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New and Noteworthy 24 

 Sarcomere and fascicle lengths were measured in vivo from human muscle to examine the 25 

relationship between the different scales of organisation. 26 

 Changes in fascicle length were moderately related to sarcomere length changes, however 27 

sarcomere length and number per fibre varied from proximal to distal regions of the muscle. 28 

 Differences in average sarcomere operating lengths across the muscle suggests potentially different 29 

stresses or strains experienced within different regions of muscle.  30 

Abstract 31 

Sarcomere length is a key physiological parameter that affects muscle force output; however, our 32 

understanding of the scaling of human muscle from sarcomere to whole muscle is based primarily on 33 

cadaveric data. The aims of this study were to explore the in vivo relationship between passive fascicle length 34 

and passive sarcomere length at different muscle-tendon unit lengths and determine whether sarcomere 35 

and fascicle length relationships are the same in different regions of muscle. A microendoscopy needle probe 36 

capable of in vivo sarcomere imaging was inserted into a proximal location of the human tibialis anterior 37 

muscle at three different ankle positions (5° dorsiflexion [DF], 5° plantar flexion [PF], 15° PF) and one distal 38 

location at a constant ankle position (5° PF distal). Ultrasound imaging of tibialis anterior fascicles, centred 39 

on the location of the needle probe, was performed for each condition to estimate fascicle length. Sarcomere 40 

length and fascicle length increased with increasing muscle-tendon unit length, although the correlation 41 

between sarcomere length change and muscle fascicle length change was only moderate (r2 = 0.45). Passive 42 

sarcomere length was longer at the distal imaging site than the proximal site (P = 0.01). When sarcomere 43 

number was estimated from sarcomere length and fascicle length, there were fewer sarcomeres in the fibres 44 

of distal location than the proximal location (P = 0.01). These data demonstrate that fascicle length changes 45 

are representative of sarcomere length changes, although significant variability in sarcomere length exists 46 

within a muscle, and sarcomere number per fibre is region dependent.   47 



Introduction 48 

The length of sarcomeres that are arranged in-series within a striated muscle fibre is one of the most 49 

important determinants of muscle force. Sarcomere length influences overlap of actin and myosin, which 50 

affects contractile force (20), calcium sensitivity and activation dynamics (17, 41) and muscle energetics (2). 51 

Consequently, to understand the mechanics of in-vivo muscle contraction it is important to understand how 52 

sarcomere length varies with muscle length changes (34). The relationship between muscle length and 53 

sarcomere length is dependent upon the number of sarcomeres in series within the muscle’s fibres, and this 54 

number has a strong influence on sarcomere strains and strain rates during movement.  55 

Sarcomere length and operating range vary considerably both within and across species (8). However, there 56 

is general consensus that the average operating length range of sarcomeres favours force production for the 57 

tasks required for that particular muscle (36, 48) and that sarcomere arrangement is likely to be an important 58 

adaptation of muscle to chronic changes in mechanical loading. For instance, stretching muscle passively or 59 

actively increases the number of sarcomeres in series within a muscle fibre (58), whereas muscle denervation 60 

in a shortened position can cause a reduction in sarcomere number for a given muscle (59). Such adaptations 61 

are variable and likely dependent on the specific mechanical stimulus experienced (9, 10) and on muscle 62 

architecture [e.g. pennation angle (22)].  63 

There are several methods to assess sarcomere length in different muscle preparations. Muscle fixation 64 

followed by fibre dissection and direct measurement using light microscopy has been used to characterise 65 

the diversity of sarcomere lengths within different muscles (15, 16). Laser diffraction is another method that 66 

can be used in intact muscle (33), muscle biopsies (50) and fully dissected muscles (18). Laser diffraction has 67 

provided invaluable information about human sarcomere arrangement and adaptation (31, 32); however this 68 

method is relatively invasive and is typically done under surgical conditions. Microendoscopy using second 69 

harmonic generation (SHG) imaging is a promising new method to assess in vivo sarcomere lengths in both 70 

human and animal muscle (35). Recent investigations using novel needle probes have provided new 71 

information about the both the relationship of sarcomere length to joint position in passive muscles (11-13) 72 

and the time course of muscle twitches (49).  These investigations have demonstrated variability in 73 

sarcomere lengths within and across muscles (13), which is in general agreement with similar measures made 74 

using table top SHG imaging on intact muscle (42) or direct imaging across frozen sections of muscle (44). 75 

Although measures of passive sarcomere length within specific muscles are useful, to gain insight into the 76 

number of sarcomeres per fibre, estimates of muscle fibre lengths are also required (34). Ultrasound imaging 77 

has become a popular tool for measuring fascicle length, which is often used as a proxy for fibre length 78 

assuming the fibre length is the same as fascicle length (14). Classic studies using the ultrasound technique 79 

in human lower limb muscles have shown that during isometric contractions, muscle fascicles can shorten 80 

up to 35% of the initial length (27, 38, 43). This has implications when considering the relationship between 81 

passive and active sarcomere length measurements. It is common to use measures of human fascicle length 82 

as a proxy for sarcomere number because of ease of measurement. For example, by determining the 83 

optimum fascicle length during contraction and assuming an optimum sarcomere length of 2.64 (55), one 84 

can estimate the total number of sarcomeres within the imaged muscle fibres (37). The limitation of this 85 

approach is that it relies on local measures of fascicle length changes, ignores potential sarcomere and fibre 86 

length heterogeneity within the muscle (34, 54, 57), and makes assumptions about optimal sarcomere 87 

length.  88 

Here we provide the first simultaneous in vivo measurement of both fascicle length and sarcomere length in 89 

passive human muscle, so that estimates of sarcomere numbers per fibre can be determined. The first aim 90 

was to use microendoscopy to explore the relationship between passive fascicle length and passive 91 



sarcomere length within the same region of the human tibialis anterior muscle for different muscle-tendon 92 

unit lengths. We hypothesised that sarcomere number calculations should be consistent across muscle-93 

tendon unit lengths, as sarcomere numbers should not change.  We also hypothesised that as muscle-tendon 94 

unit length was passively changed, fascicle length changes would be correlated with sarcomere length 95 

changes, as is typically assumed (60). The second aim was to determine whether sarcomere and fascicle 96 

length relationships are homogenous across different regions of the human tibialis anterior muscle, at a 97 

single muscle-tendon unit length. We hypothesised that passive sarcomere length would vary across 98 

different regions, based on results from numerous studies in animal muscles (42, 44, 54, 57), and as such, 99 

that the sarcomere number estimated per fibre would vary depending on muscle fibre location.  100 

Methods 101 

Protocol 102 

Eight healthy participants [6 male and 2 female; age = 31 ± 4 years; height = 1.78 ± 0.1 cm; mass  = 73.4 ± 103 

14.1 kg (mean ± standard deviation)] who were free from lower limb injury or neuromuscular disorders 104 

provided written consent to participate in this study. The Stanford University Institutional Review Board and 105 

The University of Queensland Human Research Ethics Committee approved the experimental protocol. 106 

Participants sat in a chair with their knee flexed at a constant angle of approximately 15° from full extension 107 

and their foot strapped to a rigid foot-plate such that the ankle was in an anatomically neutral position (Figure 108 

1). The angle of the foot plate could be adjusted to place the ankle in three different positions: 15° plantar 109 

flexion (15°PF), 5° plantar flexion (5°PF), and 5° dorsiflexion (5°DF), as measured by the angle made by the 110 

line between the fibula head and lateral malleolus and the line made by the base of the foot along the foot 111 

plate. The range of ankle angles (5°DF - 15°PF) was selected to correspond to the plateau and ascending limb 112 

of the length-tension relationship based on torque vs. angle data during maximum voluntary contractions, 113 

and to avoid passive tension in the muscle (40). 114 

Sarcomere and fascicle length measures were first made in a proximal region of the tibialis anterior muscle 115 

using a microendscope needle probe (see Sarcomere Imaging and Analysis section for details) and B-mode 116 

ultrasound imaging (see Ultrasound Imaging and Analysis section). The needle probe was inserted so that the 117 

imaging site was approximately 1.5 cm deep in the superficial compartment (before the probe was drawn 118 

out) and 3 cm distal to the proximal end of the central aponeurosis, identified by ultrasound imaging (Figure 119 

1). To image multiple muscle fibres within the muscle region, the needle/microscope was slowly drawn out 120 

of the muscle by up to 1cm (without removing it from the muscle) and reinserted to the initial depth when 121 

imaging was complete. Measurements were performed at each of the three different ankle angles in a 122 

randomly selected order. Between each ankle angle, the microscope attached to the needle probe was 123 

removed but the needle remained within the muscle to ensure that the same region of muscle fascicles was 124 

imaged across different ankle positions. Note to accommodate the length change of the fascicles, the needle 125 

probe rotated by approximately 15°, however the microscope could still be attached to the probe and held 126 

by the operator. Prior to moving between ankle positions, ultrasound images of the fascicles were collected 127 

such that the embedded needle sat directly next to the middle of the transducer (see Ultrasound Imaging 128 

and Analysis section for details and Figure 2). 129 

Sarcomere and fascicle length measures were then made at a more distal location (approximately 4 cm from 130 

the distal end of the superficial compartment of the tibialis anterior muscle) with the ankle at 5 degrees PF 131 

by re-inserting the microendoscope needle probe (Figure 1). The time between removal of the needle probe 132 

from the proximal region to the insertion in the distal region was approximately 10 minutes, during which 133 

time the needle was placed in a disinfecting solution. The distance between insertion points was 134 

approximately 4-8 cm, depending on the length of superficial compartment of the TA muscle. 135 



Sarcomere Imaging and Analysis 136 

Sarcomeres were imaged using a microendoscope system that accessed the muscle via a needle probe (2 cm) 137 

with a side-mounted lens (49). A commercially available system (Zebrascope, Zebra Med Tech, CA) that uses 138 

second harmonic generation (SHG) imaging to visualise the repeating patterns of thick filaments (myosin) 139 

was used. A 1030 nm, femtosecond excitation pulse was directed out the side of a transmitting needle via a 140 

small lens centred 4 mm from tip of the needle. Unlike previous designs, which excite and receive the 141 

reflected signal in a single lens (35, 49), in the present study the emitted SHG signal was collected through a 142 

receiving lens in a separate needle that lay parallel to transmitting needle at a distance of 1 mm (Figure 2, 143 

inset). This has additional advantages in that the received signal strength is stronger and less susceptible to 144 

interference due to blood or fluid around the needles. The imaging distance was adjustable between 0 and 145 

150 µm from the surface of the emitting needle. 146 

The needle probe is attached to a housing that aligns the laser to a handheld microscope, which subsequently 147 

interfaces with the laser. The needles were inserted into the muscle using a spring-loaded device that rapidly 148 

inserts the needles. Prior to insertion, B-mode ultrasound imaging (LogicScan, Telemed, Lithuania) was 149 

performed using a flat shaped ultrasound transducer (6 cm transducer width, mean frequency 6 MHz) to 150 

determine the line of action of the muscle fascicles (Figure 2). The correct plane of the fascicles was assumed 151 

to be the plane where muscle fascicles were clearly visible and continuous throughout the image of the 152 

superficial compartment and where a clear central aponeurosis was visible and approximately perpendicular 153 

to the imaging plane (6). The ultrasound image was also used to define the proximal and distal insertion sites 154 

based on the criteria described above. The probe was then inserted so that the transmitting and emitting 155 

needles were inserted approximately in the middle of the image and along the plane of the image so that the 156 

line from one lens to the other was approximately perpendicular to the fascicle plane. As such, the fibres of 157 

interest should have been uncompromised between the two needles. The microscope was then attached to 158 

the needle probe to begin imaging. 159 

A sequence of images was collected as the microscope and needle were slowly moved in and out of the 160 

muscle as has previously been reported (11, 12). Image depth was approximately 5-15 mm into the muscle, 161 

limited by the length of the needle and the thickness of skin and subcutaneous fat. Images were collected at 162 

1 Hz with the operator being able to see the images in real-time. A second operator adjusted the image depth 163 

and power of the signal to obtain as clear images as possible as the images were recorded to file for 164 

subsequent analysis. Sequences of images ranging from 20 seconds to 2 minutes were collected while 165 

reasonable images were detected visually by the operators.  166 

Image sequences were then analysed using a modified process that was previously reported (11, 12). First, a 167 

fast Fourier transform and a Gaussian filter were applied to the image. White noise was then subtracted from 168 

the Fourier image and the strongest frequency spectrum between that predicted for sarcomere lengths 169 

between 1.5 and 5 µm was calculated across the image. Feasible images were selected based on the intensity 170 

of the image and signals that fell within the set sarcomere length range and these images were used for 171 

further analysis. To ensure that single fibres were analysed separately, feasible images were then examined 172 

by an operator who placed regions of interest along the length of any separate visible fibres within the image 173 

(between 1 and 3 fibres can be distinguished at once). The same Fourier transform calculation of sarcomere 174 

lengths was then performed on each region of interest (Figure 2) to get the sample sarcomere length, which 175 

represents the average sarcomere length across the region of interest (~100 µm in length). Individual fibres 176 

were only selected once within a sample, to the best of the ability of the image analyser (GL). Between 6-90 177 

separate muscle fibre images (mean 28.4 ± 19.2) were collected and used in the analysis for every ankle 178 

position (or location within the muscle), for each participant. The number of suitable images was assessed 179 

offline, post collection, depending on quality of image sequences. 180 



Ultrasound Imaging and Analysis 181 

B-mode ultrasound images were acquired when the microscope was removed from the needle, but while the 182 

needle was still embedded in the muscle for each insertion site and at each joint angle. The same ultrasound 183 

system used to determine the insertion point for the microscope needle probe (see above) was used to 184 

determine muscle fascicle length in the same region of muscle as the needle. Ultrasound images were 185 

acquired with the ultrasound transducer as close to the needle insertion point as possible by aligning the flat 186 

ultrasound transducer next to the needle connector (Figure 2) and in an orientation to obtain clear, 187 

continuous images of fascicles and aponeurosis in the superficial compartment (see image examples in Figure 188 

1) and ensuring that the fascicles were at the maximum length. Although it was not possible to image the 189 

same fascicles that were imaged between the needles on the probe, fascicle images within approximately 5 190 

mm from the imaging site and at the same proximo-distal location were imaged. Fascicle length is likely to 191 

be homogenous within this close range. Muscle fascicle length was determined as the straight-line distance 192 

from superficial aponeurosis to the central aponeurosis, along the line of action of the fascicles, within the 193 

middle of the image (14, 47). All distances were converted from the pixel scale to millimetre scale using the 194 

known depth and width calibration factors of the image.     195 

Statistical Analysis 196 

Sarcomere length data from each condition (proximal 5°DF, 5°PF, 15°PF and distal 5°PF) were averaged across 197 

each individual and a one-way repeated measures ANOVA was used to assess the effect of ankle joint angles 198 

on the sarcomere number, sarcomere length, and fascicle lengths at the proximal imaging location. A paired 199 

Student’s t-test was used to assess the effect of proximal vs. distal imaging location (in the 5°PF ankle position 200 

only) on sarcomere number, sarcomere length and fascicle length. Multiple linear regression was used to 201 

establish potential relationships between fascicle length changes and sarcomere length changes across all 202 

measurements at the proximal location, using each participant as a categorical predictor (sarcomere length 203 

* participant) to account for multiple measurements made across participants in the data used in the 204 

regression (4). Fascicle and sarcomere length changes were expressed relative to the mean value across all 205 

measurements for each individual, to account for individual variation. To understand the variability of 206 

measurements, the coefficient of variation was determined for each individual and at each measurement 207 

site. All statistical tests were conducted in Matlab using SPM1D.org software (version 0.4) with the alpha 208 

level set at P<0.05. 209 

Results 210 

Individual participant sarcomere data were averaged across measurements made at each joint angle or 211 

location. This was based on the following average number of sarcomere measurements per participant at 212 

each of the joint angles or imaging locations:  5°DF: 21 ± 12 measurements per participant; 5°PF: 36 ± 19 213 

measurements per participant; 15°PF: 21 ± 13 measurements per participant; 5°PF (distal location): 35 ± 27 214 

measurements per participant.  215 

A box and whisker plot (mean, 25th and 75th percentile) and individual average data points for sarcomere 216 

length, fascicle length and sarcomere number at different ankle flexion angles is shown in Figure 3. At the 217 

proximal site of imaging, sarcomere length increased significantly (P = 0.016) with ankle angle change from 218 

the dorsiflexed position (5°DF) to the plantar flexed position (15°PF). There was also a significant increase in 219 

length of the fascicles with the same change in ankle position (P<0.001). There was no significant difference 220 

in sarcomere number when estimated from the sarcomere and fascicle lengths at each of the three ankle 221 

joint angles in the proximal imaging position (P = 0.502).  222 

A box and whisker plot and individual average data points for sarcomere length, fascicle length and 223 

sarcomere number in different regions of the muscle is shown in Figure 4. Sarcomere length was greater in 224 



the proximal than distal imaging locations in 5°PF ankle position (P = 0.011). There was a tendency for shorter 225 

fascicles in the distal region, but this difference was not significant (P = 0.084). When sarcomere number was 226 

estimated from these two measures, there was a significantly lower sarcomere number in the distal location 227 

than the proximal location (P = 0.013).   228 

Relationships between sarcomere length change and fascicle length change, for the proximal imaging 229 

location, are shown in Figure 5. Length changes were calcualted relative to the average lengths for each 230 

individual across all joint angles measured. There was a significant positive correlation (P < 0.006) between 231 

the length change of the sarcomeres and that of the fascicles. The variance in fascicle length change predicted 232 

45% of the variance in the sarcomere length change when adjusted for individuals to account for multiple 233 

measures for each individual.  234 

The variance in measurements across individuals and measurement sites is shown in Figure 6. There was a 235 

large variation of sarcomere lengths within individuals, with an average co-efficient of variation (CV) of 7.81% 236 

(± 2.48%). The variance was similar across all conditions (P = 0.449) (Figure 6B).   237 

Discussion 238 

In agreement with our first hypothesis, we found that estimates of sarcomere number are consistent across 239 

different muscle-tendon unit lengths when average measures are made from the same region of muscle 240 

using microendoscopy combined with ultrasound imaging. Measured sarcomere length and fascicle length 241 

both increased significantly with muscle-tendon unit length, and there was a moderate positive correlation 242 

between sarcomere length change and fascicle length change when using the microendoscopy technique to 243 

determine mean sarcomere length from a relatively large sample of images from the muscle. This relationship 244 

only explained 45% of the overall variance, which is best explained by variability in measurement within 245 

participants and potential errors in measurement of length for both microendoscopy (sarcomere) and 246 

ultrasound (fascicle) measurements. In support of our second hypothesis, sarcomere number per fibre was 247 

greater in the proximal region of the muscle than the distal region, despite similar muscle fascicle lengths.  248 

This result suggests heterogeneity of sarcomere number and length between regions of individual human 249 

muscles and has implications for how fascicle level mechanics can be interpreted in terms of the stresses and 250 

strains that muscle fibres might experience during contractions or movement.  251 

Sarcomere number for a given fibre cannot change with changes in muscle length due to joint rotation. The 252 

finding of constant sarcomere number for average measures made from a single region of the muscle adds 253 

confidence in the use of the microendoscopy to quantify sarcomere lengths/numbers in vivo, without 254 

necessarily validating the measurements. Using ultrasound imaging to assess fascicle lengths is known to be 255 

susceptible to errors due to transducer alignment, although this is generally unbiased (7). While we used 256 

procedures to try ensure optimum alignment (6), errors in fascicle length certainly confound the relationship 257 

between fascicle length changes and sarcomere length changes. However, there are also additional 258 

considerations when applying the microendoscopy technique to measure sarcomere length that should also 259 

be considered. We first consider whether the sarcomere lengths measured agree with expected lengths. 260 

The resting sarcomere lengths for all locations and ankle positions were considerably higher than the 261 

predicted optimum (2.64 µm) (55), even at 15° PF, which is the known optimal angle for maximum 262 

dorsiflexion force production (37). The likely explanation for this discrepancy is the large length changes that 263 

occur during contraction as the muscle stretches the in-series elastic tissues. Maganaris and Paul (39) 264 

measured TA muscle belly shortening during isometric contraction to be on the order of 18% (12 mm). 265 

Attributing this 18% shortening entirely to the sarcomeres would estimate that the active sarcomere length 266 

in the 15° plantar flexed position to be 2.56 µm, which is in the region of optimum sarcomere lengths that 267 

has been estimated for human muscle (32, 55). In another study, maximum isometric contractions were 268 



performed at different ankle positions to estimate the optimal fascicle length (37). Assuming that optimal 269 

fascicle length corresponded to when most sarcomeres were at optimal lengths (2.64 µm), Maganaris (37) 270 

estimated the number of sarcomeres in the TA muscle fibres at 21 500  for a scanning location similar to the 271 

more proximal measurements made here. This estimate of sarcomere number is remarkably close to our 272 

estimates (mean 21 712 sarcomeres in proximal region) based on direct measures of passive sarcomere 273 

length and fascicle length. Our estimate is also extremely close to the direct measures of sarcomere number 274 

per fibre from the TA of human cadavers (21 751 sarcomeres per fibre) (56). Although the average sarcomere 275 

length measurements are in accordance with expectations, the interpretation further demonstrates the 276 

requirement to consider the influence of series compliance, as previously demonstrated (29, 33), when 277 

inferring optimal muscle fibre lengths or muscle-tendon unit lengths from passive measurements of 278 

sarcomere lengths.  279 

There was considerable between- and within-subject variability in sarcomere length measurements within a 280 

single region of muscle at the same ankle position (Figure 6). This likely contributed to the moderate 281 

relationship between sarcomere length change and fascicle length change across all individuals. The between 282 

participant variability is to be expected, and is likely due to differences in how the muscle is used during 283 

everyday life. For instance, participants who regularly undertake exercise that involves eccentric contraction 284 

(e.g. downhill walking), might have shorter sarcomeres across at comparable ankle positions (10). However, 285 

we also found large within participant variability. The coefficients of variation averaged 7.81% across all 286 

measurement sites within individuals. A major proportion of this variability is likely explained by natural 287 

variation within the muscle and is within the range of reported variance measured from both dissected 288 

animal muscle (44) and in situ muscle (42). For example, a recent study using SHG imaging to examine 289 

sarcomere length within an in situ mouse muscle (42) found considerable variability both within and across 290 

different muscle regions, with a coefficient of variation of approximately 5% across all sites of the same 291 

muscles (and up to 8% at shortest lengths).  292 

Several methodological details might also contribute to the variability of our measurements. To sample 293 

sarcomeres from multiple fibres in each region, we withdrew the needle probe through the muscle from 294 

deep to superficial regions. Due to the pennation angle of the fibres, we will have sampled from different 295 

regions of individual fibres, primarily from the mid- to distal-regions of the fibres. There is evidence from 296 

both isolated fibres (25, 26) and whole muscle (42, 52) suggesting that sarcomere lengths may differ between 297 

sites along a muscle and hence this could contribute to some of the variability we measured. The lack of 298 

systematic control of where we imaged in each fibre means that we have randomly sampled and makes it 299 

difficult to reconcile the source of variability in our measures. Sampling at different locations in the same 300 

fibre/s was beyond the scope of this study, but would certainly provide greater insight into the source of the 301 

variability and particularly the potential for sarcomere length change heterogeneity across and between 302 

individual fibres in different locations of the muscle. There is some early evidence that fibre strains in human 303 

muscle may be highly heterogeneous during both passive length changes (45) and light contractions (28). 304 

This could help explain the only moderate relationship between muscle length changes and measured 305 

sarcomere length changes and questions the assumption that fibre length changes directly reflect sarcomere 306 

length changes. 307 

Some of the variance in our study is also likely attributable to the measurement technique. For instance, the 308 

imaged fibre section may be slightly distorted by up to 9% due to the needle or image plane (12), however 309 

this correction (which represents the maximum possible distortion) has recently been considered to be not 310 

required (51), likely because most of the fibres that are imaged are farther from the needle where distortion 311 

is minimal. Finally, it is also possible that some fibres may be damaged by the needles or some fibres might 312 

not be completely passive during imaging (i.e. low levels of underlying activation).  313 



Overall, it is clear that with a sufficient number of measures, reasonable estimates of mean sarcomere length 314 

can be made, which result in consistent sarcomere number estimates at different muscle lengths. This 315 

highlights one limitation of the imaging methods – a relatively large sample size is needed to ensure a 316 

representative mean value is obtained and this is limited to relatively small areas of the muscle that is 317 

sampled. Another promising sarcomere imaging technique recently proposed, termed resonant reflection 318 

spectroscopy, samples much greater regions of muscle with good temporal resolution and minimal 319 

invasiveness. Although that technique may yield lower variability in individual measurements (61), there are 320 

presently no reports that have used this technique in human muscle.   321 

In agreement with some previous literature (42, 44), we found different sarcomere lengths in different 322 

regions of the muscle despite no change in muscle-tendon unit length. Our study is unique in that we were 323 

also able to determine the fascicle length corresponding to the imaging region, and the fascicle length was 324 

similar for both the proximal and distal regions imaged. Combined with the longer sarcomere lengths, this 325 

resulted in significantly smaller sarcomere numbers in the muscle fibres in distal region of the human tibialis 326 

anterior muscle. This difference in sarcomere length could result in up to a 20% difference in force potential 327 

upon initial activation, based on a standard length-tension relationship of sarcomeres, scaled for human 328 

muscle (Figure 7). We speculate that the difference in the sarcomere number may relate to the strains 329 

experienced during active contractions or movement profiles. There is evidence that muscles fibres 330 

experience variable strains within different regions of muscle during passive length changes (52) and dynamic 331 

contractions (1). Simulation studies suggest that this is driven by differences in how muscles must distort 332 

during contraction (23) and other factors like myofascial force transmission (24, 62). Such differences in strain 333 

amplitudes could provide stimulus for having heterogeneity in sarcomere lengths across the muscle and may 334 

influence force generating capacity under different conditions, and this heterogeneity has been suggested to 335 

improve the force generating capacity of muscle through the range(23). 336 

In human muscle, ultrasound imaging studies have reported conflicting reports regarding whether fascicles 337 

experience uniform strains during active contractions. The gastrocnemius has been shown to undergo 338 

relatively homogenous strain throughout (21, 30), however other human muscles such as the biceps femoris 339 

(3) and biceps brachii (46) muscles have shown some regional differences in fascicle length and shortening 340 

during contraction. It is possible that the sarcomere number may be regulated to ensure that sarcomeres 341 

operate at more uniform or optimum lengths during contraction, based on the shortening or strain 342 

experienced in the relevant portion of the muscle. Our hypothesis from the current data would be that if all 343 

fibres shorten a similar amount during contraction, fibres in the distal portion of tibialis anterior would 344 

undergo greater relative shortening during fixed-end muscle contraction than fibres in the proximal region 345 

of this muscle. Under this paradigm, sarcomeres in the distal part of the TA would reach similar lengths to 346 

sarcomeres in the proximal region once the muscle is in a contracted state, despite starting from a longer 347 

initial sarcomere length. This requires further experimentation and/or simulations to confirm. 348 

The results of this study have important implications for understanding muscle mechanics and adaptation. 349 

First, it is clear from the present data that there is a moderate linear relationship between sarcomere length 350 

changes and fascicle length changes when stable estimates of measures are obtained from averaging multiple 351 

samples. Therefore, it is reasonable to assume that changes in fascicle length reflect changes in sarcomere 352 

length across the muscle. However, there was variability in individual measurements from the same muscle 353 

and hence a sufficient number of samples needs to measured from an individual muscle region to accurately 354 

determine average sarcomere lengths. Second, in lower limb muscles which have substantial in series 355 

compliance, such as the tibialis anterior, the passive sarcomere length may be substantially longer than the 356 

optimal length. It is presently technically difficult to sample sarcomere lengths from active muscle, however 357 

the significant shortening that is known to occur during isometric contraction should be accounted for when 358 



trying to predict optimum lengths. Third, sarcomere numbers varied between different muscle regions, even 359 

when muscle fascicles were of similar length. This has implications for interpreting passive fascicle length 360 

differences in both cross-sectional and prospective studies. For instance, various concentric or eccentric 361 

strength training protocols (e.g. 5, 53) have been shown to induce changes in passive fascicle length at 362 

specific joint configurations. However, it is difficult to determine whether this would directly relate to 363 

changes in sarcomere number or overall lengthening of sarcomeres. It is also difficult to determine whether 364 

adaptations might be consistent across different regions across the muscle. For instance, there is some recent 365 

evidence that focal adhesion kinase (FAK), a mechanotransduction protein, is activated after eccentric and 366 

concentric exercise in a region-dependent manner in human muscle (VL), with the largest effects in the distal 367 

site of the muscle (19), which could regulate region-specific adaptations. However, the only way to assess 368 

whether sarcomere level adaptations occurs in different regions of the muscle would be through direct 369 

sarcomere length measurement, as has been achieved here. The method used here would therefore be 370 

generally useful for investigation of adaptation in structure and function in response to training, disuse or 371 

pathology.    372 
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  527 



Figure Legends 528 

 529 

Figure 1: Imaging sites on the tibialis anterior muscle for both ultrasound and microendoscopy. Note that the 530 

microendoscopy needle was inserted in the mid-region of the ultrasound image, but the ultrasound 531 

transducer was placed adjacent to the needle, such that the fascicle image was made ~0.5 cm lateral to the 532 

sarcomere measures.  533 

Figure 2: Experimental equipment and imaging setup. (Left) The needles (inset image) were inserted in the 534 

muscle (red square) and ultrasound imaging was conducted parallel to this site. (Left inset) Image showing 535 

needle probe used in study, which includes two needles (emitter and collector). (Right) Images collected 536 

using the SHG imaging technique. White box indicates the region where the sarcomere length was calculated 537 

using Fourier analysis. Ripples at left and right of image indicate borders of muscle fibre with adjacent fibres. 538 

Figure 3: Sarcomere length and fascicle length increased significantly as the ankle was moved from a dorsi-539 

flexed to a plantar flexed position, whereas calculated sarcomere number remained constant. Change in 540 

sarcomere length (A), fascicle length (B) and calculated sarcomere number (C – fascicle length divided by 541 

sarcomere length) are shown for each ankle position: 5° dorsi-flexion (5°DF ‘+’ symbols), 5° plantar flexion  542 

5°PF –  ‘o’ symbols) and 15° plantar flexion (15°PF –  ‘x’ symbols) when measured in the proximal location 543 

only. Average measurements for each individual (N = 8) are shown using points. Box indicates spread 544 

between the 25th and 75th percentile of the variance and whiskers indicate extreme data points, neglecting 545 

any outliers (red symbols).  546 

Figure 4: Sarcomere lengths were significantly longer in the distal location compared to proximal, while 547 

fascicle length remained unchanged in the 5°PF position, resulting in reduced sarcomere numbers per fibre 548 

in the distal region. Sarcomere length (A), fascicle length (B) and calculated sarcomere number (C – fascicle 549 

length divided by sarcomere length) as a function of muscle imaging location:  Proximal (5°PF ‘o’ symbols), 550 

Distal (5°PF ‘◊’ symbols). Averages measurements for each individual (N = 8) are shown using points. Box 551 

indicates spread between the 25th and 75th percentile of the variance and whiskers indicate extreme data 552 

points, neglecting any outliers (‘+’ symbols outside whiskers).  553 

Figure 5: A significant, but modest, correlation between fascicle length change and sarcomere length change 554 

across all individuals. Relationship between fascicle length changes (relative to average across all ankle joint 555 

positions) and sarcomere length changes (relative to average across all ankle joint positions) in the proximal 556 

insertion site. Data points are averages for each individual with different symbols representing points 557 

measured at different joint ankle angles (5°DF ‘+’ symbols, 5°PF ‘o’ symbols, 15°PF  ‘x’ symbols). 558 

Figure 6: Variablity in sarcomere length measurments across different joint positions and locations. A) 559 

Individual data points for each individual participant (indicated by individual column of data points, each with 560 

a different colour, N = 8) at each joint position for proximal measurement and the distal measurement site. 561 

B) Coefficient of variation across all measurements of sarcomere length at each joint position for proximal 562 

measurement and the distal measurement site (Data are group mean ± s.d.). 563 

Figure 7: Theoretical relationship between sarcomere length and force generating potential and mean ± 564 

standard deviation of sarcomere lengths for each measurement angle in the proximal imaging location (5°DF 565 

‘+’, 5°PF Proximal ‘o’, 15°PF ‘x’) and for the distal imaging location (5°DF Distal ‘◊’). The theoretical curve is 566 

based off the curve for vertebrate muscle reported by Burkholder & Lieber (8) and scaled based on an 567 

estimated optimal sarcomere length of 2.64 (55). 568 


