiotic benefits such as flood attenuation and water quality improvements. This includes 
rewilding using beaver reintroduction which has overall positive benefits on river corridor ecology. 
New developments, particularly biomolecular methods offer the potential of unifying modern 
ecological monitoring with reconstruction of past ecosystems and their trajectories. The sustainable 
restoration of rivers and floodplains designed to maximise desirable RES and natural capital must 
be predicated on the awareness that Anthropocene rivers are still largely imprisoned in the banks 
of their history and this requires acceptance of an increased complexity for the achievement and 
maintenance of desirable restoration goals. 

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



3

1. Introduction: stream engineering and natural reference conditions

For decades meandering, gravel-bedded, streams with fine-grained floodplains forming their banks 

have been considered as a universal model explaining the morphology and functioning of natural 

streams in temperate lowland temperate European and North American riverine landscapes 

(Leopold and Wolman, 1957; Wolman and Leopold, 1957). As a logical consequence, the concept 

has also served as template for natural reference conditions (RRC, 2001; Kondolf, 2006). The 

morphological evolution of these channels is typically modelled through shear stress-fields 

dependant largely upon topographic-steer driven by the alternation of pool and riffles in 

equilibrium with radii of bend curvature and stream width (De Moor et al., 2007). This perception 

and model is increasingly challenged as initially similar-looking stream-floodplain morphologies may 

involve a considerable variety of inherited floodplain-building processes. This applies even more so 

when the millennia-long record of human interference has been interwoven into what we might 

perceive as classic river landscapes. 

The floodplains of European lowland streams are characteristically of very low relief (1-2 m) and 

typically less than channel depth (1-4 m) as revealed by LIDAR surveys (Mann et al., 2007). The 

principal cause is Holocene overbank sedimentation of sand, silt and clay (Brown and Barber, 1986; 

Dotterweich, 2008; Pastre et al., 2001; Lespez et al., 2008; Macklin et al., 2010; Broothaerts et al., 

2012; Brown et al., 2013; Macklin et al., 2014). It is often an idealised fluvial ensemble of floodplain 

flats, low or no levées, and sinuous (meandering) stream form to which channels are currently 

being restored in Europe with the re-engineering of meanders, pools and riffles (Moss and 

Monsadt, 2008). Studies of alluvial floodplains in geological sections suggest that fixed-channel 

anabranching or anastomosing channel forms are associated with fully vegetated floodplains from 

the Carboniferous Period onwards (Davies and Gibling, 2011). The popularity of the high-sinuosity 

single-channel form may owe something to the cultural perception of the tranquil meandering of 

rivers (form rather than the process, or in ecological terms the structure rather than the function) 

so commonly depicted in both art and literature – a common European aesthetic of perceived 

naturalness – the serpentine form as exemplified by the English 19th Century landscape painter 

Constable, and others (Kondolf, 2006). In addition, further important goals of river restoration 

concern the desire to increase biodiversity and ecosystem functioning through attaining ‘natural’ 

and sustainable floodplain landscapes. High levels of uncertainty are commonly attached to river 

restoration outcomes (Darby and Sear, 2008) and as this paper shows in Europe this is due to 
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complexity created by inherited elements derived from their Holocene evolution and a much more 

prolonged and gradual transformation of European rivers in comparison to the abrupt 

transformation of rivers in Australia and the Americas (Brierley et al., 2005). The abrupt New World 

transformations, were in some cases associated with mills and dams (Walter and Merritts, 2008), or 

large changes in sediment supply (Happ et al., 1940; Trimble, 1981). These changes occurred in all 

climatic zones including the semi-arid zone, where anastomosing systems were transformed in 

under 200 years (Florsheim and Mount 2003: Florsheim et al., 2008) with implications for flood 

hazard (Florsheim et al. (2011).

In Europe expenditure on river, enhancement, rehabilitation and restoration is significant and is 

usually by the State or local authorities, and ultimately the taxpayer. The current annual spend is at 

the very minimum £6-10 M ($US 7.7 M – 12.8 M) in England (DEFRA, 2015), and as much as $US 4.2 

billion in Germany (Ecologic Institute, 2016). There have now been over 500 schemes completed in 

France alone (Dolédec et al., 2015), and the annual expenditure by the Water Agencies, which are 

the main funders of the ecological resstoration of river and wetland in France (Morandi and Piegay, 

2016), is around 180 M euros per year for their 10th program of intervention covering the 2013-

2018 period (Annex of the Finance Act 2017). With over 2000 schemes, 110 involving re-

meandering Denmark leads the way in river restoration or rehabilitation with varying ecological 

results (Madson and Debois, 2005; Pedersen et al., 2014). Social research from Switzerland, where 

the residents of Bern Canton voted to spend 3 M Swiss francs ($US 3.1 M) annually on river 

restoration, suggests that such expenditure has public support (Schläpfer and Witzig, 2006). 

Unfortunately no total figures are available centrally but a minimum of $US 8-10 billion for the 

European Union in total can be estimated using German costs of between 0.5 M-1 M Euros per km 

excluding land acquisition (Morandi and Piégay, 2011). Global expenditure has been estimated at 

approximately $US 3 billion annually (Roni and Beech, 2013). 
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In North America the classic view of channel form and floodplain morphology (Leopold and 

Wolman, 1957) has been challenged by the proposition that for mid-Atlantic and western streams, 

form is largely a legacy of the impoundment 

of the valley floors by water-powered mills 

(Walter and Merritts, 2008; Merritts et al., 

2011). This places short- to mid-term 

channel and floodplain form in a historic 

context where the evolution of valley-flats, 

and more recent incised meandering 

channels, are temporally decoupled and 

respond to direct, and abrupt, human 

impact without any buffering from 

floodplain environments. These conclusions 

also pose questions for the formative 

definition of the morphology and sustained 

functioning of natural channel-floodplain 

environments that underlie most channel 

restoration projects. It has further been 

proposed that a similar alluviation in temperate Europe might also have been the result of mill-

damming (Walter and Merritts, 2008; Houben et al., 2013). 

In this paper we have pooled both published and unpublished data from across temperate Europe 

(Fig. 1) to test this proposition by charting floodplain transformation from natural Holocene 

conditions to the uncoupled state of channels and floodplains we observe today. We use 

geomorphological and palaeoecological data to examine the state of rivers and floodplains prior to 

and during their transformation by human activity, and discuss how this relates to river restoration 

and rewilding and the implications for both carbon sequestration and floodplain management. New 

techniques, such as biomolecular analyses, are also introduced that may greatly increase our ability 

to detail past floodplain ecology accurately and in depth. We develop this analysis to examine the 

possibility of returning floodplains to a prior, more connected multi-functional state (Schindler et 

al., 2016), with the implications this has for riverine ecosystem services (RES), river-rewilding (RRW) 

and implications for carbon sequestration within river corridors. RES in Europe has strong 

Fig. 1 Map of Europe showing the case study areas (red 
squares) and other sites mentioned in the text. 
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similarities with riverine ecosystems synthesis in North America (RES sensu Thorp et al, 2006) 

including the biodiversity and carbon sequestration potential of floodplain-channel systems 

(Lespez, 2013; 2015).

2. Methods, materials and data sources

The most fundamental data for the state of past rivers is contained within the physical and 

biological characteristics of their deposits. This paper uses radiocarbon and optically stimulated 

luminescence (OSL) dated floodplain stratigraphies. Additionally two novel data sources are 

introduced: the use of river and place names to investigate floodplain and river conditions about 

1000 years ago and also biomolecular methods including sedaDNA. A deeper understanding of past 

riverine ecosystems allows us to as not only what elements of rewilding might achieve desired 

goals, but also, what elements of rewilding are possible or require substitution such as the role of 

extinct herbivores. We have assessed these questions, by collating the following bodies of 

evidence: (a) studies of early Holocene channel form from rivers prior to significant deforestation in 

their catchments, (b) studies of channel and floodplains in transition during the periods of 

maximum landscape change in most of Europe which is 3 - 0.5 ka years BP - the European Late 

Bronze to Medieval Period (Section 3), (c) the density of channel obstructions and their implications 

for historical channel form (Sections 3- 5), (d) the ecological processes and biodiversity of the few 

remaining multi-channel systems through the case studies (Section 6), and lastly (e) carbon storage 

and sequestration of pre-transformation and modern channel-floodplains (Section 7). The future 

potential of biomolecular methods on fluvial sediments is outlined (Section 8) and rewilding 

projects are discussed in relation to their ecological and environmental goals (Section 9). 

3. Pre-deforestation channels and primary floodplain transformation.

Although the Pleistocene to Holocene hydrological trajectories of larger European rivers are now 

well known from many studies of temperate palaeohydrology (Starkel et al., 1991; Gregory et al., 

1995) the number of observations of pre-deforestation floodplain sequences for smaller systems 

(<5th order streams) is far lower than for later periods or for post-deforestation streams in Europe 

(Johnstone et al., 2006; Hoffmann et al., 2008). However, these studies do reveal that after a well-

known transition from braided and high-discharge conditions at the end of the Last Glacial 

Maximum (MIS 2) in northern areas, and the Pleniglacial in continental Europe, floodplains show 

either organic-rich palaeosols, peat or on carbonate lithologies - marl deposits (Baker and Sims, 
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1998). Well known examples include the low-relief groundwater dominated catchments such as the 

Fens in England (French, 2003), Paris Basin, France (Pastre et al., 2001), the Netherlands and N 

Germany (Peeters, 2004; 

Behrendsen and Stouthamer, 

2001; Boss, 2001). A study of 

the stratigraphy of the Mue 

and the Seulles River system 

in Normandy, France 

illustrates the different steps 

of ‘natural’ stream evolution 

(Lespez et al., 2008: 2015, 

Fig. 2). For the Mue river, as 

for numerous rivers from the 

Paris basin, sedimentation is 

mainly constituted by 

tuffaceous and/or organic sediments while the Seulles river, mainly flowing in the Armorican 

massif, experienced a prolonged period of organic sedimentation intercalated with sandy gravel 

lenses. We know from pollen and macrofossil diagrams from across temperate Europe that these 

early-mid Holocene floodplains were thickly-wooded with birch, willow, poplar and later alder and 

oak (Huntley and Birks, 1983; Brown, 1999; Dinnin and Brayshay, 1999; Lechner, 2009; Ejarque et 

al., 2015). Where there has been very limited subsequent overbank alluviation due to a lack of 

arable cultivation in the catchment this early-mid Holocene channel planform can be preserved. An 

example is the river Culm (Devon, UK) where mapping has revealed an anabranching pattern of 

palaeochannels, with channel abandonment and flow confinement to one or two channels due to 

the creation of cohesive riverbanks by overbank deposition only after land-enclosure in the 18th 

century (Fig. 3a). More commonly such channel networks have been buried under metres of sand, 

silt and clay as is the case in the River Frome (Herefordshire, UK) where up to 5m of overbank 

Fig. 2 Model of the Holocene development of Seulles river on the Normandy Plain.
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sediments has caused relative incision to the point where the floodplain has become a terrace with 

a channel width:depth ratio of 3-1 (typical average 1.2, Fig. 3b). Although sediment is transported 

by the flood series (Johnstone et al., 2011; Hoffmann et al., 2008), the fundamental cause of this 

accelerated alluviation is the coupling of erodible soils with intensified late Holocene arable 

cultivation. The result of this geomorphic history has been to transform the delivery of fine 

sediment through the floodplain with a lowering of floodplain groundwater table and in-channel 

storage initially predominating over overbank deposition (Collins and Walling, 2007), a conclusion 

first postulated in Germany as long ago as 1941 (Naterman, 1941).  Excavations of small floodplains 

have revealed this transition from small often bifurcating channels with organic-rich floodplains to a 

silt-clay floodplain with a single channel, as exemplified here from Germany (Houben, 2007) and 

Central England (Fig. 4). 

There are now enough OSL dates from European floodplains and particularly the UK so that it is 

possible to provide a Holocene 

perspective on floodplain sedimentation 

using direct sediment dating which can be 

compared to indirect sediment dating, 

mostly using radiocarbon. Fig. 5 illustrates  

the summed probability distribution (SPD) 

of the OSL dates of the superficial 

sedimentary unit (so-called buff-red silty 

clay member) in the Severn-Wye basin 

from 4 sites (Yarkhill in the Frome valley, 

Wasperton in the Avon valley and 

Buildwas and Clifton from the main 

Severn valley). The inset is the alluvial 

sequences from the UK with alluvial dates 

from Macklin et al. (2014) for comparison. 

What is clear is how the entire superficial 

overbank unit of the largest basin in the 

UK is contemporaneous and dates to the last 3000 years, and postdates the second major phase of 
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Fig. 3 (a) Anastomosing palaeochannels in a reach of the River Culm, 
SW England dated using 14C, OSL and documentary sources. (b) the 
frequency curve of overbank flooding from the OSL dates alone, (c) 
post-Bronze age (c. 3000 BP) superficial alluvial unit of the River 
Frome floodplain and (d) the longitudinal section of the River Frome 
(adapted from Brown et al., 2013 ).
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Fig. 4. Three examples of channel-dominated mid-Holocene stratigraphy underlying overbank units. (a) 
Simplified model of fluvial architecture of a suspended-load river in central Europe, (b) at Croft a small 
floodplain (100-200 m wide) shows a major Lateglacial palaeochannel subsequently re-cut by smaller mid-
late Holocene streams which incised and reworked extensive amounts of gravel, coarse sand and organic 
silts. At some point in the late Iron Age or Roman period (post 800 BCE but before 250-350 CE) 
approximately 1m of clay was deposited across the entire valley floor, confining the channel within cohesive 
banks from the late Roman period until modern times. The pollen, beetle data and archaeological data 
(evidence of houses and farming) showing that it was unambiguously associated with human clearance of 
the deciduous woodland and its replacement by a mixture of rough pasture and arable cultivation. (c) A 
similar multi-period cross-section from the river Nene (UK) shows an early Holocene basal channel buried 
by minor channel fills all buried under a cover of silty clay which dates to the Roman Period.
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agricultural land conversion in the British Isles as determined from radiocarbon dates (Stevens and 

Fuller, 2012). In smaller systems the combination of human impact including milling  produced 

conspicuously different floodplain aggradation rates in neighbouring stream section in the (late) 

Early Middle Ages (Houben et al., 2013).
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Fig. 5 SPD of 19 OSL dates from the upper alluvial member at 4 sites in the Severn-Wye Basin, UK with inset of 
SPD of radiocarbon dates of alluviation from Macklin et al. (2010, 2014) and cereal/crop dates archaeology from 
Stevens and Fuller (2012) reproduced in Brown et al. (2016)
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3.1 Palaeoecological Studies of Floodplain Transformation

Palaeoecological studies of buried channels and floodplains reveals a high biodiversity in plant 

macrofossils including species and habitats which are today extremely rare (Wildhagen-Mayer, 

1972; Rittweger, 2000). These habitats include wood-choked alluvial woodland rich in invertebrates 

(Harper et al., 1997; Smith, 2000), riparian and 

floodplain yew (Taxus) woodlands (Branch et al., 

2012), species-rich hay meadows (Robinson, 1992) and 

bracken infested floodplain clearings (Brown, 1999). 

This high biodiversity was the result of high patch-

heterogeneity, under intermediate disturbance-

regimes as has been shown from the key-stone palaeo-

beetle faunas (Davis et al., 2007). The contraction from 

multi-channel forms to single channel patterns is not 

only common for small streams, but also medium-

sized rivers; examples include the middle and lower 

Thames (Sidell et al., 2000; Booth et al., 2007), the 

Severn and its tributaries in the UK (Brown et al., 

1997), the Seine, Mosel, and Isère in France (Mordant 

and Mordant, 1992), the Weser, Werra and Ilme and 

many other floodplains in Germany (Hagedorn and 

Rother, 1992; Girel, 1994; Stobbe, 1996; Zolitschka et 

al., 2003). It also applies to the basin sections of the 

largest European rivers such as the Vistula (Starkel et 

al., 1996; Maruszczek, 1997) and the Danube, with one of the best examples being near Bratislava 

in the Linz basin (Pišŭt, 2002). An additional factor with these rivers was the improvements 

required to allow larger draught river traffic after the adoption of steam-boats (Hohensinner et al., 

2011 Fig. 6).  The reduction of complexity produced by secondary channels, and the prevention of 

avulsion was the main goal of all the European big river channelization schemes of the late 18th to 

early 20th century CE channelization schemes (Petts et al., 1989; Gurnell and Petts, 2002).

4. Channel obstructions and secondary transformation 

Fig. 6. Channel changes of the Danube River in 
the Austrian Machland floodplain from 1715 to 
2006.Credit: FWF project Machland 1715-
1991, Nr. P14959-B06.
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Prior to and during the Quaternary, European rivers functioned naturally witha wide range of 

channel obstructions, most notably those caused by Eurasian beaver (Castor fiber) dams and 

accumulations of large wood (Coles 2006; Francis et al 2008). Wooded riparian corridors provide a 

variety of dead and living wood sizes, seeds and propagules directly into the channel network. 

Living wood and seeds interact with hydro-geomorphic processes to stabilise emergent 

depositional features and river banks, forcing channel stabilisation (Tal., et al., 2004) and island 

formation (Gurnell and Petts 2002). Francis et al. (2008) argue that prior to deforestation many 

natural alluvial lowland channels would have been island braided with a high channel margin length 

supplying large quantities of woody material into the river network. Conversely, floodplain 

deforestation which occurred in broadly two phases (2500-2000 BP and 1500-1000 BP) reduced the 

supply of wood, seeds and propagules, which would have resulted in increased channel dynamics in 

reaches of high stream power due to absence of stabilising root systems on river banks, and 

vegetation of bars and islands.  In zones of low stream power these effected were probably 

cancelled out by the increasing rate of overbank siltation by cohesive sands, silts and clays (Brown 

et al., 2013). 

In headwater streams the role of wood varies since the processes of supply are influenced by slope 

processes (shallow landslides) and channel width:wood ratios (Dixon and Sear, 2014). Large wood 

recruitment in headwaters can block valleys forcing aggradation of the valley floor (Montgomery 

and Abbe 2006). Similarly, low width:wood ratios promote the formation of logjams, that force 

floodplain dissection by overflow channels, and increased water levels upstream of jams. Rates of 

sediment and organic matter transport from headwaters are strongly influenced by logjam 

dynamics (Assini and Petiti, 1995; Sear et al., 2010). However, by c. 2,200 BP (the late European 

Iron Age) human-induced alluviation had changed floodplain and channel morphology and ecology 

throughout temperate Europe, and floodplains were extensively used for agriculture (Brown, 

1997a; Stobbe, 1996, 2012).  By the c. 1700 BP (the late Roman period) most natural floodplain 

wetlands had been drained, and if not then by c. 1200 BP (the early Medieval period). A second 

transformation was the creation of floodplain-based power supply systems by the 900-600 BP (the 

11th-14th centuries CE or ‘High’ Medieval period), which were constructed, controlled and 

maintained by specialised professionals (surveyors or leviadors) for milling and hydraulic 

engineering (Rouillard, 1996). Under the European Feudal system floodplains and channel were 

immensely important and regulated. This included regulations for bank protection, channel 
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maintenance, fisheries, sewage discharge, floodplain mowing and controlled flooding known as 

warping in parts of England (Lewin, 2013). 

The result was that weirs, watermills, causeways and bridges and other channel obstructions 

became a ubiquitous feature of all small European rivers as floodplains became the centre of this 

Medieval technological revolution (Reynolds, 1987; Munro, 2002; Lewin, 2010). This is part of what 

Lewin has termed the morphological phase of floodplain transformation or genetic modification  

(Lewin, 2013). At the hub of this development was the watermill which although in existence in 

Roman Europe, was relatively rare until the early Medieval period, for reasons that appear to be 

essentially cultural-political rather than technological (Bloch, 1935). For example, by 830 CE the 

monks of St-Germain-des-Prés (France) had established as many mills as possible for the available 

hydraulic head as illustrated by the existence of the same number on the same sites in the late 18th 

century CE (Lohrmann, 1989). The construction of mills also extended from west to east into the 

formerly non-Romanised parts of Germany in the 7th to 12th centuries CE. Although there is no 

single data source across Europe, or even at the State level, where historical records do exist, such 

as for tributaries of the middle Thames Valley, they reveal a remarkably high frequency of river 

obstructions with average spacing of 1.1 and 1.6 mills km-1 of stream length (Downward and 

Skinner, 2005). By the the 11th century CE as revealed by the Domesday Book (1086 CE), there were 

at least 5624 watermills in England (Open Domesday Project, 2017). Calculations for the upper 

Thames suggest a density of 0.2 mills km-2 (Peberdy, 1996) and estimates based upon historic maps 

and archaeology suggest higher spacing on smaller rivers such as 2.9 mills km-1 on the Erft River 

(Germany), 1 mill km-1 and around 0.7 mills km-1 for the rivers of orders 2  to 5 in Normandy (Lespez 

et al., 2005, 2015; Beauchamp et al., 2017). The high density of mills is surprising given the very low 

gradients of these rivers (10-3--10-4 m m-1) limiting the longitudinal gain of hydraulic head 

(Downward and Skinner 2005; Mordant and Mordant 1992). By the 11th-12th century CE the 

typical size of an overshot water wheel in England was 1.4-2.5m in diameter and this would 

constrain spacing to approximately one mill every 10-20 km in small catchments (<10 m-3 s-1 maf) or 

less for undershot wheels.  However, in Normandy long mill leets (0.5 to 1 km) could generate 1.5 

to 3m of head. Examination of the location of mills in many small valleys reveals that they are 

typically located at the edge of the floodplain and in an alternate spacing downstream. It has 

generally been assumed that the multiple channel pattern associated with watermills (leets, bypass 

channels and tail-races) are artificial and were dug when the mill was constructed (Vince, 1984; 
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Downward and Skinner, 2005). However, observations on the River Culm and River Erft suggests 

that many mills utilised pre-existing secondary channels at floodplain edges and exploited a lateral 

gradient between channels, rather than longitudinal gradient (Felix-Henningsen, 1984; Kreiner, 

1996). In Normandy this was often a transitional state (with two remaining channels) in between 

the marshy floodplain with anabranching channels and the ‘artificial streams’ of the Middle Ages. 

The bi or tri-channel form also allowed minimal work to be entailed in the construction of tail-races 

and bypass channels and restricted conflict with other river users such as for fishing. Support for 

this hypothesis comes from recent studies of early watermills in England (Lewin, 2010; Downward 

and Skinner, 2005), administrative boundaries and place name evidence (see Section 5). In Flanders 

the cellerar was responsible for the maintenance the network of interconnected channels/canals 

(Rouillard, 1996; Lespez et al., 2005). 

During the Mediaeval period the other main engineers of European waterways and wetlands – the 

Eurasian beaver – was hunted to near extinction (Wells et al, 2000). Territories were reduced to a 

fraction of their maximum extent earlier in the Quaternary (Coles, 2006) and in many countries 

populations were eradicated by the 16th century CE with isolated survival in a few protected 

forests in the peripheries of Europe such as parts of Scandinavia, Eastern Poland and Russia (Halley 

and Rosell, 2003).  Such an impact, in parallel with the human-induced channel changes described 

above, likely contributed to the within-bank, single-channel structures that prevail in most 

European rivers to date Whilst it is extremely difficult to measure its past effect the beaver is 

known, largelyu from studies in North America, to promote channel bifurcation through lodge and 

run creation, increase pools and increase habitat complexity and diversity including fish (Häglund, 

1999; Law et al., 2016). Its reintroduction to many European rivers is being monitored at a number 

of locations (see Section 9). In addition to the loss of beaver large wood in the form of channel 

spanning logjams, isolated pieces (snags), bank and island jams were formerly more prevalent in 

watercourses, but were removed during the Medieval period as rivers were developed for 

navigation as well as milling, and as riparian forests were cleared. 

From the Medieval period onwards, man-made obstructions, mostly weirs, became a the dominant 

artificial structural component of European rivers as can be gauged from data for England and 

Wales (Fig. 7). Weirs were built principally to provide the hydraulic head for mills, but also for 

fishing and the maintenance of adequate channel depth for navigation (Bennett et al., 2014; Lobb, 
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2017; Lobb et al., subm.). Obstructions to European rivers 

have always been controversial as they raise conflicting 

financial interests particularly between fishing and 

navigation. Indeed in clause 33 of Magna Carta (1215 CE) 

the English barons demand of King John the removal of 

“Omnes kydelli de cetero deponantur penitus de Thamisia, 

et de Medewaye, et per totam Angliam, nisi per costeram 

maris" translated as “All fish-weirs are in future to be 

entirely removed from the Thames and the Medway, and 

throughout the whole of England, except on the sea-

coast” (The Magna Carta Project, 2017). Although these 

weirs obstructed the main channel, they typically did not 

obstruct the floodplain over which non-riparian rights 

applied. So only in rare cases in the post-Medieval period were cross-valley dams built which have 

created stepped floodplain long-profiles (Fig. 8A) as reported for the Mid Atlantic USA (Walter and 

Merritts, 2008) where 

similar long-standing legal 

considerations did not 

apply. In Europe dams 

across entire floodplains 

can be related to metal 

mining and in Western 

France, dams across the 

entire floodplain called 

"chaussée" were on 4th to 

6th order rivers on the 

south Armorican massif 

(Lespez et in press). 

However, in general that 

stepped longitudinal 

floodplain gradients can 

rarely be detected although the mill is part of a complex channel and floodplain mosaic which 

Fig 8. Contrasting floodplain microtopgraphy: (A) LIDAR data from the Velvet Bottom 
catchment in the Mendip Hills, UK. The area of erosion back into the floodplain surface is 
marked below the lowest dam (1) of the 7 dams marked. Data by courtesy of the Mendip 
Hills AONB and (B) Lidar from the River Avon, Hampshire (UK) showing the location of 
the mill, the patchy nature of the floodplain surface and downstream herring-bone pattern 
water-meadows.

Fig. 
7 River obstructions (mostly mill weirs) in 
England and Wales. Data from the UK 
Environment Agency
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includes water meadows in the UK and France from the 17th century CE onwards (Cook and 

Williamson, 2007; Fig. 8B). The final transformation of floodplains was universal channelisation and 

stabilisation with hard-engineering in the industrial period with virtually all small streams being 

converted into ditches or channelized (Brookes 1988). 

Another impact on wooded, sloping low-mountain areas particularly in Germany and Scandinavia 

was the modification of rivers into ‘floatways’ for and by timber floating after logging (Tornlund and 

Ostlund, 2002; Nillsson et al., 2005; Helfield et al., 2012; Comiti, 2012). This may have started in 

Roman times, was common during the Medieval Period and really increased in Eastern Europe and 

Scandinavia as the timber frontier migrated inland in the late 19th and early 20th Centuries CE 

(Törnlund and Östlund, 2002). In these rivers it involved the removal of natural obstructions 

sometimes by blasting, the construction of splash dams and the confinement of the river into a 

single channel (Törnlund and Östlund, 2002; Steinle and Herbener, 2016). There have been few 

studies of its effects but results from one restoration scheme on the Pite River in Sweden showed 

little re-establishment of a flood-adapted plant communities, although this was only after a period 

of 5 years (Helford et al., 2012).

5. River names, place names and river corridor character

River names and water-related place names constitute a valuable, and underused, data source on 

the character of historic riverine landscapes in Europe and parts of the New World where aboriginal 

languages have been recorded. River names are probably amongst, if not the, oldest words in most 

languages, and many have toponymic meaning relating to landscape form, water quality, 

vegetation or notable animals (Strandberg, 2015). Although difficult to date precisely in Europe 

they date from at least c. 1000 BP and may well be older (Coles, 1994: Peust, 2015). In some cases 

they can even be traced across Europe, even when their meaning is unclear, and it has been argued 

that some may pre-date Indo-European languages (Coles, 1994; Peust, 2015). Water-related names 

allow several distinctive characterisations to be made, adding a further layer of landscape evidence 

to the physical, biological and archaeological datasets that already exist, and providing an 

alternative basis by which these can be tested and evaluated. Initially water-related names allow 

researchers to describe physical features and landscapes as shown by the common and shared 

etymology of river names across Europe (see Table S1). Another distinctive advantage of water-

names is that they can be utilised at a number of different scales: since names are thought to have 
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been applied precisely and consistently, so their application in particular locations can help to 

pinpoint similar physical attributes within single catchments or link conditions common to rivers on 

opposite sides of the country. Most importantly though, they exhibit excellent geographic stability, 

and once created the names remain anchored in the landscape. Mapping the spatial distribution of 

the water vocabulary found in place-names can therefore provide a detailed view of late Holocene 

landscape conditions and Lohrmann (1984) has used water and place names to locate and 

investigate historic hydro-works, particularly Medieval and post-medieval mills in Germany.

Many river names contain remarkable detail about their hydrological character (Ekwall, 1928).  

When viewed together, British river names seem to indicate five different river-types, defined by 

Jones (pers. comm.) as:  ‘idlers’ characterised by a slow water flow and low flood risk (e.g. Rivers 

Seph and Brit); ‘lingerers’, whose floodplains are typified by  areas of consistently wet ground (e.g. 

Rivers Leach and Sowe); ‘meanderers’ whose highly sinuous watercourses and wide floodplains 

present a higher risk from flooding (Rivers Camel and Wensum); ‘wanderers’, rivers which tend to 

demonstrate marked lateral channel movement and propensity of overbank (Rivers Irwell and 

Trent, Jones et al. 2017); and ‘aggressors’, characterised by fast flowing water and prone to flash 

flooding (Rivers Erewash and Swale). This previously untapped data source is being used in a 

current project in the UK called Flood and Flow: Place-Names and the Changing Hydrology of River-

Systems (Flood and Flow, 2017). The nature and character of rivers in mainland Europe have also 

been encapsulated within the origins of their names. Examples of rivers with rapid water 

movement can be seen in the French rivers Rhine and Isère interpreted from the Indo-European –

rei and –isərós respectively and have been interpreted as ‘to move, flow or run’ and ‘impetuous, 

quick, vigorous’ (OED 2001, Delamarre 2003, Roussel 2009). Additionally, the river Aude takes its 

name from the Gaullish –atacos meaning ‘spirited or very fast’ and the Liffey in Ireland from the 

Irish Gaelic –An Ruirthech ‘fast, stong runner’. In Germany examples of rapid water movement is 

held in the names of the river Danube which contains elements of the Greek -istros (Ἴστρος) 

‘strong, swift’ (Katičić 1976) and the Aar with the early German for quick flowing water (Krahe 

1964). Further east in Poland the river Poprad contains components deriving from Proto-Slavic and 

Slavic –pręd-and –priasť meaning ‘to flow fast, to jump or spin’ (Ondruš 1991). In contrast there are 

also examples of hydronyms which illustrate the slow movement of water. In Poland the 

interpretation of the river Vistula is from the Indo-European –ueis meaning ‘to ooze or flow slowly’ 

(Adams 1997). Slower moving water may also be inferred from river names which refer to the 
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colour or sediment held within them. In France the rivers Loire, Loir, Loiret and Ligoure all contain 

the element –liger the latinised version of the Gaulish –liga which refers directly to silt, mud and 

alluvium (Montclos 1997). Other examples include the Brian, Briance, Brienon and Briou from the 

French –boue or ‘mud’ (Toponymie Rivieres de France 2002). Gentle riverine conditions may also be 

interpreted from water names suggesting a sinuous, meandering course. Examples include the 

River Kocher in Germany which derives from the Celtic –cochan ‘winding or meandering’ (Lott 

2002), the Schunter from Slavic –sukqtora ‘with many angles’ or Loobah from Gaelic Irish –An 

Lúbach ‘twisted one’. In Norther Europe in Sweden and Norway the addition of -sele to 

watercourses indicates low gradient rivers associated with former glacial lakes and deltas.  

In relation to water-related place names the composite nature of the English language, influenced 

over time by many languages such as; obscure ancient languages (Brittonic - the Celtic languages 

spoken in Britain); Latin; Old English; Old Norse and French, means that place names contain a 

greater diversity of terms describing watercourses and floodplain topography than exists today. For 

the UK, key texts such as Gelling (1984) and Gelling and Cole (2000) provide detailed analysis of the 

vocabulary used in these names and the fluvial features or phenomena which they describe. 

However, the investigation of these names allied to geomorphology remains rather undeveloped 

with notable exceptions including research in the River Trent (Brown et al., 2001; Jones et al., 2017) 

and on-going work in the Severn-Wye catchment (Flood and Flow, 2017). The importance of water 

in the early medieval period in England appears to be reflected in the sheer number of place names 

that refer both directly and indirectly to it. It is believed that these were conscientiously and 

carefully chosen in order to highlight the presence, nature and behaviour of water, and inform 

occupants and travellers of local conditions.  A particularly good, yet rare example of this can be 

found in the place names Buildwas (River Severn), Broadwas (River Teme), Alrewas (River Trent), 

Hopwas (River Tame) and Wasperton (River Avon). The –wæsse (..was) element derives from the 

Old English and has been recently reinterpreted to indicate an area which floods and drains rapidly 

(Gelling and Cole 2000). 

Evidence of flora and fauna within river and place names can also assist the understanding nature 

of the past river corridor ecology and landscape. For example the inclusion of beaver-derived 

names across Europe is common-place and include the rivers Bèbre, Beuvron, Bibiche, Bièvre and 

Bièvre in France derived from the French –bebros (Toponymie Rivieres de France 2002). There are 
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also many names derived from floodplain vegetation such as forested rivers, an example being 

Aberdare and Aberdaron which both come from ‘mouth of the oak river’ (Welsh Celtic, Mills, 2011). 

The name Gearagh (see Section 6.1) or ‘Gaertha’ is a word peculiar to Co Cork and Co Kerry in SW 

Ireland that means ‘level wooded tract near a stream or river’ as noted in 1840 CE, by John 

O’Donovan in the Ordnance Survey Name Book where it appears as Gaorthadh an Róistigh/Gearagh 

(Míchaél Ó Mainnín pers comm., 2018; Logainm.ie, 2018). Water-related names can also illustrate 

distinct links with past human land use. Studies in France and specifically Normandy have suggested 

that the hydronomy (names for bodies of water) provides indications on the past river pattern prior 

to the start of the Middle Ages and development of numerous water mill systems. For example, 

variants of Old Norse in water-names including –bec ‘a small stream’ and -dik or -dic(q) ‘a water-

filled ditch’ indicate the management of running water. Such toponomy underline the significance 

of the artificialisation of the river system since the Middle Ages (Cador and Lespez, 2012). In this 

area, more than 700 leets still remain for a length of 540 km and numerous rivers have changed 

their name to the name of the leet. Thus, from the 19th century at least, the Mue River named the 

former leet while the Douet (local name for the leet) named the small stream remaining in the 

natural thalweg! More generally, the detailed examination of the maps of Western Normandy 

reveals more than 60 “Douet” and 40 “watermill brook” (ruisseau du moulin) and also a number of 

“dead” rivers (Morte Eau, La Morte, Morte-Vie) and some “fake” rivers (fausse rivière) indicate 

abandoned rivers because of the diversion of the flows to the leet. Moreover, in the Calvados 

district, there remain 280 watermills in the toponymic inventory of the local map of Institut 

Géographique National illustrating the imprint of the long-term transformation of French and 

European streams. Whilst this brief introduction to the topic has only been able to highlight a few 

river and place name examples from the British Isles, and mainland Europe it suggests that 

combined palaeoenvironmental and etymological investigation in the future could both open a 

window on river conditions in Medieval Europe, but also provide rare data on past societal 

perception of rivers and their landscapes.

6. Case Studies: hydroecological processes and biodiversity in forested European floodplains.

6.1. The River Lee, SW Ireland

Alluvial forests are a rare habitat in both the UK and Europe but have disproportionately high 

biodiversity (Brown et al., 1997). Studies on the Gearagh alluvial forest on the River Lee in Ireland, 

have revealed the coexistence of a multitude of small islets of uneven height separating channels 
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which have different substrates, slopes, roughness and residence times (Harwood and Brown, 

1993; Brown, 1997b, Fig. 9(A)). Tree-

throws and debris dams are responsible 

for highly irregular banks, scour holes and 

the cutting of cross-islet channels which 

has created this intricate planform (Fig. 

8a). Partial organic dams constructed of 

wood, brash and leaves occur in almost all 

the secondary channels and is associated 

with backed up water and pools. The 

overall result is high biodiversity in a wide 

range of organism groups from sponges, 

through beetles to birds (Brown et al., 

1995) and of particular significance is the 

survival of yew (Taxus baccata) in the 

forest which otherwise has only been 

noted from mid-Holocene sediments such 

as in the Lower Thames (Branch et al., 

2012). It was initially thought that the 

system was almost entirely natural but 14C 

dating of peats at the base of several 

islands all produced Medieval dates 

(c.1300-1600 CE, Fig. 8) which strongly 

suggests a transformation of the system 

by a confining wall and embankment 

which cut-off a larger network of 

palaeochannels which now lie under 

agricultural land. This structure was probably built during the Medieval period either related to the 

early Medieval Church at the eastern end of the Geargh (Macloneigh Church) or during the 

agricultural intensification of the early Norman period when a castle was built at the downstream 

end in Macroom (Cudmore, 2012). Early maps and drainage records reveal that other rivers in the 

Fig. 9. Two examples of rare surviving anastomosing channels in 
Europe; (A) the anabranching river system of the Gearagh in SW 
Ireland, and a tributary of similar size from an alluviated sub-
catchment which joins the Lee at the Gearagh, (B) the Narew in 
northeast Poland.
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area such as the Brandon and Bride were also of this anastomosing form prior to agricultural 

improvement and deforestation in the historical period (Cudmore, 2012).

6.2. The River Narew, Poland

The North European Plain, which varies from about 150km wide in Belgium to 1200km eastwards in 

Poland, is about 900 km in width between the Lublin Uplands and the Bothnian Bay. During the 

Pleistocene the plain was covered several times by the Eurasian-Scandinavian ice-sheets, which left 

a legacy of recessional glacial deposits. Under favourable conditions of the substrate and 

topography, extensive areas were covered by dead ice, protected from melting by covering 

glacifluvial deposits creating distinctive landsform-substrate assemblages. During the last cooling 

period of the Pleistocene - the Vistulian (Weichselian) - in Poland the ice sheet crossed the 

depression of the Baltic Sea and reached approximately 200km to the south from its present 

coastline. As recession progressed, the proglacial waters from the SW margin of the ice sheet 

flowed due west through the ice-marginal streamway system and eventually after approximately 

2,000 km flowed into English Channel and the Atlantic. In the NE part of Poland glacifluvial deposits 

partially covered the other glacigenic deposits of older glaciations (Mojski, 2005). Currently this 

region is drained by the tributaries of the Vistula river, including the anastomosing Narew river, 

flowing into the Baltic Sea (Fig. 9B). 

The Narew drainage basin mostly covers glacigenic Quaternary deposits, with a thickness of over 

100m. These include not only boulder clays/diamictons/tills but also glacifluvial as well as 

glaciolimnic deposits, both older and concurrent with the last ice-sheet advance. The source area of 

the Narew river is located in a marshy and heavily forested part of Western Belarus. Its upper 

section, with a latitudinal course from E to W, is about 70km long and drains 3,370 km2. In Poland 

the Narew River valley changes its course to the meridian and through several large bends runs 

north. For about 40 km and with a floodplain 1-4 km wide, the Narew river displays a typical 

anastomosing channel pattern. This section of the valley has a gradient of 0.18 m km-1 (Fig. 8B). 

Within its course are basin-like widenings of the valley, resulting from the melting of extensive ice-

fields covered during the ice-sheet recession by glacifluvial or fluvial deposits (Mojski, 2005) (Fig. 

8B). Today the Narew drainage basin lies in the Central Europe in the temperate transition zone. 

This causes the advection of varied air masses, mainly the western cyclones and eastern 

anticyclones (Ustrnul and Czekierda, 2009). This result is a strong contrast of summer and winter 
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temperatures and varying seasonal precipitation. In the last decades of the last century, 25 km east 

of the meteorological station at Białystok (northeastern Poland), absolute maximum air 

temperature reached 36°C (13 July 1959), and absolute minimum -35.4°C. Average annual rainfall 

ranges from 450mm to 560mm, with the lowest rainfall in February, and the highest in July. Snow 

cover lies usually from mid-November to mid-April, and on average lasts 80 days a year (Ustrnul 

and Czekierda, 2009). Between 1951-2010 the mean yearly water discharge of the Narew river was 

15m3sec-1. After prolonged precipitation and especially during snowmelt in spring and the melting 

of thick ice cover of frozen channels, it reaches up to 150m3 sec-1. The establishment of the Narew 

National Park in 1988 stopped work aimed at "regulating" the natural network of channels and 

prevented their destruction and led to the preservation of woodland and relatively natural 

vegetation conditions. It also provided basic information about the variability of geometry and the 

depth of the river channels as well as the vertical sequence of alluvia in this section of the Narew 

Valley. It was found that the valley cuts mostly into boulder clays deposited by the last 

transgression of the European-Scandinavian ice sheet and are filled with sedge (Carex) peat. At 3m 

depth sandy alluvia contain sporadic organic remains and radiocarbon dates fall within the range of 

3,100 ± 240 BP to 3,260 ± 90 BP BP (Gradziński et al., 2000). These sediments are covered with a 

layer of peat, with a thickness of 0,8-1,5m. The rate of vertical accretion is 0.3-1.6 mm  year-1 from 

c. 2,600/2,000 until 1 000 years ago (Aleksandrowicz and Żurek, 2005). Climate changes within the 

last two millennia, and in particular the extreme cooling in the North-Eastern Europe dated at 536 

year CE and several extremely cold minima of the LIA had a profound influence on this area causing 

rivers to completely freeze over for many winters, which in spring periods resulted in the formation 

of ice-jams. Channels of the Upper Narew retained an anastomosing form (Gradinski et al., 2000), 

have low gradients, are laterally stable, have relatively low banks and are generally straight with 

sandy beds and no levees or point bars The low banks of the anastomosing channels of the Narew 

river were conducive to the creation of new branches of the river through flood, ice-jam, log-jam, 

beaver and elk path controlled avulsion. 

6.3. The New Forest, England

The New Forest is a small remnant of ancient forest in southern England that has been managed for 

at least 1000 years initially as a hunting ground for Royalty, then for naval wood supply and latterly 

for amenity (Tubbs, 2001). The New Forest is unique in Europe having a written record of 

management spanning over 1000 years as well as an unusually dense palaeoecological record 
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derived from many small valley mires (Grant et al., 2014). These studies have shown that some 

areas, and particularly Mark Ash Wood, have remained wooded throughout the Holocene having 

never been cleared for agriculture. 

Long running studies in the 

catchment have shown how small but 

complex channel and floodplain 

morphologies are controlled by the 

dynamics of wood (Gregory et al., 

1993; Sear et al., 2010). Log jam 

dynamics control the frequency, 

location and duration of floodplain 

connectivity (Fig. 10), generating foci 

for erosion of the floodplain surface 

and deposition of sediments and 

organic matter; the latter at high 

rates (Jeffries et al., 2003). 

Cumulatively, the interaction of 

water, sediment load, wood, logjams 

and floodplain forest generate 

complex floodplain microtopography, 

and a network of ephemeral channels 

over the floodplain surface with 

similar form to anastomosed systems (e.g. the Gearagh; Sear et al., 2010). The complexity of the 

resulting wooded floodplain and channel hydromorphology, increases form roughness, affecting 

flood hydrology; although the nature of this change depends on the age of the forest and its 

location within the river network (Dixon et al., 2016). Ecological studies reveal that the presence of 

trees and shrubs along with wood in channel and on the floodplain results in cooler streams 

(Broadmeadow et al., 2010) and higher habitat and species diversity relative to channelized and 

drained reaches of the same river (Beechie et al., 2010). However, due to the high and managed 

grazing regime related to ancient grazing-rights as well as deer there is a lack of ground-storey flora 

and fauna as revealed by beetle analysis which showed New Forest environments to be most 

similar to Medieval managed parklands (Davis et al., 2007).

Fig. 10 Restoration templates for floodplain forests in the Highland Water 
catchment, New Forest, UK. a) Semi-natural multiple channel pattern 
created by logjams forcing flow onto a forested floodplain. b) Influence of 
logjams and floodplain forest on hydromorphological features arising from 
restoration of logjams and reconnection of floodplains. Note presence of 
palaeochannels in channelised reach occurs due to abandonment of 
former meandering and floodplain channel pattern.
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6.4. Litovelské Pomoravi,  Czech Republic

Litovelské Pomoravi is a rare survival of an anastomosing river system in Moravia, Czech Republic 

(Harper et al., 1997) and the town of Litovel, which was set up on a river island in the 13th century 

CE, is situated approximately at its centre (Fig. 11). The forest was designated a RAMSAR 

Convention (Wetlands of International Importance as Waterfowl Habitat international treaty signed 

in 1971)  site in 1990 and is 93 km2 in area. It survived due to management for wood, acorns and 

forest grazing especially of 

pigs. Within the floodplain 

forests the river flows in 

several permanent and 

ephemeral channels called 

smokes (hanácky: smohe).  

These channels gradually dry 

out during the spring and form 

pools before becoming 

completely dry and have a rare 

crustacean fauna.  Although 

the hydrological (flood) regime 

is unregulated there are two 

weirs in the area which 

maintain water levels and a 

series of so called “peasant 

dykes” in canals which 

distribute water across the 

forest and have been 

maintained since the Medieval 

period. The woodland is elm-

oak forests with some oak-

hornbeam and lime-oak.  There 

are also water meadows and a 

greater variety of aquatic habitats. Investigations have shown that forest growth and structure are 

Fig. 11 (a) the location of Litovelské Pomoravi, (b) Fluvial seres of 
floodplain biotopes in the Litovelské Pomoraví: 1 – stream bank erosion, 2 – 
gravel river island, 3 – sand river drift, 4 – muddy river bank with Bidens 
sp., 5 – gravel river bank with Phalaris arundinacea, 6 – willow scrub of 
loamy and sandy river banks, 7 – side arm of river, 8 – main river bed, 9 – 
frequent floods, 10 – occasional floods, 11 – habitats outside area of 
flooding. From Macher (2008)
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entirely dependant on the fluvial regime (Machar, 2008a) largely determining ecosystem state 

including, e.g., the kingfisher population dynamics (Machar, 2008b). Beavers were reintroduced in 

1991 (Klostan and Lehký, 1997; František et al., 2010) and studies have shown that they initially 

occupied the most favourable habitats, dominated by Salix but later spread out into sub-optimal 

habitat as they approach a maximum density (John, 2010). They have also helped maintain the 

complexity of the system and increased ecological complexity outside the Litovelské Pomoravi, 

along the Moravia river (see later section on beaver effects). Using both historical information and a 

growth simulation model Simon et al. (2014) have shown that despite its cultural origins the 

present woodland is sustainable into the near to medium term future in its current state. 

All four case studies show multi-channel, anastomosing, and largely wooded systems which are 

unusual in that they have persisted whilst the vast majority of similar systems have been converted 

to single channel sinuous or straight channel systems.  The reasons for the preservation of these 

‘exceptions’ are unique and historical with two cases being related to the hunting needs of the elite 

(new Forest and Litovelské Pomoravi) and the other two due a combination of geological history 

and remoteness. These areas remain some of our few remaining models of pre-transformation 

alluvial systems in Europe, but all are clearly cultural as much as natural landscapes. 

7. Floodplains as carbon sources or sinks? 

Floodplains can deliver multiple ecosystem services several of which, such as flood-water storage, 

sediment trapping and pastoral agriculture all have a role in combined carbon storage and potential 

release (Hughes, 2003; Posthumus et al., 2010; Suftin et al., 2016; Schindler et al., 2016; Wohl et al., 

2017). Organic carbon (OC) accumulating in the floodplain generally has two sources, from soil 

erosion and upstream and from in-situ biomass. River-borne OC can have three environmental 

fates. Under anaerobic conditions in stream bed and near-channel sediment microbial activity 

eventually releases CO2 into the atmosphere (Wohl et al., 2017). Next, carbon is transferred to the 

ocean bound to particulate matter or in dissolved forms. Finally, carbon can be sunk in floodplains 

resulting in a long-term fixation of within alluvial floodplain areas. Consequently, the preservation 

of organic matter reflects long-term carbon sequestration on floodplains and within channel 

storage (Macaire et al., 2005; Van Oost et al., 2012). A typical feature of pre-deforested floodplains 

is the localized accumulation of peaty sediments and peats in the form of rheotrophic-eutrophic 

fens. These peats are part of the sink term prior to disturbance, that should be considered when 
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assessing anthropogenic floodplain C, although they are often neglected (eg. Stallard, 1998). These 

have about 40-80% organic matter (OM) whereas overbank silt clay deposits may have 2-4% OM on 

average. Floodplain sediment profiles do not show systematic changes of past decomposition with 

profile depth. Nevertheless, organic-rich sediments typically have a high sensitivity to compaction 

and humification and so mass accumulation rates have to be adjusted for these effects (Ramada, 

2003). Calculations from the River Frome suggest that OC storage in the upper inorganic unit 

amounts to 348 m3 ha-1 (i.e. post-2700 BCE) whereas the underlying organic rich unit contains 

about 3500 m3 ha-1 and although its date of initiation is not known it is unlikely to have been 

deposited over more than 4,000 years. A similar case has been shown for pre-European settlement 

North American floodplains on conversion from marshy swales to mill-dams (Walter and Merritts, 

2008; Ricker et al, 2013)

The simplest approximation to the long-term net sequestration of carbon into the floodplain is 

based upon the OC of sediments and the flux rate under steady state conditions. The greater rate of 

accumulation of post-deforestation sediments may partially offset the lower carbon sequestration 

of agricultural land but this will depend upon the system and may not be the case for peat-forming 

floodplains typical of groundwater-dominated systems. An approximation for a pre-deforestation 

floodplain is a mosaic of wet woodland and open reed/sedge dominated fen (nutrients moderate to 

high). Alder leaves can contribute 5-10 t ha yr-1 and sedge fen and reed beds up to 20 t ha yr-1 

(Lüscher et al., 2004). This, however, is offset by carbon loss as methane (CH4) and CO2 outgassing 

associated with microbial metabolism in biofilms and aggregates. However, this depends upon the 

degree of connectivity with the main channel and morphology (Ballon et al., 2008; Foster et al., 

2012). Overall Ricker et al. (2014) have shown that riparian forest can sequester twice as much as 

upland plots due primarily to lower microbial respiration and CO2 efflux. 

The nearest approximation of post-deforestation semi-improved and improved floodplains is 

improved grasslands. The carbon uptake of grasslands is dependent upon nitrogen availability 

typically varying between 2 and 6 tons of carbon ha-1 yr-1 (Suftin et al., 2016; Lüscher et al., 2004). 

These figures are significantly higher than the C storage measured for the present Rhine floodplain 

of 0.05-0.17 t ha yr-1 (Hoffmann and Glatzel, 2007) although grassland C uptake is only 

representative for a short period of time (decadal timescales), so it is hard to compare it with 

millennial scale C storage as these systems will reach a steady state with respect to C rather quickly. 
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However, using these figures it is suggested that during the alluvial transition the carbon uptake of 

floodplains declined possibly by as much as two thirds. This estimate assumes carbon saturation 

does not limit uptake and does not include the export of carbon from floodplain grasslands through 

grazing cattle, which would decrease this differential. The within channel C storage, high for 

forested streams also decreased with deforestation to the low in-stream biomass typical of 

regulated and channelised reaches in Europe today (Brookes, 1988; RRC, 2002). However, 

anaerobic conditions common on floodplains are also conducive to the production of methane 

(CH4) and nitrous oxide (N2O). In periodically inundated systems, such as those on floodplains, 

methane emissions can be highly variable at the timescale of restoration projects. In a study of the 

carbon implications of floodplain restoration on a section of the river Danube Welti et al. (2012) 

showed that the hydrology and particularly length of water interchange period, regulated potential 

denitrification rates but that more efficient N and C cycling could produce an overall reduction in 

potential N2O emissions. A potential additional factor which may ultimately resolve the short vs 

long term dynamics question, is the discovery that anaerobic microbial decomposition is not just 

energy and mineral limited (reduction of N and S) but thermodynamically limited by microbes 

‘ignoring’ carbon compounds that do not provide enough energy to be worthwhile to degrade and 

so end up accumulating (Boye et al., 2017). From these results it would appear that in their entirety 

and in the short-term floodplains may be either sources or sinks of carbon, depending on a their  

hydrological regime, and can switch between being sinks of carbon to becoming net sources at a 

variety of temporal scales. This switching can be a natural process due to seasonal or other factors 

or can be affected by human management as concluded by Wohl et al. (2017).  Another important 

implication is that more research is needed here on both the longer-term balance of carbon storage 

in, and release from, restored, rewet, or rewilded floodplains applying differing river, groundwater, 

and floodplain management scenarios. Overall when combined with the appropriate management 

of the riparian zone river corridor restoration can convert river corridors from OC sources to OC 

sinks (Wohl et al., 2017).

8. A biomolecular approach to floodplain ecology 

The storage of carbon in floodplain sediments takes many forms and includes long-chain carbon 

based molecules many of which are being used as biomarkers of human activity and environmental 

change. A variety of biomarkers have been obtained from lake and pond sediments including 

stanols, pyrolytic polycyclic aromatic hydrocarbons (PAHs), n-alkanes, leaf-waxes and biogenic 
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silica. Faecal 5β-stanols, are exclusively linked to human and ruminant faeces and have been used 

to detect the presence of humans and domesticated animals, and the ratio of different stanol 

compounds can be used to discriminate and quantify the contribution from each source (Bull et al., 

2002; 1996; D’Anjou et al., 2013). Pyrolytic PAHs are produced directly from incomplete 

combustion of organic fuels (e.g., wood) and in regions where natural forest fires are rare, these 

compounds indicate the timing and extent of agricultural land clearance and hearth use. Sediment 

n-alkanes are widespread biomarkers that have been used as indicators of source organisms (e.g. 

Ficken et al., 2003; Meyers, 2003) the principal sources being algae, bacteria and vascular plants 

that live within standing freshwater bodies, and from catchment vegetation. Changes in their ratios 

can reflect transitions between forest and grassland-dominated ecosystems. These techniques are 

proving valuable in shallow lake and fen-mire systems around wetland archaeological sites (Brown 

et al. in prep.) and can be applied to  floodplains which have not undergone groundwater lowering 

and water-table fluctuations. Lipids can also survive in organic floodplain soils (Langer et al., 2009) 

and even from early Pleistocene sediments (Magill et al., 2016).

The revolution in genetic technology and the discovery of the survival of extracellular residual DNA 

(ancient or aDNA) in sediments also referred to as sedaDNA (Taberlet et al., 2007) has opened up 

the way for an aDNA-based palaeoecological approach to lakes (Alsos et al., 2015; Alsos subm.), 

wetlands and possibly floodplains. In fact small floodplain lakes may have high potential as it 

appears that sedaDNA is preferentially transported bound to clay (Vettori et al., 1996; Cai et al., 

2006; Yanson and Steck, 2009). First used in studies of palaeo-biodiversity (Herbert et al. 2003), this 

approach has been shown to track the variation in the abundance of plants and domestic animals 

over the last six millennia, enabling the reconstruction of human impacts on alpine lakes through 

time (Giguet-Covex et al., 2014). The peats contained within many floodplain fills are also potential 

carriers for sedaDNA (Rawlence et al., 2014; Parducci et al., 2015). At present there are few studies 

but an ongoing research in Arctic Norway has recovered the sedaDNA of over species from small 

valley-floor ponds in the Veranger peninsula (Clarke et al.  in prep.). The advantage for studies of 

past floodplain biodiversity are clear in that using different primers, shotgun sequencing or possibly 

DNA capture techniques, a far more complete assessment of past ecology including mammals, fish, 

insects and microrganisms may soon be possible and make the exploration of past conditions 

comparable in depth to eDNA monitoring of contemporary aquatic systems. 
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9. Rewilding versus restoration

Rewilding takes the restoration of ecological function of rivers and floodplains further than 

rehabilitation and restoration through the re-introduction (either passively or actively) of locally 

extinct (extirp) species, generally at the State or regional level (Schepers and Jepson, 2016). The 

potential therefore varies inversely with the local and regional degree of impact, but there are a 

number of obvious candidate keystone species for river corridors in Europe. This includes a variety 

of birds, grazing herbivores (including beavers) and a few other mammals including otters. There 

are several wetland birds that are now extinct from large areas of Europe and which are associated 

with floodplains, and a number have been re-introduced or managed for. In the UK the Eurasian 

bittern (Botaurus stellaris) was very rare with a population falling to 11 birds in the 1990s and 

entirely confined to marshes in East Anglia, but is now up to 162 males (Hayhow et al., 2017; RSPB 

pers com. 2017). Numbers have been increased by raising water levels in reed beds in Lakenheath 

in Suffolk and re-flooding a large area called the Avalon Marshes in the Brue Valley, Somerset (Hill-

Cottingham, 2006). There are many other birds that can benefit from rewilding of floodplains, 

including; waterfowl and waders, river corridor birds and birds of prey, and in several European 

countries this may be the key objective in restoration or rewilding schemes. In continental Europe 

the reintroduction of large herbivores has taken higher priority including the reintroduction of an 

old breed of horse (konik), a rewilded cross-breed of cattle into the Dviete valley marshes in Latvia 

(van Winden et al., 2011) and the reintroduction of Heck cattle (an analogue for the Aurochs) to 

Flevoland in the Netherlands (Heck 1951). The design outcome of these and similar schemes is to 

increase the heterogeneity of floodplains following the work of Vera (2000) who has argued that 

large herbivores maintained open canopy conditions in primeval European forests. The presence of 

Pleistocene mammal bones from large fauna, including Straight-tusked Elephant, Hippopotamus 

and Giant Oxen in catchments such as the River Otter, Devon, from c. 100,000 years B.P. support 

this assertion.  However, it is clear from the palaeoecological data (pollen and beetles) that post-

extinction of such mega-fauna, mid-Holocene European forests were not open, apart from small 

windthrow gaps and beaver meadows, and that large, open canopy conditions are only associated 

with human activity (Svenning, 2002; Whitehouse and Smith, 2004; Mitchell, 2005). Whilst Vera’s 

assessment of the degree of openness of European floodplains can be questioned the reintroducing 

of such disturbance into floodplains is likely to have major positive ecological effects through 

creating and enlarging gaps and increasing habitat diversity and heterogeneity.
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A more limited rewilding approach, which has a long history in North America (Keller and Swanson, 

1979) has been the deliberate insertion of large woody obstructions to European rivers in order to 

mimic natural logjams. This insertion of wood has been shown to increase nutrient and biomass 

flux from the basal resources to invertebrates and thence to fish (Thompson et al., 2017).  This 

approach can also be used to promote recovery in over-widened reaches (Henry et al., 2017), 

however, the insertion of whole trees into rivers remains a substitute for natural fluvial processes 

coupled with a forested floodplain and biotic disturbance. Hence by far the most important species 

reintroduction in European rewilding schemes, in terms of impacts upon the structure and function 

of streams and rivers has been the European beaver. There have been at least 150 reintroductions 

of beavers in 24 European countries (BACE, 2017) including; Litovelské Pomoravi (Czech Republic, 

1991), Millingerwaard, part of Gelderse Poort (Netherlands, 2014), central and southern Germany, 

the Brittany Alps, and the Loire (Dewas et al., 2011),  Knapdale and Tayside (Scotland , 2009, 

Gaywood et al., 2015) and Devon (England, Puttock et al., 2017). As a result, the population which 

fell to not more than 1200 individuals divided in 8 isolated population across Europe (Liarsou, 2013) 

has now dramatically increased. For example in France at the beginning of the 20th century, only 

about a hundred beaver remained while, it is considered that today around 20,000 have 

recolonised 60% of the French streams (Dubrulle and Catusse, 2012)  and even extended into the 

rivers of the Paris urban area.

9.1 Rewilding with beavers

Reintroduction schemes have been prompted, or justified, by the European Habitat Directive (1992) 

and many are associated with the Rewilding Europe Project (Allen et al., 2017). Early 

reintroductions, starting in the mid-20th Century focussed upon species conservation, whereas 

more recent efforts and indeed recent research papers on indigenous beaver populations have 

recognised the multiple environmental benefits that beaver reintroduction might deliver to riverine 

ecosystems (John and Klein, 2004; Gaywood et al., 2012; Puttock et al., 2017; Law et al., 2017, 

Wegener et al., 2017). Ecosystem services that respond positively to beaver reintroduction include; 

flood attenuation, sediment and carbon storage, water quality improvements and increased 

biodiversity (Hering et al., 2001). Factors that may be negatively impacted include: local flooding of 

infrastructure or farmland, which may require mitigation such as beaver dam removal, changes to 

local sedimentation regime, as areas upstream of dams retain sediment and areas downstream lose 

sediment and the passage of migratory fish. However, Kemp et al., (2012), review the impact of 
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beaver dams on stream fish and conclude that the majority of North American and European 

experts now consider beaver to have an overall positive impact on fish populations, through their 

influence on abundance and productivity. Indeed Wegener et al., (2017) demonstrate the potential 

for wide, multi-thread streams and rivers to act as significant buffers for water, sediment and 

nutrient storage, once they have been dammed by beaver, particularly at times of high flow. 

Furthermore, Rosell et al., (2005) argue that protection of ecosystem engineers such as beaver, will 

allow whole ecosystems to be conserved, as the beaver will modify landscapes to the positive 

benefit of the wider biodiversity that can be supported. Thus, it is likely that where beaver are 

reintroduced, positive benefits will accrue and by extension that where they have been removed, 

negative outcomes have resulted (Halley and Rosell, 2002).

Recent positive changes highlighted in the North American literature referred to above are 

exemplified by results from the Mid-Devon beaver trial, a scientifically controlled release project, 

where a pair of beavers were introduced to a wet woodland site in 2011 in the UK (Puttock et al., 

2015

). 
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(Fig. 

12 

panel a), sourcing from intensive agricultural grassland, with a dense vegetation cover of willow 

carr, overlying a peaty podzol soil above impermeable shale bedrock. The site was hydrologically 

isolated around its perimeter such that apart from rainfall, flow into the site only occurred via the 

Fig. 12 Summary of hydrological monitoring results from the Devon beaver project (see Puttock et al., 2017 for further details).Left: 
Change in the Devon beaver project site 2011-2016 (reproduced with permission from SW Archaeology). Middle Top: Change in pond 
number, surface area and water storage 2010 – 2016. Middle Bottom: For each monitored rainfall event (N =59) extracted from a 
continuous time-series of flow, relationship in lag times between Above Beaver (x –axis) and Below Beaver (y – axis). For all graphs 
black dashed line through zero represents a hypothetical 1:1 relationship between the two monitoring stations, whilst solid red line 
represents the observed relationship. Black circles highlight results from top 20 % largest storms observed. Right: Results from water 
quality sampling, above and below the beaver site (Suspended sediment (mg l-1 N =226), Nitrogen (mg l-1 N = 123), Phosphate (mg l-1  
N = 123), Dissolved Organic Carbon (mg l-1 N = 123).
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single-thread channel and flow out of the site left via one channel. These two channels were 

gauged via installation of v-notch weirs to support flow and water quality measurements, on 15 

minute time steps, alongside synchronous measurements of both water table and pond depth. 

Figure 12 illustrates the significant change in ecosystem structure that ensued. The number of 

ponds increased from one (man-made to support release of the animals) to 13, in a 5 year period, 

with standing surface water extent changing from ca. 90 m2 to a maximum of ca. 1800 m2 

representing a volume of ca. 1000m3 of water stored in beaver ponds. This profound alteration to 

the structure of a headwater channel system demonstrates the way in which small, headwater 

floodplains may have existed prior to the human interventions described earlier in this paper. The 

way in which this channel system now functions, also gives us clues as to how headwater channels, 

densely dammed by beavers might have behaved. Since beaver damming, the lag times between 

peak storm flows entering the site and leaving the site are > 1 h, despite the channel length being 

only 183 m. This ‘slowing the flow’ impact of beaver damming is not unique (see Law et al., 2016 for 

another example) and is thought to be a key ecosystem service that humans have removed from 

channels both by eradicating beavers but also by straightening, deepening and removing 

vegetation, including woody debris from channel networks (Gurnell et al., 1998). Beaver dams are 

also leaky, such that water accumulated during storms is released for some time after rainfall ends. 

This function serves to enhance river baseflows downstream, elevating flow during drought, as 

storm hydrographs are attenuated due to the complex topography of the beaver-engineered 

landscape. Water quality is also shown to improve as flow is filtered through beaver dams. Puttock 

et al., (2017) show 3 x less sediment, 0.7 x less nitrogen and 5 x less phosphate leaves the beaver 

site than enters, illustrating the role that beaver dams play in mitigating diffuse pollution from 

agriculture. Finally, biodiversity responds to the creation of beaver dams in a multitude of ways; 

Bryophytes (43 to 55 species), wetland beetles (8 to 26 species) and aquatic invertebrates (14 to 41 

species) all changed significantly between 2012 and 2015, whilst the number of frogspawn clumps 

recorded pre-beaver introduction was 10, the number recorded in 2017 was >650, with consequent 

impacts on the trophic cascade including more predators such as kingfisher, heron and egret 

(Devon Wildlife Trust 2017).  

The restoration of some level of pre-anthropogenic structure to streams and rivers, whether vie 

beaver reintroduction or the construction of large woody dams, or simply floodplain multi-species 

afforestation offers great potential to address contemporary issues such as downstream flooding 
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and diffuse pollution, as well as enhancing biodiversity. Whilst evidence of the positive benefits of 

beavers (for example) may currently be limited to a small group of papers, the very obvious, 

degraded state of contemporary streams and rivers, with simplified, within-bank structures, which 

deliver very few wider ecosystem services, points to the fact that rewilded, perhaps semi-

naturalised riverine ecosystems could be more beneficial to society. 

10. Implications for Anthropocene River Restoration 

In summary, early-mid Holocene (or pre-deforestation) streams in lowland temperate Europe 

lacked elevated floodplains, were formed by fine clastic flats and levees with meandering river 

planforms commonly seen today. Instead they were either braided (in high slope areas) or 

anabranching/anastomoding wetland or woodland systems. In both cases their geomorphic 

processes were strongly affected by marginal and within-channel vegetation, in-channel organic 

sediments and an intermediate disturbance regime. The change in these rivers to their 

Anthropocene state, started in the Prehistoric period after the adoption of farming in Europe, but 

was lagged depending upon local circumstances, ranging in date from as early as 6000 BP, to the 

last few hundred years, with some islands of forested-streams persisting. In some cases particularly 

high rates of late Holocene alluviation have caused relative incision to the point where the 

floodplain has become a low terrace and is rarely if ever inundated. In most cases overbank 

sedimentation has buried the organic-rich channel fills, hydric soils, tufas and backswamps of the 

early-mid Holocene valley floors, creating cohesive river banks and relatively flat inorganic 

floodplains. It can be shown that the highly sinuous planform of small segments of floodplains are 

the product of a shrinkage of multi-channel patterns with the preservation of channels cross-

cutting the floodplain from bifurcation to bifurcation, and have not resulted from active meander 

migration. Unlike the situation in the mid-Atlantic streams of the United States (Walter and 

Merritts, 2008) watermills did not cause this transformation but did utilise the (shrinking) multi-

channel nature of many streams, and may, along with water-meadow systems, have been 

important in accelerating the processes of local sedimentation and channel stabilisation over the 

last 1000 years (Beauchamp et al., 2017). There are a few valleys where this process was arrested, 

either due to soils unsuited to arable cultivation, or due to forest management for the purpose of 

hunting. These rare systems are important in terms of reference states as they are engineered, but 

stable, and of high biodiversity (Harper et al., 1997; Beauchamp et al., 2017: Schindler et al., 2016). 
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Along with the geomorphic transformation, the riverine ecosystem services including carbon 

sequestration, of river environments have been changed. The accumulation of dead biomass and 

formation of peat was a net carbon store which has been replaced by the cycling of predominantly 

grasslands on clay-rich soils with some arable cultivation. Likewise the hydrological characteristics 

of the valley floors have changed dramatically with a reduction in overbank storage and faster 

evacuation of overbank flows from floodplains back into channels.

It is clear from this review that it is impossible to return lowland streams and floodplains of 

temperate Europe to anything approximating an originally natural state or a hypothetical natural 

equilibrium condition with reference to a point in time in the past. To even start the process would 

require the removal of huge 

quantities of legacy or 

anthropogenic overbank 

sediments, which itself 

would pose a major 

problem of disposal. It is, 

nevertheless, possible to 

recognise complex, often-

multi-channel systems, 

which have high 

biodiversity and channel-

floodplain linkage, 

remnants of which 

frequently persist and which are often depicted on early maps and which can form planforms for 

restoration (Oakley, 2010). Geomorphological studies in Europe have identified a number of 

restoration variants (Lespez et al., 2016) several of which can be adapted to multi-channel patterns 

and which can maximise both in-channel and riparian biomass and thus make a major contribution 

to the maintenance of regional biodiversity, one of which is almost certainly to let the beaver do 

this work which may also be cost-effective. These evidence-based approaches can recognise the 

cultural component embedded in riverine ecosystem services (Fig. 13) and the spatial implications 

this has. Restoration should seek to recreate these culturally created semi-impacted systems, 

remains of which are often still visible (in the field and on early maps), and reconnect the channels 

Fig. 13. A RES model for both fluvial and cultural features derived from the lower River 
Avon in Dorset, England.
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with as much of the floodplain as is possible in order to achieve gains at the catchment scale (Dixon 

et al., 2015). To avoid the copy-and-paste approach used in short-term studies which lead too often 

to truncated specifications and/or failure for restoration projects (Palmer et al., 2009). It is 

desirable to extend our knowledge on alternative fluvial states and their resilience by including 

long-term dynamics and evolutionary trajectories (Brierley and Fryirs, 2016; Dearing et al., 2015; 

Brown et al., 2013; Lespez et al., 2015). 

This paper illustrates the lessons that can be learned from the European floodplains concerning the 

beneficial aspects of landscape history which can improve earth and ecosystem services (e.g. 

ground and flood-water storage, carbon storage). This should form part of managed floodplain 

resources as part of responsible stewardship, especially pertinent in the context of European-wide 

management strategies under the European Water Framework Directive (European Union, 2015). 

These include the cultural landscapes, such as hay and water-meadows, that are biodiversity gains 

of the Anthropocene. The enhancement, restoration or rewilding of European floodplains has huge 

potential for increasing biodiversity across Europe, and is probably the most cost-effective way of 

conserving iconic and key-stone species. But as pointed out by Schindler et al. (2016). It is also often 

the most challenging due to the multiplicity of organisations with interests and roles in floodplain 

governance and management. However, we argue here that we must recognise an additional 

‘messiness’ (Wohl, 2016) from cultural as well as natural features of the waterscape if we are to 

avoid floodplain nature vs culture conflicts particularly in Europe where the hybrid nature of rivers 

is the normal case and not the exception.

Acknowledgements
Many colleagues both in academia and in conservation/environmental organisations must be 
thanked for assistance in the production of this paper including Mike Clarke (RSPB), Nicki 
Whitehouse, Steve Davis, Thomas Hoffmann, Mark Macklin, Alan Puttock, Phillip Toms, David 
Parsons, Finbar McCormick, Patrick Gleeson and Richard Jones. OSL dating from the Severn-Wye 
Basin was undertaken at the Geochronology Laboratories, University of Gloucestershire under 
grants from the EU Leader+ Programme (administered by English Heritage) and the Leverhulme 
Flood and Flow Project (RPG-2016-004). 

Appendix A. Supplementary data
Supplementary data associated with this article can be found in the online version, at 

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065



36

References
Aleksandrowicz S.Z., Żurek S., 2005. Landscape and peatlands of the Narew National Park (in Polish). 
Chrońmy Przyrodę Ojczystą. V.65. 5-19.

Allen, D., Bosmann, I., Helmer, W., Schepers, F., 2017. Rewilding Europe. 2016 Annual Review. Ecoprint, The 
Netherlands. See also https://www.rewildingeurope.com/.

Alsos, I.G., Sjögren, P., Edwards, M., Landvik, J., Gielly, L., Forwick M., Cossack, E., Brown, A.G., Jacobsen, L. 
V., Føreid, M. and Pedersen, M., 2016. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing 
the  resilience of arctic flora to Holocene climate change. The Holocene 25, 1-16.

Assini, A.A., Petiti, F., 1995. Logjam effects on bedload mobility from experiments conducted in a small 
gravel bed forest ditch. Catena, 25, 117-126. 

BACE (Beaver Advisory Committee for England) 2017. https://beaversinengland.com/about/

Baker, A., Simms, M.J., 1998. Active deposition of calcareous tufa in Wessex, UK, and its implications for the 
‘late-Holocene tufa decline. The Holocene 8, 359–65.

Banaszczuk P., Wołkowycki D., (eds). 2016. The Narew National Park. 2016. Warsaw: Institute of 
Environmental Protection.

Beauchamp, A., Lespez, L., Rollet, A. J., Germain-Vallée, C., & Delahaye, D., 2017. Les transformations 
anthropiques d’un cours d’eau de faible énergie et leurs conséquences, approche géomorphologique et 
géoarchéologique dans la moyenne vallée de la Seulles, Normandie. Géomorphologie: relief, processus, 
environnement 2, 121-138.

Beechie, T.J., Sear, D.A., Olden, J.D., Pess, G.R., Buffington, J.M., Moir, H., Roni, P., Pollock, M.M., 2010. 
Process-based principles for restoring river ecosystems. Bioscience 60, 209-222.

Bennett, J. A., Brown, A. G., Read, S. J., 2014. Exeter and Its River: Late Holocene Fluvial Geomorphology 
from Archaeology and Historical Sources. Proceedings of the Geologists Association 125, 639-648.

Berendsen HJA, Stouthamer, E. 2001. Palaeogeographic development of the Rhine-Meuse delta, The 
Netherlands. Assen, Van Gorcum, The Netherlands: 270 pp.

Bloch M., 1935. Avènement et conquêtes du moulin à eau. Annales d'histoire économique et sociale, 7, 36, 
538-563 (The advent and triumph of the watermill. In Anderson, JE (Ed.) Land and Work in Medieval Europe: 
Selected Papers by Marc Bloch. Routledege, London.)

Booth, P, Dodd A, Robinson M, Smith, A., 2007. The Thames Through Time. The Archaeology of the Gravel 
Terraces of the Upper and Middle Thames: The Early Historical Period: AD1-1000. Oxford Archaeology, 
Thames Valley Landscape Monograph No. 27, 0-470.

Bos, J.A.A., 2001. Lateglacial and Early Holocene vegetation history of the northern Wetterau and the 
Amöneburger Basin (Hessen), central-west Germany. Review of Palaeobotany and Palynology 115, 177-212.

Boye, K, Noel, V., Tfaily, M.M., Bone, S.E., Williams, K.H., Barger, J.R., Fendorf, S., 2017. Thermodynamically 
controlled preservation of organic carbon in floodplains. Nature Geoscience online

2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124



37

Branch NP, Batchelor CR, Cameron NG, Coope R, Densem R, Gale R, Green CP, Williams, A.N., 2012. 
Holocene Environmental Changes at Hornchurch Marshes, London, UK: implications for our understanding of 
the history of Taxus (L.) woodland in the Lower Thames Valley. The Holocene 22, 1143-1158.

Brierley, G. J., Brooks, A. P., Fryirs, K., Taylor, M. P., 2005. Did humid-temperate rivers in the Old and New 
Worlds respond differently to clearance of riparian vegetation and removal of woody debris?
Progress in Physical Geography 23, 27–49.

Brierley GJ, Brooks AP, Fryirs K., 2005. Did humid temperate rivers in the Old and New Worlds respond 
differently to clearance of riparian vegetation and removal of woody debris? Progress in Physical Geography 
29, 27–49.

Brierley, G.J., Fryirs, K.A., 2016. The use of evolutionary trajectories to guide ‘moving targets’ in the 
management of river futures. River Research Applications 32, 823–835

Broadmeadow, S., Jones. J.G., Langford, T.E.L., Shaw, P.J. and Nisbet, T., 2010. The influence of riparian 
shade on lowland stream water temperatures in Southern England and their viability for Brown Trout. River 
Research and Applications, 27: 226–237. doi:10.1002/rra.1354.

Brookes, A., 1988. Channelised rivers, perspectives in environmental management. Wiley, Chichester.

Broothaerts, N., Verstraeten, G., Notebaert, B., Kasse, C., Bohncke, S,. Assendelft R., Vandenberghe, J., 2012. 
Humans reshaped the floodplain geoecology in NW Europe through intense agricultural impact. Geophysical 
Research Abstracts 14, EGU2012-7961-1.

Brown, A.G., 1997a. Alluvial Environments: Geoarchaeology and Environmental Change. Cambridge 
University Press, Cambridge.

Brown, A.G. 1997b. Biogeomorphology and diversity in multiple-channel systems. Global Ecology and 
Biogeography Letters 6, 179-185.

Brown, A.G., 1998. The maintenance of biodiversity in multiple-channel floodplains. In R. G. Bailey, P. V. José 
and B. R. Sherwood (Eds.), United Kingdom Floodplains. Linnean Society, Westbury Press, 83-92.

Brown, A.G., 1999. Characterising Prehistoric lowland environments using local pollen assemblages. 
Quaternary Proceedings 7: 585-594.

Brown, A.G., Barber, K.E., 1985. Late Holocene palaeoecology and sedimentary history of a small lowland 
catchment in Central England. Quaternary Research 24, 87 102.

Brown, A.G., Harper, D.M., Peterken, G.F., 1997. European floodplain forests: structure, functioning and 
management. Global Ecology and Biogeography Letters  6, 169-178.

Brown, A. G., Stone, P., Harwood, K., 1995. The Biogeomorphology of a Wooded Anastomosing River: The 
Gearagh on the River Lee in County Cork, Ireland. Occasional Papers in Geography, No 32, University of 
Leicester, 76p.

Brown, A.G., Toms P., Carey C., Rhodes E., 2013. Geomorphology of the Anthropocene: time-trangressive 
discontinuities of human-induced alluviation. The Anthropocene 1, 3-13.

2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183



38

Brown, A.G., Cooper, L., Salisbury, C.R., Smith, D.N., 2001 Late Holocene channel changes of the Middle 
Trent: Channel response to a thousand year flood record. Geomorphology 39, 69-82.

Bull, I.D., Lockheart, J., Elhmmali, M.M., Roberts, D.J., Evershed, R.P., 2002. The origin of faeces by means of 
biomarker detection. Environmental International 27, 647-654.

Cador J.-M., Lespez L., 2012. Entre hydrosystèmes et systèmes hydrauliques : les cours d'eau bas-normands 
aujourd'hui, In Lespez L. (ed.), Paysages et gestion de l’eau : sept millénaires d’histoire des basses vallées en 
Normandie. Bibliothèque du Pôle Rural 3, MRSH Caen-Presses Universitaires de Caen, 233-271.

Cai, P., Huang, Q-Y.,Zhang, X-W., 2006. Interactions of DNA with Clay Minerals and Soil Colloidal Particles and 
Protection against Degradation by DNase. Environ. Sci. Technol. 40, 2971–2976.

Coles, B.J. 1994. Trisantona river: a landscape approach to the interpretation of river names. Oxford Journal 
of Archaeology 13, 295-311.

Coles, B.J., 2006. Beavers in Britain’s Past. WARP Occasional Paper 19. Oxbow Books, Oxford.

Collins, A.L., Walling, D.E., 2007. Fine-grained bed sediment storage within the main channel systems of the 
Frome and Piddle catchments, Dorset, UK. Hydrological Processes 21, 1449-1459.

Cooke, H., Williamson, T., 2007. Water Meadows: History, Ecology and Conservation. Windgather Press, 
Oxford, UK. 

Comiti, F. 2012. How natural are Alpine mountain rivers? Evidence from the Italian Alps. Earth Surface 
Processes and Landforms 37, 693–707.

Darby, S., Sear, D.A., 2008. River Restoration: managing the Uncertainty in Restoring Physical Habitat. Wiley, 
Chichester, UK.

Davies, N.S., Gibling, M.R., 2011. Evolution of fixed-channel alluvial plains in response to Carboniferous 
vegetation. Nature Geosciences 4, 629-633.

Davis, S.R., Brown, A.G., Dinnin, M.H. 2007. Floodplain connectivity, disturbance and change: A 
palaeoentomological investigation of floodplain ecology from SW England. Journal of Animal Ecology 76, 
276-288.

D’Anjou, R.M., Bradley R.S., Balascio N.L., et al., 2012. Climate impacts on human settlement and agricultural 
activities in northern Norway revealed through sediment biogeochemistry. Proceedings of the National 
Academy of Sciences of the United States of America 109, 20332–20337.

Dearing, J.A., Yang, X., Dong, X., Zhang, E., Chen, Xu., Langdon P.G., Zhang K., Zhang W, Dawson, T.P., 2012. 
Extending the timescale and range of ecosystem services through paleoenvironmental analyses exemplified 
in the lower Yangtze basin. PNAS E1111–E1120.

DEFRA, 2015. Catchment Restoration Fund: Environment Agency Final Annual Report 2014-2015. 
Department of Environment Food and Rural Affairs, UK Government, London.

De Moor, J.J.W., Van Balen, R.T., Kasse, C., 2007. Simulating meander evolution of the Geul River (the 
Netherlands) using a topographic steering model. Earth Surface Processes and Landforms 32, 1077-1093.

2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242



39

De Moor, J., Verstraeten, G., 2008. Alluvial and colluvial sediment storage in the Geul River catchment (The 
Netherlands): combining field and modelling data to construct a Late Holocene sediment budget, 
Geomorphology 95, 487-503.

Devon Wildlife Trust, 2017. Beavers – Natures Water Engineer’s: A summary of the initial findings from the 
Devon Beaver projects. Devon Wildlife Trust, Exeter, UK.

Dewas, L., Herr, J., Schly, L., Catusse, M., 2011. Recovery and status of native and introduced beavers Castor 
fiber and Castor canadensis in France and neighbouring countries. Mammal Review 42, 1-22.

Dinin, M., Brayshay, B., 1999. The contribution of a multiproxy approach in reconstructing floodplain 
development. Geological Society, London, Special Publications, 163, 179-195.

Dixon , S.J., Sear, D.A., 2014. The influence of geomorphology on large wood dynamics in a low-gradient 
headwater stream. Water Resources Research 50, 9194–9210.

Dixon, S.J., Sear, D.A., Odoni, N.A., Sykes, T., Lane, S.N., 2016. The effects of river restoration on catchment 
scale flood risk and flood hydrology. Earth Surf. Process. Landforms 41, 997–1008

Dolédec, S., Forcellini, M., Olivier, J-M., Roset, N., 2016. Effects of large river restoration on currently used 
bioindicators and alternative metrics. Freshwater Biology 60, 1221-1236.

Dotterweich, M., 2008. The history of soil erosion and fluvial deposits in small catchments of central Europe. 
Deciphering the long-term interactions between humans and the environment: A review. Geomorphology 
101, 192-208.

Downward, S., Skinner, K., 2005. Working rivers: the geomorphological legacy of English freshwater mills. 
Area 37, 138-147.

Dubrulle P.-M., Catusse M., 2012. Où en est la colonisation du Castor en France? Faune.Sauvage 297, 24-35.

Ejarque, A. Beauger, A, Miras, Y.,  Peiry, J-L., Voldoire, O., Vautier, F.Benbakkar, M., Steiger, J., 2015. 
Historical fluvial palaeodynamics and multi-proxy palaeoenvironmental analyses of a palaeochannel, Allier 
River, France, Geodinamica Acta, 27, 25-47.

Ekwall, E., 1928. English Rivernames. Oxford at the Clarendon Press, Oxford, UK, 488pp.

European Union (2015) The fourth implementation report – assessment of the Water Framework Directive 
Programmes of Measures and the Flood Directive. March 2015, Brussels. Z

Felix-Henningsen, P., 1984. Zur Relief-und Bodenentwicklung der Goz-Zone Nordkordofans im Sudan. 
Zeitschrift fur  Geomorphol. N. F. 28, 285–303.

Finance Act (France) 2017. 
https://www.performancepublique.budget.gouv.fr/sites/performance_publique/files/farandole/ressources/
2017/pap/pdf/jaunes/Jaune2017_agences_eau.pdf).

Flood and Flow, 2017. https://www2.le.ac.uk/departments/history/research/grants/flood-and-flow-place-
names-and-the-changing-hydrology-of-river-systems/floodandflow).

2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301



40

Florsheim, J.L., Mount, J.F., 2003.  Changes in lowland floodplain sedimentation processes: pre-disturbance 
to post-rehabilitation, Cosumnes River, California. Geomorphology 56, 305-323.

Florsheim, J.L. Mount, J.F., Hammersmark, C., Fleenor, W.E., Schladow S.G., 2008.  Geomorphic influence on 
flood hazards in a lowland fluvial-tidal transitional area, Central Valley, California.  Natural Hazards Review 9, 
116-124.

Florsheim, J.L., Pellerin B., Oh, N.H., Ohara, N., Bachand, P., Bachand, S., Bergamaschi, B., Hernes, P.B. 
Kavvas, M.L., 2011.  From deposition to erosion: spatial and temporal variability of sediment sources, 
storage, and transport in a small agricultural watershed.  Geomorphology 132, 272-286.

Francis, R.A., Petts, G.E. & Gurnell, A.M., 2008. Wood as a driver of past landscape change along river 
corridors, Earth Surface Processes and landforms, 33, 1622-1626.

František, J., Baker, S., Kostkan, V., 2010. Habitat selection of an expanding beaver (Castor fiber)
population in central and upper Morava River basin. European Journal of  Wildlife Research 56, 663–671.

French, C., 2003. Geoarchaeology in Action. Routledge, London.

Gaywood, M. (Ed.), 2017. Beavers in Scotland. A Report to the Scottish Government. Scottish Natural 
Heritage, Edinburgh.

Gelling, M. 1984. Place-Names in the Landscape: The Geographical Roots of Britain's Place-names. London, 
J.M. Dent & Son.

Gelling, M., Cole, A., 2000. The Landscape of Place-Names. Shaun Tyas, UK.

Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P-J., Griggo, C., Gielly, L., Domaizon, I., Coissac, E., David, F., 
Choler, P., Poulenard, J., Taberlet, P., 2014. Long livestock farming history and human landscape shaping 
revealed by lake sediment DNA. Nature Communication 5, 3211.

Girel, J., 1994. Old distribution procedures of both water and matter fluxes in floodplains of western Europe: 
impact on present vegetation. Environmental management 18, 203-221.

Gradziński, R., Baryla, J., Danowski, W., Doktor, M., Gmur, D., Gradziński, M., Kedzior, A., Paslowski, M., Soja, 
R., Zieliński, T., Zurek, S., 2000. Anastomosing systems of the upper Narew River, NE Poland. Annales 
Societatis Geologorum Poloniae 70, 219-229.

Grant, M.J., Hughes, P.D.M., Barber, K.E. 2014. Climatic influence upon early to mid-Holocene fire regimes 
within temperate woodlands: a multi-proxy reconstruction from the New Forest, southern England. Journal 
of Quaternary Science 29, 175-188.

Gregory, K.J., Davies, R.J., Tooth, S., 2003. Spatial distribution of coarse woody debris dams in the
Lymington Basin, Hampshire, UK, Geomorphology 6, 207-224.

Gregory, K.J., Starkel, L., Baker, V.R., (Eds.) 1995. Global Continental Palaeohydrology. John Wiley and Sons, 
Chichester, p334.

Gurnell, A.M., 1998. The hydrogeomorphological effects of beaver dam-building activity. Progress Physical 
Geography 22, 167–189.

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360



41

Gurnel,l A.M., Petts, G.E., 2002. Island-dominated landscapes of large floodplain rivers, a European 
perspective. Freshwater Biology 47: 581–600.

Hagedorn, J., Rother, N., 1992. Holocene floodplain evolution of small rivers in the uplands of Lower Saxony. 
Geomorphology 4, 423-432.

Halley, D., Rosell, F., 2002. The beaver’s reconquest of Eurasia: status, population development and 
management of a conservation success. Mammal Review 32, 153–178.

Halley, D.J., Rosell,  F., 2003. Population and distribution of European beavers (Castor fiber). Lutra 46, 91-
101.

Happ, S.C., Rittenhouse, G., Dobson, G.C., 1940. Some principles of accelerated stream and valley 
sedimentation. United States Department of Agriculture Technical Bulletin 695.

Harper, D., Mekotova, J., Hulme, S., White, J., 1997. Habitat heterogeneity and aquatic invertebrate diversity 
in floodplain forests. Global Ecology and Biogeography Letters 6, 275-285.

Harvey, G.L., Henshaw, A.J., Parker, C., Sayer, C.D., 2017. Re‐introduction of structurally complex wood jams 
promotes channel and habitat recovery from overwidening: Implications
for river conservation. Aquatic Conservation: Marine Freshwater Ecosystems 2017, 1–13.

Harwood, K., Brown, A. G., 1993. Changing in-channel and overbank flood velocity distributions and the 
morphology of forested multiple channel (anastomosing) systems. Earth Surface Processes and Landforms 
18, 741-748.

Hayhow, D.B., Bond, A.L., Douse,A., Easton,M.A., Frost,T., Grice,P.V., Hall,C., Harris,S.J., Havery,S., 
Hearn,R.D., Noble,D.G., Oppel,S., Williams,J., Win, I., Wolton, S., 2017. The Status of UK’s Birds. BTO, RSPB, 
DAERA, JNCC, NE, NRW, SNH, Sandy, Berkshire 48p.

Harbert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J. R., 2003. Biological identifications through DNA 
barcodes. Procs. Roay. Soc. B. 270, 137-149.

Heck, H., 1951. The Breeding-Back of the Aurochs. Oryx. 1, 117.

Helfield, J.M., Engström, J., Michel, J.T., Nilsson, C., Jansson, R., 2012. Effects of river restoration on riparian 
biodiversity in secondary channels of the Pite River, Sweden. Environmental Management 49(1), 130-41.

Hering, D., Gerhard, M., Keil, E., Ehlert, T., Pottgiesser, T., 2001. Review Study on Near-natural Conditions of 
Central European Mountain Streams, with Particular Reference to Debris and Beaver Dams: Results of the 
"REG Meeting" 2000. Limnologica 31, 81-92.

Hoffmann, T.O., Glatzel, S., 2007. A carbon storage perspective on alluvial sediment storage in the Rhine 
catchment. Geophysical Research Abstracts, Vol. 9

Hoffmann, T., Lang, A., Dikau, R., 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial 
sediments from Germany. Quaternary Science Reviews 27, 2031–2040.

Hohensinner, S., Habersack, H., Jungwirth, M., Zauner, G., 2004. Reconstruction of the characteristics of a 
natural alluvial river–floodplain system and hydromorphological changes following human modifications: the 
Danube River (1812–1991). River Research and Applications 20, 5–41.

2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419



42

Houben, P., 2007. Geomorphological facies reconstruction of Late Quaternary alluvia by the application of 
fluvial architecture concepts. Geomorphology 86, 94-114.

Houben, P., Schmidt, M., Mauz, B., Stobbe, A., Lang, A., 2013. Asynchronous Holocene colluvial and alluvial 
aggradation: A matter of hydrosedimentary connectivity. The Holocene 23, 544-555.

Huntley, B., Birks, H.J.B., 1983. An atlas of past and present pollen maps for Europe: 0-13 000 years ago. 
Cambridge University Press, Cambridge.

Jeffries R., Darby S.E., Sear D.A., 2003. The influence of vegetation and organic debris on flood-plain 
sediment dynamics: case study of a low-order stream in the New Forest, England. Geomorphology 51, 61-80.

John, S., Klein, A., 2004. Hydrogeomorphic effects of beaver dams on floodplain morphology: avulsion 
processes and sediment fluxes in upland valley floors (Spessart, Germany). Quaternaire 15, 219-231.

Johnstone, E., Macklin, M.G., Lewin, J., 2006. The development and application of a database of radiocarbon-
dated Holocene fluvial deposits in Great Britain. Catena 66, 14-23.

Jones, R., Gregory, R., Kilby, S., Pears, B., 2017. Living with a trespasser: riparian names and medieval 
settlement on the River Trent floodplain’, European Journal of Post-Classical Archaeologies 7, 61-92.

Keller, E.A., Swanson,F.J.. 1979. Effects of large organic material on channel form and fluvial processes. Earth 
Surface Processes and Landforms 4, 361-380.

Kemp, P. S., Worthington, T. A., Langford, T. E. L., Tree, A. R. J., Gaywood, M. J., 2012. Qualitative and 
quantitative effects of reintroduced beavers on stream fish. Fish and Fisheries, 13, 158-181.

Klimenko, V., 2012. Climate fluctuation and colonization of North-Eastern Europe (8th-13th Centuries), (in 
Russian). Russia and Germany 2, 80-85.

Kostkan, V., Lehký, J., 1997. The Litovelské Pomoraví floodplain forest as a habitat for the reintroduction of 
the European beaver (Castor fiber) into Czech Republic. Global Ecol Biogeogr 6, 307–310.

Kondolf, M., 2006. River restoration and meanders. Ecology and Society 11, 42.

Kreiner, R., 1996. Städte und Mühlen im Rheinland. Aachener Studien zur älteren Energiegeschichte 5, 
Aachen, Historisches Institut Lohrmann, D. Hg., 0-49.

Law, A., McLean, F., Wilby, N.J., 2016. Habitat engineering by beaver benefits aquatic biodiversity and 
ecosystem processes in agricultural streams. Freshwater Biology 61, 486-499.

Lechner, A., 2009. Palaeohydrologic conditions and geomorphic processes during the Postglacial in the 
Palatine Upper Rhine river floodplain. Z. Geomorpholgie N. F. 53, 2 217–245.

Leopold, L.B., Wolman, M.G., 1957. River channel patterns: braided, meandering and straight. United States 
Geological Survey Professional Paper 282C, 1-85.

Lespez, L., Germaine, M-A., 2016. La rivière désaménagée? Leas paysages fluviaux et l’effacement des seuils 
et des barrages en Europe de l’ouest et en Amerique du nortd-est. BSGLg 67, 37-68.

2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478



43

Lespez, L., Viel, V., Rollet, A-J., Delahaye, D., 2015. The anthropogenic nature of present-day low energy 
rivers in western France and implications for current restoration projects. Geomorphology 251, 64-76.

Lespez, L., Clet-Pellerin, M., Limondin-Lozouet, N., Pastre J-F., Fontugne, M., Marcigny, C., 2008. Fluvial 
system evolution and environmental changes during the Holocene in the Mue valley (W France). 
Geomorphology 98, 1-2, 55-70.

Lespez L., Viel V., Cador J.-M., Germaine M.-A., Germain-Vallée C., Rollet A.-J., Delahaye D., 2013. 
Environmental dynamics of small rivers in Normandy (western France) since the Neolithic era. What lessons 
for today in the context of the European Water Framework Directive? In Arnaud-Fassetta G. Massson E., 
Reynard E., (Eds). European Continental hydrosystems under Changing water policy, Pfeil, Munich, 113-124.

Lespez L., Germaine M.-A., Barraud R., 2016. L'évaluation par les services écosystémiques des rivières 
ordinaires est-elle durable ? VertigO  URL : http://vertigo.revues.org/17443

Lewin J., 2010. Medieval environmental impacts and feedbacks: the lowland floodplains of England and 
Wales. Geoarchaeology 25, 267–311.

Lewin, J., 2013. Enlightenment and the GM floodplain. Earth Surface Processes and Landforms 38, 17-29.

Liarsou A., 2013. Interactiosn between the beaver (Castor fiber L.) and human societies. Archaeological 
review from Cambridge, 28, 2, 171-185.

Liarsou, A., 2001. Le castor et l'homme d'hier à ajourd'hui. l'Harmattan, Paris 320p.

Lobb, M.A., 2017. Developing Terrestrial Laser Scanning of Threatened Coastal Archaeology Sites with a 
Special Reference to Intertidal Structures. Unpub. PhD Thesis, University of Southampton.

Lobb, M.A., Brown, A.G., Leyland, J., Bernard, V. Subm. TLS Scanning Inter-tidal Structures with Special 
Reference to Threatened Fixed Fishing and Allied Structures in the Léguer Estuary, Brittany. Journal of 
Archaeological Science

Lohrmann, D., 1984. Mühlenbau, Schiffahrt und Flussumleitungen im Süden der Grafschaft Flandern-Artois 
(10.-11. Jahrhundert). Francia 12, Paris, DHI: 149-192.

Lohrmann, D., 1989. Le moulin à eau dans le cadre de l’e´conomie rurale de la Neustrie. In Atsma, H. (ed.), La 
Neustrie: les pays au nord de la Loire de 650 à 850. Beihefte der Francia 16, Sigmaringen,  367-404.

Logainm.ie, 2018. https://www.logainm.ie/ga/10123?s=Gaorthadh+an+R%c3%b3istigh

Lüttig, G., 1960. Zur Gliederung des Auelehms im Flußgebiet der Weser. Eiszeitalter u. Gegenwart 11, 39–50.

Lüscher, A., Daepp, M., Blum, H., Hartwig, E., Nösberger, J., 2004. Fertile temperate grassland under 
elevated atmospheric CO2 - role of feed-back mechanisms and availability of growth resources. European 
Journal of  Agronomy 21, 379-398.

Macaire, J-J., Di-Giovanni, C., Hinschberger, F., 2005. Relations entre production organique et apports 
terrigènes dans les sediments fluviatiles holocènes: observations et interpretations hétérodoxus. Comptes 
Rendus des Geosciences 337, 735-744.

2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537



44

Macaire, J-J., Bernard, J., Di-Giovanni, C., Hinschberger, F., Limondin-Lozouet, N., Visset, L., 2006. 
Quantification and regulation of organic and mineral saedimentation in a late-Holocene floodplain as a result 
of climatic and human impacts (Taligny marsh, Parisian Basin, France). The Holocene 16, 647-658.

Machar, I., 2008a. Floodplain forests of Litovelské Pomoraví and their management. Journal of Forest 
Science 54, 355–369.

Machar, I. 2008b. A proposed target state for a floodplain forest ecosystem within an ecological framework, 
with reference to the ecological requirements of an umbrella bird species: the common kingfisher. Journal of 
Landscape Ecology 1, 

Macklin, M.G., Jones, A.F., Lewin, J., 2010. River response to rapid Holocene environmental change: evidence 
and explanation in British catchments, Quaternary Science Reviews 29, 1555-1576.

Macklin, M.G., Lewin, J., Jones, A.F., 2014. Anthropogenic alluvium: an evidence based meta-analysis for the 
UK Holocene. Anthropocene 6, 26-38.

Meyers, P.A., 2003. Applications of Organic Geochemistry to Paleolimnological Reconstructions: A Summary 
of Examples from the Laurentian Great Lakes. Organic Geochemistry, 34, 261-289.

Mason, D.C., Horritt, M.S., Hunter, N.M., Bates, P.D., 2007. Use of fused airborne scanning laser altimetry 
and digital map data for urban flood modelling. Hydrological Processes 21, 1436-1477.

Merritts, D., Walter, R., Rahnis, M., Hartranft, J., Cox, S., Gellis, A., Potter, N., Hilgartner, W., Langland, M., 
Manion, L., Lippincott, C., Siddiqui, S., Rehman, Z., Scheid, C., Kratz, L., Shilling, A., Jenschke, M., Reed, A., 
Matuszewski, D., Voli, M., Datin, K., Ohlson, E., Neugebauer, A., Ahamed, A., Neal, C., Winter, A., and Becker, 
S., 2011. Anthropocene streams and base-level controls from historic dams in the unglaciated mid-Atlantic 
region, USA.  Philosophical Transactions Royal Society A, 369, 1–34.

Mills, A.D., 2011. A dictionary of British placenames. Oxford University Press, Oxford.

Mitchell, F., 2005. How open were European primeval forests? Hypothesis testing using palaeoecological 
data. Journal of Ecology 93, 168–177.

Mojski J.E., 2005. The Polish territory during the Quaternary. (in Polish). PIG Warszawa.404p.

Montgomery D.R., Abbe T.B., 2006. Influence of logjam-formed hard points on the formation of valley-
bottom landforms in an old-growth forest valley, Queets River, Washington, USA, Quaternary Research, 65, 
147-166.

Mordant, D., Mordant, C., 1992. Noyen-sur-Seine: a Mesolithic waterside settlemnt. In B. Coles (Ed.) The 
Wetland Revolution in Prehistory. Wetland Archaeological Research Project Occasional Paper 6, Exeter, 55-
64.

Morandi, B., Piégay, H., 2011. Les restaurations de rivières sur Internet: premier bilan, Nature, Sciences, 
Société 19, 224-235.

Moss, T., Monstadt, J., (Eds.) 2008 Restoring Floodplains in Europe. IWA Publishing.

Munro, J.H., 2002. Industrial energy from water-mills in the European economy, 5th to 18th

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596



45

Centuries: the limitations of power. Munich Personal RePEc Archive (MPRA), 223-1048. Online at 
https://mpra.ub.uni-muenchen.de/11027/

Natermann, E., 1941. Das Sinken der Wasserstände der Weser und ihr Zusammenhang mit der 
Auelehmbildung des Wesertales.  Arch. Landes- u. Volkskde. Niedersachsens 9, 288–309.

Nilsson, C., Reidy, C.A., Dynesius, M., Revenga, C., 2005. Fragmentation and Flow Regulation of the World's 
Large River Systems. Science  308, Issue 5720, 405-408.

Notebaert, B., Verstraeten, G., 2010. Sensitivity of West and Central European river systems to 
environmental changes during the Holocene: A review. Earth-Science Reviews 103, 163-182.

Oakley, S., 2010. Turning back the clock. River Restoration News 35, 2-3ecosystem

Open Domesday Project 2017. http://www.windmillworld.com/watermills/domesday.htm

Palmer, M.A., Mennizer, H.C., Bernhardt, E.S., 2009. River restoration, habitat heterogeneity and 
biodiversity: a failure of theory or practice. Freshwater Ecol. 55 (suppl.), 1-18.

Pers. com. 2016. Based on official planning estimates from North Rhine-Westphalia with 17M population 
and 34000 km2 for the period 2010-2015.

Parducci, L., Väliranta, M., Salonen, J.S.4, Ronkainen,T., Matetovici, I., Fontana, S.L., Eskola, T., Sarala, P., 
Suyama, Y., 2015. Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. 
Philosophical Transactions Royal Society B 370, 2013-382.

Pastre, J-F., Limondin-Lozouet, N., Gebhardt, A., Leroyer, C., Fontugne, M., Krier, V., 2001. Lateglacial and 
Holocene fluvial records from the central part of the Paris Basin (France). In: Maddy D, Macklin MG, 
Woodward JC (Eds.), River Basin Sediment Systems - Archives of Environmental Change, Rotterdam Balkema, 
357-37.

Peberdy, R.B., 1996. Navigation on the River Thames between London and Oxford in the late Middle ages: a 
reconsideration. Oxoniensia 65, 324-328.

Peeters, J.H.M., 2007. Hoge Vaart-A27 in Context: Towards a model of Mesolithic-Neolithic land use 
dynamics as a framework for archaeological heritage management. Rijksdienst voor Arceolgie, 
Cultuurlandschap en Monumentum Amerfoort.

Petts, G.E., Möller, H., Roux, A.L., 1989. Historical Changes of Large Alluvial Rivers: Western Europe. Wiley, 
Chichester, UK.

Peust, C., 2015.  How Old Are the River Names of Europe? A Glottochronological Approach. Linguistik online 
70, 1/15  http://dx.doi.org/10.13092/lo.70.1749.

Puttock, A.K., Cunliffe, A., Anderson, K.A., Brazier, R.E., 2015. Aerial photography collected with a multirotor 
drone reveals impact of Eurasian beaver reintroduction on ecosystem structure. Journal of Unmanned 
Vehicle Systems 3, 123-130.

Puttock, A.K., Graham, H.A., Cunliffe, A.M., Elliott, M., Brazier, R.E., 2017. Eurasian beaver activity increases 
water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands. 
Science of The Total Environment 576, 430–443.

2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655

http://dx.doi.org/10.13092/lo.70.1749


46

Ramade, F., 2003. Eléménts d’ecologie. Dunod, Paris.

Rawlence, N., Lowe, D.J., Wood, J.R., Young, J.M., Churchman, G.J., Huang, Y-T., Cooper, A., 2014. Using 
palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J. Quat. Sci. 29, 610-
626.

Reynolds, T.S., 1983. Stronger than a Hundred Men: A History of the Vertical Water Wheel. Baltimore, 
London.

Ricker, M.C., M.H. Stolt, M.C., Donohue, S.W., Blazejewski, G.A., Zavada, M.S. 2013. Soil organic carbon pools 
in riparian landscapes of southern New England. Soil Science Society America Journal 77, 1070–1079.

Rittweger, H., 2000. The “Black Floodplain Soil” in the Amöneburger Becken, Germany: a lower Holocene 
marker horizon and indicator of an upper Atlantic and Subboreal dry period in Central Europe. Catena 41, 
143-164

River Restoration Centre, 2002. Handbook of River Restoration Techniques. River Restoration Centre, UK. 

Robinson, M.A., 1992. Environment, archaeology and alluvium on the river gravels of the South Midlands In 
S. P. Needham and M. G. Macklin (Eds.)  Alluvial Archaeology in Britain, Oxbow Monograph 27,  Oxford, 197-
208.

Roni, P., Beechie, T., 2013. Stream Watershed Restoration: A Guide to Restoring Riverine Processes and 
Habitats (Advancing River Restoration and management). Wiley-Blackwell, Chichester, UK.

Rosell, F., Boysér, O., Collen, P., Parker, H., 2005. Ecological impact of beavers Castor fiber and Castor 
canadensis and their ability to modify ecosystems. Mammal Review 35, No. 3&4, 248–276. 

Rouillard, J., 1996. Moulins hydrauliques du Moyen Age. L’apport des comptes des chanoines de Sens, XVe 
siècle. Histoire patrimonie, Paris, Vulcain, 0-95.

Schepers, F., Jepson, P., 2016. Rewilding in the European context. International Journal of Wilderness 22, 25-
30.

Schindler, S., O’Neill, FH., Biró, M., Damm, C., Grasso, V., Kanka, R., van der Sluis, T., Krug, A., Lauwaars, SG., 
Pusch, M., Baranovsky, B., Ehlert, T., Neukirchen, B., Martin, JR., Euller, K., Mauerhofer, V., Wrbka, T.,   2016. 
Multifunctional floodplain management and biodiversity
effects: a knowledge synthesis for six European countries. Biodiversity Conservation 25, 1349–1382.

Sear, D.A., Millington, C., Kitts, D.R., Jeffries, R., 2010. Logjam controls on channel:floodplain interactions in 
wooded catchments and their role in the formation of multi-channel patterns, Geomorphology, 116, 305-
319.

Sidell, J., (Ed.) 2000. The Holocene evolution of the London Thames. Archaeological excavations (1991–1998) 
for the London Underground Limited Jubilee Line Extension Project. Museum of London Archaeology Service 
Monograph no. 5.

Sieczko, A.K., Demeter, K., Singer, G.A., Tritthart, M., Preiner, S., Mayr, M., Meister, K., Peduzzi, P., 2016. 
Aquatic methane dynamics in a human-impacted river-floodplain of the Danube. Limnol. Oceanogr. 61, 
2016, 175–187.

2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714



47

Smith, D., 2000. Disappearance of elmid ‘riffle beetles’ from lowland river systems - the impact of alluviation. 
In T O’Connor, R Nicholson (eds.), People as an Agent of Environmental Change. (AEA symposia no. 16). 
Oxford: Oxbow Books, 75-80.

Stallard, R.F. 1998. Terrestrial  sedimentation and the carbon cycle:  Coupling weathering and erosion to 
carbon burial. Global Biogeochemical Cycles 12, 231-257.

Starkel, L., Gregory, K. J., Thornes, J. B., (Eds) 1991. Temperate Palaeohydrology. John Wiley and Sons, 
Chichester.

Starkel, L., Kalicki, T., Krąpiec M., Soja, R., Gębica P., Czyżowska E., 1996. Hydrological changes of valley floor 
in the Upper Vistula basin during Late Vistulian and Holocene. In L. Starkel (Ed.), Evolution of the Vistula river 
valley during the last 15 000 years. Quaestiones Geographicae, Special Issue 9, 7−128.

Stobbe, A., 1996. Die holozäne Vegetationsgeschichte der nördlichen Wetterau - paläo¬ökologische 
Untersuchungen unter besonderer Berücksichtigung anthropogener Einflüsse. Dissertationes Botanicae 260, 
Berlin, 0-216.

Stobbe, A., 2012. Die Jahrtausende um Christi Geburt (1000 BC-1000 AD) – pollenanalytische 
Untersuchungen im mittleren Lahntal zwischen Wetzlar und Gießen. BerRGK 67, 2011, 32–56.

Strandberg, S., 2015. River names. In C. Hough (Ed.) The Oxford Handbook of Names and Naming. Oxford 
University Press, Oxford 105-114.

Steinle, A.,Herbener, M. 2016. Die Floßbarmachung der Kinzig am Beispiel historischer Schwallungen: 
Auswirkungen auf die Gewässerökologie in Vergangenheit  und Gegenwart sowie zukünftige Erhaltungs- und 
Nutzungspotentiale. Berichte der Naturforschenden gesellschaft Freiburg i.Br.  106, Freiburg, pp. 101-128.

Suftin, N.A., Wohl, E., Dwire, K.A., 2016. Banking carbon: a review of organic storage and physical factors 
influencing retention in floodplain and riparian ecosystems. Earth Surface Processes and Landforms 41, 38-
60.

Svenning, J-C., 2002. A review of natural vegetation openness in north-western Europe. Biological 
Conservation 104, 133–48.

Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miguel, C., Valentini, A., Vermat, T., Carthier, G., 
Brochmann, C., Willeslev, E., 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA 
barcoding. Nucleic Acids Research 35, e14.

Tal M., Gran, K., Murray, A.B., Paol,a C., Hicks, D.M., 2004. Riparian vegetation as a primary control on 
channel characteristics in multi-thread rivers. In Riparian Vegetation and Fluvial Geomorphology, Bennett, 
S.J,, Simon, A, (eds). American Geophysical Union: Washington, DC; 43–58.

The Magna Carta Project. 2017. http://magnacarta.cmp.uea.ac.uk/about/aboutproject#

Thompson, M.S.A., Brooks,S.J., Sayer,C.D., Woodward, G., Axmacher,J.C., Perkins,D.M., Gray,C., 2017. Large 
woody debris “rewilding” rapidly restores biodiversity in riverine food webs. J Appl Ecol. 201, ;00, 1–10.

Thorp, J.H., Thoms, M.C., Delong, M.D., 2006. The riverine ecosystem synthesis: Biocomplexity in river 
networks across space and time. River Research and Applications 22, 123–147.

2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773

http://magnacarta.cmp.uea.ac.uk/about/aboutproject#


48

Törnlund, E., Östlund, L., 2002. Floating timber in Northern Sweden: The construction of floatways and 
transformation of rivers. Environment and History 8, 85-106.

Trimble, S.W., 1981. Changes in sediment storage in the Coon Creek basin, Driftless Area, Wisconsin., 1853 
to 1975. Science 214, 181-183.

Tubbs, C.R., 2001. The New Forest: history, ecology and conservation. New Forest Ninth
Century Trust, New Forest Museum: Lyndhurst, Hampshire, UK. 230pp.

Ustrnul Z., Czekierda D., 2009. Atlas of extreme meteorological phenomena and synoptic situations in 
Poland. IMGW Warszawa. 1-182.

Václav, S., Lenka, T., Pavel, M.,  Klára, V., 2016. Deposits and evolution of the alluvial infill on the confluence 
of Roklanský Potok and Javoří Potok streams at the Šumavské Pláně plains. Silva Gabreta 22, 17-29.

Vettori, C., Paffetti, D., Pietramellara, G., Stozky, G., Gallori, E., 1996. Amplification of bacterial DNA bound 
on clay minerals by the random amplified polymorphic DNA (RAPD) technique. FEMS Microbiology Ecology 
20, 251-260.

Vera, F.W.M., 2000. Grazing Ecology and Forest History. CABI, Wallingford.

Vince, J. 1984. Discovering watermills. 4th edn. Shire Publications Ltd, Tring, UK.

Walter, R.C., Merritts, D.J., 2008. Natural streams and the legacy of water-powered mills. Science 319, 299-
304.

Wegener, P., Covino, T., Wohl, E. 2017. Beaver‐mediated lateral hydrologic connectivity, fluvial carbon and 
nutrient flux, and aquatic ecosystem metabolism. Water Resources Research, 10.1002/2016WR019790

Wells, C.E., Hodgkinson, D., Huckerby, E., 2000. Evidence for the possible role of beaver
(Castor fiber) in the prehistoric ontogenesis of a mire in northwest England, UK. The Holocene. 10, 503-508.

Whitehouse, N.J., Smith, D.N., 2004. ‘Islands’ in Holocene forests: Implications for Forest Openness, 
Landscape Clearance and ‘Culture-Steppe’ Species. Journal of Environmental Archaeology 9, 203-212.

Wohl, E., 2016. Messy rivers are healthy rivers: The role of physical complexity in sustaining ecosystem 
processes. In G. Constantinescu,  Garcia, M., Hanes, D. (Eds.) River Flow 2016
Taylor & Francis Group, 24–29.

Wohl, E., Hall, R.O., Lininger,K.B., Sutfin,N.A., Walters, D.M., 2017. Carbon dynamics of river corridors and 
the effects of human alterations. Ecological Monographs 87, 379-409.

Wolman, M.G., Leopold, L.B., 1957.River floodplains: some observations on their formation. United States 
Geological Survey Professional Paper 282C, 87-107.

Yanson, K.K., Steck, T.R., 2009. Strategy for Extracting DNA from Clay Soil and Detecting a Specific
Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification. Applied and 
Environmental Microbiology 75, 6017-6021.

2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832



49

Zolitschka, B., Behre K-E., Scheider, J., 2003. Human and climatic impact on the environment as derived from 
colluvial, fluvial and lacustrine archives-examples from the Bronze Age to the Migration period, Germany. 
Quaternary Science Review 22, 81-100.

2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891



Table S1: Selected European River Etymology - FRANCE

Key: C-Celtic, L-Latin, F-French, IE-Indo-European, Ga-Gaulish

Name Etymology Meaning Reference (where present)
Aude Atacos-(Ga) Spirited, very fast Delamarre 2003
Brian
Briance
Brienon
Briou

Braga- boue(F) Muddy Toponymie Rivieres de France 2002

Bèbre
Beuvron
Bibiche
Bièvre
Bièvre

Bebros (Castor) Beaver Toponymie Rivieres de France 2002

Isère isərós-(IE) Impetuous, quick, vigorous Delamarre 2003,  Roussel 2009
Loire
Loir
Loiret
Ligoure

Liger-(L) from Liga(Ga) Silt, mud, alluvium Montclos 1997

Méouge
Meuse
Meuzin
Moselle
Moselotte
Mouge

Mod- (mud) Muddy Toponymie Rivieres de France 2002

Orne Olīnā-(C) Elbow Delamarre 2003
Rhine Rēnos(Ga), Reinos, rei-(IE) To move, flow, run OED 2001
Rhône Renos, Rodonos or Rotonos(Ga), ret-(IE) and 

danu- 
Bold and proud Toponymie Rivieres de France 2002

Seine Sequana (L) River Goddess Ellis 1998



Selected European River Etymology - IRELAND

Key: C-Celtic, L-Latin, F-French, IE-Indo-European, Ga-Gaulish

Name Etymology Meaning Reference (where present)
Shannon Sionna(C) River Goddess
Barrow From Berbha boru-(C) Boil, bubble associated with 

Borvo, Celtic God of minerals and 
spring water

Bann An Bhanna(C)  River Goddess Ó Mainnín 1992,  Muhr, K. 1996
Nore possibly referring to féar(C) Grass Ó Cíobháin 2007
Liffey An Ruirthech(Ga) Fast, strong runner
Slaney Μοδονου (Modonu) Mudflats
Maigue An Mháigh(C) River of the plain Mills 2003
Loobagh An Lúbach(C) Twisted one
Cladagh an Chlaideach(C) Washing river Muhr 1999
Lyreen Laidhrín(C) is diminutive of ladhar(C) Forked
Quoile An Caol(C) Narrow
Shimna Simhné(C) River of bulrushes Joyce 1910, Evans 1967
Tolka (Tolga) An Tulcha(C) The Flood The Dublin Penny Journal 1834



Selected European River Etymology - GERMANY

Key: C-Celtic, L-Latin, F-French, IE-Indo-European, Ga-Gaulish, Gr-Greek, PreG-Pre German, EG-Early German, IG-Indo-Germanic, G-German, S-Slavic

Name Etymology Meaning Reference (where present)
Vistula u̯eis-(IE) to ooze, flow slowly Adams 1997
Danube Istros (Ἴστρος)(Gr) Strong, swift Katičić, R. 1976
Kammel kamb or camb(C) Crooked As River Camel (Cornwall) see Weatherhill 1995
Aar (Lahn) Aar(PreG) quick-flowing water Krahe 1964
Nahe Nava(L) from (C) Wild River
Kocher Cochan(C) winding, meandering Lott 2002
Schutter (Kinzig) Scutro(EG),  sceud(IG) fast flowing water
Wutach Wut(G), ach(C) furious water
Innerste oid(IG) turbulent, strong
Oker ov and akara upper, onward rushing Blume 2005
Ecker akara onward rushing Blume 2005
Schunter Sukątora(S) with many angles
Spree sprejen, sprewen(G) or spreizen(G) to spray water or spread
Wipper (Saale) uipparaha(EG) singing, bouncing river
Elster (White & 
Black)

alstrawa(S) hurrying

Unstrut Strödu(EG) boggy thicket



Selected European River Etymology - POLAND

Key: C-Celtic, L-Latin, F-French, IE-Indo-European, Ga-Gaulish, Gr-Greek, PreG-Pre German, EG-Early German, IG-Indo-Germanic, G-German, S-Slavic, PS-
Proto-Slavic

Name Etymology Meaning Reference (where present)
Jizera Possibly -eis to move forward, race violently
Narew -nr(IE) water Witold 1999
Poprad pręd-(PS) and priasť(S) to flow fast, to jump and to spin Ondruš 1991
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