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Recent work using tools from quantum information theory has shown that for small systems
where quantum e↵ects become prevalent, there is not one thermodynamical second law but many.
Derivations of these laws assume that an experimenter has very precise control of the system and
heat bath. Here we show that these multitude of laws can be saturated using two very simple
operations: changing the energy levels of the system and thermalizing over any two system energy
levels. Using these two operations, one can distill the optimal amount of work from a system, as
well as perform the reverse formation process. What is more, using only these two operations and
one ancilla qubit in a thermal state, one can transform any state into any other state allowable by
the second laws. We thus have the result that the second laws hold for fine-grained manipulation
of system and bath, but can be achieved using very coarse control. This brings the full array of
thermal operations towards a regime accessible by experiment, and establishes the physical relevance
of these second laws, potentially opening a new direction of studies.

PACS numbers: 03.67.-a, 03.65.Ta, 05.70.Ln

I. INTRODUCTION

Thermodynamics and statistical physics are one of the
most successful areas of physics, owing to its broad appli-
cability. One can make statements which do not depend
on the particulars of the dynamics, and such laws govern
much of the world around us. Thermodynamics puts lim-
itations on the e�ciency of our cars’ engines, determines
the weather, can be used to predict many phenomena
in particle accelerators, and even plays a central role in
areas of fundamental physics, providing one of the only
clues we have to a quantum theory of gravity through
the laws of black hole thermodynamics. However, tra-
ditional thermodynamics, as derived from statistical me-
chanics, generally concerns itself with the average behav-
ior of large systems, composed of many particles. Here
the experimenter is only able to manipulate macroscopic
quantities of the material such as its pressure and volume,
and does not have access to the microscopic degrees of
freedom of the system, much less the heat bath. The
basic operations are limited to very crude control of the
system-bath – isotherms, adiabats, isochors etc.

However, as our abilities to manipulate and control
small thermodynamical systems improve, we are able to
control the microscopic degrees of freedom of smaller and
smaller systems [1–5]. It thus seems natural to consider
the thermodynamical behavior of small, finite sized sys-
tems or heat engines composed of just a few molecules.

For a n-level system interacting with a heat bath, one
can imagine an experimenter manipulating the system,
who has control over each of the levels and can interact
the system in any way they want with the heat bath.

From a practical point of view, needing to perform such
arbitrary interactions is undesirable as they require very
precise control over and be able to keep track of the en-
tirety of the heat bath. Simpler interactions would be
much more appealing. See Figure 1 for a schematic of
this comparison.
However, even if one allows for such fine-grained con-

trol, the most experimentally unfeasible scenario, the
second law of thermodynamics still holds (provided one
computes the entropy of the system in terms of its mi-
crostates rather than using a course grained entropy).
In fact, not only does the traditional second law hold,
but additional second laws emerge for small systems such
as the so-called thermo-majorization criteria [6, 7], and
those given by a family of generalized free energies [8]
[9]. These constrain the set of states that it is possible to
transition to from a given starting state and converge to
the familiar second law in the thermodynamic limit [10].
However, such precise control will be impossible to im-

plement as it could require accurately manipulating all of
the 1020 molecules contained in a typical heat bath. As
such, it may seem that what an experimenter can achieve
without such incredibly fine-grained control must be very
far from what is allowed by the second laws [11, 12]. This
contrasts sharply with traditional, macroscopic thermo-
dynamics. There, those transformations allowed by the
standard second law can easily be achieved by control-
ling macroscopic, coarse-grained parameters such as a
system’s volume or an external field. If the same level of
control was needed macroscopically as seems necessary
for small systems, then running a car e�ciently would re-
quire control of all of the molecules in the exploding fuel
and cooler. Clearly this would be an undesirable feature -
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must it exist for small systems? The existence of a large
gap between what is allowed by the most general class
of operations, and what is achievable without detailed
control of the heat bath, would make it hard to decide
what the science of thermodynamics of microscopic sys-
tems should actually be about and how applicable the
recently derived second laws are.

Surprisingly, here we show that any state transfor-
mation permitted by the additional second laws can be
achieved using three simple operations. These opera-
tions, which we term Crude Operations, are experimen-
tally feasible for small systems and do not require fine
control of bath degrees of freedom to implement, only
weak coupling to the bath. All allowed transformations
can be implemented by applying thermalizations (assum-
ing that the system can be thermalized), raising and low-
ering energy levels and rotations within energy subspaces
to the system and a single thermal qubit taken from the
heat bath. As a by-product, our simple operations can
be viewed analogously to a universal gate set in quan-
tum computing: they provide building blocks for the con-
struction of more elaborate protocols.

II. THERMAL OPERATIONS

The aforementioned thermo-majorization constraints
were derived [7] under the largest class of operations one
is allowed to implement under thermodynamics - Ther-
mal Operations [7, 13, 14]. These are presented in full
detail in Section A1 of the Appendix and aim to capture
all energy preserving processes that can be performed on
a system in the presence of a heat bath with fixed in-
verse temperature �. In particular, given a system in
state ⇢ with Hamiltonian HS , they allow for maps of the
following form:

⇢ 7! trB
h

USB (⇢⌦ ⌧B)U
†
SB

i

, (1)

where ⌧B = e��HB

tr[e��HB ]
for an arbitrary bath Hamiltonian

HB and USB is an energy conserving unitary applied to
system and heat bath satisfying [U,HS +HB ] = 0. If a
state ⇢ can be transformed into a state � using a map of

the above form, we will denote this by ⇢
TO�! �.

Energy conservation does not pose an insurmountable
constraint on what is allowed since it can be enforced
by incorporating a work storage device into the system
to account for any energy excess or deficit. Rather, im-
posing energy conservation allows us to account for all
sources of energy as is necessary for thermodynamics in
the micro-regime. Clearly needing to apply all such uni-
taries to realize all possible transformations would re-
quire an enormous amount of control.

Analysis of such maps has lead to: investigations into
constraints on state transformations [7, 8, 10, 13, 15–17],
analysis of the 3rd law of thermodynamics [18–20], the
derivation of fluctuation theorems [21–24] and corrections
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FIG. 1. Thermal operations vs. crude operations vs. clas-
sical operations. We consider a heat bath B together with
a system S or working body W and illustrate the di↵erent
levels of control an experimenter can have on the setup and
interactions. Figure (a): The most detailed, experimentally
unfeasible control where the experimenter keeps a record of
every microstate of the system and bath (the area contained
within the purple oval) and controls interactions between the
system and the entirety of the heat bath (illustrated by green
stings). Figure (b): The desired level of control where the
experimenter keeps track of the system and a small portion
of the bath (purple oval) and performs some simple interac-
tions between these regions (green strings). Figure (b’): The
previous case can be regarded as analogous to the set up in
traditional thermodynamics where one has a working body
W of which some parameters can be changed using simple
processes such as moving a piston and weak couplings to the
heat bath.

to the Carnot e�ciency [25, 26]. The framework has
also been recently extended to consider generalized Gibbs
ensemble and scenarios where conserved charges do not
commute [27–29]. Recent surveys on the field can be
found in [30, 31].

It is worth noting that thermal operations can also be
used to incorporate processes in which the system Hamil-
tonian changes. This is covered in Appendix A3. Fur-
thermore, note that the paradigm of thermal operations
is equivalent to many other methods of describing ther-
modynamics as the small scale. This is discussed in detail
in [10, supplementary material, Section VIII] where it is
shown that both time dependent system Hamiltonians
and interaction Hamiltonians between system and bath
can be realised within the thermal operations framework.



3

A. Thermo-majorization

In the absence of a source of work, a state ⇢ with
Hamiltonian H1 can be transformed into a state � with
Hamiltonian H2 under thermal operations only if the fa-
miliar second law of thermodynamics holds, namely:

F (⇢, H1) � F (�, H2) , (2)

where F (⇢, H) = tr [H⇢]� 1
�S (⇢) is the free energy with

S (⇢) = � tr [⇢ log ⇢]. Furthermore, in the thermody-
namic limit this constraint is the only one governing state
transformations.

However, the above constraint is not su�cient for de-
termining whether a state transformation is possible un-
der thermal operations at the nano-scale. Instead, an
additional set of criteria, the thermo-majorization con-
straints, must be evaluated. These are best stated in
terms of thermo-majorization curves. Given a state ⇢
with n-level Hamiltonian HS =

Pn
i=1 Ei|iihi|, the associ-

ated thermo-majorization curve is constructed as follows:

1. Let ⌘i = tr [⇢|iihi|], i.e. ⌘i denotes the occupation
probability of energy level Ei.

2. �-order the probabilities and energy levels so that
⌘ie

�Ei is in non-increasing order.

3. Plot the �-ordered points
n⇣

Pk
i=1 e

��Ei ,
Pk

i=1 ⌘i

⌘on

k=1
together with

(0, 0) and connect them piece-wise linearly to form
a convex curve - the thermo-majorization curve.

Given two states ⇢ and �, we say that ⇢ thermo-majorizes
� if the thermo-majorization curve of ⇢ is never below
that of �. Examples of thermo-majorization curves are
given in Figure 2.

The utility of thermo-majorization curves to determin-
ing whether a state transformation is possible under ther-
mal operations is given by the following theorem:

Theorem 1 ([7]). Given two states ⇢ and � of an n-level
system with Hamiltonian HS in contact with a heat bath
with inverse temperature �:

1. If � is block-diagonal in the energy eigenbasis, then

⇢
TO�! � if and only if ⇢ thermo-majorizes �.

2. In general, ⇢
TO�! � only if ⇢ thermo-majorizes �.

In the thermodynamic limit, the thermo-majorization
criteria collapses to the condition given by Eq. (2) [10].
However, for small systems diagonal in the energy eigen-
basis (or if we have access to a source of coherence
[10, 17, 32, 33]) the above theorem shows that checking
one constraint is not su�cient and instead it is necessary
and su�cient to consider the entire thermo-majorization
curve. This was shown in [23] to correspond to checking
n� 1 inequalities.

0 e-β E1 e-β E0 Z=e-β E0+e-β E1Z=e-β E0+e-β E1

0

1

Non-Elbow
Σki=1λi

Σk
i=1e

-βEi

 ρ
 σ
 Thermal state
 Excited state
 Ground state

Elbow

FIG. 2. Thermo-majorization curves. Here we plot exam-
ples of thermo-majorization curves for 2-level systems. Ob-
serve that states associated with the same Hamiltonian may
have di↵erent �-orderings, as illustrated by ⇢ and � here. We
say that ⇢ thermo-majorizes � as the thermo-majorization
curve of ⇢ is never below the thermo-majorization curve of
�. The thermo-majorization curve of a Gibbs state is given
by a straight line between (0, 0) and (Z, 1). All other states
thermo-majorize it. The pure state corresponding to the
highest energy level of an n-level system thermo-majorizes
all other states associated with that Hamiltonian. We call a
point on a curve an elbow, if the gradient of the curve changes
as it passes through the point. Otherwise, it is a non-elbow.

B. Deterministic Work Values

In general, if we want a transition from ⇢ to � to be
possible, work may have to be added. Alternatively, if
a transition can be achieved with certainty, it can be
possible to extract work. Typically, there are two figures
of merit that can be used to quantify the amount of work
that is expended/gained: deterministic work and average
work.
The deterministic work cost introduced in [7, 34, 35]

is defined to be the minimum amount of work that must
be added for the transformation to be possible with cer-
tainty. This amount of work is used with certainty and
is suitable for characterizing the work required when ma-
nipulating a single copy of a small system.
The average work cost is a meaningful quantity when

work takes a distribution of values. This can occur when
we consider transforming many copies of a system and
hence can build up a set of statistics or if we have a weight
system to store fluctuating work values as in [24, 36].
We are interested in implementing thermal operations
on single copies of a system when we do not have access
to an additional weight system so do not consider the
average work cost in this paper.
For further elaboration on the di↵erences between de-

terministic and average work for small systems, we refer
the interested reader to [7, 34, 35].
More formally, within the thermal operations frame-
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work, the optimal amount of deterministic work that
must be added or can be gained, the work of transition,
can be quantified using (for example) the energy gap W
of a 2-level system, a wit [7], with zero energy state |0i
and an additional state |1i. The associated Hamiltonian
is:

HW = W |1ih1|. (3)

The deterministic work of transition, denoted W⇢!�, is
then defined to be the greatest value of W such that the
following holds:

⇢⌦ |0ih0| TO�! � ⌦ |1ih1|. (4)

If W⇢!� is negative, to convert ⇢ into � work has been
taken from the work storage system to enable the tran-
sition to take place. On the other hand, if W⇢!� is pos-
itive, in converting ⇢ into � it has been possible to store
some extracted work in the work system.

Defining work in such a way enables the quantifica-
tion of the worst-case work of a process. When W⇢!� is
negative, it can be interpreted as the smallest amount of
work that must be supplied to guarantee the transition.
If it is positive, it is the largest amount of work we are
guaranteed to extract in the process. As the work system
is both initially and finally in a pure state, no entropy is
stored in it and its energy change must be completely
due to work being exchanged with the system.

III. CRUDE OPERATIONS

Implementing arbitrary transformations of the form
given in Eq. (1) would require an unprecedented level
of control. It is thus natural to ask whether the transfor-
mations that are possible under thermal operations can
be achieved with much simpler operations. In this section
we introduce three such operations which we call crude
operations. These consist of:

1. Partial Level Thermalizations,

2. Level Transformations,

3. Subspace Rotations.

In the following subsections we describe them each in
turn in more detail before concluding the section by com-
paring them (and in particular the level of control they
require) with other classes of operations that have been
introduced in the literature. In Section IV, we will show
how applying protocols consisting of these operations to
a system and a single thermal qubit (which is returned
unchanged at the end of the protocol) is su�cient for im-
plementing any transformation to a block-diagonal state
that is possible under thermal operations.

A. Partial Level Thermalizations

The first of our three basic operations are Partial Level
Thermalizations (PLTs). A thermalization essentially
changes the state of the system into a thermal state and
is usually achieved by putting the system in thermal con-
tact with the reservoir until it equilibrates or by swapping
the system with one from the reservoir. Thermalizations
have no work cost or gain associated with them. A partial
thermalization generalizes this, allowing one to thermal-
ize with some probability p, implementing

⇢ ! p⇢+ (1� p) ⌧S ,

with ⌧S being the thermal state of the system at inverse
temperature �. The probability p can be determined by
using the ambient heat bath as a source of noise or by
putting the system in contact with it for a time shorter
than the equilibration time.
With Partial Level Thermalizations we go one step fur-

ther and allow for the partial thermalization to act on
any subset of energy levels. In order to implement them,
one needs to be able to either perform the SWAP gate
between any subset of energy levels of the system and
of the thermal bath or to selectively put system energy
levels in contact with the reservoir, for example by mak-
ing use of an optical cavity or intermediate system which
acts as a filter to restrict which energy levels are being
addressed by the thermal contact. More precisely, a PLT
is defined as:

Definition 2 (Partial Level Thermalizations). A Par-
tial Level Thermalization on an n level system is
parametrized by � 2 [0, 1] and a subset P ✓ {1, . . . , n}
of the system’s energy levels. We denote it by PLTP (�).
Given a diagonal state ⇢ =

Pn
i=1 ⌘i|iihi| with asso-

ciated Hamiltonian HS =
Pn

i=1 Ei|iihi| in contact with
a heat bath at inverse temperature �, the action of
PLTP (�) on ⇢ is given by:

⇢
PLTP(�)�! ⇢0 (5)

where ⇢0 =
Pn

i=1 ⌘
0
i|iihi| and the ⌘0i are such that :

⌘0i =

(

(1� �) ⌘i +
�e��Ei

P
j2P e��Ej

P

j2P ⌘j for i 2 P
⌘i for i /2 P

.

(6)

The action of PLTs on a state is illustrated in terms
of thermo-majorization curve in Figure 3. Note that if
we apply PLTs to energy levels that are adjacent with
respect to the �-ordering of ⇢, the final states maintain
this �-order.
Finally, it has recently been proposed that such opera-

tions be incorporated into Heat Bath Algorithmic Cool-
ing protocols to enhance their performance [37]. Such
protocols are important for NMR based quantum de-
vices as they provide a route towards purifying qubits.
As such, we expect the experimental implementation of
PLTs to be developed.
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FIG. 3. Action of Partial Level Thermalization. Here we
illustrate the action of PLTs applied to a state 4-level system
with P = {0, 1}. We take ⇢ to be block diagonal in the energy
eigenbasis with occupation probabilities p = (0.1, 0.5, 0.4, 0)
and HS and � to be such that e��E1 = 0.4, e��E2 = 0.15 and
e��E3 = e��E4 = 0.05. For these choices, the a↵ected portion
of the thermo-majorization curve lies between the points A
and B and we show the impact of PLT{1,2} (� = 0.5) (partial
thermalization) and PLT{1,2} (� = 1) (full thermalization) on
⇢.

B. Level Transformation

Our second type of operation are Level Transforma-
tions (LT), namely the raising and lowering of any sub-
set of energy levels of the system’s Hamiltonian. This
type of transformation is common within thermodynam-
ics and the work cost of implementing them is given by
the change in energy of the level (when the level is pop-
ulated). More formally:

Definition 3 (Level Transformations). A level transfor-
mation on an n-level system is parametrized by a set of
real numbers E = {hi}ni=1 and denoted by LTE .

Given a state ⇢ with associated Hamiltonian HS =
Pn

i=1 Ei|iihi|, the action of LTE on (⇢, HS) is:

(⇢, HS)
LTE�! (⇢, H 0

S) , (7)

where H 0
S =

Pn
i=1 (Ei + hi) |iihi|.

Their e↵ect on thermo-majorization curves is shown in
Figure 4.

The deterministic work cost of performing the Level
Transformations LTE is naturally given by �maxhi

where the maximization is taken over all occupied en-
ergy levels. This captures the maximum (worst-case)
amount of work that needs to be supplied to implement
a transformation. Here, we are interested in realizing
those transformations that can be implemented using
thermal operations at zero deterministic work cost. As
such, when performing transformations using Crude Op-
erations, we will only use LTs that do not cost work to

0 Z'' Z' Z
0

1

 (ρ,H)
 (ρ,H')
 (ρ,H'')

FIG. 4. Action of Level Transformations. Here we illustrate
the action of LTs applied to a system with a thermodynami-
cal configuration (⇢, H). Note that LTs leave the occupation
probabilities of ⇢ unchanged but may alter the � ordering as
discussed in the Appendix.

implement i.e. hi  0 or hi ⇡ 0, for all i. This will be
done by combining them with Partial Level Thermaliza-
tions to form a protocol akin to an isothermal process.
We will discuss this further in Section IVC1.

C. Subspace Rotation

Finally, we will sometimes need to implement an en-
ergy conserving unitary that acts upon system only (this
is in contrast to the unitaries in Eq. (1) which act on both
system and heat bath). We call this operation a Subspace
Rotation (SR) and allowing such unitaries is desirable for
two reasons.

Firstly, applying such a unitary at random will cause
a system to decohere into the energy eigenbasis. This
may be desirable if we begin with a state which contains
coherence. As decoherene is a mechanism that occurs
naturally, allowing for it does not require an unreasonable
amount of control.

Secondly, in the special case where the system has de-
generate energy levels, one may need to implement an
energy conserving unitary acting within the degenerate
subspace to rotate the state to be diagonal in a specific
basis.

As we will be predominantly interested in target states
that are decoherent in energy, we can therefore take the
initial and final states of any protocol to be diagonal in
the energy eigenbasis. If necessary, we can always begin
any protocol by decohering in the energy eigenbasis and
then rotating the resulting state to be diagonal using an
SR. At the end of the protocol we can apply a final SR to
rotate within a degenerate energy subspace as required.
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D. Comparison with other sets of operations

These operations are detailed with greater specificity
in Section B of the Appendix, where it is also shown
that they are a subset of Thermal Operations. Having
introduced them, here we shall contrast them with op-
erations that have appeared in other resource theoretic
approaches to thermodynamics.

In [35] it was shown that full thermalizations and
Level Transformations su�ce for extracting the optimal
amount of deterministic work from a given state under
thermal operations as evaluated in [7]. Our crude oper-
ations are a larger set of operations and (as we will see
in the next section) enable any allowed transformation
between block-diagonal states at the optimal work cost
rather than just transformations to the thermal state.

In [35] it was shown that full thermalizations and
Level Transformations su�ce for extracting the optimal
amount of deterministic work from a given state under
thermal operations as evaluated in [7]. Our crude oper-
ations are a larger set of operations and (as we will see
in the next section) enable any allowed transformation
between block-diagonal states at the optimal work cost
rather than just transformations to the thermal state. A
protocol is also given in [35] that uses full thermalizations
and LTs to perform the conversion between two block-
diagonal states at the optimal average work cost/gain.
However, for most transformation at least one of the LTs
performed will have a work cost (as defined after Defini-
tion 3). As such, this protocol is not suitable for imple-
menting the transformations we are interested in where
we demand that no work be expended.

A set of operations consisting of discrete unitary trans-
formations (which allow for arbitrary unitaries to be
applied to the system and arbitrary changes of Hamil-
tonian and hence contain Level Transformations as a
special case) and discrete thermalizing transformations
(which fully thermalize the system) was considered in
[38]. These operations characterize processes that in-
volve work and those that transfer heat respectively. Us-
ing these primitives, isothermal transformations between
states in thermal equilibrium can be performed at op-
timal heat exchange. However, they do not enable all
transformations that are possible under thermal opera-
tions with zero deterministic work cost.

In [15] it was shown, that for transitions between two
block-diagonal states, perhaps with the expenditure or
gain of deterministic work, it is enough to apply ther-
mal operations on the bath and the system, and instead
of the work system used in [7] just use Level Transfor-
mations. Still however, the system-bath coupling term
used in [15] requires being able to implement an arbitrary
Thermal Operations (see [39] and [40], where it is shown
that the operations used in [15] are a subset of Thermal
Operations) and thus in principle require a high degree
of control.

A subset of thermal operations were considered in [36]
which involved interacting with a designer heat bath

which contained an arbitrarily large number of systems
in a series of states that interpolated between the in-
put state and the target state. Such a model allowed
for achieving state transformations at the optimal aver-
age work cost. Again, this would require an unfeasible
amount of control in preparing the states of the heat
bath. Note however, that it was shown in [41] that the
interactions themselves could be taken to be thermaliza-
tions and that these are robust to experimental imper-
fections.
In [11], corrections to the average amount of work that

can be extracted were considered under various control
restrictions. In particular, bounds on the accessible set of
system Hamiltonians and restrictions on the allowed in-
teractions with the heat bath were considered. Our crude
operations also consider a restricted set of heat bath in-
teractions but we place no restriction on the allowed sys-
tem Hamiltonians and consider single-shot transforma-
tions rather than the case of average work extraction.
A subclass of thermal operations were considered in

[42] in which each operation could only act on two en-
ergy levels of the system at a time. While it was shown
that such operations could be closely approximated in
certain temperature regimes using a Jaynes-Cummings
model, it was also shown that such a restricted set could
not implement all of the transformations that are possi-
ble under thermal operations (a similar implication was
also found in [43]). In contrast, we show that by applying
PLTs that act on two energy levels (a subset of the afore-
mentioned operations) and allowing in addition for level
transformations and the use of a single thermal qubit, it
is possible to reproduce the full set of transformations.
One can also consider simple operations for manipulat-

ing states that contain coherence. For example, in [44] a
simple protocol for extracting the optimal amount of av-
erage work from a state with coherence that made use of
non-energy preserving unitary rotations, Level Transfor-
mations and isothermal reversible processes was investi-
gated. However, such unitary rotations are not contained
within thermal operations and so we do not consider such
protocols here. Furthermore, deterministic work extrac-
tion is not understood for this class of operations (see also
[33] for a discussion on single-shot work extraction from
coherent states using thermal operations in the presence
of a reusable ancilla).
As we shall see in the next Section, crude operations

allow all transformations between block-diagonal states
that are possible under Thermal Operations to be im-
plemented without the need for unreasonable levels of
control and at zero deterministic work cost.

IV. TRANSFORMATIONS USING CRUDE
OPERATIONS

In this section, our goal is to show that any transforma-
tion to a block-diagonal state that is possible under ther-
mal operations can also be achieved by applying crude



7

operations to the system and a single thermal qubit. As

Theorem 1 indicates that for such states ⇢
TO�! � if and

only if ⇢ thermo-majorizes �, we hence want to show that
if ⇢ thermo-majorizes �, then ⇢ can be converted into �
using crude operations without expending any work. If

this is possible we will denote it by ⇢
CO�! �. The converse

direction (that ⇢
CO�! � implies that ⇢ thermo-majorizes

�) also holds and this follows from the fact that such
crude operations are a subset of thermal operations.

A. Trivial Hamiltonian

When the Hamiltonian of the system is trivial, HS = 0
and the energy spectrum is completely degenerate, the
thermo-majorization criteria collapses to a criteria known
as majorization. If ⇢ has eigenvalues {pi}ni=1 and � has
eigenvalues {qi}ni=1, where each set is written in non-
increasing order, we say ⇢ majorizes � if:

k
X

i=1

pi �
k
X

i=1

qi, 8k 2 {1, . . . , n} . (8)

If the system Hamiltonian is trivial, then ⇢ majorizes �

if and only if ⇢
TO�! � [45].

It is well known for two probability distributions of n
elements, that if p majorizes q, then p can be converted
into q using at most n � 1 T-transforms [46, 47]. A
T-transform T is parametrized by r, s 2 {1, . . . , d} and
� 2 [0, 1] and acts on the probability distribution p via

p
Tr,s(�)�! p0. Here

p0i =

⇢

(1� �) pi +
�
2 (pr + ps) for i 2 {r, s}

pi for i /2 {r, s} . (9)

This action of T-transforms is illustrated in Figure 5.
Eq. (9) is highly reminiscent of the action of PLTs

defined in Eq. (6). Indeed, for trivial Hamiltonians the
thermal state is just the maximally mixed one and all
unitaries are energy conserving so we can assume that
our states are diagonal. Hence, the action of a PLT on
two energy levels is to perform a T-transform on the cor-
responding eigenvalues. Combining this with the afore-
mentioned result of [46, 47] gives:

Theorem 4. Let ⇢ and � be two states of an n-level sys-

tem with with trivial Hamiltonian HS = 0. Then ⇢
TO�! �

implies that ⇢
CO�! �. Furthermore, this transformation

can be done by applying a sequence of n � 1 PLTs that
each act on only 2 energy levels.

In Section F of the Appendix, we give an example of
this protocol using a physical set up involving a molecule
in a box (a so called Szilard engine). Furthermore, we
show how to distill the optimal amount of work from a
given state in this setup and also the reverse process of
forming a state. These examples provide some physical
insight into the crude operations we allow and the form
protocols built from them take.

a) b) 

c) d) 

FIG. 5. The heights of each column above are given by the
probability of being in a particular eigenstate. The action of
T-transforms transforms an initial state represented by red
columns into the state represented by blue columns. The
probabilities (column heights) of the red state majorizes those
of the blue state. We work our way from left to right, mov-
ing probability mass from the red histogram to the right until
it matches the blue histogram. In each step we move some
probability mass from a column of the histogram of the initial
state and move it to the right until it either matches the prob-
ability required of the target state, or until the left column of
the initial state matches the right column of the final state.
Red dashed rectangles represent the part of the column that
is added to the next one due to the action of the T-transform.

B. General Hamiltonian: States with the same
�-order

Transformations involving trivial Hamiltonian are
straightforward because in this situation there is only one
�-order. In terms of thermo-majorization curves, this
means that the ‘elbows’ of all states (see Figure 2 for
a definition) are vertically aligned. For general Hamil-
tonians, the same form of alignment arises if the states
that we are attempting to convert between have the same
�-order. As PLTs are intuitively the generalization of T-
transforms to general Hamiltonians, the result of [46] and
[47] can be generalized as follows:

Theorem 5. Let ⇢ and � be two states of an n-level
system with Hamiltonian HS such that ⇢ and � have the
same �-order and � is block-diagonal in the energy eigen-

basis. Then ⇢
TO�! � implies that ⇢

CO�! �. Furthermore,
this transformation can be done by applying a sequence
of n� 1 PLTs.

Proof. The full proof is given in Theorem 17 in Appendix
C but we sketch the idea here. Firstly, by making use
of appropriate Subspace Rotations we can assume that
⇢ and � are in fact diagonal in the energy eigenbasis. As

⇢
TO�! � is equivalent to ⇢ thermo-majorizing �, our task

is to show that PLTs su�ce for converting the thermo-
majorization curve of ⇢ into that of �. The protocol
for achieving this is illustrated in Figure 6 which also
serves as a simple, non-trivial example of how such a state
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0 ZZ
0

1

 ρ
 σ

a)

(a) First PLT
0 ZZ

0

1
b)

 ρ'
 σ

(b) Second PLT

0 ZZ
0

1
c)

 ρ''
 σ

(c) Final PLT
0 ZZ

0

1
d)

 σ

(d) Final state, �

FIG. 6. Crude Operations protocol for transforming between
states with the same �-order. If two states, ⇢ and �, have the
same �-order and are such that ⇢ thermo-majorizes �, then ⇢
can be converted into � using Partial Level Thermalizations.
First a PLT is applied to ⇢ across the complete set of energy
levels, Figure (a), lowering the thermo-majorization curve of
⇢ until it meets that of �, Figure (b). Next, a second PLT is
applied to those energy levels to the left of this meeting point,
again lowering the curve until it meets that of � at a second
point, Figure (c). By iterating this process, ⇢ is transformed
into �, Figure (d).

transformation can be achieved. Roughly speaking, the
aim is to use PLTs to lower the elbows on the thermo-
majorization curve of ⇢ until one of these elbows meets
an elbow of � This process is then repeated on subsets of
energy levels that are adjacent in �-order until the curves
perfectly coincide. The level of thermalization required
in each PLT is detailed in the full proof in the Appendix.
As the PLTs only act on adjacent energy levels, the �-
order never changes during the protocol.

Note that T-transforms only act on two elements of a
probability distribution while in the above theorem we
have used PLTs that act on an arbitrary number of en-
ergy levels. It is thus natural to ask whether this result
can be proved using only PLTs that act on two energy
levels. In Appendix C Theorem 18, we show that the
answer is yes but present only the previous statement
here as the associated protocol is easier to visualize on
thermo-majorization diagrams.

C. General Hamiltonian: States with di↵erent
�-order

For general ⇢ and � with � block diagonal such that

⇢
TO�! �, the protocol described in the previous section

0 e-βE0 e-βE1 Z
0

1

 ρ
 σ
 σ for wrong β-order
 τ

FIG. 7. Partial Level Thermalizations are not enough. Note
that PLTs alone cannot implement all transitions possible un-
der thermal operations. More specifically, they cannot imple-
ment changes of �-order on qubits. In the above example,
we see that a PLT cannot take the initial state ⇢ depicted in
green to � depicted in red, because it first passes through the
thermal state before it reaches � (which we have depicted in
both its �-ordered, and non-�-ordered from). Because of this,
work is required to go from ⇢ to � even though the optimal
process does not require work.

will not work because for states with di↵erent �-orders,
the associated elbows may not be perfectly aligned. The
essence of why this causes a problem can be seen in Fig-
ure 7 where we consider a transformation on a 2-level
system where the initial and final state have di↵erent �-
orders. As we cannot write � = p⇢+ (1� p)⌧S , a Partial
Level Thermalization cannot convert ⇢ into �. Further-
more, we do not believe that a combination of PLTs and
LTs acting on system alone can achieve this without in-
curring a work cost.

However, if we are allowed to perform Crude Opera-
tions not just on the system, but on the system and a
single qubit ⌧A from the thermal bath, then we will show
that one can transform ⇢ into � even if the �-ordering
is di↵erent. The e↵ect of appending a thermal qubit on
the thermo-majorization curve of ⇢ is to introduce n ad-
ditional ‘non-elbow’ points (again, see Figure 2 for an
intuitive definition). The basic idea is to use a sequence
of PLTs interlaced with LTs to convert this scenario into
one where the states under consideration have the same
�-order. This is done by moving these new non-elbow
points so that they are vertically aligned with the elbows
of �. If the sequence is performed su�ciently slowly, this
can be done without expending any work.

In the next section we describe this process before giv-
ing the full description of the protocol for dealing with
states with di↵erent �-orders.
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1. Partial Isothermal Reversible Processes and Points Flow

We will now explain how to move non-elbow points
without expending work or changing the shape of the
thermo-majorization curve. First we will show how to
move a non-elbow point within a line-segment of the
thermo-majorization curve. Then, we will explain how
to transfer a non-elbow point that is close to the end
of a segment to an adjacent segment. Combining these
two processes we can freely move non-elbow points along
the curve. A more detailed description can be found in
Section B3 of the Appendix.

PITRs: Moving non-elbows within a segment. To gain
intuition for how to move a non-elbow point within a seg-
ment, let us first consider the simpler case of converting a
2-level system with HamiltonianHS =

P2
i=1 Ei|iihi| that

is initially in the Gibbs state ⌧S = e��HS

ZS
into a 2-level

system with Hamiltonian H 0
S =

P2
i=1 E

0
i|iihi| in state

⌧ 0S = e��H0
S

Z0
S

. When ZS = Z 0
S , the thermo-majorization

curves of both of these states are given by a straight
line connecting (0, 0) to (ZS , 1) and both curves contain
a non-elbow point which w.l.o.g. we can take to be at
�

e��E1 , e��E1/ZS

�

and
⇣

e��E0
1 , e��E0

1/ZS

⌘

respectively.

Thus, if we can perform (⌧S , HS) ! (⌧ 0S , H
0
S) for any H 0

S
such that Z 0

S = ZS , we can e↵ectively move the non-
elbow point of ⌧S to any position within the the line-
segment.

It was shown in [35] that performing the transfor-
mation (⌧S , HS) ! (⌧ 0S , H

0
S) can be done at a deter-

ministic work cost (i.e. without work fluctuations) of
W = � 1

� log (ZS/Z
0
S) by alternating Level Transforma-

tions with full thermalizations of the system. The macro-
scopic equivalent of this process is the isothermal expan-
sion of gas in a container and hence this process is called
an Isothermal Reversible Process.

Note that if ZS = Z 0
S , then no work is required to

perform the above transformation. Thus in this case, by
keeping ZS constant along the course of the protocol we
can convert ⌧S into ⌧ 0S for free. To do this in t steps,
we need to change the two energy levels in a special way.
Namely, if we change the energy level labeled by 1 by

�1 = E0
1�E1

t , we need to alter the energy level labeled
by 2 by �2 such that:

e��(Er
1+�1) + e��(Er

2+�2) = Z, (10)

where here Er
1 and Er

2 denote the energy levels of the
system after the rth step of the protocol. This LT is then
followed by a full thermalization and this sequence of LT
followed by thermalization is repeated t times, resulting
in (⌧ 0S , H

0
S). In the limit that t tends to infinity, it can be

shown that the work cost of the transformation becomes
deterministic and tends to zero [35].

A similar idea can be applied when (⇢, HS) is such that
⇢ is not thermal but still contains a non-elbow. Note that
a non-elbow implies that there are two energy levels Ei

0 Z
0

1
B

C

A  ρ

FIG. 8. Action of Partial Isothermal Reversible Processes.
Here we illustrate the action of alternating Level Transforma-
tions and Partial Level Thermalizations (so-called, PITRs)
applied to a system with state-Hamiltonian pair (⇢, H). Us-
ing PITRs, the point at C can be moved such that it lies
anywhere on the line-segment between A and B and with-
out changing the shape of the overall thermo-majorization
curve. By performing this process su�ciently slowly, this can
be done with no deterministic work cost. If one moves the
point C to coincide with point A (respectively B), one can
then use a second PITR to move point A (B) as illustrated
by the dashed arrows. Again, this does not alter the shape of
the thermo-majorization curve.

and Ej that are thermal with respect to one another, i.e.:

⌘i = ↵
e��Ei

e��Ei + e��Ej
, ⌘j = ↵

e��Ej

e��Ei + e��Ej
(11)

where ↵ = ⌘i + ⌘j . Moving this non-elbow along its
associated line-segment can then be achieved by applying
LTs to Ei and Ej in such a way that:

e��(Er
i +�i) + e��(Er

j+�j) = e��Ei + e��Ej (12)

and then applying the Partial Level Thermalization
PLT{i,j} (� = 1) before repeating this sequence as nec-
essary. In the limit that �i ! 0 this protocol again
costs no work. We define the sequence of operations re-
quired to move a non-elbow along a line-segment (which
we call a Partial Isothermal Reversible Process in analogy
to the above) more fully in Definition 13 in the Appendix
and prove that it costs no work thereafter in Lemma 14.
A description of a PITR is given in terms of thermo-
majorization diagrams in Figure 8.
We note here, that to the best of our knowledge, such

a thermodynamical state transformation has never been
performed in the lab, and we hope that our work will
stimulate experimentalists to implement it.
Points flow: Transferring non-elbows between seg-

ments. Suppose that by using a PITR we have moved
a non-elbow very close to the elbow defining the end of
the line-segment. We shall now explain how to move it
to neighboring segment.
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0 Z
0

1
a)

B

A

(a) Initial State
0 Z

0

1
b) B C

A

(b) After first PITR.

0 Z
0

1
c)

BA

(c) After PLT.
0 Z

0

1

B
A

d)

(d) After second PITR.

FIG. 9. Approximate Points Flow. Here we illustrate the pro-
tocol of Approximate Points Flow using thermo-majorization
diagrams. Initially the system is as per Figure (a). Using a
PITR, the non-elbow point, A, is moved towards the elbow
at point B. This results in Figure (b). Next, a PLT is ap-
plied between points A and C, leading to Figure (c). Point B
is now a non-elbow and can be moved using a PITR, giving
Figure (d).

Let the non-elbow be associated with energy levels Ei

and Ej . As it is close to the end of the line-segment,
one of these energy levels (w.l.o.g., let it be Ei) must be
much larger than all other energy levels of the system.
Indeed, as Ei ! 1 the non-elbow becomes arbitrarily
close to the end of the line-segment. Let Ek denote the
energy level associated with the line-segment we wish to
move our non-elbow to. To do this, we apply the Partial
Level Thermalization PLT{i,k} (� = 1). This turns the
non-elbow into an elbow and the elbow at the end of the
line-segment into a non-elbow that we can continue to
move. The whole process is depicted in Figure 9 and
described more carefully in Definition 16 in Appendix
B3.

Note that the process described does not leave the
thermo-majorization curve completely unchanged. How-
ever, the closer the non-elbow initially was to the end
of the line-segment, the lesser the change. If we wish
to transfer a non-elbow without altering the thermo-
majorization curve at all, we can do so if we are able to
raise an energy level to infinity. This results in a simpler
protocol which we describe in Appendix B3 in Definition
15 and Fig. 15.

2. The full protocol

With these concepts in place, we are now in a position
to prove our main result:

Theorem 6. Let ⇢ and � be two states of an n-level sys-
tem with Hamiltonian HS such that � is block-diagonal in

the energy eigenbasis. Then ⇢
TO�! � implies that ⇢

CO�! �
without expending any work.

Proof. The full proof can be found in the proof of The-
orem 19 of Appendix D and we sketch it here. We

again note that for � block-diagonal, ⇢
TO�! � implies

that ⇢ thermo-majorizes �. Our aim is therefore to con-
struct a sequence of Crude Operations that transform
the thermo-majorization curve of ⇢ into that of �. The
protocol for doing this is shown in Figure 10. First a
thermal qubit ⌧A is appended. The thermo-majorization
curve of ⇢ ⌦ ⌧A has the same shape as ⇢ but contains n
additional non-elbows. Using the PITR and Point Flow
protocols introduced in the previous section, these non-
elbows can be moved so that they are vertically aligned
with the elbows of �⌦ ⌧A. Using the PLT protocol intro-
duced in Theorem 5, this can be converted into a state
which has the same thermo-majorization curve as �⌦ ⌧A
but potentially with non-elbows in the wrong position.
A final round of PITR and Point Flow protocols corrects
this, leading to �⌦ ⌧A and upon discarding ⌧A we obtain
�.

The protocol described above assumes that we can im-
plement points flow exactly i.e. it is possible to raise
energy levels to infinity. If this is not possible and we in-
stead must perform them approximately, the above trans-
formation is still possible but with a small caveat. The
statement and proof of this is given in Theorem 20 in
Appendix D.

D. Deterministic Work Values with Crude
Operations

Crude Operations can also be used to construct pro-
tocols that achieve the optimal deterministic work val-
ues under Thermal Operations as determined through
Eq. (4). Rather than using a wit to measure such a
quantity, one can instead consider the work value of the
Level Transformations used during the protocol. This
is explored in more detail (including the ✏-error case) in
Section E of the Appendix but here we describe the op-
timal, zero-error protocols for both extracting work from
a state and forming an incoherent state from a thermal
state.
The maximum amount of work that can be determin-

istically extracted from a state ⇢ under Thermal Opera-
tions is given by [7, 35]:

Wdistil (⇢) = W⇢!⌧S =
1

�
ln

 

ZS
P

i:⌘i>0 e
��Ei

!

. (13)
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1
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0 ZSZA
0

1
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(d) � ⌦ ⌧A

FIG. 10. Crude Operations protocol for transforming between
states with di↵erent �-orders. If ⇢ thermo-majorizes �, then
it is possible to transform ⇢ into � using Crude Operations.
First, a thermal qubit, ⌧A, with known Hamiltonian is ap-
pended, Figure (a). Using Partial Isothermal Reversible Pro-
cesses the blue circles on the thermo-majorization curve of
⇢ ⌦ ⌧A can be moved to be vertically aligned with the ‘el-
bows’ on the curve for �⌦ ⌧A. This forms the state ⇢0, Figure
(b), that has a thermo-majorization curve overlapping that of
⇢⌦ ⌧A. Using the previously defined protocol for states with
the same �-order, ⇢0 can be converted into �0, Figure (c), that
has a thermo-majorization curve overlapping that of � ⌦ ⌧A.
A final round of PITRs converts �0 into � ⌦ ⌧A, Figure (d),
and upon discarding ⌧A we obtain �.

The protocol for achieving this under Crude Operations
is identical to that given in [35]. First a Level Trans-
formation is used to raise the unoccupied energy levels
(those such that ⌘i = 0) to infinity. As the energy lev-
els are unoccupied, this does not cost any work. Next
the state is completely thermalized. These two steps
result in a thermal state ⌧ 0S of Hamiltonian H 0

S such
that Z 0

S =
P

i:⌘i>0 e
��Ei . A round of Partial Isother-

mal Reversible Processes can now be applied (at no
work cost) to convert this to a state-Hamiltonian pair
(⌧S , H 00

S) where ⌧S is the thermal state of both H 00
S and

HS and Z 00
S = Z 0

S . Finally, the Level Transformation

LTE where E =

⇢

hi = � 1
� ln

✓

ZSP
i:⌘i>0 e��Ei

◆�n

i=1

is per-

formed to convert (⌧S , H 00
S) into (⌧S , HS) while extracting

the amount of deterministic work given in Eq. (13).

The reverse process to work distillation is that of for-
mation. There one starts with the thermal state ⌧S and
uses work to form the state ⇢. For the case where ⇢ does
not contain coherences, we can construct a process to do

this using Crude Operations achieving:

Wform (⇢) = W⌧S!⇢ = � 1

�

⇥

ln
�

⌘1e
�E1
�

+ lnZS

⇤

(14)

where we emphasize that the occupation probabilities
and energy levels of ⇢ have been �-ordered. This is the
optimal value achievable under Thermal Operations [7].
The protocol for achieving this runs as follows. First a
round of Partial Isothermal Reversible Processes is ap-

plied to convert (⌧S , HS) into
⇣

⇢, H̃S

⌘

where ⇢ is the

thermal state of H̃S and ZS = Z̃S . As the partition func-
tion does not change, this does not cost work. Next, the

Level Transformation LTE where E =
n

hi = Ei � Ẽi

on

i=1

is performed to convert
⇣

⇢, H̃S

⌘

into (⇢, HS). It can

be shown that the deterministic work cost of this LT
�maxi hi, matches the expression given in Eq. (14) (see
the Appendix).

V. CONCLUSION

We have shown that Thermal Operations can be simu-
lated by Crude Operations, a class of physical operations
closer to that which can be implemented in the laboratory
using current technology. This ought to bring thermody-
namics of microscopic systems further into the experi-
mental domain, and make the exploration of some of the
results in the field [7, 8, 11, 23, 25, 34–36, 38, 45, 48–62]
more feasible.
From a conceptual point of view, our results show that

the paradigm of thermodynamics which allows for the
maximum amount of control of the system and bath, is
in some sense equivalent to one which allows only very
crude control of the system and bath. The second laws
of thermodynamics, since they are fundamental limita-
tions on state transitions, need to be derived assuming
the experimenter has as much control and technology as
would be allowed by nature (i.e. Thermal Operations).
Yet remarkably, the fundamental limitations captured by
thermo-majorization and the generalized free energies,
which are derived assuming such control, can be achieved
with very little control, namely by Crude Operations.
Control over bath degrees of freedom, with the exception
of one qubit, is not needed.
There are additional second laws, which place con-

straints not only on the occupation probabilities of a
state, but also place restrictions on the coherences over
energy levels [8, 16, 17, 33]. While we conjecture that
Crude Operations are also su�cient for the control of
quantum coherences, as we do not yet know what the nec-
essary conditions are for coherence manipulation under
thermal operations, this cannot yet be verified. Deter-
mining the allowed transformations between states that
contain coherence remains an important open question in
the resource theoretic approach to quantum thermody-
namics. The progress that has been made on this ques-
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tion has considered thermal operations in the presence of
a reusable source of coherence that typically takes the
form of a high dimensional quantum system [32, 33].
However, even in these papers the extraction of deter-
ministic work is not fully understood.

To achieve the state transformations that are possible
under Thermal Operations using Crude Operations, we
required the use of a single thermal qubit as an ancilla.
It would be interesting to investigate the extent to which
this is required. In other words, what state transforma-
tions can be performed using Crude Operations applied
to the system alone?

Finally, with regards to the experimental applicabil-
ity of our Crude Operations, we note that our operation
of Partial Level Thermalization has been proposed to
be used in protocols for Heat Bath Algorithmic Cooling
[37]. There they have been used to break previous cool-
ing bounds which are important for quantum information
processing on NMR systems. Hence, it would be inter-
esting to investigate whether allowing for the full power

of Crude Operations can be used to enhance these pro-
tocols still further. In another direction, perhaps NMR
systems can provide a useful testbed for the experimental
study of Crude Operations and quantum and nano-scale
thermodynamics in general?
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thank EU grant RAQUEL. M.H. is also supported
by Foundation for Polish Science TEAM project co-
financed by the EU European Regional Development
Fund, and later by National Science Centre, Poland,
grant OPUS 9. 2015/17/B/ST2/01945. P.Ć. also ac-
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[35] Johan Åberg, “Truly work-like work extraction via a single-shot analysis,” Nature communications 4 (2013).
[36] Paul Skrzypczyk, Anthony J. Short, and Sandu Popescu, Nat. Commun. 5, 4185 (2014).
[37] N. A. Rodriguez-Briones, J. Li, X. Peng, T. Mor, Y. Weinstein, and R. Laflamme, “Heat-Bath Algorithmic Cooling with

correlated qubit-environment interactions,” ArXiv e-prints (2017), arXiv:1703.02999 [quant-ph].
[38] Janet Anders and Vittorio Giovannetti, “Thermodynamics of discrete quantum processes,” New Journal of Physics 15,

033022 (2013).
[39] Joseph M Renes, “Work cost of thermal operations in quantum thermodynamics,” The European Physical Journal Plus

129, 1–7 (2014).
[40] J. M. Renes, “Relative submajorization and its use in quantum resource theories,” ArXiv e-prints (2015), arXiv:1510.03695.
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