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Simplifying and generalising Murphy’s Brier score decomposition

Stefan Siegert
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The decomposition of the Brier score into Reliability, Resolution and Uncertainty has

become a standard method in forecast verification. In this note a very simple derivation

of the familiar Brier score decomposition is presented. The Reliability and Resolution

terms can be calculated as average Brier score differences between the issued forecast,

the recalibrated forecast and the climatological reference forecast. The result suggests

a simple way to calculate similar decompositions for arbitrary verification scores, and

that recalibration methods and reference forecasts can be chosen more flexibly than is

generally appreciated. A new decomposition of the continuous ranked probability score

(CRPS) is proposed.
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1. Introduction

Brier (1950) proposed a metric to evaluate a forecaster by

comparing a number of N past forecast probabilities p1, . . . , pN

to their verifying observations y1, . . . , yN . The binary observation

is yt = 1 if an event occured at time t, and yt = 0 otherwise. The

empirical average Brier score (also simply referred to as the “Brier

score”) is given by the squared difference between forecasts and

observations averaged over time:

B(p) =
1

N

N∑
t=1

(yt − pt)2. (1)

The perfect Brier score of zero is obtained by a forecaster who

always issues pt = 1 when yt = 1 and pt = 0 whenever yt = 0.

The higher the Brier score, the worse the forecast.

Murphy (1973) proposed a decomposition of the empirical

Brier score into the sum of three terms. The issued forecasts pt are

assumed to have onlyK distinct values, that is pt ∈ {P1, . . . , PK}

for all t. Denote by nk the number of times the kth forecast

value was issued, and by ok the total number of events that have

occurred when the kth forecast value was issued. The average

event frequency for the kth forecast value is given by ok/nk.

Denote by ō = 1/N
∑N
t=1 yt the climatological event frequency.

It will be useful to denote by k(t) the index of the forecast

value that was issued at time t, that is pt = Pk(t). The empirical

Brier score of the forecasts p1, . . . , pN can be decomposed into

three components called Reliability (REL), Resolution (RES), and

Uncertainty (UNC), that characterise different attributes of the

forecast. In particular

B(p) = REL−RES + UNC (2)

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls [Version: 2013/10/14 v1.1]



2 S.Siegert

where

REL =

K∑
k=1

nk
N

(
ok
nk
− Pk

)2

, (3)

RES =

K∑
k=1

nk
N

(
ok
nk
− ō
)2

, and (4)

UNC = ō(1− ō). (5)

A reliable forecaster or forecasting system should issue

probabilities that are equal to average event frequencies, that is

Pk = ok/nk for all k. A reliable forecaster thus has REL = 0,

and any violations of reliability lead to REL > 0, thus increasing

the Brier score. If the conditional event frequencies ok/nk were

the same for all categories, the different forecast values cannot

distinguish events that are more or less likely than average;

such an “uninformed” forecaster has RES = 0. If conditional

event frequencies are different for different forecast values,

the forecaster has RES > 0 which decreases the Brier score.

Reliability and Resolution thus have intuitive interpretations as

weighted squared distances in the reliability diagram (Toth et al.

2003).

Similar decompositions have been derived for different

verification scores, e.g. the continuous ranked probability score

(CRPS, Hersbach 2000), the discrete ranked probability score

(Candille and Talagrand 2005), the logarithmic score (Weijs et al.

2010), the quantile score (Bentzien and Friederichs 2014), and the

error-spread score (Christensen 2015). Bröcker (2009) has shown

that every proper verification score can be decomposed into non-

negative components that characterise uncertainty, reliability and

resolution.

Murphy (1973) presented a lengthy derivation of the original

decomposition, repeatedly solving quadratic equations, and using

geometrical arguments. Bröcker (2009) derived the general result

using advanced probability calculus. For some practitioners and

forecast users these derivations might be difficult to follow.

In this note a much simpler derivation of Murphy’s original

result is presented. The derivation suggests that decomposing

arbitrary verification scores similar to the Brier score poses no

mathematical difficulties. A number of previous results about

score decompositions are discussed. Decomposing the Brier

Score and CRPS of seasonal temperature forecasts serves as an

illustration.

2. Key result

Suppose the issued forecasts pt are uncalibrated, that is the

forecast values Pk are not equal to average event frequencies

ok/nk. A simple and straightforward recalibration method

would be to replace the forecast pt by the conditional event

frequency for that forecast value. The recalibrated forecasts form

a new set of forecasts, denoted q1, . . . , qN , with values qt =

ok(t)/nk(t). Furthermore, it is common practice to benchmark

the issued forecasts pt against easily available reference forecasts

r1, . . . , rN . The most commonly used benchmark forecast is the

constant climatological event frequency, that is rt = ō for all

t. The issued forecasts pt, as well as the newly constructed

forecasts qt and rt have average Brier scores B(p), B(q), and

B(r) when compared to the observations y1, . . . , yN . By adding

and subtracting identical terms, the Brier Score B(p) can trivially

be written as

B(p) = [B(p)−B(q)]− [B(r)−B(q)] + [B(r)]. (6)

The key result of this note is that the three terms in squared

brackets are identical to the components of the original Murphy

(1973) Brier score decomposition, that is

REL = B(p)−B(q), (7)

RES = B(r)−B(q), and (8)

UNC = B(r). (9)

Proofs are in the appendix.

3. Discussion

Equation 6 is true for arbitrary choices of the function B, not

just the Brier score. The decomposition therefore extends to

arbitrary verification scores. The decomposition only requires

the calculation of the recalibrated forecasts q1, . . . , qN and the

reference forecasts r1, . . . , rN . After calculating average scores of
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Simplification of Brier score decomposition 3

qt and rt over the observations y1, . . . , yN , the decomposition into

Uncertainty, Reliability, and Resolution can be calculated using

equations 7–9. The decomposition into Reliability, Resolution and

Uncertainty is thus not a special feature of the Brier score (which

has long been known). The remarkable fact about the Brier score

is, however, that average score differences can be rewritten in

the forms of equations 3 and 4, such that these terms become

interpretable as distances in the reliability diagram, between the

calibration curve of the forecast, the diagonal, and the horizontal

no-skill line (Toth et al. 2003).

The decomposition written as in eq. 6 is implied in the results of

Bröcker (2009), who showed that every proper verification score

gives rise to a non-negative divergence function to measure the

distance between probability forecasts. The divergence function

d(p, q) defined by the verification score S(p, y) is the expected

score difference Ey[S(p, y)− S(q, y)], where q is assumed to be

the true distribution of y, and Ey denotes expectation over the

random variable y (Gneiting and Raftery 2007). If S is a proper

score, d is non-negative because the best (lowest) expected score

is achieved by forecasting the true distribution of y. The expected

score of the climatology EyS(ō, y) is called the entropy, and is

used as a measure of lack of information. Bröcker (2009) showed

that a verification score can be decomposed into Reliability,

Resolution, and Uncertainty using its corresponding entropy and

divergence function. By expanding the expected score of p as in

equation 6, and defining q to be the conditional distribution of y

given p, we get

Ep,y[S(p, y)] =Ep,y{[S(p, y)− S(q, y)]

− [S(ō, y)− S(q, y)] + S(ō, y)}

= Epd(p, q)− Epd(ō, q) + EyS(ō, y) (10)

which is one of the key results of Bröcker (2009). The divergence

Ey[S(p, y)− S(q, y)] can be calculated analytically for some

verification scores (Bröcker 2008); for example, d(p, q) = (p−

q)2 for the Brier score. If the divergence function is not available

in closed form, it can be estimated by the average score difference,

using a suitable recalibration method to estimate q, the true

distribution of the observation. Bentzien and Friederichs (2014),

for example, used average score differences to calculate the

divergence function of the quantile score.

Equation 6 holds true for arbitrary choices of the forecasts

qt and rt. However, in order to interpret score differences as

measures of reliability and resolution, the choice of qt and rt

must be justified. The forecast qt should be a recalibration of

pt, that is, a function of pt chosen in such a way to remove its

systematic violations of reliability. The within-category frequency

ok(t)/nk(t) used for the original decomposition is but one

possible method. In Bröcker (2012) it is shown that estimating

the calibration using the within-category frequency can lead to

problems if the number of forecast categories is large, such

that K ≈ N . Alternative methods exist to recalibrate probability

forecasts for binary events, e.g. kernel density estimation (Bröcker

2008) or logistic regression (Wilks 2011, ch. 7), which avoid

problems due to over-fitting.

The reference forecast rt should be an easily available

“fallback” forecast that would be issued if the forecasts pt

were unavailable. Comparing the quality of pt and rt quantifies

the additional value of pt, as is often done by calculating

skill scores (Wilks 2011, ch. 8). The average climatological

frequency ō is often a poor choice as a reference forecast. If

the observations exhibit time-series features such as persistence,

trends, or seasonality, these patterns can be (and should be)

exploited to construct the fallback forecast rt. Using a more skilful

reference forecast than the climatology ensures that the added

value of pt is not overestimated.

In Murphy’s original decomposition, Reliability and Resolution

are guaranteed to be non-negative. By writing the components of

the original decomposition as score differences, we have shown

that the average Brier score of the recalibrated forecasts qt =

ok(t)/nk(t) is always at least as good as the average Brier scores

of pt and rt. But if we allow for arbitrary recalibrations and

reference forecasts, and calculate Reliability and Resolution as

score differences, the terms are not a priori guaranteed to be non-

negative. However, a simple argument can be used to ensure non-

negativity nonetheless. Suppose we make a choice for estimating

the recalibrated forecasts qt that has a worse score than the

original forecast pt, that is we getREL < 0 from equation 7. This

means that there is no benefit in recalibrating pt, and we should
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choose qt = pt for all t. Then we get REL = 0, an indication

that recalibration is unnecessary, which implies that the forecast

is already calibrated. Similarly, if we make a choice for rt that

has a better score than our chosen recalibration qt, this means we

can further improve the recalibration by setting qt = rt. Then we

have RES = 0, which is often taken as an indication that after

recalibration the issued forecasts pt offer no improvement over the

reference forecast. In summary, non-negativity of REL and RES

can always be guaranteed by allowing both qt = pt and qt = rt

(for all t) as possible recalibration schemes.

Forecasts pt are often issued as continuous quantities, such

that every value of pt occurs only once. To calculate the Brier

score decomposition it is common practice to bin the forecast

probabilities into a finite number of categories to calculate

the recalibrated forecasts by average event frequencies per bin

(Bröcker 2012). To calculate the Reliability term, the within-bin

averages of the forecast probabilities are substituted for Pk in

equation 3. Stephenson et al. (2008) have pointed out that the

components of Murphy’s original decomposition do not add up

to B(p) if continuous forecasts are binned. The mismatch can

be understood by realising that the within-bin averages define

a new set of forecasts p̄1, . . . , p̄N that obtain an average Brier

score B(p̄) when evaluated against y1, . . . , yN . B(p̄) is generally

different from B(p). By substituting the within-bin averages for

Pk in equation 3, we are effectively calculating the decomposition

of B(p̄) instead of B(p). The Brier score B(p) of the issued

forecasts can be decomposed into score differences by introducing

an additional term as follows:

B(p) = [B(p̄)−B(q)]− [B(r)−B(q)] + [B(r)] + [B(p)−B(p̄)]

(11)

The first three terms in square brackets on the rhs are the Brier

score components of B(p̄). These components add up to B(p)

if the issued forecasts pt are equal to their within-bin averages,

such that B(p) = B(p̄). If there is any within-bin variability of

the forecasts, the residual term B(p)−B(p̄) can be non-zero, and

the components of B(p̄) do not add up to B(p). Stephenson et al.

(2008) showed that the residual can be further decomposed into

two terms that depend on the within-bin variances of pt and the

within-bin covariances between pt and yt. Instead of introducing

extra terms, one can use score differences and equation 6 to

decompose B(p) into components that add up exactly – replacing

the original forecasts by their within-bin averages becomes

unnecessary. Note that, if score differences are used, the residual

term B(p)−B(p̄) is merged into the Reliability component of

the Brier score decomposition of B(p̄): With score differences,

we get REL = B(p)−B(q) = [B(p̄)−B(q)] + [B(p)−B(p̄)],

where the first term B(p̄)−B(q) is the Reliability term of the

decomposition of B(p̄). Stephenson et al. (2008), on the other

hand, suggested to merge the residual into the Resolution term.

The decomposition of the CRPS for ensemble forecasts

proposed by Hersbach (2000) was not derived using average

score differences. The Hersbach (2000) decomposition uses the

CRPS of the climatological distribution to define the Uncertainty

term, and defines the Reliability in terms of deviations from

flatness of the rank histogram. The Resolution term is defined

as the remainder which completes the decomposition. This

decomposition of the CRPS is unsatisfactory for a number of

reasons. Firstly, the Resolution component is defined “somewhat

artificially” (Hersbach 2000), and can even be negative. Secondly,

it is known (Hamill 2001) that unreliable ensembles can produce

flat rank histograms, and thus appear reliable under the Hersbach

(2000) CRPS decomposition. Lastly, the decomposition gives

no guidance how to recalibrate the ensemble in order to

achieve the “potential” CRPS. The general framework for score

decomposition outlined in this note can solve these problems. A

suitable reference forecast for the continuous observation (such

as the climatological distribution) must be chosen. A suitable

recalibration method for the ensemble forecasts (such as non-

homogeneous Gaussian regression (NGR, Gneiting et al. 2005))

is applied, to flatten the rank histogram, and to correct known

conditional biases. Using a parametric recalibration method such

as NGR also avoids the curse of dimensionality encountered

when ensemble forecasts are recalibrated by binning the space

of possible forecasts (Candille and Talagrand 2005). After

defining the reference forecasts and the recalibrated forecasts,

the decomposition follows by taking average CRPS differences.

This would make the recalibration method explicit and produce

a more interpretable Resolution component. On the other hand,

the explicit relationship between the CRPS Reliability and the
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Figure 1. Reanalysis data (black line) and 3-months ahead ensemble forecasts (gray
markers) of average European summer temperatures.

rank histogram would be lost, and the decomposition would be

sensitive to the choice of the recalibration method.

4. Application

To illustrate and explore the ideas developed in the previous

section, we analyse ensemble forecasts of European summer

temperatures produced by the NCEP climate forecast system

version 2 (Saha et al. 2014). Data from the NCEP climate forecast

system reanalysis (Saha et al. 2010) were taken as verifying

observations. Ensemble forecasts of 24 members were issued

each year from 1983–2009 (N = 27), with initialisation dates

between 11 April and 6 May. The forecast target is near-surface air

temperature over Europe, averaged spatially over the rectangular

region 30◦N, 75◦N, 12.5◦W, 42.5◦E, and averaged temporally

over the summer months June, July, August. The forecast lead

time is thus 1–3 months. A warm bias of 0.64K was removed from

all ensemble members. The bias was removed because it is often

considered to be a trivial source of unreliability that can easily

be eliminated. We shall be interested in violations of Reliability

beyond the mean bias, and treat the mean-debiased ensemble

as the “raw ensemble” from now on. Time series of ensemble

members and observations are plotted in Figure 1.

The goal of this section is to illustrate ideas, rather than

a thorough analysis of the forecast skill of this particular

system. To keep things simple, we ignore the important aspects

of out-of-sample evaluation and uncertainty assessment. We

first apply the CRPS decomposition proposed in the previous

section to the ensemble forecasts, and compare the results to

the decomposition by Hersbach (2000). Then we transform the

continuous temperature data into a binary prediction problem by

thresholding, to study different approaches to decomposing the

Brier Score.

The continuous ranked probability score (CRPS; Matheson and

Winkler 1976) of a series of cumulative forecast distributions

F1, . . . , FN and real-valued observation y1, . . . , yN is given by

CRPS =
1

N

N∑
t=1

∫ ∞
−∞

dx |Ft(x)−H(x− yt)|2, (12)

where H(x) is the Heaviside step function. The CRPS has

the same units as the prediction target (i.e. Kelvin for

temperature forecasts). The CRPS of a series of ensemble

forecasts x1, . . . , xN , each with members xt = (xt,1, . . . , xt,R)

and verifying observations y1, . . . , yN , is calculated by

1

N

N∑
t=1

 1

R

R∑
r=1

|xt,r − yt| −
1

2R2

R∑
r,r′=1

|xt,r − xt,r′ |

 (13)

(Gneiting and Raftery 2007), which is equivalent to the expression

used by Hersbach (2000). Gneiting and Raftery (2007) also show

that the CRPS of forecasts issued as a Normal distributions

N (µt, σ
2
t ), with means µ1, . . . , µN and variances σ21 , . . . , σ

2
N is

given by

1

N

N∑
t=1

σt

[
zt(2Φ(zt)− 1) + 2ϕ(zt)− π−

1
2

]
, (14)

where zt = yt−µt
σt

, and ϕ(x) and Φ(x) are the standard Normal

density function and distribution function, respectively.

The average CRPS of the raw (uncalibrated) ensemble

forecasts, calculated by eq. 13, is 0.138K. To decompose the

CRPS of the ensemble forecast, denoted CRPS(p), we apply

eq. 6 to the CRPS, that is, we define Reliability, Resolution, and

Uncertainty by

REL = CRPS(p)− CRPS(q)

RES = CRPS(r)− CRPS(q)

UNC = CRPS(r)

(15)

where p, q, and r are the raw ensemble forecast, the recalibrated

forecast, and the reference forecast, respectively. The components

trivially satisfy CRPS(p) = REL−RES + UNC. To uniquely

define the decomposition, a recalibration method and a reference
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Table 1. Average CRPS of the raw ensemble, the recalibrated forecast (qNGR),
the climatological forecast (rclim) and the persistence forecast (qpers).

forecast raw qNGR rclim rpers
CRPS [K] 0.138 0.136 0.22 0.18

forecast have to be specified. For recalibration of the ensemble

forecasts, we use non-homogeneous Gaussian regression (NGR;

Gneiting et al. 2005). NGR assumes that the forecast at time t is

a Normal distribution, whose mean and variance depend linearly

on the ensemble mean mt and ensemble variance vt, respectively.

The parameters are estimated by numerical minimisation of the

CRPS, and so the recalibrated forecast qNGR at time t is given by

qNGR,t = N
(
−0.53K + 1.03mt,−0.04K2 + 2.10vt

)
. (16)

The average CRPS of the NGR-recalibrated forecast is 0.136K, a

slight improvement over the CRPS of the raw ensemble.

We further calculate two possible reference forecasts. Firstly,

we calculate the climatological distribution rclim by the empirical

distribution function over all observations. The CRPS of rclim is

calculated using eq. 13, assuming that the same ensemble forecast

xt = (y1, . . . , yN ) is issued for all t; we obtain CRPS(rclim) =

0.22K. The previous section mentioned that the climatological

distribution can be a poor choice as a reference forecast if the

observations exhibit obvious time-series features. To account for

the clear trend of the temperature data (see Fig. 1), we consider

persistence as an alternative reference forecast. Specifically, we fit

a first-order auto-regressive model to the observations, that is the

forecast at time t is a Normal distribution whose mean depends

linearly on the observation at time t− 1. The forecast variance is

constant. Using minimum CRPS parameter estimation, we obtain

the persistence forecast for time t by

rpers,t = N
(

8.55K + 0.55yt−1, 0.11K2
)
. (17)

The CRPS of rpers is 0.18K. The CRPS values of all the different

temperature forecasts are summarised in Table 1.

We decompose the CRPS of the ensemble forecasts into

Reliability, Resolution and Uncertainty using different methods.

To calculate the Hersbach (2000) decomposition we use the

corresponding function in the R-package verification

Table 2. Three decompositions of the CRPS of the temperature ensemble
forecast. The notation a(−b) stands for a× 10−b.

Decomposition REL [K] RES [K] UNC [K]

Hersbach (2000) 3.07(−3) 8.01(−2) 2.15(−1)

Eq. 15 (qNGR, rclim) 1.61(−3) 7.87(−2) 2.15(−1)

Eq. 15 (qNGR, rpers) 1.61(−3) 4.29(−2) 1.79(−1)

(NCAR - Research Applications Laboratory 2015). We further

use the CRPS values given in Table 1 to calculate two different

decompositions based on score differences as in eq. 15. The first

decomposition uses climatology as a reference forecast, r = rclim,

and the second decomposition uses persistence as a reference

forecast, r = rpers. The components of the three decompositions

are summarised in Table 2. We note the following:

1. The numerical values of the Reliability and Resolution

components of the Hersbach (2000) decomposition, and

of the decomposition into score differences with r = rclim

and q = qNGR differ, but not by much. The similarity

is surprising, since the decompositions are motivated

differently. Larger differences might occur in different data

sets.

2. The effect of recalibrating the forecast is small, leading

to an improvement of CRPS only on the order of 10−3K.

This is reflected in a relatively small Reliability term – the

ensemble appears to be well-calibrated.

3. The Resolution terms are larger than the Reliability terms

in all decompositions, indicating that the ensemble forecast

is more skilful than either reference forecast.

4. Using persistence as a reference forecast in the decomposi-

tion (r = rpers) reduces both the Uncertainty and the Reso-

lution term compared to the decomposition with r = rclim.

Smaller Uncertainty indicates higher inherent predictability

of the observations due to the presence of a trend. Smaller

Resolution implies smaller forecast skill of the recalibrated

forecast compared to the reference forecast. That is, using

a more skilful reference forecast reduces the perceived

difficulty in forecasting the observations, and the perceived

value of the forecasting system whose score is decomposed.

The Reliability term does not depend on the choice of the

reference forecast.
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Figure 2. Probability forecasts pt (solid line and squares) and corresponding binary
observations yt (filled circles) for 1983–2009. The gray and white bands indicate
the 5 bins used to calculate the Murphy (1973) Brier Score decomposition.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

forecast

c
a
li
b
ra

ti
o
n

Figure 3. Calibration curves estimated by binning and counting (qbin, solid line)
and logistic regression (qlr, dashed line). Circles are observations yt plotted over
the issued forecast probabilities pt.

We next transform the ensemble forecasts to binary forecasts

by asking “Will this year’s temperature exceed last year’s

temperature”? The binary observation yt equals one (zero) if the

observed temperature at time t is larger (smaller) than at time

t− 1. Probability forecasts p1, . . . , pN are generated from the

ensemble by taking the fraction of ensemble members at time

t that exceed the observed temperature of the previous year t−

1. The binary observations y1, . . . , yN and probability forecasts

p1, . . . , pN are shown in Figure 2. To calculate the Murphy (1973)

Brier Score decomposition, we bin the forecast probabilities into

5 bins of equal width (indicated by gray and white bands in

Figure 2). To calculate the Murphy (1973) decomposition, the

within-bin averages of the forecast probabilities in the five bins

(0.12, 0.24, 0.54, 0.69, 0.89) are substituted for P1, . . . , P5 in eq. 3.

Figure 3 shows two different calibration curves: The solid

line is the calibration curve based on within-bin average

Table 3. Average Brier Score of the raw probabilities (p), the two recalibrated
forecasts (qbin and qlr) and the climatological forecast (rclim).

forecast p qbin qlr rclim
Brier Score 0.139 0.116 0.128 0.241

Table 4. Reliability and Resolution terms or Brier Score decompositions using
the established method by Murphy (1973), and using score differences as
in eq. 6. Within-bin event frequencies (q = qbin) and logistic regression
estimates (q = qlr) were used as the recalibrated forecasts.

Decomposition REL RES UNC
Murphy (1973) 0.02252 0.125 0.241

Eq. 6 (qbin, rclim) 0.02245 0.125 0.241

Eq. 6 (qlr, rclim) 0.010 0.113 0.241

event frequencies used for the Murphy (1973) Brier Score

decomposition in eqs. 3 and 4. The calibrated forecast qbin at time

t is given by

qbin,t =
ok(t)

nk(t)
, (18)

where o1, . . . , o5 = (1, 1, 1, 5, 8) and n1, . . . , n5 = (5, 4, 4, 6, 8).

The average Brier score of qbin is 0.116. The dashed line in

Figure 3 corresponds to recalibration by logistic regression (Wilks

2011, ch. 7), where the conditional probability of yt = 1 is

modelled by a logistic function of the uncalibrated forecast pt.

Using minimum Brier Score parameter estimation, we obtain the

calibrated forecast qlr at time t by

qlr,t = [1 + exp(7.07− 12.15pt)]
−1 . (19)

The average Brier score of qlr is 0.128, which is worse than the

Brier Score of qbin. (Note that maximum likelihood estimation

yields parameter values 2.81 and −6.05, and an average Brier

Score of 0.138.) We use the climatological event frequency as

the reference forecast, that is, rclim = ō = 0.59. The Brier Score

of rclim is 0.241. The Brier scores of the different forecasts are

summarised in Table 3.

We calculate Brier score decompositions using the original

method proposed by Murphy (1973), and using score differences

as in eq. 6, with either q = qbin or q = qlr. The decompositions

are summarised in Table 4. We note the following:

1. The components of the Murphy (1973) Brier score

decomposition do not add up exactly to B(p). The

small discrepancy of −7× 10−5 and can be further

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls
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decomposed into the difference between the within-bin-

variance (2.86× 10−3) and within-bin covariance (2.93×

10−3); see Stephenson et al. (2008) for definitions of these

terms.

2. The Resolution and Uncertainty components obtained by

the Murphy (1973) decomposition and by score differences

with q = qbin are identical. The only difference is in the

Reliability terms.

3. The components of the decompositions into score

differences by eq. 6 add up to the Brier Score of pt exactly

– unlike the Murphy (1973) decomposition with binned

forecasts.

4. The Reliability and Resolution terms change if logistic

regression is used for forecast recalibration instead of

the usual binning approach. Logistic regression does not

improve the score of the uncalibrated forecasts pt as much

as the binning approach does. Therefore, the Reliability

term with q = qlr, is closer to zero – The forecasts appear

more reliable than with q = qbin. At the same time, the

Resolution terms decrease, indicating a smaller potential

improvement over the reference forecast.

5. Conclusion

A simple derivation of the popular Brier score decomposition into

Reliability, Resolution, and Uncertainty, originally due to Murphy

(1973), has been presented. The components of the decomposition

can be calculated by taking average score differences. Other than

being simpler than the original derivation, it also simplifies the

interpretation of the components, sheds new light on existing

results on decomposition of verification scores, and allows for

a straightforward generalisation to arbitrary verification scores,

arbitrary recalibration methods, and arbitrary reference forecasts.

There is some evidence that previous authors have used the

proposed strategy to calculate score decompositions, but it was not

formulated explicitly, and does not seem to be widely known. The

simple method of motivating score decomposition can be used to

resolve the non-additivity of the Brier score components of binned

forecasts, and gives directions for a new method to decompose

the CRPS. An application to seasonal temperature forecasts shows

that the proposed methodology yields similar results as traditional

decompositions, while being easier to calculate and more flexible

in the choice of recalibration method and reference forecast.

In summary, for score decomposition it is sufficient to calculate

recalibrated forecasts q1, . . . , qN , and suitable reference forecasts

r1, . . . , rN . The decomposition of the average score of the forecast

p follows (rather trivially) by calculating average scores and score

differences of p, q and r.
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Appendix: Proofs

The Brier score difference between the original forecast pt and

the recalibrated forecast qt = ok(t)/nk(t) is equal to Murphy’s

original Reliability term:

B(p)−B(q) =
1

N

N∑
t=1

[
(yt − pt)2 −

(
yt −

ok(t)

nk(t)

)2
]

(20)

=
1

N

N∑
t=1

[
p2t − 2ytpt −

o2k(t)

n2
k(t)

+ 2yt
ok(t)

nk(t)

]
(21)

=
1

N

K∑
k=1

[
nkP

2
k − 2okPk − nk

o2k
n2k

+ 2ok
ok
nk

]
(22)

=

K∑
k=1

nk
N

(
ok
nk
− Pk

)2

. (23)

The Brier score difference between the climatological forecast

rt = ō and the recalibrated forecast qt = ok(t)/nk(t) is equal to

Murphy’s original Resolution term:
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B(r)−B(q) =
1

N

N∑
t=1

[
(yt − ō)2 −

(
yt −

ok(t)

nk(t)

)2
]

(24)

=
1

N

N∑
t=1

[
ō2 − 2ytō−

o2k(t)

n2
k(t)

+ 2yt
ok(t)

nk(t)

]
(25)

=
1

N

K∑
k=1

[
nkō

2 − 2okō− nk
o2k
n2k

+ 2ok
ok
nk

]
(26)

=

K∑
k=1

nk
N

(
ok
nk
− ō
)2

. (27)

For completeness, we derive the well-known result that the

Brier score of the climatological forecast rt = ō is equal to

Murphy’s original Uncertainty term:

B(r) =
1

N

N∑
t=1

(yt − ō)2 (28)

=
1

N

N∑
t=1

(
yt − 2ytō− ō2

)
(29)

= ō− 2ō2 + ō2 = ō(1− ō). (30)
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