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3D Reconstruction of “In-the-Wild” Faces in
Images and Videos
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akos, Stylianos Ploumpis, Yannis Panagakis, and Stefanos Zafeiriou

Abstract—3D Morphable Models (3DMMs) are powerful statistical models of 3D facial shape and texture, and are among the
state-of-the-art methods for reconstructing facial shape from single images. With the advent of new 3D sensors, many 3D facial
datasets have been collected containing both neutral as well as expressive faces. However, all datasets are captured under controlled
conditions. Thus, even though powerful 3D facial shape models can be learnt from such data, it is difficult to build statistical texture
models that are sufficient to reconstruct faces captured in unconstrained conditions (“in-the-wild”). In this paper, we propose the first
“in-the-wild” 3DMM by combining a statistical model of facial identity and expression shape with an “in-the-wild” texture model. We
show that such an approach allows for the development of a greatly simplified fitting procedure for images and videos, as there is no
need to optimise with regards to the illumination parameters. We have collected three new benchmarks that combine “in-the-wild”
images and video with ground truth 3D facial geometry, the first of their kind, and report extensive quantitative evaluations using them
that demonstrate our method is state-of-the-art.

Index Terms—3DMM, Morphable Model, RPCA, 3D reconstruction.
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1 INTRODUCTION

D URING the past few years, we have witnessed significant
improvements in various face analysis tasks such as face

detection [1], [2] and 2D facial landmark localisation on static im-
ages [3], [4], [5], [6], [7], [8], [9], [10]. This is primarily attributed
to the fact that the community has made a considerable effort to
collect and annotate facial images captured under unconstrained
conditions [11], [12], [13], [14], [15] (commonly referred to as
“in-the-wild”) and to develop discriminative methodologies that
can capitalise on the availability of such a large amount of data.
Nevertheless, discriminative techniques cannot be applied for 3D
facial shape reconstruction “in-the-wild”, due to lack of ground-
truth data.

3D facial shape reconstruction from a single image or a
video captured under “in-the-wild” conditions is still an open and
challenging problem in Computer Vision. This is mainly due to
the fact that the general problem of extracting the 3D facial shape
from a single image, or even a video sequence, is an ill-posed
problem which is notoriously difficult to solve without the use
of any statistical priors for the shape and texture of faces. That
is, without prior knowledge regarding the shape of the object at-
hand there are inherent ambiguities present in the problem. The
pixel intensity at a location in an image is the result of a complex
combination of the underlying shape of the object, the surface
albedo and reflectance characteristics, camera parameters and the
arrangement of scene lighting and other objects in the scene.
Hence, there are potentially infinite solutions to the problem.

Furthermore, learning statistical priors of 3D facial shape
and texture for “in-the-wild” images is challenging even with
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modern 3D acquisition devices, as, even though there has been
a considerable improvement in the performance of such scanners,
they still cannot operate in arbitrary conditions. As a result of these
restrictions, all current 3D facial databases have been captured in
controlled conditions.

With the available 3D facial data, it is feasible to learn a
powerful statistical model of the facial shape that generalises well
for both identity and expression [16], [17], [18]. However, it is
not possible to construct a statistical model of the facial texture
that generalises well for “in-the-wild” images and is, at the same
time, in correspondence with the statistical shape model. That
is the reason why current state-of-the-art 3D face reconstruction
methodologies rely solely on fitting a statistical 3D facial shape
prior on a sparse set of landmarks [19], [20].

In this paper, we make a number of contributions that enable
the use of 3DMMs for “in-the-wild” face reconstruction (Fig. 1):

• Motivated by the success of feature-based (e.g., HOG [21],
SIFT [22]) Active Appearance Models (AAMs) [8], [23],
we propose a methodology for learning a statistical texture
model from “in-the-wild” facial images, which is in full
correspondence with a statistical shape prior that exhibits
both identity and expression variations.

• By capitalising on the recent advancements in fitting
statistical deformable models [8], [24], [25], [26], we
propose a novel and fast algorithm for fitting our “in-
the-wild” 3DMMs on images and videos. We show that
the advantage of using the “in-the-wild” feature-based
texture model is that the fitting strategy can be significantly
simplified since there is no need to optimise with respect
to illumination parameters.

• We make the implementation of our algorithm publicly
available1 as part of the Menpo Project [27]. We strongly
believe that this can be of great benefit to the research

1. https://ibug.doc.ic.ac.uk/resources/itwmm
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Fig. 1. Results of our 3DMM image fitting method ITW(Basel) on “in-the-wild” images from the 300W dataset [15]. We note that our proposed
technique is able to handle extremely challenging pose, illumination, and expression variations, returning plausible 3D facial shapes in all the above
cases.

community, given the lack of robust open-source imple-
mentations for fitting 3DMMs.

• In order to provide quantitative evaluations we collect
three new benchmarks which couple images and videos of
faces with 3D ground truth shape information — KF-ITW,
4DMaja and 3dMDLab. For the benefit of the research
community, we make the benchmarks publicly available
too1.

• We present extensive quantitative and qualitative evalu-
ations of our proposed method against a wide range of
state-of-the-art alternatives, which demonstrates the clear
merits of our technique. [18].

The remainder of the paper is structured as follows. In Sec. 2
we briefly outline the background on face reconstruction from
monocular cameras. In Sec. 3 we elaborate on the construction
of our “in-the-wild” 3DMM, whilst in Sec. 4 we outline the pro-
posed optimisation for fitting “in-the-wild” images (Sec. 4.1) and
videos (Sec. 4.2) with our model. Sec. 5 describes our three new
benchmarks, the first of their kind, which provide “in-the-wild”
images and video sequences with ground-truth 3D facial shape.
We outline a series of quantitative and qualitative experiments in
Sec. 6, and end with conclusions in Sec. 7.

2 BACKGROUND

Accurate recovery of the true 3D structure of a scene captured
by an image or video is arguably one of the core problems in
computer vision. Although it is feasible to recover many properties
of a scene’s background, the geometry of the objects within the
scene is the most important task, since it enables the acquisition of
powerful and descriptive models from which to perform inference.
In particular, the 3D shape of the underlying objects is arguably
the strongest cue for common tasks such as object recognition and
localisation. However, the general problem of recovering the 3D
shape of an object from a single image, or even a set of images
with different viewpoints, is ill-conditioned. Even when provided

with multiple images, additional information about the scene or
details about the capturing conditions, 3D shape recovery is full
of ambiguities. Many strategies have been proposed for solving
this problem.

In contrast to the difficulty of the general case, recovery of
3D facial shape has been successful in scenarios with controlled
recording conditions. Human faces exhibit several characteristics
that are beneficial for performing shape recovery: (i) they have
approximately homogeneous configuration (all healthy human
faces have the same parts, such as eyes, nose and mouth, in the
same approximate locations), (ii) they have convex shape, and
(iii) they exhibit approximately Lambertian reflectance [28], [29],
[30], [31], [32], [33], [34], [35]. Nevertheless, the task is still very
challenging since faces are highly deformable; their appearance
changes dramatically depending on the illumination conditions
and can exhibit severe self-occlusions depending on the viewpoint.

In this paper, we are interested in the very challenging problem
of 3D face reconstruction from still images or videos captured
under unconstrained conditions, i.e. “in-the-wild”. Hence, we
herein review methodologies that do not require the use of any
specialised machinery (e.g., depth or stereo cameras).

Although the relevant literature is very extensive, most works
can be broadly categorized as follows:

Shape-from-Shading (SfS): These methods expect a single
image [36] (or a collection of images) as input and use image
formation assumptions (usually the Lambertian reflectance as-
sumption) to recover surface shape. There is considerable research
in SfS for generic surfaces, as well as faces [36], [37], [38],
[39], [40], [41], [42]. However, generic SfS techniques do not
produce very convincing results for faces [39], unless face shape
priors are introduced [36], [38] or SfS is jointly performed in a
large collection of facial images [41], [42]. The current state-of-
the-art techniques include methods such as [41], [42], which are
able to recover some facial details. However, they require dense
alignment to be performed (e.g., by using elaborate optical flow
techniques [42]) and they are only suitable for recovering 2.5D
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information and not full 3D shape.
3D Morphable Models (3DMM): The 3DMM fitting pro-

posed in the work of Blanz & Vetter [43], [44] was among the
first model-based 3D facial recovery approaches. The first 3DMM
was built using 200 faces captured in well-controlled conditions
displaying only the neutral expression. That is the reason why the
method was only shown to work on real-world, but not “in-the-
wild”, images. Since then, many extensions have been proposed to
the original method [45], [46], [47], [48]. Although model-based
SfS may also consider similarity to a facial model as a measure of
reconstruction accuracy, 3DMMs are unique in explicitly render-
ing images of faces for the purpose of 3D recovery. Until recently,
due to the lack of available texture models, 3DMMs were deemed
suitable only for images captured under controlled conditions.
Hence, many works considered only fitting a dense shape model
to a collection of sparse landmarks that were localised in the
image [19], [20]. In this paper, we make a significant step further
and demonstrate how to train the first “in-the-wild” 3DMM.

Structure-from-Motion (SfM): These methods employ geo-
metric constraints in order to recover 3D structure across multiple
images or frames of a sequence. Although the majority of research
in this area is not face specific, facial data is commonly used to
demonstrate the effectiveness of a method [49]. Nevertheless, the
lack of use of appropriate facial shape models makes the problem
of dense 3D face reconstruction very difficult to solve. This is
due to the fact that the dense SfM requires the solution of a very
high dimensional non-convex optimisation problem [49] which
assumes the presence of very accurate dense flow [50], restric-
tions that make such techniques applicable mainly in controlled
recording conditions [49]. Nevertheless, similarly to [51], sparse
SfM applied on a collection of tracked landmarks can be used
to provide an initialisation to our methodology when it comes to
reconstructing faces in videos.

3 MODEL TRAINING

A 3DMM consists of three parametric models: the shape, camera
and texture models.

3.1 Shape Modelling
Let us denote the 3D mesh (shape) of an object with N vertices
as a 3N × 1 vector

s =
[
xT

1 , . . . ,x
T
N

]T
= [x1, y1, z1, . . . , xN , yN , zN ]

T (1)

where xi = [xi, yi, zi]
T are the object-centered Cartesian coordi-

nates of the i-th vertex.
We first of all consider an identity shape model, i.e. a model

of shape variation across different individuals, assuming that all
shapes are under neutral expression. For this, we adopt the recently
released LSFM model [18], [52], the largest-scale 3D Morphable
Model (3DMM) of facial identity which was built from around
10,000 scans of different individuals.

A 3D shape model like the one in LSFM is constructed by first
bringing a set of 3D training meshes into dense correspondence
so that each is described with the same number of vertices and
all samples have a shared semantic ordering. The corresponded
meshes, {si}, are then brought into a shape space by applying
Generalised Procrustes Analysis and then Principal Component
Analysis (PCA) is performed which results in {s̄id,Uid,Σid},
where s̄id ∈ R3N is the mean shape vector, Uid ∈ R3N×np
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Fig. 2. Left: The mean and first four shape and SIFT texture principal
components of our “in-the-wild” SIFT texture model. Right: To aid in
interpretation we also show the equivalent RGB basis.

is the orthonormal basis after keeping the first np principal
components and Σid ∈ Rnp×np is a diagonal matrix with the
standard deviations of the corresponding principal components.
Let Ũid = UidΣid be the identity basis with basis vectors that
have absorbed the standard deviation of the corresponding mode
of variation so that the shape parameters p =

[
p1, . . . , pnp

]T
are normalised to have unit variance. Therefore, assuming normal
prior distributions, we have p ∼ N (0, Inp

), where In denotes
the n × n identity matrix. Also, a 3D shape instance of a novel
identity can be generated using this model as a function of the
parameters p:

Sid(p) = s̄id + Ũidp (2)

Visualisations of the identity model are included in the Supple-
mentary Material.

Furthermore, we also consider a 3D shape model of expression
variations, as offsets from a given identity shape Sid. For this
we use the blendshapes model of Facewarehouse [16]. We adopt
Nonrigid ICP [53] to accurately register this model with the
LSFM identity model. After this procedure, the expression model
can be represented with the triplet {s̄exp,Uexp,Σexp}, where
s̄exp ∈ R3N is the mean expression offset, Uexp ∈ R3N×nq is
the orthonormal expression basis having nq principal components
and Σexp ∈ Rnq×nq is the diagonal matrix with the corre-
sponding standard deviations. Similarly with the identity model,
we consider the basis Ũexp = UexpΣexp and the associated
normalised parameters q ∼ N (0, Inq

).
Combining the two aforementioned models, we end up with

the following combined model that represents the 3D facial
shape of any identity under any expression (please refer to the
Supplementary Material for a visualisation):

S(p,q) = s̄ + Ũidp + Ũexpq (3)

where s̄ = s̄id + s̄exp is the overall mean shape, p is the vector
with the identity parameters and q is the vector with the expression
parameters.

3.2 Camera Model

The purpose of the camera model is to map (project) the object-
centred Cartesian coordinates of a 3D mesh instance s into 2D
Cartesian coordinates on an image plane.

The projection of a 3D point x = [x, y, z]
T into its 2D

location in the image plane x′ = [x′, y′]
T involves two steps.
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First, the 3D point is rotated and translated using a linear view
transformation to bring it in the camera reference frame:

v = [vx, vy, vz]
T

= Rvx + tv (4)

where Rv ∈ R3×3 and tv = [tx, ty, tz]
T are the camera’s 3D

rotation and translation components, respectively. This is based on
the fact that, without loss of generality, we can assume that the
observed facial shape is still and that the relative change in 3D
pose between camera and object is only due to camera motion.

Then, a camera projection is applied as:

x′ = π(cintr,v) (5)

where cintr is a vector with the camera’s intrinsic parameters.
The above generic formulation can be applied to any camera

model. For example, in the case of a perspective camera with its
principal point fixed at the image centre, cintr = φ, where φ is the
focal length and the camera projection function is defined as:

π(v, φ) =
φ

vz

[
vx
vy

]
+

[
cx
cy

]
(6)

where [cx, cy]
T are the image coordinates of the image centre.

In the case of a scaled orthographic camera projection, cintr =
σ, where σ is the scale parameter of the camera and the camera
projection function is given by:

π(v, σ) = σ

[
vx
vy

]
(7)

Quaternions. We parametrise the 3D rotation with quater-
nions [54], [55]. The quaternion uses four parameters q =
[q0, q1, q2, q3]

T in order to express a 3D rotation as

Rv = 2

 1
2 − q

2
2 − q2

3 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3
1
2 − q

2
1 − q2

3 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1
1
2 − q

2
1 − q2

2

 (8)

Note that by enforcing a unit norm constraint on the quater-
nion vector, i.e. qTq = 1, the rotation matrix constraints of
orthogonality with unit determinant are withheld. Given the unit
norm property, the quaternion can be seen as a three-parameter
vector [q1, q2, q3]

T and a scalar q0 =
√

1− q2
1 − q2

2 − q2
3 . Most

existing works on 3DMM parametrise the rotation matrix Rv

using the three Euler angles that define the rotations around the
horizontal, vertical and camera axes. Even thought Euler angles
are more naturally interpretable, they have strong disadvantages
when employed within an optimisation procedure, most notably
the solution ambiguity and the gimbal lock effect.

Camera function. The projection operation performed by the
camera model of the 3DMM can be expressed with the function
P(s, c) : R3N → R2N , which applies the transformations of
Eqs. (4) and (6) on the points of provided 3D mesh s with

c = [cintr, q1, q2, q3, tx, ty, tz]
T (9)

being the vector of camera parameters with length nc = 7.
For abbreviation purposes, we represent the camera model of the
3DMM with the functionW : Rnp,nc → R2N as

W(p,q, c) ≡ P (S(p,q), c) (10)

where S(p,q) is a 3D mesh instance using Eq. (2).

3.3 Feature-Based Texture Model

A key component of our proposed 3DMM is the generation of
feature-based “in-the-wild” texture models which allow us to
avoid the estimation of illumination parameters in our fitting
method. To construct such models, it would not be effective to use
the texture from 3D facial scans, as usually done in the construc-
tion of 3DMMs [18], [43], [52], since the illumination conditions
are excessively controlled in such scans. On the contrary, our goal
is to model the texture of faces, as captured by images and videos
under completely uncontrolled conditions. Therefore, we utilise a
large collection of “in-the-wild” facial images, accompanied with
a sparse set of facial landmarks.

We assume that for the aforementioned set of M “in-the-
wild” images {Ii}M1 , we have access to the associated camera
and shape parameters {pi,qi, ci}. These parameters are initially
estimated by fitting the combined 3D shape model on the sparse
2D landmarks. Let us also define a dense feature extraction
function

F : RH×W×Ncolors → RH×W×C (11)

where H , W , Ncolors are the width, height and number of color
channels respectively of the input image and C is the number
of channels of the feature-based image. For each image, we first
compute its feature-based representation as Fi = F(Ii) and then
use Eq. (10) to sample it at each vertex location to build back
a vectorised texture sample ti = Fi (W(pi,qi, ci)) ∈ RCN .
This texture sample will be nonsensical for some regions mainly
due to self-occlusions present in the mesh projected in the image
spaceW(pi,qi, ci). To alleviate these issues, we cast a ray from
the camera to each vertex and test for self-intersections with the
triangulation of the mesh in order to learn a per-vertex occlusion
mask mi ∈ RN for the projected sample.

Let us create the matrix X = [t1, . . . , tM ] ∈ RCN×M by
concatenating the M grossly corrupted feature-based texture vec-
tors with missing entries that are represented by the masks mi. To
robustly build a texture model based on this incomplete data, we
need to recover a low-rank matrix L ∈ RCN×M representing the
clean facial texture and a sparse matrix E ∈ RCN×M accounting
for gross but sparse non-Gaussian noise such that X = L + E.
To simultaneously recover both L and E from incomplete and
grossly corrupted observations, the Principal Component Pursuit
with missing values problem [56] is solved

arg min
L,E

‖L‖∗ + λ‖E‖1

s.t. PΩ(X) = PΩ(L + E),
(12)

where ‖·‖∗ denotes the nuclear norm, ‖·‖1 is the matrix `1-
norm and λ > 0 is a regularizer. Ω represents the set of
locations corresponding to the observed entries of X (i.e.,
(i, j) ∈ Ω if mi = mj = 1). Then, PΩ(X) is defined as the
projection of the matrix X on the observed entries Ω, namely
PΩ(X)ij = xij if (i, j) ∈ Ω and PΩ(X)ij = 0 otherwise.
The unique solution of the convex optimization problem in
Eq. (12) is found by employing an Alternating Direction Method
of Multipliers-based algorithm [57].

The final texture model is created by applying PCA on L
(the set of reconstructed feature-based textures acquired from the
previous procedure). This results in {t̄,Ut}, where t̄ ∈ RCN is
the mean texture vector and Ut ∈ RCN×nt is the orthonormal
basis after keeping the first nt principal components. This model
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Fig. 3. Building an ITW texture model. The red coloured region denotes
the occlusion mask obtained by fitting the 3D shape model on the sparse
2D landmarks of the original image.

can be used to generate novel 3D feature-based texture instances
with the function T : Rnt → RCN as

T (λ) = t̄ + Utλ (13)

where λ = [λ1, . . . , λnt
]
T are the nt texture parameters.

Finally, an iterative procedure can be employed in order to
refine the texture. Starting with the 3D fits provided by using only
the 2D landmarks [58] a texture model can be learnt using the
above procedure. This texture model can then be used with the
proposed 3DMM fitting algorithm on the same data to refine the
quality of the 3D fits, allowing for the recovery of an improved
texture model. This could be repeated over multiple iterations, but
we have empirically found that a single refinement iteration is
often adequate. In the case of single-image fitting, this procedure
is done in a separate training phase, which needs to be performed
only once. In the case of video fitting, this can be done for every
input video.

4 MODEL FITTING

We now present a Gauss-Newton-style energy minimisation to
fit our “in-the-wild” 3DMM. First we consider the case of fitting
single images, then we proceed to consider fitting video sequences.
Please note that we make the source code of our model fitting
method publicly available.

4.1 Fitting on Single Images
4.1.1 Proposed Energy Formulation
To fit the 3DMM on single images, we propose to minimise the
following cost function:

E(p,q, c,λ) = Etext(p,q, c,λ) + c`Eland(p,q, c)

+ Epriors(p,q)
(14)

where Etext is a texture reconstruction term, Eland is a sparse 2D
landmarks term and Epriors is a shape priors term that regularises
the shape parameters. Also c` is the balancing weight of the
Eland term. The energy E depends on the shape (p,q), texture
λ and camera c parameters and these are the quantities that we
seek to estimate by minimising it. The terms Eland and Epriors

are optional and aim to facilitate the optimisation procedure in
order to converge faster and to a better minimum. Note that thanks
to the proposed “in-the-wild” feature-based texture model, the
cost function does not include any parametric illumination model
similar to the ones in the related literature [43], [44], which greatly
simplifies the optimisation. Next, we present every term of the
energy.

The texture reconstruction term (Etext) is the main data term
of the optimisation problem. It depends on shape, texture and
camera parameters and penalises the squared L2 norm of the dif-
ference between the image feature-based texture that corresponds
to the projected 2D locations of the 3D shape instance and the
texture instance of the 3DMM:

Etext(p,q, c,λ) = ‖F (W(p,q, c))− T (λ)‖2 (15)

where F = F(I) denotes the feature-based representation with
C channels of an input image I using Eq. (11). Note that
F (W(p,q, c)) ∈ RCN denotes the operation of sampling the
feature-based input image on the projected 2D locations of the 3D
shape instance acquired by the camera model (Eq. (10)).

The 2D landmarks term (Eland) is an auxiliary data term that
is based on sparse 2D landmarks:

Eland(p,q, c) = ‖Wl(p,q, c)− `‖2 (16)

where ` = [x1, y1, . . . , xL, yL]
T denotes a set of L sparse 2D

landmark points (L � N ) defined on the image coordinate
system andWl(p,q, c) returns the 2L×1 vector of 2D projected
locations of these L sparse landmarks. Intuitively, this term aims
to drive the optimisation procedure using the selected sparse
landmarks as anchors for which we have the optimal locations
`. In this way, the camera parameters can be rapidly adapted.

The shape priors term (Epriors) aims to avoid over-fitting
effects by penalizing reconstructed faces that are statistically
unlikely given the parametric shape model. It consists of two
optional prior terms over the identity and expression parameters,
p and q. Based on the normal distribution assumptions of both
p and q and the fact that these are normalised (see Sec. 3.1),
we formulate the prior terms as the squared L2 norms of the
parameters:

Epriors(p,q) = cid ‖p‖2 + cexp ‖q‖2 (17)

where cid and cexp are constants that weight the contribution of
the prior terms over identity and expression parameters respec-
tively.

4.1.2 Gauss-Newton Project-Out Optimisation
Inspired by the extensive literature in Lucas-Kanade 2D image
alignment [8], [24], [25], [26], [59], [60], we formulate a Gauss-
Newton optimization framework to efficiently minimize the en-
ergy of Eq. (14).

Parameters update. The shape and camera parameters are
updated in an additive manner, i.e.

p← p + ∆p, q← q + ∆q, c← c + ∆c (18)

where ∆p, ∆q and ∆c are their increments estimated at each
fitting iteration. Note that in the case of the quaternion used to
parameterize the 3D rotation matrix, the update is performed as
the multiplication

q←(∆q)q =

[
∆q0

∆q1:3

] [
q0

q1:3

]
=

=

[
∆q0q0 −∆qT

1:3q1:3

∆q0q1:3 + q0∆q1:3 + ∆q1:3 × q1:3

] (19)

However, we will still denote it as an addition for simplicity.
Finally, we found that it is beneficial to keep the focal length
constant in most cases, due to its ambiguity with tz .
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Linearisation. By introducing the additive incremental up-
dates on the shape and camera parameters, the cost function is
expressed as:

E(p + ∆p,q + ∆q, c + ∆c,λ) =

‖F (W(p + ∆p,q + ∆q, c + ∆c))− T (λ)‖2

+ c` ‖Wl(p + ∆p,q + ∆q, c + ∆c)− `‖2

+ cid ‖p + ∆p‖2 + cexp ‖q + ∆q‖2

(20)

Note that the texture reconstruction and landmarks constraint
terms of this cost function are non-linear due to the camera model
operation. We need to linearise them around (p,q, c) using first
order Taylor series expansion at (p + ∆p,q + ∆q, c + ∆c) =
(p,q, c)⇒ (∆p,∆q,∆c) = 0. The linearisation for the image
term gives:

F (W(p + ∆p,q + ∆q, c + ∆c)) ≈ F (W(p,q, c))

+ JF,p∆p + JF,q∆q + JF,c∆c
(21)

where:

JF,p =∇F ∂W
∂p

∣∣∣
p=p

,JF,q =∇F ∂W
∂q

∣∣∣
q=q

,JF,c =∇F ∂W
∂c

∣∣
c=c

are the image Jacobians with respect to the identity, expression
and camera parameters, respectively. Note that most dense feature-
extraction functions F(·) are non-differentiable, thus we simply
compute the gradient of the multi-channel feature image ∇F.

Similarly, the linearisation on the sparse landmarks projection
term gives:

Wl(p + ∆p,q + ∆q, c + ∆c) ≈
Wl(p,q, c) + JL,p∆p + JL,q∆q + JL,c∆c

(22)

where: JL,p = ∂Wl

∂p

∣∣∣
p=p

,JL,q = ∂Wl

∂q

∣∣∣
q=q

,JL,c = ∂Wl

∂c

∣∣∣
c=c

are the landmarks projection Jacobians. Please refer to the Sup-
plementary Material for more details on the computation of these
derivatives.

By substituting Eqs. (21) and (22) into Eq. (20) the cost
function is approximated as:

E(p + ∆p,q + ∆q, c + ∆c,λ) ≈
‖F (W(p,q, c))+JF,p∆p+JF,q∆q+JF,c∆c−T (λ)‖2

+ c` ‖Wl(p,q, c)+JL,p∆p+JL,q∆q+JL,c∆c−`‖2

+ cid ‖p + ∆p‖2 + cexp ‖q + ∆q‖2
(23)

Adopting the Project-Out optimisation approach, we optimise
on the orthogonal complement of the texture subspace which
eliminates the need to consider a texture parameters increment
at each iteration. In more detail, the minimisation of the energy
of Eq. (23) with respect to λ can be expressed analytically as a
function of the increments ∆p,∆q,∆c:

λ = Ut
T

(
F(W(p,q, c))+JF,p∆p

+JF,q∆q + JF,c∆c− t̄

) (24)

We plug this expression into Eq. (23) to eliminate the dependence
of the energy on λ and we get the following minimisation
problem:

arg min
∆p,∆q,∆c

‖F (W(p,q, c))+JF,p∆p+JF,q∆q+JF,c∆c−t̄‖2P
+ c` ‖Wl(p,q, c)+JL,p∆p+JL,q∆q+JL,c∆c−`‖2

+ cid ‖p + ∆p‖2 + cexp ‖q + ∆q‖2

(25)

where P = ICN −UtUt
T is the orthogonal complement of the

texture subspace that functions as the “project-out” operator. Note
that in this formulation λ plays no explicit role. Further note that
in order to derive Eq. (25), we use the properties PT = P and
PTP = P.

The problem of Eq. (25) is a linear least squares problem that
can be written in the general compact form:

arg min
∆b

‖J∆b− e‖2 (26)

where ∆b = [∆pT,∆qT,∆cT]
T

is a vector with all the un-
knowns (incremental updates) and J is the overall Jacobian of the
problem:

J=
[
Jp Jq Jc

]
=


PJF,p PJF,q PJF,c√
c` JL,p

√
c` JL,q

√
c` JL,c√

cid Inp
0np×nq

0np×nc

0nq×np

√
cexp Inq

0nq×nc


(27)

where 0m×n denotes the m×n zero matrix. Also, e is the overall
offset vector of the problem:

e =


P (t̄− F (W(p,q, c)))√
c` (`−Wl(p,q, c))
−√cid p
−√cexp q

 (28)

We compute ∆b by solving the linear system that is derived from
taking the gradient of the cost function in Eq. (26) and setting it to
zero: (JTJ)∆b = JTe. This system is of a relatively small scale,
therefore it is straightforward to implement its solution.

Note that the above-described Project-Out scheme is a very
efficient approach to solving the Gauss-Newton iterations for
minimising the cost function of Eq. (14). It has been shown
that this is much faster than the more widely-used Simultaneous
algorithm [23], [25], [61].

Residual masking. In practice, we apply a mask on the texture
reconstruction residual of the Gauss-Newton optimisation, in order
to speed-up the 3DMM fitting. This mask is constructed by first
acquiring the set of visible vertices using z-buffering and then
randomly selecting K of them. By keeping the number of vertices
small (K ≈ 5000 � N ), we manage to greatly speed-up the
fitting process without any accuracy penalty. This z-buffering
and random sampling is performed per-iteration, allowing for
changes in the self-occlusion state of vertices as the optimisation
progresses.

4.2 Fitting on Videos
In the case of videos, we extend our energy minimisation formu-
lation, described in the previous Sec. 4.1. Due to our separable
identity and expression shape model, we can fix the identity
parameters throughout the whole video, a significant constraint
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that greatly helps our estimations. In addition, we impose temporal
smoothness on the expression parameters, which improves the
estimation of the 3D facial deformations of the individual observed
in the input video. Furthermore, we can get a fast and accurate
initialisation for the minimisation of the proposed energy by
employing Structure from Motion on the per-frame sparse 2D
landmarks with an efficient linear least squares fitting approach.

4.2.1 Proposed Energy Formulation
Let us assume that the input video consists of nf images,
I1, . . . , If , . . . , Inf

. As in the single-image case, we are based
on the feature-based representation Ff = F(If ) of the
image of every frame f = 1, . . . , nf . Also, let `f =

[x1f , y1f , . . . , xLf , yLf ]
T be the 2D facial landmarks for the

f -th frame. We are still denoting by p the identity parameters
vector, which as already mentioned, is fixed over all frames of
the video. However, we consider that every frame has its own
expression, camera, and texture parameters vectors, which we
denote by qf , cf and λf respectively. We also denote by q̂, ĉ
and λ̂ the concatenation of the corresponding parameter vectors
over all frames: q̂T =

[
qT

1 , . . . ,q
T
nf

]
, ĉT =

[
cT1 , . . . , c

T
nf

]
and

λ̂
T

=
[
λT

1 , . . . ,λ
T
nf

]
.

To fit the 3DMM on a video, we propose to minimise the
following energy, which is a multi-frame extension of the energy
in Eq. (14):

Ê(p, q̂, ĉ, λ̂) = Êtext(p, q̂, ĉ, λ̂) + c`Êland(p, q̂, ĉ)

+ Êpriors(p, q̂) + csmÊsmooth(q̂)
(29)

where Êtext, Êland and Êpriors are the multi-frame extensions of the
texture reconstruction, 2D landmarks term and prior regularisation
terms respectively. Furthermore, Êsmooth is a temporal smoothness
term that we impose on the time-varying expression parameters
qf . Also c` and csm are the balancing weights for the terms Êland

and Êsmooth respectively. Next, we present every term of the energy
in more detail.

The texture reconstruction term (Êtext) is the main data term
and sums the texture reconstruction error from all frames:

Êtext(p, q̂, ĉ, λ̂) =

nf∑
f=1

‖Ff (W(p,qf , cf ))− T (λf )‖2 (30)

The 2D landmarks term (Êland) is a summation of the
reprojection error of the sparse 2D landmarks for all frames:

Êland(p, q̂, ĉ) =

nf∑
f=1

‖Wl(p,qf , cf )− `f‖2 (31)

The shape priors term (Êpriors) imposes priors on the recon-
structed 3D facial shape of every frame. Since the facial shape at
every frame is derived from the (zero-mean and unit-variance)
identity parameter vector p and the frame-specific expression
parameter vector qf (also zero-mean and unit-variance), we define
this term as:

Êpriors(p, q̂) = ĉid ‖p‖2 + cexp

nf∑
f=1

‖qf‖2

= ĉid ‖p‖2 + cexp ‖q̂‖2
(32)

where ĉid and cexp are the balancing weights for the prior terms
of identity and expression respectively.

The temporal smoothness term (Êsmooth) is video-specific
and enforces smoothness on the expression parameters vector
qf by penalising the squared norm of the discrimination of its
2nd temporal derivative. This corresponds to the regularisation
imposed in smoothing splines and leads to naturally smooth
trajectories over time. More specifically, this term is defined as:

Êsmooth(q̂) =

nf−1∑
f=2

‖qf−1 − 2qf + qf+1‖2 =
∥∥D2q̂

∥∥2
(33)

where the summation is done over all frames for which the
discretised 2nd derivative can be expressed without having to
assume any form of padding outside the temporal window of the
video. Also D2 : Rnqnf → Rnq(nf−2) is the linear operator that
instantiates the discretised 2nd derivative of the nq-dimensional
vector qf . This means that D2q̂ is a vector that stacks the
vectors (qf−1 − 2qf + qf+1), for f=2, . . . , nf − 1. It is worth
mentioning that we could have imposed temporal smoothness
on the parameters cf , λf too. However, we have empirically
observed that the temporal smoothness on qf , in conjunction with
fixing the identity parameters p over time, is adequate for accurate
and temporally smooth estimations.

4.2.2 Initialisation
The proposed energy Ê in Eq. (29) is highly non-convex, therefore
a good initialisation is of paramount importance. To achieve
highly-accurate fitting results on videos, even in especially chal-
lenging cases, we design a computationally efficient video initiali-
sation strategy, by decomposing the problem into two simpler ones
that can be solved quickly and accurately.

For the above reasons, we consider for this part a scaled
orthographic camera, which simplifies the optimisation by making
the projection function π(cintr,v) described in Eq. (6) to be linear
with respect to v. Also, we are based on a simplified version of the
proposed energy Ê in Eq. (29) that does not contain the texture
reconstruction term:

Êinit(p, q̂, ĉ) = c`Êland(p, q̂, ĉ)

+ Êpriors(p, q̂) + csmÊsmooth(q̂)
(34)

This means that the only data term is Êland and the estimations use
only the sparse 2D landmarks as input. Full details are provided
in the Supplementary Material.

4.2.3 Video-Specific Texture Model
Apart from offering a good starting point for the main optimisa-
tion, the initialisation described in the previous sections is first
of all used to bootstrap the learning of the video-specific texture
model, as described in Sec. 3.3. To improve the computational
efficiency of this procedure, we down-sample the frames and only
consider 1 every fstep frames. In more detail, using the estimated
shape and camera parameters of the considered frames, we sample
the facial texture tf = Ff (W(p,qf , cf )) and utilise it in the
Principal Component Pursuit (PCP) problem of Eq. (12).

4.2.4 Main Optimisation of the Proposed Energy
Similarly to the single-image case (Sec. 4.1.2), we minimise the
proposed energy Ê of Eq. (29) by following a Gauss-Newton
scheme. In every iteration, we consider the current estimates p, q̂,
ĉ and we linearise the texture reconstruction and landmarks error
functions around them. After this approximation, the problem
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becomes a linear least squares problem with respect to the texture
parameters λ̂ and the incremental updates ∆p, ∆q̂ and ∆ĉ. For
more details, please see Supplementary Material.

Regarding the unknown texture parameters, we follow again
the Project-Out approach. In more detail, the minimisation with
respect to each λf is decoupled in every frame and can be found
analytically as a function of ∆p, ∆q̂f and ∆ĉf , exactly as in
Eq. (24) (see Supplementary Material). Using this expression in
the expression of the linearised energy Ê , we derive the following
problem:

arg min
∆p,∆q̂,∆ĉ

Ê (p + ∆p, q̂ + ∆q̂, ĉ + ∆ĉ) (35)

The above problem is a large-scale linear least squares problem
that can be written in the form (see Supplementary Material for
detailed derivations):

arg min
∆b̂

‖Ĵ∆b̂− ê‖2 (36)

where ∆b̂ =
[
∆pT,∆q̂T,∆ĉT

]
is a vector with all the un-

known incremental updates from all the frames. Also, Ĵ is the
corresponding overall Jacobian matrix that has a sparse structure.
Finally, ê is the overall error term. Note that the dimensional-
ity of ∆b̂ (and hence the number of parameters to estimate)
is Ntot = np + nf (nq + 7) and the Jacobian Ĵ is of size
(nf (CN + 2L + nq + 1) − 2nq) × Ntot. Given the fact that
we consider hundreds of frames nf and tens of thousands of
vertices N , the least square problem (36) is a very large-scale
one. For example, for the choice of parameters considered in our
experiments, the Jacobian Ĵ is of size 425,884,944×35,100. This
is in contrast to the corresponding problem of the single-image
fitting case, where the problem was of small scale, so we could
solve it by standard approaches. Therefore, we follow a video-
specific strategy, in order to achieve a satisfactory scalability. In
more detail, we consider the equivalent linear system (derived
by equating the gradient to zero): ĴTĴx = ĴTb and adopt
an efficient and parallelisable method that avoids the explicit
computation and storage of the matrices Ĵ and (ĴTĴ), which
are very large-scale and sparse. More precisely, following other
recent methods of 3D facial and more general deformable surface
reconstruction [48], [62], we use a preconditioned conjugate
gradient (PCG) solver, for which we only need to efficiently
implement functions that compute the multiplications (ĴTĴ)x and
ĴTh for any input vectors x and h. For the preconditioning, we
use the inverses of the diagonal blocks of ĴTĴ.

5 BENCHMARKS FOR 3DMM IMAGE AND VIDEO
FITTING

To allow for the quantitative evaluation of our proposed 3DMM
image and video fitting methods, we have constructed three bench-
marks — KF-ITW, 3dMDLab and 4DMaja. For the benefit of the
research community, we are making these benchmarks publicly
available.

The error metric we use in all 3D shape recovery benchmarks
is as follows. All raw ground truth meshes are brought into
correspondence with a reference template by employing Nonrigid
ICP guided by manual annotations. We use a slightly modified
variant of the mean of the Basel Face Model [17] (BFM) as
a standard here (we just remove the inner-mouth and nostril
parts). Each model under test is also corresponded with this

BFM template using the same annotation-driven Nonrigid ICP
deformation. We now can densely relate a 3D fit from any model
with the ground truth mesh via the correspondence mappings, and
we use this to define a per-vertex error metric, specifically the
per-vertex Euclidean error between the recovered shape and the
model-specific corresponded ground-truth fit, normalized by the
inter-ocular distance for the test mesh (i.e. the distance between
the outer corners of the eyes). Only regions of the face that are
recovered by all methods under test are evaluated, so no model is
penalized for not having complete coverage. In practice for these
experiments, this corresponds to the inner region of the face (i.e.
inside the jawline). See Fig. 4 in the Supplementary Material for
an example of the region of evaluation.

5.1 KF-ITW Dataset
The first dataset we introduce is focused on providing quantitative
evaluation for 3DMM image fitting. KF-ITW is, to the best of
our knowledge, the first dataset where ground truth 3D facial
shape is provided along with images captured under relatively
unconstrained conditions.

The dataset consists of 17 different subjects captured under
various illumination conditions performing a range of expressions
(neutral, happy, surprise). We employed the KinectFusion [63],
[64] framework to acquire a 3D representation of the subjects with
a Kinect v1 sensor. In order to accurately reconstruct the entire
surface of the face, each subject was instructed to stay still in a
fixed pose whilst a circular motion scanning pattern was carried
out around the face. The fused mesh for each subject recovered
from KinectFusion serves as a 3D face ground-truth in which
we can evaluate our algorithm and compare it to other methods.
Single frames picked from the RGB video stream of the Kinect
sensor recording are selected as input images of our benchmark.
The frame rate for every subject was constant to 8 frames per
second, and a voxel grid of size 6083 was utilised to get the
detailed 3D scans of the faces. After getting the 3D scans from the
KinectFusion framework we manually annotate each mesh with
the iBUG 49 sparse landmark set, and correspond all meshes with
the BFM reference mesh as described at the start of this section.

Although a short video sequence is captured as part of the
acquisition process, we do not consider KF-ITW a suitable dataset
for video facial shape recovery evaluation, as this video is highly
contrived (the user is requested to hold still the entire time and the
video motion is very specific and unnatural). To this end we only
supply single frames from the acquisition process for image-fitting
evaluation.

We use the ground-truth manual annotations of sparse land-
marks provided in the KF-ITW dataset to initialize and fit each
technique under test to the “in-the-wild” style images in the
dataset.

5.2 3dMDLab Benchmark
To quantitatively evaluate additional aspects of 3DMM image
fitting, we are introducing a second benchmark, which we call
“3dMDLab”. In contrast to KF-ITW, this benchmark has been cre-
ated in controlled conditions using a high-resolution 3dMDTM

facial scanner. This results in highly-detailed ground truth facial
meshes and is therefore suited to evaluating 3D fitting methods on
constrained rather than “in-the-wild” data. In more detail, 3dMD-
Lab includes 4 subjects each performing 2 different expressions
for a total of eight 3D face scans. It includes 8 real images
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(a) (b) (c) (d)

Fig. 4. 3dMDLab benchmark: (a,b) Examples of 2 out of 8 images of
3dMDLab-real set. We introduce this benchmark to evaluate image fit-
ting methods under ideal conditions. (c,d) Examples of 2 out of 8 images
of 3dMDLab-synthetic set. We introduce this benchmark to evaluate
image fitting methods under synthetic strong illumination conditions.

Fig. 5. 4DMaja-synthetic benchmark video: 4 out of 440 frames of a
synthetic video created using high-resolution 4D face scans and ren-
dering using a synthetic camera under varying 3D pose. Since this is a
rendered video, it is accompanied by 4D ground truth mesh information.

(a) (b) (c) (d)

Fig. 6. 4DMaja-real benchmark video: (a-c) 3 out of 387 frames of a real
video under “in-the-wild” conditions. (d) Ground truth mesh representing
the shape identity component of the 3D facial shape of the captured
subject.

(“3dMDLab-real”) in ideal, laboratory conditions, coming directly
from one of the RGB cameras of the 3dMDTM face scanning
system, see e.g. Fig. 4(a,b). It also includes 8 synthetic images
(“3dMDLab-synthetic”) created by the same scans after rendering
them from different view points with varying synthetic light, see
e.g. Fig. 4(c,d). All real and synthetic images are high-resolution
(2048×2448 pixels) images with true colour range (24 bits per
pixel). See the Supplementary Material for further details.

5.3 4DMaja Benchmark

To quantitatively evaluate 3DMM video fitting, we are introducing
a third benchmark, which we call “4DMaja”. To the best of our
knowledge, this is the first publicly available benchmark that
allows detailed quantitative evaluation of 3D face reconstruction
on videos. 4DMaja includes two videos of the same subject
(Prof. Maja Pantic) exhibiting various natural expressions and
head pose variations. The first video (“4DMaja-real”) is a 440
frame synthetic sequence generated from high-resolution face
scans taken using a DI4DTM face scanner, with the (virtual)
camera undergoing a periodic rotation (Fig. 5). This allows for
a quantitative evaluation of the 3D face reconstruction for every
frame of the video.

The second video (“4DMaja-synthetic”) is a 387 frame clip
from a public talk the subject gave and hence is under “in-the-
wild” conditions. We associate with this video a high-resolution
neutral 3D scan of the subject which was taken with a DI4DTM

scanner within 2 months of the talk (Fig. 6). Given the small time
difference we can consider the 3D scan a ground truth of the

identity component of the 3D facial shape for the real video. In
this way we can quantitatively evaluate how well the 3D facial
identity is estimated when different methods are run over a real
“in-the-wild” video for the first time.

6 EXPERIMENTS

In this section we present in-depth qualitative and quantitative
evaluations of our proposed image and video fitting methods.
Apart from comparisons with classic and state-of-the-art methods,
we are presenting self-evaluations of our fitting framework by
comparing results obtained under different settings. We label our
“in-the-wild” image and video fitting methods as ITW and ITW-
V respectively. Further details, visualisations and experiments are
presented in the Supplementary Material.

We use two different variants of our adopted 3DMM model
of shape and texture variation, obtained by using either the
Basel Face Model (BFM) [17] or the LSFM model [18] as 3D
shape models for identity variation. This is denoted by the labels
“(Basel)” and “(LSFM)” after the names of our methods, for
example “ITW(Basel)” or “ITW-V(LSFM)”. Note that while LSFM
is a more accurate and powerful model, we are also adopting
BFM in the experiments for the sake of fairness towards the
methods that we compare with, which use BFM or other models
of much smaller scale than LSFM. We expand the adopted models
for identity variation by incorporating a model for expression
variation provided by [16], following the process described in
Sec. 3.1. We trained our “in-the-wild” texture model on the images
of iBUG, LFPW & AFW datasets [15] as described in Sec. 3.3
using the 3D shape fits provided by [65].

In the case of our image fitting method, the sparse 2D
landmarks that are required as part of the input are either manually
annotated (KF-ITW benchmark and input images of Fig. 7) or
recovered using the CNN-based landmarker of [66] (3dMDLab
benchmark). In the case of our video fitting method, the sequence
of sparse 2D landmarks is extracted by either using a state-of-the-
art facial tracker from [67] (300VW videos - Fig. 11) or applying
the CNN-based landmarker of [66] on every frame independently
(4DMaja benchmark).

In the subsequent experimental evaluation, comparisons are
performed with several existing methods for 3DMM fitting:
– “Classic”: this is an implementation of the classic 3DMM
fitting [44] with the original Basel laboratory texture model and
full lighting equation. In all conducted experiments, we fed this
method with the same sparse landmarks as our method.
– “Linear”: this is the linear shape model fitting proposed in [20],
[68]. For this method we use the Surrey Model with related
blendshapes along with the implementation given in [68]. The
methodology requires no texture model and fits to sparse land-
marks. In all conducted experiments, we fed this method with the
same sparse landmarks as our method. For the experiments on
3DMM fitting on videos, we applied this method on every frame
independently and resulted to a procedure that was similar to the
fitting performed by 4DFace2 code.
– “3DMMedges”: this is the 3DMM fitting method that was re-
cently proposed by Bas et al. [69]. This method is fully automatic
and uses landmarks and edge features. For this method, we used
the publicly available source code3, following the provided demo

2. http://www.4dface.org/
3. https://github.com/waps101/3DMM edges
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Input Ours (a) (b) (c) (d)

Fig. 7. 3D face reconstruction of challenging face images: qualitative
comparison of our method (ITW(LSFM)) with other methods: (a) MoFA,
(b) Jackson et al. 2017, (c) 3DMMedges (d) Classic.

function with its default parameters and without making any
modification.
– “Jackson et al. 2017”: this is a very recent method proposed
Jackson et al. [70]. It performs 3D face reconstruction from a
single image based on Convolutional Neural Networks [70]. It has
been reported to achieve promising performance in unconstrained
scenarios. To obtain results from this method, we have used the
online demo provided by the authors4, where we only had to
provide the input image.
– “MoFA”: this is another very recent method, which was proposed
by Tewari et al. [71]. It adopts a model-based deep convolutional
autoencoder to perform 3D face reconstruction from a single “in-
the-wild” image. Results of this method for a set of “in-the-wild”
images were provided to us by the authors of this method.

Please note that Classic and 3DMMedges are using a 3D face
model for identity variation, without incorporating any model for
expression variation. Therefore, they are not reconstructing 3D
shape deformations due to expressions and it is natural to yield
less accurate results on emotive faces. All other tested methods
are using a model of both identity and expression variation.

6.1 3DMM fitting on single images
We present both qualitative and quantitative results and compar-
isons of our proposed “in-the-wild” model on single images.

Fig. 1 demonstrates qualitative results of our image fitting
method on a wide range of fits of “in-the-wild” images drawn
from the Helen and 300W datasets [14], [15] that qualitatively
highlight the effectiveness of the proposed technique. To obtain
these results, the BFM model has been used as the identity
component of the shape model. We note that in a wide variety of
expression, identity, lighting and occlusion conditions our model
is able to robustly reconstruct a realistic 3D facial shape that stands
up to scrutiny.

Fig. 7 shows qualitative comparisons of our ITW method
(using LSFM shape identity model) with four existing tech-
niques (MoFA, Jackson et al. 2017, 3DMMedges and Classic)
on challenging images of faces exhibiting strong expressions.
Subjectively, we observe that the results of our method are the
most visually appealing. In contrast to all other tested methods,
our method yields 3D face reconstructions that recover both
the anatomical characteristics and the facial expressions of the

4. http://cvl-demos.cs.nott.ac.uk/vrn/
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Fig. 8. Accuracy results for facial shape estimation on the KF-ITW
database. The results are presented as CEDs of the normalized dense
vertex error. Table 1 reports additional measures.

Method AUC Failure Rate (%)
ITW 0.678 1.79
Linear 0.615 4.02
Classic 0.531 13.9

TABLE 1
Accuracy results for facial shape estimation on the KF-ITW database.
The table reports the Area Under the Curve (AUC) and Failure Rate of

the CEDs of Fig. 8.
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Fig. 9. Accuracy results for facial surface normal estimation on 100
subjects from the Photoface database [72]. The results are presented
as CEDs of mean angular error.

captured subjects in a plausible way. We believe such results are
unprecedented for such challenging conditions.

We also perform a quantitative evaluation on the KF-ITW
benchmark, comparing our ITW(Basel) method with Linear and
Classic techniques. Fig. 8 shows the Cumulative Error Distri-
bution (CED) for this experiment for the three methods under
comparison. Table 1 reports the corresponding Area Under the
Curve (AUC) and failure rates. The Classic model struggles to
fit to the “in-the-wild” conditions present in the test set, and
performs the worst. The texture-free Linear model does better,
but our ITW(Basel) model is most able to recover the facial
shapes possibly due to its ideal feature basis for the “in-the-wild”
conditions.

As a second quantitative evaluation, we employ images of 100
subjects from the Photoface database [72]. We use our ITW(Basel)
method to find per-pixel normals and compare against two well
established Shape-from-Shading (SfS) techniques: PS-NL [73]
and IMM [42]. As a set of four illumination conditions are
provided for each subject then we can generate ground-truth facial
surface normals using calibrated 4-source Photometric Stereo [74].
In Fig. 9 we show the CED in terms of the mean angular error.
ITW slightly outperforms IMM even though both IMM and PS-NL
use all four available images of each subject.

Apart from “in-the-wild” conditions like in the previous exper-
iments, we evaluate and compare our fitting method under ideal,
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Fig. 10. Facial shape estimation on 3dMDLab-real: quantitative compar-
ison of our image fitting method ITW(Basel) with other methods. The
results are presented as CEDs of the normalised dense vertex error.

laboratory conditions. For this, we use the 8 images of 3dMDLab-
real and compare our ITW(Basel) method with Linear, Classic,
3DMMedges and Jackson et al. 2017. Fig. 10 shows the CED for
this experiment. We observe that our method yields a significantly
better performance than the compared methods. This suggests that
even under more controlled conditions, our image fitting approach
is still advantageous over previous approaches.

6.2 3DMM fitting on videos

In addition to the 3D shape recovery of single images we are
also evaluating the available techniques on the task of 3D face
reconstruction in the two videos of 4DMaja benchmark as well as
in “in-the-wild” videos collected from the 300VW [75] dataset.

In our first experiment, we run ITW-V on 4DMaja-synthetic
video (which provides a ground truth mesh for each frame of the
sequence), and compare against “3DMMedges” [69], “Classic”
[43], [44] and “Linear” [20], [68]. For each examined technique,
we calculated an error at each frame of the sequence by computing
the average per-vertex error between the recovered mesh and
the corresponding ground truth. Fig. 12(a) shows that ITW-V
outperforms “3DMMedges”, which is the second best algorithm,
by a large margin. Fig. 12(b) further shows how the per-frame
error changes over time. Here, the significantly lower temporal
error variance of ITW-V vindicates our decision to regularise
identity and enforce smooth expressions over video sequences.

In the next evaluation scenario we run ITW-V on the “in-the-
wild” 4DMaja-real video (which, as a reminder, provides a single
ground truth neutral expression mesh). In this case the error is
based on comparing the mean recovered mesh for each method
across the whole sequence with the single ground truth. In Fig. 13
it can be seen that ITW-V recovers identity more effectively than
any other method.

The capability of ITW-V to reconstruct the 3D facial shape
in “in-the-wild” videos is further examined by applying it to
videos of the 300VW [75] dataset. For comparison, we both fit
our ITW model to each frame individually with no video-specific
cost (ITW per-frame) and show our full ITW video cost pipeline
(ITW-V). Fig. 11 shows the representative frames from fitting
the videos. We observe that in general both our ITW techniques
visually outperform the SfM, Classic and Linear techniques in
these challenging videos. We note that ITW-V, our video-specific
fitting technique, combines the stability of Structure from Motion
(SfM) with the detail from the ITW per-frame fitting. The Classic
technique’s explicit lighting model struggles to model “in-the-
wild” effects such as the microphone occlusion (first frame, first
video) leading to the algorithm diverging. We note further that

Method AUC Failure Rate (%)
ITW 0.632 4.30
RGB-MM 0.610 6.13
Classic 0.545 10.9

TABLE 2
Facial shape estimation on 3dMDLab-synthetic: comparison of ITW
(our fitting method), RGB-MM (a simplified version of our method

where we have replaced the ITW texture model with an RGB texture
model) and Classic 3DMM fitting [43], showing Area Under the Curve

(AUC) and Failure Rate of the CED for each method.

Method AUC Failure Rate (%)
ITW-V 0.793 2.33
ITW-V, init 0.770 2.46

TABLE 3
3D identity shape estimation on 4DMaja-real video: self-evaluation of

our fitting framework, comparing our video fitting method (ITW-V) with
the initialisation of our video fitting method from sparse landmarks as

described in Sec. 4.2.2 (ITW-V, init). Reported as Area Under the
Curve (AUC) and Failure Rate of the CED for each method.

ITW-V does not suffer from drift in the identity of the individual
(as ITW per-frame does, first video) or non-smooth expression
changes (see ITW per-frame, second video in Supplementary
Material). Finally, we also show in the bottom of this figure how
our technique behaves in “in-the-wild” videos when used with the
LSFM shape model. We have found this combination of ITW-
V with LSFM to be particularly effective, with LSFM providing
excellent robustness to variations in age, gender, and ethnicity.

A video showing 3D reconstructions from the different meth-
ods tested is available on this paper’s website5.

6.3 Self-Evaluation of the proposed method
To decouple the effect on performance of the texture model and
the optimisation strategy employed, we present a self-evaluation
of our fitting method, where we compare the following:
(i) a full version of our image fitting method (ITW), using the
shape variation from BFM [17],
(ii) a version of our image fitting method where we have replaced
the learned ITW texture model with the an RGB texture model
(laboratory conditions), as provided by BFM [17]. We call this
simplified version of our method “RGB-V”.
(iii) an implementation of the classic 3DMM fitting (‘Classic’)
[46], which uses the same texture and shape model as in (ii),
coming from BFM [17].
This comparison sheds light on the benefits of using an ITW
texture model and the proposed energy formulation independently.
Table 2 presents the quantitative results of the above three methods
on 3dMDLab-synthetic. We observe that method (ii) outperforms
method (iii), which suggests that the proposed energy formulation
is indeed beneficial as compared to the standard formulation
followed by the classic 3DMM fitting. In addition, we observe
that method (i) outperforms method (ii), which suggests that the
proposed ITW texture is indeed beneficial as compared to the
conventional RGB texture model. A second direction of self-
evaluation is to compare our proposed video fitting method ITW-
V(Basel) against our image fitting, when the latter is applied to
the frames of a video independently (ITW(Basel), per-frame). We
employed this experimental setting on the 4DMaja-synthetic and
calculated a mean error at each frame by averaging the differences

5. https://ibug.doc.ic.ac.uk/resources/itwmm
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Fig. 11. 3D face reconstruction of videos from 300VW dataset [75]. Top: Two sample frames extracted from “in-the-wild” videos along with the 3D
reconstructions performed using a variety of techniques. Bottom: A final qualitative comparison demonstrating how our proposed technique works
well with a range of shape models, including the diverse Large Scale Facial Model (LSFM).
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Fig. 12. 4D facial shape estimation on 4DMaja-synthetic video: comparison of our video fitting method (ITW-V) with other methods. The results are
presented in two ways: a) CEDs of the normalized dense vertex error, b) Plots of the mean normalized vertex error as a function of time (frame
index), where all plots share the same vertical axis.
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Fig. 13. 3D identity shape estimation on 4DMaja-real video. The results
are presented as CEDs of the normalized dense vertex error.

between the vertices of the resulting fits and the ground truth. As
presented in Fig. 14 our video fitting outperforms per-frame image
fitting by a large margin, validating the merits of our formulation.

Please refer to the Supplementary Material for additional
visualisations and self-evaluation experiments.

7 CONCLUSION

We have presented a novel formulation of 3DMMs re-imagined
for use in “in-the-wild” conditions. We capitalise on annotated “in-
the-wild” facial databases to propose a methodology for learning
an “in-the-wild” feature-based texture model suitable for 3DMM
fitting on images and videos without having to optimise for illu-
mination parameters. We show that we are able to recover shapes
with more detail than is possible using purely landmark-driven
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Fig. 14. 4D facial shape estimation on 4DMaja-synthetic video: self-
evaluation of our fitting framework. Comparison of our video fitting
method (ITW-V(Basel)) with our image fitting method applied per-frame
(ITW(Basel), per-frame), i.e. independently on every frame of the video.
The results are presented as CEDs of the per-frame mean (over all
vertices) normalized dense vertex error.

approaches. Our newly introduced “in-the-wild” benchmarks, KF-
ITW, 3dMDLab & 4DMaja, permit for the first time a quantitative
evaluation of 3D facial reconstruction techniques “in-the-wild” on
images and videos, and on these evaluations we demonstrate that
our “in-the-wild” formulation is state-of-the-art, outperforming
contemporary 3DMM approaches by a considerable margin.
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