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Université catholique de Louvain, Louvain-la-Neuve, Belgium6

Stefan Siegert7

Exeter Climate Systems, University of Exeter, United Kingdom8
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ABSTRACT

Climate model simulations and observational references of the Earth’s climate are the two

primary sources of information used for climate related decision-making. While uncertain-

ties in climate models and observational references have been assessed thoroughly, it has

remained difficult to integrate these, partly because of the lack of formal concepts on how

to consider observational uncertainties in model-observation comparison. One of the dif-

ficulties dealing with observational uncertainty is its propagation to the space-time scales

represented by the models. This is a challenge due to the correlation of observational errors

in space and time. Here we present an approximation which allows to derive propagation

factors to different model scales and apply these to uncertainty estimates provided by the

Climate Change Initiative (CCI) sea-surface temperature (SST) dataset. The propagated un-

certainty in SST observations is found to systematically lower seasonal forecast skill and

to increase the uncertainty in verification of seasonal forecasts, an aspect that remains cur-

rently overlooked. Uncertainty in forecast quality assessment is dominated by the shortness

of the satellite record. Expanding the record length of these datasets might hence reduce the

verification uncertainties more than the efforts to reduce the observational uncertainties.
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1. Introduction36

The scientific community is taking action to confront the challenge of climate variability and37

change by understanding the physical basis and by providing estimates of the present and future38

climate. Climate model simulations and observational references are the two resulting sources39

of information that support stakeholders and policymakers. The quantification of uncertainties in40

both sources of information is crucial and large efforts are devoted quantifying these (Flato et al.41

2013; Hartmann et al. 2013).42

Climate model uncertainties are typically assessed by comparing simulated and observed con-43

ditions of the past climate (Reichler and Kim 2008). The agreement between models and ob-44

servations is instrumental in gaining confidence into simulated climates which have not yet been45

observed (Knutti 2008). This holds particularly for near-term climate predictions such as sub-46

seasonal to seasonal predictions where retrospective predictions can be verified (Doblas-Reyes47

et al. 2013). Accurate observational references of the Earth’s climate are therefore indispens-48

able to quantify model uncertainties, yet observations are subject to uncertainties as well. While49

the uncertainties related to the limited statistical sample in model-observation comparison is usu-50

ally reported (e.g. for seasonal forecasting Doblas-Reyes et al. 2013; Ferro 2014; Scaife et al.51

2014; Siegert et al. 2016b) uncertainties in the observational references remain weakly explored.52

This tendency pertains to the climate modelling community in general (as highlighted in Gómez-53

Navarro et al. 2012; Addor and Fischer 2015; Massonnet et al. 2016; Mudryk et al. 2017) despite54

the large efforts that have gone into quantifying uncertainties in observational references (Kennedy55

2014; Povey and Grainger 2015; Merchant et al. 2017)56

Like climate models, observational references rely on a number of structural and parametric57

choices in the design and calibration of the algorithm used to generate the data sets (Thorne et al.58
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2005; Liu et al. 2015) and are therefore an approximation of the theoretical true climate (Mas-59

sonnet et al. 2016). Data sets report the resulting uncertainties typically by characterizing the60

dispersion of the error distribution between the measured and the theoretical true value (Merchant61

et al. 2014; Liu et al. 2015). One of the challenges in including these uncertainty estimates in62

the assessment of model simulations is the aggregation to the space-time averages, motivated by63

the mismatch in observational and model grids and data frequency. Measurement errors are cor-64

related in time and space due to for instance the background atmospheric or oceanic conditions65

that prevail locally in time and in space (Povey and Grainger 2015). Therefore, the information66

about uncertainty has to be propagated taking into account the expected correlation structure of67

the observational errors. The lack of knowledge of correlation length scales but also the missing68

methodological concepts to efficiently propagate uncertainties remain key obstacles to estimating69

uncertainties at model scales. Past studies have therefore used alternative data sets to estimate ob-70

servational uncertainties (Stoffelen 1998; Reichler and Kim 2008), however, this approach ignores71

the uncertainty estimates actually reported in the data sets. Providing methodologies of uncer-72

tainty propagation to climate model scales is therefore an opportunity to bridge the modelling and73

observational data communities.74

The European Space Agency (ESA) Climate Change Initiative (CCI) has placed a special focus75

on estimating uncertainties in climate data records (Merchant et al. 2017). This is an important76

contribution towards mutual uncertainty assessment of models and observations. This study aims77

to support this practice by illustrating simple ways to propagate uncertainties to scales used in78

seasonal forecast verification of the El Niño Southern Oscillation (ENSO) relying on the CCI sea-79

surface temperature (SST) gap-free analysis (L4 product) (Merchant et al. 2014). The propagated80

observational uncertainties are subsequently confronted to two other uncertainties present in the81

context of forecast verification: the limited ensemble size and the limited record length of the82
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datasets. The comparison allows to understand how important the observational uncertainty is83

in the practice of seasonal forecast verification. Finally, an estimate of the systematic reduction84

in seasonal forecast skill due to observational uncertainty is provided, highlighting the fact that85

current practice underestimates the deterministic skill of forecasting systems.86

2. Methods87

a. Observational references and seasonal forecast verification88

The role of observational uncertainty is explored in this study using the SST CCI gap-free anal-89

ysis v1.1 (Merchant et al. 2014) and three alternative SST data sets which use different data and90

techniques to represent observed SSTs namely: the Hadley Centre Global Sea Ice and Sea Sur-91

face Temperature (HadISST) data set v.1.1 (Rayner et al. 2003), the ERA-Interim re-analysis92

(Dee et al. 2011), and the Extended Reconstructed Sea Surface Temperature (ERSST) v.4 data93

set (Huang et al. 2015). The observational references are hereafter called ORs. HadISST uses94

in-situ data (Met Office Marine Data Bank (MDB) and Comprehensive Ocean-Atmosphere Data95

Set (ICOADS) release 2.5 and satellite data from Advanced Very High Resolution Radiometers96

(AVHRR) data. ERA-Interim is an atmospheric re-analysis product and uses SST data from dif-97

ferent sources as described in Dee et al. (2011) which include both in-situe and satellite remotely98

sensed data. ERSST4 relies exclusively on in-situ (ICOADS) data. Finally, SST CCI relies on99

satellite remotely sensed data only blended from AVHRR and (A)ATSR (Advanced Along-Track100

Scanning Radiometers including ATSR1 and ATSR2). SST CCI and ERA-Interim (from 2009 on-101

wards) use data from the near-realtime Operational Sea Surface Temperature and Sea Ice Analysis102

(OSTIA) system (Donlon et al. 2012). The SST CCI product is the only OR that is both daily103

and provides an estimate of the observational uncertainty at its native resolution. Note that the un-104
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certainty in the SST CCI gap-free product comprises of the observational error plus the error that105

arises from interpolation in space and time expressed as one standard deviation. In this study, we106

use the SST-CCI observational record, because a gap-free observational record appears to be most107

suitable for comparison with climate model data, which is typically gridded and without gaps.108

Other products, such as ERSSTv4, have uncertainty estimates which are however not explored in109

this study.110

The observed SSTs are compared to seasonal coupled climate model predictions from the Eu-111

ropean Centre for Medium-range Weather Forecasts (ECMWF) forecasting system 4 (S4, Molteni112

et al. 2011). The hindcast considered spans the period 1981 - 2010 using 51 ensemble members113

with a horizontal resolution of ∼ 80 km in the atmosphere (T255) and with 1 degree resolution114

in the ocean. We focus on the El Niño Southern Oscillation (ENSO), which is the process that115

contributes most to seasonal predictability across the globe (Latif et al. 1998). The variability of116

ENSO is computed as the SST anomaly (with respect to the climatology 1981 - 2010) over the117

Niño3.4 region (170W - 120W; 5S - 5N, black box in Fig.1b). S4 is initialized every month and118

simulates the consecutive 7 months. Here, we only consider the prediction of summer months of119

the Northern Hemisphere (June-July-August, JJA) as they are the most difficult to predict from the120

predictions initialized in May (Barnston et al. 2012). The analysis is extended to global SSTs at a121

final stage.122

Seasonal forecast skill is computed using the Pearson correlation of the ensemble mean predic-123

tion with the observations. Probabilistic properties that could be derived from the ensemble are124

omitted. The correlation is a popular skill metric of seasonal forecast quality (Doblas-Reyes et al.125

2013; Scaife et al. 2014). It measures the linear relationship between the prediction and the obser-126

vation across forecasts initialized at different dates and its square is equivalent to the re-calibrated127

mean square skill score (MSSS, Siegert et al. 2016a). This study focuses on the correlation coef-128
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ficient only, keeping in mind that the observational uncertainty is equally relevant in probabilistic129

verification (Jolliffe 2017).130

b. Propagation of uncertainties to climate model scales131

The SST CCI analysis provides an estimate of the uncertainty at the resolution of the data (1/20132

degree∼ 6 km). This uncertainty at the grid point level has to be propagated to space-time averages133

used in the verification of seasonal predictions (typically monthly means and regional averages or134

coarser grid scales). In this study we are interested in the observational uncertainty of the average135

SST in the Niño3.4 region over a 30-day period. Since we can not expect observational errors to be136

uncorrelated in space and time, the usual formula to calculate the standard error of the mean does137

not apply. Instead, we have to take into account the finite correlation length (λ ) and correlation138

time scale (τ) of the observational error.139

Say we have an OR of the variable x with an accompanying observational uncertainty σx on a140

regular grid with grid spacing of ∆x and ∆t in space and time, respectively. We are consequently141

interested in the uncertainty σx of the space-time mean x in a configuration consisting of a domain142

with dimensions of M times N grid points and T time instances. We assume that the observational143

error εi, j,t has an exponential correlation function144

cor(εi, j,t ,εi′, j′,t ′) = exp

(
−∆x

√
(i′− i)2 +( j′− j)2

λ
− ∆t|t ′− t|

τ

)
(1)

while i < M, j < N, t < T are indices of the data, such that the distances in space145

∆x
√

(i′− i)2 +( j′− j)2 and time ∆t|t ′− t| are scaled by the correlation lengths (Cressie 2015).146

The exponential function can be expanded for all possible distances (all possible values for i, j,147

and t) to form the covariance matrix Σ with dimension of all points in space and time (MNT ). The148

uncertainty of x is consequently defined as,149
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σx =
√

wT Σw (2)

where w is the averaging vector with length of MNT values of 1
MNT or additional weighting val-150

ues to account for the effective area of the grid points. The calculation of this expression requires151

enumeration over all pairs of grid points. The computational complexity of such an approach is152

O(M2N2T 2), which makes the calculation computationally unfeasible even for moderate domain153

sizes and time periods. To overcome the complexity, it is useful to assume a constant observational154

uncertainty within the domain (σ̂x). Since many points in space and time share the same distances155

(in space and time) one can formulate the following analytical solution (following the derivations156

described in Appendix A),157

σx =
σ̂x

MNT

√
(T +2ST )(MN +2NSM +2MSN +4SMN) (3)

where the S terms describe the exponential decay in all dimensions,158

SM =
M−1

∑
i=1

(M− i)e
−i∆x

λ

SN =
N−1

∑
j=1

(N− j)e
− j∆x

λ

ST =
T−1

∑
t=1

(T − t)e
−t∆t

τ

SMN =
M−1

∑
i=1

N−1

∑
j=1

(M− i)(N− j)e
−∆x
√

i2+ j2
λ

The computational complexity is only O(M+N+T +MN) which allows us to efficiently prop-159

agate uncertainty to different length scales. An alternative approach is presented in Appendix B160

in case the assumption of a constant σx is weakly justified due to continental boundaries or strong161

inhomogeneity of σx in the space-time domain. The approach relies on generating random fields162
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from Σ which are averaged for the space-time domain using a Monte Carlo approach. This solu-163

tion is also sufficiently efficient to propagate observational uncertainty and explore the uncertainty164

related to the length and time scales. Note that the Monte-Carlo approach is orders of magnitude165

faster than the enumeration in equation 2 due to efficient algorithms based on Fourier transforma-166

tions (Schlather et al. 2015).167

It is useful to elaborate on equation 3 using practical examples for better understanding. Obser-168

vational errors are traditionally classified into random and systematic errors (Povey and Grainger169

2015). Errors such as sensor noise, which are uncorrelated in time and space, reduce with averag-170

ing with the square root of the sample size (
√

MNT ) following the law of large numbers. Random171

errors are analogous to zero correlation scales (λ = τ = 0) which yields zero for the S terms below172

the square root in equation 3 leaving
√

MNT in the denominator. For locally systematic errors due173

to e.g. weather systems (λ ,τ > 0) the S-terms grow and therefore can be understood as the correc-174

tion factor of the law of large numbers. If the errors are globally systematic due to e.g. errors in the175

retrieval algorithm, the length scales become infinitely large (λ = τ =∞) and the expression below176

square becomes M2N2T 2. The uncertainty does in this case not decrease σx = σ̂x. The SST CCI177

provides the differentiated uncertainty components for non-gap filled data products (L3 products)178

with an accompanying tool for the propagation. In the gap-filled (L4) product these uncertainties179

can no longer be retained as the correlation structure is unknown after interpolation. In this case180

approximate length scales have to be used.181

c. Inference of uncertainty from different observational references182

An alternative way to determine the uncertainty in ORs is to infer it from the spread between183

available ORs for a given space-time mean (Martin et al. 2012). This can be done by assuming184

that different ORs are equally probable. This assumption is known to be flawed given that the185
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quality of ORs differ (Massonnet et al. 2016). Martin et al. (2012) find that using ensembles186

of different SST products the resulting uncertainty is not robust (underestimated by a third in187

their analysis). However, this approach has been and remains the most adopted practice in the188

modelling community (e.g. Bellprat et al. 2012; Gómez-Navarro et al. 2012; Sunyer Pinya et al.189

2013; Reichler and Kim 2008). It is therefore important to bridge to this practice. An advantage190

of the approach is that an ensemble of structurally different ORs allows to account for structural191

uncertainties in the retrieval algorithms (Thorne et al. 2005). The different ORs can consequently192

be understood as an ensemble of opportunity from which σx can be estimated. This approach fits193

naturally with data sets that systematically explore parameter choices using an ensemble approach194

(Morice et al. 2012). More sophisticated inference methods include parameters that account for195

structural differences in the ORs and estimate σx using the triple-collocation approach (Stoffelen196

1998; Gruber et al. 2016) or Bayesian inference (Siegert et al. 2016b). In this study we use only197

the standard deviation between different ORs as a comparison for the uncertainty propagation.198

3. Results199

a. Uncertainty in the observed El Niño Southern Oscillation200

The seasonal forecast capability of ECMWF S4 and the different ORs are summarized in figure201

1. The time-series show the evolution of Niño3.4 SSTs for both the ensemble mean forecast (from202

which the correlation skill is determined) and the individual members. The time series length is203

constrained by the length of SST CCI, which spans the period 1992-2010. S4 has a high ensemble204

mean forecast skill shown here for the month of June (∼ 0.9 correlation) and the ensemble range205

usually encompasses the estimates from the ORs. The ORs cluster and are closer to each other206

than to the model result, yet discrepancies between the ORs are visible.207
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The lower panel of figure 1 shows the observational uncertainty (σx) provided by SST CCI at208

a specific time instance (1st of June 2000). The variability of the spatial σx reaches one order of209

magnitude globally (not shown). Daily variations are negligible during the summer months but210

the uncertainty within the Niño3.4 region varies with a factor of three as denoted by the black box211

in figure 1b. Assuming constant uncertainty yields σ̂x=0.22 with a low standard deviation in space212

and time (± 0.001 K) due to the temporal stability. The implications of the notable changes in the213

OR uncertainty in Niño3.4 is explored later in this section. In order to know σx for the monthly214

and spatial SST average in the Niño3.4 domain, we need to propagate σ̂x to its space-time average.215

The assumption of constant observational uncertainty greatly facilitates the propagation and216

allows to formulate the analytical solution as in equation 3. The solution suggests that the un-217

certainty propagates as a function of the ratio between the size of the space-time domain and218

the correlation length, independently of the data spacing (∆x,∆t), and the number of data points219

(MNT ). This allows to present the propagation as a look-up graph (Fig.2) that is independent of220

the application. To describe this ratio we define spatial and temporal degrees of freedom (d.o.f) as221

the number of times that the correlation scale fits into the domain size. The spatial d.o.f is defined222

as MN∆x2

λ 2 and the temporal d.o.f. as T ∆t
τ

. A correlation time scale of 5 days is in this sense equal to223

6 temporal d.o.f for a monthly average, while a length scale of 100 km would correspond to 100224

d.o.f for a region of 1000km by 1000 km. The reader will note that spatial or temporal d.o.f should225

not be misinterpreted as effective sample sizes with which the standard deviation can be scaled.226

As shown in equation 3 the correction term is more complicated. To make the propagation general227

in the physical space, the graph is further shown for unit observational uncertainty (σx = 1). The228

resulting standard deviation of the space-time mean (y-axis) can consequently be understood as229

the propagation factor with which the average observational uncertainty (σ̂x) of the data needs to230

be multiplied.231
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The SST CCI reports correlation lengths for errors of 100 km in space and a time scale of one day232

for the locally systematic errors in single sensor L3 products. These represent scales associated233

with small synoptic systems and the coverage of the satellite (revisiting the same location every234

two days). We take here this estimate as a first guess, bearing in mind that these length scales do235

not take into account the uncertainty introduced from the interpolation in space and time. Taking236

the case of the monthly Niño3.4 domain the scales are equivalent to 30 temporal d.o.f. and 320237

spatial d.o.f (the Niño3.4 regions covers 4000 km x 800 km). The resulting standard deviation of238

the space-time mean yields σx= 0.007 K (the propagation factor is 0.03). This estimate is arguably239

too small and indicates that systematic uncertainties operating at larger scales are present. We240

consider therefore additionally scales associated with large synoptic systems of λ = 1000 km and241

τ= 10 days. The resulting estimate yields σx = 0.076 K.242

The two estimates of monthly Niño3.4 SST uncertainties are compared in figure 3 with the243

standard deviations obtained from the four different ORs. The standard deviation from a sample244

of four points is highly uncertain and hence a distribution obtained from all individual years and245

the months (May-August) are shown as a histogram in figure 3. The propagated uncertainties from246

SST CCI are at the lower tail of uncertainty estimates, yet the estimate using large synoptic scales247

is consistent with the comparison of the different ORs for summer Niño3.4 SSTs (approximately248

σx= 0.1 K). Differences between ORs can be substantially larger as seen in figure 3. Note that249

the two alternative estimates do not represent the same quantity as discussed in section 2c and are250

therefore not expected to agree entirely. The former is a self-consistent estimate of uncertainty251

in the SST CCI product, the latter is an estimate of the uncertainty collectively among the ORs.252

However, the comparison indicates that correlation scales associated with larger synoptic scales253

are reflecting the uncertainty of the Niño3.4 SSTs more realistically and might still underestimate254

the uncertainty Martin et al. (2012).255

13



The propagated estimate assumes that the uncertainty is constant in space and time over the256

domain of interest, and that the spatial and temporal correlations decay exponentially with con-257

stant decorrelation parameters. The correlation function needs not necessarily to be exponential.258

The exponential function in equation 1 can be replaced by a different correlation function that is259

separable into the product of a temporal component and an isotropic spatial component with con-260

stant parameters. The assumption of constant observational variance used in figure 2 appears very261

restrictive, and seems to defeat the purpose of an observational data set that aims to resolve obser-262

vational uncertainty in space and time. However, we have found by producing large samples from263

known distributions that the error due to the constant variance assumption is very small as long as264

the observational variance does not change too much over space and time in the domain of interest.265

In particular, we have analysed the observational error of Nino3.4 monthly average SST by sam-266

pling 1000 error fields 1) using the spatially and temporally varying observational error standard267

deviations provided in the data set (with much reduced spatial resolution), and 2) replacing all268

error standard deviations by their space-time mean, i.e. simulating under a constant error variance269

assumption. The analytical expression yields an observational error standard deviation of 0.0767270

K. The 1000 simulated error fields with varying variances have standard deviation of 0.0766 K271

and the 1000 simulated error fields with constant variances have standard deviation of 0.0765 K.272

This result shows that analytical and simulated results agree when using 1000 Monte-Carlo simu-273

lations, and that the difference between varying and constant error variances is negligible (at least274

in this example).275

b. Observational uncertainty in verification of seasonal sea-surface temperature forecasts276

Having assessed the uncertainty in observed Niño3.4 SSTs, it is crucial to understand how im-277

portant the uncertainty is in practice compared to other sources of uncertainty in forecast veri-278
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fication. There are three sources of uncertainties when dealing with the assessment of seasonal279

forecast skill: (1) a sample uncertainty due to the limited number of retrospective predictions280

or limited OR record length over which the skill is evaluated, (2) a sample uncertainty due to a281

limited ensemble size used to compute the ensemble-mean forecast often constrained by limited282

computational resources, (3) and an uncertainty due to the uncertainties in OR itself. Note that283

other uncertainties in the comparison of models and observations such as the unpredictable inter-284

nal variability or the uncertainty due to model inadequacy (Notz 2015) are not uncertainties of the285

prediction skill, but part of the forecast error that the skill itself aims at measuring.286

While uncertainties from (1) and (2) are commonly assessed (Ferro 2014; Scaife et al. 2014;287

Siegert et al. 2016b) the observational uncertainty remains an overlooked problem and formal288

concepts to include observational uncertainty in deterministic verification metrics are lacking (for289

probabilistic metrics approaches, different have been presented; Candille and Talagrand 2008;290

Jolliffe 2017). Here we explore impact of OR uncertainty on the correlation by generating an291

ensemble of observations. This is far from trivial (Povey and Grainger 2015) and proper ensemble292

generation is only possible at the level of the algorithm used to generate an ORs. However, at293

the user level the uncertainty estimate provided by CCI can be used to perturb the analysis using294

Gaussian random noise or using the different ORs as an ensemble of opportunity by resampling295

the ORs in each specfic year.296

The impact of the observational uncertainty on the correlation skill of Niño3.4 SSTs is illustrated297

in figure 4 in comparison to the sampling uncertainties. The sample uncertainties are assessed by298

resampling the ensemble members of the forecast prior to computing the model ensemble mean299

and resampling the years in the verification period, both with replacement. An ensemble size of300

10 members is used, which represents the typical ensemble size used in non-operational climate301

prediction hindcasts (Doblas-Reyes et al. 2013). The total uncertainty is estimated by sampling302
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jointly all sources (1-3) using the alternative ORs as an estimate of the observational uncertainty.303

Note that the seamingly increased skill in July in comparison to June is an artifact of the limited304

period considered (1992 - 2010). For longer periods the forecast skill decreases monotonically as305

the model departs from the initialization date (May 1st).306

The observational uncertainty (green area) contributes about 20% in the summer months and307

50% in the first month after the initialisation with similar amplitudes for both observational en-308

semble approaches considered. The observational ensemble using the CCI uncertainty estimate309

tends to reduce the skill since adding observational error reduces the correlation (Massonnet et al.310

2016). The total source of uncertainty increases with time and reaches a range of 0.7 - 0.95 cor-311

relation. The ensemble size uncertainty (orange area) remains overall small with 10 members as312

each member retains a strong signal over the Niño3.4 region. The record length of SST CCI is313

overall the largest source of uncertainty (blue area). Expanding the record length of SST CCI314

beyond the current 20 years might hence reduce the verification uncertainties more efficiently than315

current efforts to reduce the observational uncertainties for the Niño3.4 region. The sum of all316

three sources of uncertainties is clearly larger than the total uncertainty obtained by jointly sam-317

pling the uncertainty due to non-linear interactions of the terms. In the supplementary information318

(Fig. S1) we show that the qualitative conclusions drawn are also valid for varying ensemble sizes319

and record lengths.320

The example gives a regionally limited perspective and the focus is expanded to a global view321

in figure 5 for the month of August by comparing the relative contribution of each uncertainty322

source with respect to the sum of all sources. The uncertainty related to the length of the SST323

record dominates almost everywhere except in the poles. The record length uncertainty is particu-324

larly large in regions of high interannual variability. The observational uncertainty, sampled using325

the CCI uncertainty estimate, is the dominant source of uncertainty over the polar regions and326
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contributes also in various other regions up to 40%. The ensemble size uncertainty is the largest327

over the extratropical North Pacific and North Atlantic. The SSTs over these regions are primarily328

forced by the atmospheric flow at seasonal time scales (Cayan 1992) and therefore subject to the329

atmospheric internal variability which is large in the extratropical Northern Hemisphere. A large330

ensemble size is therefore required in this region to reduce the effect of the internal variability in331

the ensemble mean in this region (Scaife et al. 2014).332

Finally, it is important to take into account that observational errors not only increase the ver-333

ification uncertainty but also have systematic effects on the prediction skill. Uncertainties in a334

reference lower the correlation skill (Massonnet et al. 2016), similarly as a limited ensemble size335

leads to systematically lower correlation (Ferro 2014; Scaife et al. 2014). This reduction in cor-336

relation skill can be estimated by dividing the sample correlation by the correction for attenuation337

(Spearman 1904),338

R =
σ2

o −σ2
x

σ2
o

, (4)

where σo is the total interannual standard deviation of the ORs and σx the observational un-339

certainty. The reference variability is hence attenuated for the observational uncertainty without340

altering the co-variance between the model and the reference. Corrections for probabilistic mea-341

sures have also recently been proposed (Ferro 2017). The resulting increase in the correlation skill342

of ECMWF S4 global SSTs is shown in figure 6. The skill increases in many regions up to 0.2 and343

beyond, in agreement with the regions where the uncertainty increases most (figure 5, first panel).344

In the poles and also regions in the southern Ocean the observational uncertainty is larger than the345

interannual variability of the OR and hence no attenuation can be calculated.346
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4. Discussion and conclusions347

Just like climate model predictions, observational references (ORs) are subject to uncertainties.348

These uncertainties are usually disregarded in the verification of seasonal forecasts or the evalua-349

tion of climate models in general. The common assumption that limitations of the models dom-350

inate the observational uncertainty persists and the role of OR limitations is therefore often seen351

as minor. These assumptions are rarely assessed and individual studies suggest that observational352

uncertainties might be larger than anticipated (e.g. Addor and Fischer 2015; Prodhomme et al.353

2016; Massonnet et al. 2016). Formal concepts of how to account for observational uncertainties354

provided by ORs in climate model evaluation are, however, still scarce.355

In this study, we present a step forward to narrow this gap by presenting simple ways to prop-356

agate observational uncertainties to space-time means, a necessary step in forecast verification357

where the model and OR spatial and temporal resolution do not match each other. The solution358

described is independent of the data structure and is illustrated as a “look-up” graph from which359

propagated uncertainties can be readily estimated. The solution assumes a constant observational360

uncertainty in the region and under the period considered for the space-time average and an al-361

ternative Monte-Carlo simulation approach is suggested if this assumption is weakly justified.362

Propagated observational uncertainties from the SST CCI product are consistent with differences363

in different ORs over the Niño3.4 region, yet the latter tends to be larger. Using the different ORs364

as complementary estimates and the propagated SST CCI uncertainty we find that the observa-365

tional uncertainty contributes fundamentally to the forecast skill assessment of seasonal predic-366

tions of SSTs. Particularly at high latitudes, the observational uncertainty can dominate over other367

sources of verification uncertainties. However, over most regions, the largest uncertainty in sea-368

sonal forecast quality originates from the limited period over which the hindcasts are evaluated.369
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The observational uncertainty is also shown to systematically reduce the correlation skill by up to370

0.2 correlation and beyond. Accounting for the increased verification uncertainty and systematic371

underestimation of skill should become a future practice in order to fully understand the utility of372

a seasonal forecasts.373
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FIG. 1. a) June observations (solid lines) and seasonal forecast of ECMWF System 4 initialized in 1st May

(dashed line shows the ensemble mean, gray lines the individual members) of Niño3.4 sea-surface temperature

(SST) anomalies with respect to the climatology of 1992 - 2010. The time-series are shown only for the period

where ESA SST CCIs is available. (b) Observational uncertainty (one standard deviation) of SST in the Niño3.4
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FIG. 2. Uncertainty propagation to space-time averages as a function of the correlation scales in space (x-axis)

and time (different lines) for unit observational uncertainty σx=1. The correlation scales are expressed as degrees

of freedom (d.o.f.) by computing the number of times the correlation scale fits in the space-time domain. The

propagation is consequently independent of the data spacing and the number of data points. The aspect ratio of

the spatial domain impacts the propagation. The mean distance between all possible pair of points in a square is

smaller than in a strongly rectangular region as for instance the Niño3.4 region with aspect ratio of region of 1:5.

The observational uncertainty therefore decreases stronger in non-rectangular regions as denoted by the different
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observational uncertainty provided by the OR has to be multiplied. For example for 5 spatial and temporal d.o.f.
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of the period 1981-2010 (only three ORs prior to 1992) during the months May - August as a comparison of
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FIG. 6. Reduction of correlation skill in ECMWF S4 due to the observational uncertainty for the prediction of

the month of August (initialized in 1st of May) estimated using the correction for attenuation (Spearman 1904).

The observational uncertainty is estimated by propagating SST CCI uncertainties to monthly means in each

grid-point. Grid-points in gray denote areas where the observational uncertainty is larger than the interannual

variability of the SST CCI and where as a consequence no correction for attenuation can be calculated.

553

554

555

556

557

31


