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Abstract Brain inspired strategies stimulate many insightful means of in-
vestigating wireless sensor networks (WSNs). In this paper, we present a
sensor self-aware consensus filter for both estimating sensor states distribu-
tively and fusing data for target localization and tracking. Specifically, we
characterize the sensor world-awareness in terms of the propagation of suit-
able messages exchanged among neighbouring sensors. Based on the sensor
self-awareness, we develop a dynamic graphical model for implementing the
information weighted consensus filter (ICF) which locates and tracks a tar-
get. Furthermore, the sensor self-awareness is enhanced by a recursive max-
imum likelihood (RML) scheme, which robustly estimates unknown sensor
localization. The overall framework is a generalized distributed adaptive filter
with consensus and on-line maximisation. It highly mimics the information
exchange mechanism among brain cells for decision making. Simulation re-
sults show that the proposed self-aware algorithm is effective for solving the
simultaneous localization and tracking (SLAT) problems.

Keywords Information Weighted Consensus Filter · Self-awareness ·
Recursive Maximum Likelihood · Simultaneous Localization and Tracking

1 Introduction

As an emerging branch from the popular topic of simultaneous localization
and mapping (SLAM), simultaneous localization and tracking (SLAT) has
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gained great research interest recently [1]. It is typical to formulate an SLAT
problem using a state-augment architecture, where the positions of sensors
and targets are treated as one unknown state. One example is the SLAT
framework proposed in [2], which is based on Bayesian inference and assumes
the sensor positions are unknown and requires moment matching to obtain
such information. Similarly, cubature Kalman filters have been developed for
non-line-of-sight environments [3], which constructs augmented state vector by
concatenating a target state and a sensor location. Besides these centralized
methods, a distributed variational filter for SLAT has been proposed [4] to
take the messages with both belief propagation and bandwidth consumption
into consideration.

In order to exploit the advantages supported by state filtering and pa-
rameter estimation, researchers have proposed adaptive structures for solving
SLAT problems. One early attempt of such method is the decentralized data
fusion method with all-to-all sensor communications proposed in [5], which
studies a decentralized version of the recursive maximum likelihood assess-
ment for Hidden Markov Model and introduces a belief propagation message
passing algorithm to localize sensors simultaneously with target tracking. An-
other pioneer work is from [6], which proposes a likelihood consensus scheme
with inter-sensor measurements composed of nonparametric belief propaga-
tion. These methods, however, rely on specific communication network topolo-
gies and are not generally applicable to arbitrarily connected networks. Since
they are based on belief propagation in a Bayesian filtering framework, they
may have expensive computation costs [7]. Furthermore, these methods heav-
ily rely on distance measurements, which, however, are not always guaranteed
in practice due to the limited sensing range of individual sensors[8].

Inspired by how human brain cells interact among neighbouring cells for
decision making [9], we propose a distributed consensus algorithm in an adap-
tive manner to solve practical SLAT problems. The basic assumption is that
the sensors of a network are self-aware so that they can cooperate by ex-
changing messages among neighbours [10]. Specifically, a distributed adaptive
consensus estimator is designed for SLAT with maximum likelihood parameter
estimation [11]. Specifically, our framework inherits some desirable properties
from the information weighted filter(ICF) [12,13]. Since errors in the informa-
tion held by each sensor become highly correlated with each other during the
exchanges, we introduce an analytical expression of the predictive distribution
to estimate the sensor localization parameter. By employing a general likeli-
hood function, we are able to characterize the coupling states and parameters
for both the target and activated sensor, and then estimate the target state
and sensor parameters through adaptive filtering based on ICF and recursive
likelihood estimation. Comparing with the belief propagation message pass-
ing scheme, our framework has the advantages of low computation cost and
complexity because it reduces the unnecessary communication overheads and
the additional computation. Furthermore, it can have better performance for
localization. Simulation results confirm the advantages of this framework.
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The rest of this paper is organized as follows. Section 2 introduces the
problem under study; Section 3 proposes the distributed information consensus
filter with recursive maximum likelihood; Section 4 examines the proposed
framework by simulation and section 5 concludes the paper.

2 Problem Statement

Consider a sensor network (ν, ǫ) where ν denotes the set of N sensors within
the network and ǫ denotes the set of edges. Assume that for any pair of sen-
sors i, j ∈ ν, there is at least one path from i to j. We also assume that
communications between sensors are bidirectional. Each sensor maintains a
local coordinate system and regards itself as the origin of its coordinate sys-
tem using the model given by [14], which is introduced below in details.

2.1 Target Dynamic Model

We denote the state vector of a target as xt = [px,t, py,t, vx,t, vy,t]
T , where

the subscript t indicates the time step. Specifically, for a moving target on a
2-D plane, (px,t, py,t) denote the target position. (vx,t, vy,t) denote the target
velocities along x-axis and y-axis, respectively. We use a linear Gaussian model
for formulating the target state transition with respect to sensor i:

xi
t = Atx

i
t−1 + qit−1 (1)

where qit−1 is zero mean Gaussian additive noise with variance Qi
t−1, At is the

state transition matrix. This model has been working well in linear conditions,
while the general algorithm derived from the ideal linear model can be even
further extended to apply in complex nonlinear conditions.

2.2 Sensor Localization Parameter

Define θ
i,j
∗ to be the real position of sensor i in the local coordinate system of

sensor j, which means that the state xi
t relating to the local coordinate system

of sensor j can be expressed as follows,

xi
t = x

j
t + θi,j∗ (2)

The sensor localization parameters θi,j∗ remain unchanged since the sensors are
not mobile. We note the following straightforward but important relationship:
if sensors i and j are connected through intermediate sensors j1, j2, · · · , jn,
then

θi,j∗ = θi,j∗ + θj,j1∗ + θj1,j2∗ + · · ·+ θ
jn−1,jn
∗ + θjn,j∗ (3)

When the state comprises the position and velocity of the target, only the first
and second components of θi,j∗ are meaningful as the other two are redundant
with values to θ

i,j
∗ (3) = 0 and θ

i,j
∗ (4) = 0.
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Fig. 1 Structure of the Distributed Adaptive Consensus Filter.

2.3 Measurement Model

The measurement zit made by sensor i is also defined relatively to the local
coordinate system at sensor i. For a linear Gaussian observation model, a
measurement is generated as follows:

zit = Ci
tx

i
t + sit (4)

where sit is zero mean Gaussian distribution ℵ with variance Si
t . Note that

the time varying observation model{Ci
t , S

i
t} is different for each sensor. We

denote Zt = {z1t , z
2
t , · · · , z

N
t } for all the N sensors, and then its joint likelihood

function can be written as

gθ(Zt) =

N
∑

i=1

ℵ((zit − Ci
tx

i
t), S

i
t) (5)

3 Distributed Information Consensus Filter with Recursive

Maximum Likelihood

In this section, we present an adaptive distributed filter composed of two
stages for target tracking and sensor localization. The first stage is consensus
filtering that updates the target state with respect to each sensor. The second
stage is recursive parameter estimation that exploits an on-line optimization
method for refining the sensor localization. As an integrated framework, each
consensus filter is specific to a separate sensor subsystem and gets feedback
information from its parameter estimation. Such approach is learned from the
information exchange mechanism among brain cells for decision making, and
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the details can be found in [9,15]. We illustrate the diagram of the mechanism
in the context of consensus filter in Fig.1.

3.1 Information Weighted Consensus Filter

To derive the state estimate of both sensor and target using a fully decentral-
ized manner, an information weighted consensus filter is applied to obtain the
target state of each sensor. This procedure is referred to as consensus filtering
and forms the first stage of our framework.

As shown in Fig.1, a feedback scheme is highlighted in the proposed two-
stage framework. The first stage, i.e. consensus filtering, receives feedbacks
from the parameter estimation at the second stage that is presented in the
next subsection. Therefore, we assume that the sensor localization parame-
ter estimation θt = {θi,jt }(i,j)∈ε has been updated with recursive maximum

likelihood at time step t, where θ
i,j
t is known to sensor j only. In practice,

every sensor derives an individual state for the target, which is different from
the centralised style. All the states for the target is supposed to achieve a
consensus subject to certain optimization rules, similar to the exchange of in-
formation among brain cells. We assume that there is a reference sensor r,
which can broadcast and receive the target state estimation xr

t referring to

its local coordinate system and the sensor localization parameter {θr,kt }k∈ν .
The sensors are thus self-aware through broadcasting and receiving messages
among neighbors.

The collection of all measurements from all sensors can be expressed as



















z1 = C1(xr,1 + θr,1) + s1

z2 = C2(xr,2 + θr,2) + s2

...
zN = CN (xr,N + θr,N ) + sN

(6)

and further expressed in the form of matrices as

ζ = Cxr + ϑ+ s (7)

Where ζ = [(z1)T , (z2)T , · · · , (zN)T ]T ∈ Rl, l =
∑

i

li, and ζ includes all mea-

surements from the sensors within the network, and C = [
(

C1
)T

,
(

C2
)T

· · · ,
(

CN
)T

]T ∈

Rl×o is the stack of all the observation matrices. For the parameters of target
and sensors, xr = [(xr,1)T , (xr,2)T , · · · , (xr,1)T ]T and ϑ = [(θr,1)T , (θr,2)T , · · · , (θr,N )T ]T

denote the augmented state of target and sensor localization recognized by N

sensors. For the measurement noise vector, s = [(s1)T , (s2)T , · · · , (sN )T ]T , we
denote its covariance as S ∈ Rl×l and information matrix as B = S−1 ∈ Rl×l.
We assume the measurement noise to be uncorrelated across sensors. Thus,
the measurement covariance matrix is S = diag{S1, S2, · · · , SN} and B =
diag{B1, B2, · · · , BN}.
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In a distributed estimation framework, each sensor i possesses a prior es-
timate of the state vector that is denoted as xi

t|t−1 ∈ Ro. The objective of
the network is to use distributed computations across the network such that
the posterior state estimate at each sensor converges to the centralized esti-
mate. However, due to resource constraints, this convergence may not be fully
achieved at a given time. Therefore, if consensus was performed directly on
the priors, the estimate of sensor i can be modeled as follows

x
r,i

t|t−1 = xr
t + θ

r,i
t + qit (8)

PROPOSITION 1

Under the assumption that a randomly selected reference sensor r has in-

formation about the prior state estimate x
r,k

t|t−1, k ∈ ne(r)
⋃

r and information

matrix Jk
t|t−1, k ∈ ne(r)

⋃

r, where ne(r) denotes the neighbors of sensor r,

sensor r could compute a posteriori state and information matrix from x
r,k

t|t−1,

Jk
t|t−1, measurement zit, measurement information matrix Bi

t and measurement

model parameter Ci
t as follows

xr
t =

[

N
∑

k=1

(
Jk
t|t−1

N
+ CT

k BkCk)

]−1
N
∑

k=1

(
Jk
t|t−1

N
x
r,k

t|t−1 + CT
k Bk(z

k
t − Ckθ

r,k
t ))

(9)

Jr
t =

N
∑

k=1

(
Jk
t|t−1

N
+ CT

k BkCkx) (10)

PROOF

Denote the collection of all the state priors from all sensors as χt|t−1 =
[(x1

t|t−1)
T , (x2

t|t−1)
T , · · · , (xN

t|t−1)
T ]T ∈ RN×o, and the reference sensor’s prior

estimate as χr
t|t−1 = [(xr,1

t|t−1)
T , (xr,2

t|t−1)
T , · · · , (xr,N

t|t−1)
T ]T . The relationship be-

tween the state, the priors and the prior errors can be summarized as

χt|t−1=CIxt + ϑt + qt (11)

where xr is the true state of the targets referring to sensor r, qt = q1t , q
2
t , · · · , q

N
t ∈

RN×O is the error vector, and CI = [Io, Io, · · · , Io]
T ∈ Ro×o.

ϑt = [(θr,1t )T , (θr,2t )T , · · · , (θr,nt )T ].
We define the augment state C̃ = diag{C1, C2, · · · , CN}. Combining the

measurements with consensus on the priors yields

[

χt|t−1

ζt

]

=

[

CI

C̃

]

xr +

[

ϑ

C̃ϑ

]

+

[

q

s

]

(12)

[

χr
t|t−1

ζt − C̃ϑ

]

=

[

CI

C̃

]

xr +

[

q

s

]

(13)
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Denoting Z =

[

χr
t|t−1

ζt − C̃ϑ

]

, C =

[

CI

C̃

]

, and D =

[

q

s

]

, we have Z = Cxr +D,

where D ∼ N(0, D′). The noise term follows Gaussian distribution because
it is accumulated through one or more consensus iterations, which are linear
operations, performed on Gaussian random variables.

Let us denote the augmented state covariance matrix P where its informa-
tion matrix F = P−1 can be expressed as (o× o) blocks

F =













F
1,1
t|t−1 F

1,2
t|t−1 · · · F 1,N

t|t−1

F
2,1
t|t−1 F

2,2
t|t−1 · · · F 2,N

t|t−1

...
...

. . .
...

F
N,1
t|t−1 F

N,2
t|t−1 · · · FN,N

t|t−1













Let us define the information matrix of the prior of sensor i as

J i
t|t−1 = (P i,i

t|t−1)
−1

Here, J i
t|t−1 ∈ Ro×o, and usually J i

t|t−1 6= F
i,i

t|t−1. Assuming that the prior

state estimation errors are uncorrelated to noise in the new measurements, we
have the block diagonal covariance matrix D′ = diag{P,R} and its inverse
(D′)−1 = diag{F,B}.

The centralized maximum a posterior (MAP) estimation of the state xr
t

can be obtained as

xr
t = [CT (D′)−1C]T [CT (D′)−1Z]

= [CT
I FCI+CTBC][CIFχr

t|t−1 + CTB(ζt − C̃ϑ)]
(14)

Jr
t = CT

I FCI + CTBC (15)

Define

F i
t|t−1 =

N
∑

k=1

F
k,i

t|t−1,

and we have














CT
I FCI =

N
∑

k=1

F k
t|t−1

CIFχr
t|t−1 =

N
∑

k=1

F k
t|t−1x

r,k

t|t−1

(16)

In order to simplify the expression, we introduce the following two symbols
uk = CT

k BkCk and Uk = CT
k Bk(z

k
t −Ckθ

r,k
t ). By exploiting the block diagonal

structure of B, we can have the following neat expressions















CTBC =
N
∑

k=1

CT
k BkCk =

N
∑

k=1

uk

CTB(ζt − C̃φ) =
N
∑

k=1

CT
k Bk(z

k
t − Ckθ

r,k
t ) =

N
∑

k=1

Uk

(17)
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Applying the expressions above into (14) and (15), we get

xr
t =

[

N
∑

k=1

(F k
t|t−1 + Uk)

]−1
N
∑

k=1

(F k
t|t−1x

r,k

t|t−1 + uk) (18)

Jr
t =

N
∑

k=1

(F k
t|t−1 + Uk) (19)

This is the centralized solution that can be computed naturally in a dis-
tributed manner based on consensus[13]. In order to implement (17) and (18)
distributively, we can introduce w

r,i
t = F i

t|t−1 +U i and W
r,i
t = F i

t|t−1x
r,i
t + ui,

so that

xr
t =

(

N
∑

k=1

Wr,k
t

)−1
N
∑

k=1

w
r,k
t (20)

Jr
t =

N
∑

k=1

Wr,k
t (21)

when the prior errors are uncorrelated across two sensors, by using F i
t|t−1 =

J i
t|t−1 and average consensus, we can compute the centralized MAP estimate

and obtain (9) and (10). �

Summary of the Consensus Filter

Initialization:J i
t|t−1, x

i
t|t−1, Hi, θt

(1) Obtain measurements zit, Bi

ui
t =

(

Ci
t

)T
BiC

i
t (22)

U i
t =

(

Ci
t

)T
Bi(z

i
t − Ci

tθ
r,i
t ) (23)

(2) Broadcast the message mi→j = {U i
t , u

i
t, J

i
t|t−1, x

i
t|t−1}, receive the mes-

sagemj→i = {U j
t , u

j
t , J

j

t|t−1, x
j

t|t−1}. This step enables the sensor self-awareness

through broadcasting and receiving messages among neighbors.
(3) Prepare data

yit =
∑

j∈Ni

u
j
t (24)

Y i
t =

∑

j∈Ni

U
j
t (25)

x
r,i

t|t−1 = xi
t|t−1 − θ

r,i
t (26)

J
r,i

t|t−1 = J i
t|t−1 (27)
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(4) Compute consensus

w
r,i
t = 1

N
J
r,i

t|t−1x
r,i

t|t−1 + ui
t + ε

∑

j∈Ni

(

1
N
J
r,i

t|t−1x
r,i

t|t−1 + ui
t −
(

1
N
J
r,j

t|t−1x
r,j

t|t1 + ui
t

))

= 1
N
J
r,i

t|t−1x
r,i

t|t−1 + ui
t + ε 1

N

∑

j∈Ni

(

J
r,i

t|t−1x
r,i

t|t−1 − J
r,j

t|t−1x
r,j

t|t−1

)

+ ε
(

N ′ui
t − yit

)

(28)

W
r,i
t = 1

N
J
r,i

t|t−1 + U i
t + ε

∑

j∈Ni

(

1
N
J
r,i

t|t−1 + U i
t −

(

1
N
J
r,j

t|t−1 + U i
t

))

= 1
N
J
r,i

t|t−1 + U i
t + ε 1

N

∑

j∈Ni

(

J
r,i

t|t−1 − J
r,j

t|t−1

)

+ ε
(

N ′U i
t − Y i

t

)
(29)

(5) Compute a posterior state

x
r,i
t =

(

W
r,i
t

)−1

w
r,i
t (30)

J
r,i
t = NW

r,i
t (31)

xi
t = x

r,i
t + θ

r,i
t (32)

J i
t = J

r,i
t (33)

(6) Predict

xi
t+1|t = Axi

t (34)

J i
t+1|t = [A(J i

t )
−1AT +Q]−1 (35)

3.2 Recursive Maximum Likelihood Estimation for Sensor Self-awareness

Our aim is to solve SLAT recursively for sensor i using its sequence of obser-
vations. By using the analytic expression of predictive distribution, it is only
necessary to propagate the mean and covariance of these densities. Recursive
Maximum Likelihood estimation identifies the static parameter θi,k∗ by using a
stochastic gradient algorithm. At time t, the estimated parameter θi,kt is given
by

θ
i,k
t = θ

i,k
t−1 + γt∇ log(P (Zt|Z

t
1:t−1))

= θ
i,k
t−1 + γt∇ log(

∫

gθ(Zt|x
i
t)gθ(x

i
t|Z1:t−1)dx

i
t)

(36)

Consider a network with N sensors. At each sensor i, the target being
tracked obeys the dynamics specified by (2) and yields an observation given
by (4).Thanks to the linear and Gaussian assumptions, at time t, we have

git(x
i) = ℵ(xi

t, (J
i
t )

−1) (37)
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git+1|t(x
i) = ℵ(xi

t+1|t, (J
i
t+1|t)

−1) (38)

whose parameters can be computed using a distributed consensus Kalman
filter mentioned above, for Eq.(37), parameters associated with the normal
probability could be obtained from Eq.(32) to Eq.(33), and for Eq.(38), pa-
rameters could be obtained from Eq.(34) to Eq.(35).

We propose an iterative implementation of the RML estimation method
for computing all the coordinate transformations as follows

log piθ(Zt|Z
i
1:t−1)

= − 1
2

∑

j∈ν

(zjt − C
j
t θ

i,j
t )

T
B−1

j (zjt − C
j
t θ

i,j
t )

− 1
2 (x

i
t|t−1)

T J i
t|t−1x

i
t|t−1 +

1
2 (x

i
t)

TJ i
tx

i
t

(39)

where Zt denotes all the measurements at time t, Zt = {zit}i∈ν , and we also in-
troduce Z1:t to represent sequence (Z1, · · · , Zt). Calculating the differentiation
of this expression w.r.t. θi,k yields

∇ log pθ(Zt|Z1:t−1)

= −∇θi,k

(

xi
t|t−1

)T

J i
t|t−1x

i
t|t−1

+∇θi,k

(

xi
t

)T
J i
t|tx

i
t

+
∑

j∈ν′

∇θi,k

(

θ
i,j
t

)T(

C
j
t

)T

B−1
j

(

z
j
t − C

j
t θ

i,j
t

)

(40)

As shown in the above equation, the derivatives can be calculated using the
terms of the right-hand side as follows

∇θi,k

(

xi
t

)T
= ẋi

t = ẋ
r,i
t +∇θi,kθ

r,i
t = ẋ

r,i
t + Ip (41)

ẋ
r,i
t =

(

V
r,i
t

)−1

v̇
r,i
t (42)

ẇ
r,i
t =

1

N
J
r,i

t|t−1ẋ
r,i

t|t−1 + ε
1

N

∑

j∈Ni

(

J
r,i

t|t−1ẋ
r,i

t|t−1 − J
r,j

t|t−1ẋ
r,j

t|t−1

)

(43)

ẋ
r,j

t|t−1 = ẋi
t|t−1 −∇θi,kθ

r,i
t = ẋi

t|t−1 − Ip (44)

∇θi,k

(

xi
t|t−1

)T

= ẋi
t|t−1 = Aẋi

t−1 (45)

The last term of ∇ log pθ(Zt|Z1:t−1) can be computed as follows

∑

j∈ν′

∇θi,k

(

θ
i,j
t

)T(

C
j
t

)T

B−1
j

(

z
j
t − C

j
t θ

i,j
t

)

= U i
t + Y i

t (46)

∇ logPθ(zt|z1:t−1)

= −ẋi
t|t−1J

i
t|t−1x

i
t|t−1 + ẋ

r,i
t J i

t|tx
i
t + U i

t + Y i
t

(47)
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θ
i,k
t = θ

i,k
t−1 + γt[−ẋi

t|t−1J
i
t|t−1x

i
t|t−1 + ẋ

r,i
t J i

t|tx
i
t + U i

t + Y i
t ] (48)

The recursive maximum likelihood (RML) scheme provides a robust and
accurate estimate for unknown sensor locations[5]. It thus enhances the per-
formance of sensor self-awareness in the ICF. We summarize the proposed
ICF-RML SLAT algorithm in Algorithm 1.

Algorithm 1: Information Consensus Filter with Recursive Maximum
Likelihood for SLAT.
Input: Generate measurements according to (4), Initialize {Ji

t|t−1
, xi

t|t−1
, Hi, θt}

and messages {mi→j}

Output: xi
t, θ

i,j
t

for t = 1, 2, · · · , do
for i = 1, 2, · · · , do

while sensor is active do
Distributed filtering:

Broadcast message mi→j and receive message mj→i;
Prepare data according to (24) - (27);
Compute information weighted consensus following (28) and (29);
Compute a posterior state according to (32) and (33);
Get the prediction based on (34) and (35);
Parameters Update:

Each sensor i of the network will update its values according to (41) -
(47);
Update the parameters of sensor localization using (48).

return xi
t, θ

i,j
t

4 Simulation

In this section, we evaluate the performance of the proposed ICF-RML al-
gorithm using simulations, and compare it with the belief propagation filter
and recursive maximum likelihood approach [14], denoted as BPF-RML. We
simulate a wireless sensor network comprising a moving target and N = 11
sensors, which are uniformly deployed. Its topology follows a tree graph shown
in Fig.2, and remains unchanged in the experiments.

The first experiment evaluates the performance of the proposed method in
terms of localization accuracy. We choose sensors 3, 4, 6, 9 as root sensors and
update their adjacent edges at each iteration. For the sake of implementation,
we choose to use a constant step size γt = 3× 10−4. We also initialise θi,j = 0
for all (i, j) ∈ ǫ. In Fig. 3 and Fig. 4, the results demonstrate that the location
information θi,j can be obtained precisely.

Fig.3 and Fig.4 illustrate the sensor localization estimation by using the
distributed ICF-RML and BPF-RML algorithms, respectively. The parameter
that varies in the experiment is the iteration index k. It is easy to see that
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Fig. 2 Topology of a sensor network.
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Fig. 3 The convergence behaviors of ICF-RML

both of them require similar amount of time to converge, with the converg-
ing rate depending on the network and simulation parameters. The tracking
task is performed on an object that traverses the field of view of the sensors.
Information is shared between sensors in a way that allows self-localization.
In such conditions, the algorithms would need longer time and achieve more
accurate results.

In both Fig.5 and Fig.6, we plot the errors θ
i,j
t − θ

i,j
∗ against iteration.

The objective of this experiment is to compare the performance of these two
different estimation algorithms directly. For the distributed ICF-RML case and
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Fig. 4 The convergence behaviors of BPF-RML
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Fig. 5 Error at each iteration in ICF-RML case

distributed BPF-RML case, we can find that the errors converge to zero in ICF-
RML case, while there are residual errors in BPF-RML case. The performance
comparison with respect to RMSE in position is shown in Fig.5 and Fig.6, and
the simulation results suggest that the proposed ICF-RML performs better
than the BPF-RML. This is expected since the distributed estimation with
sufficient communication mechanism often achieves higher accuracy than that
of the sub-sufficient case. In addition, the performance of the ICF-RML is
comparable with that of the BPF-RML even if the latter assumes known prior
communication topology.
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Fig. 6 Error at each iteration in BPF-RML case

5 Conclusion

In this paper, we present a fully decentralized and sensor self-aware algorithm
based on adaptive filtering for estimating target states of sensor networks
expressed by dynamic models. We apply this approach to formulate the simul-
taneous localization and tracking problem and propose an effective solution,
summarized in the paper. For small-size sensor networks with Gaussian graphs,
our algorithm can be implemented through a distributed version of Kalman
filter and a consensus protocol. Comparing the existing method, our solution
has higher accuracy in estimation and lower complexity.
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