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Abstract

The Convolutional Neural Network (CNN) is a machine learning model which excels in tasks
that exhibit spatially local correlation of features, for example, image classification. However, as
a model, it is susceptible to the issues caused by local minima, largely due to the fully-connected
neural network which is typically used in the final layers for classification. This work investi-
gates the effect of replacing the fully-connected neural network with a Support Vector Machine
(SVM). It names the resulting model the Convolutional Support Vector Machine (CSVM) and
proposes two methods for training. The first method uses a linear SVM and it is described in the
primal. The second method can be used to learn a SVM with a non-linear kernel by casting the
optimisation as a Multiple Kernel Learning problem. Both methods learn the convolutional filter
weights in conjunction with the SVM parameters. The linear CSVM (L-CSVM) and kernelised
CSVM (K-CSVM) in this work each use a single convolutional filter, however, approaches are
described which may be used to extend the K-CSVM with multiple filters per layer and with
multiple convolutional layers. The L-CSVM and K-CSVM show promising results on the MNIST
and CIFAR-10 benchmark datasets.



Chapter 1

Introduction

1.1 Motivation

The Support Vector Machine (SVM) (Boser et al., 1992) is an influential machine learning model
which has been successfully applied to a broad range of learning tasks. It is an attractive model
to researchers due to the fact that it may be trained by optimising a convex error function.
Thus, training is guaranteed to find parameters which achieve a globally optimum solution and
the same solution will be found each time that the model is trained with the same data.

However, in recent times, the popularity of the SVM has declined in favour of deep learning
models. These are models which are characterised by the presence of many processing nodes
assembled into a stacked topology. Classification is a black-box procedure for deep learning
models as the abundance of nodes makes the internal workings difficult to comprehend. A
subclass of deep learning model which has had notable success in the image recognition domain
is the Convolutional Neural Network (CNN) (LeCun et al., 1989). The key to the CNN’s success
is the inclusion of sparsely connected layers named convolutional layers. These allow the model
to extract spatial information from its inputs which is unavailable to many other models. The
convolutional layers act as feature extractors before an input is passed to a neural network for
prediction. The CNN has achieved state-of-the-art results on many benchmark datasets, for
example, MNIST (LeCun et al., 1998a), ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al., 2015) and Caltech 256 (Griffin et al., 2007).

Despite its success, the CNN, along with many other forms of deep learning, faces difficulties
during training due to the irregularity of its error landscape. The large number of connection
weights which are involved make it particularly susceptible to the complications caused by local
minima. This work explores the idea of replacing the fully connected neural network, which a
CNN typically uses for prediction, with a SVM. Thus the convolutional layers may be considered
feature extractors before prediction using a SVM. The aim of this is to create a hybrid classifier
which is able to utilise the spatial information of its input values while retaining the convex
properties of SVM optimisation.
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1.2 Contributions

The principle contributions of this thesis are two algorithms, named the L-CSVM and K-CSVM
algorithms, for training the Convolutional SVM hybrid classifier.

The L-CSVM algorithm, described in Algorithm 4, is an iterative, two-step optimisation
which may be used to learn a linear SVM with a convolutional feature extractor. It first learns
the SVM primal weight vector by fixing the filter coefficients, then it learns the filter coefficients
by fixing the weight vector. These steps are repeated until convergence. The novel aspect of the
algorithm is the fact that it casts the filter update step as a SVM training problem. By doing
this, the filter may be learned using an arbitrary SVM training algorithm. Thus, both of the
training steps are convex with respect to the parameters.

The K-CSVM algorithm, presented in Algorithm 5, may be used to learn a kernelised SVM
with a convolutional feature extractor. It does this by formulating the optimisation problem as
a Multiple Kernel Learning (MKL) optimisation problem. The K-CSVM algorithm is based on
the GMKL algorithm, proposed in (Varma and Babu, 2009), but it has been adapted for filter
learning. To this authors knowledge, this is the first research in which convolution has been
integrated into a kernelised SVM.

1.3 Thesis Organisation

The thesis continues in chapter 2 by providing background to the image recognition domain.
The aim of the chapter is to establish notation and to provide the prerequisite information
required to understand the concepts proposed in chapters 3 and 4. Chapter 3 presents the
Linear Convolutional SVM. It provides details of previous research in this domain and then
proposes a training algorithm. The algorithm is tested and analysed using the MNIST dataset.
Chapter 4, titled Kernelised Convolutional SVMs, explores how a convolutional filter may be
used to augment a kernelised SVM. It presents an algorithm for training and tests the model on
the MNIST and CIFAR-10 datasets. The thesis is concluded in chapter 5.
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Chapter 2

Background

This chapter begins with a description of supervised learning in section 2.1; the description is
model agnostic, with the intention of establishing notation. Section 2.2 introduces the first model
for supervised learning: the Linear Perceptron. Section 2.3 shows how the Linear Perceptron may
be extended to learn a non-linear hyperplane by introducing the Multi-layer Perceptron. This is
further adapted in section 2.4 where it is explained how convolution may be used to specialise
the Multi-layer Perceptron for image recognition. Section 2.5 describes an alternative model for
supervised learning named the Support Vector Machine. It shows how the primal formulation
of a Support Vector Machine may be used to learn a linear hyperplane and then explains how a
kernel function may be employed in the dual in order to learn a non-linear hyperplane. Section
2.6 completes the background with a description of Multiple Kernel Learning.

2.1 Supervised Learning

The high-level aim of supervised learning is to obtain a function which can take a set of properties
and map them to a target output. The properties, named features, are collated into a vector,
x ∈ RM , and the target output, y, may be a real value or a class label. The tuple (x, y) forms an
instance of some learning problem. The mapping function, denoted f , requires a configuration,
θ, which determines the importance of items in x for approximating y. Thus f : (x,θ) 7→ y. It
is the job of a supervised learner to tune θ using data for which the mapping x 7→ y is already
known. This process is named training and it will be described in more detail as this chapter
progresses. Once training has been used to obtain a suitable θ, f may be used to make predictions
about data for which y is unknown. The estimation is denoted ŷ and it is not necessarily equal
to y. Thus:

ŷ = f(x,θ). (2.1)

As an example of supervised learning, consider a town containing N houses. Three properties
are known about each house: the floor space measured in square feet, the total number of floors
and the number of bathrooms. Thus each xn contains three elements where n ranges between 1
and N + 1. In this case, M = 3. The market value of some of the houses is known, but it is not
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known for all. This acts as the target value yn. In this scenario, the task of a supervised learner
may be to find a relationship between the properties of a house and its market value, so that the
houses without a known market value can be estimated.

To tune θ, a supervised learner examines a training dataset. This is a set where the true
target is known for each of the instances. The training dataset is denoted D and may be defined
as:

D = {(xn, yn)}Nn=1. (2.2)

Learning is achieved by finding a θ which minimises the overall difference between y and ŷ for
each of the instances in the training dataset. To measure the difference, a loss function `(y, ŷ)
is used. The choice of ` depends on the type of supervised learner in use; for example, neural
networks commonly use cross-entropy `(ŷ, y) = −[y log ŷ + (1 − y) log(1 − ŷ)] whereas support
vector machines use the hinge loss function `(ŷ, y) = max(0, 1 − ŷ · y). Loss functions will be
described in further detail as new models are introduced. At this point, all that is required is
the knowledge that ` exists and that it is a measure of the discrepancy between y and ŷ. The
loss function for each of the items in D may be summed into an error function E:

E(θ,D) =

N∑
n=1

`(yn, f(xn,θ)). (2.3)

The error function may alternatively be called the cost function by some literature. The optimum
configuration, denoted θ∗, is the θ which minimises E on the training dataset. It can be notated
as:

θ∗ = argmin
θ

E(θ,D). (2.4)

The technique to find θ∗ varies between models. For many it is an iterative process. Again, this
will be described in greater detail later as the chapter introduces different models. This section
was introduced with a statement that the high-level goal of a supervised learner is to find a
function which can take a set of inputs and map them to a target output. This statement may
now be made explicit. The goal of learning is to find a θ∗ which minimises E on the training
dataset.

Yet, optimising E against the training dataset does not guarantee that the learner will perform
well on unseen data. It is also important to tune the flexibility of the learner. A powerful learner
will not work for all problems. On the contrary, a powerful learner will often learn poorly on
straightforward learning tasks. In a phenomenon named overfitting, the learner may memorise
the training data rather than learn which features are useful in prediction. The learner can
become tightly coupled with the training data to the point that it learns unhelpful noise.

Overfitting can be tackled by reducing the flexibility of a supervised learner. The rationale
is that a less flexible learner will not have the capacity to overfit. One method for this is to
reduce the number of tunable parameters by reducing the number of items of θ, for example by
reducing the number of hidden nodes in a neural network. Another option is to reduce the size
of values within θ by using a regularisation term. Denoted Ereg(θ), a regularisation term is an
extension to the error function which takes into account the size of θ. Large θs are penalised
by artificially increasing the output of the error function. This has the effect of smoothing the
error landscape and therefore makes it easier for the classifier to learn a θ which can generalise
to unseen data. E(θ) may be reformulated to the following to include a regularisation term:

E(θ,D) = Edata(θ,D) + λEreg(θ) (2.5)
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where Edata(θ) is the previous formulation of the error function as defined in (2.3) and λ is a
free parameter to tune the influence of the regularisation term. An example regularisation term
is the weight decay term, also known as the L2

2 norm:

Ereg(θ) =

|θ|∑
i

θ2i . (2.6)

Weight decay regularisation is motivated by the idea that in many supervised learners the non-
linearities which enable overfitting only become significant when the features are large. Thus,
penalising the largest values helps to protect against overfitting.

To test how well a model generalises on unseen data, a second dataset, named the testing
dataset, is required. The testing dataset is much like the training dataset in that y is known for
each of its instances. The difference is that the testing dataset must not be used during training.
It is exclusively for checking the effectiveness of a θ found on the training dataset.

Supervised learning may be further broken down into two main sub-problems: regression and
classification. In regression problems the target value y is a real value, whereas for classification
problems it is a class name in the set T . At the start of this section, an example problem of
calculating the market value of houses in a town was introduced. This is an example of regression.
A classification task could be to decide on the type of house, for example, T may include attached,
semi-detached and detached. Until now descriptions of the target value have been kept generic
and formulas have worked for both regression and classification. The models developed in this
thesis will be used for classification so this will be the focus moving forward.

2.2 Linear Perceptrons

The linear perceptron algorithm was an early model for supervised learning. It was first described
by Rosenblatt (1957) and was developed in hardware. The linear perceptron aims to learn a linear
function for separating binary class data. This is data for which y falls into one of two classes.
The linear perceptron achieves classification by learning a hyperplane. Intuitively, this is a linear
function which aims to divide the training dataset into homogeneous sets, where a set is defined
as homogeneous when each of the instances within it have the same target class. This is not
possible in all cases.

Figure 2.1 shows an example training set which contains six feature vectors split into two
classes, positive and negative. Each instance in the set contains two properties, and the set
has been plotted as a scatter with each axis representing a property. The dashed line shows a
hyperplane which has succeeded in splitting the dataset. A hyperplane always has one dimension
fewer than the number of dimensions of the feature space. As the feature space in figure 2.1 is
two-dimensional, the hyperplane can be plotted as a one-dimensional line.

The hyperplane in a perceptron is determined by a vector of weights, w, and a bias b.
The weight vector controls the plane’s slope and the bias controls its distance from the origin.
Together, w and b form θ for the linear perceptron. Many implementations combine w and b
into a single vector by placing the bias in index 0 of the weight vector and assuming that the
value of x0 is 1 for each instance. Thus, w ∈ RM+1. This scheme will be assumed for the rest of
this section. Note that in this case, θ and w have the same meaning; however, θ is intended as
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Figure 2.1: An example dataset containing instances split into two target classes. Each axis
represents a feature. The dataset is homogeneously split by a linear hyperplane.
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Figure 2.2: A visual depiction of a linear perceptron.

an abstract notion whereas w is concrete. Depicted visually in figure 2.2, the decision function
of a linear perceptron can be defined as:

ŷ = f(x,θ) = σ(wᵀx). (2.7)

Hence σ is a function used to convert the output of wᵀx into a prediction. The linear perceptron
exists in numerous forms, many of which use a different σ. This thesis will look at the choice of
σ for perceptrons trained for logistic regression and for large margin perceptrons. Each of these
will become relevant further into this chapter.

Logistic regression is a form of linear perceptron which aims to learn a function which not
only classifies instances but can also estimate the probability that an instance falls within a class.
Logistic regression is a misleading name for the model as it is typically used for classification.
Assuming that the two possible classes have been labelled as +1 and −1, the output of the
perceptron is an estimate of the probability that an instance falls into the class defined as +1.
Thus ŷ = P (y = 1|x). If there is a high probability then ŷ will be close to 1, if it is unlikely

7



−6 −4 −2 0 2 4 6

0.5

1

Figure 2.3: The logistic function.

then it will be close to 0. To achieve this, a perceptron can use the logistic function for the link
function σ:

σ(a) =
1

1 + e−a
(2.8)

Figure 2.3 provides a visual depiction of the logistic function. To convert between this probability
and a target class, post-processing of ŷ is required. If ŷ passes a threshold, then it may be classified
as +1, else it is classified as −1. This threshold is often set at 0.5, though it does not have to be.

As explained in section 2.1, a supervised learner must undergo training before it can be used
for prediction. This involves optimising θ against the error function E, which in turn means
minimising a loss function for each of the instances in the training dataset. The loss function
used in logistic regression is log loss, also known as cross-entropy. It follows the form

`(ŷ, y) = −[y log ŷ + (1− y) log(1− ŷ)]. (2.9)

The log loss function is largest when the perceptron is confident in a prediction which is incorrect.
Even correct classifications incur some loss if they are not confident. If the correct class is
predicted with a probability of one then `(ŷ, y) = 0.

The full error function for the training set is the sum of the log loss for each of the instances
in D. An interesting property of this error function is that once minimised, the perceptron will
be optimised for estimating probabilities rather than for classification. A classifier trained for
logistic regression is willing to sacrifice its ability to classify correctly in order to improve its
ability to estimate probability. Because of this, the logistic function may be less well suited to
tasks which require only classification without needing an estimate of probability. Better suited
is a large margin perceptron. Instead of the logistic function, large margin perceptrons use the
identity function for σ:

ŷ = σ(a) = a. (2.10)

Unlike the logistic function, the identity function does not restrict ŷ to a value between 0 and 1.
Thus it is not possible to calculate probability using this form of the large margin perceptron.
As with the logistic function, post-processing of ŷ is required to obtain a classification. As ŷ is no

8



Algorithm 1 Gradient Descent
1: Inputs :D, η
2: Initialise :w
3: while not converged do
4: w := w − η ∂

∂ wE(w,D)
5: end while

longer restricted, it is common practice to classify instances with positive ŷ as +1 and instances
with negative ŷ as −1. Because the large margin perceptron does not predict a probability, the
log loss function should not be used to measure loss. Instead, the large margin perceptron uses
the hinge loss function:

`(ŷ, y) = max(0,−ŷ, y). (2.11)

Using hinge loss, correctly classified instances incur no loss, else loss is linear. An interesting
property of hinge loss is that once combined into E, it creates a convex function with respect to
θ. The significance of this will become apparent shortly.

Until now, little detail has been provided on the algorithm for minimising loss. It has been
assumed that this algorithm exists, but no explanation or implementation has been provided.
In reality, development of the minimisation algorithm is one of the main challenges faced when
developing a model. For the perceptron, a number of learning algorithms exist. Perhaps the
most commonly used of these is gradient descent. Gradient descent is an iterative algorithm
which aims to minimise E by taking repeated steps in the direction of the negative gradient with
respect to θ:

θ := θ − η ∂
∂ θ

E(θ,D), (2.12)

where η is a learning rate, used to control how aggressively the perceptron updates θ at each
iteration. In effect, gradient descent ‘walks’ down the slope of the error function until a stopping
criterion is met. At this point, it is said that the perceptron has converged. A common choice of
stopping criterion is to halt training when the gradient becomes close to zero. The full gradient
descent algorithm may be seen in algorithm 1.

Choosing η is an important step in the implementation of a perceptron. If the selected value
is too large then the perceptron may not converge and if it is too small then convergence will take
considerably longer than necessary. In general, it is better to pick η cautiously as, given enough
time, a classifier which has been trained with an excessively low η will converge to a solution
close to the solution obtained by a classifier trained with an optimum η. The same cannot be
said for a classifier which has been trained with an η which is too large.

Gradient descent is only guaranteed to find the optimum θ for convex functions. Non-convex
functions prove difficult due to the fact that there may be local minima. These are points of the
function which are the minimum of a local region of parameter space but are not necessarily the
minimum globally. Gradient descent will continue descending a local minimum until it converges,
though the solution will likely be non-optimal. As the hinge loss function is a convex, large margin
perceptrons are unaffected by local minima.

The version of gradient descent described above is named batch gradient descent because
the training dataset may be considered a batch of data. Alternatives to batch gradient descent
are stochastic and mini-batch gradient descent. In stochastic gradient descent, only a single
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instance is presented at a time, and the gradient calculated with respect to this instance only.
The instances are presented in a random order. Stochastic gradient descent makes many small
steps towards the minimum, rather than fewer large steps. It is more resistant to local minima
than batch gradient descent since the direction of the gradient is more variable. However, the
variability makes it more difficult to reach a gradient of zero in stochastic gradient descent. Mini-
batch gradient descent is a compromise in which a configured number of instances are used to
calculate the gradient per iteration. The configured number is named the batch size. The aim
is to select a batch size which allows the algorithm to escape shallow local minima, while also
being able to reach a gradient of near zero when a deeper local minimum is found. With a batch
size of N , mini-batch gradient descent is equivalent to batch gradient descent, and with a batch
size of one, it is equivalent to stochastic gradient descent. In practice, correctly tuned mini-batch
gradient descent will often outperform batch or stochastic gradient descent in training time and
accuracy. The batch size may be selected through cross-validation.

Gradient descent is not the only possible method of training a perceptron. Quasi-Newton
methods are a class of optimisation methods which pursue the stationary point where gradient
equals zero. They assume that the current gradient is the side of a quadratic bowl and use
second order information to jump straight to the point which achieves the minimum of the bowl.
This is usually an incorrect assumption, but in practice, the method often allows a classifier to
take larger steps towards the minimum than in gradient descent. Quasi-Newton methods are
particularly advantageous for optimising error landscapes with long valleys in which gradient
descent performs poorly. BFGS (Fletcher, 1987) is one such implementation of a Quasi-Newton
method. It is iterative by nature and uses an approximation of the inverse Hessian to reduce
training time. Like gradient descent, Quasi-Newton methods are susceptible to traversing local
minima.

2.3 Multi-layer Perceptrons

Figure 2.1 in the previous section introduces an example dataset, and shows how a hyperplane
can be used to homogeneously separate the instance space. However, this example is simplistic
and does not reflect real-life datasets. For most real datasets, it is impossible to separate all of
the datapoints into homogeneous sections using a linear hyperplane. For example, consider the
dataset in figure 2.4. There is no way that the points can be separated using a one-dimensional
line. The dataset is not linearly-separable.

Due to its simplistic design, the linear perceptron may only ever model a linear decision
boundary. While this is acceptable for some datasets, many require a more complex function.
Resultantly, the perceptron often performs poorly compared to more flexible learners. Fortu-
nately, an adjustment may be made to the linear perceptron which allows it to model non-linear
data. This requires additional terminology. Figure 2.2 in the previous section depicts a linear
perceptron visually and within this depiction is a processing unit which calculates the output of
σ. This processing unit may be called a node.

To model a non-linear decision boundary, the perceptron may introduce additional nodes.
These nodes must be stacked so that the output of at least two nodes are used as the input of
another node. Moreover, the function used as σ for the additional nodes cannot be linear. The
multilayer perceptron (MLP) (Werbos, 1982) is a model which requires that these additional
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Figure 2.4: An example training dataset containing two classes which cannot be split homoge-
neously using a linear hyperplane.
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Figure 2.5: A multilayer perceptron with a single output node.

nodes are arranged into layers such that at least one layer of nodes exists between the input
feature vector, and an output node used to calculate a final ŷ. This additional layer is named
the hidden layer and the feature vector is named the input layer. Figure 2.5 shows a MLP with
a single hidden layer. A MLP may have any number of hidden layers, however, for reasons
which will be explained as the section progresses, there is rarely a benefit to having more than
two. There is no restriction on the number of output nodes in a MLP, for example, a common
scheme used for classification in multiclass problems is one-hot encoding. In one-hot encoding,
an output node is added for each of the target classes in T . Each node represents a class, and
after running the decision function, the output node with the highest score is the class which
is chosen as the classification. A common implementation of MLP is the fully-connected MLP.
This is an implementation which requires that each of the nodes within each layer, including
the input layer, are connected to each of the nodes in the subsequent layer. This is depicted in
figure 2.6. From this point forward, discussions will assume that a MLP is fully connected unless
stated otherwise.

Like with the linear perceptron, feature vectors in a MLP are connected to nodes in the
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Figure 2.6: A visualisation of a MLP to display notation.

following layer by a set of weights, however, the number of connections is substantially greater.
Describing the decision function of a MLP requires further notation. First, a label (n) is required
to describe which layer of the network is in discussion. The input layer is described as layer (0)
and the total number of layers will be notated as L. The number of nodes within layer (n)
will be notated N (n). Also required is a notation for describing the output of σ, known as the
activation, for a node. For this, a will be used. The MLP requires L− 1 weight arrays such that
w(n) contains the weights between each of the nodes in layer (n) and layer (n+ 1). Each array
must now be a two-dimensional matrix rather than a vector and the weight between two nodes,
i and j, will be given by w(n)

ij . Putting this together, the activation of a node j in layer (n) is
given by:

a
(n)
j = σ

N(n−1)∑
i=0

w
(n−1)
ij a

(n−1)
i

 . (2.13)

It is assumed that the bias is stored in connection w0j and that and that the activation a(n−1)0 =
1. The score ŷ is found by recursively calculating activations, starting from nodes in the input
layer and finishing at the output layer. Since the output layer may contain multiple nodes, y
and ŷ may be vectors. The function σ may be any differentiable function, with an additional
restriction for nodes in the hidden layer, that the function must be non-linear. Therefore the
logistic function is an acceptable choice for hidden nodes, however, the identity function does
not meet the criteria for hidden layers. A common σ used by MLPs is the hyperbolic tangent:

σ(a) = tanh(a). (2.14)

When plotted, the hyperbolic tangent has a similar shape to the logistic function, however the
function ranges between values of 1 and -1 rather than 0 and 1. In many cases, the symmetry
around the origin helps with the speed of convergence, as explained in (LeCun et al., 1998b).
The derivative of the hyperbolic tangent may be calculated as ∂

∂ a tanh(a) = 1− tanh(a)2. The
hyperbolic tangent cannot be used in the output layer if a probability estimation is required,
however, there is no restriction for σ to be the same function in each layer. It is common to see
the hyperbolic tangent used in the hidden layers, and the logistic function used in the output
layer in order to estimate probabilities.

The loss function in a MLP depends directly on the output of nodes in the final layer, although
this will depend on nodes in the hidden layers. As previously stated, the output layer may contain
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multiple nodes, and so y and ŷ are vectors rather than single values. The loss function must be
updated accordingly. Although more complex schemes exist, a simple yet effective technique is
to sum the loss of each of the nodes in the output layer. For example, the MLP variant of log
loss for classification may be defined:

`(ŷ, y) =

N(L)∑
j

(yj log ŷj + (1− yj) log(1− ŷj)). (2.15)

A MLP may be trained using a form of gradient descent named backpropagation. As with
the decision algorithm, this is a recursive algorithm which updates layers one at a time. It
requires that the gradient of E is calculated with respect to each of the layers in the MLP using
the chain rule. Details of how this is achieved may be found in (Werbos, 1974). Once the
gradient has been calculated with respect to each of the layers, the standard gradient descent
algorithm defined in 2.12 may be used to update the weight vector within each layer. As with
gradient descent, backpropagation may take many iterations before convergence. Methods like
momentum (Polyak, 1964) and adaptive learning rates (Schaul et al., 2013) aim to reduce the
required number of iterations.

As previously described, adding a hidden layer of nodes allows a MLP to model non-linear
decision functions. In fact, it was proved in (Cybenko, 1989) that it is possible to approximate any
decision region to arbitrary accuracy using a single hidden layer and any continuous sigmoidal σ.
This makes the MLP a flexible model for learning complex functions. However, as a result of this,
the MLP is susceptible to overfitting. Section 2.1 described two methods to avoid overfitting.
The first of these was to reduce the number of tunable parameters in θ and the second was to add
regularisation to the model. Both of these techniques are applicable to the MLP. In the context
of a MLP, θ can be thought of as the combination of each of the weight vectors. The number of
required weights depends on the number of connections between nodes. The more connections,
the more flexible a MLP is, and the more likely it is to overfit. The number of connections is
controlled by the number of nodes, and by the complexity of the arrangement of these nodes.
In particular, the number of hidden layers has a profound effect on the complexity. Adding an
extra layer of nodes will usually increase the number of connections by an amount greater than
would occur if the same number of nodes were added to an existing layer. Choosing the layout
of a MLP, also called the topology, is arguably the main challenge in successful implementation.
The optimum layout is different between problems and depends on the intrinsic complexity of
the dataset. Cross-validation can be used to select the number of nodes and layers.

The second technique to avoid overfitting is to add a regularisation term. This is an artificial
adjustment to the error function which aims to reduce the size of items within θ. For MLPs, this
is often achieved by using weight decay regularisation. As touched upon in section 2.1, weight
decay regularisation follows the form:

Ereg(θ) =
∑
i=1

θ2i . (2.16)

The value of this term, multiplied by a weighting, is added to the total of the error function so
that learning will tend towards weight vectors with low values. This helps to guard a MLP from
overfitting because the non-linearities which cause overfitting are more significant when features
are large.
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Figure 2.7: A neural network for which the first layer is sparsely connected. The hidden layers
remain fully connected.

2.4 Convolutional Neural Networks

The MLP is part of a wider class of model named the Neural Network. Like the MLP, all Neural
Networks consists of nodes which are connected by weights, however, there is no restriction for
layers to be fully connected. The Convolutional Neural Network (CNN) (LeCun et al., 1989)
(LeCun et al., 2015) is a type of Neural Network which specialises in tasks that exhibit local
correlation of features, for example, image recognition.

These are tasks for which features within close spatial proximity to one another can form
recognisable value patterns. In such tasks, more information may be gained by using the value
of a feature relative to its neighbours than can be gained from its value alone. The CNN utilises
this additional information with the addition of sparsely connected layers, named convolutional
layers, where a layer is considered sparse if it has nodes which are only connected to a local subset
of nodes in the following layer. In addition, connections within a convolutional layer are reused
at multiple points along the input. To achieve this, the convolutional weights, known collectively
as the filter and denoted by f , ‘slide’ along the input, considering only a subset of features at
any one time. The number of features which the filter slides over is known as the stride. CNNs
still make use of a fully connected network for classification, however, the convolutional layers
stand between the input and the fully connected network, as shown in figure 2.7. For a CNN
with a single convolutional layer that is the first layer in the network, and for which the stride
is one, the number of nodes in the first fully connected layer must equal |x| − |f | + 1. For this
network, the input, u, to a particular node, i, in the first fully connected layer is given by:

u
(1)
i =

|f |∑
j=0

xi+jfj . (2.17)

When performed at each possible index, this operation is named convolution and is denoted by
the ∗ operator. The output of convolution is called the feature map and is symbolised as u:

x ∗ f = u. (2.18)
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Figure 2.8: An example convolution of an image with an edge detecting kernel. Left shows the
original image and right shows the feature map after convolution with a filter containing the
values:

[−1 −1 −1
−1 8 −1
−1 −1 −1

]
.

CNNs have been shown to be especially effective at image classification tasks, with state-
of-the-art results in many benchmark datasets, for example, MNIST (LeCun et al., 1998a),
ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) and Caltech 256
(Griffin et al., 2007). In these datasets, the input features are the pixel values of each image.
Instead of storing features in a vector, they are stored in a tensor which has a rank of two or
three, with the third dimension containing colour values if they exist. The filter is usually two-
dimensional and during convolution it advances horizontally and vertically. Typically, a different
filter is trained for each of the colour channels. The aim of convolution is to extract the defining
features of an image, for example, a particular texture or the edges of an object. The movement
of the filter allows a CNN to find such features anywhere within an image. It improves the
shift invariance of the model which allows it to generalise more effectively to unseen data. As
a positive byproduct of sharing filter coefficients, the number of connections in a CNN is low
when compared to fully connected networks of an equivalent size. Figure 2.8 shows an example
of convolution on a real image.

The description given so far has used a single filter in the convolutional layer, however, many
real-world implementations, including the three given above, use multiple stacked filters per layer.
Each filter can be trained to highlight a different defining feature. When an input is passed to
the convolutional layer, each of the filters is convolved with the input. If the layer contains k
filters, then the output will contain k feature maps. As well as having multiple filters per layer, a
network may have multiple convolutional layers. In this case, each of the filters in convolutional
layer l(n) are applied to each of the feature maps which were created by layer l(n−1). Given a
network with two convolutional layers which are the first two layers of the network, the total
number of feature maps after the second layer of convolution is given by k(0) × k(1). Assuming
that each of the filters within l(n) is of equal cardinality and that this cardinality is denoted
|f (n)|, the total number of tunable filter weights is given by k(0) × |f (0)|+ k(0) × k(1) × |f (1)|.

As the number of filters per layer increases, the total size of a network can quickly become
unmanageable. For this reason, many networks include subsampling layers. These are layers
which forcibly reduce the size of feature maps by tactically removing non-essential information.
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A common method to achieve this is max-pooling. Max-pooling divides a feature map into
partitions and then carries forward only the greatest value from each partition into the proceeding
layer. The partitions are named pooling windows and for image recognition tasks, each pooling
window has a width and a height. Ordinarily, the widths and heights are uniform throughout
the image and are referred to as the pooling width, pw, and pooling height, ph. Max-pooling
reduces the size of feature maps by a factor of pw × ph assuming that the width and height of a
feature map are divisible by pw and ph respectively. Although the same number of feature maps
are passed to the fully connected network, the reduction in the size of feature maps substantially
decreases the number of nodes required in the fully connected network. As well as decreasing the
number of tunable parameters, max-pooling provides a degree of shift invariance as the output of
a pooling window will be consistent regardless of where a feature lies within the pooling window.
During backpropagation, the gradient only propagates back through the maximum feature within
each pooling window. An alternative to max-pooling is average-pooling, whereby the output is
the average over all of the nodes in the pooling window.

The idea of using sliding filters in a neural network is first described in (LeCun et al., 1989),
although the networks are described as constrained rather than convolutional, and no subsam-
pling method is employed. It was nine years later in (LeCun et al., 1998a) that CNNs close to
their current form are described. The network in (LeCun et al., 1998a) combines the ideas of
local receptive fields, shared filter weights and subsampling. It applies the network to an image
classification problem, named MNIST, which contains 70,000 images of handwritten numeric
characters split into ten target classes. The data is split into a training set, containing 60,000
images, and a test set which contains the remaining 10,000. Each image is of size 28x28, and the
contents are centred by mass. The CNN developed in (LeCun et al., 1998a), dubbed LeNet-5,
contains seven layers excluding the input layer. Of these, two are convolutional layers, two are
subsampling layers and the remaining three form a fully connected network. The convolutional
and subsampling layers alternate before feeding into the fully connected network. Using this
topology, LeNet-5 is able to achieve a generalisation error of 0.95%, compared to 2.95% obtained
by the highest performing fully-connected network described in the paper. In the time since its
publication in 1998, MNIST has become a popular dataset for benchmarking models. At this
time of writing, a variant of the CNN still yields the greatest accuracy on the dataset, achieving
0.21% generalisation error (Wan et al., 2013a).

2.5 Support Vector Machines

The Support Vector Machine (SVM) (Boser et al., 1992) (Cristianini and Shawe-Taylor, 2000)
is a supervised model for separating binary data-sets where y ∈ {−1, 1}. It is an influential and
prevalent model with many parallels to the linear perceptron. Like the perceptron, a SVM aims
to find a linear hyperplane for classification. It shares the same decision function:

ŷ = wᵀx+ b, (2.19)

however, the method used for training differs. During training, SVMs focus on separating the
data points which are nearest to the decision boundary. These are named the support vectors.
The rationale for this is that optimal separation of the most difficult datapoints is equivalent to
the optimal separation of the entire dataset. Figure 2.9 shows an example of a hyperplane which
achieves maximum separation of the support vectors. Above and below are the planes at which
y(wᵀx+ b) = 1. They are known as the boundaries, and it is on these that the support vectors
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2
‖w‖

y(wᵀx+ b) = 1

y(wᵀx+ b) = 0

y(wᵀx+ b) = 1

Figure 2.9: A dataset which has been split homogeneously by a SVM hyperplane. The hyperplane
achieves maximum separation of most difficult instances within the two target classes. Above
and below are the planes, named the boundaries, at which y(wᵀx+ b) = 1.

fall. This is not by chance, it is a requirement of w. The distance between the boundaries is
known as the margin and is given by 2

‖w‖ . Maximising the margin will maximise the distance
between support vectors. Therefore, the optimum w is the smallest w which can satisfy the
requirements. On linearly separable data, this can be achieved by minimising the hard-margin
error function:

E = ‖w‖2 subject to yi(w
ᵀxi + b) ≥ 1 ∀i, (2.20)

where {xi, yi} are the training data.

When the data is not linearly separable, the hard-margin SVM error function will fail to
converge as there is no way to satisfy all of the constraints. Instead, the soft-margin error
function may be used. The soft-margin function introduces a leniency to the constraints with
the addition of slack variables ξ. The slack variables alter the constraints such that y(wᵀxi + b)
may equal 1 − ξi, rather than 1. If 0 < ξi < 1, then xi must fall within the margin but still
falls on the correct side of the decision boundary. If ξi > 1 then the xi falls on the incorrect side
of the decision boundary. The introduction of ξ prevents outliers from controlling the decision
boundary, as illustrated in figure 2.10. The soft-margin error function can be defined:

E = ‖w‖2 + C

N∑
j

ξj subject to yi(w
ᵀxi + b) ≥ 1− ξi ∀i, (2.21)

where C is a regularisation parameter to control the extent to which the decision boundary is
constrained. A small C will allow the SVM to easily ignore constraints, resulting in a wide
margin, but with many support vectors violating the boundaries. A large C heavily penalises
the cost of support vectors within the boundaries, resulting in a narrow margin. With very
large C, the soft-margin error function is equivalent to the hard-margin function. Both the
hard and soft margin error functions are convex and a number of methods exist to optimise
these. Perhaps the simplest of these conceptually is to treat the error function as a constrained
quadratic programming problem and to solve this directly using Lagrange multipliers, or using
an algorithm such as Sequential Minimal Optimisation (SMO) (Platt, 1998). Alternatively, the
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Figure 2.10: An example hyperplane which has been learned by optimising the soft margin error
function. Two of the instances fall within the margin because the slack variables relax the SVM
constraints.

optimisation problem may be reformulated into an unconstrained version:

E = ‖w‖2 + C

N∑
i

max(0, 1− yi(wᵀxi + b)). (2.22)

The unconstrained optimisation is equivalent to the large-margin perceptron optimisation prob-
lem, but with the addition of L2

2 regularisation on w. Therefore, learning may be achieved
by using gradient based optimisation approaches, for example, the Pegasos algorithm (Shalev-
Shwartz et al., 2011).

The soft-margin error function allows a SVM to converge on data which is not linearly sep-
arable but it does not increase the expressive power of the classifier. The formulation described
is only flexible enough to describe a linear decision boundary. However, with adjustments, it is
possible for the SVM to describe arbitrarily complex boundaries. Moreover, it is possible to do
this while retaining the aim of learning a linear hyperplane. Instead of learning a more complex
shape than a plane, the SVM opts to alter the input features so that a plane is adequate for
classification. It does this by using a function named a feature mapping, denoted by φ. The aim
of a φ is to map a feature vector into a new vector with a greater number of dimensions:

φ(x) = φ


 x1...
xM


 =

 x1
...

xM ′

 , (2.23)

where M ′ ≥M . M ′ may even be infinite. The hope is that in the higher dimensional space, the
data can be more easily separated. The feature mapping may be considered a preprocessing step
before classification by a linear hyperplane. Thus, the decision function is linear with respect to
φ(x) but non-linear with respect to x. Figure 2.11 shows an example feature mapping which
maps between R2 and R3. In R2 the datapoints are inseparable, however, by mapping the inputs
into R3, it is possible to separate the dataset using a linear hyperplane. When using a feature
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Figure 2.11: Applying an example feature mapping to a dataset containing two-dimensional
instances. In two dimensions the dataset is not linearly separable but in three dimensions it is.

mapping, the decision function becomes:

ŷ = wᵀφ(x) + b. (2.24)

Likewise, the error functions seen in equations (2.20), (2.21) and (2.22) remain the same, but
with all occurrences of x replaced by φ(x).

While feature mappings provide the means to classify non-linear data using a SVM, in prac-
tice, they can prove too computationally expensive for realistic use. For some datasets, the
number of output dimensions required by the mapping function may be infinite. So, instead
of explicitly working out the high-dimensional space, many SVM formulations choose to take a
shortcut. The SVM formulation which is described above is called the primal form. An alter-
native is the dual form. In the dual form, w does not exist as a concrete variable. Instead, it
is calculated as a combination of the data such that w =

∑N
i αiyiφ(xi), where αi is a scalar

which is learned during training. For training instances which are not considered to be support
vectors, αi will be close to zero. The dual formulation of the decision function may initially be
defined as:

ŷ =

n∑
i=1

αiyiφ(xi)
ᵀφ(x) + b, (2.25)

At this point the dual and primal forms are equivalent, and the issues around computational
complexity are still present. The power of the dual form becomes apparent with the addition
of a kernel function. Proposed in (Boser et al., 1992), a kernel function, K(xi,xj), can be used
to calculate the output of φ(xi)

ᵀ
φ(xj), while avoiding the need to calculate φ(xi) or φ(xj)

directly. Computationally, this is considerably cheaper in most cases. Using Mercer’s theorem
(Mer, 1909), it can be shown that all positive semi-definite kernels are equivalent to an inner
product after mapping with some φ. With the addition of a kernel function, the decision function
becomes:

ŷ =

n∑
i=1

αiyiK(xi,x) + b, (2.26)
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The simplest kernel function is the linear kernel: K(xi,xj) = xᵀ
i xj . In this case, no feature

mapping is performed and φ(x) = x. More common choices are the polynomial kernel:

K(xi,xj) = (xᵀ
i xj + 1)d (2.27)

and the RBF kernel:
K(xi,xj) = exp(−γ‖xi − xj‖2) (2.28)

where d and γ are parameters which control the complexity of the feature mapping. Even with
the addition of a kernel function, the SVM learning algorithm remains convex. Updating the
error function for the dual may be achieved by following a similar process to that used to obtain
(2.26). For the regularisation term:

‖w‖2 =

(
N∑
i

αiyiφ(xi)

)ᵀ
 N∑

j

αjyjφ(xj)


=

N∑
i

N∑
j

αiαjyiyjK(xi,xj).

(2.29)

Inserting this and the representation of the decision function into the primal error function seen
in (2.22) gives:

E =

N∑
i

N∑
j

αiαjyiyjK(xi,xj) + C

N∑
i

max(0, 1− yi(
N∑
j

αjyjK(xi,xj) + b). (2.30)

However, this is rarely used as the optimisation problem. Instead, it is reframed into an equivalent
maximisation problem over α which is easier to solve:
N∑
k

αk−
1

2

N∑
i

N∑
j

αiαjyiyjK(xi,xj) subject to 0 ≤ αi ≤ C ∀i and
N∑
i

αiyi = 0. (2.31)

This is possible due to the representation theorem (Schölkopf et al., 2001) and the fact that
the minimisation problem is strongly convex. The solution which solves the dual optimisation
problem will also solve the primal problem as long as the Karush-Kuhn-Tucker (KKT) conditions
are satisfied (Kuhn and Tucker, 1951).

The SVM implementations discussed so far have been exclusively for binary classification.
Although SVM formulations exist which natively support multi-class classification, a more com-
mon method for approaching multiclass problems is to use a scheme such as one-versus-one or
one-versus-all. In such schemes, no adaption is required to the SVM formulation discussed above.
Instead, multiclass is achieved by training multiple classifiers, each designed to classify a partic-
ular target or a pair of targets. In a one-versus-all scheme, |T | classifiers are learned, where T is
the set of target values. Each classifier is trained with data which has been relabelled so that all
instances of one class have y = +1 and any instance which is not of this class has y = −1. To
decide the final classification of an instance, ŷ is calculated for each of the classifiers, and the class
represented by the classifier with the greatest ŷ is selected as the output. An alternative scheme
is one-versus-one. In this scheme, a classifier is trained for each pair of target classes, resulting in
|T |(|T |−1)

2 classifiers in total. The final classification of an instance is obtained by making a class
prediction using each of the classifiers and then selecting the class with the greatest number of
votes. Although one-versus-one requires the creation and training of many more classifiers than
one-versus-all, the overall training time is often lower as fewer instances are used to train each
classifier.
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2.6 Multiple Kernel Learning

Multiple Kernel Learning (MKL) is an extension to the SVM in which multiple kernel functions
are combined into a hybrid. A number of MKL formulations exist, however, all share the rationale
that the most effective kernel is unknown and should therefore be learned as part of training. A
common form of MKL is where the kernels and their parameters have been predefined and the
aim of learning is to decide how they should be combined. The combination function is denoted
by C, and it requires a set of weights g:

K(xi,xj , g) = C(g, {km(xi,xj)}Pm=1), (2.32)

where P represents the number of predefined kernels. An example of this formulation is the
weighted sum:

K(xi,xj , g) =

P∑
m=1

gmkm(xi,xj) (2.33)

This is valid since the sum of Mercer kernels is itself a Mercer kernel. Another category of MKL
is where the combination function is already known, and instead, the aim is to optimise the
parameters which are integrated into the kernels. For example, learning the optimum γ in the
RBF kernel or the degree of a polynomial kernel. Here, the kernel functions themselves require
the weights stored in g. Assuming that each kernel function requires a single weight:

K(xi,xj , g) = C({km(xi,xj , gm)}Pm=1). (2.34)

This formulation is integral to the classifier developed later in this work. The error function of an
MKL problem may be structured in many ways, for example the formulation of (Rakotomamonjy
et al., 2008) may be used for learning the weighted sum, whereas (Chapelle et al., 2002) may be
used for learning the internal kernel parameters. A general formulation which flexibly describes
a range of MKL problems, including the two mentioned above, is Generalised MKL (GMKL).
Described in (Varma and Babu, 2009), GMKL aims to optimise the following function:

min
w,b,g

1

2
wᵀw +

∑
i

l(yi, C(xi)) + r(g)

subject to g ≥ 0

(2.35)

where l is a loss function, for example, hinge loss, and r is a regularisation function which may
be any function which is differentiable with respect to g. This error function is equivalent to the
SVM primal error function but with additional regularisation of the kernel parameters.

GMKL minimises this function by using an iterative two-step optimisation. First g is fixed
while an arbitrary SVM optimisation algorithm is used to learn w, then g is learned using
gradient descent while w is fixed. GMKL aims to minimise the primal function overall but the
internal SVM optimiser maximises the dual function with the intention of finding the optimum
α, denoted α∗. After training of the internal SVM is complete, g is optimised by holding α∗

constant and using gradient descent. These two steps repeat until convergence. To optimise g
using gradient descent, the derivative of the error function E(w, b, g), defined in equation (2.35),
is required. Varma and Babu (2009) show that this gradient may be calculated using:

∂ E

∂ gk
=

∂r

∂gk
− 1

2
α∗ᵀ ∂H

∂gk
α∗, (2.36)
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Algorithm 2 Generalised MKL (Varma and Babu, 2009)
1: n← 0
2: Initialize g0 randomly
3: repeat
4: K ← k(gn)
5: α∗ ← solve SVM using K.
6: gn+1

k ← gnk − sn( ∂r∂gk −
1
2α

∗ᵀ ∂H
∂gk
α∗)

7: Project gn+1 onto the feasible set if any constraints are violated.
8: n← n+ 1
9: until Converged

where H is the matrix generated by calculating yiyjK(xi,xj , g) for all combinations of i and
j. The requirement of a two-step optimisation stems from the fact that this derivate requires
values for α∗. After the update of g, the values found for α∗ are no longer optimum and need to
be recalculated. In turn, this causes g to become outdated. Therefore GMKL requires a number
of iterations before convergence. As the iteration number increases, the size of the updates to
α and g diminish. A step size, s, adds further control to the size of the update of g. The full
GMKL algorithm is presented in Algorithm 2. Unfortunately, optimisation of g is not generally
a convex problem, however, the learning of w remains convex.

2.7 Conclusion

This chapter has provided the prerequisite information which will be required in chapters 3 and
4. It began with a model agnostic description of machine learning and then provided information
on Linear Perceptrons, Multilayer-Perceptrons, Convolutional Neural Networks, Suppor Vector
Machines and Multiple Kernel Learning.

To summarise, the linear perceptron is an early model for supervised learning. It is arguably
the quintessential model for achieving binary classification. Despite this, the linear perceptron
performs poorly on many many real datasets due to the lack of flexibility caused by its inherent
linearity. However, it is possible to achieve non-linearity by combining a number of perceptrons
into a multi-layer perceptron. The convolutional neural network (CNN) is a further development
to the multi-layer perceptron which uses sparse layers to utilise spatial information from its
inputs and weight sharing to provide leniency regarding the location of this spatial information.
This is useful on many tasks for which the location of features is important, for example, image
classification. Resultantly, the CNN has achieved state-of-the-art results on many benchmark
datasets.

An alternative model for classification is the support vector machine (SVM). The linear
SVM is similar to the linear perceptron, even sharing the same decision function. However, the
regularisation which is used during the training of a SVM is designed so that the hyperplane
achieves optimum separation of the most difficult datapoints, named the support vectors. It is
possible for a SVM to achieve non-linearity by using a kernel function to calculate the inner
products of its inputs in a higher dimensional space. Optimisation remains a convex problem
by using this method. Multiple kernel learning builds on this by providing an approach which
may be used to combine kernel functions into a hybrid. Alternatively, it can be used to optimise
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internal kernel parameters, for example the degree of a polynomial kernel.

The CNN and SVM are essential for understanding the models which are proposed in chapters
3 and 4. In addition, chapter 4 requires knowledge of multiple kernel learning.
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Chapter 3

Linear Convolutional SVMs

Among others, chapter 2 describes two models: the convolutional neural network and the support
vector machine. The CNN excels in tasks which exhibit spatially local correlation of features,
for example, image classification, however, it suffers from multiple local minima due to the MLP
which it uses in the final layers. This thesis presents a method for replacing the MLP in the
final layer with a SVM. The convolutional layers may be considered feature extractors before
classification with the SVM. The resulting model will be named the Convolutional Support
Vector Machine (CSVM). This chapter will describe an approach which may be used in the
primal to augment a linear SVM with convolutional layers. The following chapter will describe
an alternative approach which may be used in the dual with a kernelised SVM.

The idea of combining support vector machines and convolutional neural networks into a
hybrid classifier has been investigated in previous work. In (Huang and LeCun, 2006) a CNN
was trained was on the NORB dataset (LeCun et al., 2004) and once training was complete, the
final layers were replaced with a SVM. The NORB dataset is an image recognition benchmark
dataset containing pictures of children’s toys from many angles. It can be further broken down
into two datasets, the normalised-uniform set and the jittered-cluttered set. The normalised-
uniform set contains centred images of similar size and on a uniform background, whereas the
jittered-cluttered set contains the same images but each has been deliberately perturbed and has
been placed on a cluttered background. The hybrid classifier performs well on both datasets:
On the jittered-cluttered dataset the hybrid classifier achieves 5.9% error rate, compared to 7.2%
for a CNN and 43.3% for a regular SVM. It also achieves 5.9% error rate on the normalised-
uniform set, compared to 6.2% for a CNN and 11.6% for a SVM. However, the fact that the
fully-connected network is swapped out for a SVM after training, means that the convolutional
filter weights are optimised for use with a classifier which is not used at classification time.

Tang (2013) builds upon this approach by proposing a method for training a deep convolu-
tional network in conjunction with SVM parameters. This is achieved by replacing the output
layer with a set of SVMs, one per target output. Thus, as in (Huang and LeCun, 2006), the
inputs to the SVM are the penultimate activations of the neural network. At prediction time,
an instance is classified as the target represented by the SVM which gives the greatest output.
Each of the SVM weight vectors is learned using gradient descent of the primal loss function,
and connection weights in the deep network are learned by using backpropagation from this
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CMT(x) =


x1 x2 xD
x2 x3 xD+1

x3 x4 xD+2

...
...

...
x(M−D+1) x(M−D+2) xM


Figure 3.1: An example of a convolutional matrix to achieve one-dimensional convolution. M =
|x| and D = |f |. In this example D = 3.

initial gradient. The initial gradient is calculated with respect to the penultimate activations
of the neural network. As the primal loss is used to calculate gradient, the model is restricted
to learning linear SVMs. It is up to the deep neural network to induce non-linearity into the
prediction. The model, dubbed DLSVM, achieves a greater generalisation accuracy than a CNN
using a softmax output layer on the popular MNIST and CIFAR-10 datasets, and on the ICML
2013 Representation Learning Workshop’s face expression recognition challenge.

This chapter proposes an alternative approach for learning convolutional filter weights in
conjunction with a linear SVM weight vector. Instead of using backpropagation, it proposes an
iterative, two-step optimisation. Each of the steps executes a convex optimisation. The chapter
will begin by looking at the simplest case: a linear CSVM (L-CSVM) with a single convolutional
filter, a stride of one and with no subsampling. In this case, the decision function may be defined
in the primal as:

ŷ = wᵀ(x ∗ f) + b, (3.1)

where ŷ is the predicted target of an instance x, f denotes a convolutional filter, b symbolises
the bias and x ∗ f expresses the convolution operation between x and f . The dimension of the
weight vector is therefore |w| − |f |+ 1. The convolution operation aims to increase the distance
between positive and negative support vectors so that a greater margin is possible.

Training of the L-CSVM may be achieved by making minor alterations to the SVM error
function. First, the SVM constraints are altered to take into account the convolution operation,
so that yi(wᵀ(xi ∗f) + b) ≥ 1− ξi ∀i. Next, regularisation must be added to the filter weights.
Without regularisation, the filter may grow or shrink without bound. To regularise, the squared
L2-norm is used, as for w. With these changes, the full L-CSVM error function may be defined:

E =
λw
2
‖w‖2 +

λf
2
‖f‖2 − 1

N

N∑
i=1

max{0, (yi(wᵀ(x ∗ f) + b)}, (3.2)

where λw and λf take the place of C in equation (2.21) in deciding how much the constraints
control the decision boundary.

To simplify the task of optimising this error function, this thesis introduces a function which it
calls the Convolution Matrix Transformation (CMT). The CMT function takes a feature vector,
x, and transforms it into a new vector whose inner product with f produces the same output as
convolving x with f directly. The output of CMT(x,f) will be called the convolutional matrix
and will be notated by X. Thus X = CMT(x,f). The feature vector may have any number
of dimensions, for example, it may be a two-dimensional greyscale image or a three-dimensional
colour image. TheX created by CMT will be set up to perform convolution over each dimension
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Algorithm 3 Two-dimensional CMT Algorithm
1: Inputs: x ∈ Rm×n,f ∈ Rp×q
2: Initialise: X ∈ R((m−p+1)(n−q+1))×(pq)

3: for i = 0 to m - p + 1 do
4: for j = 0 to n - q + 1 do
5: for k = 0 to p do
6: for l = 0 to q do
7: a := i(n− q + 1) + j
8: b := kq + l
9: Xa,b := x(i+k),(j+l)

10: end for
11: end for
12: end for
13: end for
14: Output: X

in the original image, such that:

CMT(x,f)ᵀf = Xᵀf = x ∗ f . (3.3)

Figure 3.1 shows an example of a convolutional matrix which may achieve one-dimensional con-
volution. If M = |x| and D = |f | then the shape of X is (M −D+ 1) by D. The convolutional
matrix to achieve one-dimensional convolution is created by stacking subsets of the original in-
stance vector such that the start index of the subset increments by one at each row. Thus X is a
staggered matrix containing the elements of x. To achieve two-dimensional convolution, whereby
a two-dimensional filter is convolved with a two-dimensional input vector, a more complex opera-
tion is required than staggering to create the convolutional matrix. In this case, Algorithm 3 may
be used. To calculate the output of x ∗ f , f must be vectorised. Thus vec(x ∗ f) = Xᵀvec(f).
Using X instead of x, the decision function and error function my be written as:

ŷ = wᵀXᵀf + b (3.4)

and:

E =
λw
2
‖w‖2 +

λf
2
‖f‖2 − 1

N

N∑
i=1

max{0, (yi(wᵀXᵀf + b))} (3.5)

respectively.

An interesting property of this error function is that if the filter is held fixed, and the convolu-
tion logic is extracted into the setup of the dataset, such that D′ = {Xᵀf}Ni=1, then optimisation
of the weight vector looks like the usual SVM problem. Likewise, if the weight vector is held fixed,
and the weight vector arithmetic is encoded into the training data such that D′′ = {wᵀX}Ni=1,
then optimisation of the filter again looks like the usual SVM optimisation problem. Therefore
learning may be performed as an iterative two-step optimisation; first by training w with f held
fixed, and then by training f with w fixed. Both optimisation steps are convex and may be
performed with an arbitrary linear SVM training algorithm, for example, SMO (Platt, 1998) or
Pegasos (Shalev-Shwartz et al., 2011). Pseudocode for this is presented in Algorithm 4. The
algorithm uses a command named SVM. This command calculates and returns the optimum
weight vector for a set of inputs using an arbitrary linear SVM algorithm. It is used in step 6
to calculate the SVM weight vector. However, in step 8 it is used to learn the filter coefficients
rather than the weight vector. This works as the cardinality of each instance in D′′is|f |.
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Algorithm 4 L-CSVM Learning Algorithm
1: Inputs :D, λw, λf
2: Initialise :w,f
3: Xi := CMT(Di,f) ∀i
4: while not converged do
5: D′ := {Xi

ᵀf}Ni=1

6: w, b := SVM(D′, λw)
7: D′′ := {wᵀXi}Ni=1

8: f := SVM(D′′, λf )
9: end while

3.1 Experimental Results: MNIST

Section 2.4 describes the MNIST image classification dataset (LeCun et al., 1998a). MNIST
is widely used as a benchmark dataset and is freely available to researchers. Therefore, it is a
natural dataset on which to test the L-CSVM. The results of the L-CSVM are compared against
results of a linear SVM, and an equivalent CNN with a single convolutional filter.

3.1.1 Results

In order to implement Algorithm 4, a SVM implementation needed to be chosen. The classifier
developed in this research used a custom implementation of the Pegasos algorithm written in Java.
Pegasos was chosen due to its ability to converge rapidly in the linear case. The implementation
included the optional projection step, although this was found to have little impact on the
properties of the trained classifier, nor on the training time. Multiclass classification was achieved
using a one-versus-one scheme, and, for simplicity, λw and λf were shared between all of the
classifiers rather than selected per classifier. The MNIST target classes are the numerical digits
from 0 to 9, and a different filter was learned for each pair of targets, resulting in 45 distinct
filters. Each filter was of size 5 × 5. Cross-validation was used to tune λw and λf . The 60,000
training instances were split into 50,000 for training and 10,000 for validation. With so many
instances available per target class, k-fold validation was deemed unnecessary. A heatmap of
cross-validation results can be seen in figure 3.2. The highest performing classifier had λw = 0.1
and λf = 0.1, and so these are the parameters which are used to determine generalisation
accuracy.

As a comparison, a linear SVM without convolutional filters and a linear implementation of
a CNN were also implemented. The SVM used the same custom implementation of Pegasos. In
this implementation, the only parameter which required tuning was λw, for which the optimum
value was found to be 0.1. The CNN was also implemented in Java and used the open source
Deeplearning4j library (Skymind, 2014). The architecture of the CNN was designed to be as
equivalent as possible to the L-CSVM. It had a single convolutional filter, also of size 5× 5, did
not perform subsampling, and did not contain any hidden layers. Thus, the convolutional feature
maps fed directly into a linear classifier, as was the case in the L-CSVM. It used the sigmoid
function in the output layer and used log loss to calculate error gradient. For training, stochastic
gradient descent was used with Nesterov’s Accelerated Gradient (NAG) (Nesterov, 1983) momen-
tum. NAG momentum achieved superior classification results and resulted in a lower training
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Figure 3.2: A heatmap of cross-validation results on the training and validation sets. Cross-
validation aimed to learn effective values of λf and λw.

MNIST Results
Model Training accuracy % Testing accuracy %
Linear SVM 93.57 ± 0.053 93.68 ± 0.15
Linear CNN 91.92 ± 0.089 91.60 ± 0.15
L-CSVM 94.06 ± 0.072 94.09 ± 0.14

Table 3.1: Accuracy averaged over ten runs on the MNIST testing set using a variety of classifiers.
The error is estimated using the standard deviation.

time than equivalent networks using conventional momentum, and without momentum. The two
variables which required tuning were the learning and regularisation rates. Cross-validation on
the validation set found the optimum values to be 10−3 and 10−5 respectively.

Table 3.1 shows the results of each of the classifiers. Accuracies are averaged over ten runs
of the model and the error estimate shows the standard deviation. Accuracy was chosen as
the performance metric over precision, recall or F1-score as a correct classification of all target
classes is of equal importance. As can be seen from the results, the L-CSVM achieves an accu-
racy of 94.09% on the testing set which is the highest accuracy of each of the tested classifiers.
Interestingly, the linear SVM outperforms the linear CNN. This suggests that a linear classifier
generalises sufficiently well on MNIST that it does not fully benefit from the additional general-
isability provided by the convolutional filter. This is further evidenced by the fact that the SVM
achieves a similar accuracy on the testing set as it does on the training set. The conclusion may
be drawn that in the linear case, the convex properties of the SVM learning algorithm are more
important than the shift invariance provided by a single convolutional filter. Chapter 4 explores
whether this is the case for more flexible classifiers.

28



Figure 3.3: L-CSVM error function from equation (3.2) plotted during training. The error is
measured twice per iteration, after the weight vector update and then after the filter update.

3.1.2 Analysis

Correct behaviour of the algorithm may be assessed by monitoring the value of the error function
during training. The value should decrease each iteration. Moreover, it should decrease after both
the weight update and the filter update stages. Figure 3.3 shows this to be the case. After the
initial iteration, the weight and filter update steps reduce the cost function by an approximately
equal amount each iteration. This confirms that the optimisation procedure is effective. At
iteration six, the algorithm sees a small increase in cost function on the weight update step, from
0.01333 to 0.01339. Subsequent iterations continue to rise and fall at around these values. As
Pegasos is an approximate solving algorithm and is inherently non-deterministic, this is to be
expected. Pegasos itself requires the number of iterations to be specified. A greater number
of iterations allows Pegasos to find a solution closer to the true optimum. In turn, this allows
the L-CSVM algorithm to continue finding a solution with a reduced cost function for a greater
number of iterations. The classifier used to create the graph in figure 3.3 was configured to run
Pegasos for 106 iterations on both the weight and filter update stages. This value was chosen for
demonstrational purposes and is excessive for a real classifier. Since Pegasos is learning a convex
function, configuring it to run for an excessive number of iterations does not cause overfitting.
The disadvantage is in the increased running time for little benefit. All other experiments in this
section have been configured to run Pegasos for 105 iterations.

Figure 3.4 shows two visual representations of the filters learned by the L-CSVM. Each rep-
resentation is from a different one-versus-one combination. The first is the filter obtained from
training a classifier with instances of target classes zero and one, the second from classes three
and seven. Both filters can be recognised as low-pass filters, averaging the pixels to which they
are applied. However, the two are oriented differently. The filter which separates instances with
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Figure 3.4: A visualisation of the filters learned by the L-CSVM on two different pairs of targets.
The filters can both be recognised as low-pass filters, however, the orientation is different in each.

target zero and one is oriented so that it responds well to the vertically oriented pixel arrange-
ments seen in images of ones and less well to circularly symmetric arrangements of zeros. The
filters which are learned for each combination are close to identical each time that the algorithm
is run, even when w and f are initialised randomly. This is likely because the optimisation
problems for both w and f are convex. Further work is required to determine whether the error
function is convex with respect to w and f simultaneously.

As a comparison, figure 3.5 displays the filter learned by the linear CNN. To make the
comparison fair, the CNN was trained on images with a target of 0 or 1. Both of the two
presented CNN filters were trained for 100 epochs. The filters are very different in appearance
to the filters learned by the L-CSVM. On each run, the CNN learns a different filter, as shown
in the figure. This is likely due to the non-convex nature of the CNN error function. Each filter
is produced by a different local minimum and resultantly has less spatial coherence. It could
be argued that the filters are almost random in appearance. Without viewing the feature maps
produced by a filter, it is difficult to envisage what effect the filter will have on the original
image. Figure 3.6 shows a set of example feature maps produced by both the L-CSVM and
the CNN. The filter used for creating the L-CSVM feature maps is the (0, 1) filter displayed in
figure 3.4. For creating the CNN feature maps, the left-hand filter in figure 3.5 was used. To
enhance visual contrast, values have been rescaled between 0 and 256 per image and thus the
same colour within two images does not mean that the activations within the feature maps are
equivalent. Like the filters themselves, the feature maps created by the two models are very
different in appearance. The low-pass L-CSVM filter has a blurring effect on the image, whereas
the CNN filter appears to be performing a diagonal edge detection on the rightmost edges as well
as blurring. It can be noted that the (0, 1) L-CSVM filter is oriented so as to average along the
northeast to southwest diagonal. This corresponds to the direction in which the 1s in the images
are oriented. Initially blurring sounds like a disadvantage due to the decrease in detail, however,
it increases the shift invariance of the classifier. For a dataset like MNIST which has images
without a background, trading contrast for shift invariance is a worthwhile tradeoff, hence the
increase of accuracy between the SVM and L-CSVM.
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Figure 3.5: A visualisation of two filters learned by the CNN. Both filters aim to separate
instances with a target class of zero or one. The filters have less spatial coherence than the filters
learned by the L-CSVM. A unique filter is learned each time that the CNN is trained.

3.2 Conclusion

This chapter presents a method which may be used to introduce convolution to the SVM decision
function. The convolution operation may be considered a pre-processing step before classification
through a linear SVM. The convolutional filter is trained in conjunction with SVM parameters.
This is achieved by using a two-step optimisation, first by learning the SVM weight vector while
holding the filter weights fixed, then by holding the weight vector constant and training the filter
weights. The filter weights are learned by casting the filter update step as an ordinary SVM
optimisation problem, but with respect to the filter weights rather than the SVM weight vector.
Thus, each of the steps is a convex optimisation with respect to the parameter which requires
tuning. It is shown in figure 3.3 that this optimisation procedure successfully minimises the error
function.

The L-CSVM is trained and tested on the MNIST dataset. It is found to learn low-pass filters,
with an orientation dependant on the input data. For example, in figure 3.4 it is shown that
the filter learned by a classifier which aims to separate instances with a target of zero and one
is in a different orientation to the filter learned by a classifier which aims to separate instances
with targets of three and seven. On the test set, the model achieves a generalisation accuracy
of 94.09% ± 0.14. This is greater than the generalisation accuracy achieved by a linear SVM
without convolution, or by a linear CNN with a single convolutional filter.

However, the flexibility of the L-CSVM is limited by the linearity of the SVM which it uses
for classification. On the MNIST dataset, this is restrictive, and as a result, the linear SVM and
L-CSVM fall short of the generalisation accuracy achievable by a kernelised SVM. For example,
in (Burges and Schölkopf, 1997) a benchmark SVM with a polynomial kernel of degree 5 and
no other adjustments or preprocessing is shown to achieve a generalisation accuracy 98.6%. The
focus of the following chapter is to explore how the linear formulation described in this chapter
may be adjusted to allow the use of a more flexible, kernelised SVM.
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Figure 3.6: Feature maps after convolving with the learned filters. Left column: original image,
middle column: image filtered by L-CSVM, right column: image filtered by CNN.
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Chapter 4

Kernelised Convolutional SVMs

The previous chapter presents a method which may be used to augment a SVM with a convo-
lutional filter, such that the convolutional filter is used as a preprocessor before classification
through the SVM. It presents an algorithm which may be used to optimise the SVM parameters
and filter weights in parallel, using an iterative two-step optimisation. However, the algorithm
requires that the SVM is linear, thus limiting the model’s flexibility. This chapter presents a
method which may be used to learn a kernelised SVM while estimating filter parameters using
gradient descent. It tests the algorithm on the MNIST and CIFAR-10 benchmark datasets and
compares the results with a kernelised SVM and a CNN with a single convolutional layer.

The L-CSVM formulation described in equation (3.5) is presented in the primal. As explained
in section 2.5 of the background chapter, the usual approach for implementing a kernelised SVM
is to move into the dual. Unfortunately, the L-CSVM formulation is not easily transferred to the
dual as the filter update step requires the output of wᵀX. A possibility would be to remain in
the primal and use a feature mapping, however, this would likely result in a classifier for which
training is so complex that it could not be used on any dataset of reasonable size. It would
also restrict the available kernels to those in a low number of dimensions. Kernels like the RBF
kernel, which map instances into an infinite number of dimensions, would be intractable. Instead,
a new approach is presented in the dual which leverages the ideas of multiple kernel learning.
The resulting model is referred to as the K-CSVM.

To recap, multiple kernel learning is a continuation of the SVM whereby the task is to learn
the kernel function as well as the SVM parameters. It exists in two forms. The first form is where
a number of kernels are predefined, and the task of learning is to choose how they are combined,
as in (Rakotomamonjy et al., 2008). Another form of MKL is where the combination function
is predefined and instead, the aim is to learn the parameters which are integrated into each
kernel; see for example (Chapelle et al., 2002). As hinted in section 2.6, this MKL formulation is
crucial to the K-CSVM. Unless specified otherwise, references to MKL will now mean the second
formulation.

33



4.1 Convolutional Kernels

Although MKL may be used to learn the parameters of multiple kernels, there is no requirement
to use multiple kernels. It may be used to learn the parameters of a single kernel. Section
2.6 presented an algorithm named Generalised Multiple Kernel Learning (Varma and Babu,
2009). GMKL uses convex optimisation to find SVM parameters, while also optimising kernel
parameters using gradient descent. The algorithm is generalised as it may be used to optimise the
parameters of any differentiable kernel with the mild restrictions that the gradient is continuous
with respect to its parameters, and that the kernel is positive definite for all valid parameters.
The reason that this is of interest is that convolution is a differentiable function with respect to
its filter weights. Furthermore, it is possible to move the convolution operation into the kernel
function and to treat the filter weights as kernel parameters. In practice, this is equivalent to
using convolution as a preprocessing step, but it means that the formulation conforms to the
format expected by GKML. Thus, by casting the problem of learning in this way, GMKL may
be used to optimise the filter weights using gradient descent. This idea is explored and tested
for the polynomial and RBF kernel functions.

The standard polynomial kernel function is as follows:

K(xi,xj) = (xᵀ
i xj + 1)d, (4.1)

where d is the polynomial degree for controlling the complexity of the feature mapping. This
may be adapted to include the convolution operation by making the following alterations:

K(xi,xj ,f) = ((xi ∗ f)ᵀ(xj ∗ f) + 1)d. (4.2)

It may be simplified by using the CMT function described in equation (3.3):

K(xi,xj ,f) = ((Xif)ᵀ(Xjf) + 1)d

= (fᵀXᵀ
i Xjf + 1)d,

(4.3)

where Xi = CMT(xi,f). For the filter update step, GMKL requires the derivative of the error
function. Varma and Babu (2009) show that this is calculated by using:

∂r

∂fk
− 1

2
α∗ᵀ ∂H

∂fk
α∗, (4.4)

where H is the matrix generated by calculating yiyjK(xi,xj , g) for all combinations of i and j.
As shown in the appendix, ∂H∂ fk may be calculated by using:

∂ Hij

∂ fk
= yiyjd(1 + fᵀXᵀ

i Xjf)d−1[fᵀ(Xᵀ
i Xj +Xᵀ

jXi)]k (4.5)

for the polynomial kernel.

A similar operation may be performed to introduce convolution into the RBF function. The
original function is defined:

K(Xi,Xj) = exp(−γ‖Xi −Xj‖2), (4.6)

and may be rewritten as:

K(Xi, Xj ,f) = exp(−γ‖Xif −Xjf‖2)

= exp(−γ(Xif −Xjf)ᵀ(Xif −Xjf)

= exp(−γfᵀ(Xi −Xj)
ᵀ(Xi −Xj)f).

(4.7)
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The derivative of H is given by:

∂ Hij

∂ fk
= 2γyiyjK(Xi,Xj)[f

ᵀ(Xi −Xj)
ᵀ(Xi −Xj)]k (4.8)

Again, the calculations used to obtain the derivative are shown in the appendix.

4.2 Regularisation

GMKL allows the parameters of the kernel, which in this case means the filter, to be regularised
using any differentiable function. Regularisation keeps the filter weights within a feasible range.
The only restrictions on the regulariser are that its derivative exists and is continuous. Many
regularisers may be developed which satisfy these restrictions. This includes a number of p-norm
regularisations, for example, L1 and L2 regularisation. The regulariser is parameterised by a
weighting, λ, which controls the influence of the regularisation term. The effect of using p-norm
regularisation with a selection of λ values is investigated in section 4.4.

As well as investigating p-norm regularisation, this work develops its own form of regularisa-
tion. The aim of this regularisation is to encourage the filter to converge so that the value of a
chosen form of p-norm regularisation is close to one. This form of regularisation will be called
Distance-From-One regularisation and will be denoted by DFOp, where p is the selected p-norm.
DFOp regularisation may be defined:

r(f) = λf (max(0, ‖f‖p − 1))2. (4.9)

This term is minimised when ‖f‖p ≤ 1. As will be discussed in detail later in the chapter, on
each of the tested datasets, the K-CSVM prefers to choose filters with a norm ‖f‖p > 1 when
no regularisation is used. Therefore, it is expected that with DFOp regularisation, the SVM will
choose a filter with norm slightly above, but close to one. Like the constraints of a SVM, the
target value is set to one for simplicity, though this choice is suspected to be unimportant. More
important is that a target value exists. With a target in place, the learning process must focus
on optimising cost by adjusting values relative to each other rather than simply altering the size
of f . If one value increases then another must decrease so that the norm remains close to the
target. Like with the p-norm, this regulariser is parameterised by λ. In this case, λ controls the
extent to which the classifier makes an effort to constrain the size of the filter to one. A large λ
will force the classifier to learn a filter with a size close to one, whereas a small λ allows the filter
to diverge if this is advantageous to the cost function. For use in GMKL the regulariser must be
differentiable with respect to the weights which it concerns. The derivative of this function will
depend on the choice of p. For example, if p = 1 then the derivative is given by:

∂ r(f)

∂ fi
=

{
λfi(‖f‖1−1)
|fi|‖f‖1

if ‖f‖1 > 1

0 if ‖f‖1 ≤ 1
(4.10)

When p = 2, the derivative is:

∂ r(f)

∂ fi
=

{
2λfi(‖f‖2−1)

‖f‖2
if ‖f‖2 > 1

0 if ‖f‖2 ≤ 1
(4.11)
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Algorithm 5 K-CSVM Training algorithm
1: Inputs: D
2: Initialise: f randomly
3: for 0 to t do
4: Set K using (4.3) or (4.7)
5: α∗ := SVM(D,f ,K)
6: Calculate ∂H

∂f := using equation (4.5) or equation (4.8).
7: f := f − η( ∂r∂f −

1
2α

∗ᵀ ∂H
∂f α

∗)
8: end for

4.3 Learning

Algorithm 5 presents pseudocode which may be used to train a K-CSVM. It is similar to the
generic GMKL algorithm shown in Algorithm 2, however, it has been specialised for filter learn-
ing. Like the L-CSVM training algorithm, this algorithm uses a command named SVM. In this
case, the SVM command determines α∗ using an arbitrary linear SVM algorithm and returns
it. The K-CSVM in this work used a set number of iterations, t, to decide when training was
complete, though more intelligent stopping criteria could have been used.

Varma and Babu (2009) use the Armijo rule to select step size. The Armijo rule is an iterative
line search which may be used to find a reasonable, but not necessarily optimal step size. If a
high degree of convergence is required then the Armijo rule would likely be beneficial, however,
for the purposes of this work a constant step size was found to be adequate. The constant step
size was controlled by a learning rate, η.

4.4 Experimental Results: MNIST

This section begins by presenting results on the MNIST dataset. As before, it compares the
results of the K-CSVM with a SVM and an equivalent CNN. Section 4.4.2 provides an analysis
of the model to ensure correct behaviour, for example, by monitoring the error function during
training. Information on how the K-CSVM was tuned is provided in section 4.4.3.

4.4.1 Results

Due to the lengthy training time of the K-CSVM, it was not feasible for this work to train on
the full MNIST dataset. Instead, the K-CSVM in this work is trained on an MNIST subset,
containing each of the instances with a label of three or five which reside within the first 10,000
training instances. This turned out to be 1020 instances with a target of three and 882 instances
with a target of five. The targets of three and five were selected as these were found to be the
most difficult classes for an ordinary SVM to separate. The hope was that the most difficult
combination would provide the greatest opportunity for improvement and that the effect of
learning would be more apparent than it would be for an easier combination.

The K-CSVM developed in this section was implemented in Python. Instead of using the
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MNIST Results
Model Training

accuracy %
Testing
accuracy %

SVM 100.00± 0 98.32± 0
CNN 100.00± 0 98.38± 0.25
K-CSVM 100.00± 0 98.59± 0.02

Table 4.1: Accuracy on a binary MNIST subset containing instances with target 3 or 5. Each
classifier was trained on a subset containing only the instances with target of 3 or 5 within the
first 10,000 training instances. The CNN has a single convolutional filter and does not perform
subsampling.

custom implementation of Pegasos which was used previously, the K-CSVM used the scikit-learn
library (Pedregosa et al., 2011) for the implementation of the SVM. Scikit-learn uses the widely
distributed LibSVM algorithm (Chang and Lin, 2011), which is itself a version of Sequential
Minimal Optimisation (SMO) (Platt, 1998). SMO is an iterative algorithm, but if required it
can be used to solve the quadratic programming problem exactly. Yet this is not the reason
for the move away from Pegasos. The reason for this is because Pegasos is designed with the
primal problem in mind. For the primal problem, Pegasos achieves a rapid convergence rate,
however, for kernelised learning, Pegasos performs rather averagely, as admitted in (Shalev-
Shwartz et al., 2011). LibSVM is designed for the dual problem and therefore excels at kernelised
learning. An alternative which was investigated was LASVM (Bordes et al., 2005). LASVM is
an approximate solver which boasts competitive misclassification rates after a single pass over
the data. Ultimately, LibSVM was chosen because using a prebuilt SVM package allowed efforts
to be directed at the development of the K-CSVM algorithm. As the focus of this dissertation is
aimed at proving the algorithm as a concept, the greater convergence time of LibSVM compared
to LASVM is a worthwhile tradeoff for the reduced complexity it offers. However, in future work
it would be worthwhile revisiting LASVM as the convergence time of the K-CSVM algorithm
had an impact on the datasets which could be tested on.

Table 4.1 shows the accuracy of the K-CSVM on the MNIST subset and compares it against
a SVM and an equivalent CNN. Results are averaged over five runs and error is estimated
using the standard deviation. The previous section presents kernels and derivatives for both the
polynomial and RBF kernels, however, this section focuses primarily on the polynomial kernel.
The K-CSVM used to obtain results for table 4.1 used a polynomial degree of two and had a
filter size of 5 × 5. DFO1 regularisation was used to regularise the filter and λ was configured
to 0.01. The learning rate was set to 0.1 and the value of C was greater than every coefficient in
α. As will be discussed in further detail later in this section, a polynomial kernel with a degree
of two did not benefit from regularisation on the weight vector. The classifier was trained for
25 iterations and it did not perform projection other than when the filter was first initialised, at
which point it was rescaled so that its L1 norm was equal to one. Section 4.4.3 provides detail
on the process used to select this configuration.

The SVM included in the results was also implemented using the scikit-learn library. It used
a polynomial kernel of degree two, and like the K-CSVM, it had C set to a value greater than any
of the values in α. This was found to be the best performing configuration on the validation set.
As with the linear case, the CNN was implemented in Java and used the Deeplearning4j library.
It was intended to be as equivalent as possible to the K-CSVM, using a single convolutional
filter of size 5 × 5 and no subsampling. However, unlike before, it used hidden nodes to allow
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Figure 4.1: The error function after the SVM update of each iteration. The experiment uses
DFO1 regularisation with λf = 1, a learning rate of 0.001 and a polynomial kernel of degree two.
The classifier is trained on a subset of MNIST containing the instances with target 3 or 5 within
the first 1000 instances.

non-linearity. The output layer used a one-hot encoding scheme with two output nodes. The
highest performing CNN had a single hidden layer containing 500 nodes. The nodes in the
hidden and output layers used the sigmoid activation function. Nodes in the convolutional
layers used the identity activation function. The learning rate was configured to 0.1 and the
network was regularised using L2 regularisation with a weighting of 10−5. Nesterov’s momentum
was employed with a weighting of 0.9. It could be argued that using momentum gave the
CNN an unfair advantage over the K-CSVM which used gradient descent without momentum.
Momentum had a considerable impact on the generalisation accuracy of the CNN; without it,
the generalisation accuracy decreased from 98.38± 0.25 to 96.41± 0.48, averaged over five runs.
For preprocessing, each of the three classifiers performed a simple rescaling operation so that the
input values ranged between zero and one.

4.4.2 Analysis

This section will analyse the behaviour of the algorithm during learning to determine whether
it is acting as expected. Perhaps the most effective way to ensure the correct behaviour of the
algorithm is to monitor the cost function throughout learning. Figure 4.1 shows the result of
doing so. To recap, the error function of the K-CSVM is 1

2w
ᵀw+

∑
i l(yi, f(xi)) + r(f), and the

aim is to minimise this function. The figure, which shows the value of the error function each
iteration after finding α∗, shows that minimisation correctly occurs. The classifier is trained on
a subset of MNIST containing the instances with target 3 or 5 within the first 1000 instances. It
used the same configuration as the classifier used to obtain the results in table 4.1, apart from
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Figure 4.2: A visual depiction of the filter learned by a K-CSVM using DFO1 regularisation.

the values of the learning rate and of λ which were set to 0.001 and 1 respectively. A reduced
learning rate better highlighted the learning process.

Figure 4.2 shows the final filter trained by one of the classifiers used to obtain the results in
table 4.1. It is considerably more sparse in appearance than the filters trained by a L-CSVM.
However, when the filter is applied to an image, it becomes apparent that it is performing a
similar blurring operation, though the blurring is to a lesser degree. This is shown in figure 4.3.
On each run of the K-CSVM a different filter was learned. Although the filters were similar
in appearance, usually with values on the perimeter close to zero, the inner values varied per
run. As will be discussed in section 4.4.3, this work investigated the use of a number of different
regularisation types. It was found that the classifier learns filters similar to the one displayed
in 4.2 if the chosen regularisation is within the L1 family. L1, L

2
1 and DFO1 were all tested and

were found to learn filters of similar appearance and values. However, when using a norm in
the L2 family, the filters resemble those learned by the L-CSVM, as shown in figure 4.4. This
is expected as the L-CSVM uses L2

2 to regularise the filter. The filter displayed in figure 4.4
uses a polynomial kernel with a degree of two. If the degree is increased then the appearance of
the filter remains unchanged. However, if the degree is decreased to one so that the classifier is
linear, then the learned filter is different again. This is shown in figure 4.5 and the effect it has
on the original images is displayed in figure 4.6. The filter appears to be detecting curves in
the original image whereas the vertical uprights in the original image have a low activation in
the feature map. When using regularisation in the L2 family, the filters are more stable between
runs than when using regularisation in the L1 family. That is, if two K-CSVMs are trained using
the same configuration and training dataset then the appearance of the final filter will be similar
for each.
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Figure 4.3: The effect of the filter displayed in figure 4.2 on MNIST images. The left column
shows the original images and the right column the feature maps. The filter performs a blurring
operation, however, the blurring is to a lesser degree than the filter learned by the L-CSVM.

Figure 4.4: A visual depiction of the filter learned by a K-CSVM using DFO2 regularisation and
a polynomial degree of two.
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Figure 4.5: A visual depiction of the filter learned by a K-CSVM using DFO2 regularisation and
a polynomial degree of one.

Figure 4.6: The effect of the filter displayed in figure 4.5 on MNIST images. The left column
shows the original images and the right column the feature maps.

41



Figure 4.7: A graph of ‖f‖22 at each iteration for a selection of regularisation values when using
L2 regularisation on the filter.

4.4.3 Tuning

Section 4.4.1 displayed the results of the K-CSVM on the MNIST dataset, however, little infor-
mation was provided on how the parameters were selected. The free parameters which require
tuning are the learning rate, the type of regularisation on the filter and the value of λ, the value
of C, and the polynomial degree. Due to the lengthy training time of the K-CSVM, it was not
feasible cross-validate all of these parameters. This section gives details of how these were tuned.

The section will begin by looking at the effect of tuning λ, first in the case of p-norm regular-
isation, and then for DFOp regularisation. To recap, the aim of filter regularisation is to control
the size of the filter. The extent to which this size is controlled is determined by the choice of λ.
A large value of λ should be more restrictive on the size of the filter than a small value. Figure 4.7
shows the results of an experiment in which a series of classifiers were trained, each time varying
λ. The classifiers used a polynomial kernel of degree two, a filter size of 5× 5 and a learning rate
of 1. C was set sufficiently high that it was not reached by any item in α. Each classifier was
trained on the first 5,000 instances of the MNIST dataset. This experiment empirically confirms
that greater regularisation values are more restrictive on the the size of the filter. Each of the
classifiers is using L2

2 regularisation, though similar behaviour was observed for L2, L
2
1 and L1.

Figure 4.8 shows an equivalent graph but the classifier is using DFO2 regularisation. As before,
the results of the experiment exhibit the expected behaviour since large values of λ result in a
final filter which is close to one. Small values of λ are allowed more leniency. The trained filters
were found to be similar in appearance and value to the filters trained using equivalent p-norm
regularisation.

The range of acceptable learning rate values was impacted by the choice of λ. Larger values
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Figure 4.8: A graph of ‖f‖22 at each iteration for a selection of regularisation values when using
DFO2 regularisation.

λ
0.01 0.1 1

η
0.01 97.73 ± 0.10 97.95 ± 0.05 97.95 ± 0.04
0.1 97.83 ± 0 97.89 ± 0.06 98.01 ± 0.15
1 97.99 ± 0.06 98.01 ± 0.041 97.83 ± 0.20

Table 4.2: Cross-validation to find the effect of tuning λ and the learning rate. Reported values
show the accuracy and the error is estimated using standard deviation. A result of n/a indicates
failure to converge. Each classifier was trained on a subset containing instances with target 3 or
5 which fall within the first 5,000 instances.

of λ required a smaller learning rate in order to converge. If the learning rate was set too high
then the size of the filter was found to increase per iteration. This happened if the magnitude of
s∇w was approximately twice the magnitude of f or greater. In this scenario, the filter values
oscillated between positive and negative, growing in size at each iteration.

Table 4.2 shows the results of cross-validation over λ and the learning rate. The model was
trained on a subset of the instances of target 3 or 5 which fall within the first 5,000 instances of
the training dataset. It is using DFO1 regularisation. The aim of this experiment is to determine
whether the selection of λ makes a difference to the classification ability of the model. It is not
to obtain optimum values for λ and the learning rate. The table shows the average precision over
five runs of the model and error is estimated using standard deviation. The validation set here is
the set of instances with target 3 or 5 which fall within the 5,000 instances following the training
subset. It was expected that this experiment would display that the value of λ is irrelevant with
a correctly tuned training rate. Arguably, the results show this to be the case. Although there
are differences in the accuracy achieved when altering values of λ, these are small. Figure 4.9
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Figure 4.9: A visual depiction of the filters learned by a classifier using DFO1 regularisation for
a selection of values of λ. Left: λ = 0.01, middle: λ = 0.1, right: λ = 1.

shows an example of the filters which are learned by each of the values of λ using the highest
performing learning rate. Each filter is similar in appearance, although values in the λ = 1 filter
are negative, hence its inverted appearance. The K-CSVM with λ = 1 did not learn correctly
for the larger learning rates due to the issue discussed previously whereby filter values oscillate
between positive and negative, each time growing in value. When using a learning rate of 0.01,
the weight update of the first iteration was greater than the size of the filter, thus causing an
inversion, however, the size of the inverted filter was not sufficient for the second iteration to
return filter values to positive. From this point, the filter remained negative. In this case, the
learning rate is too large for the selected value of λ.

To conclude, the choice of λ does not appear to be significant, as long as care is taken
to tune this alongside the learning rate so that convergence occurs. This is true for each of
the regularisation types tested as part of this work. The filters learned when using the DFOp
regularisations developed in this work are similar in appearance to those learned using p-norm
regularisation within the same family. However, when using regularisation with a different p, the
filters are different in appearance. For example, the filter learned when using L2 regularisation
will likely appear different than when using L1 regularisation.

The next parameter which required tuning was C. C is a regularisation parameter of the
internal SVM which controls the width of the margin. A large C will result in a narrow margin
with few instances selected as support vectors, whereas a smaller C increases the margin by
increasing the number of support vectors, potentially allowing more instances to fall between the
boundaries. It achieves this by limiting the values within α such that αi ≤ C ∀i. As briefly
discussed in section 4.4.1, it was found that C regularisation was unhelpful on MNIST. The
highest achieving classifier had C set sufficiently high that it did not constrain any of the values
within α. It was found that even without regularisation, a large proportion of the instances
are selected as support vectors, and that values within α rarely rose above a value of 10−3.
When training with the subset described above, any value of C small enough to restrict the size
of values in α was found to decrease accuracy on the validation set. This was true for both
the K-CSVM and for an ordinary SVM. This is likely because even the subset of MNIST has
a sufficiently large number of instances that it is difficult to overfit when using a low degree
polynomial. When using a polynomial degree of four or greater, a light restriction on α gave a
small increase in generalisation accuracy, though this accuracy was still lower than using a degree
of two and no regularisation. By reducing the size of the subset to include only the 3s and 5s
within the first 400 instances, it was possible to gain an increase in the generalisation accuracy
by tuning C, even when d = 2.
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d DFO1 DFO2 SVM
1 93.58 ± 0.17 93.63 ± 0.09 93.67
2 98.32 ± 0.04 98.20 ± 0.02 98.06
3 98.28 ± 0.03 97.65 98.01
4 98.01 97.44 97.60
5 97.39 96.88 96.46

Table 4.3: Cross-validation to find the optimum kernel degree for DFO1 and DFO2 regularisation.
The classifiers were trained on the MNIST subset containing 1020 instances with a target of 3
and 882 instances with a target of 5. Results are averaged over five runs and error is measured
using the standard deviation. The error value is omitted for entries with a standard deviation of
0.

To select a value for the polynomial degree and to choose the regularisation type, cross-
validation was used. The results of this are shown in table 4.3. Each classifier was trained on the
MNIST subset containing the instances with a target of 3 or 5 which fall within the first 10,000
instances. The validation set contained the instances with equivalent targets which fall within
the following 10,000 instances. The results show the average value and the standard deviation
calculated over five runs of the model. The experiments for DFO1 regularisation had λ = 0.01
and a learning rate of 0.1. DFO2 regularisation was found to require lower values to converge
for all degrees. Instead, these experiments had λ = 0.001 and a learning rate of 0.01.

4.5 Experimental Results: CIFAR-10

As well as testing on MNIST, this work collects results on the CIFAR-10 dataset (Krizhevsky,
2009). Like MNIST, CIFAR-10 is an image classification benchmark dataset which is freely
available to researchers. The instances are of size 32 × 32 and contain colour photos of real-
world objects. The dataset contains 60,000 images, portioned into 50,000 training instances and
10,000 testing instances. The instances are split into ten target classes and there are exactly
6,000 instances per class. As with MNIST, this work uses only two of the CIFAR-10 target
classes. CIFAR-10 is a considerably more difficult dataset than MNIST, and therefore it is not
necessary to train on the most difficult pairing. Instead, this work uses the first two target
classes: aeroplanes and automobiles. To utilise the RGB colour channels, this work takes the
simple approach of vertically appending the red, green and blue images into a combined image
of size 96 by 32. It does so for each of the classifiers which are tested on CIFAR-10. The
convolutional filter of the K-CSVM passes over the entire combined image such that the same
filter is used to find features within each of the colour channels.

4.5.1 Results

As with MNIST, this work trained on a subset of the CIFAR-10 dataset due to the extensive
training time of the full dataset. Krizhevsky (2009) has split the CIFAR-10 training dataset into
five separate data files, each of 10,000 instances. This work trains on only the instances with
a target class of aeroplane or automobile which fall within the first of the five data files. This
results in 1005 aeroplanes and 974 automobiles.
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CIFAR-10 Results
Model Training

accuracy %
Testing
accuracy %

SVM 94.19± 0 85.05± 0
CNN 94.54±2.09 80.15± 1.09
K-CSVM 91.99± 0 85.56± 0.02

Table 4.4: Accuracy on a binary CIFAR-10 subset containing instances with a target of ‘aero-
plane’ or ‘automobile’. Each classifier was trained on a subset containing 1005 aeroplanes and
974 automobiles. Results are averaged over five runs and error is estimated using the standard
deviation. The CNN has a single convolutional filter and does not perform subsampling.

The K-CSVM used to obtain results on the CIFAR-10 dataset was similar in structure to the
one used on MNIST, although parameter values differed. The highest performing classifier was
found to have a polynomial degree of three. It used DFO2 regularisation and had both η and λ
set as 0.1. The filter was of size 5 × 5. Unlike the classifiers trained on MNIST, the CIFAR-10
classifiers were found to gain benefit by correctly tuning C. However, it was found that the
optimal value of C declined through several orders of magnitude during training. Moreover, if
the value of C was set too low for the initial iterations then training did not converge successfully.
For this reason, C was only utilised on the final iteration, at which point the optimal value was
found to be 10−11. Section 4.5.3 shows how this configuration was decided.

The SVM trained for comparison used a polynomial degree of 3, however, it required a
larger value for C, with a value of 10−8 achieving the greatest accuracy on the validation set.
This configuration was found by using cross-validation. Cross-validation assessed the polynomial
degree between the values of two and five in increments of one; it selected which values of C
to evaluate by determining the point at which C began to restrict the size of values in α, then
iteratively decremented the exponent of C by one until all of the values in α were restricted.
The CNN used to predict CIFAR-10 was equivalent to the CNN described in table 4.1, however,
it used 800 nodes in the hidden layer rather than 500 and the value of η was 10−4. Again, cross-
validation was used to find these values; it tested hidden layers of size 100 to 1000 in increments
of 100, and η values of 10−3, 10−4 and 10−5. A number of configurations were tested which
employed multiple hidden layers, however, the accuracy achieved by each of these fell short of
the accuracy achieved by the highest performing network with a single hidden layer.

As can be seen in table 4.4, the K-CSVM is the highest achieving classifier of those tested.
It achieves an average generalisation accuracy of 85.56%. This is a little greater than a SVM
and considerably greater than a CNN. Despite having a greater generalisation accuracy, the
K-CSVM achieves a decidedly lower training accuracy when compared to the other classifiers.
However, this is not a shortcoming. On the contrary, the reduced disparity between training
and testing accuracies demonstrates the effectiveness of the convolutional filter for preventing
overfitting. Interestingly, the same cannot be said for the CNN, which achieves the greatest
average training accuracy, but the lowest generalisation accuracy. Since a convolutional filter
is shown to help a SVM, the overfitting has likely been caused by the fully connected network.
Thus, the results highlight that switching out the fully connected network for a SVM is a useful
tactic for improving the models ability to generalise between training and testing data.
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Figure 4.10: A visualisation of the filter trained by the K-CSVM during the experiment used to
obtain results for table 4.4. Each of the five runs learned filters which were close to identical.

4.5.2 Analysis

Figure 4.10 shows the filter which was trained by the K-CSVM during the experiment used to
obtain results for table 4.4. Over the five runs used to obtain the results, each of the learned
filters was close to identical. This is interesting as the classifier used to obtain results on MNIST
learned a different filter on each run. One of the main differences between the two experiments
is the regularisation type. This experiment used DFO2 whereas the previous experiment on
MNIST used DFO1 regularisation. The finding that DFO2 learns more stable filters between
runs than DFO1 regularisation is consistent with the findings in section 4.4.3. Figure 4.11 shows
the effect of the filter on four example images. Each image is of size 96 × 32 and contains the
vertical concatenation of the RGB channels; these have each been visualised in grayscale. The
learned filter can be recognised as a low-pass filter, however, the blurring is to an even greater
degree than the low-pass filter shown in figure 4.4 in the previous section. This is due to the low
central value of the filter. The K-CSVM likely benefited from an extreme blur on this dataset
because the features are not centred within the image and they are of inconsistent size.

4.5.3 Tuning

Table 4.5 shows the results of cross-validation over the kernel degree and C. Each classifier used
DFO1 regularisation and was otherwise set up using the same configuration as the classifier used
to obtain the results in table 4.4. As mentioned previously, the CIFAR-10 training set is split
into five data files, each containing 10,000 instances. The set used for training was the first of the
data files and the set used for validation was the second of the training files. The results show the
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Figure 4.11: Feature maps after convolving with the learned filter. Four images and their cor-
responding feature maps are displayed. Each image is of size 96 × 32 and contains the vertical
concatenation of the RGB channels. The channels have been plotted in grayscale.

d
2 3 4 5

C
10−7

10−3 82.82±0.21
10−4 83.22±0.18
10−5 82.87±0.09
10−6 81.20±0.12
10−7 84.61±0.03
10−8 83.04±0.03
10−9 80.38±0.03 84.36±0.20
10−10 84.58±0.36
10−11 83.29±0.12 82.22±0.05
10−12 80.23±0.03 83.98± 0
10−13 83.77± 0
10−14 82.77± 0

Table 4.5: Cross-validation to find the optimum values for d and C when using DFO1 regulari-
sation on the filter. The classifiers were trained on the first of the CIFAR-10 training data files,
and validated on the second of the data files.

mean accuracy averaged over three runs and error is estimated using standard deviation. Table
4.6 shows an equivalent cross-validation, however, it uses DFO2 regularisation. Other than the
regularisation, the classifier was set up the same as the DFO1 classifier. Overall, the results show
that the highest validation accuracy is achieved by a classifier using DFO2 regularisation, d of
3 and C of 10−11. Thus, this was the configuration used to obtain results on the testing sets in
table 4.4.

4.6 Conclusion

In this section, a method is proposed which may be used to augment a kernelised SVM with
a convolutional filter. The thesis calls the resulting model the K-CSVM and proposes an algo-
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d
2 3 4 5

C 10−5 82.47
10−6 85.23
10−7 84.13
10−8 81.87
10−9 83.17
10−10 84.88
10−11 86.04
10−12 83.17
10−13 83.02
10−14 84.28
10−15 85.72∗

10−16 83.88
10−17

10−18 84.43
10−19 85.03
10−20 83.58
10−21 79.91

Table 4.6: Cross-validation to find the optimum values for d and C when using DFO2 regulari-
sation on the filter. The classifiers were trained on the first of the CIFAR-10 training data files,
and validated on the second of the data files. The results are averaged over five runs, however,
the standard deviation was found to be 0 for each value apart from the value marked by an
asterisk for which the standard deviation was 0.03.

rithm for training. The algorithm works by casting the learning problem as a Multiple Kernel
Learning (MKL) problem. To do this requires that the convolution operation is moved into the
kernel function with the filter weights as arguments. In this form, there are many MKL solving
algorithms which can be used to optimise both the SVM parameters and the filter weights. This
thesis uses the GMKL algorithm. GMKL is able to find globally optimum SVM parameters,
while also learning filter weights using gradient descent. It is shown in figure 4.1 that the loss
function is correctly minimised during learning. To the knowledge of this author, this is the first
research in which convolution has been applied to a kernelised SVM.

The K-CSVM is tested on the MNIST and CIFAR-10 datasets. It achieves a greater general-
isation accuracy on both datasets than a SVM or an equivalent CNN with a single convolutional
filter. The model learns a low-pass filter on both of the datasets, however, the extent of the
blurring differs on each; on MNIST, the filter performs a little blurring, whereas on CIFAR-10
it is drastic.

In this work, the K-CSVM uses a single filter. An opportunity for improvement could be to
learn a library of filters, each of which could be used to extract a different feature from within
the input. To achieve this, the CMT function could be reformulated so that it satisfies:

CMT(x,F)ᵀvec(F) = vec


x ∗F1

...
x ∗Fn


 where F =

f1...
fn

 . (4.12)

This could be accomplished by diagonally arranging the convolutional matrix required for each
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CMT(x,F) =

CMT (x,F1) 0 0
0 CMT (x,F2) 0
0 0 CMT (x,Fn)


Figure 4.12: A convolutional matrix to allow convolution using multiple filters. The filters are
arranged into diagonal blocks.

filter as shown in figure 4.12. This would likely be more effective when using a filter regularisation
in the L1 family than from the L2 family because experiments in this chapter have shown that
L2 regularisation learns a similar filter on each run of the model. There would be little benefit
to learning multiple filters which all extract the same feature. Alternatively, the K-CSVM could
continue using filter regularisation in the L2 family, but could include a selection of different
filter sizes in the hope is that larger filters may pick out different features from smaller filters.
Further work is required to determine whether this is an effective strategy.

In addition to arranging filters horizontally, many state-of-the-art CNNs stack filters vertically
by using multiple convolutional layers. This helps to improve the translation invariance of the
model, meaning that it is more robust to changes in the location of the feature within the inputs.
If additional convolutional layers were introduced to the K-CSVM then it would be possible
to train them by using backpropagation, similar to the approach taken in (Tang, 2013). To
recap, backpropagation is an extension to gradient descent in which the gradient is recursively
passed back through a number of layers. All that is required to train using backpropagation is
that the gradient may be calculated in the penultimate layer. Since the K-CSVM uses gradient
descent to update filter weights, the penultimate gradient is available. Thus, backpropagation is
a viable training option. This would likely increase generalisation accuracy, while also reducing
the training time, as each convolutional layer reduces the size of the final feature maps. Training
time could be further reduced by introducing subsampling layers.

With stacked convolutional layers, the K-CSVM may be able to gain a further improvement
in its ability to generalise through the introduction of either dropout or DropConnect. Dropout,
described in (Srivastava et al., 2014), is a technique which may be used to guard against overfit-
ting. It is a method of regularisation which works by setting the value of random activations to
zero during training. For a convolutional layer, this means setting the activation of random fea-
ture map values to zero. DropConnect (Wan et al., 2013b) is a generalisation of dropout, where
instead a random subset of connection weights are set to zero. Both dropout and drop connect
aim to reduce overfitting by preventing co-adaption between connections. Both methods have
achieved state-of-the-art results on a number of benchmark datasets. Although either method
may be used with a single convolutional layer, it is likely that a greater benefit would be gained
with the increased number of connection weights which would result from stacked convolutional
layers.
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Chapter 5

Conclusion

In this work, two methods are presented which may be used to utilise convolution during the SVM
classification process. The first method may be used to introduce a convolutional filter to a linear
SVM, whereas the second method makes it possible to use a kernelised SVM. A training algorithm
is presented for each method. The first algorithm, which the thesis names the L-CSVM algorithm,
uses an iterative and alternating two-step optimisation to achieve convergence. It first learns the
SVM primal weight vector while holding the filter weights fixed, then it learns the convolutional
filter with the weight vector fixed. The filter update step is cast as a SVM optimisation problem
and may be learned using an arbitrary linear SVM optimisation algorithm. The second algorithm,
dubbed the K-CSVM algorithm, formulates the optimisation problem as a MKL optimisation.
It is able to learn globally optimal SVM parameters while learning reasonable filter weights by
using gradient descent. The algorithm is based on GMKL, but it has been specialised for filter
learning.

The L-CSVM and K-CSVM algorithms each show promising results. The L-CSVM is tested
on the MNIST dataset and achieves a greater generalisation accuracy than a linear SVM or a
linear CNN with a single convolutional filter. It learns a low-pass filter which creates feature
maps that are blurred in appearance. The blurring operation makes the model less sensitive to
inconsistencies in the location of features within the inputs. As a result, the L-CSVM is able to
generalise to unseen data more effectively than a SVM. However, the linear nature of the model
is restrictive on MNIST, and as a result, the accuracy is inferior when compared to non-linear
algorithms. The K-CSVM algorithm makes use of a kernelised SVM, and therefore achieves
non-linearity. It is tested on subsets of the MNIST and CIFAR-10 datasets and is found to learn
a low-pass filter on each, though the blurring is to a greater degree on CIFAR-10. It achieves
superior generalisation accuracies on both datasets when compared to a kernelised SVM and a
CNN with a single convolutional filter.

However, the K-CSVM could not be tested on the full MNIST or CIFAR-10 datasets due
to the training time and memory requirements of the algorithm. The focus of this work was
on proving the K-CSVM as a concept and little effort was expended in enhancing its efficiency.
There are many improvements which could be made to accelerate the algorithm and these could
shape the direction of future work. A number of these will be discussed in the following text.
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For optimising the filter weights, this work uses the GMKL algorithm. GMKL is able to learn
α∗ using an arbitrary SVM optimiser, however, the internal kernel parameters, in this case, the
filter weights, are optimised using gradient descent. Gradient descent is a well-researched algo-
rithm and many optimisations have been developed to decrease training time. Such optimisations
could be introduced to the K-CSVM. For example, in chapters 3 and 4, NAG momentum was
found to reduce the number of steps required to train a CNN. It was also found to increase the
generalisation accuracy of the final classifier as it provides resilience against local minima. In-
troducing momentum to the K-CSVM would be no more difficult than for a neural network, and
since the K-CSVM converges to a similar solution each time, particularly when using regularisa-
tion in the L2 family, momentum would likely be even more effective for reducing the training
time of this model. Another performance optimisation which could have been adopted is to select
the step size using an Armijo line search, as in (Varma and Babu, 2009). The dynamic nature
of the Armijo rule would likely let the algorithm take greater steps towards the optimum, while
also allowing fine-grained weight updates when close to the solution. Alternatively, gradient
descent could be replaced altogether by a higher order Newtonian method for selecting direction.
For example, in (Jain et al., 2012), gradient descent is replaced with Spectral Gradient Descent
(SPG). The resulting algorithm is named SPG-GMKL. SPG uses higher order information to
take approximate steps. It is well suited to large-scale problems as it efficiently builds a coarse
approximation with little memory overhead. Empirical results of SPG-GMKL show an order-
of-magnitude decrease in training time on large datasets. For example, Jain et al. (2012) show
that when learning a product of kernels on a dataset of 20,000 training instances, SPG-GMKL
converges in 0.66 hours, compared to 18.89 hours for GMKL. This is due to the reduced number
of iterations required before convergence. This work decided against using SPG-GMKL as the
approximate nature of SPG would have made it more difficult to monitor the progress of the
algorithm. The predictability of gradient descent was more valuable to the aims of this work
than a decrease in training time. However, now that the K-CSVM has been shown to learn
effectively using vanilla gradient descent, SPG-GMKL would likely be a productive avenue for
future work to explore.

Another adjustment which could be made to the learning algorithm would be to train on
mini-batches at each iteration rather than the full dataset. Currently the entire dataset is
used to calculate the gradient per iteration, however, this may be unnecessary. The number
of calculations required for the filter update step is in the order of quadratic compared to the
number of training instances. In addition, the algorithm must learn a kernelised SVM on each
iteration. It is known that the number of iterations required to train LibSVM is greater than
linear compared to the number of training instances (Chang and Lin, 2011). Thus, both of the
update steps in the K-CSVM would likely gain more than a linear reduction in training time by
decreasing the size of training batches. As discussed in section 2.2, mini-batch gradient descent
can also be more resistant to local minima than batch gradient descent.

In section 4 a SVM optimisation algorithm named LASVM is briefly described. LASVM is
a SVM training algorithm which boasts competitive performance after a single pass over the
training data. In (Bordes et al., 2005) the results of LASVM are compared against LibSVM.
LibSVM is shown to achieve an error rate of 1.36% and takes 17,400 seconds to train. After
a single pass over the training data, LASVM achieves an error rate of 1.42%. This takes 4950
seconds to train. A subsequent pass over the training data brings the error to 1.36% with a
training time of 12210 seconds. For the K-CSVM, it is unclear how beneficial a high level of
convergence is for the internal optimiser. A lower level of convergence may be adequate during
training. If the internal optimiser was LASVM, then perhaps a single pass could be used per
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iteration until the final iteration which could use multiple passes.

As well as optimising the efficiency of the algorithm, future work could fine tune the code
and the hardware used to execute the code. The code in this work was single threaded and it
was run on a machine with a 2.2 GHz Intel Core i7 processor and 16GB of RAM. Many of the
modules in the code could be parallelised, for example, in the multiclass problem, the classifiers
used to learn different OVO pairs could be trained on separate cores. In addition, the code was
executed on a CPU, and so it was not designed with GPU acceleration in mind. Implementing
each of these ideas would likely result in a substantial decrease in the required training time.

In section 4.6 of the previous chapter, it is suggested that the K-CSVM would benefit from
using stacked convolutional and subsampling layers. Using multiple convolutional layers has been
a successful technique for increasing the generalisation accuracy of the CNN on many datasets.
The primary reason for this is that each convolutional layer or subsampling layer provides a degree
of translation invariance. This effect is cumulative to a point. Using multiple convolutional and
subsampling layers would also be advantageous to the training time due to the reduced size
of the final feature maps which are provided to the internal SVM. Section 4.6 suggests that
backpropagation may be used to learn a K-CSVM with multiple convolutional layers. As well
as using multiple layers, the CSVM may benefit from using multiple filters per layer. Each filter
can learn to extract a separate feature from the input, thus learning a library of feature maps.
Section 4.6 proposes a method to achieve this by adapting the CMT method to arrange the
convolutional matrices diagonally.

Overall, this work has shown that augmenting a SVM with a convolutional filter is an effective
technique to improve the model’s ability to generalise to unseen data. The convolutional filter
allows the CSVM to extract spatial information, which is unavailable to a SVM, from input
features. Experimental results show this to be beneficial to the generalisation accuracy in both
the linear and the non-linear cases. As well as comparing against a SVM, this work contrasts
the CSVM with the CNN. Like the CSVM, the CNN is intrinsically able to utilise the spatial
information from within its inputs. However, the CNN uses a MLP for prediction and therefore
it does not guarantee that an optimal hyperplane is learned. This work shows the L-CSVM and
K-CSVM to outperform equivalent CNNs on the MNIST and CIFAR-10 datasets. It would be
interesting to see future research in which a K-CSVM with a greater number of convolutional
filters and layers is tested using the full extent of these datasets.
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Appendices
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.1 K-CSVM Derivatives

Section 4.1 in chapter 4 introduces convolutional kernels. These are mercer kernels for which
the convolutional filter is integrated as an internal kernel parameter. In this form GMKL may
be used to optimise the filter coefficients. To use the learning schemes of the Varma and Babu
(2009), the following derivative is required:

∂H

∂gk
=
∂ Y KY

∂ gk
(1)

where K ∈ RN×N is the matrix of kernels evaluated for each pair of observations, Y is the
diagonal matrix whose elements are the labels and gk are the kernel parameters, in this case the
filter coefficients, fk. The following two sections show how this derivative may be calculated for
the polynomial and RBF kernels respectively. However, both sections reach a point where the
derivative of a quadratic form S = fᵀ∆f for some F ×F matrix ∆ is required. This is calculated
here.

One way to calculate the derivative of the quadratic form is to consider S explicitly and to
differentiate with respect to fk. Thus:

S = fᵀ∆f (2)

=

F∑
i=1

F∑
j=1

∆ijfifj (3)

and

∂S

∂fk
=
∂

∂fk

F∑
i=1

F∑
j=1

∆ijfifj (4)

=

F∑
i=1

F∑
j=1

∆ij
∂fifj
∂fk

. (5)

The term ∂fifj
∂fk

is zero unless i = k or j = k. If i = k, then the result is
∑F
j=1 ∆jkfj =

[f∆ᵀ]k, where [z]k means the kth element of the vector z. Similarly, if j = k then the result is∑F
i=1 ∆ikfi = [f∆]k. So

∂S

∂fk
=

F∑
j=1

∆kjfj +

F∑
i=1

∆ikfi (6)

= [f∆ᵀ]k + [f∆]k (7)

Putting the results together for each k gives

∂S

∂f
= fᵀ(∆ᵀ + ∆) (8)

If ∆ is symmetric:

∂S

∂f
= 2fᵀ∆ (9)
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.1.1 Polynomial kernel

Here the kernel is

Kf (xm,xn) = (1 + (Xmf)ᵀ(Xnf))
d (10)

= (1 + fᵀXᵀ
mXnf)

d (11)

Therefore, using the result (6) with ∆ = Xᵀ
mXn, which is not symmetric, gives

∂

∂fk
Kf (xm,xn) = d (1 + fᵀXᵀ

mXnf)
d−1 ∂

∂fk
(1 + fᵀXᵀ

mXnf) (12)

= d (1 + fᵀXᵀ
mXnf)

d−1
[fᵀ(Xᵀ

mXn +Xᵀ
nXm)]k (13)

Therefore
∂Hmn

∂fk
= ymynd (1 + fᵀXᵀ

mXnf)
d−1

[fᵀ(Xᵀ
mXn +Xᵀ

nXm)]k (14)

The most efficient way of constructing ∂H
∂ fk

will be to construct all F of them simultaneously,
only computing Xᵀ

mXn once for each m and n.

.1.2 RBF kernel

The kernel between two observations xm and xn is given by

Kf (xm,xn) = exp
{
−γ‖Xmf −Xnf‖2

}
(15)

= exp {−γ(Xmf −Xnf)ᵀ(Xmf −Xnf)} (16)
= exp {−γfᵀ(Xm −Xn)ᵀ(Xm −Xn)f} (17)
= exp {−γfᵀ∆f} (18)

where γ is a width parameter and ∆ = (Xm−Xn)ᵀ(Xm−Xn). This can be used to differentiate
(18):

∂Kf (xm,xn)

∂fk
=
∂

∂fk
exp {−γfᵀ∆f} (19)

= exp {−γfᵀ∆f} ∂
∂fk

[−γfᵀ∆f ] (20)

= −γKf (xm,xn) [fᵀ∆ᵀ + fᵀ∆]k (21)

Therefore

∂Hmn

∂fk
= −2γymynKf (xn,xm)[fᵀ∆(xn,xm)]k (22)

Again, the results of each Xᵀ
mXn should be stored so that they are only computed once.
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