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p-ADIC DEFORMATION OF MOTIVIC CHOW GROUPS

ANDREAS LANGER

ABSTRACT. For a smooth projective scheme Y over W (k) we con-
sider an element in the motivic Chow group of the reduction Y, over
the truncated Witt ring W,,,(k) and give a “Hodge” criterion - using
the crystalline cycle class in relative crystalline cohomology - for the
element to lift to the continuous Chow group of the associated p-adic
formal scheme Y,. The result extends previous work of Bloch-Esnault-
Kerz on the p-adic variational Hodge conjecture to a relative setting.
In the course of the proof we derive two new results on the relative de
Rham-Witt complex and its Nygaard filtration, and work with a rela-
tive version of syntomic complexes to define relative motivic complexes
for a smooth lifting of Y, over the ind-scheme Spec W (W, (k)).
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INTRODUCTION

In a recent work, Bloch, Esnault and Kerz studied a p-adic analogue of
Grothendieck’s variational Hodge conjecture on the deformation of algebraic
cycles resp. vector bundles. In the context of what is called p-adic variational
Hodge Conjecture [B-E-K1], Conjecture 1.2, the above authors gave a Hodge-
theoretic condition on the crystalline Chern class when a vector bundle on a
smooth projective variety Y; over a perfect field k£ of char p lifts to a vector
bundle on a formal lifting Y, of Y7 over the Witt vectors W (k). Their method
relies on a construction of a motivic pro-complex Zy, (r) in the derived cate-
gory of pro-complexes with respect to the Nisnevich topology on Y7, which is
obtained by glueing the Suslin-Voevodsky complex on Y; with the syntomic
complex of Fontaine-Messing on Y, along the logarithmic Hodge-Witt sheaf in
degree r. The continuous Chow group Ch[_ . (Y,) is defined in [B-E-K1] as the
hypercohomology of the complex Zy, (r) and is equipped with a canonical map

Chy,

cont

(Ya) — LimH* (Y1, Zy, (r)) — Ch" (Y1) = H*" (Y1, Zy, (1))

n

to the usual Chow group of Y;. The obstruction of deforming an algebraic
cycle class from Y7 to Y, lies in the cohomology of a certain truncated filtered
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2 ANDREAS LANGER

de Rham complex on Y which is already entailed in the definition of the syn-
tomic complex. The filtered de Rham complex, denoted by p(r)Q§,. is —as a
procomplex — quasiisomorphic to a filtered version of the de Rham-Witt com-
plex denoted by q(r)W€y, ;, in the étale/Nisnevich-topology [B-E-K1] Prop.
2.8. Hence the obstruction can be made visible by using the crystalline Chern
classes which are induced by Gros’s Chern classes [Gr] with values in the log-
arithmic Hodge-Witt cohomology [B-E-K1] Theorem 8.5. In another deep re-
sult Bloch-Esnault-Kerz relate the continuous Chow ring @,<4Chg,. (Ye)g to
continuous K-theory K§°"(Y,)g [B-E-K1] Theorem 11.1. This finally enables
them to give an equivalent Hodge-theoretic criterion when a vector bundle,
rationally, can be lifted from Y7 to Y, [B-E-K1], Theorem 1.3.

In the present note I study a relative version of the work of Bloch-Esnault-
Kerz, starting from the “motivic” Chow group H?"(Y1,Zy, (1)) for fixed m.
The problem is to find a similar criterion when an element in the latter co-
homology group (the case m = 1 being treated in [B-E-K1]) lifts to the con-
tinuous Chow group Chl . (Y,). In such a mixed characteristic situation, es-
pecially when working with a scheme Y, defined over the artinian local ring
W (k), it is reasonable to define the cohomological codimension r» Chow group
as HY (Y, KMI). The graded object is automatically a ring, contravariant in

Y., (see [B-E-K2], §4 for a similar situation in char 0).
There is a canonical map

H* (Y1, Zy, (1) == H"(Y,,, KM

which in some cases can be shown to be an isomorphism or at least an epimor-
phism. Hence our problem is still related to deforming Chow groups p-adically.
Whilst Bloch-Esnault-Kerz entirely work with Zy, () as a procomplex, we need
to define Zy,, (r) at a finite level which requires some additional thoughts related
to the divided Frobenius in the definition of the syntomic complex at finite level.
For fixed m we consider the smooth projective scheme Y,,, = X; over the ring
R = W,,(k) and we assume there exists a compatible system X,,/Spec W,,(R)
of liftings of X; which is compatible with the formal lifting Y, of Y7, that is
Xnt1 XSpec Woi1(R) SPeC Wi (R) = X, and X,y Xgpee w, (r) Spec Wy (k) = Yy,.
Such a system X, defines an ind-scheme X, over the ind-scheme Spec W, (R)
in the sense of [EGA1], Prop. 10.6.3. As multiplication by p is not injec-
tive on W(R) we need an alternative definition of the relative syntomic com-
plex ox, /w,(r)(r), using a divided Frobenius map defined on a filtered version
N"™W,eQx, /r of the relative de Rham-Witt complex WQ;(l/R. If m=1, so
R =k, then our complex ox, (r) and the complex oy, () of Fontaine-Messing
[F-M] resp. Kato [K2] are isomorphic as procomplexes. We formally define a
motivic complex Zx,(r) on X; in the same way as Bloch-Esnault-Kerz, by
glueing Zx, (r) with ox,(r) along the relative logarithmic Hodge-Witt sheaf
W /Rlog in degree r and obtain a similar Hodge-theoretic condition to lift-
ing a class in H?"(Y1,Zy,, (r)) to H*(X1,Zx,(r)), by using the crystalline
cycle class with values in relative de Rham-Witt resp. relative crystalline co-
homology.
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p-ADIC DEFORMATION OF MOTIVIC CHOW GROUPS 3

As the ind-scheme X, is assumed to be compatible with Y, we can give a
positive answer to our original problem (Theorem 3.6). We formulate here
the main application on deforming elements in motivic Chow groups p-adically
(Corollary 3.9):

THEOREM 0.1. Letr < p.

(i) LetY, be a formal smooth projective scheme over SpfW (k). Let X1 =Y,
for some fixed m € N and assume X1 admits a smooth lifting X, over
Spec Wo (W, (k)) compatible with Y. Let € € H?" (X1, Zx, (r)).

If ¢(&) is “Hodge” with respect to X, i.e. c(£) € Image(H?"(X,, Q)z(:) —
H? (X1, N"WaQ%, .. (x)))s then € lifts to an element e CH!  (Y.) =
Hggnt (Ylv ZY- (T)) .

(i) Let z € image(m,.). If its crystalline cycle class is “Hodge” with respect
to X,, then z lifts to an element 3 in {iﬂlHT(Yn, 5{13\,/{:{7)

The theorem should be compared with [B-E-K1] Theorem 8.5. In the proof we
will see that the implications in (i) and (i¢) do not depend on the choice of
X.; Given two liftings X,, X, compatible with Y,, with respect to which ¢(§)
resp. ¢(z) is “Hodge”, the lifting property of £ resp. z holds. In the course of
the paper we need two technical results on the relative de Rham-Witt complex
which play a crucial role in our construction and in the proofs.
In the relative setting the filtered de Rham complex p(r)Q§,. mentioned earlier
and used in the case R = k in [B-E-KI] is replaced by the complex (I :=

VW(R)) denoted by FQ%, wa(w):

pd pd pd r—1 d r d
IrROx, — Ir Qw (R) Q%(./W.(R) — e —> IR@QX./W.(R) — QX./W.(R) —

Then we prove Conjecture 4.1 in [L-Z2] for r < p

THEOREM 0.2. Let r < p. The complex FTQ;(./W.(R) is in the derived category
isomorphic to the complex, denoted by N’"W.Q;Q/R

W.0x, 4, WOQﬁﬁ/R 44 W.Q;{:}R v, W, /r 4,

The Theorem already holds at finite level for X, /W, (R) for any ring R on
which p is nilpotent (see Theorem 1.2).

In a second technical result on the relative de Rham-Witt complex we derive
an exact triangle generalizing [I1] T 5.7.2 and [B-E-K1] Corollary 4.6 in the case
R=k.

THEOREM 0.3. (= Theorem 1.9). Let R be artinian local with perfect residue
field k and X1 smooth over Spec R. In the derived category of procomplexes on
(X1)et we have a short exact sequence

T T ° 1-Fr .
0 — Weldx, /R10gl—T] — N'WaQ%, g — Wy, g — 0.
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4 ANDREAS LANGER

Note that the complex q(r)W.Qg(l/k appearing in [B-E-K1] Corollary 4.6 is
isomorphic as procomplex to N"WeQ% ;. by [L-Z2] Proposition 4.4, if R = k.
Finally, we point out that Theorem 0.2 has been applied in the construction of
higher displays ([G-L] Theorem 1.1 and [L-Z2] Conjecture 5.8).

In the equal characteristic p case, Matthew Morrow has recently studied a
relative version of another arithmetic conjecture, the Crystalline Tate Conjec-
ture (see [M1], [M2]), which is a characteristic p analogue of Grothendieck’s
variational Hodge conjecture.

This paper was prepared during a visit at IHES in Bures-sur-Yvette. The
author thanks THES for their hospitality.

1 RELATIVE SYNTOMIC COMPLEXES

Let X be a smooth scheme X over Spec R (R artinian local with perfect residue
field k of characteristic p > 0), admitting a lifting X, as ind-scheme over
Spec We(R). We are going to define relative syntomic complexes ox, (r) that
will be entailed in the construction of the relative motivic complexes Zx, (r)
later on.

The definition of ox,(r) will rely on an appropriate divided Frobenius map
Fr on a filtered version of the relative de Rham-Witt complex, denoted by
N"W,Q% /R

W 10x =5 W 1@ p =5 0 — W O 5 W =5 WOl =5

(compare the definition in [L-Z2], Definition 2.1). Secondly, we will need a com-
parison between the complex N"W, Q% /R and the following ‘filtered’ de Rham

complex on the lifting X,,, denoted by S"TQB(H/WR(R), where Ip = VW,,_1(R):

1 1 d _ d_ o d
I @w,(r) Ox, = In @w,m) L, yw, )~ Ir Ow, ) X w, )~ W ywoim

We recall the following

CONJECTURE 1.1. ([L-Z2] Conjecture 4.1). Let R be a ring on which p is
nilpotent, X, /W, (R) smooth and X := X, xw, r)yR. There is an isomorphism
in the derived category between the complexes N’"WnQ;(/R and :TTQ;(W,/Wn(R)'

We can prove the following
THEOREM 1.2. The conjecture holds if r < p.

Proof. Assume first that there exists a closed embedding X,, — Z, into a
smooth W), (R)-scheme Z,, which is a Witt lift of Z = Z xyy, (g) R in the sense
of [L-Z1] Definition 3.3. That is it is equipped with a map A, : W,,(Z) — Z,
fitting into a commutative diagram
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p-ADIC DEFORMATION OF MOTIVIC CHOW GROUPS 5

Wi (X) Wi (Z)
wo JAn
X ¢ X, Zn

Such a Witt-lift always exists locally. Let I be the ideal sheaf of X,, in Oz, and
J = J, be the divided power ideal sheaf of the embedding i,. Let Op, be the
PD-envelope of Oz, with respect to J, with underlying scheme D,,. We already
know that the complex Op, ®o0,, Q% . (g is quasiisomorphic to Q% ()
(1], [B-O]). Let " for 7 > 1 be the higher divided power ideal sheaves.

To keep notation light we will write O for Op,, Q* for 7, | 1IR3V for Ir@w, (r)
U} and IRIVIQ for Ir @w, (r) (IV) ®0p, 2p, ). Then we consider the following
diagram of complexes

IR0
R b

[Rj E— ]RQl
\Pd
. y

IxJlr=3] KA TRJlr=2I01 d 4 TRQr—3
pd
IRIr=2 L ppglr=2i1t &L, g3 L, 102
pd
IRJ[rfl] i IRJ[’V’*Q]Ql i Ce i IRj[Q]QT73 i} IRJQT72 i IRQT71
d

gl 4 qgr—1]qr 4, 4, gBigr-3 _4, qi2igr—2 _4, gqr-1 4 qr 4

(1.3)
As in the classical case for R = k (see [B-E-K1] 2.8) it follows from [B-O]
Theorem 7.2, applied to X,, — Z, and X,, = X,,, that the lower horizontal
sequence is quasiisomorphic to Q)Z(T JWo(R)" All horizontal sequences are - up

to the term IR that is placed on the diagonal - exact because all sheaves 17!
and Q7 are - locally - free Ox, -modules by [B-O] Prop. 3.32. Therefore the
sequence J5~*1Q® remains exact after ®w,, (r) 1t because it then coincides with
the corresponding sequence for the closed embedding X = X,, Xy, (r) R —
Zn Xw, (r) R. Then IrIs=*1Q0° is exact as well.

It is clear that adding up the two lower horizontal sequences degree-wise yields
a complex that is quasiisomorphic to

r—1
Xn/Wn

r+1

e — 00— 0 — IrQ X /Wn(R)

d d
(R)—>Q;(n/wn(3)_>9 —
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6 ANDREAS LANGER

Moreover, it is easy to see that adding up degree-wise the k+ 1 lower horizontal
sequences up to the sequence starting with I'rJ ["=k] we obtain a complex that
is quasiisomorphic to

e 0 TR P P TR L - Oy
(1.4)

The quasiisomorphisms are induced by the canonical maps Op, — Ox

Q) — Q% et

Define FilrQ'Dn JWo () O be the complex obtained by adding up all hor-

n?

izontal sequences degree-wise. Then FilTQb” JWa(R) is quasiisomorphic to
S"TQ;(H JWn(R) the complex that is defined above be%ore Conjecture 1.1.
Now construct a map

E : FﬂTQ.D”/W,L(R) — NrWnQ;(/R (15)

The composite map A, : Oz, — W,(Ox) extends to a map o : Op, —
W, (0x) with induced maps Qf, AN WnQé{/R’ because the image of I C Oy,
is contained in VW,,_1(Ox) which is a PD-ideal in W,,(Ox). Let € J with
image o(z) = Vn € VW, _1(Ox). Then o(z") = p" =tV (n") hence o (v, (z)) =
%p”‘lV(n"). Then for r < p—1, j < r and n > j, the element o) =
Lpn=1=3V(y") is well-defined. Define FU+D) (v, (z)) = “%”O'(j)(")/n(z)) =
Lpn=1=ip" using FV = p. Then the map ¥ is defined on entries as follows:
Consider a differential in the lower horizontal sequence

qlklQr—* i> qlk—1] qyr—k+1

For m > k let y,(z)w € IHQ % with o(z) = Vn as above. Define

m—1—(k—1) . e
Fiy(Ym(2)w) = F®) (v, (2))Fo(w) = Broqp—n™Fo(w) in Wn,lﬂx/];%. Then

m!

m—k m—k+1
AFg (Ym (2)w) = —— 0" 'dnFo(w) +

i

p Fdo(w)
using dF = pFd.
On the other hand d(y, (2)w) = Ym—1(x)dzw + Y (x)dw and hence

m—2—(k—2) m—1—(k—2)

p
(m—1)!

b

Fio—1(dym (2)w) = N tdnFo(w) + ™ Fdo(w)

m!

Here we have used FdVn = dn. We see that dFy(vm (2)w) = Fr_1d(ym(z)w).

Now let for z = (z1,...,2¢), ©; € J and m = Zlemi > k, zlm =
m[lmll .. .xgm/,] with xEmi] = Y, (z5) = (f;l—;), (an arbitrary element in J*]). Let

o(x;) = V(n;). Define
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) H Pmﬁl —(k—£)
)! '

The definition is compatible with the previous case £ = 1. Again we have for
zml . e TFQ F and Fy(z™ - w) := F® (2[m]) . Fo(w) the equality

dpk@[m. w) = Fp_1d(z [m] w)

The tedious proof is omitted.
So we have a commutative diagram for k£ > 1

glklQr—k 4, qlk—1]qr—k+1

JFk JF

r—k d r—k+1
Wn1fx/r = Wamafi/ (1.6.1)

We can extend the map Fj, to a map
Fpr : IRIFIQF — W, 0 /’;3
by

P (Véz™w) = ¢Fy (z™w)
Then
TRkl —* d [pglk=11Qt—k+1

Fi41 Fy,
d I—k+1
Wa-1x/m (1.6.2)

commutes as well for k£ > 1. It is also clear that the diagram

W1 Q5 h,

[pQF — 0 [0k

A
d k+1
Wty = Wt (163)
commutes where F}(VEw) = {Fw, using that dFw = pFdw.

In degree r — 1 the maps d commute with dV because we have commutative
diagrams

IRQr—l L) Qr JOr-1 L) QOr

JFl Jo JF1 Jo—

r av r av r
W1k —— WalQ% g W1 Qg —— Wall g

(1.6.4)
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8 ANDREAS LANGER

because
dV(F1(Véw)) = dV({Fo(w)) = d(VEo(w)) = VEdo(w) = VEo(d(w))

and

m—1

AV (P 2)0) = aV (L Fa)) = dloim(e))o ) = adn o))

(where o(x) = Vn as before).
Hence we have constructed a map

from the complex constructed in diagram (1.3) into the Nygaard complex.
We have a diagram
T wam — Fil'Qpw.r)
l ) (1.7)
N'Wn Q% g

If we have two embeddings X, m T, Xn i> Z! into Witt lifts Z,,, Z! with
corresponding diagrams (1.3) for each embedding and corresponding complexes
Fil"Qg, W (R)" Fil"Q%,, Jw,(ry then by considering the product embedding

X (li? Z, x Z! and the corresponding Fil"-complex, we see that we get a

canonical map

FU wo — N Wak/n (1.7.1)

in the derived category which does not depend on the choice of the embedding
in. In order to prove Theorem 1.2 it suffices to show that the map ¥ is a
quasiisomorphism. This is a local question, hence we may assume that X,, =
Z, = D,, are afline with Frobenius lift F'. Then the assertion follows from
[L-Z2] Corollary 4.3. This proves the Theorem and Conjecture 4.1 in [L-Z2] for
r < p assuming the existence of a global embedding into a Witt lift. If there
is no embedding of X, into a Witt lift one proceeds by simplicial methods as
in [I] II.1.1, [L-Z1] §3.2. Let X, (i), ¢ € I be a covering of X, inducing a
covering X (i) of X, and an embedding X,, (i) — Y;,(¢) which is a Witt lift of
Y (i) = Yn(i) Xw, r) R. One gets simplicial schemes X* — X — Dy — Y,
and quasiisomorphisms of simplicial complexes of sheaves

on X°®; let : X®* — X be the natural augmentation. By applying R, to the
quasiisomorphisms we get, by cohomological descent in Zariski/étale topology,

an isomorphism (1.7.1) in D¢ (X). O
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There are well known maps of the de Rham-Witt complexes, denoted by “1”

and Fr, between N"W,, Q% and Wy, —1Q% 5

W 10x — L W@ — o oot o wey w4

X/R X/R
QL d d r—1 ar 41
Wn,l(f)X*»Wn,l X/R%"' *>VV”*19X/R*> n—1 X/R*)anlﬂx/R*)"'

| |= P2V pF

(1.8)
The diagram commutes because of FdV = d, dF = pFd and Vd = pdV. p'V
means p'V composed with the projection from level n to level n — 1. The map
Fr of complexes also appears in [L-Z2] in the context of (pre-)displays and
plays the role of a divided Frobenius.
In the following we will consider the derived category of procomplexes
Dproet(X) defined as follows: Let Cpro.et(X) be the category of pro-systems of
unbounded complexes of sheaves on the small étale site of X. Then Do et (X)
is the Verdier localisation of the homotopy category of Cpro.et(X) where all ob-
jects are killed which are represented by pro-systems of complexes with level-
wise vanishing cohomology sheaves (compare [B-E-K1] Definition A.4).

THEOREM 1.9. Let R be an artinian local ring with perfect residue field

k, X/Spec R smooth. Then there is an exact sequence of pro-complezes in
Dypro,et(X):

0 — Wl piogl—7] — N"WaQ%, 5 Bl r—0

where WoSs p o, s, locally for X = Spec A, generated by dlog[zi] A ... A
dloglz,|, with x1,...,z, € A, as We(F,)-module.

Proof. Let [ < r,i > 0. Consider the map
PV —id: W 1Qy g — W1 p

Then (p'V —id)a = p'Va — a and for given B we have 8 = (p'V — id)a has
the solution v = —>">°_ (p'V)™ S hence p'V — id is surjective. On the other
hand, let o € Ker(p'V —id). Then o = p'Va, hence a € (in)SWn,lQlX/R for
all s, so @ =0 and thus 1 — Fr is an automorphism in degrees < r.

A formal inverse of (1 — p*F), for s > 0, is Y~ ((p*F)" = Y07 p*"F™.
This is an element of the Cartier-Raynaud ring because for any v > 0 p°" €
VW (R) for almost all n. Hence }, -, p*"F" acts on the completed WQZX/R

and provides an inverse of 1 — p*F on WQIX /R But then 1 — p°F is also

surjective on the prosystem WoQk, .
Since all assertions in the theorem only need to be checked locally, we may
assume now that X = Spec B, where B is étale over a Laurent polynomial
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10 ANDREAS LANGER

algebra A = R[Tfﬂ7 RN Tdil]. It is enough to prove the theorem when replacing
B by B®pg R/m® for any e > 1, where m is the maximal ideal of R. For e = 1
this follows from [Il] I Théoreme 5.7.2. We will prove the remaining assertions
by inducion on e. So let B/R be such that m*R = 0 and assume the theorem
holds for B = B®pg R/m¢~!. To prove the injectivity of 1 — p*F, for s > 0, on
the prosheaf W.QZB /R it is enough to show that

ker(1 — p°F : Wn+1Q£B/R — WnQZB/R)

is contained in Fil"W,,11Q% . (For e = 1, this is shown in [Il] I, Lemma 3.30).
Consider the commutative diagram

1-p°F
ker w41 — kerm,

I

1—p
WnHQZB/R - W"QEB/R

L

W QL LI’F) W. QL
"+1°B/R "B/R (1.9.1)

Let A, = W, (R)[T{, ..., T and ¢ : A,,11 — A, be the Frobenius, extend-
ing F: Wy41(R) = Wy(R) by T; — TF. The map A, — W,,(A), T, — [T}]
is compatible with Frobenii. As shown in [L-Z1] Prop. 3.2, ¢ extends to a
Frobenius structure By, 41 — B, where B, is a lifting of B over W,,(R), étale
over A,, equipped with a map B,, — W,,(B), again compatible with Frobenii.
Let now m € N be such that p™W,,11(R) = 0. Then étale base change for the
relative de Rham-Witt complex and the proof of [L-Z1] Theorem 3.5 (applied to
A= R[TF, ..., TF"] instead of R[T, ..., T,)) gives isomorphisms of complexes

WnQJ.B/R = Winsn(B) @w,, 1, (4),Fr W”Q:“/R (1.9.2)
> Binin @A nion WnQh/p
= Bimin @y 00m Qa, yw,(r) © Bman @4 on (Wnlly g) frac
= (WnQ% r)int © WaQ%/R) frac

The decomposition into an integral and an acyclic fractional part according to
weight functions with values in Z[1/p] is given in [L-Z1] (3.9) for polynomial
algebras and in [B-M-S] Theorems 10.12 and 10.13 for Laurent polynomial
algebras. From the uniqueness statement in the description of W,% /R S
sums of basic Witt differentials we see that

ker(WnQ;l/R — W”Q:K/R) = Wn(meil)an/Wn(R) b (WnQ:ne—lA/R)fTac

where (W, Q8. . , /R) frac consists of sums of basic Witt differentials in

(WnQA/R)fmc with coefficients in W, (m¢~!). Then ker ,,, for 7, : WnQEB/R —
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WHQ%/R, is equal to

Bingn @Ay snom Wn(@ D% i () © Bingn @4, 40 0m (WnQe—14/5) frac

(1.9.3)
Since for « € m*~! and p = [p]+Vn we have p-[a] = [p-a]+V(n-[a]?) = 0 we
see that p-x = 0 for all z € W,,(m®~!) and hence 1 —p*F : ker 7,11 — kerm, is
the projection map which has kernel Fil”WnHQéB /RN ker m,,+1. By induction

hypothesis, on the level B/R, ker(1 — p°F) is contained in Fil"WQ%/R. This
shows that 1 —p°F : W.Q% /R W.QEB /R is an isomorphism of prosheaves for
s > 0 and hence the map 1 — Fr in the theorem is bijective in degrees > r.

e—1

Now we prove the exactness of the complex of prosheaves
0= Wellg g 10g = Wellp g i Wedg/p = 0

in the étale topology. Consider the commutative diagram

1—
ker mg ———— ker me

.

0—— W‘Q%/R,log - WOQ%/R — W'Q%/R —0

.

O Wellp oy = Wellgyp = Wellp g ——0 1 0 )

By induction hypothesis, the lower sequence is exact in the étale topology. To
prove the surjectivity of 1 — F' in the étale topology it suffices to show that

ker 7,41 178, ker T 18 surjective. We use again the description (1.9.3) of ker 7,
as a sum of an integral and a fractional part with coefficients in W,,(m¢~1), and
where the fractional part is acyclic, too.

Let = [z0) + Vnp € Wypp1(m®™!). Then Fo = [19)? +p-n=0,80 1 — F is
the projection from level n+1 to level n on the integral part. In the fractional
part of the decomposition (1.9.3) an element f ® Vw, with f a lift of f € B to
By corresponds to ¢ fVw = V(F™H f.w) in WnHQ;cle/R» where we

identify f with its image in Winins1(B) and use the compatibility of ¢ and
F under the map By, i ny1 — Wingny1(B). Likewise, f @ dVw = o™ fdVw =
d(F™fVw) = dV(F™*! f.w) because p™ annihilates W, 1(R) and dF = pFd.
Since Vw has coefficients in W,,11(m¢™!) we see that F o V(w) =p-w = 0.
So again 1 — F' is the projection from level n + 1 to level n on the image of
V. On the other hand, 1 — F maps the image of dV onto the image of d. The
assertion already holds in the Zariski topology. We recall here the argument
in [I] I. Prop. 3.26 which also holds for the relative de Rham-Witt complex,
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using the formula FdV =d. Let x € WnQ’];/}%. Then

de = FdVz —dVz + FdV?z —dV2x + - - -
=(F—-1)(dVz+---+dV™z)

Since for y € Wan/}%

(F=1)(dVy) =dy —dVy

lies in the image of d, the assertion follows. So in particular, the image of dV in
Wane_lB/R is contained in the image of 1 — F. Hence 1 — F : ker mq — ker m,
is surjective and therefore 1 — F' is surjective on the prosheaf W,Q7 /R in the
étale topology.

Now we compute the kernel of 1 — F' : ker m,,+1 — kerm,. The above consid-
erations show that 1 — F is the projection from level n + 1 to level n on the
integral part of ker 7,11 = W41 Qae—lB/R and also on the image of V' (because
F vanishes there). So the kernel of 1 — F', when restricted to this integral part
and the image of V, is contained in Fil"WnHQZ,/R Nkerm,11. On the other
hand, the image of dV is mapped under 1 — F' onto the image of d using the
formula FdV = d.

In the following we prove a uniqueness statement for representing elements in

(WnQaﬂ—lB/R)fmc = Bmin QA o™ (WnQ:ne—lA/R)fmc

as a sum of “basic” Witt differentials. For this we recall the notion of primitive
basic Witt differentials e(1, &k, P) associated to primitive weight functions k :
{1,...,d} = Z U {oo} and partitions P of supp k, P = Iy U--- U I, with
Iy # 0. “Primitive” means that for at least one i € Iy, pt k;. They are defined
in [L-Z1] 2.2 and used in the uniqueness statement [L-Z1] Theorem 2.24 for
polynomial algebras, where k takes values in N. But the same statement holds
for Laurent polynomial algebras as well by allowing weight functions to take
values in ZU {oco}, where the value k; = k(i) is oo if the variable T; occurs in a
logarithmic differential dlog[T;]. A description of the elements e(1, k, P) in the
case of Laurent polynomial algebras is given in [B-M-S], 10.4, Case 1, assuming
v(alr,) = vlalr,) = --- = v(alr,, ) = 0, that is py = 0 using the notation in
[B-M-S].

Then an element z in (W, Q7 ., , / R)frac has a unique representation

n—1 n—1
2= 3 S Ve K, P+ Y Y dVige(1k, P) (1.9.5)

(k',P") 5=1 (k,P) =1

where (K',P’), (k,P) are as above, P’ = I U ---UI; P=1I,U---Ul_q,
5, & € W,,—j(me=1). For our purposes, namely to compute the kernel of
1— F, it is enough to consider the second sum, i.e. we will only consider exact
differentials in the fractional part. In order to find elements in the kernel of
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1 — F', we need to include the case j = 0 in the above sum, so we will consider
elements

n—1
2= >3 dVige(1,k,P)

(k,P) 7=0

Since the product structure of W, (R) on W,,(m¢~1) factors through the action
of k:

n

a- (€, rbn1) = ([0, [)PEr, ., [a)?" €nr)

we see that m¢~! resp. W, (m°~!) become k-vector spaces. (Note that Ir =
VW,—1(R) and W, (m) both annihilate W,,(m¢~1).) Then the action of A,, on
(W"ernﬁ—lA/R)fraC factors through A, = AQgrk = k[Tlil, e Tdil]. We have
an isomorphism for all m > 0 ([L-Z1], Prop. 3.2, Lemma A.9 and Corollary
A1)

(Bm-H), ®Am+n,<,pm An) ®An Ak = Bn ®W,L(R) k= Bk =B ®R k (196)

given by b® a ® 1 — b?" - @ where b, resp. a is the image of b, resp. a under
the canonical map B, 4, — B resp. A4, — Ag.

Let Mpn be the set of all primitive basic Witt differentials e(1, k, P) with
P=1IyU---UI._q such that 1 < k; < p™ or k; = oo for all non-zero weights
ki = k(i) occuring in k. Let {p;}ic; be a k-vector space basis of m*~1. Since
k is perfect {V7[p;]}ier is a k-vector space basis for VI[m¢=1] (C W, (m*™1))
for all j. Then {V7[p;] - e(1, k,P)}icre(1.k,P)emo,n 1S a basis of the Aj-action
on primitive basic Witt differentials with coefficients in V7[m¢=1], for all j €
{0,...,n—1} via @ - w = o?" - w (compare Prop. 2.2 and Prop. 2.3 and its
proof in [D-L-Z]; it also applies to the F-action of Laurent polynomial algebras
Ap). Likewise {d(V7[ps]e(1, k,P))}Yicr,e(1,k,P)em,n i a basis of the Aj-action
on d(primitive basic Witt differentials with coefficients in V7[m¢~1]) for j fixed,
§€10,...,n—1} via adw = " dw = do?" w.

Let M, ,, be the k-vector space of primitive basic Witt differentials in de-
gree r — 1 with coefficients in W,,_;(m®~!) and let M, (j) be the subspace
of M, of those differentials with coefficients in VI/[m®=!] C W,_;(me~1),
j=0,...,n—=1—1 Then {dV'(VI[p;]e(1,k, P))}icre(1,kP)em~,n 1S & basis
of the Ag-action on dV!(M, ,(5)) via adV'w = o ' dViw = dV'aP"w. The
isomorphism (1.9.6) shows that for all m >0

Binin @A om (Wae—1a 1) Frae. = Br@ag,mm (WaQpeia/r)frae (1.9.7)

Then By ® 4, o1 (dVIM,,) = dVI(BY" ® 4+ Myp) and
{avi(vi [pile(1,k,P))Yier e(1,k,Pyemo,n 18 a basis of the By-action on
By DAy, Fr-t dVl(Mm(j)) for fixed j.
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14 ANDREAS LANGER

Summarizing, we have isomorphisms

n—1
Brin @ A o™ (WnQrmeflA/R)?ﬁZ? = Bintn @ A o™ (Z dvl(Ml,n)>
=0

i
L

IR

(Bm+n ®Am+n ,om dvl (Ml,n))

L
o

i
L

Bk ®Ak7pn—l dVl(M[7n)

IR
LI

Il

avi(Br" ® 4on Min) (1.9.8)

N
I
o

(choose m := n —1 for each [ for the penultimate isomorphism). Then we have
proven the following

W,Q

m

LEMMA 1.10. For z € By4n @4
tion as

i ( e,lA/R)ff”;Zit we have a representa-

n 1

n—1 -
e=) dv' > S S VI ) | ek P)
=0

e(1,k,P)EM_pn \ =0 i€l

with uniquely determined elements b;; ;xp € Br and where {pi}icr is a k-

basis of m¢~ as before, hence {VI[p;]}icr is a basis of VI[m®™Y] as a k-vector
subspace in W,_;(me1).

n—1 n—1
F maps an element z = Z dV'(6;) as above to 2/ = Z dV'=1(5;), using the

1=0 =1
formula FdV = d and that Fdf3, vanishes because F annihilates W, (m¢~1).
Now we are looking at a particular summand

av' (VI (o)W ple1. 5. P) )

It is easy to see that bf;’j’kﬁpe(l,k,P) can be written as g; ;% p - w(k,P),
where w(k,P) is a logarithmic differential (a product of dlog’s in variables
[T1],...,[Tq)) depending only on (k,P) and g;;,xp € Br (use that d[T]° =
w for pt s and F"d[T] = [T]?" dlog[T]). Then

Vj([pi])[bf;,j,k,ﬁ'}e(lv k, P) = Vj([pigzj,j,k,P])w(k7 P)

Then, for fixed j and 4, F maps (using Fw = w)

n—1-—j

Z dVl+j[pigil,j7k77,]w(k,P)

=0
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to

n—1-—j n—1-—j

S aviti T pigh e plw(e P) = D dVITH(VI[pi] - g ke )w(k, P)
=1 =1
n—1-—j

= Y aviT VIp [0 ple(1,k, P))
=1

Note that dV7 [pigfi;’j)k)P] (the case I = 0) vanishes under F' because d(V7~1[p;]-
[gﬁl,j,k,PD = 0. So F maps

n—1—j

Z dv'+y [pi 'ggl,j,k,P]W(ka P)
=1

to
n—1—j

> AV pillg ) - w(k, P)
=1

Now let us first look at the case j = 0 and consider an element
z=d([a] - [g]) -w
a €m !t g€ By, w a logarithmic differential satisfying Fw = w. Then
z = d([1] + [o][g])w

=d([1 + ag])w + 2”: dV([z;))w mod Fil" ™!
=1

where z; = Si([1], [ag]) and S; is the polynomial defining the I-component of
the sum of two Witt vectors. It is known that So(X,Y) = Xo+Yp, S1(X,Y) =
Xi1+Y1+ %(Xg +YP — (X + Yp)P). We do not need to know S, for n > 2.
We see that =1 = S1([1], [ag]) = —ag and get mod Fil"**

d([1] + []lg]) = d([1 + ag]) +dV ([~ag]) + Y dV'[x/]

Now Fla] = [a]P = 0, so we get, using FdV =d

n—1

0= Fd([1+ ag]) +d([~ag]) + Z AV ai44]
=1

n—1

= dlog[l + ag] + d([—ag]) + > _ dV'[z41]
=1
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16 ANDREAS LANGER

because
Fd([1 4 ag]) = [1 + ag]P~"d([1 + ag]) = dlog([1 + ag])

since [1 4+ ag]? = 1. Hence

dlog[l + ag] = —d([—ay]) — Z dvl[ﬂflﬂ]

Since dlog[1+ayg] is invariant under F, the right hand side is invariant — modulo
Fil”flang/R —under F' as well. This implies, using Lemma 1.10, that z; =
S1([1], [aeg]) = —ag for I = 2 and then by induction for all I. Returning to our
element z we finally have, since Fz =0 and Fw = w,

dlog([1 + ag])w ZdVl —ag] — d[—ag])w (1.11)

Since (1 + ag)(1 — ag) =1 (because o = 0) we have
dlog([1 + ag]) = —dlog([1 - ag])

and hence (1.11) becomes

dlog([1 + ag])w = <Z dV'[ag] + d[ag]) w

=1
= (Z dVl[ag]> w
1=0

This shows that the right hand side is a logarithmic differential n satisfying
Fn = 1. We have seen that for p € m¢~! g € By,

[1]+[p- gl = [1 4 pg] + V]-pg] + Z V7 [—pg]
This implies
dV'(pg] = dV'([1] + [pg]) = dV'[1 + pg] + D dV7[—pg]
Jj>l+1

or

dV'[1 + pg] = dV'[pg] — Z dV7[—pg]

j=l+1
Replacing g by gpl yields
dv*i+ pgp ] =av'| pg Z dvi] pg (1.12)
Jj=l+1
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Since dV!=1[pg?'] = 0 we have

FaV'[1+ pg"'] = =Y dVi[-pg"] = dV'[1 + pg”']
j=l

which is invariant under F', because the infinite sum is invariant under F'. Then
FHUAVIL 4 pg?'] = Fd[1 + pg?'] = dlog[1 + pg”'] = =Y dV7[~pg?'] (1.13)
j=l

This shows that under the assumption F'z = z modulo Fil"

n—1—j

Z dVlH[pigﬁz,j,k,p]w(k,P)
=0

is a logarithmic differential modulo Fil" because p; g} Jl kP does not depend on
[. Using the uniqueness statement in Lemma 1.10. we conclude that

ker(1 — Flkerme) C Weldg g 10g
This shows that
T T 1-F T
WoQB/R,log = ker(WOQB/R - W'QB/R)
and finishes the proof of Theorem 1.9. L]

Now we can define relative syntomic complexes. As at the beginning of this
section, let R be artinian local with perfect residue field k& of char p > 0.
Let X/Spec R be smooth, admitting a lifting X, as an ind-scheme over
Spec Wo(R). Assume there exists a compatible system of embeddings i,, :
X, — Z, into Witt lifts Z,, which satisfy the properties of [L-Z1] Definition
3.3. The 14, factorise through a compatible system of PD-envelopes D,,. One
obtains a compatible system of quasiisomorphisms

and hence an isomorphism of procomplexes

in Dpro,Zar(X) resp Dpro et (X)

To construct ¥ in general, one chooses a covering {X (i) = Spec A;};er of
X such that A; is étale over R[T},...,Ty]. Since X < X, is a nilpotent
embedding, there exists a covering {X,, (i) = Spec A,,;}ier of X,, such that
Ap,i is étale over Wy, (R)[T1,...,Tq] and Ay Xw, (r) Wn-1(R) = Ap_1,, in
particular A, ; Xy, (g) R = A;. Using [L-Z1] Prop. 3.2, the {4, ;}, form a
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18 ANDREAS LANGER

compatible system of Frobenius lifts, in particular of Witt lifts for all i € I.
For Xn(ila ey ZS> = Xn(Z]_) n---N Xn(ls) and Zn(ila ey ZS> = Xn(l]_) XWn(R)
-+ Xw,(r) Xn(is), the product embeddings Xy, (i1, ...,4s) = Z,(i1,...,is) with
associated PD-envelopes D, (i1, ...,is) are embeddings into Witt lifts and in-
duce compatible morphisms of simplicial schemes X°* — X2 — D — Z»,
hence the isomorphisms (1.7.1) are compatible and induce again an isomor-
phism (1.14)
¥ ?TQS(./W.(R) — N’”W.Q;(/R

of procomplexes in Dpyo zar(X) reSp Dproet(X). This completes the proof of
Theorem 0.2.

In the following we always assume r < p. Using the composite map of 1 — Fr
with 3:

° E T ° 1-Fr °
S"QX./W_(R) = N W.QX/R — W.QX/R

we can define
~ ° 1—Fr °
ox,(r) = cone (TQX./W.(R) — W.QX/R) [—1].

This complex is denoted by o4 (r) in [B-E-K1]. It plays the role of a technical
variant of the syntomic complex ox, (r) we are going to define now. Consider
the composite map of associated procomplexes:

>r . (1—Fr)oX .
Xo/We(R) —>3:TQX./W,(R) —; W%/ r

which is also denoted by 1 — Fr. Here the first arrow is the canonical inclusion
of complexes.

DEFINITION 1.15.
r 1—Fr .
ox,(r) = cone (Q)Z(./W.(R) — W.QX/R) [—1]

is the relative syntomic complex of the ind-scheme Xo on (X)e i.e. in
Dpro,et(X)'

Let M(r) = cone(Q)z(’.'/W.(R) — F"Qx, /w.(r))[—1]. Theorem 1.9 yields an
exact triangle

M(r) — ox, () — Wallx g 1ol —1] —

in Dpyoet(X) and we have

M(r) = cone (Q)Z(i — CTWQX./W.(R)) (—1]
= FO% w.ml-1

Hence we get the following Theorem in analogy to [B-E-K1], Theorem 5.4:
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THEOREM 1.16 (Fundamental triangle). There is an exact triangle in
Dpro,et (X))

T T I +1
F Q)<(0/W-(R)[_1] - O'X.(’I") — W‘QX/R,log[_r] —

Apply 7<,Re,, where € : Xeot — Xnis, to this triangle and use the same argu-
ment for the Nisnevich versions of [B-E-K1] Theorem 5.4 to obtain an exact
triangle in Dpro nis(X).

T r +1
TQ;./W.(R) [=1] — ox, Nis(1) — Wellx )R 10g nis[—7] —

where oy, Nis(r) := 7<,Re,ox, (r) and W.Q’)}/RJOg’NiS = E*W‘Q;(/R,log,et'
We can also prove the analogue of Theorem 6.1 in [B-E-K1]. The statement
holds in the étale and Nisnevich topology.

THEOREM 1.17. The connecting homomorphism
a: Wl g 1ogl—1] — TQ;’:/W.(R)
resulting from the fundamental triangle is equal to the composite map
ﬂ : W.QTX/R,log[_T] — NTW.QB(/R ; ?TQ;(./W.(R) — WQ;{’:/W.(R)

Proof. The proof is very similar to the proof of Theorem 6.1 in [B-E-K1]. From
the definition of ox, () we get a morphism in Dy e (X)

ox.(r) — Q>Z<f/w.(1::)'

Define o'y, (r) = cone(ox, (1) — Q)Z(t/w.(R))[fl]. The morphism ox, (r) —

W Q% /RJlo g[—r] in the fundamental triangle induces a morphism

UlX. (’/‘) — W'QTX/R,log[_T]'

Then we have a chain of isomorphisms in Dy, (X):

~

o, (1) > cone (G, (r) — T jwum ) 1]
5 cone (cone (N’”W.QB(/R iy WJZ;(/R) [-1] — NTWoQE(/R) [—1]

~

+— 3(r) := cone (W.Q;(/R’log[—r] — NTW.Q;(/R) [—1]

Then the proof of the Theorem follows from the following proposition: O

PRrROPOSITION 1.18. There is an exact triangle

(e r +1
F QX./W.(R) [~1] — o'y, (r) — W'QX/R,log[_T] -
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fitting into a commutative diagram of exact triangles

NrW.QB(/R[fl] —  X(r) — W'Q&/R,log[*r] RN
[ Te) =

™ L] r 1

T w1l — k() — W g [l

™ s r 1

35 Q}<('/W-(R) [_1} — 00X, (T) — W'QX/R,log[_T] +—)

where (x) is the composite of the previous isomorphisms and the lower eract
triangle is the fundamental triangle.

The proof of the Proposition is the same as for Proposition 6.3 in [B-E-K1]. It
implies Theorem 1.17.

For a smooth projective variety Y/k with lifting Y,, /W, (k) we will also work
with the syntomic complex oy, (r) at finite level. Our definition differs from
the one in [K2] Definition 1.6. But using Proposition 4.4 in [L-Z2] it is easy
to see that oy, ,w,x)(r) and the procomplex in [B-E-K1], Definition 4.2 are
quasiisomorphic.

PROPOSITION 1.19. Let

Mo o= (WS g + VI =5 FiNTWLQ00L -5 R W, 0082 -5 } 7]

Then there is an exact triangle on (Ye)

0 — My — N'W, Q3 =5 W10, — 0.

Proof. Tt follows from the proof of Theorem 1.9 that 1—Fr is bijective in degrees
< r and surjective in degrees > r. Finally it follows from [B-E-K1] Lemma 4.4
and [I1] I Lemma 3.30 that in degrees > r the kernel of 1 —Fr is Fil"ianQ;/k.

Since (1 — F)AV"'Qy 0 = dV" 200, © Wi Q. Tt follows from [1]

I 5.7.2 that the kernel of 1 — F' in degree r is Wner/k log T V"’lQQ/k, as
stated. O
Note that we have an injection Wyn€y, ;| < H"(My).

DEFINITION 1.20. The syntomic complex oy, (r) is defined as follows in D(Ye):
>r r()® ~ T . 1-Fr .
oy, (r) = cone (Q?n/wn(k) — I waw — NWally — W”*QY/'C) =1

This is the finite level version of Definition 1.15. for R = k. It follows from the
definitions and Proposition 1.19. that one has an exact triangle

r 1
ijrer)<fn/vvn(k) [~1] — oy, (1) — M, (1.21)

We have H’ (ay, (r)) = H'M in degrees > r and an exact sequence

DOCUMENTA MATHEMATICA 23 (2018) 1-1000



p-ADIC DEFORMATION OF MOTIVIC CHOW GROUPS 21

0— pQ;}:l/deQ’{/;l — H"(oy, (r)) — H"(M,,) — 0. (1.22)

For e : (Y)et — (Y)nis apply again 7<,Re, to 1.23 to get the following exact
triangle in D (Ynis)

0 — I ) oy [=1] — oy, Nis(r) 5 Pl—r] — 0 (1.23)
where oy, nis(r) := T<,Resoy, (r) and P is a Nisnevich-sheaf which contains

EEW?Q;/k,Iog = Wiy ) 1o Nis (compare [B-E-K1] Proposition 2.4.1) as a sub-
sheaf.

2  RELATIVE MOTIVIC COMPLEXES

Let {Y,,/W,(k)}» be a projective smooth formal scheme and let Zy, (r), for
r < p, be the Suslin-Voevodsky complex of Y7 /k [S-V]. Bloch-Esnault-Kerz
have defined a motivic procomplex Zy, (r) in Dpro nis(Y1) by

—1lo
Zy, () = cone (v, nis(r) @ Zy, (r) 7=

Wal, pogriel—r]) 1] (2.1)
where ¢ is the map from the fundamental triangle (Theorem 1.16.) and log is
the composite map

dlog[ ]

Ly, (r) — I (L (r)) [=r] = K [ =] WOy, tognisl—7] (2:2)

(see [B-E-K1] (7.4)).
Now we fix m € N and define X :=Y,,,. Then at finite level Zx (r) is defined
as follows on (X)nis

Zx(r) = cone (oX,NiS<r> & Ty, (r) 2L fP[r]) S (23)

where @ is the map in (1.23) and log is defined as before using the injection
Wng,,log)NiS < P. The long exact cohomology sequence associated to 2.3
yields an exact sequence in degree r:

®(—log)

0 — K" (Zx (1) — H (oxnis(r) ® H (Zy, () P22 9 5 0. (2.4)

The exact sequences 1.22, 1.23 and 2.4 yield the upper exact sequence in the
commutative diagram

0 — P /P 4 — H(Zx(r) — H(Zy,(r) — 0

0 — pQ;’/%,Vm(k)/deQ’;{/%,Vm(k) — KL — e — 0
(2.5)
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where the bottom row is the exact sequence shown in [B-E-K1], Theorem 12.3
and the middle vertical arrow is Kato’s syntomic regulator map. It is a finite
level version of the map () in the commutative diagram in [B-E-K1] p. 695
and is constructed similarly as in [K2] Section 3, where Kato constructs a map
(using our notation)

03, ., = H'(Y1,8,(1)y,,)

with his definition of the syntomic complexes given in [K2] Definition 1.6.
The change of level from n + 1 to n is due to the fact that the element
p~tlog (f(a)a=?) in [K2] page 216 is only well-defined in Op, because mul-
tiplication by p on Op,,, factors through an injection p : Op,, — Op,,,,. Since
we work with a different definition of oy, (r) using the de Rham-Witt complex
the above level change is unnecessary. In the section after Prop. 2.9 below we
make the symbol map explicit in the case r = 1. One should read this section
in the case R = k. The element %log F&‘,‘? ) that occurs there is well-defined in
Win—1(0y,), where @ = [A|(14+V7n) is in W,,(Oy, ). Hence we get a symbol map
(with X =Y,,,)

0% — 3t (ox,,Nis(1))
which induces
O;} & - O;} — j’cr(o'Xﬁst(T))
Analagous to [K2] Prop 3.2 we show that this map factors through the symbol
map in the Milnor K-sheaf UCI\X/I‘i — H"(ox Nis(r)). Similar to [K2] Lemma
3.7.2 one sees that the composite map

fK%]}A — H" (UX,Nis (7’)) — P
is given by b1 ® --- ® b, — dlog [51] A---Ndlog [l_)r] where b; is the reduction
of b; modulo p. Hence the composite map
KA = 3 (7x300(r)) @ (KM, = 3 (2, (7)) 2555

vanishes and this defines a natural map fitting into the diagram (2.5)

KN = H(Zx (7))
The diagram (2.5) implies that

H"(Zx (r)) = KN (2.6)
It follows from the definition that Zx () has cohomological degree < r, because
Hi(oxNis(1)) = HI (Zy, (r)) = 0 for j > r and H" (o x nis(r)) — P is surjective.
Finally it is easy to see that all the properties in [B-E-K1] Proposition 7.2
listed for the procomplex Zy, (r) pass over to Zx(r) at finite level except the
Kummer triangle Prop. 7.2 (3) which holds only for procomplexes.
In the following, let R = W,, (k) and assume there exists an ind-scheme lifting
Xo/Spec Wo(R) of X = Y,,/R which is compatible with Y, under the base

change R — k, i.e. X, Xy, (r) Wn(k) = Yy, in particular X, xw, (r) W (k) =
Y,,.
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DEFINITION 2.7. As object in Dpronis(X) the motivic procomplex Zx, (r) is
defined for r < p as follows:

lo
Zx,(r) = cone (UX.,Nis(T) e Zx(r) “ W, Q%) R log, Nis|— 7"]) [—1]

where ¢ comes from the fundamental triangle (Theorem 1.16.) for the syntomic

procomplex ox, nis(r) and Zx(r) — 18w, Q%R jog, Nis| =] is the symbol map
into the relative logarithmic de Rham-Witt complex, defined as follows

L (r) — 3 (Zx () [=r] = KM =1] N W0% o i)

Here [ ] is the Teichmaller lift from OX to W, (0x), the definition is analogous
to [B-E-K1] (7.4).

PROPOSITION 2.8. The motivic procomplex Zx, (r) has support in cohomology
degrees < r. Forr > 1, if the Beilinson-Soulé Conjecture is true, it has support
in degrees [1,7].

Proof. Under the assumptions this holds for Zx (r) by [B-E-K1] Prop. 7.2. By
definition ox, nis(r) has support in [1,7]; from the definition of Zx, (r) we get
an exact sequence

0= H"'(Zx,(r)) = H (ox, nis(r) © H(Zx (1)) = Wellx /R 106,83 — O

since H"(0x, Nis(7)) = Wall'y /g 14 nis I8 Surjective by (1.16.). This proves the
proposition. ' O

Note that the map dlog[ ] is an epimorphism in the étale topology because
W Q% /R.log is, by definition, locally generated by symbols. We expect that
the corresponding Nisnevich sheaf W, QX/R Jog,Nis = . W, QX/R Jog,ct is again
generated by symbols. For R = k this is shown in [B-E-K1], Prop 2.4 and [K1]
Proposition 1.

Remark. 1t is easy to see that there is a canonical product structure
Zx,(r) ©F Lx,(r') — Zx,(r + ")

compatible with the product structures on ox, (r) and on Zx (r). The argument
is the same as [B-E-K1] Proposition 7.2 (5). On the other hand, property (3)
in Proposition 7.2 does not seem to hold; the cone of the Kummer sequence

Zx,(r) N Zx,(r) is likely to be much more complicated.
However, we do get the following analogy of [B-E-K1] Proposition 7.3:

PROPOSITION 2.9 (Fundamental motivic triangle). There is a unique commu-
tative diagram of exact triangles

g7 QXT/W.(R)[ 1] —  Zx,(r) — Zx(r) —
I i | dlog] ]
I QX’:/WO (R)[ 1} - UX.,Nis(r) - W QX/R log, le[ T] —
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Proof. The right hand side square is homotopy Cartesian by definition, hence
the proposition is proven in the same way as Proposition 7.3 in [B-E-K1]. O

Now we look at the special cases r =0, 1:

For r =0, ox, nis(r) is isomorphic to W°Q(;(/R,log,Nis = Z/p®, hence Zx,(0) =
Zx(0) =7Z.

For r = 1, we construct a map X! [-1] = 0% [-1] = ox, (1) as follows.
Assume first that there exists a compatible system X,, < Z, into Witt lifts
Z,, with PD-envelope D,, as before and induced maps Op, — W,(0x). We
have an exact sequence

0—N-—0z — 0% —1
so 0%, [—1] is isomorphic to

N — 0F
degree 0 degree 1

The complex ox, (1) is represented by the complex

d d
Ip, = Op, @ Uy . () © Wa1(0x) = Qb gy © Wn1Qx /g —
where

diza = (dz, (F1 - 1)(2))
d2 : (I, ) — (dl’, (Flfl)(‘r)idy)

and z is identified with its image under Jp, — VW,,_1(Ox) and
Fi(z=Vn)===(Vn) =n.
We define a map (N — 0% ) — ox, (1)

in degree0 : N — Ip,
a — log(a)

in degree 1 : 0y — Op,® len & W,_1(0x)
a > (d loga, % log zgg)

Note that a = [A](1 + V) € W,(0x) is the image of a under

0y, — Wy(0x)*
([A] is the Teichmiiller element of some A € 0%).
Then F(a) = [AJP(1 4+ pn) and (a)? = [AJP(1 4+ V)P considered as elements in
Wn—l(OX)~ Then

F(a)  1+pn

ar (1+Vnpr’
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Because of the uniqueness of 7 the elements %log(l + pn) and %log(l + V)P
are uniquely determined, hence
1. F(a)

1 1
~log — = —log(l+pn) — —log(1l + Vn)?
p aP p p

1
= ];log(l +pn) —log(1+ Vn)

is well-defined.
This defines a map
Ok, [-1] — ox, Nis(1)

of procomplexes, hence a map
0%, — H' (ox,.nis(1)) - (2.10)

If there is no global system of embeddings X,, — Z, into Witt lifts Z, one
proceeds by simplicial methods as outlined before the definition of ox, (r) (Def.
1.15.) to construct the map (2.10). We omit the details here.

There is a commutative diagram of Nisnevich sheaves

0x. — 0%
H* (ox, Nis(1)) HH(Zx (1)) (2.11)
We QAlX/R,log,Nis W'Qﬁf/R,log,Nis

which induces a map
0%, — H'(Zx,(1))

by the definition of Zx, (1).

LEMMA 2.12. We have a commutative diagram of exact sequences

0 — IROX. = ].—FIROX. — g‘fl(Zx.(l)) — j‘fl(Zx(l)) — 0
0 — IrOx,=1+4+1r0x, — O}. — 0% — 0

where 1 + V(n)x — log(1 + V(n)x) is well-defined because p is nilpotent on
Ox, and induces the isomorphism 1 4+ IrOx, — IrOx,. (Recall that I =

VW,-1(R).)

By assumption X, xyw, (g B = X and so Ox,/IrOx, = Ox; since Iy is
nilpotent we immediately deduce that on units 0% /1+ IrO% = O%, hence
the lower sequence is exact. It is a slight generalisation of the p-adic logarithm
isomorphism [B-E-K1] (1.3) that the log map is an isomorphism because IrOx,
admits a divided power structure and p is nilpotent.
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The upper sequence is exact because of the fundamental motivic triangle
(Proposition 2.9).
The Lemma implies that 0%, and H'(Zx, (1)) are isomorphic, hence

Zx,(1) = Gypyx, [-1]- (2.13)

The isomorphism 2.13 and the product structure on Zx, (r) induce a symbol
map (compare the proof of [K2], Proposition 3.2)

KM — 3 (Zx, (1)) (2.14)

But in the absence of ([B-E-K1], Theorem 12.3) which cannot be extended to
a relative setting we cannot expect that 2.14 is an isomorphism.

3 p-ADIC DEFORMATION OF MOTIVIC CHOW GROUPS

Let X =Y, /Spec W,,,(k) as before and X, be a smooth projective lifting of X
to Spec Wo(R), R = W,,(k), which is compatible with Y, as before. Let r < p.

DEFINITION 3.1. The continuous Chow group of X is defined as Chl, ,(X,) :=
Hggnt(Xv ZX. (7"))

Note that we also work with continuous cohomology.

The fundamental motivic triangle (Proposition 2.9) gives rise to an exact ob-
struction sequence to the deformation problem lifting a class in H?" (X, Zx (r))
to a class in Chl_ . (X,)

cont

Ch%,, (X.) -% H2' (X, Zx (r)) 2 H?"

cont

(X,57Q%)). (3.2)

Now we construct crystalline cycle classes on H*" (X, Zx (r)). We have a canon-
ical map

dlog] ]

H?(X,Zx(r)) — H(X,H"(Zx(r)) = H" (X, KM H"(X, WQ;(/R,Iog,Nis)'

The map of complexes (the first map in Theorem 1.9) in Cproet(X)
W°QTX/R,10g[_T} — NTW°Q;(/R
defines a map of complexes in Cpyo, Nis(X)
W‘Q&/R,log,Nis[_T] = 5*W-Q§(/R,1og[—7'] - E*NTW-QB(/R = NTW'Q;(/R,Nis

(In the following we omit the subscript 'Nis’ as all complexes and cohomology
groups are taken in the Nisnevich topology) and yields the refined relative
crystalline cycle class map

HQT(X7 ZX(T) cont<X7 N7W°QS(/R)

c(€)

2 e (33)
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Then the relative crystalline cycle class of £ is the image ceis(§) of ¢(€) in

HZ (X, WeQ% / r)- We have canonical isomorphisms (Theorem 1.2)
Héont (X7 NTW'Q;(/R) = H (X’ S:'TQ;G/WO (R))
and
Hie (X, W0 ) = lim H™ (X, W% 1) (3.4)
= Hii (X/W(R))

IR

Hgbont XO; Q;(./W.(R)

where the first isomorphism follows from [L-Z1], Corollary 1.14 and the second
from the main comparison theorem [L-Z1], Theorem 3.1. Note that in [B-O] §5
the crystalline site/topos and the cohomology of the crystalline structure sheaf
is defined for any scheme defined over a PD-scheme S on which p is nilpotent.
We apply this to the PD-scheme S = Spec W,,(R) with PD-ideal VW,,_1(R)
and consider X as an S-scheme via X — Spec R — S. Then, by definition,

DEFINITION 3.5 (Compare [B-E-K1], Definition 8.3).

(1) One says that c(€) is Hodge with respect to the lifting Xo if and only
if c(€) lies in the image of H2" (X, Q)Z(t) in H2' (X, Q8 ) =

cont cont Xo/We(R)
HZ, (X, N"Wa Q% )-

(2) One says that ceis(§) is Hodge modulo torsion with respect to the lifting
X, if and only if cais(§) ® Q lies in the image of H2T (X, Q)Z(f) ®Q —
HZL(X/W(R) ® Q.

Then we have the following

THEOREM 3.6. Let X,/Spec Wo(R) as before, let £ € H*"(X,Zx(r)) and
r <p. Then

(1) c(§) is Hodge with respect to the lifting Xo <= & lies in the image of O

(2) ceris(§) is Hodge modulo torsion with respect to the lifting X4 <— £®Q
lies in the image of 0 ® Q.

Proof. We claim that the canonical map

H27‘

cont

(X, N"WeQ% /) — Hgn (Xv WJ)B{/R)

induced by the map “1” (see Theorem 1.9) has kernel and cokernel killed by a
power of p: Indeed, this map can be identified, via Theorem 1.2, with the map

H27‘

cont

(X, T, wm) — Heoant (X, %% w )

which is induced by the corresponding map of complexes
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pd 1 pd pd r—1 d d
Ir ®W.(R) Ox, — Ir ®W.(R) QX./VV.(R) — ... = Ip ®W.(R) QX./W.(R) — QX./W.(R) — .

d

d d _ d d
Ox, ———— O e O — Wm0

Xo/We(R) Xeo/We(R)

The kernel of this map of complexes is a complex of sheaves annihilated by
p" 1, hence its hypercohomology is killed by a power of p. The cokernel is
a complex of sheaves that admits a filtration in a way that the successive
quotients are complexes with entries of the form Q7% /r or Ir /PIRSY, IWa(R)-
The cohomology of these sheaves is killed by a power of p since p is nilpotent
on R. Hence the hypercohomology of the cokernel is killed by a power of p and
therefore the map

Hig (NTWey ) 5) © Q — HEL(X/W(R) @ Q
is an isomorphism. Then the first part (1) implies the second part (2).
The exact sequence 3.2 can be extended to a commutative diagram with exact
rows

b
Chiont (Xe) — H? (X, Zx(r)) = Hw (X’ :TTQ;r/W’(R))

Le lc i:

s 2> T T Is T
H2 (QXt/W.(R)) — chont (3: QX./Wo(R)) — HCQOHt (‘XV’:}'~ Q§t/W-(R))

(3.7)
where we have used again the isomorphisms 3.4. By Theorem 1.17. the right
hand square commutes. Then the Theorem easily follows. O

REMARK 3.8.
(i) We do not need for the proof that the left vertical arrow is well-defined.

(i) If the Hodge-de Rham spectral sequence of the ind-scheme X, degenerates,
then the map

HZ L, (X» Q)th) — Hp, (TQ}./W(R))
1s injective and hence the left vertical arrow is also well-defined.

(iii) For r = 1 we are really dealing with Picard groups. As Zx,(1) =
Gm/x.[-1] we have H?*(X,Zx,(1)) = Pic(X,). The system
{HY(X, G x,)}n (= {Wn(R)*}, if X is connected) is obviously Mittag-
Leffler, hence lim" HO (X,Gp x,, ) vanishes and we have an isomorphism

—

n

Ch!

cont

(X.) = H

cont

(X, Gom,x,) = limPic(X,,)

n
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DEFINITION AND COROLLARY 3.9. Let r < p. Let X = Y,,, Yo a formal
smooth projective scheme over SpfW (k). Let £ € H?"(X,Zx(r)). We say that
its refined relative crystalline cycle class ¢(§) is “Hodge” if there exists a smooth,
projective lifting Xo of X as ind-scheme over the ind-scheme Spec Wo(W,, (k)),
compatible with Y, and such that c(§) is “Hodge” with respect to X,o. Assume
c(§) is “Hodge”, then & deforms to a class on the formal scheme Y,, that is it
lies in the image of the map

Ch!,

cont

(Ya) — imH*" (Y, Zy, (r)) — H*" (X, Zx(r)).

n

Proof. By general homological algebra the first arrow is surjective (as stated in
[B-E-K1], p697). For any smooth lifting X, of X =Y, over Spec Wo(W,,(k))
compatible with the formal scheme Y, under the base change W,, (k) — k
there is a base change map of motivic complexes Zx, (r) — Zy, (r) inducing
Chyon (Xe) —> Chiy, (Ye) through which the map

cont cont

6 : Ch’

cont

(Xo) — H”(X,Zx(r))
factors. The Corollary follows from this and Theorem 3.6. O

Remark. Note that H*"(X,Zx(r)) ® Q = H* (Y1, Zy, (r)) ® Q, hence we do
not get any new information with regard to lifting vector bundles (compare
[B-E-K1], Theorem 1.3). The implication in Corollary 3.9, i.e. the lifting
property of £ does not depend on the choice of X,, for which ¢(£) is Hodge.

For an algebraic scheme Z, it is reasonable to define the cohomological Chow
group as
ChP(Z) := HP(Z,%™).

The graded object Ch*(Z) then has a ring structure due to the natural product
structure of Milnor K-groups, it is contravariant in Z and coincides with the
usual Chow group of codimension p-cycles modulo rational equivalence if Z
is regular excellent over an infinite field (see [Ke]). Applying this to X =
Yo /Wi (k) we define

Ch"(X) := H"(X,KX"). (3.10)

The canonical map Zx (r) — le\X/Ijl,[—r] defines a homomorphism.
o H (X, Zx (r)) — H"(X, XM = Ch"(X)

that we already used in the construction of the crystalline cycle class. We want
to give a criterion when this map is surjective or bijective.

With our definition of Zx(r) it is easy to see that the fundamental motivic
triangle for Zy, (r) holds for Zx (r) as well: there is an exact sequence

0— ETQ%W,”(@[—H — Zx(r) — Zy,(r) — 0. (3.11)
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It induces the following commutative diagram, by taking hypercohomology of
3.11 and applying [B-E-K1], Theorem 12.3 to get the lower exact sequence in
the diagram

B2 U (Y, 2y, (1) = HP X F7Q50 o) = B (X, Zx(r) = H (0, Zy, (1) = H7 (X, 5795, )
Ch"(Y1,1) la’ l— Ela l/f
=
HOYGE) - HXARS) - HGKE) o mMGE) - HTH(X )
(3.12)
The maps «, § are induced by
r—1
<r r—1lgro<r _ pQX
TQX/Wm(k) P T QX/Wm(k) T 2d0n 2
p X

The isomorphism o is a standard map (compare [B-E-K1] 7.3). The first iso-
morphism in the left vertical arrow is shown in [M-V-W], Theorem 19.1, the
second is explained in [M], Corollary 5.2 (b).

Let

Ter 2T T 4 pOx 5 pQk I IS pOre® IS Kerpd(C p ) — 0.

The diagram shows that if HQT(Tgr—QfVQ;;Wm(k)) = 0 then m, is surjective.

As the cohomology of each term in the complex 7<,_oF TQj(?Wm( 5 vanishes in
degrees > d we see that HQ”"(TST_Q.F’“Q;;WWL(M) =0forr>dimX — 2 and
HI (TST_Q]:TQ;;Wm(k)) =0 for j = 2r,2r — 1 holds for r = d = dim X. In this

case 7q is bijective (compare diagram 3.12) Hence we have shown

LEMMA 3.13. Let d = dim X/Spec Wy, (k). Then
ma_1: H* Y (X, Zx(d — 1)) — Ch¥1(X)

is surjective and
mq: H* (X, Zx (d)) = Ch*(X)

is an isomorphism.

In both cases one can give a Hodge-theoretic criterion, following 3.9, for lifting
an element z € Ch’(X) (? = d,d — 1) to an element in the continuous Chow
group Ch’__(Y,) by considering its (refined) crystalline cycle class in the coho-
mology of the relative de Rham-Witt complex. The precise formulation is clear
and omitted here. Moreover, Theorem 0.1 (i) and (ii) follows from Corollary
3.9 and the above definitions.
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