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Abstract 

Biodiversity, ecosystems, industry and human health are threatened by invasive plant species. 

The costs of mitigating damages run into billions of pounds per annum. Fundamental to the 

control of invasive plant species is an ability to predict which species will become invasive. Yet 

identification of predictive differences between invasive and non-invasive species has proven 

difficult to pinpoint. In this thesis I identify several weaknesses within published literature, and 

using field experiments and meta-analyses we address these to find consistent predictors of 

invasiveness amongst plants. Specifically, I recognize that predictors of invasiveness can be 

identified by studying plant species in the native range because species may undergo phenotypic 

and demographic changes following naturalization (Chapters 2 – 5). I also recognize the 

importance of comparing globally invasive and non-invasive species, and the importance of 

accounting for phylogenetic relationships so as not to inflate or conceal differences (Chapters 2 

– 4). Finally, I investigate whether particular analyses are more appropriate for investigating life 

history and demographic differences (Chapter 5).  

This thesis comprises an introductory chapter (Chapter 1), four data chapters (Chapters 2 - 5) 

and a general discussion (Chapter 6). Chapters 2 and 3 compare life history traits of plant 

species known to be invasive elsewhere, with their exported but non-invasive sympatric 

relatives in the native range. Chapter 4 utilizes Population Projection Matrices held within the 

COMPADRE Plant Matrix Database, to compare demographic projections of stable and 

transient dynamics of invasive and non-invasive plants; and Chapter 5 compares ten metrics, 

derived from Population Projection Matrices, of seven invasive species between the native and 

invaded range to determine if there are demographic or life history differences that facilitate 

invasion, and to identify those analyses that are most likely to reveal such differences.  

I find reproductive capacity to be a predictor of invasiveness, and that analyses of transient 

dynamics are more likely than analyses of projected stable dynamics to reveal demographic or 

life history differences between invasive and non-invasive species or populations of plants. I 
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discuss these findings in the context of invasive risk assessment protocols and highlight future 

research opportunities.  
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Chapter 1 

 

Introduction 

Invasive Species 

Invasive species, variously defined as those species that are transported outside of their native 

range, and which establish and spread to cause ecological, environmental and economic harm 

(Daehler, 2003, IUCN, 1999, Beck et al., 2008), rank among the major threats to global 

biodiversity (Butchart et al., 2010, Wilcove et al., 1998, Hooper et al., 2012, Clavero and 

García-Berthou, 2005). Impacts can be described in terms of socio-cultural and economic harm 

(Bradley et al., 2006, Pimentel et al., 2005), or environmental harm encompassing reduced 

fitness and extinction of native species, and ecosystem degradation (Vila et al., 2011, Hejda et 

al., 2009, Clavero and García-Berthou, 2005, Hooper et al., 2012). There are many examples of 

invasive species outcompeting native species, and of biotic and genetic homogenization, 

whereby invasive species weaken the uniqueness of distinct biotas and species following 

hybridization (Olden, 2006, Ryan et al., 2009, Winter et al., 2009). Individually or in 

combination, these impacts have potential to alter ecosystem processes and de-value ecosystem 

services (Ehrenfeld, 2010, Vila et al., 2011). Invasive plant species alone cost the global 

economy in excess of £300 billion per year to manage invasive populations for the purpose of 

curtailing impacts on biodiversity, ecosystem services, production and construction projects, 

and for losses incurred as a result of reduced yield, recreational activity, erosion, fire and water 

retention (Williams, 2010). Consequently, identifying traits of invasive plant species and the 

mechanisms linked with invasion success has been a key objective for invasion biologists and 

ecologists alike (Burns et al., 2013, Hovick et al., 2012, Castro-Díez et al., 2011, Davidson et 

al., 2011, Prentis et al., 2008, Agrawal et al., 2005). Yet there exist numerous definitions of 

what constitutes an ‘invasive species’ (Pysek et al., 2004; Richardson et al., 2000). Blackburn et 

al. (2011) recognized that the inconsistent use of definitions in scientific studies has potential to 
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hamper invasive species research, and in response, developed the unified framework for 

biological invasions. This framework comprises four stages: transportation, introduction, 

establishment and spread. In this thesis, an invasive plant species is defined as a species that has 

both established and spread to cause ecological, environmental and/ or economic harm. This 

definition falls into the fourth stage of Blackburn’s et al. (2011) unified framework for 

biological invasion.  

Traits of Invasive Plant Species and Research Methods 

To date, attempts to understand and/or predict invasion success of plants have variously used 

functional trait analyses (Goodwin et al., 1999, Rejmánek and Richardson, 1996, Burns, 2006), 

demographic analyses (Burns et al., 2013, Jongejans et al., 2008, Ramula et al., 2008, Buckley 

et al., 2010), spread rate models (Hastings et al., 2006), and ecosystem invasibility approaches 

(Catford et al., 2011, Küehn and Klotz, 2007). These approaches have revealed that some 

environments are more susceptible to invasion (D'Antonio et al., 1999, Marvier et al., 2004), 

and are more likely to be invaded by a particular plant life-form (Pyšek and Prach, 1995, 

Williamson and Fitter, 1996, Dukes, 2001). Correlates of invasiveness include, in some 

instances, a history of invasiveness elsewhere, native latitudinal range, propagule pressure, time 

since introduction and plant attractiveness (Goodwin et al., 1999, Reichard and Hamilton, 1997, 

Herron et al., 2007, Richardson and Pyšek, 2006). Invasive plant species typically exhibit clonal 

reproduction (Song et al., 2013), or autonomous seed production (Hao et al., 2011), and in 

comparison to rare plants are more likely to be polyploid as opposed to diploid (Pandit et al., 

2011). Relative to native, or to introduced but non-invasive plant species, invasive species can 

be taller (Pyšek and Richardson, 2007, Reichard and Hamilton, 1997, Crawley et al., 1996), 

have a greater biomass (Schlaepfer et al., 2010), shorter generation time (Grotkopp et al., 2002), 

faster and more profuse germination (van Kleunen and Johnson, 2007), longer fruiting period 

(Reichard, 1994, Cadotte and Lovett-Doust, 2001), higher relative growth rate and a larger 

specific leaf area (Rejmánek and Richardson, 1996, Burns, 2006), higher fecundity (Burns et al., 

2013, Moravcová et al., 2010, Mason et al., 2008, Burns, 2006), smaller seed mass (Hamilton et 

al., 2005, Grotkopp et al., 2002) (Rejmánek and Richardson, 1996), and in some instances 



 11 

larger seed mass (Daws et al., 2007). Given the array of identified correlates, it is perhaps not 

surprising that few have been consistently associated with invasiveness (Pyšek and Richardson, 

2007).   

As a consequence, weed risk assessment protocols assess the likelihood of a species becoming 

‘invasive’ on a combination of these correlates (Pheloung, 2001, Gordon et al., 2008, Groves et 

al., 2001, Hulme, 2012).  Despite this conservative approach our ability to predict which species 

become invasive remains weak at best. A fundamental goal of invasive species research must 

therefore be to identify key traits that predispose species to becoming invasive outside their 

native range.  

Knowledge Gaps in Invasive Species Research 

This thesis identifies a number of weaknesses in the experimental framework used to predict 

plant invasiveness to date, and subsequently addresses several unexplored questions in the 

ecology of invasive species. Before the novelty of this thesis is discussed, the key literature that 

lead to our observations and hypotheses is summarized as follows:  

Baker (1965) postulated that invasive plant species will possess a number of traits such as large 

size, high fecundity and rapid growth, which convey an advantage over co-occurring, non-

invasive species. To date, invasive plant species have been shown to a) be larger than the native 

or non-invasive introduced species (Pyšek and Richardson, 2007, Reichard and Hamilton, 1997, 

Crawley et al., 1996, van KleunenWeber et al., 2010); b) grow faster than their non-invasive 

relatives in the invaded range (Rejmánek and Richardson, 1996, Burns, 2006); and c) grow 

faster and achieve a larger size (biomass, root: shoot ratio and leaf length) than their non-

invasive congeners in the native range (van Kleunen et al., 2011, Tolvanen et al., 2001). Large 

size however, has not been consistently associated with invasiveness (Burns, 2006).  

In the invaded range high fecundity (seed production) and propagule pressure (the number of 

dispersal units reaching a new site) are correlates of invasiveness (Burns et al., 2013, Burns, 

2006, Moravcová et al., 2010, Mason et al., 2008, Reichard and Hamilton, 1997, Grotkopp et 
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al., 2002, Herron et al., 2007). It is intuitive that more fecund individuals or species have greater 

opportunity to colonize new sites due to the greater number of dispersal units generated 

(Westoby et al., 2002). However, evidence for this is inconsistent (Daehler, 2003) and 

surprisingly scarce. I attribute this to the scarcity of fecundity data, which can be time 

consuming to measure and when collected for the purpose of modelling population 

demographics, is typically not presented in the source literature. 

A conundrum is posed by small seed mass, a correlate of increased fecundity (Mason et al., 

2008, Muller-Landau, 2010, Turnbull et al., 1999) but not a consistent correlate of invasiveness 

(Schlaepfer et al., 2010, van Kleunen and Johnson, 2007, Dawson et al., 2011, Mihulka et al., 

2003). Small seed mass has been identified as a correlate of invasiveness in some instances 

(Hamilton et al., 2005, Grotkopp et al., 2002, Rejmánek and Richardson, 1996, Graebner et al., 

2012) but not in others (Schlaepfer et al., 2010, van Kleunen and Johnson, 2007, Dawson et al., 

2011, Mihulka et al., 2003). Furthermore, the reverse can be true: invasive species have been 

shown to exhibit larger seed mass than a) their co-occurring native relatives (Daws et al., 2007); 

and b) introduced non-invasive species (Lake and Leishman, 2004) in the introduced range. 

This irregularity is interesting because smaller-seeded species are typically more fecund than 

larger-seeded species (Turnbull et al., 1999, Rees and Westoby, 1997, Coomes and Grubb, 

2003), and because high fecundity is a frequently cited correlate of invasiveness in the invaded 

range (Burns et al., 2013, Burns, 2006, Moravcová et al., 2010, Mason et al., 2008). Invasive 

species should therefore exhibit consistently smaller seed mass than non-invasive species, but 

this is not the case (Schlaepfer et al., 2010, van Kleunen and Johnson, 2007, Dawson et al., 

2011, Mihulka et al., 2003). Theory proposes that seed mass (and by extension fecundity) is 

controlled by a trade-off either between competition and colonization (Turnbull et al., 1999), or 

between fecundity and tolerance of stressors (Muller-Landau, 2010). These theories explain 

how species with larger seeds generate larger and stronger seedlings, which are competitively 

superior or exhibit greater tolerance to adverse conditions but consequently trade off seed mass 

against seed number. There is good evidence that larger seeds produce larger seedlings 

(Turnbull et al., 1999, Herrera and Laterra, 2009), and that in some instances seed mass 
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increases between the native and invaded range (Hierro et al., 2013, Graebner et al., 2012, 

Buckley et al., 2003). This indicates that larger seeds are beneficial; yet high fecundity and 

propagule pressure, both identified correlates of invasiveness in the invaded range, trade off 

against large seed mass. The literature does not address the observed seed mass - fecundity 

paradox within the context of invasive plants.   

The trait-based approaches discussed above, whilst extremely valuable, have important 

weaknesses that limit their suitability for identifying predictors of invasiveness. Because these 

weaknesses also apply to demographic studies, I reserve further discussion until after the 

findings and implications of demographic studies are fully explored. 

Thus far Chapter 1 focuses on individual phenotypic and demographic traits associated with 

invasiveness rather than the effect that such traits have on population performance. 

Demography, the study of parameters such as birth, mortality and fecundity that determine 

population size and structure through time (Harper and White, 1974), encompasses the effect of 

phenotypic and demographic traits, and environment, on population performance or spread rate, 

a proxy of invasiveness. Population Projection Matrices (PPM) split life cycles into life-stages, 

and contain life history information as rates of transition or vital rates (stage-specific 

recruitment, stasis & progression) (Stott et al., 2010), and as demographic properties such as the 

stable population growth rate, and indices of transient dynamics (e.g. population inertia (𝜌𝜌∞) 

and reactivity) (Caswell, 2001). Demographic analyses can therefore be used to explore 

multiple approaches in unison. Such analyses have been widely used to inform invasive species 

management strategies (DeWalt, 2006, Emery and Gross, 2005, Golubov et al., 1999, Hastings 

et al., 2006, Emery et al., 1999, Evans et al., 2012) but demographic meta-analyses and multi-

species approaches are few (c.f. Ramula et al. (2008), Burns et al. (2013), Iles et al. (2016)) and 

provide a potentially powerful tool for predicting invasiveness. Those studies that have been 

undertaken have shown that invasive populations tend to exhibit higher projected population 

growth than 1) native populations (Ramula et al., 2008), and 2) introduced populations of non-

invasive congeners with which they co-occur (Burns et al., 2013). These studies also revealed 

fecundity (Burns et al., 2013) and growth (Ramula et al., 2008) to be of greater importance for 
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invasive species than native or non-invasive introduced species, and amongst conspecific native 

populations (Parker et al., 2013). Also of relevance is the observation that highly fecund species 

have a superior ability to amplify or boom in response to exogenous disturbances (Stott et al., 

2010), and amongst introduced species, exhibit more favourable transient dynamics (short-term 

population dynamics), greater long-term population growth and increased population viability 

(proxies of invasiveness) (Iles et al., 2016). Such findings potentially provide the beginnings of 

a framework for identifying the invasive species of the future. However, the demographic and 

trait-based approaches discussed above suffer a number of weaknesses that limit their suitability 

for identifying predictors of invasiveness. These are listed below: 

1) All but a few studies (Schlaepfer et al., 2010, van Kleunen et al., 2011, van Kleunen and 

Johnson, 2007) are performed in the invaded range. This approach potentially conflates 

invasiveness predictors with changes that occur during invasion. For example, it has been 

illustrated that seed size (Hierro et al., 2013, Graebner et al., 2012, Buckley et al., 2003) and 

fecundity (Parker et al., 2013) can increase between the native and invaded range, and that the 

environment contributes to variation in demographic parameters and predictions (Buckley et al., 

2010, Morris and Doak, 2005, Nantel et al., 1996). Measurement of demographic parameters 

and phenotypic traits in the invaded range might therefore measure changes caused by the new 

environment. Under this scenario, identified correlates explain rather than predict invasiveness. 

It can be reasoned that invasive risk assessments protocols informed with explanations of 

invasiveness are not necessarily well suited to identify predictors of invasiveness and prevent 

further introductions of species that subsequently become invasive. This highlights the 

importance of selecting a study system (i.e. native, invaded or introduced range) appropriate to 

the research question (van Kleunen et al., 2010). Of the few studies performed in the native 

range (Schlaepfer et al., 2010, van Kleunen et al., 2011, van Kleunen and Johnson, 2007) none 

consider demographic traits as potential correlates of invasiveness.  

2) Previous studies compare invasive species with species that are native or non-invasive at the 

location of study, but that are reported to be invasive elsewhere (c.f. van Kleunen et al., 2010). 
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Under this scenario, an “invasiveness” trait or syndrome could be obscured or weakened by 

comparisons with species that are in fact invasive elsewhere.  

3) Previous studies (Burns et al., 2013, Burns, 2006, Moravcová et al., 2010, Mason et al., 

2008) did not consider the effect of plant size on fecundity. Plant size is important because 

larger individuals ordinarily exhibit higher fecundity (Weiner et al., 2009) and because greater 

plant biomass (Schlaepfer et al., 2010, van Kleunen et al., 2011), height and larger specific leaf 

area (Rejmánek and Richardson, 1996, Pyšek and Richardson, 2007) have been identified as 

correlates of invasiveness. In the absence of considering plant size, previous studies were unable 

to determine if invasive plant species exhibit a constitutively higher fecundity (higher fecundity 

per-unit-size) or are larger and are therefore more fecund than non-invasive species. 

4) None recognise the seed mass: fecundity paradox. If fecundity in the native range were an 

important predictor of invasiveness as suggested by studies in the invaded range, invasive 

species would be expected to exhibit a significantly smaller seed mass than their sympatric non-

invasive congeners. Alternatively, it would be predicted that invasive species are those which 

escape the typical trade-offs of competition and colonization, or of fecundity and tolerance, and 

therefore exhibit higher fecundity than non-invasive species, without a corresponding reduction 

in seed mass. 

5) Whilst several studies account for the effect of phylogeny using congeneric pairs (Burns et 

al., 2013, Schlaepfer et al., 2010, van Kleunen et al., 2011), none explore the potential of 

phylogeny to predict invasiveness. Such opportunities have been hampered in the absence of 

demographic data for a large number of species that are representative of a diversity of plant 

families. 

Scope of Thesis 

This thesis addresses the shortcomings and explores the research opportunities listed above by 

studying life history traits of invasive and non-invasive plants in 1) the native range, in order to 

predict rather than explain, invasiveness; and 2) between ranges to identify changes in 
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demographic performance that facilitate invasion success, whilst simultaneously controlling for 

phylogeny, environment and global invasive status. This work has resulted in four discrete data 

chapters (Chapters 2 – 5), which collectively provide new insights into the ecology of invasive 

species. Chapter 2 focuses on wild plants in their native range to compare life history traits of 

species known to be invasive elsewhere, with their exported but non-invasive sympatric 

relatives. Specifically, Chapter 2 compares plant size between invasives and non-invasives, then 

controls for plant size to ask whether invasive plants exhibit higher fecundity, and higher 

probability of seed-set, than non-invasives. Using the same wild populations Chapter 3 asks 

whether invasive and non-invasive congeners differ in seed mass, reproductive investment (seed 

production x seed mass) and germination probability. Chapter 3 builds on the findings of 

Chapter 2 by addressing the unexplored seed mass – fecundity paradox in the ecology of 

invasive plant species. Chapter 4, a meta-analysis utilizing 1202 spatial populations 

representing 501 plant species from the COMPADRE Plant Matrix Database (COMPADRE 3.0.0) 

(Salguero‐Gómez et al., 2014), compares the stable rate of population increase (λmax) and inertia 

(𝜌𝜌∞) [a measure of how much larger or smaller a non-stable population becomes compared with 

an equivalent stable population, as a result of transient dynamics (Stott et al., 2012)] of invasive 

and non-invasive plants, whilst simultaneously controlling for phylogeny, range [native or 

naturalised] and global invasion status. Chapter 5 builds on Chapter 4 by comparing the 

demographic performance of seven invasive species between the native and invaded range to 

determine if demographic processes change between ranges, and also to identify the type of 

analyses that are most likely to reveal demographic or life history differences that facilitate 

invasion.  

Finally, the discussion draws together the findings of each chapter and presents a framework for 

identifying those plant species to be quarantined in order to prevent further deleterious 

introductions and establishment of invasive populations. The consequences for existing weed 

risk assessment protocols are discussed, and future research opportunities highlighted. 
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Thesis Format and Structure 

Chapters 2 – 5 are presented in their published or submitted form. Each chapter is therefore 

presented in a different format in accordance with the journal specific submission guidelines. 

There may be some repetition between chapters, particularly within method sections due to 

overlapping methodologies. In accordance with submission guidelines, references are presented 

after each chapter. 
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Invasiveness of plants is predicted by size and fecundity in the 

native range 

Abstract 

1. An important goal for invasive species research is to find key traits of species that 

predispose them to being invasive outside their native range.   

2. Comparative studies have revealed phenotypic and demographic traits that correlate 

with invasiveness among plants. However, all but a few previous studies have been 

performed in the invaded range, an approach which potentially conflates predictors of 

invasiveness with changes that happen during the invasion process itself.   

3. Here we focus on wild plants in their native range to compare life history traits of 

species known to be invasive elsewhere, with their exported but non-invasive relatives.  

Specifically we test four hypotheses: that invasive plant species 1) are larger; 2) are 

more fecund; 3) exhibit higher fecundity for a given size; and 4) attempt to make seed 

more frequently, than their non-invasive relatives in the native range. We control for the 

effects of environment and phylogeny by using sympatric congeneric or confamilial 

pairs in the native range. 

4. We find that invasive species are larger than non-invasive relatives. Greater size yields 

greater fecundity, but we also find that invasives are more fecund per-unit-size. 

5. Synthesis: We provide the first multi-species, taxonomically controlled comparison of 

size and fecundity of invasive versus non-invasive plants in their native range. We find 

that invasive species are bigger, and produce more seeds, even when we account for 

their differences in size. Our findings demonstrate that invasive plant species are likely 

to be invasive as a result of both greater size and constitutively higher fecundity. This 

suggests that size and fecundity, relative to related species, could be used to predict 

which plants should be quarantined. 

Keywords: basal stem diameter, demography, fecundity, invasive, native, phylogeny, plant  
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Introduction 

Invasive species consistently rank among the five major threats to biodiversity, worldwide (Sala 

et al. 2000; Butchart et al. 2010; Kareiva & Marvier 2011) and are costly to the global economy 

(Pimentel, Zuniga & Morrison 2005). Given the economic (Pimentel, Zuniga & Morrison 2005) 

and ecological costs of invasive plant species (Vilà et al. 2011), it is unsurprising that 

considerable attention has been given to understanding the characteristics (Rejmánek & 

Richardson 1996; Ramula et al. 2008; Pyšek, Křivánek & Jarošík 2009; Burns et al. 2013) and 

the underlying mechanisms associated with invasion success (Prentis et al. 2008; Davidson, 

Jennions & Nicotra 2011). The many traits and mechanisms thought to influence invasiveness 

have been reviewed extensively elsewhere (Pyšek & Richardson 2007; Prentis et al. 2008; van 

Kleunen, Weber & Fischer 2010; Davidson, Jennions & Nicotra 2011); here we focus on the 

demographic traits of size and fecundity, first because they provide a close link between 

phenotype, life history and population dynamics (Stott, Townley & Hodgson 2011) and second 

because, if shown to be markers of invasiveness, they are relatively simple to measure in the 

field. 

As postulated by Baker (1965), it is intuitive that invasive species will be more fecund and grow 

faster than non-invasive species. Fast growth and large size may afford introduced species an 

advantage over the floristic assemblage of the invaded environment. Evidence for this comes 

from studies that have shown invasive species to a) be larger than their native or non-invasive 

introduced counterparts (Reichard & Hamilton 1997; Pyšek & Richardson 2007; van Kleunen, 

Weber & Fischer 2010); b) grow faster than their non-invasive congeners in the invaded range 

(Grotkopp, Rejmánek & Rost 2002; Burns 2006); and c) grow faster and attain a larger size 

(biomass, root: shoot ratio and leaf length) than their non-invasive congeners in the native range 

(van Kleunen et al. 2011). However, Burns (2006) found that invasive species of 

Commelinaceae were not significantly larger than their non-invasive congeners. Fecundity has 

also been identified as an important correlate of invasiveness in the invaded range (Burns 2006; 

Mason et al. 2008; Moravcová et al. 2010; Burns et al. 2013). Propagule pressure (the number 

of seeds or viable clonal material reaching a new site) is an important correlate of invasiveness 
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(Holle & Simberloff 2005), therefore more fecund individuals or species can be assumed to 

have greater opportunity to colonize new sites (Westoby et al. 2002). However, evidence for 

this is both conflicting and surprisingly scarce. We attribute this to the paucity of fecundity data 

in field guides, which form a typical source of data for comparative analyses of traits associated 

with invasiveness. In the invaded range, invasive species have been shown to exhibit higher 

fecundity than a) their introduced, non-invasive congeners (Burns 2006; Burns et al. 2013), b) 

non-invasive, introduced, unrelated species (Moravcová et al. 2010), and c) native species 

(Mason et al. 2008). However, conversely, Daehler (2003) found that of thirteen comparisons of 

invasive-native confamilial pairings in the invaded range, invasive species had no consistent 

reproductive advantage over co-occurring natives.  

These approaches, whilst enormously valuable, have three weaknesses that limit their suitability 

for identifying predictors of invasiveness:  

1) All, with the exception of (van Kleunen & Johnson 2007; Schlaepfer et al. 2010; van 

Kleunen et al. 2011), are performed in the invaded range, an approach which conflates 

predictors of invasiveness with changes that may happen during the invasion process. Of the 

studies performed in the native range (van Kleunen & Johnson 2007; Schlaepfer et al. 2010; van 

Kleunen et al. 2011), none consider fecundity as a potential correlate of invasiveness.  

Environmental variation is known to contribute to significant variation in demographic 

parameters and predictions (Morris & Doak 2005; Buckley et al. 2010). Measuring 

demographic parameters, such as fecundity, in the invaded range, is therefore a measure 

following change induced by the novel environment. We suggest that demographic parameters 

associated with invasiveness in the invaded range may be poor predictors of invasiveness, when 

the objective is to identify potential invaders prior to their introduction.   

2) All but one study (van Kleunen, Weber & Fischer 2010) compare invasive species with 

species that are native or non-invasive at the study location only: several of these native or ‘non-

invasive’ species are known to be invasive elsewhere. If invasive species share an 
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“invasiveness” trait or syndrome, we should expect comparisons with species that are invasive 

elsewhere to mask or weaken potential correlates of invasiveness.  

3) None considers the effect of plant size on fecundity. Plant size is critical because we know 

that within a species, larger individuals typically exhibit higher fecundity (Weiner et al. 2009) 

and because increased plant height, larger specific leaf area (Grotkopp, Rejmánek & Rost 2002; 

Pyšek & Richardson 2007) and biomass (Schlaepfer et al. 2010; van Kleunen et al. 2011) have 

been identified as correlates of invasiveness. This raises an important question: are invasive 

plant species invasive because they are larger and therefore more fecund, or because they 

exhibit a constitutively higher fecundity, i.e. higher fecundity per-unit-size, than their non-

invasive counterparts?   

Here we focus on traits expressed by wild plants in their native range, and compare them 

between species that are invasive elsewhere, and species that are established elsewhere but not 

invasive. We control for the effects of phylogeny by using congener/ confamilial pairs (Burns et 

al. 2013). We also control for environmental effects by studying sympatric populations in a 

restricted geographical zone (mid and west Cornwall, UK). We hypothesize that invasive plants 

1) are larger than their native, non-invasive relatives; 2) are therefore more fecund; 3) but for a 

given size, exhibit higher fecundity; and 4) attempt to make seed more frequently than their 

native, non-invasive relatives. To our knowledge, this is the first study to investigate fecundity 

in the native range as a predictor of invasiveness. This novel approach accounts for the potential 

effects of phylogeny, environment and global invasive status, and has the potential to identify 

true differences in life history parameters (in this instance size and fecundity) between invasive 

and non-invasive species. 

Materials and Methods 

Species 

Five sympatric congener/ confamilial pairs of plant species (Table 1) were selected on the basis 

that each pair a) comprised one native species that is invasive elsewhere and one native species 
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that is introduced but non-invasive elsewhere, b) occurred sympatrically in the native range, c) 

comprised accessible and sufficiently large populations to facilitate monitoring, and d) 

represented a broad range of angiosperm families. Where possible, species pairs e) occupied a 

similar geographical native range, and f) belonged to the same life-form (i.e. perennial or 

annual; herb or shrub). 

Plant status was determined by searching the Global Invasive Species Database (GISD) 

http://www.issg.org/database, the Invasive Species Compendium (CABI) 

http://www.cabi.org/isc, the Australian Invasive Weed List 

http://www.environment.gov.au/biodiversity/invasive/weeds/index.html, the Australian Plant 

Census (CHAH) http://biodiversity.org.au/apni.reference/181584, the European and 

Mediterranean Plant Protection Organization (EPPO) database 

http://www.eppo.int/DATABASES/databases.htm, Schedule 9 of the Wildlife and Countryside 

Act (1981) http://jncc.defra.gov.uk, the United States Department of Agriculture (USDA) Plant 

Database http://plants.usda.gov/checklist.html, the National Institute for Environmental Studies 

(NIES) invasive species of Japan database http://www.nies.go.jp/biodiversity/invasive, the 

National Pest Plant Accord http://www.mpi.govt.nz and by using the following search term in 

Google ‘Latin name invasive’ (accessed April 2013). Species are considered invasive when 

designated as ‘invasive’ (also ‘weedy’ or ‘noxious’ in the USDA Plant Database) in one or 

more of the databases listed above or when designated as invasive by a Government Agency or 

Academic Institution. CABI cites two of our ‘invasive’ congeners (Silene dioica and 

Rhinanthus minor subsp. minor) as invasive. Whilst this status could not be verified from the 

CABI cited literature, both species are notoriously ‘weedy’ (Hulst, Shipley & Thériault 1987; 

Jenkins & Keller 2011), and have more citations in the Global Compendium of Weeds (GCWs) 

than their ‘non-invasive’ congeners (Randall 2012). The GCWs collates citations referring to 

‘weedy behavior’ outside of the native range; the number of citations for each listed species has 

been used previously to determine global invasive status, and to successively identify correlates 

of invasiveness (Schlaepfer et al. 2010; Jenkins & Keller 2011). We therefore consider the 

designation of these species as ‘invasive’ to be correct. A species was considered to be 

http://www.issg.org/database
http://www.cabi.org/isc
http://www.environment.gov.au/biodiversity/invasive/weeds/index.html
http://biodiversity.org.au/apni.reference/181584
http://www.eppo.int/DATABASES/databases.htm
http://jncc.defra.gov.uk/
http://plants.usda.gov/checklist.html
http://www.nies.go.jp/biodiversity/invasive
http://www.mpi.govt.nz/
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‘introduced’ if it was naturalised outside of its native range. A species was considered to be 

native to the UK if listed as such on the Online Atlas of the British and Irish Flora 

http://www.brc.ac.uk/plantatlas/. 

  

http://www.brc.ac.uk/plantatlas/
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Table 1. Species pairs: life form, breeding system, status and mean seed production per inflorescence 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Mating system derived from http://www.ecoflora.co.uk 

** Invasive status based on number of citations in the GCWs (Randall 2012) 

	

Family Species Common Name Life-
Form 

Breeding System* Mean Seed 
Production Per 
Inflorescence 

Status Citation 

Caryophyllaceae Cerastium fontanum Common mouse-
ear 

Per Hermaphrodite; 
protoandrous; automatic self 
or cross 

52 Invasive USDA; ISSG 

  Cerastium diffusum Sea mouse-ear Ann Hermaphrodite; automatic 
self 

19 Introduced USDA 

Caryophyllaceae Silene dioica Red campion Per Dioecious; obligatory cross 277 Invasive (Jenkins & Keller 2011); 
CABI; (Randall 2012)** 

  Silene uniflora Sea campion Per Gynodioecious; 
protoandrous; automatic self 
or cross 

57 Introduced CHAH 

Ericaceae Calluna vulgaris Heather Shrub Hermaphrodite; weakly 
protoandrous; cross 

8 Invasive Australian Invasive Weed 
List; National Pest Plant 
Accord; ISSG  

  Erica cinerea Bell heather Shrub Hermaphrodite; weakly 
protoandrous; cross or 
automatic self 

16 Introduced CHAH 

Scrophulariaceae Rhinanthus minor 
subsp. Minor 

Yellow rattle Ann Hermaphrodite; automatic 
self or cross 

11 Invasive (Hulst, Shipley & Thériault 
1987); CABI; (Randall 
2012)** 

  Pedicularis sylvatica Lousewort Per Hermaphrodite; cross 13 Introduced USDA 

Apiaceae Daucus carota Wild carrot Per Hermaphrodite; 
protoandrous; cross 

934 Invasive USDA 

  Eryngium maritimum Sea holly Per Hermaphrodite; 
protoandrous; cross 

44 Introduced USDA 
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Location 

Each study location (five in total: one for each species pair) was selected on the bases that it 

supported both species of each sympatric pair, and that these populations could reliably be 

assumed to be native. To ensure that the sample populations were of native provenance, all sites 

were characterized by natural or semi-natural vegetation, and sites were excluded where past 

and present management had the potential to have introduced plants of unknown provenance.  

Sites supporting sympatric species pairs were identified using the ERICA Database held by Dr. 

Colin French. ERICA, a database compiled by amateur and professional botanists, holds more 

than 1.3 million geo-referenced vascular plant records of the Cornish flora. To locate our 

sample populations we produced co-incidence maps showing the 100m distribution of each 

congener pair. Accessible sites were then ground-truthed to locate each sympatric population.  

Data Collection 

Permanently marked, geo-referenced quadrats were installed at each site. These were positioned 

in order to capture a representative sample of each sympatric population. Quadrat size was 

determined by the species’ area-weighted density and ranged from 0.5 x 0.5m to 1m x 1m.  

Larger species typically necessitated larger quadrats; however, within each species pair, quadrat 

size was the same. The number of quadrats sited per species ranged from eight to thirteen (mean 

= 10); this variation is a result of the species area-weighted density and abundance at the site.  

Each quadrat (permanently marked with buried metal chips) was made relocatable using a 

Global Positioning System (GPS) to provide a coarse location (accurate to within 10m), and a 

metal detector to determine the exact location.   

Individual plants within each quadrat were marked with coloured, biodegradable, hemp string 

and were assigned a unique identification number corresponding to the individual’s position 

within the quadrat. We consider an individual to be an entire plant or, for clonal rhizomatous 

species, a ramet (an individual belonging to a clonal group of genetically identical individuals) 

and use the term ‘plant(s)’ interchangeably to refer to these individuals in this paper. Using the 

physical markers and/or the unique identification code it was possible to locate the same 
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individuals repeatedly between May and November 2013, encompassing late spring, summer 

and autumn. Each sample population was relocated on three occasions, the timing of which was 

determined by the reported plant life cycle and by interim visits. During each visit, we measured 

plant size (basal stem diameter, rosette diameter and rosette perpendicular diameter) and 

recorded the life-stage (i.e. seedling, vegetative, reproductive etc.) of all individuals within each 

quadrat. Basal stem diameter, defined as the diameter of the stem at ground level, was carefully 

measured to avoid damaging the plant, using 150mm, 0.1mm precision, dialMax Vernier Dial 

Calipers. If present, we also recorded the number of seed capsules or racemes per plant (from 

which we calculated fecundity as described below). Silene dioica and to a lesser extent 

Cerastium fontanum were observed to exhibit a long flowering period lasting, in some 

instances, the duration of our study. For these species the reported fecundity measure is 

considered conservative. Fortunately both Silene dioica and Cerastium fontanum are invasive 

and therefore a conservative measure will only favor the null hypothesis. The remaining eight 

species exhibit a comparatively short flowering period and do not set seed until flowering has 

ceased; reported fecundity is therefore considered an accurate measure of annual fecundity per 

individual.   

In accordance with Burns et al. (2013) seed number was used to measure fecundity. To 

determine individual fecundity the number of seed capsules/ racemes per plant was counted. A 

representative sample of single seed capsules/ racemes were collected from 30 individuals per 

species, and seeds counted using an Elmor C1 seed counter. The average number of seeds per 

fruit/ raceme was then calculated. Individual fecundity was determined by multiplying average 

seed number per fruit/ raceme by the number of fruits per plant.   

Data Analysis 

Exploratory analysis (mixed-effects model of log seed number against log basal stem diameter, 

rosette diameter and rosette perpendicular diameter, with species identity as a random effect) 

revealed basal stem diameter to be the best correlate of fecundity for all species; we therefore 

used basal stem diameter to represent plant size in all subsequent data analysis. To determine 
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whether invasive species were larger than their native non-invasive relatives, we used 

generalised linear mixed-effects models (GLMM) with ‘species pair’ as a random effect, 

‘species’ and ‘quadrat’ as nested random effects, ‘basal stem diameter’ as a Gaussian response 

variable, and ‘invasive status’ as a fixed effect. To determine whether invasive species were 

more fecund we used the same modelling framework but with log-transformed seed number as 

the Gaussian-distributed response variable. The nesting of the random effects is crucial in this 

design: measures of size and fecundity for each individual plant are pseudoreplicates that 

contribute to the means for each species in each phylogenetic pair. The nested models correctly 

tested the influence of invasiveness on mean traits in each pair. To determine whether, for a 

given size, invasive species exhibit higher fecundity than their native non-invasive relatives, 

again we used the same modelling framework, but with ‘invasive status’ and ‘basal stem 

diameter’ as fixed effects. We tested the impact of invasive status and basal stem diameter on 

seed set, using likelihood ratio tests between models that included or excluded the 

“invasiveness” fixed effect.   

To determine whether invasive species were more likely to make seed than their non-invasive 

relatives, we used the same modelling framework, but with “attempt to set seed” as a binary 

response variable: each plant either flowered and produced seed, or did not. All analyses were 

performed using the lme4 package (Bates et al. 2014) in RStudio Version 0.97.551 (R Core 

Team 2014). Model checks, following log-transformation of seed number and basal stem 

diameter, confirmed homoscedasticity and Normality of standardised residuals in all analyses. 

Results 

Invasive species had significantly larger basal stem diameters than their non-invasive relatives 

(χ2 = 4.4487, d.f. = 1, P = 0.035) (Fig. 1a). All pairs exhibited this relationship (Fig. 2a).  

Across all species basal stem diameter was positively correlated with fecundity (χ2 = 230.62, 

d.f. = 1, P < 0.001) (Fig. 3). We found that invasive species exhibit significantly higher 

fecundity than their non-invasive relatives (χ2 = 6.3753, d.f. = 1, P = 0.012 (Fig. 1b). We also 

found that invasive species exhibit significantly higher fecundity per-unit-size than their non-
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invasive relatives (χ2 = 4.2286, d.f. = 1, P = 0.039; Fig.1c). When considering the raw data, four 

out of five of our congener / confamilial pairs exhibited this relationship (Fig. 2b & 2c). The 

fifth confamilial pair (Scrophulariaceae) did not fit the overall pattern: for a given basal stem 

diameter the non-invasive species Pedicularis sylvatica exhibited higher fecundity than its 

invasive relative Rhinanthus minor subsp. minor (Fig. 2c). Note, however, that a greater 

proportion of the population of the invasive R. minor subsp. minor set seed (Fig. 2d).    

Finally, we found that, across phylogenetic pairs, invasive species do not attempt to make seed 

more frequently than their native, non-invasive relatives (χ2 = 0.1726, d.f. = 1, P = 0.678; Fig. 

1d).   
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Figure 1. Differences in phenotypic and demographic traits between invasive and non-invasive 

species, in the native range (Chapter 2). Bars show mean traits (+/- standard error bars) derived 

from hierarchical mixed effects models, controlling for phylogenetic pairing and averaged 

across pseudoreplicates within species. a) basal stem diameter for invasive (black bar) and non-

invasive (grey bar) species; b) seed number for invasive and non-invasive species; c) seed 

number for invasive and non-invasive species at a 1mm basal stem diameter (BSD); and d) 

probability of invasive and non-invasive species attempting to set seed. The y-axis of figure 1a 

– 1c is on a log scale. 
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Figure 2. Differences in phenotypic and demographic traits between invasive and non-invasive 

species, in the native range (Chapter 2). Bars show mean traits (+/- standard error bars) for each 

species; ‘n’ represents the number of individuals sampled. a) mean (log) basal stem diameter for 

invasive (black bar) and non-invasive (grey bar) species within each congener/ confamilial pair; 

b) mean (log) seed number for invasive and non-invasive species within each congener/ 

confamilial pair; c) mean (log) seed number (fecundity) for invasive and non-invasive species 

within each congener / confamilial pair at a 1mm basal stem diameter; and d) probability of 

invasive and non-invasive species within each congener/ confamilial pair attempting to set seed. 

The y-axis of figure 2a – 2c is on a log scale. 
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Figure 3. The relationship between basal stem diameter and fecundity (Chapter 2). Points 

represent measurements of individual plants. Members of each confamilial pair share the same 

grayscale shading. Fitted line represents a common slope across species and a single intercept 

for the “average” species. 
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Discussion 

Biological plant invasions are both economically (Pimentel, Zuniga & Morrison 2005) and 

ecologically costly (Vilà et al. 2011) and so there is considerable impetus to identify predictors 

of invasiveness. By measuring fecundity, size and population structure for five sympatric 

congener/ confamilial pairs in the native range, we tested four hypotheses: that invasive plant 

species 1) are larger; 2) are more fecund; 3) exhibit higher fecundity for a given size; and 4) 

attempt to make seed more frequently, than their non-invasive relatives in the native range.   

We confirmed three of our four hypotheses; invasive plant species are larger, more fecund, and 

more fecund per-unit-size, than their native, non-invasive relatives. Hypothesis 4 was rejected: 

invasive species do not attempt to make seed more frequently than their native, non-invasive 

relatives. Our findings, and those of comparative studies in the invaded range (Burns 2006; 

Mason et al. 2008; Moravcová et al. 2010; Burns et al. 2013), support Baker’s (1965) 

postulation that invasive/ weedy species are likely to grow faster and be more fecund.  

However, unlike other comparative studies, we also considered the effect of plant size on 

fecundity. Plant size is important because we know that within a species, larger individuals 

typically exhibit higher fecundity (Weiner et al. 2009) and because increased plant height, 

larger specific leaf area (Grotkopp, Rejmánek & Rost 2002; Pyšek & Richardson 2007) and 

biomass (Schlaepfer et al. 2010; van Kleunen et al. 2011) have been identified as correlates of 

invasiveness. This raises an important question: are invasive plant species invasive because they 

are larger (and therefore more fecund) or because they exhibit a constitutively higher fecundity 

(i.e. higher fecundity per-unit-size) than their non-invasive counterparts? We show that whilst 

invasive plant species are larger than their native, non-invasive relatives, invasives are also 

constitutively more fecund. Furthermore, we also consider the effect of population structure on 

fecundity. Population structure is important because a species exhibiting high individual 

fecundity but belonging to a population with few reproductive individuals may perform poorly 

in comparison to a species exhibiting lower individual fecundity but belonging to a population 

with many reproductive individuals. We find no evidence that invasive species attempt to make 

seed more frequently than their native non-invading relatives.  
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Whilst our findings clearly demonstrate that invasive species are larger and exhibit 

constitutively higher fecundity than their native, non-invading relatives, there is an exception 

amongst our congener/ confamilial pairs, which deserves discussion. Four of five pairs comprise 

an invasive species that exhibits higher fecundity than its non-invading relative. The only 

exception is the Scrophulariaceae pair for which the reverse is true: the non-invasive species 

Pedicularis sylvatica exhibits higher fecundity than its invasive relative Rhinanthus minor 

subsp. minor. One possible explanation pertains to the life form of each congener. Pedicularis 

sylvatica, the non-invading species, is a perennial; therefore whilst this species exhibits higher 

individual fecundity than its invasive congener, R. minor subsp. minor, the invasive congener is 

an annual that belongs to a population with a higher proportion of reproductive individuals in 

each growth season. The potential influence of plant breeding system on fecundity also deserves 

discussion. Several authors have identified autonomous seed production to be an important 

correlate of invasiveness (Rambuda & Johnson 2004; van Kleunen et al. 2008; Hao et al. 2011).  

High fecundity could therefore be correlated with a particular type of breeding system.  

However, amongst our congeners a greater number of non-invasive species exhibit autonomous 

seed production; furthermore within species pairs there is considerable overlap in breeding 

system (Table 1). This indicates that high fecundity is independent of breeding system in this 

study.  

Comparative studies in the invaded range give three possible explanations for high fecundity as 

correlate of invasiveness (Mason et al. 2008; Burns et al. 2013): 1) invasives are able to 

increase allocation to seed production following release from natural enemies or competition; 2) 

invasives increase allocation to growth following release from natural enemies or competition, 

with a correlated increase in seed production; and 3) the invaded environment selects for 

introduced species with a constitutively high fecundity.  Environmental variation contributes to 

significant variation in demographic parameters (Morris & Doak 2005; Buckley et al. 2010), 

therefore measuring demographic parameters in the invaded range cannot distinguish between 

constituent traits, or trait changes (caused by phenotypic plasticity or microevolution) that are 

induced by the novel environment. The same principle can be applied to phenotypic traits 
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relating to size (Schlaepfer et al. 2010). Consequently, comparative studies in the invaded range 

(Mason et al. 2008; Burns et al. 2013) were unable to determine which explanation was most 

plausible. van Kleunen et al. (2011) and Schlaepfer et al. (2010) found that invasive species are 

larger (shoot: root ratio, leaf length and biomass) than their non-invasive relatives in the native 

range, indicating that larger species are more likely to be invasive. Our results support these 

findings: we show that invasive species are larger than their non-invasive relatives; however, 

uniquely we show that invasive species are also constitutively more fecund than their non-

invasive relatives in the native range, i.e. prior to any change induced by the novel environment.  

Our findings suggest that the invaded environment is a biased filter that favours introduced 

species that are both large and constituently more fecund.   

Propagule pressure has been identified as a correlate of invasiveness (Reichard & Hamilton 

1997; Herron et al. 2007) and it seems probable that inter-regional propagule pressure (the 

number of dispersal units transported to a new region outside of the native range) is biased; 

some species are more likely to be transported than other species. We know that plant 

attractiveness is a correlate of invasiveness (Pyšek & Richardson 2007) so perhaps larger and 

more fecund plant species are more likely to be transported due to their aesthetic qualities (i.e. 

inflorescence size) or functionality (i.e. robustness). Evidence for this comes from a positive 

correlation between inflorescence size and fecundity in the invasive plant Silene latifolia (Delph 

& Herlihy 2012) and from a study of South African Iridaceae. Amongst South African Iridaceae 

a species is more likely to be naturalised if it is in horticultural use, and taller species are more 

likely to be used in horticulture (van Kleunen, Johnson & Fischer 2007). Large size may also 

afford introduced species a competitive advantage over the existing floristic assemblage upon 

arrival.   

The probability of a species colonizing a new site is assumed to increase with the number of 

dispersal units (seeds or clonal material) produced (Westoby et al. 2002). Evidence for this 

comes from a positive correlation between the number of seeds per plant, amongst naturalised 

Crotalaria species in Taiwan, and species frequency (Wu et al. 2005). More frequently 

occurring, and thus more ‘invasive’ Crotalaria species, are more fecund than their less frequent, 
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naturalised relatives (Wu et al. 2005). It therefore seems probable that more fecund species are 

more likely to be transported to a new region; and once present have a better capacity to spread 

rapidly due their ability to exert greater local propagule pressure (the number of dispersal units 

transported within the introduced range). High fecundity may also afford additional, more 

complex, advantages for invading species. The ‘perfect’ invasive species is a species that 

colonises fast, persists and dominates at carrying capacity. Typical trade-offs of colonization 

and competitive ability are unlikely to be experienced by the ‘perfect’ invasive species. Classic 

theory suggests that seed size (and by extension fecundity) is determined by the trade-off 

between competition and colonization (Turnbull, Rees & Crawley 1999). However, more 

recently Coomes et al. (2002) found that asymmetric competition of co-occurring annual forbs 

was insufficient to determine seed size; these authors suggest that variation in seed size is more 

likely to reflect a species’ ability to contract and expand its population in response to 

environmental conditions (Coomes et al. 2002; Coomes & Grubb 2003). Smaller seeded and 

therefore more fecund species, have a greater capacity to ‘boom and bust’ (Stott et al. 2010) in 

response to environmental conditions and are typically more abundant than larger seeded, less 

fecund species (Coomes et al. 2002; Coomes & Grubb 2003). This suggests that more fecund 

species have a competitive advantage; however, understanding the relationship between high 

fecundity and population dynamics is less clear. The emerging study of transient dynamics 

(short-term dynamics of populations that are not at equilibrium) offers a potential explanation 

(Townley et al. 2007; Stott, Townley & Hodgson 2011). 

Transient dynamics of short-term boom and bust have been shown to be exaggerated among 

species with high fecundity (Stott, Hodgson & Townley 2012). Furthermore, a comparative 

analysis of the transient population dynamics of 108 plant species identified that populations 

predicted to grow faster in the long-term exhibit greater potential magnitudes of transient 

amplification and attenuation (short term increase and decrease respectively relative to 

asymptotic growth) than slower growing or declining populations (Stott et al. 2010). We know 

that amplification is linked to fecundity (Stott, Hodgson & Townley 2012), and that invasive 

populations typically grow faster than native or non-invasive populations in the long-term 



 47 

(Ramula et al. 2008; Burns et al. 2013). Therefore, perhaps the comparatively high fecundity of 

invasive populations compared to those of their native non-invading relatives reflects their 

greater propensity to amplify in the short-term in response to exogenous disturbances, allowing 

them to colonise vacant niches quickly, coupled with faster population growth in the long-term.  

This would be consistent with the observation that disturbed environments (those where 

exogenous disturbances occur more frequently) are more readily invaded than stable ones 

(D'Antonio, Dudley & Mack 1999; Marvier, Kareiva & Neubert 2004).   

Our approach and findings are of direct relevance to the field of invasion biology and ecology. 

This is the first study to make interspecific comparisons of fecundity as a function of plant size 

and population structure amongst invasive/ non-invasive congener and confamilial pairs that are 

representative of multiple life forms. Furthermore, this study is the first to make such 

comparisons in the native range. Performance in the native range is very important because as 

invasion biologists / ecologists we are interested in identifying predictors of invasiveness. We 

know that environmental variation has potential to cause significant variation in demographic 

parameters and predictions (Morris & Doak 2005; Buckley et al. 2010); we therefore suggest 

that demographic parameters associated with invasiveness in the invaded range are poor 

predictors of invasiveness, when the objective is to identify potential invaders prior to their 

introduction.   

We acknowledge that our study samples a small number of species pairs, in a restricted 

geographical area, during one plant growth season. Our findings might therefore be specific to 

the location of study and the plant assemblage present. Future work should establish whether 

our findings hold true for a greater number of phylogenetically-paired species that are 

representative of multiple life forms, and at a global scale. Future work should also test whether 

invasive populations, exhibiting high fecundity in the native range, grow faster in the long-term 

than their sympatric, non-invasive, less fecund relatives; determine the importance of other 

demographic parameters in the growth and decline of invasive and non-invasive populations in 

the native range; and test the hypothesis that higher fecundity yields greater potential for both 

transient population amplification in response to disturbance, and long-term population growth. 
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Invasive plants escape the tolerance-fecundity trade-off 

Abstract 

Predicting which plants become invasive, and why, is essential for informing prevention 

strategies and control programmes. We identified, and sought to explain, a paradox in the 

ecology of invasive species: high fecundity and propagule pressure are important correlates of 

invasiveness, and smaller seeded plant species tend to be more fecund than larger seeded 

species. Small seed mass should therefore be consistently correlated with invasiveness but it is 

not.  

We compared the life history traits of species that are invasive in their non-native range, with 

the traits of their relatives that have also been introduced but are not invasive.  We compared the 

traits of such paired species living in sympatry in their native range to test four hypotheses: 1) 

invasive and non-invasive species will not differ in seed mass; but invasive species will exhibit 

2) higher reproductive investment (seed production x seed mass); 3) higher reproductive 

investment per-unit-size; and 4) higher germination probability than their non-invasive 

relatives.   

We find that invasive and non-invasive species do not differ in seed mass or germination 

probability but that invasive species exhibit higher reproductive investment, and higher 

reproductive investment per-unit-size than their non-invasive sympatric relatives.  This indicates 

that invasive species escape the typical trade-off of competition and colonization, or of 

fecundity and tolerance, and exhibit higher fecundity than non-invasive species, without a 

corresponding reduction in seed mass. High reproductive investment, relative to related species, 

is an important predictor of invasiveness. 

Keywords: Demography, fecundity, invasive, native, reproductive investment, seed mass  
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Introduction 

The ecological and monetary cost of invasive plant species is well documented (Pimentel et al. 

2005; Vila et al. 2011). Impacts on native communities range from decreased species richness 

and reduced fitness of native species (Hejda et al. 2009; Vila et al. 2011) to increased disease 

transmission, soil erosion and frequency and severity of wildfires (Bradley et al. 2006; Pimentel 

et al. 2005). For biologists studying and managing invasions, key research objectives are to 

identify predictors of invasiveness, and their causal mechanisms (Burns et al. 2013; Castro-Díez 

et al. 2011; Hovick et al. 2012) to inform prevention strategies and control programmes 

(Hastings et al. 2006; Ramula et al. 2008).   

Traits that have been repeatedly identified as correlates of invasiveness in plants include large 

size (Burns 2006; Castro-Díez et al. 2011; Jelbert et al. 2015; Schlaepfer et al. 2010), high 

relative growth rate (RGR) (Burns 2006; Grotkopp et al. 2002; van Kleunen et al. 2010), high 

fecundity (Burns et al. 2013; Jelbert et al. 2015; Mason et al. 2008), greater propagule pressure 

(Goodwin et al. 1999; Holle and Simberloff 2005), and high germination probability (van 

Kleunen and Johnson 2007). Overrepresentation of such traits among invasive species is 

intuitive: high fecundity increases the number of dispersal units (propagules) produced, and 

therefore the number of dispersal units that are likely to reach new sites (Westoby et al. 2002; 

Wu et al. 2005). Profuse germination, large size and fast growth promote rapid establishment 

upon arrival, and subsequently are likely to give a competitive advantage (Schlaepfer et al. 

2010; van Kleunen and Johnson 2007).   

Seed mass, a trait less consistently associated with invasiveness (Dawson et al. 2011; Mihulka 

et al. 2003; Schlaepfer et al. 2010; van Kleunen and Johnson 2007) presents a quandary. Several 

studies identify small seed mass to be a correlate of invasiveness (Graebner et al. 2012; 

Grotkopp et al. 2002; Hamilton et al. 2005; Rejmánek and Richardson 1996), while others 

observe no such correlation (Dawson et al. 2011; Mihulka et al. 2003; Schlaepfer et al. 2010; 

van Kleunen and Johnson 2007). Conversely invasive species can also exhibit larger seed mass 

than a) their co-occurring native relatives (Daws et al. 2007); and b) introduced non-invasive 
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species (Lake and Leishman 2004) in the introduced range. This irregularity is intriguing 

because smaller seeded species are typically more fecund than larger seeded species (Coomes 

and Grubb 2003; Rees and Westoby 1997; Turnbull et al. 1999), and because species exhibiting 

large fecundity are more likely to be invasive (Jelbert et al. 2015). Theory would therefore 

predict invasive species to exhibit smaller seed mass than non-invasive species. The literature 

does not support this prediction (Dawson et al. 2011; Mihulka et al. 2003; Schlaepfer et al. 

2010; van Kleunen and Johnson 2007).  We postulate that this is because invasive plant species 

are more fecund for a given seed mass than non-invasive plant species. 

Early models of the evolution of offspring mass predict a positive relationship between 

investment per offspring and offspring success (Lloyd 1987; Smith and Fretwell 1974) but these 

models do not account for the frequency of competing seed masses, or the effect of the 

environment on offspring fitness (Rees and Westoby 1997). Classic theory suggests that seed 

mass (and by extension fecundity) is determined by a trade-off between competition and 

colonization, or between fecundity and tolerance of stresses (Muller-Landau 2010; Turnbull et 

al. 1999). These theories describe how larger seeded species, that produce larger and more 

robust seedlings, are competitively superior (Turnbull et al. 1999) or are better able to tolerate a 

particular adverse condition or set of conditions (Muller-Landau 2010), but in turn trade off 

seed size against seed number, and the likelihood of colonizing new sites (Muller-Landau 2010; 

Turnbull et al. 1999; Westoby et al. 2002). Coomes et al. (2002) found that asymmetric 

competition alone is insufficient to determine seed size in sympatric annual forbs, and proposed 

that variation in seed mass is maintained by fluctuating microhabitat heterogeneity (Muller-

Landau 2010).   

Size at sexual maturity is positively correlated with seed mass (Moles et al. 2004), and is 

therefore also partially responsible for variation in seed size.  This is consistent with Venable 

(1992) extension of the Smith and Fretwell (1974) model, which predicts that seed mass will 

increase with increasing maternal resources (i.e. plant size) when seedling survival is low, for 

instance when offspring fitness is diminished by the frequency of competing seed masses, or by 

predation. In addition, longevity is also a potential determinant of seed mass, whereby longer-
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lived species exhibit larger seed mass because these species typically require a longer juvenile 

period to reach maturity, and are therefore expected to require high juvenile survivorship 

associated with larger seed mass (Moles et al. 2004).   

The coexistence of species with varying seed mass is therefore likely attributable to the 

frequency of competing seed masses (Turnbull et al. 1999), fluctuating microhabitat 

heterogeneity (Coomes et al. 2002; Muller-Landau 2010), species size, and species longevity 

(Moles et al. 2004). Whilst the precise mechanism(s) determining seed mass remain poorly 

understood, what is known is that 1) larger seeds produce larger seedlings (Herrera and Laterra 

2009; Turnbull et al. 1999); 2) larger seeded species exhibit higher seedling survival than 

smaller seeded species (Moles and Westoby 2006; Westoby et al. 2002); and 3) seed mass has 

been observed to increase between the native and invaded range (Buckley et al. 2003; Daws et 

al. 2007; Graebner et al. 2012; Hierro et al. 2013). This indicates that larger seeds are 

advantageous; yet two important correlates of invasiveness (Burns et al. 2013; Jelbert et al. 

2015; Mason et al. 2008), high fecundity and propagule pressure, directly trade off against large 

seed mass (Muller-Landau 2010; Turnbull et al. 1999).  

An intuitive explanation is that the ‘perfect’ invasive species escapes the typical trade-offs of 

competition and colonization or of fecundity and tolerance, and exhibits larger fecundity 

without an equivalent reduction in seed mass. To our knowledge only one study (Mason et al. 

2008) has attempted to test this, revealing that invasive species are more fecund, for a given 

seed mass, than native species. This influential study has two important shortcomings: 1) Mason 

et al. (2008) compare reproductive investment of ‘invasive’ species with ‘native’ species, but 

neglect to exclude species known to be ‘invasive’ elsewhere from the ‘native’ species category.  

If invasive species are united by an “invasiveness” trait or syndrome, comparisons with species 

that are invasive elsewhere will conceal or weaken correlates of invasiveness (Jelbert et al. 

2015). 2) Mason et al. (2008) source data from the literature and therefore do not account for the 

effect of environment. This is important because the frequency of competing seed masses 

(Turnbull et al. 1999) and fluctuating microhabitat heterogeneity (Coomes and Grubb 2003; 

Coomes et al. 2002; Muller-Landau 2010) are believed to be central to the persistence of 
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multiple seed masses within the same community and because seed mass has been observed to 

increase between the native and invaded range (Buckley et al. 2003; Graebner et al. 2012; 

Hierro et al. 2013).  

Previously we compared size (basal stem diameter) and fecundity (seed production) of invasive 

and non-invasive plants in their native range to reveal that invasive species are more fecund per-

unit-size than non-invasive species (Jelbert et al. 2015). This work lead directly to our 

observation of the seed mass – fecundity paradox in the ecology of invasive species, and the 

objective of this paper, to determine whether invasive plant species escape the seed mass-

fecundity trade-off. We use the same wild populations as Jelbert et al. (2015) to ask whether 

invasive and non-invasive congeners differ in seed mass, reproductive investment (seed 

production x seed mass) and germination probability. These questions build on the findings of 

Jelbert et al. (2015) by addressing the unexplored seed mass – fecundity paradox. We 

hypothesize that 1) invasive and non-invasive plant species will not differ in seed mass, but that 

invasive plants will exhibit 2) higher reproductive investment; 3) higher reproductive 

investment per-unit-size; and 4) a higher probability of germination, than their non-invasive 

sympatric relatives. 

Our comparison of sympatric invasive and non-invasive congeners in the native range is crucial 

to our design: by studying invasive and non-invasive relatives, amongst wild sympatric 

populations, in the native range (mid and west Cornwall, UK), we can be certain that any 

correlates identified are not caused by changes that occur during the process of invasion (Jelbert 

et al. 2015), and that these are not masked by differential selection pressures caused by non-

sympatric comparisons.   
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Methods 

Species 

Five sympatric congener/ confamilial pairs of wild plant species (Table 1) were selected as 

described in Jelbert et al. (2015) (Chapter 2). Each pair a) comprised one native species that is 

invasive elsewhere and one native species that is introduced but non-invasive elsewhere; and b) 

occurred sympatrically. Sites supporting sympatric species pairs were identified using the 

ERICA Database held by Dr. Colin French (accessed April 2013). ERICA is a database that 

holds millions of geo-referenced vascular plant records of the Cornish flora. 

  



	 61	

Table 1. Species pairs: life form, status, mean seed mass and mean reproductive investment per inflorescence 

 
* Invasive status based on number of citations in the GCWs (Randall 2012) 
	

Family Species Common Name Life-Form Mean seed 
mass 

Mean Reproductive 
Investment Per 
Inflorescence 

Status Citation 

Caryophyllaceae Cerastium fontanum Common mouse-ear Per 0.121 
 

6.271 
 

Invasive USDA; ISSG 

  Cerastium diffusum Sea mouse-ear Ann 0.065 1.231 
 

Introduced USDA 

Caryophyllaceae Silene dioica Red campion Per 0.967 
 

267.970 
 

Invasive (Jenkins and Keller 2011); 
CABI; (Randall 2012)* 

  Silene uniflora Sea campion Per 0.769 43.808 Introduced CHAH 
Ericaceae Calluna vulgaris Heather Shrub 0.032 

 
0.259 
 

Invasive Australian Invasive Weed List; 
National Pest Plant Accord; 
ISSG  

  Erica cinerea Bell heather Shrub 0.075 1.205 Introduced CHAH 
Scrophulariaceae Rhinanthus minor subsp. minor Yellow rattle Ann 1.956 

 
21.520 
 

Invasive (Hulst et al. 1987); CABI; 
(Randall 2012)* 

  Pedicularis sylvatica Lousewort Per 0.937 12.186 Introduced USDA 
Apiaceae Daucus carota Wild carrot Per 934.000 

 
1104.424 
 

Invasive USDA 

  Eryngium maritimum Sea holly Per 44.000 522.886 
 

Introduced USDA 
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Plant status was determined by searching invasive species databases, National or State 

legislation, and by using the following search term in Google ‘Latin name invasive’ (accessed 

April 2013).  The following invasive species databases were searched: the Global Invasive 

Species Database (GISD) http://www.issg.org/database/welcome/, the Invasive Species 

Compendium (CABI) http://www.cabi.org/isc, the Australian Invasive Weed List 

http://www.environment.gov.au/biodiversity/invasive/weeds/weeds/lists/index.html, the 

Australian Plant Census (CHAH) http://www.anbg.gov.au/chah/apc/, the European and 

Mediterranean Plant Protection Organization (EPPO) database 

http://www.eppo.int/DATABASES/databases.htm, Schedule 9 of the Wildlife and Countryside 

Act (1981) http://jncc.defra.gov.uk/page-1377, the United States Department of Agriculture 

(USDA) Plant Database http://plants.usda.gov/java/noxiousDriver, the National Institute for 

Environmental Studies (NIES) invasive species of Japan database 

http://www.nies.go.jp/biodiversity/invasive, and the National Pest Plant Accord 

http://www.biosecurity.govt.nz/pests/surv-mgmt/mgmt/prog/nppa/list. Species are designated as 

invasive when described as ‘invasive’ (also ‘weedy’ or ‘noxious’ in the USDA Plant Database) 

in one or more of the invasive species databases, or when termed ‘invasive’ by a Government 

Agency or Academic Institution. Two of our ‘invasive’ congeners (Silene dioica and 

Rhinanthus minor subsp. minor) are listed by CABI as invasive. This status could not be 

verified from the CABI cited literature but both species are notorious weeds (Hulst et al. 1987; 

Jenkins and Keller 2011) and have more citations in the Global Compendium of Weeds 

(GCWs) than their ‘non-invasive’ congeners (Randall 2012). The number of citations within the 

GCWs has been used to define global invasive status, and to successively detect correlates of 

invasiveness (Jenkins and Keller 2011; Schlaepfer et al. 2010). The designation of these species 

as ‘invasive’ is therefore considered correct.  Species are designated as ‘introduced’ if 

naturalized outside of the native range, and as ‘native’ if listed as such on the Online Atlas of 

the British and Irish Flora http://www.brc.ac.uk/plantatlas/. 

Reproductive Investment 

http://www.issg.org/database/welcome/
http://www.cabi.org/isc
http://www.eppo.int/DATABASES/databases.htm
http://jncc.defra.gov.uk/page-1377
http://plants.usda.gov/java/noxiousDriver
http://www.nies.go.jp/biodiversity/invasive
http://www.biosecurity.govt.nz/pests/surv-mgmt/mgmt/prog/nppa/list
http://www.brc.ac.uk/plantatlas/
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Quadrats were installed for each species at each site. The number of quadrats per species ranged 

from eight to thirteen (mean = 10). This variation was due to the species area-weighted density 

and abundance at the site. Quadrats were positioned to capture a representative sample of each 

sympatric population, and ranged from 0.5 x 0.5m to 1m x 1m in size. Each quadrat was geo-

referenced, and permanently marked with buried metal chips, and was relocatable using a 

Global Positioning System (GPS) to provide an approximate location (accurate to within 10m), 

and a metal detector to determine the precise location. Individual plants from each population 

were made relocatable with coloured, biodegradable, hemp string and a unique identification 

number corresponding to the individual’s location. Each plant within each species pair was 

located on three occasions between late spring and autumn 2013 (May - November), during 

which plant size (basal stem diameter, rosette diameter and rosette perpendicular diameter), life-

stage (i.e. seedling, vegetative, reproductive etc.) and the number of seed capsules/ racemes per 

plant was recorded. We define basal stem diameter (BSD) as the diameter of the stem at ground 

level. BSD was measured using 150, 0.1mm precision, dialMax Vernier Dial Calipers. In 

accordance with Jelbert et al. (2015) we use the term ‘plant(s)’ to describe an entire plant or, for 

clonal rhizomatous species, a ramet (Jelbert et al. 2015). With the exception of S. dioica and C. 

fontanum the number of seed capsules produced per plant was counted following cessation of 

flowering (and the possibility of more seed capsules being produced). S. dioica and to a lesser 

extent C. fontanum set seed throughout a protracted flowering period exceeding the length of 

our study. Whilst the reported fecundity measures for these species are considered conservative, 

both are invasive; our conservative fecundity measure will therefore favour the null hypothesis.  

A representative sample of single seed capsules/ racemes were collected from 30 individuals per 

species, and seeds counted using an Elmor C1 seed counter. Individual fecundity was 

determined by multiplying the mean number of seeds per capsule/ raceme with the number of 

seed capsules/ racemes per plant. Collected seeds were air-dried at room temperature for a 

period of 14 days and dispersal appendages removed prior to being weighed. Seed mass was 

calculated by weighing 30 seeds per species using a microgram precision balance (Sartorius 
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MSE3.6P-000-DM). Individual reproductive investment was calculated by multiplying 

individual fecundity by mean seed mass. 

Germination 

Transition out of the seed bank was estimated by germination trials. Anecdotal evidence 

suggests that all of our species require a period of vernalization prior to germination. To 

replicate minimum winter ground temperatures in the native range, collected, air dried seed was 

stored at 5°C between collection in Summer 2013, and sowing in January 2014. Seed (n = 300) 

from each species was split into two trays (n = 150) and sown at a depth of 3mm in a sterile / 

seed free substrate. Substrate was selected to replicate soil type at each of the five sympatric 

study sites. This comprised 30% sand and 70% seed compost for those species pairs found in 

the alkaline soils of the Lizard Peninsula (Ericaceae, Scrophulariaceae, Rosaceae and 

Caryophyllaceae species); and 70% sand and 30% seed compost for the Apiaceae species pair 

occurring in dune and strandline habitat. Germination trials were performed in a cold frame 

located a maximum of 15 miles from each sample population; photoperiod was therefore 

consistent with the photoperiod experienced by wild plants. Sown seeds were watered (300ml 

per tray) and the number of germinated seeds counted and removed, every two days between 

sowing in January and June 2014 inclusive.   

Data Analysis 

To determine whether invasive species exhibit higher germination probability than their native 

non-invasive relatives, we used generalised linear mixed-effects models (GLMM) with 

‘germination’ as a binary response variable: each seed either germinated or did not; ‘species 

pair’ as a random effect, ‘species’ as a nested random effect, and ‘invasive status’ as a fixed 

effect. The nested model correctly tested the influence of invasiveness on mean traits in each 

pair; this is crucial to the design because individual plant measures are pseudoreplicates that 

contribute to the means for each species in each phylogenetic pair. To determine whether 

invasive species exhibit a significantly different seed mass from non-invasive species, we use 

the same GLMM modelling framework described previously but with log-transformed “seed 
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mass” as the Gaussian-distributed response variable. To determine whether invasive species 

exhibit higher reproductive investment than their non-invasive relatives, we used a similar 

modelling framework, but with log-transformed reproductive investment as the Gaussian-

distributed response variable, ‘species pair’ as a random effect, and ‘quadrat’ and ‘species’ as 

nested random effects. To determine whether invasive species exhibit higher reproductive 

investment for a given size (basal stem diameter), we use the same modelling framework but 

with both ‘basal stem diameter’ and ‘invasive status’ as fixed effects. We tested the impact of 

invasive status and basal stem diameter on reproductive investment, using likelihood ratio tests 

between models that included or excluded the “invasive” fixed effect. We used basal stem 

diameter to represent plant size in all of our analyses because previously we find this measure to 

be the best correlate of fecundity for all species (Jelbert et al. 2015) (Chapter 2). Model checks, 

following log-transformation of reproductive investment and basal stem diameter, confirmed 

homoscedasticity and normality of standardised residuals in all analyses. The lme4 package 

(Bates et al. 2014) in RStudio Version 0.97.551 (R Core Team 2014) was used to perform all 

analyses.   
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Results 

Invasive and non-invasive species did not differ in seed mass (χ2 = 0.469, d.f. = 1, P = 0.49) 

(Fig. 1) but invasive species did exhibit a) significantly higher reproductive investment (χ2 = 

4.797, d.f. = 1, P = 0.029) (Fig. 2a); and b) significantly higher reproductive investment per-

unit-size than their non-invasive relatives (χ2 = 3.900, d.f. = 1, P = 0.048) (Fig. 2b). The raw 

data shows that all the invasive species exhibit higher reproductive investment than their non-

invasive paired relatives (Fig. 3a). This falls to four of five pairs when accounting for their 

difference in size (Fig. 3b). The confamilial pair (Scrophulariaceae), suggested the reverse 

relationship; for a given basal stem diameter the non-invasive species Pedicularis sylvatica 

exhibited higher reproductive investment per-unit-size than its invasive relative Rhinanthus 

minor subsp. minor (Fig. 3b).   

Finally we found that invasive and non-invasive species did not differ in germination 

probability (χ2 = 0.428, d.f. = 1, P = 0.513) (Fig. 4). 
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Fig 1. Differences in seed mass between invasive and non-invasive species, in the native range. 

a) Mean seed mass (+/- standard error) for invasive (black column) and non-invasive (grey 

column) species. Means are derived from hierarchical mixed effects models, controlling for 

phylogenetic pairing and averaged across pseudoreplicates within species. b) Mean seed mass 

(+/- standard error) for invasive and non-invasive species within each pair. The y-axis of figure 

1a – 1b is on a log scale 
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Fig. 2 Differences in reproductive investment between invasive and non-invasive species in 

their native range.  a) Mean (+/- standard error) reproductive investment (milligrams) and b) 

reproductive investment at a 1mm basal stem diameter. Mean traits are derived from 

hierarchical mixed effects models, controlling for phylogenetic pairing and averaged across 

pseudoreplicates within species. The y-axis of figure 2a – 2b is on a log scale 
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Fig. 3 Differences in reproductive investment between invasive and non-invasive species, in the 

native range. a) Mean (+/- standard error) reproductive investment for invasive (black column) 

and non-invasive (grey column) species within each pair. b) Mean reproductive investment for 

invasive and non-invasive species within each pair at a 1mm basal stem diameter.  Sample sizes 

‘n’ represent the number of individuals sampled and are the same in b) as in a) 
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Fig. 4 Differences in germination probability between invasive and non-invasive species, in the 

native range. a) Mean (+/- standard error bars) germination probability for invasive and non-

invasive species; bars show mean traits derived from hierarchical mixed effects models, 

controlling for phylogenetic pairing and averaged across pseudoreplicates within species. b) 

Mean (+/- standard error bars) germination probability for invasive (black bar) and non-invasive 

species (grey bar) within each pair; bars show mean traits for each species 
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Discussion 

We identified a paradox in the ecology of invasive species: if high fecundity and propagule 

pressure predict invasiveness (Burns et al. 2013; Goodwin et al. 1999; Holle and Simberloff 

2005; Jelbert et al. 2015; Mason et al. 2008), and fecundity trades off against seed size (Rees 

and Westoby 1997; Turnbull et al. 1999), we would predict invasive species to have smaller 

seeds than non-invasives. This is not the case (Dawson et al. 2011; Mihulka et al. 2003; 

Schlaepfer et al. 2010; van Kleunen and Johnson 2007).  

Here we show that invasive and non-invasive species do not differ in seed mass or germination 

probability but that invasive species exhibit higher reproductive investment, and higher 

reproductive investment per-unit-size than their non-invasive sympatric relatives. Our results 

are in line with Mason et al. (2008) who found that invasive species are more fecund for a given 

seed mass, than native species; however, unlike Mason et al. (2008) we compare reproductive 

investment of invasive species with their exported but non-invasive, sympatric relatives in the 

native range; and control for plant size. By studying invasive and non-invasive congeners/ 

confamilials amongst sympatric populations in the native range, we can be certain that the 

correlates identified predict, rather than explain, invasiveness; and that evolutionary pressures 

determining seed mass are comparable within each species pair.   

Plant size is a crucial consideration because larger species exhibit larger seed mass (Moles et al. 

2004), larger individuals within a species exhibit higher fecundity (Weiner et al. 2009) and 

because larger basal stem diameter (Jelbert et al. 2015), biomass (Schlaepfer et al. 2010; van 

Kleunen et al. 2011), specific leaf area (Grotkopp et al. 2002), and increased plant height 

(Castro-Díez et al. 2011) are all correlates of invasiveness. We note that Mason et al. (2008) 

controlled for plant life-form, and that plant size and life-form are unlikely to be independent; 

however, unlike plant size, life-form has not been consistently correlated with invasiveness 

(Goodwin et al. 1999).  By accounting for plant size, we have shown that invasive species 

invest more heavily in reproduction and are therefore more fecund for a given seed mass than 

their non-invasive relatives, even when we account for their difference in size. This indicates 
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that invasive species escape the typical trade-off between competition and colonization, or 

between fecundity and tolerance, and exhibit higher fecundity than non-invasive species, 

without a corresponding reduction in seed mass. Furthermore, because we study invasive and 

non-invasive species in the native range we can be sure that high reproductive investment is a 

predictor of invasiveness, and not a change that occurs during the process of invasion, 

potentially as a result of release from natural enemies or competition (Burns et al. 2013; Mason 

et al. 2008).   

Unexpectedly, and in contrast to comparative studies (Schlaepfer et al. 2010; van Kleunen and 

Johnson 2007), we find that invasive species do not exhibit higher germination probability than 

their non-invasive relatives. This indicates that high germination probability is not a consistent 

predictor of invasiveness, and is perhaps regionally specific.  

We show very clearly that invasive species, on average, exhibit higher reproductive investment 

per-unit-size, but there is one exception amongst our species pairs. For the Scrophulariaceae 

pair, the non-invasive species Pedicularis sylvatica exhibits higher reproductive investment per-

unit-size than its invasive relative Rhinanthus minor subsp. minor.  Previously we found that the 

non-invasive species Pedicularis sylvatica exhibits higher fecundity, and higher fecundity per-

unit-size than its invasive relative R. minor subsp. minor, and attributed this to the life form of 

each congener (Jelbert et al. 2015).  Pedicularis sylvatica, the non-invading species, is a 

perennial; whilst its invasive congener, R. minor subsp. minor, is an annual that belongs to a 

population with a greater number of reproductive individuals per growth season (Jelbert et al. 

2015). Interestingly, R. minor subsp. minor exhibits higher reproductive investment than the 

non-invasive P. sylvatica when we do not control for plant size.  

We propose that the greater reproductive investment of invasive species facilitates invasion in 

three ways:  

1) Propagule pressure is a correlate of invasiveness (Goodwin et al. 1999; Holle and 

Simberloff 2005). Highly fecund species have a higher probability of being transported 
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outside of the native range, and once present have a greater ability to spread due to the 

higher number of propagules produced.  

2) Transient dynamics of short-term ‘boom and bust’ are inflated among species with high 

fecundity (Iles et al. 2016; Stott et al. 2012). Highly fecund species have a superior 

ability to boom or amplify in response to exogenous disturbances (Stott et al. 2010), and 

are predicted to exhibit greater long-term population growth than populations of less 

fecund species (Iles et al. 2016). These demographic traits signify the greater tendency 

of highly fecund species to amplify in the short-term to exploit vacant niches, whilst 

achieving fast population growth in the long-term and increased population viability 

(Iles et al. 2016; Jelbert et al. 2015). 

3) The advantages of large seed mass are well documented: larger seeds produce larger 

seedlings (Herrera and Laterra 2009; Turnbull et al. 1999); and larger seeded species 

exhibit higher seedling survival than smaller seeded species (Leishman and Westoby 

1994; Moles and Westoby 2006; Westoby et al. 2002). Furthermore, seed mass has 

been observed to increase between the native and invaded range (Buckley et al. 2003; 

Graebner et al. 2012; Hierro et al. 2013). It is therefore intuitive that seed mass should 

increase to maximize seedling survival, providing that a corresponding reduction in 

fecundity is not incurred. Those species that exhibit high reproductive investment will 

have a better capacity to colonize rapidly, due to the greater number of seeds produced, 

and their larger mass.  

By exploring a paradox in the ecological theory of invasiveness, we reveal that invasive 

species invest more heavily in reproduction, and are therefore more fecund for a given seed 

mass than their non-invasive relatives, even when we account for their difference in size.  

High reproductive investment must convey an advantage for an invading species over those 

species that invest less in reproduction.  However, it is not uncommon for seemingly benign 

introduced species to behave ‘invasively’, or an acknowledged invasive species to ‘fail’.  A 

plausible explanation is that if, by good fortune, a species reaches a site outside of the native 

range, the floristic assemblage of the new locality must likely comprise ‘lower reproductive 
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investors’ for the ‘invading’ species to behave ‘invasively’. This situation could explain the 

global inconsistency of plant status, whereby designated ‘invasive’ species do not behave 

invasively at every introduced locality. Interestingly, Early and Sax (2014) found that a high 

proportion of species’ naturalized distribution occurred outside of the climatic conditions 

inhabited in the native range.  This suggests that non-climatic factors, such as competition, 

play an important role in limiting species’ naturalized distribution (Early and Sax 2014). If 

this is the case, it seems probable that invasion success is determined by the traits of the 

‘invader’ and the traits of the species comprising the recipient community.   

We accept that our study samples a small number of phylogenetic species pairs, during one 

plant growth season, and from a single region of the UK. However, we infer from our 

results that invasive species are those that successfully produce large numbers of large 

seeds, and are therefore escapees from the well-established trade-off between fecundity and 

seed mass. This could help provide management options for the control of established 

invaders, but could also help identify likely invasives prior to establishment, and 

recommend their quarantine from international movement or trade. Future work should 

establish whether our findings hold true at a global scale, for a greater number of 

phylogenetically-paired species; and establish whether ‘invasive’ (and growing) populations 

consistently invest more in reproduction than the floristic assemblage, whether introduced 

or native, of the invaded environment. 
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Demographic predictors of invasiveness, among plants 

Abstract 

Invasive plant species are problematic worldwide, threatening native biodiversity, ecosystems, 

agriculture, industry and human health. Predictive differences between species that become 

invasive and those that do not, have been difficult to identify, and this uncertainty has led to 

considerable debate among ecologists. Here we demonstrate that populations of invasive species 

are better able to recover from disturbance than non-invasive species, even in the native range. 

This ability to recover is not revealed by standard analyses of stable population growth, which is 

generally higher in the naturalised range, regardless of invasive status. Recovery from 

demographic disturbance is a feature of plant life histories with high levels of reproduction, and 

shows phylogenetic pattern. Our results recommend reproductive capacity as a predictor of 

invasiveness across the plant kingdom, demonstrate a need for more demographic study of non-

invasive plant species, and show great promise as a reliable tool for guiding international policy 

on trade and movement of plants. 

Main Text 

Invasive plant species cause problems for native biodiversity, agriculture, industry and human 

health, worldwide1-4. Costs of curtailing the establishment and impact of invasive plants are 

estimated at £300 billion per annum5, therefore the halting of further deleterious species 

introductions is imperative. The question, “Why do some species become invasive, while others 

do not?”, has been explored widely3,6,7, but remains largely unanswered8. A variety of research 

approaches6,8-10 have been used to understand, and predict, the invasion success of plants but 

there remains no credible or consistent framework that predicts which species will become 

invasive. Here we focus on species’ population biology (the study of demographic processes 

that determine population size and structure through time11) because a species’ invasiveness is a 

property of demographic outcomes such as abundance and range size12, and because phenotypic 

traits act on invasiveness through their influence on demography13,14.  
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Demographic studies have tackled the problem of invasive plants, using functional-trait 

analyses7, spread-rate models9, stage-structured population models to investigate the 

mechanisms of invasion6,15-17 and ecosystem-invasibility approaches10. Yet remarkably few 

demographic analyses have employed multi-species comparisons (c.f.6,15,17), perhaps in part due 

to a paucity of accessible demographic data. The emergence and growth of the COMPADRE 

Plant Matrix Database18, which currently features >7000 stage-structured demographic models 

representing almost 700 plant species, means that demographic data is readily accessible and 

such comparative analyses are now possible. 

Any attempt to find predictors of invasiveness must tease apart traits that are features of the 

species, expressed in the native range as well as the invaded range, from traits that are features 

of the environment and might therefore differ between native and invaded range. The few multi-

species, demographic comparisons between invasive and non-invasive species, undertaken to 

date, have revealed that invasive populations tend to exhibit a higher population growth rate (λ) 

than native species in the invaded range15, and that introduced populations of non-invasive 

congeners with which they co-occur6. Furthermore, fecundity tends to be higher in invasive 

species6, relative to non-invasive, introduced species, and to native species in the invaded 

range19. But these comparative studies suffer two critical limitations. First, they focus on 

demographic features of species in their invaded range. Studying invasive plants in the invaded 

range conflates predictors of invasiveness with changes that occur during the invasion process19-

21, making it difficult to distinguish between constituent traits and trait changes that are induced 

by the new environment14,22. Demographic parameters and predictions can vary dramatically 

between habitats, climates and environments16, and phenotypic traits are known to differ 

between the native and invaded range (e.g. seed mass19-21). Importantly, studies in the invaded 

range cannot tell us if demographic traits in the native range can be used to predict invasiveness. 

This information is crucial, if the objective is to identify, quarantine and/or control, potentially 

‘invasive’ species before they arrive, establish and spread in a new region. Second, both 

comparative studies include species in their non-invasive categories that are in fact invasive 

elsewhere in the world. If there is a shared “invasiveness” trait or syndrome among plants, then 
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failure to exclude invasive species from the non-invasive or native category will weaken or 

conceal potential predictors of invasiveness.   

Here we use a subset of COMPADRE’s stage-structured demographic models parameterised 

with field data from 1,202 plant populations18 representing a total of 501 plant species, 

including 29 ‘invasive’ plant species studied in the naturalised range, 32 ‘invasive’ plant species 

studied in the native range, 126 ‘naturalized non-invasive’ species studied in the native range, 9 

‘naturalised non-invasive’ species studied in the naturalised range and 310 ‘restricted’ plant 

species studied in the native range 1 . A small number of these species occur in multiple 

categories. We use these demographies to present a global, demographic comparison of invasive 

and non-invasive plant species, and the first to control simultaneously for phylogeny and 

geography (studied in the native or naturalised range). Our objective is to explore links between 

demography, life history, environment and plant status, to address questions that can explain 

and predict invasiveness. We ask three main questions. First, is there a demographic syndrome 

of invasiveness in the native or naturalised range? Second, can invasiveness be predicted using 

demographic traits in the native range? Third, is invasiveness shared by close relatives (i.e., is 

there a high phylogenetic signal)?  

We use two established metrics of stage-structured demographic models, the stable population 

growth rate (λ)23 and demographic inertia (𝜌𝜌∞)24, to compare the projected population dynamics 

of invasive and non-invasive plants in their native and naturalised ranges. Population projection 

matrices partition life cycles into distinct life-stages, and contain rates of transition between life 

stages. These rates of transition are composites of survival, growth and recruitment (the 

establishment of new individuals per reproductive adult)23 (Fig. 1A). Populations initiated with 

a stable stage structure will grow or decline according to the stable growth rate, indefinitely if 

the environment remains constant and resources are unlimited23. The size of populations 

disturbed away from stable stage structure will amplify or attenuate in the short term, before 

settling to the stable rate of increase. The long-term impact of this transient dynamic is 

                                                        
1 The number of species in each category as listed in the text differs from the number of species listed in 
the Supplementary Material SM1. The supplementary material is based on the updated analyses and will 
be used in the published version of Chapter 4. 
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measured by demographic inertia24. In the long-term, non-stable populations will forever be 

larger or smaller than a population initiated at stable stage structure24. Demographic inertia has 

upper (𝜌̅𝜌∞ ) and lower (𝜌𝜌∞ ) bounds, representing the maximum potential amplification or 

attenuation of the population following demographic disturbance. Demographic inertia 

recognises that life-stages vary in reproductive value, hence disturbed populations will either 

boom or bust relative to the stable growth rate, and the bounds on these responses to disturbance 

tend to widen with increasing heterogeneity among life-stages and asymmetry among vital 

rates25.  
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Figure 1: Amplification and attenuation of population size for two invasive plant species. 

(A) Life cycles of Lupinus arboreus and Rhododendron ponticum described using discrete life-

stages (circles), and rates of transition and per-capita contributions among life-stages (arrows). 

(B) Projected populations, initiated at unit abundance. Central line for each species projects the 

stable stage structure, with stable population growth rate λ. Coloured envelopes encapsulate 

projected transient dynamics caused by disturbed initial stage structures: upper and lower 

bounds are defined analytically, long-term, by (C) sum of the logs of stable growth and 

maximal amplification (𝜌̅𝜌∞) or attenuation (𝜌𝜌∞) determined by demographic inertia. 
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Demographic Syndrome of Invasiveness 

We find evidence for a demographic syndrome of invasiveness among plants. Stable rates of 

population growth (λ) are greater in the naturalised range than in the native range, irrespective 

of whether a species is classed as introduced or invasive (Fig. 2a). However, invasive plant 

species exhibit greater potential for demographic amplification (𝜌̅𝜌∞) than non-invasive species 

(‘introduced’ and ‘restricted’), whether measured in the native or naturalised range (Fig. 2b). 

This suggests that stable population growth rate depends heavily on abiotic or biotic conditions, 

which can differ between native and naturalised ranges, while the potential to recover from 

demographic disturbance is a species-level trait that differs between invasive species and non-

invasive species. There is little difference in potential demographic attenuation (𝜌𝜌∞) between 

invasive and non-invasive plant species (Fig. 2c). We find amplification to correlate strongly 

and positively with per capita recruitment per lifestage (Fig. 2d), suggesting that high 

amplification is driven by high rates of recruitment. Finally, we find credible signal of 

phylogenetic patterns in the residuals of the relationship between demographic amplification 

and invasiveness (Fig. 3; Online Supplementary Material SM4 Fig. S1), suggesting that the 

close relatives of invasive plants share demographic traits that might increase their risk of 

becoming invasive if established outside their native range. We find no such signal of 

phylogenetic constraints on stable population growth rates.  
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Figure 2: Demographic traits of invasive and non-invasive plant species in the native and 

naturalised range. Bars show mean demographic trait (+/- 95% Credible Intervals) for 

restricted, introduced and invasive plants, measured in the respective native or naturalised 

range; A) stable rate of population increase (mean log (λ)); B) upper bound on demographic 

inertia (mean log(ρ∞)) for invasive and non-invasive plant species; and C) lower bound on 

demographic inertia (mean log(𝜌𝜌∞)). D) Relationship between upper bound on demographic 

inertia (mean log(ρ∞)) and rates of recruitment (log(mean per capita recruitment per lifestage)).  
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Figure 3: Populations of closely related species share similar potential to recover from 

demographic disturbance. Phylogram, showing the magnitude of the upper bound on 

demographic inertia (log(ρ∞)) and its distribution across the plant Kingdom. Each tip of the 

phylogeny represents a species in our dataset. For display purposes, only a subset of ‘familiar’ 

genera are labelled. 
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Discussion 

Invasive species exhibit highest potential for amplification of population sizes in the naturalised 

range, but crucially also have high amplification in the native range. This finding makes 

demographic inertia a suitable predictor of invasiveness as opposed to an ‘explanation’ of 

invasiveness that results from traits changing in the invaded environment14.   

Demographic amplification is a feature of life histories with high, stage-structured rates of 

recruitment, as demonstrated here and discussed elsewhere25. If population structures are biased 

into certain reproductive life stages following demographic disturbance, then high rates of 

reproduction can yield rapid recovery via large transient amplification. This is relevant to 

biological invasions because 1) it is those species with high, stage-structured rates of 

recruitment that exhibit the highest potential for amplification of population size in response to 

disturbance25; 2) disturbed environments are more readily invaded than stable ones26; 3) 

amplificatory dynamics might promote invasion as populations must grow rapidly to escape 

Allee effects or demographic stochasticity27 and 4) populations with greater potential 

magnitudes of transient amplification are predicted to grow faster in the short-term and remain 

larger in the long-term13, and are therefore more likely to become invasive.   

A second predictor of demographic amplification is phylogenetic relatedness: closely related 

plants tend to share similar potential for amplification, which is known to be elevated among 

species with high recruitment28. We attribute this phylogenetic pattern to evolutionary 

constraints on the morphology of reproductive organs, seed mass and seed production29. 

Recruitment is determined by rates of reproduction and rates of germination and seedling 

establishment. Reproduction, in turn, is determined by a trade-off between seed mass and seed 

production30,31. Species with larger seeds generally experience greater seedling survivorship but 

trade-off seed size against the number of seeds produced30,31. This phylogenetic patterning is 

relevant to invasion biology because it suggests that close relatives of invasive plants will, 

thanks to their sharing of high potential rates of recruitment and therefore demographic 

amplification, be strong candidates for invasiveness if they establish outside their native range. 
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Deliberate export of close relatives of known invasives should be avoided. 

Stable rates of population growth are greater in the naturalised range than in the native range, 

irrespective of invasiveness. This means stable population growth has little value as a predictor 

of invasiveness. However, it yields valuable evidence for fundamental changes in the population 

biology of plants established outside their native range. Explanations for faster stable population 

growth in the naturalised range include an escape from native natural pathogens32, herbivores33 

and competition34; environmental filtering such that non-natives are only established in 

favourable habitats35; genotypic filtering such that only vigorous genotypes establish36; an 

adaptive response to the novel environment of the invaded range37; and the possibility that 

populations in the naturalised range are more likely to have been measured during the rapid 

establishment phase, than native populations. We recommend further research, using 

comparative demographic analysis, to determine which vital rates are responsible for general 

increases in stable rates of population increase in naturalised ranges. Counter-intuitively, stable 

rates of population growth were greatest among non-invasive plants in the naturalised range. 

We suggest that this might reflect a rapid establishment phase of plant species that have not yet 

become invasive. Or, it may simply reflect a small sample size of this category of plant species: 

there has simply been less motivation, or funding available, for the study of long-established 

and unproblematic populations of non-native species. 

An important avenue for future research is to strategically collect demographic data for plant 

species that represent gaps in our knowledge. Recently, the first global list of naturalised plant 

species was made showing that 13,168 plant species have naturalized outside of their native 

range38.  We have demographic data for only 1.5% (191) of these species. Most of the species 

that have successfully naturalised have only invaded one or a few regions of the world39. There 

is a critical need for future research to determine if these species with proven naturalisation 

capacity are likely to become invasive so that measures can be taken to prevent their 

introduction and to eradicate existing populations in accordance with target 9 of the IUCN 2020 

Strategic Plan for Biodiversity. We suggest targeted research to fill in gaps in the phylogeny, 

global location, and type of plant species (i.e., we need better demographic information on non-
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invasive alien plants). We also support efforts to rationalize and standardise the various 

definitions of “invasiveness” in plants40,41. Plants can be considered invasive due to their 

dominance of non-native habitats 42, their impact on native biota of high conservation value43, 

their economic impact on ecosystem services or human infrastructure2,44, or their direct impact 

on human health45. The current lack of a standard, quantifiable definition makes it even more 

remarkable that we find demographic syndromes that explain or predict invasiveness across the 

plant kingdom. However, all of these definitions of invasiveness imply that the invasive species 

is a problem because it persists and spreads, and these are demographic features of the species’ 

populations, as revealed by our analyses. 

We have shown that explanations and predictions of invasiveness are yielded by empirical 

description of entire life cycles of plant populations growing in native and naturalised ranges. 

Our comparative database represents a vast amount of work performed by plant ecologists, 

globally. An important next step is to simplify the task of predicting invasiveness, for future 

ecologists, managers and policy-makers. It is useful to identify functional traits, or vital rates, 

that are themselves proxies for population- or species-level invasiveness, especially if they can 

be measured in the native range, prior to any invasion. We propose that high, stage-structured 

fecundity is the most important contributor to the link between demographic amplification and 

invasiveness, and therefore serves as a simple predictor of invasiveness. We also note that 

phylogenetic signal in demographic amplification might be explained by phenotypic traits that 

are clearly patterned by evolutionary history among plants: seed size and seed production as 

determined by the structure of the plant’s reproductive organs29. We recommend deeper 

exploration of links between seed size, seed production, germination, seedling establishment 

and invasiveness. We recommend that plant species and genera typified by amplificatory life 

histories, particularly highly fecund species, should not be exported outside their native range. 

Methods 

Study Species and Populations, and Categorisation: 

We extracted all population projection matrices (PPM) from the COMPADRE Plant Matrix 
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Database (COMPADRE 3.0.0)18. We filtered COMPADRE 3.0.0 by including only matrices that 

described annual or multi-annual timesteps, and excluding matrices generated by pooling data 

from multiple sites, and those generated for populations reared in the laboratory or greenhouse. 

We excluded mean matrices when their constituent, individual matrices were available to use 

instead, and matrices that were reducible46. We also checked all PPMs for the ‘seed problem’23, 

in which the seed/propagule stage class is erroneously assumed to last a full year before 

germination, and where necessary, corrected these. Projection matrices are commonly 

parameterised as either “pre-reproductive” (recruitment is measured as fecundity multiplied by 

rates of germination and seedling survival), or “post-reproductive” (recruitment of seeds 

measured as adult survival multiplied by fecundity). Post-reproductive matrices tend to have 

high values of recruitment, which can affect measures of demographic amplification. We 

therefore converted all post-reproductive matrices to pre-reproductive matrices using algebraic 

manipulation of vital rates. Finally, we excluded matrices representing populations that had 

been manipulated experimentally, for example by treatments associated with burning, herbicide, 

harvesting, grazing or nutrient supplement. The filtered dataset comprised PPMs representing 

1,202 spatial populations (many of them replicated through time), representing 501 species of 

plants. 

We classified population status for each PPM as either native, invasive or naturalised, non-

invasive at the location of study, and species status as invasive, naturalised but non-invasive 

outside of the native range, or restricted to the native range. Population status at the study 

location was identified from the source literature. Species status outside of the native range was 

determined by searching invasive species databases (Supplementary Material SM1), and by 

using the following search term in Google ‘Latin name invasive’.  Species are considered 

invasive when designated as ‘invasive’ (also ‘weedy’ or ‘noxious’ in the USDA Plant Database) 

in one or more of the invasive species databases or when designated as invasive by an 

Academic Institution or Government Agency.  Naturalised status was determined by searching 

the Global Compendium of Weeds (GCW), and regional floras (Supplementary Material SM1). 

We define ‘naturalised non-invasive’ species as those that are naturalized outside of the native 
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range, and ‘restricted’ species as those that are not naturalized. Our refined database includes 29 

‘invasive’ plant species studied in the naturalised range, 32 ‘invasive’ plant species studied in 

the native range, 126 ‘naturalized non-invasive’ species studied in the native range, 9 

‘naturalised non-invasive’ species studied in the naturalised range and 310 ‘restricted’ plant 

species studied in the native range2. We simplify the categorisation of plant species to be Native 

or Naturalised (i.e. introduced) at the Study Location; and Restricted (never established outside 

the native range), Introduced (established outside the native range but not considered invasive), 

or Invasive (established outside the native range and considered invasive) on a Global Scale.  

Demographic metrics from Population Projection Matrices: 

The Perron-Frobenius theorem states that the dynamics of a non-negative, irreducible, ergodic 

projection matrix will, if rates of transition between stages remain constant and growth is not 

limited, settle from any initial condition to a stable stage structure (relative density of stages in 

the population) and a stable geometric rate of increase23. The stable rate of population increase 

(λ) is the dominant eigenvalue of a given population projection matrix and the stable stage 

structure is the normalised, dominant right eigenvector23. If the population is initiated at stable 

stage structure, then the relationship between abundance (N) and time (t) is 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁0) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑚𝑚). 𝑡𝑡 

Demographic inertia (𝜌𝜌∞), also known as the Stable Equivalent Ratio24, measures the long-term 

impacts of transient population growth or decline caused by disturbance away from stable stage 

structure28. 𝜌𝜌∞ is the asymptotic ratio of the density of a population disturbed at time zero, to 

the density of a population initiated at stable stage structure, such that for any initial stage 

structure: 

𝑙𝑙𝑙𝑙𝑔𝑔(𝑁𝑁𝑡𝑡) → 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁0) + 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑚𝑚𝑚𝑚). 𝑡𝑡+log(𝜌𝜌∞) for 𝑡𝑡 ≫ 0 

𝜌𝜌∞ depends on the population’s initial structure, which is usually unavailable in the literature, 

                                                        
2 The number of species in each category differs from the number listed in the Supplementary Materials 
SM1. The supplementary material is based on the updated analyses and will be used in the published 
version of Chapter 4. 
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but it has upper and lower bounds that depend only on the projection matrix itself. We measure 

both upper and lower bounds on inertia for each matrix model, describing the potential for 

demographic amplification (more population growth than predicted by λ) and demographic 

attenuation (less population growth than predicted by λ), respectively.  

Data Handling and Analysis: 

Our filtered database of projection matrices, representing unmanipulated plant populations, 

included species that were replicated in space and through time. For each replicate spatial 

population of each species, we averaged the transition rates through time to create a temporal 

mean matrix. We calculated demographic metrics (stable rate of increase; upper bound on 

inertia; lower bound on inertia) per population using these temporal mean matrices. We log-

transformed these metrics because they describe geometric processes of population growth or 

decline, then averaged the metrics across populations to yield means per species. We then 

compared the mean demographic metrics among categories representing where the species was 

studied (native versus naturalised range) and their global invasiveness status (restricted, 

introduced or invasive). An alternative approach would be to compare the median of each 

metric. Here we chose to compare the mean of each metric because throughout our analyses, we 

logged the demographic measures for each population, and checked the distribution of these 

values for symmetry. We then analysed the mean of the logs, not the log of the means. The 

mean of the logs will therefore resemble the median of the logs, and we expect the outcome to 

be the same.   

Species were non-independent due to phylogenetic history. This hierarchical data structure 

recommended the use of Monte Carlo Markov Chain general linear mixed-effects modelling, 

implemented using the MCMCglmm package47 in R48. We used the phylogeny associated with 

the COMPADRE database, derived from Zanne’s Plantae phylogeny49 by authors TK, RS-G 

and OJ. We set proper uninformative Gamma priors on the error terms associated with 

residuals, and phylogeny. We included parameter expansion terms for the phylogenetic 

variance, to avoid issues with model convergence. All models were run for 1 million iterations 
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and satisfied standard MCMC diagnostic tests. Code for analyses is presented in Supplementary 

Material SM3. Phylogenetic signal in the residuals was diagnosed by posterior distributions of 

phylogenetic variance that lay credibly above zero. Credibility of differences in demographic 

metrics among invasiveness categories was determined using MCMC p-values and using 

overlap of the 95% credible intervals with the means of the posterior distributions of each 

demographic metric in each category of invasiveness and study-range. 

We produced a phylogram that maps the upper bound on demographic inertia through the plant 

kingdom (Figure 3), using the contMap function in R library phytools version 0.6-0050. This 

function estimates ancestral states using maximum likelihood based on the rerooting of the tree 

at each internal node.  

Robustness of Results: 

The results presented here are for Species-level analyses, for which we used mean demographic 

metrics per species, with phylogenetic control. We chose to present these analyses for simplicity 

of interpretation. To check robustness of the outcome, we repeated analyses using demographic 

metrics per population, nested within each species, with the same results. We also extended our 

analyses to the per-population and per-species projection matrices for “experimentally 

manipulated” populations in COMPADRE, yielding the same outcomes. We noted that in other 

analyses of stable and transient population dynamics based on PPMs, that transient 

metrics (e.g. demographic inertia) can be influenced by the number of lifestages that are used 

to model structured life cycles. We therefore re-analysed our models with the inclusion of a 

second predictor: dimension of the PPM itself. Matrix dimension did not influence the 

magnitude of stable rate of population growth, and its inclusion in the regression models did not 

affect the significance of the differences between invasiveness categories. Matrix dimension 

was a significant predictor of demographic inertia but the inclusion of this significant predictor 

did not affect the significant differences among invasiveness categories (Supplementary 

Material SM4). Similarly, we reanalyzed our models with inclusion of generation time. 

Generation time is a predictor of our demographic measures but its inclusion did not influence 
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our results. We chose to present the simplified analyses without inclusion of matrix dimension 

and generation time. 

We performed simple linear mixed-effects modelling of demographic metrics per population per 

species, and general linear models of metrics per species. These analyses ignored the 

phylogenetic patterning of the data, but confirmed the results of the MCMCglmm 

(Supplementary Material SM4). See Supplementary Material SM2 for extended methods. 

Finally, we calculated the Pseudo R2 Value to determine the proportion of non-phylogenetic 

variance that is absorbed by the fixed effect (Supplementary Material SM4). We found that 

invasion category explained two thirds of the variation in demographic amplification. This 

provides further evidence of the important links between demographic responses to disturbance, 

and invasiveness. 
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Table SM1: List of Species and Source of Species Status 
 

Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

van Mantgem; 
Stephenson J Ecol 2005 

10.1111/j.1365-
2745.2005.0100
7.x 

Abies 
concolor 5 native introduced http://www.hear.org/gcw/species/abies_concolor/  

van Mantgem; 
Stephenson J Ecol 2005 

0.1111/j.1365-
2745.2005.0100
7.x 

Abies 
magnifica 4 native introduced 

http://www.ars-grin.gov/cgi-
bin/npgs/html/taxon.pl?680 

Hiura; Fujiwara J Veg Sci 1999 
10.2307/323730
9 

Abies 
sachalinensis 2 native not introduced restricted 

Jiminez-Lobato; 
Valverde J Arid Env 2006 

10.1016/j.jaride
nv.2005.07.002 

Acacia 
bilimekii 1 native not introduced restricted 

Warton; Wardle Austral Ecol 2003 

10.1046/j.1442-
9993.2003.0124
6.x 

Acacia 
suaveolens 6 native not introduced restricted 

Tanaka; Shibata; 
Masaki; Iida; 
Niiyama; Abe; 
Kominomi; 
Nokashizuka J Veg Sci 2008 

10.3170/2007-
8-18342 

Acer 
palmatum 2 native Introduced http://www.hear.org/gcw/species/acer_palmatum/  

Tanaka; Shibata; 
Masaki; Iida; 
Niiyama; Abe; 
Kominomi; 
Nokashizuka J Veg Sci 2008 

10.3170/2007-
8-18342 Acer pictum 2 native not introduced restricted 

Tanaka; Shibata; 
Masaki; Iida; 
Niiyama; Abe; 
Kominami; 
Nokashizuka J Veg Sci 2008 

10.3170/2007-
8-18342 

Acer 
rufinerve 1 native Invasive http://ias.biodiversity.be/species/show/119 

Lin; Augspurger 
Forest Ecol 
Manag 2008 

10.1016/j.foreco
.2008.02.040 

Acer 
saccharum 3 native Introduced 

http://www.hear.org/gcw/species/acer_saccharum
/  

Easterling; Ellner; 
Dixon Ecology 2000 

10.1890/0012-
9658(2000)081[
0694:SSSAAN]
2.0.CO;2 

Aconitum 
noveboracens
e 1 native not introduced restricted 

Cook; Lyons PhD thesis 1993 None 
Actaea 
cordifolia 2 native not introduced restricted 

Mayberry; Elle Oecologia 2010 
10.1007/s00442
-010-1809-8 Actaea elata 1 Native not introduced 

 
 
Restricted 
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Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Kaye; Pyke Ecology 2003 

10.1890/0012-
9658(2003)084[
1464:TEOSTO]
2.0.CO;2 Actaea elata 3 Native not introduced restricted 

Froborg; Eriksson Can J Bot 2003 
10.1139/B03-
099 

Actaea 
spicata 2 Native Introduced http://www.hear.org/gcw/species/actaea_spicata/  

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Adenocarpus 
aureus 
gibbsianus 1 Native not introduced restricted 

Wenhui; Yuangang J For Res 1998 
10.1007/BF028
56444 

Adenophora 
lobophylla 1 Native not introduced restricted 

Wenhui; Yuangang J For Res 1998 
10.1007/BF028
56444 

Adenophora 
potaninii 1 Native not introduced restricted 

Cipriotti; Aguiar Appl Veg Sci 2012 

10.1111/j.1654-
109X.2011.011
38.x 

Adesmia 
volckmannii 1 Native not introduced restricted 

Ticktin; Nantel Biol Cons 2004 
10.1016/j.bioco
n.2004.03.019 

Aechmea 
magdalenae 2 Native not introduced restricted 

Jimenez-Valdes, 
Godinez-Alvarez, 
Caballero, Lira Econ Bot 2010 

10.1007/s12231
-010-9117-0 

Agave 
marmorata 1 Native not introduced restricted 

Kiviniemi Plant Ecol 2002 None 
Agrimonia 
eupatoria 2 Native introduced 

http://www.hear.org/gcw/species/agrimonia_eupa
toria/  

Hansen; Wilson J Appl Ecol 2006 

10.1111/j.1365-
2664.2006.0114
5.x 

Agropyron 
cristatum 1 invasive invasive 

http://www.esajournals.org/doi/abs/10.1890/10-
0631.1 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Ailanthus 
altissima 1 invasive invasive http://www.cabi.org/isc/datasheet/3889 

Bullock; White; 
Prudhomme; 
Tansey; Perea; 
Hooftman J Ecol 2011 

10.1111/j.1365-
2745.2011.0191
0.x 

Ailanthus 
altissima 1 invasive invasive http://www.cabi.org/isc/datasheet/3889 

Pfister; Wang Ecology 2005 
10.1890/04-
1952 Alaria nana 1 Native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Alliaria 
petiolata 1 invasive invasive 

 
 
 
http://www.issg.org/database/species/ecology.asp
?si=406&fr=1&sts=sss&lang=EN 



	 107	

Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Evans; Davis; 
Raghu; 
Ragavendran; 
Landis; Schemske Ecol Appl 2012 

10.1890/11-
1291.1 

Alliaria 
petiolata 12 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=406&fr=1&sts=sss&lang=EN 

Kawano; Takada; 
Nakayama; 
Hiratsuka Book 1987 None 

Allium 
monanthum 1 native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Allium 
sativum 1 introduced introduced 

http://www.hear.org/gcw/species/allium_sativum
/  

Nault; Gagnon J Ecol 1993 
10.2307/226122
8 

Allium 
tricoccum 1 native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Allium 
vineale 1 invasive invasive http://www.hear.org/gcw/species/allium_vineale/  

Huenneke; Marks Ecology 1987 
10.2307/193920
7 

Alnus incana 
rugosa 2 native introduced 

https://npgsweb.ars-
grin.gov/gringlobal/taxonomydetail.aspx?id=245
3 

Wong; Ticktin Environ Cons 2014 
10.1017/S03768
92914000204 

Alyxia 
stellata 5 native not introduced restricted 

Goldberg; Turner Ecology 1986 
10.2307/193769
3 

Ambrosia 
deltoidea 1 native not introduced restricted 

Miriti; Wright; 
Howe Ecol Monog 2001 

10.1890/0012-
9615(2001)071[
0491:TEONOT]
2.0.CO;4 

Ambrosia 
dumosa 1 native not introduced restricted 

Miriti; Wright; 
Howe Ecol Monog 2001 

10.1890/0012-
9615(2001)071[
0491:TEONOT]
2.0.CO;14 

Ambrosia 
dumosa 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Anarrhinum 
fruticosum 1 native not introduced restricted 

Dostal J Veg Sci 2007 

10.1111/j.1654-
1103.2007.tb02
519.x 

Androsace 
elongata 5 native introduced 

http://www.hear.org/gcw/species/androsace_elon
gata/  

Williams; Crone Ecology 2006 

10.1890/0012-
9658(2006)87[3
200:TIOIGO]2.
0.CO;2 

Anemone 
patens 1 native not introduced restricted 
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Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Cerna; 
Munzbergova PLoS ONE 2013 

10.1371/journal.
pone.0075563 

Anthericum 
liliago 3 native not introduced restricted 

Cerna; 
Munzbergova PLoS ONE 2013 

10.1371/journal.
pone.0075563 

Anthericum 
ramosum 6 native introduced http://www.cabi.org/isc/abstract/20073230836 

Marcante; Winkler; 
Erschbamer Annals Bot 2009 

10.1093/aob/mc
p047 

Anthyllis 
vulneraria 
alpicola 2 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Antirrhinum 
molle 
lopesianum 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Antirrhinum 
subbaeticum 2 native not introduced restricted 

Zhang; Brockelman; 
Allen Biol Cons 2008 

10.1016/j.bioco
n.2008.04.015 

Aquilaria 
crassna 1 native not introduced restricted 

Stubben PhD thesis 2007 None 
Aquilegia 
chrysantha 1 native introduced 

https://npgsweb.ars-
grin.gov/gringlobal/taxonomydetail.aspx?id=374
1 

Stubben; Milligan J Stat Soft 2007 None Aquilegia sp. 1 NATD NATD   

Enright; Ogden Aust J Ecol 1979 

10.1111/j.1442-
9993.1979.tb01
195.x 

Araucaria 
cunninghamii 1 native introduced 

https://npgsweb.ars-
grin.gov/gringlobal/taxonomydetail.aspx?id=383
7 

Enright Aust J Ecol 1982 

10.1111/j.1442-
9993.1982.tb01
304.x 

Araucaria 
hunsteinii 2 native not introduced restricted 

Rautiainen; Laine; 
Aikio; Aspi; Siira; 
Hyvarinen Appl Veg Sci 2004 

10.1111/j.1654-
109X.2004.tb00
613.x 

Arctophila 
fulva 2 native not introduced restricted 

Koop; Horvitz Ecology 2005 
10.1890/04-
1483 

Ardisia 
elliptica 5 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=52&fr=1&sts=sss&lang=EN 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Arenaria 
grandiflora 
bolosii 1 native not introduced restricted 

Dostal J Veg Sci 2007 

10.1658/1100-
9233(2007)18[9
1:PDOAIP]2.0.
CO;2 

Arenaria 
serpyllifolia 5 native introduced 

http://www.hear.org/gcw/species/arenaria_serpyll
ifolia/  

Mandujano; 
Verhulst; Carrillo-
Angeles; Golubov Int J Plant Sci 2007 10.1086/519008 

Ariocarpus 
scaphirostris 1 native not introduced 

 
 
 
Restricted 
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Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Kinoshita Plant Spp Biol 1987 

10.1111/j.1442-
1984.1987.tb00
030.x 

Arisaema 
serratum 1 native not introduced restricted 

Bierzychudek Ecol Monog 1982 
10.2307/293735
0 

Arisaema 
triphyllum 2 native introduced 

http://www.hear.org/gcw/species/arisaema_triphy
llum/  

Lefebvre; Chandler-
Mortimer J Appl Ecol 1984 

10.2307/240305
1 

Armeria 
maritima 1 native introduced 

http://www.hear.org/gcw/species/armeria_mariti
ma/  

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Armeria 
merinoi 2 native not introduced restricted 

Jakalaniemi 
Env and Exp 
Bot 2011 

10.1016/j.envex
pbot.2011.03.01
3 

Arnica 
angustifolia 1 native introduced 

http://www.hear.org/gcw/species/arnica_angustif
olia/  

Marcante; Winkler; 
Erschbamer Annals Bot 2009 

10.1093/aob/mc
p047 

Artemisia 
genipi 2 native introduced 

http://www.hear.org/gcw/species/arnica_angustif
olia/  

Damman; Cain J Ecol 1998 

10.1046/j.1365-
2745.1998.0024
2.x 

Asarum 
canadense 4 native not introduced restricted 

Bell; Bowles; 
McEachern Book 2003 

978-3-642-
07869-9 

Asclepias 
meadii 2 native not introduced restricted 

Araujo; Serrao; 
Sousa-Pinto; Aberg PLoS ONE 2014 

10.1371/journal.
pone.0092177 

Ascophyllum 
nodosum 3 native introduced doi:10.1111/j.1529-8817.2004.04081.x 

Aberg 
Mar Ecol Prog 
Ser 1990 

10.3354/meps0
63281 

Ascophyllum 
nodosum 2 native introduced doi:10.1111/j.1529-8817.2004.04081.x 

Zotz; Schmidt Biol Cons 2006 
10.1016/j.bioco
n.2005.07.022 

Aspasia 
principissa 1 native not introduced restricted 

Bucharova; 
Munzbergova; Tajek Am J Bot 2010 

10.3732/ajb.090
0351 

Asplenium 
adulterinum 6 native not introduced restricted 

Bucharova; 
Munzbergova; Tajek Am J Bot 2010 

10.3732/ajb.090
0351 

Asplenium 
cuneifolium 4 native not introduced restricted 

Bremer; Jongejans Popul Ecol 2010 
10.1007/s10144
-009-0143-7 

Asplenium 
scolopendriu
m 2 native not introduced restricted 

Munzbergova Am J Bot 2007 
10.1093/aob/mc
m204 Aster amellus 9 native introduced http://www.hear.org/gcw/species/aster_amellus/  

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Aster 
pyrenaeus 1 native not introduced restricted 

Nicole PhD thesis 2005 None 
Astragalus 
alopecurus 4 native not introduced 

 
 
Restricted 
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Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Wall; Hoffmann; 
Wentworth; Gray; 
Hohmann Plant Ecol 2012 

10.1007/s11258
-012-0068-7 

Astragalus 
michauxii 1 native not introduced restricted 

Martin; Meinke Popul Ecol 2012 
10.1007/s10144
-012-0318-5 

Astragalus 
peckii 2 native not introduced restricted 

Lesica Great Bas Nat 1995 
10.2307/244561
5 

Astragalus 
scaphoides 2 native not introduced restricted 

Crone; Lesica Ecology 2004 
10.1890/03-
0256 

Astragalus 
scaphoides 3 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Astragalus 
tremolsianus 1 native not introduced restricted 

Kaye; Pyke Ecology 2003 

10.1890/0012-
9658(2003)084[
1464:TEOSTO]
2.0.CO;2 

Astragalus 
tyghensis 5 native not introduced restricted 

Pinero; Martinez; 
Sarukhan Ecology 1984 

10.2307/225954
5 

Astrocaryum 
mexicanum 4 native not introduced restricted 

Martinez-Avalos PhD thesis 2007 None 
Astrophytum 
asterias 5 native not introduced restricted 

Mandujano; Bravo; 
Verhulst; Carrillo-
Angeles; Golubov Acta Oeco 2015 

10.1016/j.actao.
2014.12.004 

Astrophytum 
capricorne 1 native not introduced restricted 

Zepeda Martinez thesis 2010 None 
Astrophytum 
ornatum 1 native not introduced restricted 

Zepeda-Martinez; 
Manujano; 
Mandujano; 
Golubov J Arid Env 2013 

10.1016/j.jaride
nv.2012.08.006 

Astrophytum 
ornatum 1 native not introduced restricted 

Verhulst; Montana; 
Mandujano; Franco Oecologia 2008 

10.1007/s00442
-008-0980-7 

Atriplex 
acanthocarpa 1 native not introduced restricted 

Verhulst; Montana; 
Mandujano; Franco Oecologia 2008 

10.1007/s00442
-008-0980-7 

Atriplex 
canescens 1 native introduced 

http://www.hear.org/gcw/species/atriplex_canesc
ens/  

Hunt J Appl Ecol 2001 

10.1046/j.1365-
2664.2001.0058
6.x 

Atriplex 
vesicaria 9 native introduced 

http://www.hear.org/gcw/species/atriplex_vesicar
ia/  

Lopez-Hoffman; 
Ackerly; Anten; 
Denoyer;Ramos J Ecol 2007 

10.1111/j.1365-
2745.2007.0129
8.x 

Avicennia 
germinans 1 native introduced 

http://www.hear.org/gcw/species/avicennia_germ
inans/  

Crone; Marler; 
Pearson J Appl Ecol 2009 

10.1111/j.1365-
2664.2009.0163
5.x 

Balsamorhiza 
sagittata 1 native not introduced restricted 
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Bradstock; 
O'Connell Aust J Ecol 1988 

10.1111/j.1442-
9993.1988.tb00
999.x 

Banksia 
ericifolia 1 native introduced 

http://www.hear.org/gcw/species/banksia_ericifol
ia/  

Zuidema; Boot J Trop Ecol 2002 
10.1017/S02664
67402002018 

Bertholletia 
excelsa 2 native not introduced restricted 

Ebert; Ebert Vegetatio 1989 
10.1007/BF000
42253 Betula nana 1 native introduced http://www.hear.org/gcw/species/betula_nana/  

Lehtila; Tuomi; 
Sulkinoja Ecology 1994 

10.2307/193941
8 

Betula 
pubescens 
pumila 2 native introduced 

http://www.hear.org/gcw/species/betula_pubesce
ns/  

Lesica; Shelly Am J Bot 1995 
10.2307/244561
5 

Boechera 
fecunda 3 native not introduced restricted 

Barot; Gignoux; 
Vuattoux J Trop Ecol 2000 

10.1017/S02664
67400001620 

Borassus 
aethiopum 2 native introduced 

O'Connor J Appl Ecol 1993 
10.2307/240427
6 

Bothriochloa 
insculpta 1 native introduced 

http://www.hear.org/gcw/species/bothriochloa_in
sculpta/  

Fowler; Overath; 
Pease Ecology 2006 

10.1890/05-
1197 

Bouteloua 
rigidiseta 1 native not introduced restricted 

Noel; Maurice; 
Mignot; Glemin; 
Carbonell; Justy; 
Guyot; Olivieri; 
Petit Cons Genet 2010 

10.1007/s10592
-010-0056-1 

Brassica 
insularis 4 native not introduced restricted 

Garnier; Lecomte Ecol Model 2006 

10.1016/j.ecolm
odel.2005.10.00
9 

Brassica 
napus 1 NATD NATD http://www.hear.org/gcw/species/brassica_napus/  

Griffith Ecology 2010 
10.1890/08-
1446.1 

Bromus 
tectorum 3 invasive invasive 

http://www.hear.org/gcw/species/bromus_tectoru
m/  

Hernandez-
Apolinor; Valverde; 
Purata 

Forest Ecol 
Manag 2006 

10.1016/j.foreco
.2005.10.072 

Bursera 
glabrifolia 1 native not introduced restricted 

Binh PhD thesis 2009 None 
Calamus 
nambariensis 1 native NATD   

Binh PhD thesis 2009 None 
Calamus 
rhabdocladus 1 native not introduced restricted 

Le Corff; Horvitz Ecol Model 2005 

10.1016/j.ecolm
odel.2005.05.00
9 

Calathea 
micans 1 native not introduced restricted 

Horvitz; Schemske Ecol Monog 1995 
10.2307/293713
6 

Calathea 
ovandensis 2 native not introduced restricted 

Price; Bowman J Biogeog 1994 
10.2307/284603
2 

Callitris 
columellaris 1 native invasive 

 
http://www.hear.org/pier/species/callitris_colume
llaris.htm  
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Number of 
populations Population Status Species Status Species Status Source 

Scandrett; 
Gimmingham Vegetatio 1989 

10.1007/BF000
36515 

Calluna 
vulgaris 1 native invasive 

http://www.hear.org/gcw/species/calluna_vulgari
s/  

van Mantgem; 
Stephenson J Ecol 2005 

10.1111/j.1365-
2745.2005.0100
7.x 

Calocedrus 
decurrens 3 native introduced 

http://www.hear.org/gcw/species/calocedrus_dec
urrens/  

Chien; Zuidema; 
Nghia Popul Ecol 2008 

10.1007/s10144
-008-0079-3 

Calocedrus 
macrolepis 1 native not introduced restricted 

Fiedler J Ecol 1987 
10.2307/226030
8 

Calochortus 
albus 1 native not introduced restricted 

Miller; Antos; Allen PhD thesis 2004 None 
Calochortus 
lyallii 11 native not introduced restricted 

Fiedler J Ecol 1987 
10.2307/226030
8 

Calochortus 
obispoensis 1 native not introduced restricted 

Fiedler J Ecol 1987 
10.2307/226030
8 

Calochortus 
pulchellus 1 native not introduced restricted 

Fiedler J Ecol 1987 
10.2307/226030
8 

Calochortus 
tiburonensis 1 native not introduced restricted 

Jongejans; 
Sheppard; Shea J Appl Ecol 2006 

10.1111/j.1365-
2664.2006.0122
8.x 

Carduus 
nutans 3 native invasive http://www.cabi.org/isc/datasheet/11259 

Shea; Kelly; 
Sheppard; 
Woodburn Ecology 2005 

10.1890/05-
0195 

Carduus 
nutans 2 native invasive http://www.cabi.org/isc/datasheet/11259 

Wikberg; Svensson Plant Ecol 2006 
10.1007/s11258
-005-9006-2 Carex humilis 2 native not introduced restricted 

Jongejans; 
Jorritsma-Wienk; 
Becker; Dostal; 
Milden; de Kroon J Ecol 2010 

10.1111/j.1365-
2745.2009.0161
2.x 

Carlina 
vulgaris 4 native introduced 

http://www.hear.org/gcw/species/carlina_vulgaris
/  

Steenbergh; Lowe Ecology 1969 
10.2307/193369
6 

Carnegiea 
gigantea 1 native not introduced restricted 

Chien; Zuidema; 
Nghia Popul Ecol 2008 

10.1007/s10144
-008-0079-3 

Carya 
sinensis 1 native not introduced restricted 

Silander Oecologia 1983 
10.1007/BF003
79524 

Cassia 
nemophila 1 native introduced 

http://plants.usda.gov/core/profile?symbol=SEA
RC&mapType=nativity  

Davelos; Jarosez J Ecol 2004 

10.1111/j.0022-
0477.2004.0090
7.x 

Castanea 
dentata 6 native not introduced 

 
 
 
 
 
restricted 
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del Castillo; 
Trujillo-Argueta; 
Rivera-Garcia; 
Gomez-Ocampo; 
Mondragon-
Chaparro Ecol and Evol 2013 

10.1002/ece3.76
5 

Catopsis 
compacta 1 native not introduced restricted 

Winkler; Hulber; 
Hietz 

Bas and Appl 
Ecol 2007 

10.1016/j.baae.
2006.05.003 

Catopsis 
sessiliflora 1 native not introduced restricted 

Alvarez-Buylla Am Nat 1994 10.1086/285599 
Cecropia 
obtusifolia 1 native invasive 

http://www.hear.org/pier/species/cecropia_obtusi
folia.htm  

Pisanu; Farris; 
Filigheddu; Begona 
Garcia Plant Ecol 2012 

10.1007/s11258
-012-0110-9 

Centaurea 
horrida 3 native not introduced restricted 

Jongejans; de Kroon J Ecol 2005 

10.1111/j.1365-
2745.2005.0100
3.x 

Centaurea 
jacea 2 native invasive 

http://www.hear.org/gcw/species/centaurea_jacea
/  

Emery; Gross J Appl Ecol 2005 

10.1111/j.1365-
2664.2004.0099
0.x 

Centaurea 
podospermifo
lia 1 introduced invasive 

http://www.hear.org/gcw/species/centaurea_mac
ulosa/  

Maines; Knochel; 
Seastedt Ecosphere 2013 

10.1890/ES13-
00094.1 

Centaurea 
stoebe 1 invasive invasive https://www.cabi.org/isc/datasheet/12040 

Perez-Farrera; 
Vovides; Octavio-
Aguilar; Gonzalez-
Astorga; Cruz-
Rodriguez; 
Hernandez-Jonapa; 
Villalobos-Mendez Plant Ecol 2006 

10.1007/s11258
-006-9135-2 

Ceratozamia 
mirandae 1 native not introduced restricted 

Magda; Duru; Theau Weed Sci 2004 
10.1614/P2202-
067 

Chaerophyllu
m aureum 1 native introduced 

http://www.hear.org/gcw/species/chaerophyllum
_aureum/  

Liu; Menges; 
Quintana-Ascencio Ecol Appl 2005 

10.1890/03-
5382 

Chamaecrista 
lineata 
keyensis 5 native not introduced restricted 

Valverde; 
Hernandez-
Apolinor; Mendoza-
Amarom J Sust Forestry 2006 

10.1300/J091v2
3n01_05 

Chamaedorea 
elegans 1 native invasive http://www.cabi.org/isc/datasheet/14347 

Endress; Gorchov; 
Robert; Noble Ecol Appl 2004 

10.1890/02-
5365 

Chamaedorea 
radicalis 4 native introduced 

 
 
 
http://www.floridata.com/ref/c/cham_rad.cfm  
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Berry; Gorchov; 
Endress; Stevens Ecology 2008 

10.1007/s10144
-007-0067-z 

Chamaedorea 
radicalis 1 native introduced http://www.floridata.com/ref/c/cham_rad.cfm  

Meagher; 
Antonovics Ecology 1982 

10.2307/194011
1 

Chamaelirium 
luteum 3 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Cheirolophus 
metlesicsii 1 native not introduced restricted 

ter Steege; Boot; 
Brouwer; 
Hammond; 
Vanderhout; Jetten; 
Khan; Polak; 
Raaimakers; Zagt Ecol Appl 1995 

10.2307/226934
1 

Chlorocardiu
m rodiei 1 native not introduced restricted 

Bullock; White; 
Prudhomme; 
Tansey; Perea; 
Hooftman J Ecol 2011 

10.1111/j.1365-
2745.2011.0191
0.x 

Cirsium 
acaule 1 native introduced http://www.hear.org/gcw/species/cirsium_acaule/  

Munzbergova Am J Bot 2005 
10.3732/ajb.92.
12.1987 

Cirsium 
acaule 1 native introduced http://www.hear.org/gcw/species/cirsium_acaule/  

Davis; Landis; 
Nuzzo; Blossey; 
Gerber; Hinz Ecol Appl 2006 

10.1890/1051-
0761(2006)016[
2399:DMISOB]
2.0.CO;2 

Cirsium 
arvense 1 invasive invasive http://www.cabi.org/isc/datasheet/13628 

Jongejans; de Vere; 
de Kroon Plant Ecol 2008 

10.1007/s11258
-008-9397-y 

Cirsium 
dissectum 4 native introduced 

http://www.hear.org/gcw/species/cirsium_dissect
um/  

Ramula Acta Oeco 2008 
10.1016/j.actao.
2007.11.005 

Cirsium 
palustre 1 native introduced 

http://www.hear.org/gcw/species/cirsium_palustr
e/  

Munzbergova Am J Bot 2005 
10.3732/ajb.92.
12.1987 

Cirsium 
pannonicum 1 native not introduced restricted 

Dodge PhD thesis 2005 None 
Cirsium 
perplexans 2 native not introduced restricted 

Bell; Bowles; 
McEachern Book 2003 

978-3-642-
07869-9 

Cirsium 
pitcheri 1 native not introduced 

 
 
 
 
 
 
 
 
 
restricted 
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Ellis; Williams; 
Lesica; Bell; 
Bierzychudek; 
Bowles; Crone; 
Doak; Ehrlen; Ellis-
Adam; McEachern; 
Ganesan; Latham; 
Luijten; Kaye; 
Knight; Menges; 
Morris; Den Nijs; 
Oostermeijer; 
Quintana-Ascencio; 
Shelly; Stanley; 
Thorpe; Ticktin; 
Valverde; Weekley Ecology 2012 

10.1890/11-
1052.1 

Cirsium 
pitcheri 3 native not introduced restricted 

Bell; Powell; 
Bowles J Wild Manag 2013 

10.1002/jwmg.5
25 

Cirsium 
pitcheri 1 native not introduced restricted 

Jolls; Marik; 
Hamze; Havens Biol Cons 2015 

10.1016/j.bioco
n.2015.04.006 

Cirsium 
pitcheri 1 native not introduced restricted 

Dodge PhD thesis 2005 None 
Cirsium 
scariosum 2 native introduced 

https://npgsweb.ars-
grin.gov/gringlobal/taxonomydetail.aspx?id=448
120 

Dodge PhD thesis 2005 None 
Cirsium 
tracyi 2 native not introduced restricted 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Cirsium 
undulatum 1 native invasive 

http://www.hear.org/gcw/species/cirsium_undula
tum/  

Bullock; Hill; 
Silvertown J Ecol 1994 

10.2307/226139
0 

Cirsium 
vulgare 2 native introduced 

http://www.hear.org/gcw/species/cirsium_vulgar
e/  

Hegazy  J Arid Env 1990 None 
Cleome 
droserifolia 1 native introduced 

http://www.hear.org/gcw/species/cleome_droseri
folia/  

DeWalt Biol Inv 2006 
10.1007/s10530
-005-5277-8 

Clidemia 
hirta 2 invasive invasive http://www.hear.org/gcw/species/clidemia_hirta/  

Olmsted; Alvarez-
Buylla Ecol Appl 1995 

10.2307/194203
8 

Coccothrinax 
readii 1 native not introduced restricted 

Silva; Trevisan; 
Estrada; Monosterio 

Global Ecol 
Biogeogr 2000 

10.1046/j.1365-
2699.2000.0018
7.x 

Coespeletia 
spicata 1 native not introduced restricted 

Silva; Trevisan; 
Estrada; Monosterio 

Global Ecol 
Biogeogr 2000 

10.1046/j.1365-
2699.2000.0018
7.x 

Coespeletia 
timotensis 1 native not introduced restricted 
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Winter; Jung; 
Eckstein; Otte; 
Donath; Kriechbaum J Appl Ecol 2014 

10.1111/1365-
2664.12217 

Colchicum 
autumnale 2 native introduced 

http://hear.org/gcw/species/colchicum_autumnale
/ 

Kalisz; McPeek Ecology 1992 
10.2307/194018
2 

Collinsia 
verna 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Corallorhiza 
trifida 1 native not introduced restricted 

Vejdani PhD thesis 2006 None 
Cornus 
florida 1 native introduced http://www.hear.org/gcw/species/cornus_florida/  

Lucas; Forseth; 
Casper J Ecol 2008 

10.1111/j.1365-
2745.2007.0135
0.x 

Cryptantha 
flava 1 native not introduced restricted 

Prendeville; 
Tenhumberg; Pilson New Phyto 2014 

10.1111/nph.12
730 

Cucurbita 
pepo 3 introduced introduced 

http://plants.usda.gov/core/profile?symbol=CUP
E 

Boorman; Fuller New Phyto 1984 

10.1111/j.1469-
8137.1984.tb03
596.x 

Cynoglossum 
officinale 1 native invasive 

http://www.hear.org/gcw/species/cynoglossum_o
fficinale/  

Nicole; Brzosko; 
Till-Bottraud J Ecol 2005 

10.1111/j.1365-
2745.2005.0101
0.x 

Cypripedium 
calceolus 2 native introduced 

http://www.hear.org/gcw/species/cypripedium_ca
lceolus/  

Garcia; Goni; 
Guzman Cons Biol 2010 

10.1111/j.1523-
1739.2010.0146
6.x 

Cypripedium 
calceolus 4 native introduced 

http://www.hear.org/gcw/species/cypripedium_ca
lceolus/  

Thorpe; Stanley; 
Kayne; Latham Report 2011 None 

Cypripedium 
fasciculatum 3 native not introduced restricted 

Zhongjian; Rao 
Wenhui; Liqiang; 
Yuting 

Acta Ecol 
Sinica 2008 

10.1016/S1872-
2032(08)60021-
9 

Cypripedium 
lentiginosum 1 native not introduced restricted 

Neubert; Parker Risk Anal 2004 

10.1111/j.0272-
4332.2004.0048
1.x 

Cytisus 
scoparius 14 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=441&fr=1&sts=sss&lang=EN 

Chien; Zuidema; 
Nghia Popul Ecol 2008 

10.1007/s10144
-008-0079-3 

Dacrydium 
elatum 1 native not introduced restricted 

Sletvold; Oien; 
Moen Biol Cons 2010 

10.1016/j.bioco
n.2009.12.017 

Dactylorhiza 
lapponica 2 native introduced http://www.cabi.org/isc/datasheet/113786 

Binh PhD thesis 2009 None 
Daemonorops 
poilanei 1 native not introduced restricted 

Moloney Ecology 1988 
10.3354/meps0
45001 

Danthonia 
sericea 5 native introduced 

http://www.hear.org/gcw/species/danthonia_seric
ea/  

Verkaar; 
Schenkeveld New Phyto 1984 

10.1111/j.1469-
8137.1984.tb04
155.x Daucus carota 1 native invasive https://www.cabi.org/isc/datasheet/18018 
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Lin; Miriti; Goodell Ecol Evol 2016 
10.1002/ece3.21
63 

Dicentra 
canadensis 3 native not introduced restricted 

Menges; Quintana-
Ascencio; Weekley; 
Gaoue Biol Cons 2006 

10.1016/j.bioco
n.2005.08.002 

Dicerandra 
frutescens 7 native not introduced restricted 

Picard; Mortier; 
Chagneau Ecol Model 2010 

10.1016/j.ecolm
odel.2010.06.01
0 

Dicorynia 
guianensis 1 native not introduced restricted 

Zagt; Boot PhD thesis 1997 None 
Dicymbe 
altsonii 1 native not introduced restricted 

Sletvold; Rydgren J Ecol 2007 

10.1111/j.1365-
2745.2007.0128
7.x 

Digitalis 
purpurea 1 native invasive 

http://www.hear.org/gcw/species/digitalis_purpur
ea/  

O'Connor J Appl Ecol 1993 
10.2307/240427
6 

Digitaria 
eriantha 1 native invasive http://www.cabi.org/isc/datasheet/109594 

Lazaro-Zermeno; 
Gonzalez-Espinosa; 
Mendoza; Martinez-
Ramos; Quintana-
Ascencio 

Forest Ecol 
Manag 2011 

10.1016/j.foreco
.2010.10.028 

Dioon 
merolae 2 native not introduced restricted 

Alvarez-Yepiz; 
Dovciak; Burquez Biol Cons 2011 

10.1016/j.bioco
n.2010.08.007 

Dioon 
sonorense 1 native not introduced restricted 

Castaneda MSc thesis 2008 None 
Dioon 
spinulosum 2 native not introduced restricted 

Garcia Cons Biol 2003 

10.1016/S0006-
3207(01)00113-
6 

Dioscorea 
chouardii 1 native not introduced restricted 

Werner; Caswell Ecology 1977 
10.2307/193693
0 

Dipsacus 
fullonum 11 invasive invasive 

http://www.hear.org/gcw/species/dipsacus_fullon
um/  

Kawano; Takada; 
Nakayama; 
Hiratsuka Book 1987 None 

Disporum 
sessile 2 native not introduced restricted 

Kawano; Takada; 
Nakayama; 
Hiratsuka Book 1987 None 

Disporum 
smilacinum 2 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Dorycnium 
spectabile 1 native not introduced restricted 

Putnam PhD thesis 2013 None 
Draba 
asterophora 2 native not introduced 

 
 
restricted 
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Andrello; Bizoux; 
Barbet-Massin; 
Gaudeul; Nicole; 
Till-Bottraud Cons Biol 2012 

10.1016/j.bioco
n.2011.12.012 

Dracocephalu
m austriacum 7 native not introduced restricted 

Zagt; Boot PhD thesis 1997 None 
Duguetia 
neglecta 1 native not introduced restricted 

Ratsirarson; 
Silander; Richard Cons Biol 1996 

10.1046/j.1523-
1739.1996.1001
0040.x 

Dypsis 
decaryi 3 native introduced USDA 

Martorell Popul Ecol 2007 
10.1007/s10144
-012-0307-8 

Echeveria 
longissima 1 native not introduced restricted 

Hurlburt PhD thesis 1999 None 
Echinacea 
angustifolia 2 native introduced 

http://powo.science.kew.org/taxon/urn:lsid:ipni.o
rg:names:1174497-2 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Echinacea 
angustifolia 1 native introduced 

http://powo.science.kew.org/taxon/urn:lsid:ipni.o
rg:names:1174497-2 

Jiminez-Sierra; 
Mandujano; 
Eguiarte Biol Cons 2007 

10.1016/j.bioco
n.2006.10.038 

Echinocactus 
platyacanthus 6 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Echinospartu
m ibericum 
algibicum 1 native not introduced restricted 

Mortimer Book 1983 None 
Elymus 
repens 1 native introduced http://www.hear.org/gcw/species/elymus_repens/  

Raimondo; 
Donaldson Biol Cons 2003 

10.1016/S0006-
3207(02)00303-
8 

Encephalartos 
cycadifolius 1 native not introduced restricted 

Picard; Yalibanda; 
Namkosserena; 
Baya 

Forest Ecol 
Manag 2008 

10.1016/j.foreco
.2008.02.041 

Entandrophra
gma 
cylindricum 1 native not introduced restricted 

Chagneau; Mortier; 
Picard J R Stat Soc C 2009 

10.1111/j.1467-
9876.2008.0065
7.x 

Eperua 
falcata 1 native not introduced restricted 

Doak Ecology 1992 
10.2307/194145
7 

Epilobium 
latifolium 1 native not introduced restricted 

Watson; Westoby; 
Holm J Ecol 1997 

10.2307/296060
4 

Eremophila 
forrestii 1 native not introduced restricted 

Watson; Westoby; 
Holm J Ecol 1997 

10.2307/296060
4 

Eremophila 
maitlandii 2 native not introduced restricted 

Zhang; Wang; Shi 
Chin J Plant 
Ecol 2009 None 

Eremosparton 
songoricum 2 native not introduced restricted 
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Kouassi; Barot; 
Gignoux; Bi J Trop Ecol 2008 

10.1017/S02664
67408005312 

Eremospatha 
macrocarpa 1 native not introduced restricted 

Bullock; White; 
Prudhomme; 
Tansey; Perea; 
Hooftman J Ecol 2011 

10.1111/j.1365-
2745.2011.0191
0.x 

Erigeron 
canadensis 1 introduced invasive http://www.cabi.org/isc/datasheet/15251 

Satterthwaite; 
Menges; Quintana-
Ascencio Ecol Appl 2002 

10.1890/1051-
0761(2002)012[
1672:ASBPVI]
2.0.CO;2 

Eriogonum 
longifolium 
gnaphalifoliu
m 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Erodium 
paularense 2 native not introduced restricted 

Andrello; Bizoux; 
Barbet-Massin; 
Gaudeul; Nicole; 
Till-Bottraud Biol Cons 2012 

10.1016/j.bioco
n.2011.12.012 

Eryngium 
alpinum 7 native not introduced restricted 

Menges; Quintana-
Ascencio Ecol Monog 2004 

10.1890/03-
4029 

Eryngium 
cuneifolium 8 native not introduced restricted 

Curle; Stabbetorp; 
Nordal Nord J Bot 2007 None 

Eryngium 
maritimum 1 native introduced 

http://www.hear.org/gcw/species/eryngium_marit
imum/  

Kawano; Takada; 
Nakayama; 
Hiratsuka Book 1987 None 

Erythronium 
japonicum 2 native not introduced restricted 

Schmalzel; 
Reichenbacher; 
Rutman Madrono 1995 None 

Escobaria 
robbinsiorum 3 native not introduced restricted 

Ortega-Baes PhD thesis 2001 None 
Escontria 
chiotilla 2 native not introduced restricted 

Byers; Meagher Ecol Appl 1997 

10.1890/1051-
0761(1997)007[
0519:ACODCI]
2.0.CO;2 

Eupatorium 
perfoliatum 3 native introduced 

http://www.hear.org/gcw/species/eupatorium_per
foliatum/  

Byers; Meagher Ecol Appl 1997 

10.1890/1051-
0761(1997)007[
0519:ACODCI]
2.0.CO;2 

Eupatorium 
resinosum 2 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Euphorbia 
fontqueriana 1 native not introduced 

 
 
 
restricted 
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Silva-Matos; 
Freckleton; 
Watkinson Ecology 1999 

10.1890/0012-
9658(1999)080[
2635:TRODDI]
2.0.CO;2 

Euterpe 
edulis 1 native not introduced restricted 

Arango; Duque; 
Munoz Int J Trop Biol 2010 

10.15517/rbt.v5
8i1.5222 

Euterpe 
oleracea 2 native introduced 

http://www.hear.org/gcw/species/euterpe_olerace
a/ 

Zuidema Book 2000 None 
Euterpe 
precatoria 1 native not introduced restricted 

Otarola; Avalos Am J Bot 2014 
10.3732/ajb.140
0089 

Euterpe 
precatoria 2 native not introduced restricted 

Batista; Platt; 
Macchiavelli Ecology 1998 10.2307/176863 

Fagus 
grandifolia 2 native introduced 

http://www.hear.org/gcw/species/fagus_grandifol
ia/  

Gibert; Magda; 
Hazard PLoS ONE 2015 

10.1371/journal.
pone.0139919 Festuca eskia 2 native not introduced restricted 

Schulze; Rufener; 
Erharft; Stoll Popul Ecol 2012 

10.1007/s10144
-012-0338-1 

Fragaria 
vesca 12 native invasive http://www.cabi.org/isc/datasheet/24409 

Yonezawa; 
Kinoshita; Watano; 
Zentoh Evol 2000 

10.1111/j.0014-
3820.2000.tb01
244.x 

Fritillaria 
biflora 2 native not introduced restricted 

Araujo; Serrao; 
Sousa-Pinto; Aberg PLoS ONE 2014 

10.1371/journal.
pone.0092177 

Fucus 
vesiculosus 3 native not introduced restricted 

Ang; de Wreede 
Mar Ecol Prog 
Ser 1993 

10.3354/meps0
93253 

Fucus 
vesiculosus 1 native not introduced restricted 

Osunkoya Biol Cons 2003 

10.1016/S0006-
3207(02)00417-
2 

Gardenia 
actinocarpa 1 native not introduced restricted 

Floyd; Ranker Int J Plant Sci 1998 10.1086/297607 

Gaura 
neomexicana 
coloradensis 9 native not introduced restricted 

Vieira, Santos J Phycol 2010 

10.1111/j.1529-
8817.2010.0092
4.x 

Gelidium 
sesquipedale 1 native not introduced restricted 

Oostermeijer; 
Brugman; de Boer; 
den Nijs J Ecol 1996 

10.2307/226135
1 

Gentiana 
pneumonanth
e 1 native not introduced restricted 

Lennartsson; 
Oostermeijer J Ecol 2001 

10.1046/j.1365-
2745.2001.0056
6.x 

Gentianella 
campestris 1 native not introduced 

 
 
 
 
 
restricted 
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Zuidema; de Kroon; 
Werger Ecol Appl 2007 

10.1890/1051-
0761(2007)017[
0118:TSBPAR]
2.0.CO;2 

Geonoma 
deversa 2 Native not introduced restricted 

Svenning Plant Ecol 2002 
10.1023/A:1015
520116260 

Geonoma 
macrostachys 1 Native not introduced restricted 

Rodriguez-Buritica; 
Orjuela; Galeano 

Forest Ecol 
Manag 2005 

10.1016/j.foreco
.2005.02.052 

Geonoma 
orbignyana 1 Native not introduced restricted 

Souza; Martins Aust Ecol 2006 

10.1111/j.1442-
9993.2006.0165
0.x 

Geonoma 
pohliana 
weddelliana 3 Native not introduced restricted 

Sampaio; Scariot J Trop Ecol 2010 
10.1017/S02664
67409990599 

Geonoma 
schottiana 1 Native not introduced restricted 

Ramula; Toivonen; 
Mutikainen Int J Plant Sci 2007 10.1086/512040 

Geranium 
sylvaticum 3 Native introduced 

http://www.hear.org/gcw/species/geranium_sylva
ticum/  

Weppler; Stoll; 
Stocklin J Ecol 2006 

10.1111/j.1365-
2745.2006.0113
4.x Geum reptans 2 Native not introduced restricted 

Kiviniemi Plant Ecol 2002 None Geum rivale 1 Native introduced http://www.hear.org/gcw/species/geum_rivale/  

Levine; McEachern; 
Cowan J Ecol 2008 

10.1111/j.1365-
2745.2008.0137
5.x 

Gilia 
tenuiflora 
hoffmannii 1 Native not introduced restricted 

Engel; Aberg; 
Gaggiotti; 
Destombe; Valero J Ecol 2001 

10.1046/j.1365-
2745.2001.0056
7.x 

Gracilaria 
gracilis 2 invasive invasive GISD 

Engel; Aberg; 
Gaggiotti; 
Destombe; Valero J Ecol 2001 

10.1046/j.1365-
2745.2001.0056
7.x 

Gracilaria 
gracilis 2 invasive invasive GISD 

Peters Book 1991 None 
Grias 
peruviana 1 Native not introduced restricted 

CITES 
Plants 
Committee 2008 None 

Guaiacum 
sanctum 1 Native not introduced restricted 

Mondragon Plant Spp Biol 2009 

10.1111/j.1442-
1984.2009.0023
0.x 

Guarianthe 
aurantiaca 1 Native not introduced restricted 

Loayza; Knight Ecology 2010 
10.1890/09-
0480.1 

Guettarda 
viburnoides 3 Native not introduced restricted 

Rae; Ebert Int J Plant Sci 2002 10.1086/339719 
Harrisia 
fragrans 2 Native not introduced 

 
 
 
restricted 
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Adams; Marsh; 
Knox Biol Cons 2005 

10.1016/j.bioco
n.2005.02.001 

Helenium 
virginicum 1 Native not introduced restricted 

Marrero-Gomez; 
Oostermeijer; 
Carque-Alamo; 
Banares-Baudet Biol Cons 2007 

10.1016/j.bioco
n.2007.01.010 

Helianthemu
m juliae 1 Native not introduced restricted 

Iriondo; Albert; 
Gimenez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Helianthemu
m 
polygonoides 1 Native not introduced restricted 

Iriondo; Albert; 
Gimenez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Helianthemu
m teneriffae 1 Native not introduced restricted 

Nantel; Gagnon Ecology 1999 

10.1046/j.1365-
2745.1999.0038
8.x 

Helianthus 
divaricatus 4 native introduced 

http://www.hear.org/gcw/species/helianthus_diva
ricatus/  

Bruna Ecology 2003 

10.1890/0012-
9658(2003)084[
0932:APPIFH]2
.0.CO;2 

Heliconia 
acuminata 7 native introduced 

http://www.hear.org/pier/species/heliconia_spp.ht
m  

Schleuning; 
Huaman; Matthies J Ecol 2008 

10.1111/j.1365-
2745.2008.0141
6.x 

Heliconia 
metallica 2 native invasive 

http://www.hear.org/pier/species/heliconia_spp.ht
m  

Nehrbass; Winkler; 
Pergl; Perglova; 
Py�sek 

Pers Plant Ecol 
Evol Syst 2006 

10.1016/j.ppees.
2005.11.001 

Heracleum 
mantegazzian
um 1 invasive invasive https://www.cabi.org/isc/datasheet/26911 

Wells; Rothery; 
Cox; Bamford Bot J Lin Soc 1998 

10.1111/j.1095-
8339.1998.tb02
514.x 

Herminium 
monorchis 1 native not introduced restricted 

O'Connor J Appl Ecol 1993 
10.2307/240427
6 

Heteropogon 
contortus 1 native invasive 

http://www.hear.org/gcw/species/heteropogon_co
ntortus/  

Balcazar PhD thesis 2013 
978-90-
9027402-7 

Heteropsis 
flexuosa 1 native not introduced restricted 

Balcazar PhD thesis 2013 
978-90-
9027402-7 

Heteropsis 
macrophylla 1 native not introduced restricted 

Balcazar PhD thesis 2013 
978-90-
9027402-7 

Heteropsis 
oblongifolia 1 native not introduced restricted 

Thomas; Dale Can J Bot 1975 
10.1139/b75-
331 

Hieracium 
floribundum 1 invasive invasive 

http://www.hear.org/gcw/species/hieracium_flori
bundum/  

Vega; Montana Plant Ecol 2004 

10.1023/B:VEG
E.0000048094.2
1994.74 

Hilaria 
mutica 2 native not introduced restricted 
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Pfeifer; Wiegand; 
Heinrich; Jetschke J Appl Ecol 2006 

10.1111/j.1365-
2664.2006.0114
8.x 

Himantogloss
um hircinum 1 native introduced 

http://www.hear.org/gcw/species/himantoglossu
m_hircinum/  

Bullock; White; 
Prudhomme; 
Tansey; Perea; 
Hooftman J Ecol 2011 

10.1111/j.1365-
2745.2011.0191
0.x 

Himantogloss
um hircinum 1 native introduced 

http://www.hear.org/gcw/species/himantoglossu
m_hircinum/  

Baldauf; Correa; 
Ferreira; Santos 

Forest Ecol 
Manag 2015 

10.1016/j.foreco
.2015.06.022 

Himatanthus 
drasticus 2 native not introduced restricted 

Kaye; Benfield Report 2004 None 
Horkelia 
congesta 1 native not introduced restricted 

Gross; Lockwood; 
Frost; Morris Cons Biol 1998 

10.1111/j.1523-
1739.1998.9728
5.x 

Hudsonia 
montana 1 native not introduced restricted 

Hara; Kanno; 
Hirabuki; Takehara J Veg Sci 2004 

10.1111/j.1654-
1103.2004.tb02
286.x 

Hydrangea 
paniculata 1 native introduced 

http://www.hear.org/gcw/species/hydrangea_pani
culata/  

Sinclair PhD thesis 2002 None 
Hydrastis 
canadensis 1 native introduced http://eol.org/pages/594852/maps 

Christensen; 
Gorchov Plant Ecol 2010 

10.1007/s11258
-010-9749-2 

Hydrastis 
canadensis 3 native introduced http://eol.org/pages/594852/maps 

Okland Oikos 2000 

10.1034/j.1600-
0706.2000.8803
01.x 

Hylocomium 
splendens 1 native not introduced restricted 

Garnier; Dajoz J Ecol 2001 

10.1890/0012-
9658(2001)082[
1720:ESOALV]
2.0.CO;2 

Hyparrhenia 
diplandra 3 native not introduced restricted 

Quintana-Ascencio; 
Menges; Weekley Cons Biol 2003 

10.1046/j.1523-
1739.2003.0143
1.x 

Hypericum 
cumulicola 13 native not introduced restricted 

Jongejans; de Kroon J Ecol 2005 

10.1111/j.1365-
2745.2005.0100
3.x 

Hypochaeris 
radicata 2 native invasive 

http://www.issg.org/database/species/search.asp?
sts=sss&st=sss&fr=1&x=0&y=0&sn=Hypochaer
is+radicata&rn=&hci=-1&ei=-1&lang=EN only 
invasive in La Reunion (island and region of 
France), has been introduced in the US and 
falkland islands but is not classified as invasive. 
GISD 

Steets; Knight; 
Ashman Am Nat 2007 10.1086/518178 

Impatiens 
capensis 2 native introduced 

http://www.hear.org/gcw/species/impatiens_cape
nsis/ 
http://alienplantsbelgium.be/content/impatiens-
capensis 
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Campbell; Waser Am Nat 2007 10.1086/510758 
Ipomopsis 
tenuituba 1 native not introduced restricted 

Pinard Biotrop 1993 
10.2307/238897
4 

Iriartea 
deltoidea 5 native not introduced restricted 

Ang; de Wreede; 
Shaughnessy; Dyck Hydrobiol 1990 

10.1007/978-
94-009-2049-
1_27 

Iridaea 
splendens 1 native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Iris 
germanica 1 introduced invasive 

http://www.hear.org/pier/species/iris_germanica.
htm  

Pathikonda; Ackleh; 
Hasenstein; Mopper Cons Biol 2009 

10.1111/j.1523-
1739.2008.0107
3.x Iris hexagona 1 native not introduced restricted 

Forbes Weed Res 1977 

10.1111/j.1365-
3180.1977.tb00
498.x 

Jacobaea 
vulgaris 1 native introduced 

http://www.hear.org/gcw/species/senecio_jacoba
ea/ brc.ac.uk 

Couralet; Sass-
Klaassen; Sterck; 
Bekele; Zuidema 

Forest Ecol 
Manag 2005 

10.1016/j.foreco
.2005.05.065 

Juniperus 
procera 1 native not introduced restricted 

Iriondo; Albert; 
Gimenez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Jurinea 
fontqueri 1 native not introduced restricted 

Gaoue; Ticktin Cons Biol 2010 

10.1111/j.1523-
1739.2009.0134
5.x 

Khaya 
senegalensis 6 native invasive 

http://www.hear.org/pier/species/khaya_senegale
nsis.htm  

Pino; Pico; Roa Bot J Lin Soc 2007 

10.1111/j.1095-
8339.2007.0062
8.x 

Kosteletzkya 
pentacarpos 1 native introduced http://www.iucnredlist.org/details/161916/0 

Kouassi; Barot; 
Gignoux; Bi J Trop Ecol 2008 

10.1017/S02664
67408005312 

Laccosperma 
secundifloru
m 1 native not introduced restricted 

Bullock; White; 
Prudhomme; 
Tansey; Perea; 
Hooftman J Ecol 2011 

10.1111/j.1365-
2745.2011.0191
0.x 

Lactuca 
serriola 1 native invasive 

http://www.hear.org/gcw/species/lactuca_serriola
/  

Chapman Hydrobiol 1993 

10.1007/978-
94-011-1998-
6_31 

Laminaria 
digitata 1 native not introduced restricted 

Osunkoya; Perrett; 
Fernando; Clark; 
Raghu Popul Ecol 2013 

10.1007/s10144
-013-0364-7 

Lantana 
camara 2 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=56&fr=1&sts=sss&lang=EN 
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Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Laserpitium 
longiradium 1 native not introduced restricted 

Ehrlen J Ecol 1995 None 
Lathyrus 
vernus 9 native introduced 

http://www.ars-grin.gov/cgi-
bin/npgs/html/tax_search.pl?Lathyrus%20vernus 

Maliakal Witt PhD thesis 2004 None 
Lechea 
cernua 2 native not introduced restricted 

Maliakal Witt PhD thesis 2004 None 
Lechea 
deckertii 2 native not introduced restricted 

Keller; Vittoz Alp Botany 2015 
10.1007/s00035
-014-0142-y 

Leontopodiu
m nivale 
alpinum 2 introduced introduced 

Sell, P. and Murrell, G. (2006) Flora of Great 
Britain and Ireland: Volume 4, Campanulaceae - 
Asteraceae. University of Cambridge 

Tremblay; 
Ackerman Biol J Linn Soc 2001 

10.1006/bijl.200
0.0485 

Lepanthes 
eltoroensis 3 native not introduced restricted 

Tremblay; 
Ackerman Biol J Linn Soc 2001 

10.1006/bijl.200
0.0485 

Lepanthes 
rubripetala 6 native not introduced restricted 

Tremblay; 
Ackerman Biol J Linn Soc 2001 

10.1006/bijl.200
0.0485 

Lepanthes 
rupestris 7 native not introduced restricted 

Tremblay; 
McCarthy PLoS ONE 2014 

10.1371/journal.
pone.0102859 

Lepanthes 
rupestris 7 native not introduced restricted 

Bernatus Report 1995 None 
Lepidium 
davisii 6 native not introduced restricted 

Schutzenhofer; 
Knight Ecol Appl 2007 

10.1890/06-
1282 

Lespedeza 
juncea sericea 1 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=270&fr=1&sts=sss&lang=EN 

Swab PhD thesis 2014 None 
Leucopogon 
setiger 1 native not introduced restricted 

Ellis Ecology 2012 
10.1890/11-
1052.1 

Liatris 
scariosa 3 native not introduced restricted 

Baltzer; Reekie; 
Hewlin; Taylor; 
Boates Can J Bot 2002 

10.1139/b02-
070 

Limonium 
carolinianum 1 native not introduced restricted 

Hegazy J Appl Ecol 1992 
10.2307/240446
2 

Limonium 
delicatulum 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Limonium 
erectum 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Limonium 
geronense 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Limonium 
malacitanum 1 native not introduced restricted 
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Vejdani  PhD thesis 2006 None 
Lindera 
benzoin 1 native introduced 

http://www.hear.org/gcw/species/lindera_benzoin
/  

Hara; Kanno; 
Hirabuki; Takehara J Veg Sci 2004 

10.1111/j.1654-
1103.2004.tb02
286.x 

Lindera 
umbellata 1 native not introduced restricted 

Verkaar; 
Schenkeveld New Phyto 1984 

10.1111/j.1469-
8137.1984.tb04
155.x 

Linum 
catharticum 1 native introduced 

http://www.hear.org/gcw/species/linum_cathartic
um/  

Munzbergova Plant Biology 2013 
10.1111/plb.120
07 

Linum 
flavum 3 native not introduced restricted 

Munzbergova Plant Biology 2013 
10.1111/plb.120
07 

Linum 
tenuifolium 3 native introduced 

http://www.hear.org/gcw/species/linum_tenuifoli
um/  

Bricker; Maron Ecology 2012 
10.1890/11-
0948.1 

Lithospermu
m ruderale 3 native not introduced restricted 

Lacey; Royo; Bates; 
Herr Castanea 2001 None 

Lobelia 
boykinii 3 native not introduced restricted 

Pico; de Kroon; 
Retano Ecology 2002 

10.1890/0012-
9658(2002)083[
1991:AEFAFS]
2.0.CO;2 

Lobularia 
maritima 1 native introduced 

http://www.hear.org/gcw/species/lobularia_mariti
ma/  

Kaye; Pyke Ecology 2003 

10.1890/0012-
9658(2003)084[
1464:TEOSTO]
2.0.CO;2 

Lomatium 
bradshawii 1 native not introduced restricted 

Kaye; Pendergrass; 
Finley; Kauffman Ecol Appl 2001 

10.1890/1051-
0761(2001)011[
1366:TEOFOT]
2.0.CO;2 

Lomatium 
bradshawii 2 native not introduced restricted 

Kaye; Pyke Ecology 2003 

10.1890/0012-
9658(2003)084[
1464:TEOSTO]
2.0.CO;2 

Lomatium 
cookii 2 native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Lonicera 
maackii 1 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=1225&fr=1&sts=sss&lang=EN 

Dias Segura MSc thesis 2013 None 
Lophophora 
diffusa 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Lotus 
arinagensis 1 native not introduced restricted 



	 127	

Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Kauffman; Maron Am Nat 2006 10.1086/507877 
Lupinus 
arboreus 2 native invasive 

http://plants.usda.gov/java/invasiveOne?startChar
=L  

Dangremond; 
Knight Ecology 2010 

10.1890/09-
0418.1 

Lupinus 
tidestromii 3 native not introduced restricted 

Chien; Zuidema; 
Nghia Popul Ecol 2008 

10.1007/s10144
-008-0079-3 

Magnolia 
fordiana 1 native not introduced restricted 

Hara; Kanno; 
Hirabuki; Takehara J Veg Sci 2004 

10.1111/j.1654-
1103.2004.tb02
286.x 

Magnolia 
salicifolia 1 native not introduced restricted 

Levine; McEachern; 
Cowan J Ecol 2008 

10.1111/j.1365-
2745.2008.0137
5.x 

Malacothrix 
indecora 1 native not introduced restricted 

Contreras; Valverde J Arid Env 2002 
10.1006/jare.20
01.0926 

Mammillaria 
crucigera 1 native not introduced restricted 

Ramos Lopez MSc thesis 2007 None 

Mammillaria 
dixanthocentr
on 1 native not introduced restricted 

Ferrer; Duran; 
Mendez; Dorantes; 
Dzib 

Bol Soc Bot 
Mex 2011 None 

Mammillaria 
gaumeri 7 native not introduced restricted 

Rodriguez Ortega PhD thesis 2008 None 
Mammillaria 
hernandezii 2 native not introduced restricted 

Flores Martinez PhD thesis 2010 None 

Mammillaria 
huitzilopochtl
i 1 native not introduced restricted 

Flores-Martinez; 
Manzanero-Medino; 
Golubov; Montana; 
Mandujano Plant Ecol 2010 

10.1007/s11258
-010-9737-6 

Mammillaria 
huitzilopochtl
i 1 native not introduced restricted 

Valverde; Quijas; 
Lopez-
Villavicencio; 
Castillo Plant Ecol 2004 

10.1023/B:VEG
E.0000021662.7
8634.de 

Mammillaria 
magnimamma 2 native not introduced restricted 

Saldivar Sanchez, 
Navarro Carbajal Cact Suc Mex 2012 None 

Mammillaria 
mystax 1 native not introduced restricted 

Rodriguez Ortega PhD thesis 2008 None 
Mammillaria 
napia 1 native not introduced restricted 

Valverde; Zavala-
Hurtado J Arid Env 2006 

10.1016/j.jaride
nv.2005.06.001 

Mammillaria 
pectinifera 1 native not introduced restricted 

Rodriguez Ortega PhD thesis 2008 None 
Mammillaria 
solisioides 1 native not introduced restricted 
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Avendano Calco MSc thesis 2007 None 
Mammillaria 
supertexta 1 native not introduced restricted 

Cruz-Rodriguez; 
Lopez-
Villavicencio; 
Valverde J Trop Ecol 2009 

10.1017/S02664
67408005713 

Manilkara 
zapota 1 native introduced 

http://www.hear.org/gcw/species/manilkara_zapo
ta/  

Hoffmann Ecology 1999 

10.1890/0012-
9658(1999)080[
1354:FAPDOW
]2.0.CO;2 

Miconia 
albicans 1 native not introduced restricted 

Pascarella; Alde; 
Zimmerman Biotrop 2007 

10.1111/j.1744-
7429.2006.0022
0.x 

Miconia 
prasina 2 native not introduced restricted 

Norghauer; 
Newbery Ecol Monog 2011 

10.1890/10-
2268.1 

Microberlinia 
bisulcata 1 native not introduced restricted 

Angert Ecology 2006 

10.1890/0012-
9658(2006)87[2
014:DOCAMP]
2.0.CO;2 

Mimulus 
cardinalis 1 native not introduced restricted 

Angert Ecology 2006 

10.1890/0012-
9658(2006)87[2
014:DOCAMP]
2.0.CO;2 

Mimulus 
lewisii 3 native introduced 

http://www.hear.org/gcw/species/mimulus_lewisi
i/  

Forbis; Doak Am J Bot 2004 
10.3732/ajb.91.
7.1147 

Minuartia 
obtusiloba 1 native not introduced restricted 

Jacquemyn; Brys; 
Neubert Ecol Appl 2005 

10.1890/04-
1762 

Molinia 
caerulea 4 native introduced 

http://www.hear.org/gcw/species/molinia_caerule
a/ this paper describes the species as invasive but 
doesn't specify whether it is the native species or 
an invasive subsspecies?  Please see 
http://alienplantsbelgium.be/content/molinia-
caerulea 

Cipriotti; Aguiar Appl Veg Sci 2012 

10.1111/j.1654-
109X.2011.011
38.x 

Mulinum 
spinosum 1 native introduced 

http://www.hear.org/gcw/species/mulinum_spino
sum/  

Dostal J Veg Sci 2007 

10.1111/j.1654-
1103.2007.tb02
519.x 

Myosotis 
ramosissima 5 native introduced 

http://www.hear.org/gcw/species/myosotis_ramo
sissima/ 

Hoffmann Ecology 1999 

10.1890/0012-
9658(1999)080[
1354:FAPDOW
]2.0.CO;2 

Myrsine 
guianensis 1 native not introduced restricted 
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Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Narcissus 
poeticus 1 introduced introduced 

https://plants.usda.gov/core/profile?symbol=NAP
O 

Barkham J Ecol 1980 
10.2307/225942
5 

Narcissus 
pseudonarciss
us 2 native invasive 

http://www.niiss.org/cwis438/websites/GISINDir
ectory/GISIN_ScientificName_Info.php?GISIN_
ScientificNameID=45839&CallingPage=%2Fcwi
s438%2Fwebsites%2FGISINDirectory%2FOccur
rence_Result.php%3FTakeAction%3DReturned
%26ProjectID%3D0%26GISIN_InsertLogID%3
D0%26ScientificName%3DNarcissus+pseudonar
cissus%26Kingdom%3D0%26Country_AreaID
%3D0%26CurrentRow%3D0%26TotalRows%3
D-
1&CallingLabel=To%20Occurrence%20Search
%20Results&WebSiteID=4 

Ghimire; Gimenez; 
Pradel; McKey; 
Aumeeruddy-
Thomas J Appl Ecol 2008 

10.1111/j.1365-
2664.2007.0137
5.x 

Nardostachys 
jatamansi 1 native not introduced restricted 

Esparza-Olguin; 
Valverde; 
Mandujano Popul Ecol 2005 

10.1007/s10144
-005-0230-3 

Neobuxbaumi
a 
macrocephala 1 native not introduced restricted 

Godinez-Alvarez; 
Valiente-Banuet Plant Ecol 2004 

10.1023/B:VEG
E.0000046052.3
5390.59 

Neobuxbaumi
a 
macrocephala 1 native not introduced restricted 

Esparza-Olguin; 
Valverde; 
Mandujano Popul Ecol 2005 

10.1007/s10144
-005-0230-3 

Neobuxbaumi
a 
mezcalaensis 1 native not introduced restricted 

Arroyo-Cosultchi; 
Golubov; 
Mandujano Acta Oecol 2016 

10.1016/j.actao.
2016.01.006 

Neobuxbaumi
a polylopha 1 native not introduced restricted 

Esparza-Olguin; 
Valverde; 
Mandujano Popul Ecol 2005 

10.1007/s10144
-005-0230-3 

Neobuxbaumi
a tetetzo 1 native not introduced restricted 

Godinez-Alvarez; 
Valiente-Banuet Plant Ecol 2004 

10.1023/B:VEG
E.0000046052.3
5390.59 

Neobuxbaumi
a tetetzo 1 native not introduced restricted 

Godinez Alvarez; 
Valiente-Banuet; 
Rojas-Martinez Ecology 2002 

10.1890/0012-
9658(2002)083[
2617:TROSDI]
2.0.CO;2 

Neobuxbaumi
a tetetzo 1 native not introduced restricted 



	 130	

Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Shefferson; Tali J Ecol 2007 

10.1111/j.1365-
2745.2006.0119
5.x 

Neotinea 
ustulata 5 native not introduced restricted 

Enright; Ogden Aust J Ecol 1979 

10.1111/j.1442-
9993.1979.tb01
195.x 

Nothofagus 
fusca 3 native not introduced restricted 

Thomson Cons Biol 2005 

10.1111/j.1523-
1739.2005.0041
08.x 

Oenothera 
deltoides 1 native not introduced restricted 

Mandujano; 
Golubov; Huenneke Popul Ecol 2007 

10.1007/s10144
-006-0032-2 

Opuntia 
macrocentra 2 native not introduced restricted 

Haridas; Keeler; 
Tenhumberg Ecology 2015 

10.1890/13-
1984.1 

Opuntia 
macrorhiza 4 native not introduced restricted 

Carrillo Angeles PhD thesis 2011 None 
Opuntia 
microdasys 3 native invasive 

http://www.invasives.org.za/legislation/item/695-
bunny-ears-opuntia-microdasys 

Mandujano; 
Montana; Franco; 
Golubov; Flores-
Martinez Ecology 2001 

10.2307/267986
4 

Opuntia 
rastrera 2 native not introduced restricted 

Jacquemyns; Brys; 
Jongejans Ecology 2010 

10.1890/08-
2321.1 

Orchis 
purpurea 6 native introduced 

http://www.hear.org/gcw/species/orchis_purpure
a/  

Berg Ecography 2002 

10.1034/j.1600-
0587.2002.2502
11.x 

Oxalis 
acetosella 3 native introduced 

http://www.hear.org/gcw/species/oxalis_acetosell
a/  

Chagneau; Mortier; 
Picard J R Stat Soc C 2009 

10.1111/j.1467-
9876.2008.0065
7.x 

Oxandra 
asbeckii 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Oxytropis 
jabalambrensi
s 2 native not introduced restricted 

Morales-Romero; 
Godinez-Alvarez; 
Campo-Alves; 
Molino-Freaner J Arid Env 2012 

10.1016/j.jaride
nv.2011.09.005 

Pachycereus 
pecten-
aboriginum 1 native not introduced restricted 

Andrieu; Freville; 
Besnord; Vaudey; 
Gauthier; 
Thompson; 
Debussche Popul Ecol 2013 

10.1007/s10144
-012-0346-1 

Paeonia 
officinalis 3 native introduced http://eol.org/pages/486255/details 

Ishihama; Fujii; 
Yamamoto; Takada  Popul Ecol 2014 

10.1007/S10144
-013-0414-1  

Paliurus 
ramosissimus 1 native not introduced restricted 
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Shahi PhD thesis 2007 None 
Panax 
quinquefolius 1 native not introduced restricted 

Van de Voort; 
McGraw Biol Cons 2006 

10.1016/j.bioco
n.2006.01.010 

Panax 
quinquefolius 1 native not introduced restricted 

Nantel; Gagnon; 
Nault Cons Biol 1996 

10.1046/j.1523-
1739.1996.1002
0608.x 

Panax 
quinquefolius 2 native not introduced restricted 

Charron; Gagnon J Ecol 1991 
10.2307/226072
4 

Panax 
quinquefolius 2 native not introduced restricted 

Chien; Zuidema; 
Nghia Popul Ecol 2008 

10.1007/s10144
-008-0079-3 

Parashorea 
chinensis 1 native not introduced restricted 

Raghu; Wilson; 
Dhileepan Aust J Ent 2006 

10.1111/j.1440-
6055.2006.0055
6.x 

Parkinsonia 
aculeata 1 invasive invasive 

http://www.hear.org/gcw/species/parkinsonia_ac
uleata/  

Iriondo; Albert; 
Gimenez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Parolinia 
glabriuscula 1 native not introduced restricted 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Paronychia 
jamesii 1 native not introduced restricted 

Forbis; Doak Am J Bot 2004 
10.3732/ajb.91.
7.1147 

Paronychia 
pulvinata 1 native not introduced restricted 

Menges Cons Biol 1990 

10.1111/j.1523-
1739.1990.tb00
267.x 

Pedicularis 
furbishiae 1 native not introduced restricted 

Hartshorn PhD thesis 1972 None 
Pentaclethra 
macroloba 1 native not introduced restricted 

Hoffmann; Solbrig 
Forest Ecol 
Manag 2003 

10.1016/S0378-
1127(02)00566-
2 

Periandra 
mediterranea 1 native not introduced restricted 

McKenna PhD thesis 2007 None 
Persoonia 
bargoensis 2 native not introduced restricted 

McKenna PhD thesis 2007 None 
Persoonia 
glaucescens 2 native not introduced restricted 

Bradstock; 
O'Connell Aust J Bot 1988 

10.1111/j.1442-
9993.1988.tb00
999.x 

Petrophile 
pulchella 1 native not introduced restricted 

Levine; McEachern; 
Cowan J Ecol 2008 

10.1111/j.1365-
2745.2008.0137
5.x 

Phacelia 
insularis 1 native not introduced 

 
 
 
restricted 
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Ellis; Williams; 
Lesica; Bell; 
Bierzychudek; 
Bowles; Crone; 
Doak; Ehrlen; Ellis-
Adam; McEachern; 
Ganesan; Latham; 
Luijten; Kaye; 
Knight; Menges; 
Morris; Den Nijs; 
Oostermeijer; 
Quintana-Ascencio; 
Shelly; Stanley; 
Thorpe; Ticktin; 
Valverde; Weekley Ecology 2012 

10.1890/11-
1052.1 

Phyllanthus 
emblica 1 native introduced 

https://keyserver.lucidcentral.org/weeds/data/med
ia/Html/phyllanthus_emblica.htm 

Ticktin; Ganesan; 
Paramesha; Setty J Appl Ecol 2012 

10.1111/j.1365-
2664.2012.0215
6.x 

Phyllanthus 
emblica 1 native introduced 

https://keyserver.lucidcentral.org/weeds/data/med
ia/Html/phyllanthus_emblica.htm 

Ticktin; Ganesan; 
Paramesha; Setty J Appl Ecol 2012 

10.1111/j.1365-
2664.2012.0215
6.x 

Phyllanthus 
indofischeri 1 native not introduced restricted 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Physaria 
ovalifolia 1 native not introduced restricted 

Bernal J Appl Ecol 1998 

10.1046/j.1365-
2664.1998.0028
0.x 

Phytelephas 
seemannii 1 native not introduced restricted 

Auestad; Rydgren; 
Jongejans; Kroon Biol Cons 2010 

10.1016/j.bioco
n.2009.12.037 

Pimpinella 
saxifraga 3 native introduced 

http://hear.its.hawaii.edu/gcw/species/pimpinella
_saxifraga/ 

Svennson; Carlsson; 
Karlsson; Nordell J Ecol 1993 

10.2307/226166
2 

Pinguicula 
alpina 1 native not introduced restricted 

Kesler; Trusty; 
Hermann; Guyer Oecologia 2008 

10.1007/s00442
-008-1022-1 

Pinguicula 
ionantha 14 native not introduced restricted 

Svennson; Carlsson; 
Karlsson; Nordell J Ecol 1993 

10.2307/226166
2 

Pinguicula 
villosa 1 native not introduced restricted 

Ettl; Cottone.  Book 2004 None 
Pinus 
albicaulis 1 native not introduced restricted 

van Mantgem; 
Stephenson J Ecol 2005 

10.1111/j.1365-
2745.2005.0100
7.x 

Pinus 
lambertiana 3 native introduced 

 
 
http://www.hear.org/gcw/species/pinus_lambertia
na/  
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Maloney; Vogler; 
Eckert; Jensen; 
Neale 

Forest Ecol 
Manag 2011 

10.1016/j.foreco
.2011.05.011 

Pinus 
lambertiana 9 native introduced 

http://www.hear.org/gcw/species/pinus_lambertia
na/  

Buckley; 
Brockerhoff; 
Langer; Ledgard; 
North; Rees J Appl Ecol 2005 

10.1111/j.1365-
2664.2005.0110
0.x Pinus nigra 2 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=1817&fr=1&sts=&lang=EN 

Platt; Evans; 
Rathbun Am Nat 1988 10.1086/284803 

Pinus 
palustris 1 native introduced http://www.hear.org/gcw/species/pinus_palustris/  

van Mantgem; 
Stephenson J Ecol 2005 

10.1111/j.1365-
2664.2005.0110
0.x 

Pinus 
ponderosa 1 native introduced 

http://www.hear.org/gcw/species/pinus_ponderos
a/  

Munzbergova; 
Hadincova; Wild; 
Kindlmannova PLoS ONE 2013 

10.1371/journal.
pone.0056953 Pinus strobus 1 invasive invasive 

http://www.cabdirect.org/abstracts/20093201602.
html;jsessionid=4216A9AFC248075EB8751A21
05080D10 

Usher Biom 1966 
10.2307/240125
8 

Pinus 
sylvestris 1 native introduced 

http://www.hear.org/gcw/species/pinus_sylvestris
/  

Eriksson; Eriksson J Veg Sci 2000 
10.2307/323680
3 

Plantago 
media 2 native introduced 

https://npgsweb.ars-
grin.gov/gringlobal/taxonomydetail.aspx?id=400
112 

Marcante; Winkler; 
Erschbamer Annals Bot 2009 

10.1093/aob/mc
p047 Poa alpina 2 native introduced http://www.hear.org/gcw/species/poa_alpina/  

Bullock Biotrop 1980 
10.2307/238769
4 

Podococcus 
barteri 1 native not introduced restricted 

Sohn; Policansky Ecology 1977 
10.2307/193508
8 

Podophyllum 
peltatum 2 native introduced 

http://www.hear.org/gcw/species/podophyllum_p
eltatum/  

Bermingham Plant Ecol 2010 
10.1007/s11258
-010-9762-5 

Polemonium 
van-bruntiae 3 native introduced http://eol.org/pages/580849/maps 

Maliakal Witt PhD thesis 2004 None 
Polygonella 
basiramia 2 native not introduced restricted 

Eriksson J Ecol 1988 
10.2307/226061
0 

Potentilla 
anserina 1 native introduced 

https://npgsweb.ars-
grin.gov/gringlobal/taxonomydetail.aspx?id=294
65 

Lesica; Ellis 

Invasive Plant 
Science and 
Manag 2010 

10.1614/IPSM-
08-135.1 

Potentilla 
recta 1 invasive invasive 

https://bcinvasives.ca/invasive-
species/identify/invasive-plants/sulphur-
cinquefoil 

Jacquemyn; Brys Ecology 2008 
10.1016/j.bioco
n.2006.07.016 

Primula 
elatior 7 native not introduced restricted 

Lindborg; Ehrlen Cons Biol 2002 

10.1046/j.1523-
1739.2002.0050
9.x 

Primula 
farinosa 3 native not introduced restricted 
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Ehrlen; Syrjinen; 
Leimu; Garcia; 
Lehtila J Appl Ecol 2005 

10.1111/j.1365-
2664.2005.0101
5.x Primula veris 1 native introduced http://www.hear.org/gcw/species/primula_veris/  

Ehrlen; Syrjinen; 
Leimu; Garcia; 
Lehtila Cons Biol 2006 

10.1111/j.1523-
1739.2006.0036
8.x Primula veris 13 native introduced http://www.hear.org/gcw/species/primula_veris/  

Endels; Jacquemyn; 
Brys; Hermy Plant Ecol 2005 

10.1007/s11258
-004-0026-0 Primula veris 1 native introduced http://www.hear.org/gcw/species/primula_veris/  

Valverde; 
Silvertown J Ecol 1998 None 

Primula 
vulgaris 8 native introduced 

http://www.hear.org/gcw/species/primula_vulgari
s/  

Valdes; Garcia; 
Garcia; Ehrlen Ecography 2013 

10.1111/j.1600-
0587.2013.0021
6.x 

Primula 
vulgaris 14 native introduced 

http://www.hear.org/gcw/species/primula_vulgari
s/  

Condit 
Forest Ecol 
Manag 1993 

10.1016/0378-
1127(93)90045-
O 

Prioria 
copaifera 1 native not introduced restricted 

Aschero; Morris; 
Vazquez; Alvarez; 
Villagra 

For Ecol 
Manag 2016 

10.1016/foreco.
2016.03.028 

Prosopis 
flexuosa 1 native not introduced restricted 

Golubov; 
Mandujano; Franco; 
Montana; Eguiarte; 
Lopez-Portillo J Ecol 1999 

10.1046/j.1365-
2745.1999.0042
0.x 

Prosopis 
glandulosa 1 native invasive 

http://www.issg.org/database/species/ecology.asp
?si=137&fr=1&sts=sss&lang=EN 

Bernal PhD thesis 2004 None 
Prosopis 
laevigata 1 native not introduced restricted 

Stewart PhD thesis 2001 None 
Prunus 
africana 1 native not introduced restricted 

Sebert-Cuvillier; 
Paccaut; Chabrerie; 
Endels; Goubet; 
Decoq Ecol Model 2007 

10.1016/j.ecolm
odel.2006.09.00
5 

Prunus 
serotina 1 invasive invasive http://www.cabi.org/isc/datasheet/44360 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Pseudomisop
ates rivas-
martinezii 2 native not introduced restricted 

Vite Gonzalez; 
Zavala Hurtado Report 1998 None 

Pseudomitroc
ereus 
fulviceps 1 native not introduced restricted 

Duran; Franco PhD thesis 1992 None 
Pseudophoeni
x sargentii 6 native not introduced restricted 

Maschinski; 
Duquesnel Biol Cons 2006 

10.1016/j.bioco
n.2006.07.012 

Pseudophoeni
x sargentii 1 native not introduced restricted 
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Number of 
populations Population Status Species Status Species Status Source 

Somarriba Agrofor Syst 1988 
10.1007/BF023
44742 

Psidium 
guajava 1 native invasive 

http://www.issg.org/database/species/ecology.asp
?si=211&fr=1&sts=sss&lang=EN 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Psoralea 
tenuiflora 1 native introduced 

http://www.hear.org/gcw/species/psoralea_tenuifl
ora/  

Desmet; Shackleton; 
Ronbinson S African J Bot 1996 None 

Pterocarpus 
angolensis 1 native not introduced restricted 

Mendez; Duran; 
Olmsted Biotrop 2004 10.1646/1601 

Pterocereus 
gaumeri 2 native not introduced restricted 

Liddle; Brook; 
Matthews; Taylor; 
Caley Biol Cons 2006 

10.1016/j.bioco
n.2006.04.028 

Ptychosperma 
macarthurii 1 native introduced 

http://www.hear.org/gcw/species/ptychosperma_
macarthurii/  

Maschinski; Baggs; 
Quintana-Ascencio; 
Menges Cons Biol 2006 

10.1111/j.1523-
1739.2006.0027
2.x 

Purshia 
subintegra 2 native not introduced restricted 

Pfingsten PhD thesis 2013 None 
Pyrrocoma 
radiata 4 native not introduced restricted 

Kaye; Pyke Ecology 2003 

10.1890/0012-
9658(2003)084[
1464:TEOSTO]
2.0.CO;2 

Pyrrocoma 
radiata 5 native not introduced restricted 

Hiura; Fujiwara J Veg Sci 1999 
10.2307/323730
9 

Quercus 
mongolica 
crispula 1 native not introduced restricted 

Pico; Riba Plant Ecol 2002 
10.1023/A:1020
310609348 

Ramonda 
myconi 5 native introduced 

http://www.hear.org/gcw/species/ramonda_myco
ni/  

Sarukhan; Harper J Ecol 1973 
10.2307/225864
3 

Ranunculus 
acris 1 native invasive 

http://www.hear.org/gcw/species/ranunculus_acri
s/  

Sarukhan; Harper J Ecol 1973 
10.2307/225864
3 

Ranunculus 
bulbosus 1 native invasive 

http://plants.usda.gov/java/invasiveOne?startChar
=R  

Idestam-Almquist PhD thesis 1998 None 
Ranunculus 
peltatus 1 native not introduced restricted 

Sarukhan; Harper J Ecol 1973 
10.2307/225864
3 

Ranunculus 
repens 1 native invasive 

http://www.hear.org/gcw/species/ranunculus_rep
ens/  

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Ratibida 
columnifera 1 native introduced 

http://www.hear.org/gcw/species/ratibida_colum
nifera/  

Lopez-Hoffman; 
Ackerly; Anten; 
Denoyer;Ramos J Ecol 2007 

10.1111/j.1365-
2745.2007.0129
8.x 

Rhizophora 
mangle 1 native invasive 

http://www.hear.org/pier/species/rhizophora_man
gle.htm GISD 

McGraw Am J Bot 1989 
10.2307/244478
0 

Rhododendro
n maximum 1 native not introduced restricted 
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Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Salguero-Gomez MSc thesis 2004 None 
Rhododendro
n ponticum 8 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=1651&lang=EN 

Travis; Harris; Park; 
Bullock MEE 2011 

10.1111/j.2041-
210X.2011.001
04.x 

Rhododendro
n ponticum 1 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=1651&lang=EN 

Enright; Watson 
New Zealand J 
Bot 1992 

10.1080/002882
5X.1992.10412
883 

Rhopalostylis 
sapida 1 native not introduced restricted 

Nantel; Gagnon J Ecol 1999 None 
Rhus 
aromatica 4 native introduced http://www.hear.org/gcw/species/rhus_aromatica/  

Thaxton PhD thesis 2003 None 
Rhus 
copallinum 1 native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 Rosa canina 1 introduced introduced 

https://keyserver.lucidcentral.org/weeds/data/med
ia/Html/rosa_canina.htm 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Rosa 
multiflora 1 invasive invasive https://www.cabi.org/isc/datasheet/47824 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Rosmarinus 
tomentosus 3 native not introduced restricted 

Hoffmann Ecology 1999 

10.1890/0012-
9658(1999)080[
1354:FAPDOW
]2.0.CO;2 

Roupala 
montana 1 native not introduced restricted 

Hoffmann Ecology 1999 

10.1890/0012-
9658(1999)080[
1354:FAPDOW
]2.0.CO;2 Rourea induta 1 native not introduced restricted 

Lambrecht-
McDowell; 
Radosevich Biol Inv 2005 

10.1007/s10530
-004-0870-9 

Rubus 
praecox 2 invasive invasive http://www.hear.org/gcw/species/rubus_rigidus/  

Eriksson Ecol Research 1994 
10.1007/BF023
48412 

Rubus 
saxatilis 2 native not introduced restricted 

Lambrecht-
McDowell; 
Radosevich Biol Inv 2005 

10.1007/s10530
-004-0870-9 Rubus ursinus 2 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Rumex 
rupestris 1 native not introduced restricted 
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Ramp PhD thesis 1989 None Sabal minor 1 native introduced http://www.hear.org/gcw/species/sabal_minor/  
Pulido; Valverde; 
Caballero J Trop Ecol 2007 

10.1017/S02664
67406003877  Sabal yapa 1 native not introduced restricted 

Tolvanen; 
Schroderus; Henry Evol Ecol 2002 

10.1007/978-
94-017-1345-
0_12 Salix arctica 1 native not introduced restricted 

Abe; Motai; Tanaka; 
Shibata; Kominami; 
Nakashizuka Ecology 2008 

10.1890/06-
2009.1 

Sambucus 
sieboldiana 15 native not introduced restricted 

Gustafsson; Ehrlen Oikos 2003 

10.1034/j.1600-
0706.2003.1149
3.x 

Sanicula 
europaea 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Santolina 
melidensis 1 native introduced 

http://www.hear.org/gcw/species/sanicula_europ
aea/  

Renne PhD thesis 2001 None 
Sapium 
sebiferum 5 invasive introduced 

http://www.issg.org/database/species/ecology.asp
?si=712&fr=1&sts=sss&lang=EN only classified 
as invasive in th eUS GISD 

Cserg�o; Molnar; 
Garcia Popul Ecol 2011 

10.1007/s10144
-010-0249-y 

Saponaria 
bellidifolia 4 native introduced 

http://www.hear.org/gcw/species/saponaria_belli
difolia/  

Salinas; Suarez; 
Blanca Can J Bot 2002 

10.1139/b02-
013 

Sarcocapnos 
baetica 1 native not introduced restricted 

Salinas; Suarez; 
Blanca Can J Bot 2002 

10.1139/b02-
013 

Sarcocapnos 
enneaphylla 2 native not introduced restricted 

Salinas; Suarez; 
Blanca Can J Bot 2002 

10.1139/b02-
013 

Sarcocapnos 
pulcherrima 2 native not introduced restricted 

Ang; de Wreede 
Mar Ecol Prog 
Ser 1990 None 

Sargassum 
siliquosum 1 native not introduced restricted 

Brewer Am J Bot 2001 
10.2307/355833
6 

Sarracenia 
alata 1 native introduced 

http://www.hear.org/gcw/species/sarracenia_alata
/  

Tendland MSc thesis 2011 None 
Sarracenia 
purpurea 1 native invasive 

http://www.ipcc.ie/a-to-z-peatlands/peatland-
action-plan/invasive-species-on-irish-peatlands/  

Gotelli; Ellison Ecol Appl 2006 
10.1890/04-
0479 

Sarracenia 
purpurea 2 native invasive 

http://www.ipcc.ie/a-to-z-peatlands/peatland-
action-plan/invasive-species-on-irish-peatlands/  

Law; Salick; Knight Plant Ecol 2010 
10.1007/s11258
-010-9761-6 

Saussurea 
medusa 1 native not introduced restricted 

Marcante; Winkler; 
Erschbamer Annals Bot 2009 

10.1093/aob/mc
p047 

Saxifraga 
aizoides 2 native not introduced restricted 

Dinnetz; Nilsson Plant Ecol 2002 
10.1023/A:1015
593311183 

Saxifraga 
cotyledon 2 native not introduced restricted 



	 138	

Authors Journal Year DOI_ISBN Species 
Number of 
populations Population Status Species Status Species Status Source 

Dostal J Veg Sci 2007 

10.1111/j.1654-
1103.2007.tb02
519.x 

Saxifraga 
tridactylites 5 native not introduced restricted 

Verkaar; 
Schenkeveld New Phyto 1984 

10.1111/j.1469-
8137.1984.tb04
155.x 

Scabiosa 
columbaria 1 native introduced 

http://www.hear.org/gcw/species/scabiosa_colum
baria/  

Yamada; Zuidema; 
Itoh; Yamakura; 
Okhubo; Kanzaki; 
Tan; Ashton J Ecol 2007 

10.1111/j.1365-
2745.2006.0120
9.x 

Scaphium 
macropodum 3 native not introduced restricted 

Munzbergova Folia Geobot 2006 
10.1007/bf0280
6475 

Scorzonera 
hispanica 1 native introduced 

http://www.hear.org/gcw/species/scorzonera_his
panica/  

Cipriotti; Aguiar Appl Veg Sci 2012 

10.1111/j.1654-
109X.2011.011
38.x 

Senecio 
filaginoides 1 native introduced 

http://www.hear.org/gcw/species/senecio_filagin
oides/  

Namkoong; Roberds Am Nat 1974 10.1086/282913 
Sequoia 
sempervirens 1 NATD NATD 

http://www.hear.org/gcw/species/sequoia_semper
virens/  

Yamada; Yamada; 
Okuda; Fletcher Oecologia 2013 

10.1007/s00442
-012-2529-z 

Shorea 
acuminata 3 native not introduced restricted 

Yamada; Yamada; 
Okuda; Fletcher Oecologia 2013 

10.1007/s00442
-012-2529-z 

Shorea 
bracteolata 3 native not introduced restricted 

Yamada; Yamada; 
Okuda; Fletcher Oecologia 2013 

10.1007/s00442
-012-2529-z 

Shorea 
leprosula 3 native not introduced restricted 

Visser; Jongejans; 
van Breugel; 
Zuidema; Chen; 
Kassim; de Kroon J Ecol 2011 

10.1111/j.1365-
2745.2011.0182
5.x 

Shorea 
leprosula 1 native not introduced restricted 

Yamada; Yamada; 
Okuda; Fletcher Oecologia 2013 

10.1007/s00442
-012-2529-z 

Shorea 
maxwelliana 3 native not introduced restricted 

Yamada; Yamada; 
Okuda; Fletcher Oecologia 2013 

10.1007/s00442
-012-2529-z Shorea ovalis 3 native not introduced restricted 

Morris; Doak Am J Bot 1998 None Silene acaulis 5 native introduced http://www.hear.org/gcw/species/silene_acaulis/  

Kephart; Paladino Am J Bot 1997 
10.2307/244607
9 

Silene 
douglasii 
oraria 2 native not introduced restricted 

Garcia; Guzman; 
Goni Biol Cons 2002 

10.1016/S0006-
3207(01)00113-
6 

Silene 
glaucifolia 
pseudoviscos
a 3 native not introduced 

 
 
 
 
 
restricted 
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Menges; Dolan J Ecol 1998 

10.1046/j.1365-
2745.1998.0023
4.x Silene regia 1 native not introduced restricted 

Lesica; Crone J Ecol 2007 

10.1111/j.1365-
2745.2007.0129
1.x 

Silene 
spaldingii 1 native not introduced restricted 

Schmid JPDP 1990 None 
Solidago 
altissima 1 NATD NATD   

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Solidago 
mollis 1 native not introduced restricted 

Silva; Mejias; 
Garcia Bas Appl Ecol 2015 

10.1016/j.baae.
2015.02.009 

Sonchus 
pustulatus 1 native not introduced restricted 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Sphaeralcea 
coccinea 1 native introduced 

http://www.hear.org/gcw/species/sphaeralcea_co
ccinea/  

Dalgleish; Kula; 
Hartnett; 
Sandercook Am J Bot 2008 

10.3732/ajb.200
7277 

Sporobolus 
heterolepis 1 native introduced 

http://www.hear.org/gcw/species/sporobolus_het
erolepis/  

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Stenaria 
nigricans 1 native not introduced restricted 

Clark-Tapia PhD thesis 2004 None 
Stenocereus 
eruca 2 native not introduced restricted 

Guardia; Raventos; 
Caswell J Ecol 2000 

10.1046/j.1365-
2745.2000.0050
4.x 

Stipa 
calamagrostis 2 native introduced 

http://www.hear.org/gcw/species/achnatherum_c
alamagrostis/  

Hartshorn PhD thesis 1972 None 

Stryphnodend
ron 
microstachyu
m 1 native not introduced restricted 

Abe; Nokashizuka; 
Tanoka J Veg Sci 1998 

10.2307/323704
4 

Styrax 
obassia 9 native not introduced restricted 

Milden PhD thesis 2005 None 
Succisa 
pratensis 3 native introduced 

http://www.hear.org/gcw/species/succisa_pratens
is/  

Jongejans; de Kroon J Ecol 2005 

10.1111/j.1365-
2745.2005.0100
3.x 

Succisa 
pratensis 5 native introduced 

http://www.hear.org/gcw/species/succisa_pratens
is/  

Wallin; Svensson Folia Geobot 2012 
10.1007/s12224
-012-9123-3 

Succisa 
pratensis 3 native introduced 

 
 
http://www.hear.org/gcw/species/succisa_pratens
is/  
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Pavlik; Barbour Biol Cons 1988 

10.1016/0006-
3207(88)90069-
9 

Swallenia 
alexandrae 1 native not introduced restricted 

Verwer; Pena-
Claros; van der 
Staak; Ohlson-
Kiehn; Sterck J Appl Ecol 2008 

10.1111/j.1365-
2664.2008.0156
4.x 

Swietenia 
macrophylla 1 native invasive 

http://www.hear.org/pier/species/swietenia_macr
ophylla.htm  

Schmidt; Ticktin Biol Cons 2012 
10.1016/j.bioco
n.2012.03.018 

Syngonanthus 
nitens 8 native not introduced restricted 

Brown; Spector; Wu J Appl Ecol 2008 

10.1111/j.1365-
2664.2008.0155
0.x 

Syzygium 
jambos 1 invasive invasive 

http://www.issg.org/database/species/ecology.asp
?si=920&fr=1&sts=sss&lang=EN GISD 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Taraxacum 
campylodes 1 introduced invasive 

http://www.issg.org/database/species/ecology.asp
?si=427&fr=1&sts=sss&lang=EN 
plants.usda.gov 

Kwit; Horvitz; Platt Cons Biol 2004 

10.1111/j.1523-
1739.2004.0056
7.x 

Taxus 
floridana 3 native introduced 

http://www.hear.org/gcw/species/taxus_floridana
/  

Norghauer; 
Newbery Ecol Monog 2011 

10.1890/10-
2268.1 

Tetraberlinia 
bifoliolata 1 native not introduced restricted 

Campbell; Husband Heredity 2005 
10.1038/sj.hdy.
6800653 

Tetraneuris 
herbacea 2 native not introduced restricted 

Dalgleish; Koons; 
Adler J Ecol 2010 

10.1111/j.1365-
2745.2009.0158
5.x 

Thelesperma 
megapotamic
um 1 native not introduced restricted 

O'Connor; Pickett J Appl Ecol 1992 
10.2307/240427
6 

Themeda 
triandra 2 native introduced 

http://www.hear.org/gcw/species/themeda_triand
ra/  

Olmsted; Alvarez-
Buylla Ecol Appl 1995 

10.2307/194203
8 

Thrinax 
radiata 4 native not introduced restricted 

Garcia Ecosistemas 2007 None 
Thymus 
loscosii 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Thymus 
vulgaris 1 native introduced 

http://www.hear.org/gcw/species/thymus_vulgari
s/ eol 

Mondragon; Duran; 
Ramirez; Valverde J Trop Ecol 2004 

10.1017/S02664
67403001287 

Tillandsia 
brachycaulos 1 native not introduced restricted 

Winkler; Hulber; 
Hietz 

Bas and Appl 
Ecol 2007 

10.1016/j.baae.
2006.05.003 

Tillandsia 
deppeana 1 native not introduced restricted 

Winkler; Hulber; 
Hietz 

Bas and Appl 
Ecol 2007 

10.1016/j.baae.
2006.05.003 

Tillandsia 
juncea 1 native not introduced restricted 
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Mondragon; Ticktin Cons Biol 2011 

10.1111/j.1523-
1739.2011.0169
1.x 

Tillandsia 
macdougallii 1 native not introduced restricted 

Winkler; Hulber; 
Hietz 

Bas and Appl 
Ecol 2007 

10.1016/j.baae.
2006.05.003 

Tillandsia 
multicaulis 1 native not introduced restricted 

Toledo-Aceves; 
Hernandez-
Apolinar; Valverde Acta Oeco 2014 

10.1016/j.actao.
2014.05.009 

Tillandsia 
multicaulis 1 native not introduced restricted 

Toledo-Aceves; 
Hernandez-
Apolinar; Valverde Acta Oeco 2014 

10.1016/j.actao.
2014.05.009 

Tillandsia 
punctulata 1 native not introduced restricted 

Valverde; Bernal 
Bol Soc Bot 
Mex 2010 0366-2128 

Tillandsia 
recurvata 8 native not introduced restricted 

Mondragon; Ticktin Cons Biol 2011 None 
Tillandsia 
violacea 1 native not introduced restricted 

Calvo Ecology 1993 
10.2307/194047
3 

Tolumnia 
variegata 1 native not introduced restricted 

Schwartz; Hermann; 
Mantgem Cons Biol 2000 

10.1046/j.1523-
1739.2000.9839
3.x 

Torreya 
taxifolia 1 native not introduced restricted 

Ohara; Takada; 
Kawano Plant Spp Biol 2001 

10.1046/j.1442-
1984.2001.0006
2.x 

Trillium 
apetalon 1 native not introduced restricted 

Ohara; Tomimatsu; 
Takada; Kawano Plant Spp Biol 2006 

10.1111/j.1442-
1984.2006.0014
5.x 

Trillium 
camschatcens
e 1 native not introduced restricted 

Knight Am J Bot 2003 
10.3732/ajb.90.
8.1207 

Trillium 
grandiflorum 12 native not introduced restricted 

Schmucki PhD thesis 2009 

10.1007/sl 
1258-008-9460-
8  

Trillium 
grandiflorum 10 native not introduced restricted 

Ream PhD thesis 2011 None 
Trillium 
ovatum 1 native not introduced restricted 

Plank MSc thesis 2010 None 
Trillium 
persistens 4 native not introduced restricted 

Scanga; Leopold Biol Cons 2012 
10.1016/j.bioco
n.2012.01.061 Trollius laxus 1 native not introduced restricted 

Scanga Plant Ecol 2014 
10.1007/s11258
-014-0344-9 Trollius laxus 6 native not introduced restricted 

Lamar; McGraw 
Forest Ecol 
Manag 2005 

10.1016/j.foreco
.2005.02.056 

Tsuga 
canadensis 1 native introduced 

Johnson O. & More D. (2004)ÊTree Guide: The 
Most Complete Field Guide to the Trees of 
Britain and Europe. Collins 
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Hu; Wang 
Acta Ecol 
Sinica 1988 None 

Vatica 
mangachapoi 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Vella 
pseudocytisus 2 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Vella 
pseudocytisus 
paui 2 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Verbascum 
fontqueri 3 native not introduced restricted 

Dostal J Veg Sci 2007 

10.1658/1100-
9233(2007)18[9
1:PDOAIP]2.0.
CO;2 

Veronica 
arvensis 1 native not introduced restricted 

Dostal J Veg Sci 2007 

10.1658/1100-
9233(2007)18[9
1:PDOAIP]2.0.
CO;2 

Veronica 
arvensis 4 native not introduced restricted 

Burns; Pardini; 
Schutzenhofer; 
Chung; Seidler; 
Knight Ecology 2013 

10.1890/12-
1310.1 

Veronica 
arvensis 1 native not introduced restricted 

Yates; Ladd; Coates; 
McArthur Aust J Bot 2007 

10.1071/BT060
32 

Verticosa 
staminosa 
staminosa 1 native not introduced restricted 

Hara; Kanno; 
Hirabuki; Takehara J Veg Sci 2004 

10.1111/j.1654-
1103.2004.tb02
286.x 

Viburnum 
furcatum 1 native not introduced restricted 

Eckstein; Otte Flora 2004 
10.1078/0367-
2530-00151 Viola elatior 2 native not introduced restricted 

Eckstein; Danihelka; 
Otte Biol 2009 

10.2478/s11756
-009-0002-1 

Viola 
persicifolia 2 native not introduced restricted 

Eckstein; Danihelka; 
Otte Biol 2009 

10.2478/s11756
-009-0002-1 Viola pumila 2 native not introduced restricted 

Solbrig; Sarandon; 
Bossert Am Nat 1988 10.1086/284796 

Viola 
sagittata 
ovata 1 native not introduced restricted 

Iriondo; Albert; 
Giminez; Lozano; 
Escudero Book 2009 

978-84-8014-
746-0 

Vitaliana 
primuliflora 1 native not introduced restricted 
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Chagneau; Mortier; 
Picard J R Stat Soc C 2009 

10.1111/j.1467-
9876.2008.0065
7.x 

Vouacapoua 
americana 1 native not introduced restricted 

Zotz Acta Oeco 2005 
10.1016/j.actao.
2005.05.009 

Vriesea 
sanguinolenta 3 native not introduced restricted 

Shriver; Cutler; 
Doak Oecologia 2012 

10.1007/s00442
-012-2301-4 

Vulpicida 
pinastri 1 native not introduced restricted 

Sanchez-Velazquez; 
Ezcurra; Martinez-
Ramos; Alvarez-
Buylla; Lorente J Ecol 2002 

10.1046/j.1365-
2745.2002.0070
2.x 

Zea 
diploperennis 1 native not introduced restricted 
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2. Supplementary Material SM2: Methodological Notes 

Robustness of Statistical Analyses 

We chose to describe our analyses of demographic metrics (stable population growth, 

demographic inertia) using Monte Carlo Markov Chain generalised linear mixed models, 

because of the special features of our dataset. In our raw data, we have demographic indices for 

each population of each species in each year of measurement. These indices measure population 

dynamics, which project forward in time. To prevent conflation of time-dependent data and 

time-dependent metrics, we summarised each population’s demography using a time-averaged 

population projection matrix (PPM). This yielded replicate population-level PPMs for each 

species. We needed a statistical modelling tool which can tease apart the phylogenetic non-

independence of the data (species-level shared evolutionary history); repeated measures per 

species (multiple populations) and the fact that each species could contribute populations to 

more than one “population status” category (for example Carduus nutans, an invasive species, 

has been measured in both its native and its introduced ranges). MCMCglmm is the best 

statistical algorithm, to our knowledge, that achieves valid analysis of this hierarchical design. 

However, we recognise that a full analysis of demographic metrics measured at the population 

scale, with multiple populations per species, which themselves are patterned phylogenetically, is 

a weighty analysis that can be hard to explain in a restricted word count and for a wide 

readership. Also, an analysis that uses population as its experimental unit means that predictions 

must be made for populations, not for species. Hence we chose to report a simplified analysis 

that derived mean demographic metrics per species. This approach still required MCMCglmm 

because a small number of species were represented across multiple “population status” 

categories. The results of this “per species per status” analysis are presented in the manuscript. 

To check the robustness of the results, we performed the full-scale “per population per species” 

analysis and found patterns that matched the results presented (Supplementary Material SM4; 

Fig.SM1). We also down-scaled the analyses presented here, first by removing species that were 

represented in multiple “population status” categories. This allowed us to use a generalised least 
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squares regression model with phylogenetic correlation structure (PGLS) because each species 

was represented just once in the simplified dataset. The significance of the differences between 

categories, for each demographic metric, were the same as presented in the manuscript 

(Supplementary Materials SM4). Throughout all the checks of alternative models, the same 

pattern of results emerged: stable population growth rates were highest (and significantly so) 

among species measured in the naturalised range, irrespective of their invasiveness. Meanwhile 

demographic inertia, describing the ability of populations to recover following disturbance, was 

highest (and significantly so) for invasive species, even when measured in their native range. 

3. R code to replicate the analyses in the paper 

2.1 Set up 

Load required R packages 

library(popdemo) 
library(popbio) 
library(MCMCglmm) 
library(ape) 
library(nlme) 

Read in data 

• the adapted COMPADRE dataset 

• the COMPADRE phylogeny 

(after setting the directory/path) 

direc<-"C:/Users/mjs245/Dropbox/Plant Invasiveness 
paper/Rmarkdownfinal/" 
compadre_full<-read.csv(paste0(direc,"COMPADRE filtered Jelbert 
et al.csv"), header=T) 
tree<-read.tree(paste0(direc,"phylogeny_test.tre")) 

Define required functions: 

Function to convert post-reproductive census projection matrix models to pre-reproductive 

census models. 

In post-reproductive models, the recruitment row describes a “seed” or “propagule” stage that is 
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contributed into by reproductive adults, which have survived for the preceding projection 

interval. To convert to pre-reproductive census, which is the more prevalent representation, 

recruitment rates are divided by their respective adult rates of survival and growth; then 

multiplied by rates of germination, survival and growth of propagules, and added to the relevant 

rows and columns of the converted projection matrix. 

convert2pre <- function(mat,matF,matC,problem)  
{ 
  if(problem=="pre"){mat_corrected_pre<-mat}else{ 
    mat <- Matlab2R(mat)  
    matF <- Matlab2R(matF)  
    matC <- Matlab2R(matC) 
    matS<-mat-matF-matC 
    matrix_size <- nrow(mat) 
    if(problem=="error"){ 
      newmat<-matS%*%matF+matC+matS 
    } 
    if (problem=="post"){ # persistent seedbank 
      surv_vec<-apply(matS,2,sum) 
      surv_mat<-
matrix(surv_vec,nrow=matrix_size,ncol=matrix_size,byrow=T) 
      newmat1<-matF/surv_mat 
      newmat<-matS%*%newmat1+matC+matS 
    } 
    if(mat[1,1]==0){ 
      mat_corrected_pre<-
newmat[2:matrix_size,2:matrix_size]}else{ 
        mat_corrected_pre<-newmat} 
     
    mat_corrected_pre<- R2Matlab(mat_corrected_pre) 
  } 
  return(mat_corrected_pre) 
} 

 
2.2 R code for conversion of projection matrix models to standardise analyse 

Code uses the full PPM (mat), the Fecundity part of the PPM (matF), and the clonal 

reproduction part of the PPM (matC), extracted from the COMPADRE database. Code consists 

of functions that (a) deal with the “seeds error”, in which fecundity is falsely recorded as a full-

year life cycle transition; and (b) converts post-reproductive census projection matrix models to 

pre-reproductive census models. (a) This function multiplies seed production by rates of seed 

survival, germination and growth, to better represent recruitment as the full-year life cycle 

transition. The outcome tends to reduce matrix dimension by a single life stage (removing the 

false “seed” stage). (b) In post-reproductive models, the recruitment row describes a “seed” or 
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“propagule” stage that is contributed into by reproductive adults, which have survived for the 

preceding projection interval. To convert to pre-reproductive census, which is the more 

prevalent representation, recruitment rates are divided by their respective adult rates of survival 

and growth; then multiplied by rates of germination, survival and growth of propagules, and 

added to the relevant rows and columns of the converted projection matrix. 

Convert to pre-reproductive matrices from post-reproductive matrices and from those with error 

in the propagule stage 

PPM<-as.character(compadre_full$matrix_a_string) 
PPMfix<-PPM 
F<-as.character(compadre_full$matrix_f_string) 
C<-as.character(compadre_full$matrix_c_string) 
pp<-compadre_full$fixed_census_timing 
for(i in 1:dim(compadre_full)[1]){ 
  
if(compadre_full$fixed_census_timing[i]%in%c("error","post")){PP
Mfix[i]<-try(convert2pre(PPM[i],F[i],C[i],pp[i]))} 
} 
compadre_full$Afix<-PPMfix 
compadre<-compadre_full 

Subset rows of dataframe to remove seasonal and laboratory matrices 

compadre<-compadre[(!compadre$matrix_composition=="NDY - 
Seasonal" & !compadre$population_ecoregion=="LAB"),] 
compadre<-compadre[(!compadre$matrix_treatment_type.1=="LAB"),] 

Remove any rows with population_name that includes a semicolon 

This means that: 

• only keep individual matrices for populations with multiple matrices 

• keep the mean matrix for those populations with only one matrix 

compadre<-compadre[-
grep(";",compadre$population_name,value=FALSE),] 

(optional) Retain only unmanipulated treatment types 

compadre<-
compadre[compadre$matrix_treatment_type=="Unmanipulated",] 

Create list of mean matrices for each population (2965 in total) 
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PPM<-as.character(compadre$Afix) 
PPMs<-as.list(numeric(length(PPM))) 
Dimensions<-numeric(length(PPM)) 
Sp<-as.character(compadre$species_accepted) 
Pop<-as.character(compadre$population_name) 
for(i in 1:length(PPMs)){ 
  PPMs[[i]]<-Matlab2R(PPM[i]) 
  Dimensions[i]<-dim(PPMs[[i]])[1] 
} 

 
2.3 R code for the handling of the filtered COMPADRE dataset containing population 

projection matrices 

Including information on taxonomy, invasive status, population, year and other ancillary 

information. Seasonal projection matrices and any “populations” measured in a laboratory 

setting have previously been filtered out. Populations experiencing experimental treatments 

have also already been filtered out. Aggregate PPMs, formed from individual population 

replicates, have also been pre-excluded. This section of code creates a mean matrix through 

time for each population and then filters out any reducible, imprimitive and non-ergodic 

matrices. The outcome is a dataset, with one row per population, that includes the mean matrix 

(averaged through time), and all associated taxonomic and status metadata. 

The subsequent section of code aggregates dataframe information on species, matrix dimensions 

and location to add to the dataframe. 

First combine species with same dimensions and in same population location to create a unique 

id for each array. 

1. paste population site following species ID 

2. paste dimension to ensure similar dimensions are compared across similar species 

3. group to unique levels 

Sp3<-paste(Sp,Pop,sep=".") 
Sp3<-paste(Sp3,as.character(Dimensions),sep=".x") 
Sp3<-as.factor(noquote(Sp3)) 
ID<-levels(Sp3)   

Then create a list of arrays of replicated matrices: 
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• First create empty lists/vectors 

aggrPPMs<-as.list(numeric(length(ID))) 
reps<-numeric(length(ID)) 
orders<-numeric(length(ID)) 
for(i in 1:length(ID)){ 
  orders[i]<-mean(Dimensions[Sp3==ID[i]]) 
  reps[i]<-length(which(Sp3==ID[i])) 
  aggrPPMs[[i]]<-numeric(orders[i]^2*reps[i]) 
  dim(aggrPPMs[[i]])<-c(orders[i],orders[i],reps[i]) 
} 

• Then add aggregate matrices across duplicated matrices for each population for each species 

for(i in 1:length(ID) ){ 
  for(j in 1:reps[i]){ 
    aggrPPMs[[i]][,,j]<-PPMs[Sp3==ID[i]][[j]] 
  }} 

 
Now merge meta-data with new aggregated matrices 

spa<-paste(unique(Sp)) 
Species<-factor(length(ID),levels=c(spa)) 
 
ss<-paste(unique(compadre$population_invasive_status_study)) 
Status<-factor(length(ID),levels=c(ss)) 
 
se<-paste(unique(compadre$population_invasive_status_elsewhere)) 
Status.Else<-factor(length(ID),levels=c(se)) 
 
po<-paste(unique(compadre$taxonomy_order)) 
plant.order<-factor(length(ID),levels=c(po)) 
 
Year<-numeric(length(ID)) 

Create new empty fields/columns ready to store information in a reduced dataframe 

Then fill these columns from the original dataframe 

1. matrix treatment type 

mtrt<-paste(unique(compadre$matrix_treatment_type)) 
matrix_treatment<-factor(length(ID),levels=c(mtrt)) 
 
for(i in 1:length(ID)){ 
  Species[i]<-(Sp[Sp3==ID[i]][1]) 
  Year[i]<-compadre$publication_year[Sp3==ID[i]][1] 
  Status[i]<-
compadre$population_invasive_status_study[Sp3==ID[i]][1] 
  Status.Else[i]<-
compadre$population_invasive_status_elsewhere[Sp3==ID[i]][1] 
  plant.order[i]<-compadre$taxonomy_order[Sp3==ID[i]][1] 
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  matrix_treatment[i]<-
compadre$matrix_treatment_type[Sp3==ID[i]][1] 
} 

 
This section of code removes some incorrect matrices from the analysis (NA/non-ergodic/non-

irreducible/non-primitive) 

mean.A<-vector("list", length(ID))  
check.A<-numeric(length(ID)) 
for(i in 1:length(ID)){ 
  mean.A[[i]]<-apply(aggrPPMs[[i]],c(1,2),mean,na.rm=T) 
  check.A[i]<-sum(mean.A[[i]]) 
} 
mean.A<-mean.A[!is.na(check.A)] 
ID<-ID[!is.na(check.A)] 
check.matrices<-mean.A 
 
erg<-factor(length(check.matrices),levels=c("TRUE","FALSE")) 
irreducible<-
factor(length(check.matrices),levels=c("TRUE","FALSE")) 
primitivity<-
factor(length(check.matrices),levels=c("TRUE","FALSE")) 
 
for (i in 1:length(mean.A)){ 
  erg[i]<-is.matrix_ergodic(mean.A[[i]])  
  irreducible[i]<-is.matrix_irreducible(mean.A[[i]]) 
  primitivity[i]<-is.matrix_primitive(mean.A[[i]]) 
} 
 
delete<-which(erg=="FALSE") 
delete1<-which(irreducible=="FALSE") 
delete2<-which(primitivity=="FALSE") 
del<-unique(c(delete,delete1,delete2)) 
 
mean.A<-mean.A[-del] 
ID.check<-ID[-del] 
A.string<-character(length(ID.check)) 
for(i in 1:length(ID.check)){ 
  A.string[i]<-R2Matlab(mean.A[[i]])} 

 
We can now create multi_pop dataframe using the new variables and information from which 

matrices passed checks in the previous section of code 

We also generate empty vectors to store the demographic response variables and then populate 

them 

multi_pop<-
data.frame(Species,Status,Status.Else,Year,plant.order,matrix_tr
eatment) 
multi_pop<-multi_pop[!is.na(check.A),] 
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multi_pop<-multi_pop[-del,] 
multi_pop$ID.check<-ID.check 
 
multi_pop$lambda.mean<-numeric(dim(multi_pop)[1]) 
multi_pop$inertiaup.mean<-numeric(dim(multi_pop)[1]) 
multi_pop$inertiadown.mean<-numeric(dim(multi_pop)[1]) 
multi_pop$reactivity.mean<-numeric(dim(multi_pop)[1]) 
multi_pop$maxatt.mean<-numeric(dim(multi_pop)[1]) 
multi_pop$maxamp.mean<-numeric(dim(multi_pop)[1]) 
 
for(i in 1:dim(multi_pop)[1]){ 
  multi_pop$lambda.mean[i]<-abs(eigen(mean.A[[i]])$values[1]) 
  multi_pop$inertiaup.mean[i]<-
inertia(mean.A[[i]],bound="upper") 
  multi_pop$inertiadown.mean[i]<-
inertia(mean.A[[i]],bound="lower") 
  multi_pop$reactivity.mean[i]<-reactivity(mean.A[[i]]) 
  multi_pop$maxatt.mean[i]<-maxatt(mean.A[[i]]) 
  multi_pop$maxamp.mean[i]<-maxamp(mean.A[[i]]) 
} 
multi_pop$A<-A.string 

 
2.4 R code to add phylogenetic data and prepare final dataframes for analysis 

Data handling code to match phylogeny to per-species demographic indices, eventually 

producing the results offered in the main text. This code matches the species names in the 

dataset containing mean demographic indices per population with species names in the 

phylogeny. Mismatches are dealt with case-by-case, usually by removing subspecies status from 

the COMPADRE dataset. The code then calculates mean demographic indices (stable 

population growth, maximum amplification and minimum attenuation) for each species. Code 

calculates species’ invasive status (restricted vs naturalised non-invasive vs invasive) and 

population status (native range vs naturalised range). This is not a factorial analysis because 

there are no representative species in the “restricted, measured in the naturalised range 

category” (such populations cannot exist). 

Rename any subspecies in the multi_pop dataset so that they can be found in the phylogeny 

multi_pop$species_tree<-gsub(" ", "_", multi_pop$Species) 
multi_pop$species_tree<-gsub("Adenocarpus_aureus_gibbsianus", 
"Adenocarpus_aureus", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Adenocarpus_gibbsianus", 
"Adenocarpus_aureus", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Anthyllis_vulneraria_alpicola", 
"Anthyllis_vulneraria", multi_pop$species_tree) 
multi_pop$species_tree<-
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gsub("Anthyllis_vulneraria_subsp_alpicola", 
"Anthyllis_vulneraria", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Antirrhinum_molle_lopesianum", 
"Antirrhinum_molle", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Arenaria_grandiflora_bolosii", 
"Arenaria_grandiflora", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Chamaecrista_lineata_keyensis", 
"Chamaecrista_lineata", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Betula_pubescens_pumila", 
"Betula_pubescens", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Dodonaea_viscosa_angustifolia", 
"Dodonaea_viscosa", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Echinospartum_ibericum_algibicum", 
"Echinospartum_ibericum", multi_pop$species_tree) 
multi_pop$species_tree<-
gsub("Eriogonum_longifolium_gnaphalifolium", 
"Eriogonum_longifolium", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Chamaecrista_lineata_keyensis", 
"Chamaecrista_lineata", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Gaura_neomexicana_coloradensis", 
"Gaura_neomexicana", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Geonoma_pohliana_weddelliana", 
"Geonoma_pohliana", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Gilia_tenuiflora_hoffmannii", 
"Gilia_tenuiflora", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Leontopodium_nivale_alpinum", 
"Leontopodium_nivale", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Lespedeza_juncea_sericea", 
"Lespedeza_juncea", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Magnolia_macrophylla_dealbata", 
"Magnolia_macrophylla", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Pityopsis_aspera_aspera", 
"Pityopsis_aspera", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Quercus_mongolica_crispula", 
"Quercus_mongolica", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Silene_douglasii_oraria", 
"Silene_douglasii", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Silene_glaucifolia_pseudoviscosa", 
"Silene_glaucifolia", multi_pop$species_tree) 
multi_pop$species_tree<-
gsub("Tragopogon_pratensis_subsp._Orientalis", 
"Tragopogon_pratensis", multi_pop$species_tree) 
multi_pop$species_tree<-
gsub("Tragopogon_pratensis_subsp._Pratensis", 
"Tragopogon_pratensis", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Vella_pseudocytisus_paui", 
"Vella_pseudocytisus", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Verticosa_staminosa_staminosa", 
"Verticosa_staminosa", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Viola_sagittata_ovata", 
"Viola_sagittata", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Alnus_incana_rugosa", 
"Alnus_incana", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Escobaria_robbinsiorum", 
"Escobaria_robbinsorum", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Mammillaria_napia", 
"Mammillaria_napina", multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Styrax_obassia", "Styrax_obassis", 
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multi_pop$species_tree) 
multi_pop$species_tree<-gsub("Verticosa_staminosa", 
"Verticordia_staminosa", multi_pop$species_tree) 

Check phylogeny for species and create missing vector to store information on which species 

lack phylogenetic data (now subspecies have been renamed) 

species_check<-unique(multi_pop$Species) 
multi_pop$species_tree<-gsub(" ", "_", multi_pop$Species) 
species_tree<-unique(tree$tip.label) 
species_data<-unique(multi_pop$species_tree) 
missing<-setdiff(species_data,species_tree) 

Remove any rows of the multi_pop dataframe that don’t have phylogenetic information. Create 

animal column/field that contains link to phylogenetic information within MCMCglmmm 

models 

multi_pop_phylo<-
multi_pop[multi_pop$species_tree%in%tree$tip.label,] 
multi_pop_phylo$animal<-multi_pop_phylo$species_tree 

Trim phylogeny to only retain species in the new multi_pop dataframe 

compadre.incpos<-which(tree$tip.label %in% 
multi_pop_phylo$animal) 
compadre.exclude<-tree$tip.label[-compadre.incpos] 
compadre.tree<-drop.tip(tree,compadre.exclude) 

Remove internal node labels from the phylogeny, leaving only tip labels 

compadre.tree$node.label<-NULL 

Create final “invas” dataframe for analysis 

• Create plant.was and plant.is columns to store information on population “status” 

• Create log-transformed versions of the response variables 

• Create Invasive Category explanatory variable 

1. Native 

2. Introduced, native range 

3. Introduced, non-native range 
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4. Invasive, native range 

5. Invasive, non-native range 

invas<-multi_pop_phylo 
invas$plant.was<-rep("nonnative",dim(invas)[1]) 
invas$plant.was[invas$Status=="native"]<-"native" 
invas$plant.was<-factor(invas$plant.was) 
invas$Status.Else[invas$Status.Else=="not 
introduced"&invas$Status=="introduced"]<-"introduced" 
invas$plant.is<-factor(invas$Status.Else) 
levels(invas$plant.is) 
invas$plant.is[invas$plant.is=="Introduced"]<-"introduced" 
invas$plant.is[invas$plant.is=="Not introduced"]<-"not 
introduced" 
invas$plant.is[invas$plant.is=="NATD"]<-NA 
invas$plant.is<-factor(invas$plant.is) 
levels(invas$plant.is) 
levels(invas$plant.was) 
invas<-invas[!is.na(invas$plant.is),] 
 
invas$loglambda<-log(invas$lambda.mean) 
invas$loginertiaup<-log(invas$inertiaup.mean) 
invas$loginertiadown<-log(invas$inertiadown.mean) 
invas$logmaxatt<-log(invas$maxatt.mean) 
invas$logmaxamp<-log(invas$maxamp.mean) 
invas$logreac<-log(invas$reactivity.mean) 
 
invas$invasive.category<-
factor(1+(invas$plant.is%in%c("introduced","Introduced"))+(invas
$plant.was=="nonnative")+3*(invas$plant.is=="invasive")) 

Some slight ammednments to invas dataframe 

• Create column containing information on matrix dimensions 

• only include “Unmanipulated” populations/matrices 

• Remove Miscanthus giganteus 

• Make Invasive Category a factor 

invas$n<-numeric(dim(invas)[1]) 
for(i in 1:dim(invas)[1]){ 
  A<-as.matrix(Matlab2R(as.character(invas$A[i]))) 
  invas$n[i]<-dim(A)[1] 
} 
invas<-invas[invas$matrix_treatment=="Unmanipulated",] 
invas$invasive.category<-factor(invas$invasive.category) 

Create persp dataframe 
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This dataframe contains only a mean of each response variable per species (rather than having 

multiple populations per species) and therefore enables the simpler analysis used in the main 

text. 

persp<-
aggregate(loglambda~animal+invasive.category,mean,data=invas) 
persp$loginertiaup<-
aggregate(loginertiaup~animal+invasive.category,mean,data=invas)
$loginertiaup 
persp$loginertiadown<-
aggregate(loginertiadown~animal+invasive.category,mean,data=inva
s)$loginertiadown 
persp$logmaxatt<-
aggregate(logmaxatt~animal+invasive.category,mean,data=invas)$lo
gmaxatt 
persp$logreac<-
aggregate(logreac~animal+invasive.category,mean,data=invas)$logr
eac 
persp$n<-aggregate(n~animal+invasive.category,mean,data=invas)$n 
persp$Species<-persp$animal 

Save the invas and persp dataframes prior to modeling 

write.csv(invas, paste0(direc,"mcmc_data_invasives.csv")) 
write.csv(persp,paste0(direc,"per_species_data.csv")) 

 
2.5 R code to fit models to the data 

Some information on the Bayesian models used: 

• Response variables have been logged to ensure that they are Gaussian 

• The animal random effect is the phylogeny 

• For models of the invas dataframe Species is additionally included as a random effect as we 

have multiple populations per species 

• Burnin of 10% interations and a thinning interval of <0.1% iterations for Markov chains 

(ideally you need an effective sample size of at least 1000: to be safe can make thinning 

<0.05%) 

• Proper uninformative priors are used (nu is small but >0). In this example we use parameter 

expansion (alpha.mu and alpha.V) as some of the chains got stuck at 0. We don’t need to 
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specify fixed effect priors as MCMCglmm does a good job of picking default one but if we 

did they’d be specified as B. G is the random effects - the number of G structures should 

match the number of random effects. If you use random effects interaction or regression, V 

should be changed to an identity matrix of the same dimension as the number of parameters 

to estimate. R is the residuals. Parameter expansion for residual priors is not supported (but 

I’ve never seen it needed). It doesn’t matter what order you put B, G and R in but G1, G2, 

G3,… must be in the same order as specified for random effects in the model 

• (verbose=F can stop the models updating in real time) 

2.5.1 Fit Bayesian hierarchical models to the persp dataset (same analysis as the main paper; 

models the mean for each species) 

Model A1 - persp model for log lambda 

• Set priors 

prior1.loglambda<-list(R = list(V = 1, nu=0.001), 
               G = list(G1=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100))) 

• Run model 

m1.loglambda<-MCMCglmm(loglambda ~ invasive.category, 
                       random=~animal, family="gaussian", 
                       prior=prior1.loglambda, data=persp, 
pedigree=compadre.tree, nodes="TIPS", 
                       thin=1000, nitt=1000000, burnin=100000, 
verbose=T) 

• Model summary and plots 

summary(m1.loglambda) 
##  
##  Iterations = 100001:999001 
##  Thinning interval  = 1000 
##  Sample size  = 900  
##  
##  DIC: 385.1425  
##  
##  G-structure:  ~animal 
##  
##        post.mean  l-95% CI u-95% CI eff.samp 
## animal  0.002955 4.433e-10   0.0112      900 
##  
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##  R-structure:  ~units 
##  
##       post.mean l-95% CI u-95% CI eff.samp 
## units    0.1247     0.11   0.1414      900 
##  
##  Location effects: loglambda ~ invasive.category  
##  
##                    post.mean  l-95% CI  u-95% CI eff.samp  
pMCMC    
## (Intercept)         0.032434 -0.051554  0.111977      900 
0.3444    
## invasive.category2  0.069811 -0.001252  0.137855      900 
0.0489 *  
## invasive.category3  0.280139  0.022420  0.522746      900 
0.0333 *  
## invasive.category4  0.079420 -0.050370  0.200732     1029 
0.2178    
## invasive.category5  0.360827  0.236578  0.501369     1234 
<0.001 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
plot(m1.loglambda) 
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Model A2 - persp model for log inertiaup. 

• Set priors 

prior1.inertiaup<-list(R = list(V = 1, nu=0.001), 
               G = list(G1=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100))) 

• Run model 

m1.loginertiaup<-MCMCglmm(loginertiaup ~ invasive.category, 
                       random=~animal, family="gaussian", 
                       prior=prior1.inertiaup, data=persp, 
pedigree=compadre.tree, nodes="TIPS", 
                       thin=1000, nitt=1000000, burnin=10000, 
verbose=T) 

• Model summary and plots. 

summary(m1.loginertiaup) 
##  
##  Iterations = 10001:999001 
##  Thinning interval  = 1000 
##  Sample size  = 990  
##  
##  DIC: 2105.212  
##  
##  G-structure:  ~animal 
##  
##        post.mean l-95% CI u-95% CI eff.samp 
## animal     1.974   0.3325    4.143      990 
##  
##  R-structure:  ~units 
##  
##       post.mean l-95% CI u-95% CI eff.samp 
## units     3.735    3.167    4.376      990 
##  
##  Location effects: loginertiaup ~ invasive.category  
##  
##                    post.mean  l-95% CI  u-95% CI eff.samp   
pMCMC    
## (Intercept)         1.538215  0.003007  2.898646      990 
0.04848 *  
## invasive.category2  0.027819 -0.358728  0.485069      990 
0.91717    
## invasive.category3  0.432632 -1.129706  1.946748      990 
0.61212    
## invasive.category4  1.476345  0.794881  2.222330      990 
0.00202 ** 
## invasive.category5  1.903945  1.190630  2.732268     1187 < 
0.001 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
plot(m1.loginertiaup) 
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Model A3 - persp model for log inertiadown. 

• Set priors 

prior1.inertiadown<-list(R = list(V = 1, nu=0.001), 
               G = list(G1=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100))) 

• Run model 

m1.loginertiadown<-MCMCglmm(loginertiadown ~ invasive.category, 
                       random=~animal, family="gaussian", 
                       prior=prior1.inertiadown, data=persp, 
pedigree=compadre.tree, nodes="TIPS", 
                       thin=1000, nitt=1000000, burnin=10000, 
verbose=T) 

• Model summary and plots 

summary(m1.loginertiadown) 
##  
##  Iterations = 10001:999001 
##  Thinning interval  = 1000 
##  Sample size  = 990  
##  
##  DIC: 2083.936  
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##  
##  G-structure:  ~animal 
##  
##        post.mean l-95% CI u-95% CI eff.samp 
## animal     1.907   0.1233    4.251    885.7 
##  
##  R-structure:  ~units 
##  
##       post.mean l-95% CI u-95% CI eff.samp 
## units     3.561    2.923    4.137      990 
##  
##  Location effects: loginertiadown ~ invasive.category  
##  
##                    post.mean l-95% CI u-95% CI eff.samp   
pMCMC    
## (Intercept)          -1.8635  -3.1339  -0.3214      990 
0.01010 *  
## invasive.category2   -0.3253  -0.7500   0.1039      990 
0.13131    
## invasive.category3    0.3450  -1.0748   1.8055      990 
0.61010    
## invasive.category4   -0.1854  -0.8939   0.5547     1619 
0.63232    
## invasive.category5   -1.0534  -1.8892  -0.3296      990 
0.00404 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
plot(m1.loginertiadown) 
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2.5.2 Fit Bayesian hierarchical models to the invas dataset (full analysis including multiple 

populations of each species) 

Model B1 - invas model for log lambda 

• Set priors 

prior2.2<-list(R = list(V = 1, nu=0.001), 
               G = list(G1=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100),  
                        G2=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100))) 

• Run model 

m2.loglambda<-MCMCglmm(loglambda ~ invasive.category, 
                       random=~Species + animal, 
family="gaussian", 
                       prior=prior2.2, data=invas, 
pedigree=compadre.tree, nodes="TIPS", 
                       thin=1000, nitt=1000000, burnin=10000, 
verbose=T) 

• Model summary and plots 

summary(m2.loglambda) 
##  
##  Iterations = 10001:999001 
##  Thinning interval  = 1000 
##  Sample size  = 990  
##  
##  DIC: 654.8935  
##  
##  G-structure:  ~Species 
##  
##         post.mean l-95% CI u-95% CI eff.samp 
## Species   0.05434  0.04101  0.06879      990 
##  
##                ~animal 
##  
##        post.mean  l-95% CI u-95% CI eff.samp 
## animal  0.002133 6.653e-09 0.008551      990 
##  
##  R-structure:  ~units 
##  
##       post.mean l-95% CI u-95% CI eff.samp 
## units   0.08311  0.07442  0.09223     1280 
##  
##  Location effects: loglambda ~ invasive.category  
##  
##                    post.mean  l-95% CI  u-95% CI eff.samp  
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pMCMC    
## (Intercept)         0.039162 -0.042109  0.100949      990 
0.2242    
## invasive.category2  0.052481 -0.006726  0.112233      990 
0.0848 .  
## invasive.category3  0.288665  0.069605  0.559751     1272 
0.0263 *  
## invasive.category4 -0.015866 -0.123316  0.106505      990 
0.7838    
## invasive.category5  0.345833  0.230776  0.466968      990 
<0.001 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
#plot(m1.loglambda) 

Model B2 - invas model for log inertiaup 

• Set priors 

prior2.inertiaup<-list(R = list(V = 1, nu=0.001), 
               G = list(G1=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100),  
                        G2=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100))) 

• Run model 

m2.inertiaup_full<-MCMCglmm(loginertiaup ~ invasive.category, 
                            random=~Species + animal, 
family="gaussian", 
                            prior=prior2.inertiaup, data=invas, 
pedigree=compadre.tree, nodes="TIPS", 
                            thin=10, nitt=10000, burnin=1000, 
verbose=T) 

• Model summary and plots 

summary(m2.inertiaup_full) 
##  
##  Iterations = 1001:9991 
##  Thinning interval  = 10 
##  Sample size  = 900  
##  
##  DIC: 3080.577  
##  
##  G-structure:  ~Species 
##  
##         post.mean l-95% CI u-95% CI eff.samp 
## Species     3.385     2.77    4.052    230.3 
##  
##                ~animal 
##  
##        post.mean l-95% CI u-95% CI eff.samp 
## animal     1.921   0.1467    3.913    101.1 



 166 

##  
##  R-structure:  ~units 
##  
##       post.mean l-95% CI u-95% CI eff.samp 
## units    0.5875   0.5315   0.6568      900 
##  
##  Location effects: loginertiaup ~ invasive.category  
##  
##                    post.mean l-95% CI u-95% CI eff.samp   
pMCMC    
## (Intercept)          1.49122  0.01225  2.85042    758.4 
0.04667 *  
## invasive.category2   0.01621 -0.21665  0.27824   1585.0 
0.86667    
## invasive.category3   0.48261 -1.04640  2.06986    900.0 
0.53778    
## invasive.category4   0.84698  0.24793  1.47723    900.0 
0.00667 ** 
## invasive.category5   2.43134  1.79585  3.19005   1153.2 < 
0.001 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
#plot(m2.inertiaup_full) 

Model B3 - persp model for log inertia down 

• Set priors 

prior2.inertiadown<-list(R = list(V = 1, nu=0.001), 
               G = list(G1=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100),  
                        G2=list(V = 1, nu=0.001, alpha.mu=0, 
alpha.V=100))) 

• Run model 

m2.inertiadown_full<-MCMCglmm(loginertiadown ~ 
invasive.category, 
                            random=~Species + animal, 
family="gaussian", 
                            prior=prior2.inertiadown, 
data=invas, pedigree=compadre.tree, nodes="TIPS", 
                            thin=10, nitt=10000, burnin=1000, 
verbose=T) 

• Model summary and plots 

summary(m2.inertiadown_full) 
##  
##  Iterations = 1001:9991 
##  Thinning interval  = 10 
##  Sample size  = 900  
##  
##  DIC: 4419.331  
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##  
##  G-structure:  ~Species 
##  
##         post.mean l-95% CI u-95% CI eff.samp 
## Species     2.165    1.584    2.705    484.2 
##  
##                ~animal 
##  
##        post.mean l-95% CI u-95% CI eff.samp 
## animal     1.664   0.2008    3.352    243.2 
##  
##  R-structure:  ~units 
##  
##       post.mean l-95% CI u-95% CI eff.samp 
## units     2.087    1.886     2.31      900 
##  
##  Location effects: loginertiadown ~ invasive.category  
##  
##                    post.mean l-95% CI u-95% CI eff.samp   
pMCMC    
## (Intercept)         -1.78177 -3.12718 -0.44235      900 
0.00889 ** 
## invasive.category2  -0.34916 -0.71993 -0.01106      900 
0.05333 .  
## invasive.category3   0.25828 -1.25052  1.78909      900 
0.74444    
## invasive.category4  -0.26967 -0.93824  0.42057      900 
0.42667    
## invasive.category5  -0.96815 -1.70601 -0.22511      900 
0.01333 *  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
#plot(m2.inertiadown_full) 

 
2.5.3 Equivalent non-bayesian models to demonstrate robustness of the results 

The first set of models are lme models of the full dataset (invas) with Species as a random effect 

and no phylogenetic random effect 1.Log lambda 2.Log inertia_up 3.Log inertia_down. 

lmm1<-lme(loglambda~invasive.category-
1,random=~1|Species,data=invas) 
summary(lmm1) 
## Linear mixed-effects model fit by REML 
##  Data: invas  
##        AIC      BIC    logLik 
##   820.4189 855.7149 -403.2095 
##  
## Random effects: 
##  Formula: ~1 | Species 
##         (Intercept)  Residual 
## StdDev:   0.2334153 0.2879874 
##  
## Fixed effects: loglambda ~ invasive.category - 1  
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##                        Value  Std.Error  DF  t-value p-value 
## invasive.category1 0.0444132 0.01846766 669 2.404920  0.0164 
## invasive.category2 0.0990506 0.02593653 669 3.818962  0.0001 
## invasive.category3 0.3350964 0.12635809 476 2.651958  0.0083 
## invasive.category4 0.0348412 0.05820372 669 0.598608  0.5496 
## invasive.category5 0.3973969 0.05992668 669 6.631385  0.0000 
##  Correlation:  
##                    invs.1 invs.2 invs.3 invs.4 
## invasive.category2 0.116                       
## invasive.category3 0.000  0.000                
## invasive.category4 0.008  0.009  0.000         
## invasive.category5 0.002  0.001  0.000  0.061  
##  
## Standardized Within-Group Residuals: 
##          Min           Q1          Med           Q3          
Max  
## -11.07995370  -0.21684285  -0.05292606   0.14356594   
5.78562628  
##  
## Number of Observations: 1149 
## Number of Groups: 477 
lmm2<-lme(loginertiaup~invasive.category-
1,random=~1|Species,data=invas) 
summary(lmm2) 
## Linear mixed-effects model fit by REML 
##  Data: invas  
##        AIC      BIC    logLik 
##   3875.488 3910.784 -1930.744 
##  
## Random effects: 
##  Formula: ~1 | Species 
##         (Intercept)  Residual 
## StdDev:    1.988774 0.7641179 
##  
## Fixed effects: loginertiaup ~ invasive.category - 1  
##                       Value Std.Error  DF   t-value p-value 
## invasive.category1 1.914866 0.1083867 669 17.666989  0.0000 
## invasive.category2 1.888029 0.1361188 669 13.870449  0.0000 
## invasive.category3 1.950332 0.7935277 476  2.457799  0.0143 
## invasive.category4 2.633894 0.3010887 669  8.747900  0.0000 
## invasive.category5 4.249800 0.3392491 669 12.527078  0.0000 
##  Correlation:  
##                    invs.1 invs.2 invs.3 invs.4 
## invasive.category2 0.466                       
## invasive.category3 0.000  0.000                
## invasive.category4 0.060  0.063  0.000         
## invasive.category5 0.027  0.023  0.000  0.291  
##  
## Standardized Within-Group Residuals: 
##         Min          Q1         Med          Q3         Max  
## -5.48168503 -0.28091537 -0.05988362  0.27441028  7.65981168  
##  
## Number of Observations: 1149 
## Number of Groups: 477 
lmm3<-lme(loginertiadown~invasive.category-
1,random=~1|Species,data=invas) 
summary(lmm3) 
## Linear mixed-effects model fit by REML 
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##  Data: invas  
##        AIC      BIC    logLik 
##   4696.936 4732.232 -2341.468 
##  
## Random effects: 
##  Formula: ~1 | Species 
##         (Intercept) Residual 
## StdDev:     1.64083 1.441664 
##  
## Fixed effects: loginertiadown ~ invasive.category - 1  
##                        Value Std.Error  DF    t-value p-value 
## invasive.category1 -1.983616 0.1118658 669 -17.732100  0.0000 
## invasive.category2 -2.216874 0.1562470 669 -14.188265  0.0000 
## invasive.category3 -1.604859 0.7749331 476  -2.070965  0.0389 
## invasive.category4 -2.151217 0.3459838 669  -6.217682  0.0000 
## invasive.category5 -2.792004 0.3661520 669  -7.625261  0.0000 
##  Correlation:  
##                    invs.1 invs.2 invs.3 invs.4 
## invasive.category2 0.178                       
## invasive.category3 0.000  0.000                
## invasive.category4 0.014  0.016  0.000         
## invasive.category5 0.004  0.002  0.000  0.098  
##  
## Standardized Within-Group Residuals: 
##         Min          Q1         Med          Q3         Max  
## -10.3863042  -0.1932449   0.1050737   0.3416646   5.6618074  
##  
## Number of Observations: 1149 
## Number of Groups: 477 

The second set of models are ordinary linear models run in the persp dataset 

lm1<-glm(loglambda~invasive.category,data=persp) 
summary(lm1) 
##  
## Call: 
## glm(formula = loglambda ~ invasive.category, data = persp) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -1.62993  -0.10537  -0.04395   0.03524   2.67676   
##  
## Coefficients: 
##                    Estimate Std. Error t value Pr(>|t|)     
## (Intercept)         0.04428    0.02033   2.178   0.0299 *   
## invasive.category2  0.07018    0.03752   1.870   0.0620 .   
## invasive.category3  0.27825    0.13532   2.056   0.0403 *   
## invasive.category4  0.07681    0.06675   1.151   0.2504     
## invasive.category5  0.36097    0.06992   5.163 3.54e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
##  
## (Dispersion parameter for gaussian family taken to be 
0.125292) 
##  
##     Null deviance: 65.292  on 494  degrees of freedom 
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## Residual deviance: 61.393  on 490  degrees of freedom 
## AIC: 383.56 
##  
## Number of Fisher Scoring iterations: 2 
lm2<-glm(loginertiaup~invasive.category,data=persp) 
summary(lm2) 
##  
## Call: 
## glm(formula = loginertiaup ~ invasive.category, data = persp) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -3.5243  -1.4262  -0.6103   0.8082  10.5285   
##  
## Coefficients: 
##                    Estimate Std. Error t value Pr(>|t|)     
## (Intercept)         1.91587    0.11896  16.105  < 2e-16 *** 
## invasive.category2 -0.11528    0.21951  -0.525 0.599714     
## invasive.category3  0.01402    0.79167   0.018 0.985875     
## invasive.category4  1.35494    0.39049   3.470 0.000567 *** 
## invasive.category5  1.71052    0.40902   4.182 3.42e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
##  
## (Dispersion parameter for gaussian family taken to be 
4.288145) 
##  
##     Null deviance: 2230.2  on 494  degrees of freedom 
## Residual deviance: 2101.2  on 490  degrees of freedom 
## AIC: 2132.4 
##  
## Number of Fisher Scoring iterations: 2 
lm3<-glm(loginertiadown~invasive.category-1,data=persp) 
summary(lm3) 
##  
## Call: 
## glm(formula = loginertiadown ~ invasive.category - 1, data = 
persp) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -14.9352   -0.5543    0.5028    1.2433    2.4229   
##  
## Coefficients: 
##                    Estimate Std. Error t value Pr(>|t|)     
## invasive.category1  -1.9986     0.1163 -17.177  < 2e-16 *** 
## invasive.category2  -2.1686     0.1804 -12.020  < 2e-16 *** 
## invasive.category3  -1.5503     0.7655  -2.025   0.0434 *   
## invasive.category4  -2.0722     0.3637  -5.697 2.11e-08 *** 
## invasive.category5  -2.8805     0.3827  -7.526 2.53e-13 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 
1 
##  
## (Dispersion parameter for gaussian family taken to be 
4.101718) 
##  



 171 

##     Null deviance: 4194.9  on 495  degrees of freedom 
## Residual deviance: 2009.8  on 490  degrees of freedom 
## AIC: 2110.4 
##  
## Number of Fisher Scoring iterations: 2 
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4. Supplementary Material: Results 

 

Fig. S1. Phylogenetic signal in three demographic metrics. (A) stable rate of population increase 

(log (λ)); (B) upper bound on demographic inertia (log(ρ∞)) and (C) lower bound on 

demographic inertia  (log(𝜌𝜌∞)). Posterior, probability density distributions of the proportion of 

residual variance absorbed by the phylogenetic covariance matrix in the MCMCglmm models 

represented in Figure 2 of the main text. These figures demonstrate that phylogenetic signal in 

stable population growth rate is not credibly different from zero (A). However, we see credible 

non-zero phylogenetic signal in demographic amplification (B), and in demographic attenuation 

(C). 

Generalised Least Square: 

Below we present the downscaled generalised least squares regression models with 

phylogenetic correlation structure (PGLS). We find no signal of phylogenetic patterns between 

log(λ) and invasiveness (χ2 1df = 0.097, p=0.756). We do find signal of phylogenetic patterns 

between log(𝜌̅𝜌∞) and invasiveness (χ2 1df = 8.788, p=0.003), and also between log(𝜌𝜌∞) and 

invasiveness (χ2 1df = 5.294, p=0.021). This analysis replicated the patterns observed in the 

MCMCglmm analyses, and confirmed the significant influence of invasion category on log(λ) 

(χ2 4df = 49.657, p<0.001), on log(𝜌̅𝜌∞) (χ2 4df = 41.809, p<0.001), and on log(𝜌𝜌∞) (χ2  4df = 

14.816, p=0.005). Inclusion of the number of lifestages within the model confirms that number 



 173 

of lifestages has no influence on log(λ) (χ2 1df = 0.324, p=569); but influences both log(𝜌̅𝜌∞) (χ2 

1df = 42.325, p<0.001) and log(𝜌𝜌∞) (χ2 1df = 23.134, p<0.001).  

Linear Mixed-Effect Models: 

Below we present linear mixed-effects (LME) models of demographic metrics per population 

per species. These analyses ignore the phylogenetic patterning of the data, but confirmed the 

results of the MCMCglmm. These models again replicate the differences among categories and 

the patterns observed in the MCMCglmm, confirming a significant influence of invasion 

category on log (λ) (χ2 4df = 41.876, p<0.001) and on log(𝜌̅𝜌∞) (χ2 4df = 49.021, p<0.001) but 

not on log(𝜌𝜌∞) (χ2 4df = 8.778, p=0.067). 

General Linear Models: 

Below we present general linear models (GLM) of demographic metrics per species. These 

analyses ignore the phylogenetic patterning of the data, but again confirmed the results of the 

MCMCglmm. These models confirm the significant effect of the invasion category on log(λ) (F 

4,493 = 17.792, p<0.001) and on log(𝜌̅𝜌∞) (F4,493 = 7.6982, p<0.001) but not on log(𝜌𝜌∞) (F 

4,493 = 1.711, p=0.146).  
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Pseudo R2 Values: 

Here we present the Pseudo R2 values that measure the proportion of non-phylogenetic variance 

that is absorbed by the fixed effect (=varifixed / (varfixed+varresid)); these are presented in Table 

SM4 below. 

Table SM4: Table of Variance Components and Pseudo R2 Values. 

 Fixed Effects Species Residuals Pseudo R2 Value 

(λ) 0.034 0.062 0.083 0.291 

(𝜌̅𝜌∞) 1.127 3.781 0.570 0.664 

(𝜌𝜌∞) 1.135 2.573 2.039 0.358 

 

The pseudo R2 value for the three GLMs is 29% for log(λ), 66% for log(𝜌̅𝜌∞) and 36% for 

log(𝜌𝜌∞ ). Our observation that invasion category explains two thirds of the variation in 

demographic amplification provides further evidence of the important links between 

demographic responses to disturbance, and invasiveness. 
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Chapter 5:  

 

Jelbert, K., Kendall, S. D. & Hodgson, D. Adapting to the invaded range: subtle changes in life 

history cause demographic change in invasive plants. In prep. target journal: Journal of 

Ecology. 
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Adapting to the invaded range: subtle changes in life history 

cause demographic change in invasive plants 

Abstract 

1. Invasive plants harm biodiversity, industry and human health. Predicting invasion 

success remains at the forefront of invasive species research yet it is not known whether 

invasive species exhibit range specific, demographic or life history differences that 

facilitate invasion.  

2. We combined data from the COMPADRE Plant Matrix Database with new field data, to 

compare ten metrics of invasive plant populations, using seven species measured in 

both the invaded and native range. Metrics comprised vital rates (stage-specific 

recruitment, stasis & progression), demographic properties (stable population growth 

rate, and indices of transient dynamics, population inertia and reactivity) and selection 

potentials (elasticity of population growth rate to changes in vital rates). We tested 

whether invasive plant populations show changes in these metrics in the invaded range. 

3. Demographic properties changed between the native and invaded range, while vital 

rates and selection potentials did not. In the invaded range, invasive plants exhibited 

greater propensity to amplify in response to disturbance, than conspecific populations in 

the native range. Range comparisons of individual metrics revealed reactivity and the 

upper bound of inertia to be significantly higher amongst populations in the invaded 

range.  

4. Invasive plant populations ‘amplify’ more readily in response to disturbance in the 

invaded range, indicating that plants allocate greater resources to growth and 

reproduction once freed from the constraints of the native range. Large amplification is 

a characteristic of plant life histories with high reproductive output. We suggest that 

demographic amplification, caused by subtle changes to vital rates across the entire life 

cycle, is an important promotor of invasiveness.  
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5. Synthesis: Demographic properties of populations can only change in response to 

changes in life history. We discuss how subtle changes in life history might translate to 

detectable changes in population dynamics, with a focus on transient responses to 

demographic disturbances. We advocate collection of demographic data for a greater 

number of species, of broad geographic origin, to permit further global range 

comparisons to inform policy and trade restrictions. 

Keywords: demography, inertia, invaded range, invasive plant, native range, population 

projection matrix, reactivity, transient dynamics 
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Introduction 

Invasive species are variously defined as species that are both naturalized outside of their native 

range, and which detrimentally impact biodiversity, industry and human health (Daehler, 2003, 

IUCN, 1999, Beck et al., 2008). The harmful impacts of invasive species and the economic 

costs of mitigating damages are well documented (Butchart et al., 2010, Paini et al., 2016, 

Pimentel et al., 2005, Williams et al., 2010). Research has focused on all aspects of invasion 

biology but two key questions continue to drive invasive species research: ‘do invasive species 

share a particular trait(s) that can be used to predict invasiveness?’ (Burns et al., 2013, Hovick 

et al., 2012, van Kleunen et al., 2010, Richardson and Pyšek, 2006) and ‘how can the 

deleterious impact of invasive species be curtailed?’ (Ramula et al., 2008, Hulme, 2009). An 

ability to predict which species will become invasive, and an understanding of the underlying 

mechanism of invasion is fundamental to successful containment and control. 

Invasiveness is widespread amongst living organisms but here we focus on plants, which 

comprise one third of the top 100 of the world’s worst invasive species (Lowe et al., 2000). 

Among plants, invasive species research has revealed many putative correlates of invasiveness 

but has largely focused on individual demographic (Jelbert et al., 2015) and phenotypic traits 

(Schlaepfer et al., 2010), and environmental features which facilitate invasibility (Goodwin et 

al., 1999, Herron et al., 2007, Lambdon et al., 2008) yet both environmental variation (Buckley 

et al., 2010, Morris and Doak, 2005, Nantel et al., 1996) and species life history traits (Jelbert et 

al., 2015) act on invasiveness (proxies for which are abundance and spread rate) through their 

effect on stage-structured population dynamics (Harper and White, 1974).  

To date, demographic studies have revealed life history traits specific to invasive species (Burns 

et al., 2013, Ramula et al., 2008). Invasive species exhibit greater rates of spread and projected 

population growth when compared with non-invasive species in the invaded range (Burns et al., 

2013) and native species (Ramula et al., 2008). Invasive species exhibit greater fecundity per 

unit size when compared with non-invasive, native species in the native range (Jelbert et al., 

2015) and conspecific native populations (Parker et al., 2013). Amongst simulated invading 
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populations of both introduced and invasive species, highly fecund species exhibit more 

favourable transient dynamics (short-term population dynamics), greater long-term population 

growth and increased population viability (proxies of invasiveness) (Iles et al., 2016). Yet these 

demographic studies give no insight into how demographic processes may alter following 

introduction to a novel environment (invaded range) (c.f. Parker et al. (2013)).   

It is well established that demographic parameters and predictions vary in response to the 

environment (Buckley et al., 2010, Morris and Doak, 2005, Nantel et al., 1996), and there is 

evidence that phenotypic and demographic traits such as seed size (Hierro et al., 2013, Graebner 

et al., 2012, Buckley et al., 2003) and fecundity (Parker et al., 2013) can increase in the invaded 

range. Yet few studies have compared the demography of invasive species between the invaded 

and native range (c.f. Hyatt and Araki (2006)). Hyatt and Araki (2006) compared the 

demography of Polygonum perfoliatum in the native and invaded range to reveal that population 

growth rate more frequently declined in the invaded range, and that amongst the growing 

invading and native populations, growth was driven by high rates of fecundity. Population 

growth was equally elastic to (affected by changes in) germination, fecundity, seed bank and 

survival in the invaded range but was most elastic to survival in the native range (Hyatt and 

Araki, 2006). These findings illustrate how the nature of disturbances experienced in each range 

cause populations to respond differently, and to be influenced by different vital rates.  

In this study we use Population Projection Matrices (PPM) sourced from the COMPADRE Plant 

Matrix Database (COMPADRE 3.0.0) (Salguero‐Gómez et al., 2014) or created from new field 

data, to compare the demography of seven invasive plant species between the native and 

invaded range to determine if demographic processes change between ranges. Population 

Projection Matrices divide life cycles into different life-stages, and contain life history 

information as vital rates (stage-specific recruitment, stasis & progression), selection potentials 

(elasticity of population growth rate to changes in vital rates) (StottFranco et al., 2010) and 

demographic properties (stable population growth rate, and the indices of transient dynamics, 

population inertia (𝜌𝜌∞) and reactivity) (Caswell, 2001). A classic comparative approach to 

identify predictors of invasion success is to compare vital rates or their elasticities (Hyatt and 
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Araki, 2006) but these are measured across the life cycle, and life cycles vary. Instead proxies 

such as stable stage distribution (SSD)-weighted means or elasticities are used but these assume 

a stable stage structure (SSS), whereby the population will grow or decline according to the 

stable growth rate (Caswell, 2001) and when disturbed away from the SSS will amplify or 

attenuate in the short-term, before returning to a stable rate of population increase or decline 

(Stott et al., 2011). Yet invasiveness is typically associated with disturbed environments 

(D'Antonio, Dudley & Mack 1999; Marvier, Kareiva & Neubert 2004), and therefore the 

assumption that invading populations will exhibit a SSS is inaccurate. We predict that those 

measures which assume a SSS will not be sufficiently sensitive to detect subtle demographic or 

life history differences that facilitate invasion. Indices of transient dynamics do not assume a 

SSS (Koons et al., 2007) and instead analyse what the population dynamics would be in a 

disturbed environment (Stott et al., 2011). We predict that analyses of transient indices will 

detect demographic or life history differences that enable invasion. 

We compare ten PPM metrics (Table 2) including population growth rate, inertia, reactivity 

(herein referred to as ‘demographic properties’), elasticity (herein referred to as ‘selection 

potentials’) and vital rates of invasive plant populations in the invaded and native range to 1) 

determine if demographic processes change between ranges; and 2) identify the type of analyses 

that are most likely to reveal demographic or life history differences that facilitate invasion. On 

the basis of range specific differences identified previously (Hyatt and Araki, 2006, Parker et 

al., 2013, Hierro et al., 2013), and strong links between invasiveness and increased reproductive 

output (Burns et al., 2013, Moravcová et al., 2010, Mason et al., 2008, Burns, 2006, Jelbert et 

al., 2015) and associated proxies (Reichard, 1994, Cadotte and Lovett-Doust, 2001), it is 

predicted that in the invaded range invasive species will exhibit an enhanced ability to amplify 

in response to disturbance and rapid population growth. We predict that these demographic and 

life history differences will be revealed by analyses of transient dynamics because such analyses 

remove the assumption of SSS.  
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Materials & Methods 

Demographic data were obtained from the COMPADRE Plant Matrix Database (COMPADRE 3.0.0) 

(Salguero‐Gómez et al., 2014) and collected in the field (Table 1; Supporting Information at 

Appendix 1).  
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Table 1: Invasive Plant Species, Study Location and Data Source.  

Species Common 
Name 

Native Study 
Range 

Data Sources 
for Native 
Range 

Invasive Study 
Range 

Data Sources 
for the 
Invasive 
Range 

Alliaria 
petiolata 

Garlic mustard Cornwall, UK Jelbert (2014) 
unpublished 

Michigan, 
USA 

Evans et al. 
(2012) 

Carduus 
nutans 

Musk thistle France Jongejans et 
al. (2008) 

Australia/ 
New Zealand 

Shea and 
Kelly (1998) 

Cirsium 
vulgare 

Spear thistle UK Bullock et al. 
(1994) 

Australia Forcella and 
Wood (1986) 

Iris 
pseudacorus 

Yellow flag 
iris 

Cornwall, UK Jelbert (2014) 
unpublished 

Louisiana, 
USA 

Pathikonda et 
al. (2009) 

Lotus 
corniculatus 

Birds-foot 
trefoil 

Cornwall, UK Jelbert (2014) 
unpublished 

Missouri, 
USA 

Emery et al. 
(1999) 

Lythrum 
salicaria 

Purple 
loosestrife 

Cornwall, UK Jelbert (2014) 
unpublished 

Ontario, 
Canada 

Lacroix 
(2004) 

Polygonum 
perfoliatum 

Mile-a-minute 
weed 

Japan Hyatt and 
Araki (2006) 

Pennsylvania, 
USA 

Hyatt and 
Araki (2006) 
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Data Collection: 

The COMPADRE Plant Matrix Database (COMPADRE 3.0.0) (Salguero‐Gómez et al., 2014) 

features >7000 stage-structured demographic models for almost 700 species of plant. Population 

status for each Population Projection Matrix (PPM) within the COMPADRE Plant Matrix 

Database was classified as 1) native, 2) invasive or 3) naturalised, non-invasive at the study 

location using the source literature for each study. Species were also assigned a global status as 

1) invasive, 2) naturalised but non-invasive outside of the native range, or 3) restricted to the 

native range. Species status outside of the native range was determined using invasive species 

databases, and academic and Government publications following the methodology set out in 

Jelbert et al. (2015). We filtered COMPADRE to identify invasive species for which demographic 

data, collated in both the native and invaded range, was available, yielding six species 

represented by multiple PPM’s. We then filtered these PPM’s to exclude 1) matrices generated 

by pooling data from multiple sites; 2) matrices generated for populations reared in the 

laboratory, greenhouse or experimentally manipulated; and 3) matrices that were reducible and 

therefore non-ergodic (StottTownley et al., 2010). Reducible and non-ergodic matrices were 

identified using the R package ‘popdemo’. All PPMs where checked for the ‘seed 

problem’(Caswell, 2001), whereby the seed or propagule stage class is incorrectly presumed to 

last one year before germination, and corrected as appropriate. The filtered dataset comprised 23 

spatial populations (many of them replicated through time), representing only three plant 

species.  

To yield additional species, we filtered COMPADRE to identify invasive species 1) for which 

demographic data was available in the invaded range; 2) that are also native to Cornwall, UK; 3) 

for which the available demographic data met our criteria as outlined above; and 4) for which 

the source literature provided a methodology that could be replicated in the native range. The 

filtered dataset comprised four invasive species for which, demographic data was subsequently 

collected in the native range (Cornwall, UK) (see Supporting Information). The combined data 

(PPMs constructed from demographic data collected in the native and invaded range) derived 
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from the COMPADRE Plant Matrix Database (COMPADRE 3.0.0) and collated in the field, 

represented seven invasive plant species (Table 1).  

Demographic data were collected at sites in Cornwall, UK. Germination trials and seed viability 

analysis were also performed, the latter in accordance with the International Seed Testing 

Association (2014) and Peters (2000), to determine seed survival and transition rate out of the 

seed bank. The methodology is presented as Supporting Information. 

Population Projection Matrix (PPM): Construction 

A PPM, comprising demographic data collated in the native range, was constructed for each of 

the four invasive species measured in the field. The PPM’s were constructed using the 

methodology detailed in the source literature for the corresponding PPM’s in the invaded range 

(Pathikonda et al., 2009, Emery et al., 1999, Lacroix, 2004, Evans et al., 2012). The R package 

‘popdemo’ was used to confirm PPMs to be non-negative, irreducible and ergodic (qualities 

required to accurately describe transition rates between life cycle stages), and therefore suitable 

for analyses. 

Deviations from the published methodology are as follows: the entries for L. corniculatus 

within COMPADRE comprise three seasonal matrices; using the methodology set out in Emery et 

al. (1999) these were converted into one annual matrix. This methodology was replicated to 

produce a single annual matrix for the native range. It was not possible to replicate the invaded 

range PPMs for L. salicaria (Lacroix, 2004) in the native range because 1) seed bank survival 

was not recorded due to high germination rate and inability to recover seeds for seed viability 

analysis; 2) quiescent individuals were not recorded in year 1; and 3) because the 12th stage of 

the native range matrix was empty (no individuals meeting the criteria were recorded). To 

compensate a 10 stage matrix was constructed by removing two seed stages; values for 

quiescent individuals were taken from the invasive range PPM, and a small value of 0.001 was 

fed into the native range matrix.  Lacroix (2004)’s matrices were not reducible and non-ergodic 

due to empty life stages, and were therefore not suitable for analysis. To overcome this problem, 

the two matrices created by Lacroix (2004) were combined to create a single matrix that was 
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irreducible, ergodic and subsequently suitable for analysis. The entries for P. perfoliatum within 

COMPADRE comprise three seasonal matrices (Hyatt and Araki, 2006); matrix multiplication 

was used as set out in Emery et al. (1999) to convert these into three annual matrices; this 

methodology was replicated to produce a single annual matrix for the native range. 

Population Projection Matrix (PPM): Calculating Demographic Metrics 

The following metrics were calculated for each species in the native and invaded range: 

log(lambda) (λ), log(inertia) (𝜌𝜌∞), log(reactivity) (demographic properties), vital rates (stasis, 

progression and recruitment) and elasticity of lambda to vital rates (Table 2). Note that lambda, 

inertia and reactivity were heavily skewed and were therefore log transformed to achieve an 

additive scale. 
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Table 2: Definition of Metrics Analysed. 

Metric Lay Definition 
Log(Lambda) Stable population growth rate, achieved by a population that has 

settled to stable stage structure. Natural log of the dominant 
eigenvalue of the population projection matrix. 

Upper bound 
log(Inertia) 

Upper bound on long-term impact of transient dynamics following 
disturbance away from stable stage structure. Measures the log of the 
ratio of future population size relative to that achieved by a 
population at stable stage structure. 

Lower bound 
log(Inertia) 

Lower bound on long-term impact of transient dynamics following 
disturbance away from stable stage structure. 

Log(Reactivity) Population boom or bust achieved, relative to stable rate of increase, 
in the first timestep following demographic disturbance. Can be 
described using upper and lower bounds. 

Logit(Stasis) The proportion of individuals that survive but do not progress to the 
next stage within the lifecycle, with logit transformation relevant to 
proportion data. 

Logit(Recruitment) The rate of reproduction, germination and seedling establishment, 
with logit transformation. 

Logit(Progression) The proportion of individuals that both survive and make the 
transition to the next stage within the lifecycle (growth), with logit 
transformation. 

Elasticity(Stasis) The proportional rate of change in stable population growth rate, in 
response to proportional increase in stasis. 

Elasticity(Recruitment) The proportional rate of change in stable population growth rate, in 
response to proportional increase in recruitment. 

Elasticity(Progression) The proportional rate of change in stable population growth rate, in 
response to proportional increase in progression. 

Caswell (2001); Stott et al., (2011) 
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The Perron-Frobenius theorem describes how the dynamics of a non-negative, irreducible, 

ergodic projection matrix arrive at a stable stage structure (SSS) (relative density of stages in the 

population) and a stable geometric rate of increase (Caswell, 2001) from any initial condition 

when rates of transition between life stages are constant and growth is unlimited. The stable rate 

of population increase (λ) is the dominant eigenvalue of a PPM and the SSS is the normalised, 

dominant right eigenvector (Caswell, 2001). For each PPM λ was calculated using the 

‘lambda’ function in the R package ‘popdemo’. The SSS was calculated using the function 

‘eigen’ in the R package ‘popdemo’.  

Demographic inertia (𝜌𝜌∞), also referred to as the Stable Equivalent Ratio (Koons et al., 2007), 

measures the long-term impacts of transient dynamics caused by disturbance away from the 

SSS (Stott et al., 2012). Where a non-stable population structure, caused by a higher density of 

one life stage compared to another, exists the population will be larger or smaller than the 

population exhibiting a SSS. This is often described as a ‘boom or bust’ effect, whereby the 

population amplifies (more population growth than predicted by λ) or attenuates (less 

population growth than predicted by λ). Here we measure the upper and lower bounds on inertia 

for each matrix model to describe the potential for demographic amplification and demographic 

attenuation, respectively. The upper (𝜌̅𝜌∞) and lower (𝜌𝜌∞) bounds of inertia were calculated 

using the ‘inertia’ function in the R package ‘popdemo’. Projection matrices are described 

as either “pre-reproductive” (recruitment is measured as fecundity multiplied by rates of 

germination and seedling survival), or “post-reproductive” (recruitment of seeds measured as 

adult survival multiplied by fecundity). Post-reproductive matrices often exhibit high values of 

recruitment, which inflate measures of demographic amplification. To compensate, we 

converted all post-reproductive matrices to pre-reproductive matrices. 

Reactivity is a measure of population size in the short-term (first time-step), and was calculated 

using the ‘reactivity’ function in the R package ‘popdemo’.   

It was not possible to obtain survival, growth and fecundity values from each PPM sourced 

from the COMPADRE 3.0.0 Plant Matrix Database (Salguero‐Gómez et al., 2014) because these 
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values are not presented in the source literature and because survival and transition probabilities 

have been multiplied and cannot be disentangled. Instead we use the vital rates, stasis, 

recruitment and progression as proxies for survival, fecundity and growth. Stasis describes the 

proportion of individuals that survive but do not progress to the next stage within the lifecycle. 

Progression describes the proportion of individuals that both survive and make the transition to 

the next stage within the lifecycle (growth). Recruitment describes the rate of reproduction, 

germination and seedling establishment. An abundance weighted average between the 

population structure of the PPM and the SSS was used to calculate the average demographic 

rate for stasis, recruitment and progression for each species in the native and invaded range. 

Average vital rates were not normally distributed therefore recruitment was logged, and stasis 

and progression were logit transformed because both are bound by zero. 

We used elasticity analysis to explore the effect of stasis, recruitment and progression on 

population growth rate (Franco and Silvertown, 2004). Elasticities of matrix transition rates sum 

to one. The sum of elasticities of lambda for each vital rate is used to determine their relative 

influence on lambda, and whether this differs between the native and invaded range. For each 

population elasticity matrices were calculated using the function ‘elas’ in the R package 

‘popdemo’.  

Data analysis 

Ten metrics were calculated for each species in the native and invaded range: log(λ), upper 

(𝜌̅𝜌∞) and lower (𝜌𝜌∞) bounds of log(inertia), log(reactivity) (demographic properties); vital rates 

(logit stasis, logit recruitment and logit progression) and elasticity of lambda to vital rates 

(stasis, recruitment and progression) (selection potentials). Multiple populations, and therefore 

PPMs were available for some species, and within a species, the number of PPMs generated 

from data collated in the native and invaded range was not the same. An average of metrics for 

each species was therefore calculated to mitigate the irregularity of PPMs, resulting in metric 

averages for seven species in both the native and invaded range. A pairwise t test was conducted 

for each of the ten metrics. Multiple testing in this manner has potential to exaggerate Type I 
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errors (i.e. false positive outcomes). Principal Component Analysis (PCA) was therefore 

performed to reduce the dimensionality of the data into dominant axes, which explain most of 

the variation.  

The PCA scores were used to distinguish the effects of range (native or invaded) on the 

magnitude of metrics, the a priori one-way hypothesis being that plants in the invaded range 

will show greater magnitudes. A one tailed t test was used to determine whether species position 

on the selected PCA axis(es) differ(s) between the invaded range and native range. In 

accordance with Kaiser’s Criterion (Costello and Osborne, 2005) PCA axes were only retained 

for analysis where their associated eigenvalue was ≥ 1. We use the evplot in R to calculate 

eigenvalues for each PCA axis. Initially all PPM metrics were included within the PCA. Due to 

large variation amongst metrics, with potential to obscure important relationships, PCA was 

subsequently performed separately for 1) vital rates (stasis, recruitment and progression); 2) 

selection potentials (elasticity of λ to stasis, recruitment and progression); and 3) demographic 

properties (inertia, λ and reactivity). 

All analyses were performed using RStudio version 1.1.383 (2015). 
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Results 

Pairwise t-test of metrics 

We find no significant difference in log(λ) between the invaded and native range (t6 = 0.27626, 

p-value = 0.791), though on average, across the seven species, log(λ) was higher in the invaded 

range (Figure 1a; Table 3). Considerable variation in log(λ) in the native range, driven by a 

small number of extreme values, may have concealed a significant difference between ranges.  

The upper bounds of log(inertia) (𝜌̅𝜌∞)  was significantly larger in the invaded range (t6 = 

3.3824, p-value = 0.015; Figure 1b; Table 3). We find no significant difference in the lower 

bounds of log 𝜌𝜌∞ between the invaded and native range (t6 = -0.3178, p-value = 0.761; Table 3); 

this metric displayed considerable variation. 

We find log(reactivity) to be significantly lower in native range; in the invaded range the 

maximum response of population growth to disturbance is significantly higher (t6 = 2.9284, p-

value = 0.026; Figure 1c; Table 3).  
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Figure 1: Boxplot showing the distribution of variance of a) log(lambda); b) the upper bound of 

log(Inertia); and c) log(reactivity) for invasive plant species (n = 7) in the native and invaded 

range. The medium is shown as the thick, black, dividing line; the upper and lower quartiles as 

the upper and lower edge of rectangles; the maximum and minimum values as the outer bars; 

and the outliers as points. 
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The vital rates: logit(stasis), logit(progression) and logit(recruitment), were found not to be 

significantly different between the native and invaded range (Table 3). Vital rates, notably 

stasis, exhibited the largest confidence intervals; variation in these rates may have concealed a 

significant difference between ranges. Finally, we find elasticity of λ to the vital rates, referred 

to as E(Stasis), E(Progression) and E(Recruitment), not to differ significantly between the 

native and invaded range (Table 3) but to reveal some anomalies. Population growth rate of 

both A. petiolata and I. pseudacorus appear to be strongly influenced by progression in the 

native range but more heavily influenced by stasis in the invaded range. Population growth rate 

of L. salicaria is highly elastic to recruitment and stasis in the native range but switches to 

become strongly influenced by progression and recruitment in the invaded range (Figure 2). 

Similarly L. corniculatus is strongly influenced by stasis in the native range but is more heavily 

influenced by recruitment in the invaded range (Figure 2). 
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Table 3: Pairwise t test range comparison of metrics – test statistics. 

Metric Mean of 
differences 

t-value Degrees of 
freedom (df) 

p-value 

Log(Lambda) 0.041 0.27626 6 0.791 

Upper bound log(Inertia) 0.741 3.3824 6 0.015* 

Lower bound log(Inertia) -0.196 -0.31782 6 0.761 

Log(Reactivity) 0.837 2.9284 6 0.026* 

Logit(Stasis) -0.790 -0.49185 6 0.640 

Logit(Recruitment) 0.454 1.0874 6 0.319 

Logit(Progression) -0.370 -0.3702555 6 0.670 

E(Stasis) 0.129 0.87446 6 0.416 

E(Recruitment) 0.043 0.34879 6 0.739 

E(Progression) -0.085 -0.92088 6 0.392 

* represents a significant result 
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Figure 2: Ternary plot showing the relative influence of the vital rates: stasis, recruitment and 

progression, on lambda (elasticities) for each invasive species (n = 7) in the native (black 

numbers) and invaded (red numbers) range. Our species: Alliaria petiolata, Carduus nutans, 

Cirsium vulgare, Iris pseudacorus, Polygonum perfoliatum, Lythrum salicaria and Lotus 

corniculatus are represented by the numbers 1 – 7 respectively. 
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Principal Component Analysis 

Principal Component Analysis (PCA) was performed to reduce the dimensionality of the data 

into dominant axes, which explain most of the variation. Initially PCA was performed for all 

PPM metrics (vital rates, selection potentials and demographic properties). In accordance with 

Kaiser’s Criterion (Costello and Osborne, 2005) we retain PCA axes 1 – 4 because the 

eigenvalues are ≥ 1. In combination these PCA axes explain 86% of the variation. The first 

principal component axis (PCA1 All Metrics) explains 37% of the variation (Figure 3). On the 

PCA1 All Metrics axis, the lower bound of log inertia (𝜌𝜌∞) (the propensity of a population to 

‘attenuate’ in response to disturbance) is correlated with the elasticity of stasis on population 

growth rate (Stasis Elasticity) and the vital rate ‘stasis’, and sits at the negative end of the axis, 

whilst the opposite, positive end of the axis represents contribution from the ‘amplification’ 

traits: log 𝜌̅𝜌∞, log(reactivity) and a log(recruitment) (Figure 3). The second principal component 

axis (PCA2 All Metrics), which explains 23% of the variation, indicates population growth to 

be correlated with either elasticity of progression (Progression Elasticity) or stasis (Stasis 

Elasticity) on population growth, but not both (Figure 3). Of the seven invasive species, L. 

salicaria and I. pseudacorus are most strongly influenced by PCA2. 
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Figure 3: Position of all demographic metrics for the native and invaded range on the PCA axes. 

Populations exhibit a faster life cycle in the invaded range if positioned on the positive side of 

the PCA1 axis relative to their conspecific in the native range. Alliaria petiolata, Carduus 

nutans, Cirsium vulgare, Iris pseudacorus, Polygonum perfoliatum, Lythrum salicaria and 

Lotus corniculatus are represented by the numbers 1 – 7 in the invaded range and 8 – 14 in the 

native range respectively. 
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A one tailed t test was used to determine if invasive species exhibit a faster life history (sit 

higher on the positive end of the PCA1 All Metrics axis) when in the invaded range. We find 

that invasive plants do not exhibit a significantly higher PCA1 score than plants in the native 

range (t6=2.1618, P = 0.066; Figure 3). However, of the 7 study species, 5 exhibit a higher 

PCA1 scores in the invaded range, the anomalies being P. perfoliatum and A. petiolata, which 

exhibit a higher PCA1 score in the native range. Similarly, we find that invasive plants do not 

exhibit a significantly different PCA2 score between ranges (t6=0.81434, P = 0.223; Figure 3), 

PCA3 score (t6=-0.78285, P = 0.768) or PCA4 score (t6=0.49762, P = 0.318) for all metrics. We 

previously showed that in the invaded range invasive plants exhibit significantly higher 

reactivity and upper bound of inertia: these are demographic properties that may be masked by 

high variation amongst vital rates and selection potentials (elasticities) when lumped into a 

single PCA. We have therefore undertaken separate PCA for demographic properties, vital rates 

and selection potentials.  

For demographic properties we find that invasive plants exhibit a significantly higher PCA1 

score in the invaded range (t6=2.0176, P = 0.045; Figure 4), representing higher values of the 

‘amplification’ traits: log 𝜌̅𝜌∞  and log(reactivity), in the invaded range. In accordance with 

Kaiser’s Criterion (Costello and Osborne, 2005) we only retain the PCA1 axis because the 

eigenvalues of subsequent PCA axes are < 1. 
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Figure 4: Position of demographic properties for the native and invaded range on the PCA axes. 

Populations exhibit a higher population growth, reactivity and the upper bound of inertia in the 

invaded range if positioned on the positive side of the PCA1 axis relative to their conspecific in 

the native range. Alliaria petiolata, Carduus nutans, Cirsium vulgare, Iris pseudacorus, 

Polygonum perfoliatum, Lythrum salicaria and Lotus corniculatus are represented by the 

numbers 1 – 7 in the invaded range and 8 – 14 in the native range respectively. 
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For vital rates we find that invasive plants do not exhibit a significantly different PCA1 score 

(t6= -0.70194, P = 0.746; Figure 5), or PCA2 score (t6= 1.0825, P = 0.160; Figure 5) between 

ranges. 

For selection potentials we find that invasive plants do not exhibit a significantly different 

PCA1 score (t6= -0.79612, P = 0.772; Figure 6) between ranges. In accordance with Kaiser’s 

Criterion we only retain the PCA1 axis because the eigenvalues of subsequent PCA axes are < 

1. 
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Figure 5: Position of vital rates for native and invaded range populations on the PCA axes. 

Alliaria petiolata, Carduus nutans, Cirsium vulgare, Iris pseudacorus, Polygonum perfoliatum, 

Lythrum salicaria and Lotus corniculatus are represented by the numbers 1 – 7 in the invaded 

range and 8 – 14 in the native range respectively. 
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Figure 6: Position of selection potentials for native and invaded range populations on the PCA 

axes. Alliaria petiolata, Carduus nutans, Cirsium vulgare, Iris pseudacorus, Polygonum 

perfoliatum, Lythrum salicaria and Lotus corniculatus are represented by the numbers 1 – 7 in 

the invaded range and 8 – 14 in the native range respectively. 
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Discussion 

An ability to predict which species will become invasive is required to contain and mitigate the 

impact of existing invasive populations, and to prevent further harmful species introductions. 

Here we compare the demography of seven invasive plant species between the native and 

invaded range to determine if demographic processes change between ranges, and to identify 

the analyses most likely to reveal demographic or life history differences that facilitate invasion. 

Specifically, we tested whether a) population growth rate (λ); b) inertia; c) reactivity 

(demographic properties); d) vital rates; and e) elasticity of λ to changes in vital rates (selection 

potentials), differ between the invaded and native range. We also tested if invasive plant species 

in the invaded range show greater magnitudes of these metrics when the dimensionality of the 

data is reduced into dominant Principal Component axes. We predicted that in the invaded range 

invasive species will exhibit an enhanced ability to amplify in response to disturbance and rapid 

population growth, and that these differences will be revealed by analyses that do not assume 

stable stage structure (SSS).  

We find that the properties of invasiveness are revealed by demographic properties: invasive 

plants in the invaded range exhibit a significantly higher PCA1 score than conspecific 

populations in the native range when PCA is restricted to demographic properties only; 

invading populations are positioned higher on the positive end of the axis, which represents the 

indices of transient dynamics and ‘amplification’ traits: log 𝜌̅𝜌∞ and log(reactivity). Similarly, 

conspecific range comparison of individual metrics revealed reactivity and the upper bound of 

inertia (𝜌̅𝜌∞) (maximum ability of population to amplify or boom in response to disturbance) to 

be significantly higher in the invaded range. Principal Component Analysis of all metrics 

(demographic properties, vital rates and selection potentials) revealed no such relationship, as 

did PCA when restricted to vital rates or selection potentials. Analysis of SSD-weighted mean 

vital rates and elasticities assume the population to be at SSS (Caswell, 2001) but invasiveness 

is typically a property of disturbed environments where populations do not achieve a SSS. We 

predicted that such analyses are unlikely to be sufficiently sensitive to detect range specific 

differences of invasive plant populations, and our results support this hypothesis. Transient 
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measures of demographic properties do not assume a SSS and instead measure the impact of not 

being at SSS (Koons et al., 2007, Stott et al., 2011). In support of our hypothesis, our results 

indicate that analyses of transient dynamics are better suited to identify differences amongst 

invading plant populations, which are assumed not to be at SSS. When demographic properties, 

vital rates and selection potentials are lumped into a single PCA, the assumption of SSS for vital 

rates and selection potentials potentially obscures range specific differences amongst 

demographic properties.  

There were two anomalies amongst our invasive species: P. perfoliatum and A. petiolata did not 

exhibit higher reactivity and the upper bound of inertia (𝜌̅𝜌∞) in the invaded range. Possible 

explanations include biogeography and variation in the mechanism of invasion. P. perfoliatum, 

a vine, is native to Japan (Hyatt and Araki, 2006) whilst the other invasive species in our study 

are native to Europe (Pathikonda et al., 2009, Emery et al., 1999, Lacroix, 2004, Evans et al., 

2012). In the native range periodic fluvial flooding causes seedling and adult survivorship to be 

considerably lower than in the invaded range where flooding events are rare (Hyatt and Araki, 

2006). Population growth in the native range is slightly more dependent on progression, whilst 

population growth in the invaded range is marginally more dependent on recruitment and stasis 

but these differences are minor in extent. In the invaded range P. perfoliatum outcompetes 

native species by attaining a large size that inhibits the photosynthetic ability of its neighbours. 

High rates of recruitment and progression may not be necessary for P. perfoliatum to establish 

and spread; this is consistent with Hyatt and Araki (2006)’s observation that invading 

populations are equally elastic to (affected by changes in) germination, fecundity, seed bank and 

survival. In the native range population growth of A. petiolata is driven by progression but in 

the invaded range becomes largely dependent on adult survivorship. The impact of recruitment 

on population growth is unaffected by range. 

Of the individual metrics compared between ranges, we find the upper bound of inertia to be 

significantly higher in the invaded range. The size of populations disturbed away from SSS will 

amplify or attenuate in the short-term, before arriving at the stable rate of increase (or decline). 

Demographic inertia measures the long-term impact of this transient dynamic whereby non-
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stable populations will always be larger or smaller than a population initiated at SSS (Koons et 

al., 2007). The a priori hypothesis is supported, an invading population could attain a 

population size larger than a native conspecific population. This finding supports mathematical 

simulations, which have illustrated how high population inertia could theoretically explain 

invasion success, and be an adaptation to invasion (Guiver et al., 2015). Reactivity is similar to 

inertia, and describes maximum amplification encountered following disturbance but unlike 

inertia is restricted to the first timestep (Neubert and Caswell, 1997, StottFranco et al., 2010). 

We find reactivity ‘the magnitude of the boom’ to be significantly higher in the invaded range 

indicating that freed from the constraints of the native range, plants can better exploit favourable 

conditions. 

Unexpectedly, there was no statistically significant difference in projected stable population 

growth rate between the native and invaded range. This is consistent with our finding that 

invasive plants in the invaded range exhibit higher magnitudes of reactivity and the upper bound 

of inertia (amplification traits), and previous findings that greater long-term population growth 

and increased population viability (proxies of invasiveness) are dependent on the presence of 

‘amplificatory traits’ (Iles et al., 2016, Ramula et al., 2008, Burns et al., 2013).  

The vital rates and elasticity of lambda to demographic rates were found not to be significantly 

different between the native and invaded range. There were however, some notable anomalies: 

Iris pseudacorus switched from being highly elastic to progression and recruitment in the native 

range to being highly elastic to stasis in the invaded range. A possible explanation pertains to 

vigorous growth of I. pseudacorus populations through rhizomes (Pathikonda et al., 2009). In 

this scenario it is intuitive that population growth will not be dependent on increased seed 

production and is perhaps more dependent on adult survivorship. Lythrum salicaria exhibits the 

reverse relationship, and shifts from being highly elastic to progression in the native range to 

being highly elastic to recruitment in the invaded range. An average mature L. salicaria plant 

produces 2.7 million seeds per annum (Thompson et al., 1987). Unlike I. pseudacorus, 

reproduction and spread rate of L. salicaria is dependent on seed production.  
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In this study we show that the demographic properties, upper bound of inertia and reactivity, 

differ between ranges whilst vital rates and selection potentials do not. Invasive plant species 

exhibit a greater propensity to ‘amplify’ or ‘boom’ in response to disturbance in the invaded 

range. Large amplification is a characteristic of plant life histories with high reproductive output 

(Stott et al., 2011). Freed from the constraints of the native range, invading plant populations 

exhibit a higher population growth rate in response to disturbance, and an elevated magnitude of 

reactivity. Species exhibiting high amplification can evolve more quickly to changing 

environmental conditions, are more likely to replace variation lost as a result of genetic 

bottlenecks (i.e. those occurring following introduction to a new environment) and are therefore 

less vulnerable to demographic stochasticity (Rice and Emery, 2003).  

We find that the properties of invasiveness are revealed by demographic properties as opposed 

to vital rates and selection potentials. This we attribute to the appropriateness of the measure. 

Invasiveness is often a property of disturbed environments (D'Antonio, Dudley & Mack 1999; 

Marvier, Kareiva & Neubert 2004) where populations do not achieve a SSS. Unlike stable 

population growth rate, vital rates and elasticities, which assume a SSS, transient measures of 

demographic properties do not and instead measure the impact of not being at SSS (Koons et 

al., 2007, Stott et al., 2011). Analysis of transient demographic properties is therefore more 

likely to detect range specific differences in demographic and life history traits amongst 

invasive populations. We suggest that demographic amplification, caused by subtle changes to 

vital rates across the entire life cycle, is an important promotor of invasiveness. 

It is important to note that our study comprised only seven species, six of which are native to 

Europe. The relatively low sample size, coupled with large variation amongst vital rates and 

selection potentials, and the restricted geography of study species, reduces the proficiency with 

which our results can be used to predict global patterns of invasive plant demography. Our 

results could be specific to the study species and locations. It is however, important to recognise 

that extensive demographic data is contained within a single PPM. Population Projection 

Matrices derived from the COMPADRE Plant Matrix Database (Salguero‐Gómez et al., 2014) 

represent a minimum of two years intensive monitoring; and multiple PPMs derived from 
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distinct populations, are available for some of our study species. Furthermore, PPMs derived 

from field data collected in Cornwall, UK were constructed using a minimum of 92 plants and a 

maximum 290 plants.  

Future research should test whether our findings are true for a greater number of species that are 

representative of a variety of plant life forms, reproductive strategies and a broad geographical 

range. Future research would benefit from including some of the most problematic invasive 

species such as Fallopia japonica, Eichhornia crassipes and Acacia spp., (Lowe et al., 2000) 

which are absent from this study.  
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Supporting Information 

Data Collection: Field  

Demographic data from the native range was collected at sites in Cornwall, UK.  Sites 

supporting each population were identified using the ERICA Database held by Dr. Colin French 

and were selected as described in Jelbert et al. (2015). To minimize the effect of environmental 

variables on demographic parameters, study sites in the native range were selected to emulate 

habitat at study locations in the invaded range as described in the source literature (Pathikonda 

et al., 2009, Emery et al., 1999, Lacroix, 2004, Evans et al., 2012).  

Permanently marked, geo-referenced quadrats (mean = 10) were installed at each site as 

described in Jelbert et al. (2015). Quadrat size was determined by the species’ area-weighted 

density (range: 0.5 x 0.5m - 1m x 1m) (Jelbert et al., 2015). Individual plants within each 

quadrat were repeatedly monitored between May and October 2013, encompassing late spring, 

summer and autumn (to determine fecundity), and once between May and October 2014 (to 

determine recruitment, survival, growth and retrogression transitions). In accordance with the 

published PPMs derived from the invaded range (Pathikonda et al., 2009, Emery et al., 1999, 

Lacroix, 2004, Evans et al., 2012), we consider an individual to be an entire plant or, for clonal 

rhizomatous species, a ramet (an individual belonging to a clonal group of genetically identical 

individuals) and use the term ‘plant(s)’ to refer to these individuals. We recorded the life-stage 

(i.e. seedling, vegetative, reproductive etc.) of all individuals within each quadrat, and if 

present, the number of seed capsules or racemes per plant from which we calculated fecundity 

(Jelbert et al., 2015). We also recorded parameters of size (basal stem diameter, rosette diameter 

and rosette perpendicular diameter) during each visit. Germination and seed viability analysis 

were conducted to determine seed survival and transition rate out of the seed bank as described 

at Appendix 1. 

Data Collection: Germination Trial 
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Germination trials were conducted to determine seed survival and transition rate out of the seed 

bank. All species are likely to require a period of vernalization prior to germination.  To 

replicate minimum winter ground temperatures in the native range, seed collected and air dried 

as described in Jelbert et al. (2015), was stored at 5°C between collection in Summer 2013, and 

sowing in January 2014.  Field germination trials following the methodology set out in the 

original published source of the invaded range PPM (where available) were unsuccessful due to 

perforation of the muslin cloth seed bags. Germination trials were instead conducted in a cold 

frame located a maximum of 15 miles from each sample population; photoperiod was therefore 

consistent with the photoperiod experienced by wild plants. Seed (n = 300) was sown at a depth 

of 3mm in a sterile / seed free substrate. Substrate was selected to replicate soil type at each site. 

This comprised 100% seed compost for Lotus corniculatus, Iris pseudacorus, Lythrum salicaria 

and Alliaria petiolata, which typically occur in neutral and nutrient rich soils.  

Sown seeds were watered (300ml per tray) and the number of germinated seeds counted and 

removed, every two days between sowing in January and June 2014 inclusive. In July 2014 

seeds that failed to germinate were recovered. To estimate seed survival after one year in the 

seed bank, seeds were subjected to seed viability analysis.  

Data Collection: Seed Viability Analysis 

Tetrazolium staining was used to estimate seed survival after one year in the seed bank. Seed 

was submerged in a 1% solution of 2,3,5-triphenyl tetrazolium chloride (1g 2,3,5-triphenyl 

tetrazolium chloride in a 100ml buffer mix as described below) for a species specific length of 

exposure at 30°C in accordance with the International Rules for Seed Testing (International 

Seed Testing Association, 2014). A buffer, comprising two parts solution 1 (0.9078g KH2PO4 

Monopotassium phosphate in 100ml of distilled water) and three parts solution 2 (0.9472g 

Na2HPO4 Disodium hydrogen phosphate in 100ml of distilled water), was used to achieve the 

desired pH (6.5 – 7.5).  Seed viability was determined by the staining pattern in accordance with 

the International Rules for Seed Testing (International Seed Testing Association, 2014) and 

Peters (2000). 
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Chapter 6: 

 

Discussion 

Our Approach to Invasive Species Research 

The many adverse impacts of invasive species and the large costs of curtailing damages are 

widely documented (Butchart et al., 2010, Paini et al., 2016, Pimentel et al., 2005, Williams et 

al., 2010). The gravity of invasive species research is perhaps best illustrated by the existence of 

academic journals with sole focus on invasion biology. Central to the containment and control 

of invasive plant species is a means to predict which species will become invasive, and an 

understanding of the mechanisms of invasion. Using field experiments and meta-analyses we 

have presented phenotypic and demographic attributes of invasive plant species that can be 

utilised to predict which species will likely become invasive following introduction outside of 

the native range. We have shown that invasive species are both larger and constitutively more 

fecund than their non-invasive, sympatric relatives in the native range (Chapter 2; Jelbert et al. 

(2015)). We also found that invasive species exhibit higher reproductive investment (fecundity 

x seed mass) suggesting that invasive plants escape the typical trade-offs of competition and 

colonization, or of fecundity and tolerance, and exhibit higher fecundity without a resultant 

decrease in seed mass (Chapter 3). Using a meta-analysis, we disentangled the impact of range 

(native or naturalised), phylogeny and global plant status to demonstrate that invasive plant 

species exhibit greater potential for demographic amplification (𝜌̅𝜌∞) than non-invasive species 

and that this relationship shows phylogenetic pattern (Chapter 4). We also found that stable 

rates of population growth (λ) were greater in the introduced range irrespective of invasive 

status, and that this relationship lacks phylogenetic constraints (Chapter 4). Finally, we have 

shown that demographic properties changed between the native and invaded range; invasive 
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plants exhibited greater propensity to amplify in response to disturbance in the invaded range, 

than conspecific native populations (Chapter 5). 

This thesis has been structured in the order that each data chapter was conceived. Chapter 2 (the 

first of four data chapters; Jelbert et al. (2015)) compared plant size between invasive and non-

invasive sympatric congeners, then controlled for plant size to determine if invasive plants 

exhibited higher fecundity, and higher probability of seed-set, than non-invasive plants. Plant 

size is a fundamental consideration because within a species, larger individuals 

characteristically exhibit higher fecundity (Weiner et al., 2009) and because large size, in 

varying forms (Schlaepfer et al., 2010, van Kleunen et al., 2011, Pyšek and Richardson, 2007, 

Grotkopp et al., 2002), is a correlate of invasiveness. Invasive plant species might be invasive 

because they are larger (and therefore more fecund) or because they are constitutively more 

fecund (i.e. higher fecundity per-unit-size) than their non-invasive counterparts. We found that 

invasives are both larger and constitutively more fecund (Jelbert et al., 2015). Chapter 2 also 

considered the effect of population structure on fecundity. This is important because a species 

with a population structure comprising few reproductive individuals may perform poorly in 

comparison to a species with a population comprising many reproductive individuals, even if 

the poorly performing species exhibits higher individual fecundity. We found no evidence that 

invasive species attempted to make seed more frequently than their sympatric, non-invading 

relatives. Finally, and perhaps the most unique aspect of Chapter 2, which is carried forward 

throughout this thesis, is the recognition that study range (native or naturalised) affects the 

questions that can be asked. It is well established that environmental variation contributes to 

variation in demographic parameters and predictions (Buckley et al., 2010, Morris and Doak, 

2005), and that seed size (Hierro et al., 2013, Graebner et al., 2012, Buckley et al., 2003) and 

fecundity (Parker et al., 2013) have been observed to increase in the invaded range. We 

therefore chose to study our invasive and non-invasive species in the native range so not to 

conflate predictors of invasiveness with changes that might occur during invasion. We 

concluded that demographic parameters associated with invasiveness in the invaded range might 



 219 

be poor predictors of invasiveness, when the goal is to identify potential invasive species before 

they are introduced.  

Chapter 2 (Jelbert et al., 2015) lead to our observation of the seed mass – fecundity paradox in 

the ecology of invasive species, which we address in Chapter 3. We noted that a number of 

studies identified small seed mass to be a correlate of invasiveness (Hamilton et al., 2005, 

Grotkopp et al., 2002, Rejmánek and Richardson, 1996, Graebner et al., 2012), while some 

found no association (Schlaepfer et al., 2010, van Kleunen and Johnson, 2007, Dawson et al., 

2011, Mihulka et al., 2003) and others found that invasive species exhibited larger seed mass 

than their co-occurring native congeners (Daws et al., 2007); and non-invasive species (Lake 

and Leishman, 2004) in the introduced range. This we found intriguing because small seeded 

species are typically more fecund than larger seeded species (Turnbull et al., 1999, Rees and 

Westoby, 1997, Coomes and Grubb, 2003), and high fecundity has been consistently correlated 

with invasiveness (Jelbert et al., 2015, Burns et al., 2013, Burns, 2006, Mason et al., 2008, 

Moravcová et al., 2010). Theory would therefore predict small seed mass to be consistently 

correlated with invasiveness but it is not (Schlaepfer et al., 2010, van Kleunen and Johnson, 

2007, Dawson et al., 2011, Mihulka et al., 2003). We hypothesized that this was because 

invasive plant species are more fecund for a given seed mass than non-invasives, and using the 

same wild populations as Jelbert et al. (2015) (Chapter 2) we tested this hypothesis, which we 

found to be supported.  

In Chapters 2 and 3 we chose to compare invasive and non-invasive, sympatric congener pairs 

in order to account for the effect of phylogeny and environment. This was felt to be important 

because seed size and seed production are regulated by the structure of reproductive organs, 

which are in turn shaped by evolutionary history (Dani & Kodandaramaiah, 2017). In Chapter 4 

we show that invasive plant species exhibit greater potential for demographic amplification, 

which is correlated with per capita recruitment per lifestage (a proxy for fecundity), and that this 

relationship shows phylogenetic patterns. Furthermore, the environment contributes to variation 

in demographic parameters and predictions (Buckley et al., 2010, Morris and Doak, 2005). It 

was felt that failure to account for phylogenic relatedness and environment could conceal or 
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inflate any identified invasiveness trait(s) or syndrome. However, our sympatric, congener pair 

criteria restricted our sample size in Chapters 2 and 3 to only five pairs. An alternative approach 

would be to compare sympatric invasive and non-invasive un-related species and/ or to compare 

the invasive species’ with multiple non-invasive species. This approach would likely yield a 

greater sample size, which could be further increased by comparing unrelated species that do 

not occur sympatrically. A possible benefit of increasing the sample size in this manner is the 

potential to account for the effect of time since introduction and propagule pressure (previously 

identified correlates of invasiveness; Goodwin et al., (1999), Reichard and Hamilton (1997), 

Herron et al., (2007), Richardson and Pyšek, (2006)). The ‘perfect’ field experiment might 

compare a greater number of sympatric, congener pairs that are representative of the global 

diversity of plants, in both their native and invaded range so to account for the effect of 

phylogeny and environment, whilst also accounting for the effect of time since introduction, 

propagule pressure and study location. 

Chapter 2 (Jelbert et al., 2015), and previous work by Stott et al. (2010) and Stott et al. (2012) 

influenced the direction of our invasive versus non-invasive, comparative demographic meta-

analysis (Chapter 4). In Chapter 2 (Jelbert et al., 2015) we found that invasive plants are larger 

and more fecund than non-invasive plant species with which they sympatrically occur in the 

native range. Stott et al. (2010) observed that highly fecund species have a superior ability to 

amplify in response to exogenous disturbances, and in a comparative analysis of the transient 

population dynamics of 108 plant species (Stott et al., 2012) identified that populations 

projected to grow faster in the long-term exhibit larger magnitudes of amplification and 

attenuation than populations growing more slowly or declining. We speculated that the 

comparatively high fecundity of invasive species compared to non-invasive species signals their 

greater ability to amplify in the short-term in response to demographic disturbances, permitting 

both rapid colonisation and long-term population growth.  

In Chapter 4 we compare inertia (𝜌𝜌∞) (transient amplification and attenuation) and the stable 

rate of population increase (λmax) of invasive and non-invasive plants, whilst simultaneously 

controlling for phylogeny, range (native or naturalised) and global invasion status. We found 
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that invasive plant species exhibited greater potential for demographic amplification (𝜌̅𝜌∞) than 

non-invasive species irrespective of range and that this relationship shows phylogenetic 

patterns; we also show that amplification correlated positively with per capita recruitment per 

lifestage (a proxy for fecundity, which was not available for many species). This indicates that 

high rates of recruitment drive high amplification, and that amplification is a species-specific 

trait that influences recovery from demographic disturbance and which differs between invasive 

and non-invasive plant species. Irrespective of invasive status, the stable rates of population 

growth (λ) were greater in the naturalised range than in the native range, indicating that stable 

population growth rate is heavily influenced by exogenous conditions, and unlike reproductive 

ability, is not a useful predictor of potential invasiveness.  

Chapters 2 – 4 focused on comparing phenotypic and demographic traits of invasive and non-

invasive species, to reveal reproductive capacity to be a useful predictor of potential 

invasiveness. Yet, these Chapters did not provide an insight into how demographic processes 

might change following introduction to a new environment. Chapter 5 addressed this by 

comparing ten metrics of seven invasive plant species, in both the invaded and native range. We 

found that in contrast to conspecific populations in the native range, invasive plants in the 

invaded range exhibited greater capacity to amplify in response to disturbance, and crucially 

that the properties of invasiveness were revealed by demographic properties and not vital rates 

or selection potentials (elasticities). We attributed this to the appropriateness of the measure. 

Vital rates and elasticities assume a Stable Stage Structure (SSS) (Caswell, 2001), which is 

unlikely to be achieved by invasive populations because invasiveness is often a property of 

disturbed environments (Marvier et al., 2004). Transient measures of demographic properties do 

not assume a SSS and instead measure the impact of not being at SSS (Stott et al., 2011), an 

approach better suited for detecting demographic and life history differences amongst invasive 

populations that are unlikely to achieve SSS. Chapter 5 echoes the findings of Chapter 4 and 

concludes that demographic amplification is a promotor of invasiveness. We do not consider 

there to be a conflict between the findings of Chapters 4 and 5 because Chapter 4 compares 

demographic performance between species, whilst Chapter 5 compares range specific 
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performance within species, and whilst high amplification is a species-level trait that differs 

between invasive species and non-invasive species, it is intuitive that within a species enhanced 

ability to amplify in the invaded range would further facilitate invasion.  

Observations and Recommendations: Management of Invasive Plant Species and 

Future Research Opportunities 

The combined findings of this thesis (Chapters 2 – 5) strongly indicate that high, stage-

structured fecundity is the most significant contributor to the relationship between demographic 

amplification and invasiveness, and that phylogenetic signal in demographic amplification 

might be explained by seed size and seed production as regulated by the structure of 

reproductive organs, which are shaped by evolutionary history among plants (Chapter 4). This 

finding is intuitive because a plethora of traits have been previously correlated with 

invasiveness but individually these may explain little variance in invasiveness. Yet demographic 

performance encompasses the influence of multiple traits of which fertility is the outcome.  

Currently we are unable to predict from a trait to stage-specific demographic rate to 

demographic metric because fecundity, seed diapause and germination data remain unavailable 

for many species. Improved links between trait and demographic databases might permit such 

predictive power. We do however, propose that high fecundity be used as a predictor of plant 

invasiveness, and that species and genera with amplificatory life histories, should not be 

exported. To implement effective screening within existing invasive risk assessment protocols 

for the purpose of 1) preventing harmful species introductions; and 2) appropriate targeting of 

existing naturalised populations for eradication and control in accordance with target 9 of the 

IUCN 2020 Strategic Plan for Biodiversity https://www.iucn.org/theme/species/our-

work/influencing-policy/convention-biological-diversity-cbd/aichi-targets, strategic collection 

of demographic data representative of diverse genera and reproductive strategies is required. 

Furthermore, our findings indicate that demographic or life history differences are most likely to 

be revealed using analysis of transient indices which do not assume a SSS. Such analyses 

should be used to investigate the relationship between demographic properties and invasiveness. 

We recommend greater exploration of the relationship between seed size, seed production, 

https://www.iucn.org/theme/species/our-work/influencing-policy/convention-biological-diversity-cbd/aichi-targets
https://www.iucn.org/theme/species/our-work/influencing-policy/convention-biological-diversity-cbd/aichi-targets
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germination, seedling establishment and invasiveness. In relation to Chapters 2 and 3, we 

recommend that future work test if our results are true on a global scale, for a larger number of 

phylogenetically paired species that represent the full spectrum of life forms.  
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