p-ADIC DEFORMATION OF MOTIVIC CHOW GROUPS

ANDREAS LANGER

ABSTRACT. For a smooth projective scheme Y over W(k) we consider an element in the motivic Chow group of the reduction Y_m over the truncated Witt ring $W_m(k)$ and give a "Hodge" criterion - using the crystalline cycle class in relative crystalline cohomology - for the element to lift to the continuous Chow group of the associated *p*-adic formal scheme Y_{\bullet} . The result extends previous work of Bloch-Esnault-Kerz on the *p*-adic variational Hodge conjecture to a relative setting. In the course of the proof we derive two new results on the relative de Rham-Witt complex and its Nygaard filtration, and work with a relative version of syntomic complexes to define relative motivic complexes for a smooth lifting of Y_m over the ind-scheme Spec $W_{\bullet}(W_m(k))$.

2010 Mathematics Subject Classification: 14F30, 14F40, 19E15

INTRODUCTION

In a recent work, Bloch, Esnault and Kerz studied a *p*-adic analogue of Grothendieck's variational Hodge conjecture on the deformation of algebraic cycles resp. vector bundles. In the context of what is called *p*-adic variational Hodge Conjecture [B-E-K1], Conjecture 1.2, the above authors gave a Hodgetheoretic condition on the crystalline Chern class when a vector bundle on a smooth projective variety Y_1 over a perfect field k of char p lifts to a vector bundle on a formal lifting Y_{\bullet} of Y_1 over the Witt vectors W(k). Their method relies on a construction of a motivic pro-complex $\mathbb{Z}_{Y_{\bullet}}(r)$ in the derived category of pro-complexes with respect to the Nisnevich topology on Y_1 , which is obtained by glueing the Suslin-Voevodsky complex on Y_1 with the syntomic complex of Fontaine-Messing on Y_{\bullet} along the logarithmic Hodge-Witt sheaf in degree r. The continuous Chow group $\operatorname{Ch}^r_{cont}(Y_{\bullet})$ is defined in [B-E-K1] as the hypercohomology of the complex $\mathbb{Z}_{Y_{\bullet}}(r)$ and is equipped with a canonical map

to the usual Chow group of Y_1 . The obstruction of deforming an algebraic cycle class from Y_1 to Y_{\bullet} lies in the cohomology of a certain truncated filtered

de Rham complex on Y which is already entailed in the definition of the syntomic complex. The filtered de Rham complex, denoted by $p(r)\Omega_{Y_{\bullet}}^{\bullet}$ is — as a procomplex – quasiisomorphic to a filtered version of the de Rham-Witt complex denoted by $q(r)W\Omega_{Y_1/k}$ in the étale/Nisnevich-topology [B-E-K1] Prop. 2.8. Hence the obstruction can be made visible by using the crystalline Chern classes which are induced by Gros's Chern classes [Gr] with values in the logarithmic Hodge-Witt cohomology [B-E-K1] Theorem 8.5. In another deep result Bloch-Esnault-Kerz relate the continuous Chow ring $\bigoplus_{r\leq d} \operatorname{Ch}_{\operatorname{cont}}^r(Y_{\bullet})_{\mathbb{Q}}$ to continuous K-theory $K_0^{\operatorname{cont}}(Y_{\bullet})_{\mathbb{Q}}$ [B-E-K1] Theorem 11.1. This finally enables them to give an equivalent Hodge-theoretic criterion when a vector bundle, rationally, can be lifted from Y_1 to Y_{\bullet} [B-E-K1], Theorem 1.3.

In the present note I study a relative version of the work of Bloch-Esnault-Kerz, starting from the "motivic" Chow group $H^{2r}(Y_1, \mathbb{Z}_{Y_m}(r))$ for fixed m. The problem is to find a similar criterion when an element in the latter cohomology group (the case m = 1 being treated in [B-E-K1]) lifts to the continuous Chow group $Ch_{\text{cont}}^r(Y_{\bullet})$. In such a mixed characteristic situation, especially when working with a scheme Y_m defined over the artinian local ring $W_m(k)$, it is reasonable to define the cohomological codimension r Chow group as $H_{\text{Zar}}^r(Y_m, \mathcal{K}_r^{\text{Mil}})$. The graded object is automatically a ring, contravariant in Y_m (see [B-E-K2], §4 for a similar situation in char 0).

There is a canonical map

 $H^{2r}(Y_1, \mathbb{Z}_{Y_m}(r)) \xrightarrow{\pi_r} H^r(Y_m, \mathcal{K}_r^{\mathrm{Mil}})$

which in some cases can be shown to be an isomorphism or at least an epimorphism. Hence our problem is still related to deforming Chow groups *p*-adically. Whilst Bloch-Esnault-Kerz entirely work with $\mathbb{Z}_{Y_{\bullet}}(r)$ as a procomplex, we need to define $\mathbb{Z}_{Y_m}(r)$ at a finite level which requires some additional thoughts related to the divided Frobenius in the definition of the syntomic complex at finite level. For fixed m we consider the smooth projective scheme $Y_m = X_1$ over the ring $R = W_m(k)$ and we assume there exists a compatible system $X_n/\text{Spec } W_n(R)$ of liftings of X_1 which is compatible with the formal lifting Y_{\bullet} of Y_1 , that is $X_{n+1} \times_{\text{Spec } W_{n+1}(R)} \text{Spec } W_n(R) = X_n \text{ and } X_n \times_{\text{Spec } W_n(R)} \text{Spec } W_n(k) = Y_n.$ Such a system X_n defines an ind-scheme X_{\bullet} over the ind-scheme Spec $W_{\bullet}(R)$ in the sense of [EGA1], Prop. 10.6.3. As multiplication by p is not injective on W(R) we need an alternative definition of the relative syntomic complex $\sigma_{X_{\bullet}/W_{\bullet}(R)}(r)$, using a divided Frobenius map defined on a filtered version $N^r W_{\bullet} \Omega_{X_1/R}$ of the relative de Rham-Witt complex $W \Omega_{X_1/R}^{\bullet}$. If m = 1, so R = k, then our complex $\sigma_{X_{\bullet}}(r)$ and the complex $\sigma_{Y_{\bullet}}(r)$ of Fontaine-Messing [F-M] resp. Kato [K2] are isomorphic as procomplexes. We formally define a motivic complex $\mathbb{Z}_{X_{\bullet}}(r)$ on X_1 in the same way as Bloch-Esnault-Kerz, by glueing $\mathbb{Z}_{X_1}(r)$ with $\sigma_{X_{\bullet}}(r)$ along the relative logarithmic Hodge-Witt sheaf $W_{\bullet}\Omega^r_{X_1/R,\log}$ in degree r and obtain a similar Hodge-theoretic condition to lifting a class in $H^{2r}(Y_1, \mathbb{Z}_{Y_m}(r))$ to $H^{2r}(X_1, \mathbb{Z}_{X_{\bullet}}(r))$, by using the crystalline cycle class with values in relative de Rham-Witt resp. relative crystalline cohomology.

As the ind-scheme X_{\bullet} is assumed to be compatible with Y_{\bullet} we can give a positive answer to our original problem (Theorem 3.6). We formulate here the main application on deforming elements in motivic Chow groups *p*-adically (Corollary 3.9):

THEOREM 0.1. Let r < p.

(i) Let Y_{\bullet} be a formal smooth projective scheme over $\operatorname{Spf}W(k)$. Let $X_1 = Y_m$ for some fixed $m \in \mathbb{N}$ and assume X_1 admits a smooth lifting X_{\bullet} , over $\operatorname{Spec} W_{\bullet}(W_m(k))$ compatible with Y_{\bullet} . Let $\xi \in H^{2r}(X_1, \mathbb{Z}_{X_1}(r))$.

If $c(\xi)$ is "Hodge" with respect to X_{\bullet} , i.e. $c(\xi) \in \text{Image}(\mathbb{H}^{2r}(X_{\bullet}, \Omega_{X_{\bullet}}^{\geq r}) \to H^{2r}(X_1, N^r W_{\bullet} \Omega_{X_1/W_m(k)}^{\bullet}))$, then ξ lifts to an element $\hat{\xi} \in CH^r_{\text{cont}}(Y_{\bullet}) = H^{2r}_{\text{cont}}(Y_1, \mathbb{Z}_{Y_{\bullet}}(r)).$

(ii) Let $z \in \text{image}(\pi_r)$. If its crystalline cycle class is "Hodge" with respect to X_{\bullet} , then z lifts to an element \hat{z} in $\lim_{\longleftarrow} H^r(Y_n, \mathcal{K}_{Y_n, r}^{\text{Mil}})$.

The theorem should be compared with [B-E-K1] Theorem 8.5. In the proof we will see that the implications in (i) and (ii) do not depend on the choice of X_{\bullet} ; Given two liftings X_{\bullet} , X'_{\bullet} compatible with Y_{\bullet} , with respect to which $c(\xi)$ resp. c(z) is "Hodge", the lifting property of ξ resp. z holds. In the course of the paper we need two technical results on the relative de Rham-Witt complex which play a crucial role in our construction and in the proofs.

In the relative setting the filtered de Rham complex $p(r)\Omega_{Y_{\bullet}}^{\bullet}$ mentioned earlier and used in the case R = k in [B-E-K1] is replaced by the complex $(I_R := VW(R))$ denoted by $\mathcal{F}^r\Omega_{X_{\bullet}/W_{\bullet}(R)}^{\bullet}$:

$$I_R \mathcal{O}_{X_{\bullet}} \xrightarrow{pd} I_R \otimes_{W(R)} \Omega^1_{X_{\bullet}/W_{\bullet}(R)} \xrightarrow{pd} \cdots \xrightarrow{pd} I_R \otimes \Omega^{r-1}_{X_{\bullet}/W_{\bullet}(R)} \xrightarrow{d} \Omega^r_{X_{\bullet}/W_{\bullet}(R)} \xrightarrow{d} \cdots$$

Then we prove Conjecture 4.1 in [L-Z2] for r < p

THEOREM 0.2. Let r < p. The complex $\mathcal{F}^r \Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)}$ is in the derived category isomorphic to the complex, denoted by $N^r W_{\bullet} \Omega^{\bullet}_{X_1/R}$

$$W_{\bullet} \mathcal{O}_{X_1} \xrightarrow{\mathrm{d}} W_{\bullet} \Omega^1_{X_1/R} \xrightarrow{\mathrm{d}} \cdots \xrightarrow{\mathrm{d}} W_{\bullet} \Omega^{r-1}_{X_1/R} \xrightarrow{\mathrm{d}V} W_{\bullet} \Omega^r_{X_1/R} \xrightarrow{\mathrm{d}}$$

The Theorem already holds at finite level for $X_n/W_n(R)$ for any ring R on which p is nilpotent (see Theorem 1.2).

In a second technical result on the relative de Rham-Witt complex we derive an exact triangle generalizing [II] I 5.7.2 and [B-E-K1] Corollary 4.6 in the case R = k.

THEOREM 0.3. (= Theorem 1.9). Let R be artinian local with perfect residue field k and X_1 smooth over Spec R. In the derived category of procomplexes on $(X_1)_{\text{et}}$ we have a short exact sequence

$$0 \longrightarrow W_{\bullet} \Omega^{r}_{X_{1}/R, \log}[-r] \longrightarrow N^{r} W_{\bullet} \Omega^{\bullet}_{X_{1}/R} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega^{\bullet}_{X_{1}/R} \longrightarrow 0.$$

Note that the complex $q(r)W_{\bullet}\Omega^{\bullet}_{X_1/k}$ appearing in [B-E-K1] Corollary 4.6 is isomorphic as procomplex to $N^rW_{\bullet}\Omega^{\bullet}_{X_1/k}$ by [L-Z2] Proposition 4.4, if R = k. Finally, we point out that Theorem 0.2 has been applied in the construction of higher displays ([G-L] Theorem 1.1 and [L-Z2] Conjecture 5.8).

In the equal characteristic p case, Matthew Morrow has recently studied a relative version of another arithmetic conjecture, the Crystalline Tate Conjecture (see [M1], [M2]), which is a characteristic p analogue of Grothendieck's variational Hodge conjecture.

This paper was prepared during a visit at IHES in Bures-sur-Yvette. The author thanks IHES for their hospitality.

1 Relative syntomic complexes

Let X be a smooth scheme X over Spec R (R artinian local with perfect residue field k of characteristic p > 0), admitting a lifting X_{\bullet} as ind-scheme over Spec $W_{\bullet}(R)$. We are going to define relative syntomic complexes $\sigma_{X_{\bullet}}(r)$ that will be entailed in the construction of the relative motivic complexes $\mathbb{Z}_{X_{\bullet}}(r)$ later on.

The definition of $\sigma_{X_{\bullet}}(r)$ will rely on an appropriate divided Frobenius map Fr on a filtered version of the relative de Rham-Witt complex, denoted by $N^{r}W_{n}\Omega_{X/R}^{\bullet}$:

$$W_{n-1}\mathcal{O}_X \xrightarrow{\mathrm{d}} W_{n-1}\Omega_{X/R}^1 \xrightarrow{\mathrm{d}} \cdots \longrightarrow W_{n-1}\Omega_{X/R}^{r-1} \xrightarrow{\mathrm{d}V} W_n\Omega_{X/R}^r \xrightarrow{\mathrm{d}} W_n\Omega_{X/R}^{r+1} \xrightarrow{\mathrm{d}} \cdots$$

(compare the definition in [L-Z2], Definition 2.1). Secondly, we will need a comparison between the complex $N^r W_n \Omega^{\bullet}_{X/R}$ and the following 'filtered' de Rham complex on the lifting X_n , denoted by $\mathcal{F}^r \Omega^{\bullet}_{X_n/W_n(R)}$, where $I_R = VW_{n-1}(R)$:

 $I_R \otimes_{W_n(R)} \mathfrak{O}_{X_n} \xrightarrow{p\mathrm{d}} I_R \otimes_{W_n(R)} \Omega^1_{X_n/W_n(R)} \xrightarrow{p\mathrm{d}} \cdots \xrightarrow{p\mathrm{d}} I_R \otimes_{W_n(R)} \Omega^{r-1}_{X_n/W_n(R)} \xrightarrow{\mathrm{d}} \Omega^r_{X_n/W_n(R)} \xrightarrow{\mathrm{d}} \cdots$

We recall the following

CONJECTURE 1.1. ([L-Z2] Conjecture 4.1). Let R be a ring on which p is nilpotent, $X_n/W_n(R)$ smooth and $X := X_n \times_{W_n(R)} R$. There is an isomorphism in the derived category between the complexes $N^r W_n \Omega^{\bullet}_{X/R}$ and $\mathcal{F}^r \Omega^{\bullet}_{X_n/W_n(R)}$.

We can prove the following

THEOREM 1.2. The conjecture holds if r < p.

Proof. Assume first that there exists a closed embedding $X_n \hookrightarrow Z_n$ into a smooth $W_n(R)$ -scheme Z_n which is a Witt lift of $Z = Z \times_{W_n(R)} R$ in the sense of [L-Z1] Definition 3.3. That is it is equipped with a map $\Delta_n : W_n(Z) \to Z_n$ fitting into a commutative diagram

Such a Witt-lift always exists locally. Let I be the ideal sheaf of X_n in \mathcal{O}_{Z_n} and $\mathcal{I} = \mathcal{I}_n$ be the divided power ideal sheaf of the embedding i_n . Let \mathcal{O}_{D_n} be the PD-envelope of \mathcal{O}_{Z_n} with respect to \mathcal{I} , with underlying scheme D_n . We already know that the complex $\mathcal{O}_{D_n} \otimes_{\mathcal{O}_{Z_n}} \Omega^{\bullet}_{Z_n/W_n(R)}$ is quasiisomorphic to $\Omega^{\bullet}_{X_n/W_n(R)}$ ([II], [B-O]). Let $\mathcal{I}^{[r]}$ for $r \geq 1$ be the higher divided power ideal sheaves. To keep notation light we will write \mathcal{O} for $\mathcal{O}_{D_n}, \Omega^i$ for $\Omega^i_{D_n}, I_R \mathcal{I}^{[j]}$ for $I_R \otimes_{W_n(R)} (\mathcal{I}^{[j]} \otimes_{\mathcal{O}_{D_n}} \Omega^s_{D_n})$. Then we consider the following diagram of complexes

As in the classical case for R = k (see [B-E-K1] 2.8) it follows from [B-O] Theorem 7.2, applied to $X_n \hookrightarrow Z_n$ and $X_n = X_n$, that the lower horizontal sequence is quasiisomorphic to $\Omega_{X_n/W_n(R)}^{\geq r}$. All horizontal sequences are - up to the term $I_R \Omega^j$ that is placed on the diagonal - exact because all sheaves $\mathfrak{I}^{[j]}$ and Ω^j are - locally - free \mathfrak{O}_{X_n} -modules by [B-O] Prop. 3.32. Therefore the sequence $\mathfrak{I}^{[s-\bullet]}\Omega^{\bullet}$ remains exact after $\otimes_{W_n(R)}R$ because it then coincides with the corresponding sequence for the closed embedding $X = X_n \times_{W_n(R)} R \to$ $Z_n \times_{W_n(R)} R$. Then $I_R \mathfrak{I}^{[s-\bullet]}\Omega^{\bullet}$ is exact as well.

It is clear that adding up the two lower horizontal sequences degree-wise yields a complex that is quasiisomorphic to

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow I_R \Omega^{r-1}_{X_n/W_n(R)} \xrightarrow{d} \Omega^r_{X_n/W_n(R)} \xrightarrow{d} \Omega^{r+1}_{X_n/W_n(R)} \longrightarrow \cdots$$

Moreover, it is easy to see that adding up degree-wise the k+1 lower horizontal sequences up to the sequence starting with $I_R \mathcal{I}^{[r-k]}$ we obtain a complex that is quasiisomorphic to

$$\dots \longrightarrow 0 \longrightarrow I_R \Omega_{X_n/W_n(R)}^{r-k} \xrightarrow{pd} \dots \xrightarrow{pd} I_R \Omega_{X_n/W_n(R)}^{r-1} \xrightarrow{d} \Omega_{X_n/W_n(R)}^r \xrightarrow{d} \dots$$

$$(1.4)$$

The quasiisomorphisms are induced by the canonical maps $\mathcal{O}_{D_n} \longrightarrow \mathcal{O}_{X_n}$, $\Omega^j_{D_n} \longrightarrow \Omega^j_{X_n}$ etc.

Define $\operatorname{Fil}^r \Omega^{\bullet}_{D_n/W_n(R)}$ to be the complex obtained by adding up all horizontal sequences degree-wise. Then $\operatorname{Fil}^r \Omega^{\bullet}_{D_n/W_n(R)}$ is quasiisomorphic to $\mathcal{F}^r \Omega^{\bullet}_{X_n/W_n(R)}$, the complex that is defined above before Conjecture 1.1. Now construct a map

$$\Sigma: \operatorname{Fil}^{r} \Omega^{\bullet}_{D_{n}/W_{n}(R)} \longrightarrow N^{r} W_{n} \Omega^{\bullet}_{X/R}$$
(1.5)

The composite map $\Delta_n : \mathcal{O}_{Z_n} \to W_n(\mathcal{O}_X)$ extends to a map $\sigma : \mathcal{O}_{D_n} \to W_n(\mathcal{O}_X)$ with induced maps $\Omega_{D_n}^i \xrightarrow{\sigma} W_n \Omega_{X/R}^i$, because the image of $I \subset \mathcal{O}_{Z_n}$ is contained in $VW_{n-1}(\mathcal{O}_X)$ which is a PD-ideal in $W_n(\mathcal{O}_X)$. Let $x \in \mathfrak{I}$ with image $\sigma(x) = V\eta \in VW_{n-1}(\mathcal{O}_X)$. Then $\sigma(x^n) = p^{n-1}V(\eta^n)$ hence $\sigma(\gamma_n(x)) = \frac{1}{n!}p^{n-1-j}V(\eta^n)$. Then for $r \leq p-1$, j < r and n > j, the element $\sigma^{(j)} = \frac{1}{n!}p^{n-1-j}V(\eta^n)$ is well-defined. Define $F^{(j+1)}(\gamma_n(x)) = \overset{c}{P}_p^r \sigma^{(j)}(\gamma_n(x)) := \frac{1}{n!}p^{n-1-j}\eta^n$ using FV = p. Then the map Σ is defined on entries as follows: Consider a differential in the lower horizontal sequence

$$\mathfrak{I}^{[k]}\Omega^{r-k} \xrightarrow{d} \mathfrak{I}^{[k-1]}\Omega^{r-k+1}$$

For $m \geq k$ let $\gamma_m(x)\omega \in \mathbb{J}^{[k]}\Omega^{r-k}$ with $\sigma(x) = V\eta$ as above. Define $F_k(\gamma_m(x)\omega) = F^{(k)}(\gamma_m(x))F\sigma(\omega) = \frac{p^{m-1-(k-1)}}{m!}\eta^m F\sigma(\omega)$ in $W_{n-1}\Omega_{X/R}^{r-k}$. Then

$$dF_k(\gamma_m(x)\omega) = \frac{p^{m-k}}{(m-1)!}\eta^{m-1}d\eta F\sigma(\omega) + \frac{p^{m-k+1}}{m!}\eta^m Fd\sigma(\omega)$$

using dF = pFd.

On the other hand $d(\gamma_m(x)\omega) = \gamma_{m-1}(x)dx\omega + \gamma_m(x)d\omega$ and hence

$$F_{k-1}(d\gamma_m(x)\omega) = \frac{p^{m-2-(k-2)}}{(m-1)!}\eta^{m-1}d\eta F\sigma(\omega) + \frac{p^{m-1-(k-2)}}{m!}\eta^m Fd\sigma(\omega)$$

Here we have used $FdV\eta = d\eta$. We see that $dF_k(\gamma_m(x)\omega) = F_{k-1}d(\gamma_m(x)\omega)$. Now let for $\underline{x} = (x_1, \ldots, x_\ell)$, $x_i \in \mathcal{J}$ and $m = \sum_{i=1}^\ell m_i \geq k$, $\underline{x}^{[m]} = x_1^{[m_1]} \cdots x_\ell^{[m_\ell]}$ with $x_i^{[m_i]} = \gamma_{m_i}(x_i) = \frac{x_i^{m_i}}{(m_i)!}$ (an arbitrary element in $\mathcal{I}^{[k]}$). Let $\sigma(x_i) = V(\eta_i)$. Define

$$F^{(k)}(\underline{x}^{[\underline{m}]}) = \left(\prod_{i=1}^{\ell} \frac{p^{m_i - 1}}{(m_i)!} \eta_i^{m_i}\right) \cdot p^{-(k-\ell)}$$

The definition is compatible with the previous case $\ell = 1$. Again we have for $\underline{x}^{[\underline{m}]} \cdot \omega \in \mathcal{I}^k \Omega^{r-k}$ and $F_k(\underline{x}^{[\underline{m}]} \cdot \omega) := F^{(k)}(\underline{x}^{[\underline{m}]}) \cdot F\sigma(\omega)$ the equality

$$dF_k(\underline{x}^{[\underline{m}]} \cdot \omega) = F_{k-1}d(\underline{x}^{[\underline{m}]} \cdot \omega)$$

The tedious proof is omitted.

So we have a commutative diagram for $k\geq 1$

We can extend the map F_k to a map

$$F_{k+1}: I_R \mathcal{I}^{[k]} \Omega^{\ell-k} \longrightarrow W_{n-1} \Omega^{\ell-k}_{X/R}$$

by

Then

$$F_{k+1}(V\xi\underline{x}^{[\underline{m}]}\omega) = \xi F_k(\underline{x}^{[\underline{m}]}\omega)$$

$$I_R \mathcal{I}^{[k]}\Omega^{\ell-k} \xrightarrow{d} I_R \mathcal{I}^{[k-1]}\Omega^{\ell-k+1}$$

$$\downarrow^{F_{k+1}} \qquad \qquad \downarrow^{F_k}$$

$$W_{n-1}\Omega^{\ell-k}_{X/R} \xrightarrow{d} W_{n-1}\Omega^{\ell-k+1}_{X/R}$$
(1.6.2)

commutes as well for $k \ge 1$. It is also clear that the diagram

$$I_R \Omega^k \xrightarrow{pd} I_R \Omega^{k+1} \\ \downarrow^{F_1} \qquad \downarrow^{F_1} \\ W_{n-1} \Omega^k_{X/R} \xrightarrow{d} W_{n-1} \Omega^{k+1}_{X/R}$$
(1.6.3)

commutes where $F_1(V\xi\omega) = \xi F\omega$, using that $dF\omega = pFd\omega$. In degree r-1 the maps d commute with dV because we have commutative diagrams

$$I_{R}\Omega^{r-1} \xrightarrow{d} \Omega^{r} \qquad \Im\Omega^{r-1} \xrightarrow{d} \Omega^{r}$$

$$\downarrow^{F_{1}} \qquad \downarrow^{\sigma} \qquad \downarrow^{F_{1}} \qquad \downarrow^{\sigma}$$

$$W_{n-1}\Omega^{r-1}_{X/R} \xrightarrow{dV} W_{n}\Omega^{r}_{X/R} \qquad W_{n-1}\Omega^{r-1}_{X/R} \xrightarrow{dV} W_{n}\Omega^{r}_{X/R} \qquad (1.6.4)$$

because

$$dV(F_1(V\xi\omega)) = dV(\xi F\sigma(\omega)) = d(V\xi\sigma(\omega)) = V\xi d\sigma(\omega) = V\xi\sigma(d(\omega))$$

and

$$dV(F_1(\gamma_m(x)\omega)) = dV\left(\frac{p^{m-1}}{m!}\eta^m F\sigma(\omega)\right) = d(\sigma(\gamma_m(x))\sigma(\omega)) = \sigma d(\gamma_m(x)\omega)$$

(where $\sigma(x) = V\eta$ as before).

Hence we have constructed a map

$$\Sigma: \operatorname{Fil}^{r} \Omega^{\bullet}_{D_{n}/W_{n}(R)} \longrightarrow N^{r} W_{n} \Omega^{\bullet}_{X/R}$$
(1.6)

from the complex constructed in diagram (1.3) into the Nygaard complex. We have a diagram

If we have two embeddings $X_n \xrightarrow{i_n} Z_n$, $X_n \xrightarrow{i'_n} Z'_n$ into Witt lifts Z_n , Z'_n with corresponding diagrams (1.3) for each embedding and corresponding complexes $\operatorname{Fil}^r \Omega^{\bullet}_{D_n/W_n(R)}$, $\operatorname{Fil}^r \Omega^{\bullet}_{D'_n/W_n(R)}$ then by considering the product embedding $X_n \xrightarrow{(i_n, i'_n)} Z_n \times Z'_n$ and the corresponding Fil^r -complex, we see that we get a canonical map

$$\mathcal{F}^r \Omega^{ullet}_{X_n/W_n(R)} \longrightarrow N^r W_n \Omega^{ullet}_{X/R}$$
 (1.7.1)

in the derived category which does not depend on the choice of the embedding i_n . In order to prove Theorem 1.2 it suffices to show that the map Σ is a quasiisomorphism. This is a local question, hence we may assume that $X_n = Z_n = D_n$ are affine with Frobenius lift F. Then the assertion follows from [L-Z2] Corollary 4.3. This proves the Theorem and Conjecture 4.1 in [L-Z2] for r < p assuming the existence of a global embedding into a Witt lift. If there is no embedding of X_n into a Witt lift one proceeds by simplicial methods as in [II] II.1.1, [L-Z1] §3.2. Let $X_n(i), i \in I$ be a covering of X_n , inducing a covering X(i) of X, and an embedding $X_n(i) \to Y_n(i)$ which is a Witt lift of $Y(i) = Y_n(i) \times_{W_n(R)} R$. One gets simplicial schemes $X^{\bullet} \to X_n^{\bullet} \to D_n^{\bullet} \to Y_n^{\bullet}$ and quasiisomorphisms of simplicial complexes of sheaves

$$\mathfrak{F}^r\Omega^{\bullet}_{X^{\bullet}_n/W_n(R)} \leftarrow \operatorname{Fil}^r\Omega^{\bullet}_{D^{\bullet}_n/W_n(R)} \to N^rW_n\Omega^{\bullet}_{X^{\bullet}/R}$$

on X^{\bullet} ; let $\theta : X^{\bullet} \to X$ be the natural augmentation. By applying $R\theta_*$ to the quasiisomorphisms we get, by cohomological descent in Zariski/étale topology, an isomorphism (1.7.1) in $D_{\text{ét}}(X)$.

Documenta Mathematica 23 (2018) 1–1000

8

There are well known maps of the de Rham-Witt complexes, denoted by "1" and Fr, between $N^r W_n \Omega^{\bullet}_{X_R}$ and $W_{n-1} \Omega^{\bullet}_{X/R}$:

The diagram commutes because of FdV = d, dF = pFd and Vd = pdV. p^iV means p^iV composed with the projection from level n to level n-1. The map Fr of complexes also appears in [L-Z2] in the context of (pre-)displays and plays the role of a divided Frobenius.

In the following we will consider the derived category of procomplexes $D_{\text{pro,et}}(X)$ defined as follows: Let $C_{\text{pro,et}}(X)$ be the category of pro-systems of unbounded complexes of sheaves on the small étale site of X. Then $D_{\text{pro,et}}(X)$ is the Verdier localisation of the homotopy category of $C_{\text{pro,et}}(X)$ where all objects are killed which are represented by pro-systems of complexes with levelwise vanishing cohomology sheaves (compare [B-E-K1] Definition A.4).

THEOREM 1.9. Let R be an artinian local ring with perfect residue field k, X/Spec R smooth. Then there is an exact sequence of pro-complexes in $D_{\text{pro,et}}(X)$:

$$0 \longrightarrow W_{\bullet}\Omega^{r}_{X/R,\log}[-r] \longrightarrow N^{r}W_{\bullet}\Omega^{\bullet}_{X/R} \xrightarrow{1-\mathrm{Fr}} W_{\bullet}\Omega^{\bullet}_{X/R} \longrightarrow 0$$

where $W_{\bullet}\Omega^{r}_{X/R,\log}$ is, locally for X = Spec A, generated by $d\log[x_1] \land \ldots \land d\log[x_r]$, with $x_1, \ldots, x_r \in A$, as $W_{\bullet}(\mathbb{F}_p)$ -module.

Proof. Let $l < r, i \ge 0$. Consider the map

$$p^i V - \mathrm{id} : W_{n-1} \Omega^l_{X/R} \longrightarrow W_{n-1} \Omega^l_{X/R}$$

Then $(p^i V - \mathrm{id})\alpha = p^i V \alpha - \alpha$ and for given β we have $\beta = (p^i V - \mathrm{id})\alpha$ has the solution $\alpha = -\sum_{m=0}^{\infty} (p^i V)^m \beta$ hence $p^i V$ - id is surjective. On the other hand, let $\alpha \in \mathrm{Ker}(p^i V - \mathrm{id})$. Then $\alpha = p^i V \alpha$, hence $\alpha \in (p^i V)^s W_{n-1} \Omega_{X/R}^l$ for all s, so $\alpha = 0$ and thus $1 - \mathrm{Fr}$ is an automorphism in degrees < r. A formal inverse of $(1 - p^s F)$, for s > 0, is $\sum_{n=0}^{\infty} (p^s F)^n = \sum_{n=1}^{\infty} p^{sn} F^n$. This is an element of the Cartier-Raynaud ring because for any u > 0 $p^{sn} \in V^u W(R)$ for almost all n. Hence $\sum_{n\geq 0} p^{sn} F^n$ acts on the completed $W\Omega_{X/R}^l$ and provides an inverse of $1 - p^s F$ on $W\Omega_{X/R}^l$. But then $1 - p^s F$ is also surjective on the prosystem $W_{\bullet}\Omega_{X/R}^l$.

Since all assertions in the theorem only need to be checked locally, we may assume now that X = Spec B, where B is étale over a Laurent polynomial

algebra $A = R[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$. It is enough to prove the theorem when replacing B by $B \otimes_R R/\mathfrak{m}^e$ for any $e \geq 1$, where \mathfrak{m} is the maximal ideal of R. For e = 1 this follows from [II] I Théorème 5.7.2. We will prove the remaining assertions by inducion on e. So let B/R be such that $\mathfrak{m}^e R = 0$ and assume the theorem holds for $\overline{B} = B \otimes_R R/\mathfrak{m}^{e-1}$. To prove the injectivity of $1 - p^s F$, for s > 0, on the prosheaf $W_{\bullet} \Omega^{\ell}_{B/R}$ it is enough to show that

$$\ker(1-p^sF:W_{n+1}\Omega^\ell_{B/R}\to W_n\Omega^\ell_{B/R})$$

is contained in $\operatorname{Fil}^{n} W_{n+1} \Omega_{B/R}^{\ell}$. (For e = 1, this is shown in [II] I, Lemma 3.30). Consider the commutative diagram

Let $A_n = W_n(R)[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$ and $\varphi: A_{n+1} \to A_n$ be the Frobenius, extending $F: W_{n+1}(R) \to W_n(R)$ by $T_i \to T_i^p$. The map $A_n \to W_n(A), T_i \to [T_i]$ is compatible with Frobenii. As shown in [L-Z1] Prop. 3.2, φ extends to a Frobenius structure $B_{n+1} \to B_n$, where B_n is a lifting of B over $W_n(R)$, étale over A_n , equipped with a map $B_n \to W_n(B)$, again compatible with Frobenii. Let now $m \in \mathbb{N}$ be such that $p^m W_{n+1}(R) = 0$. Then étale base change for the relative de Rham-Witt complex and the proof of [L-Z1] Theorem 3.5 (applied to $A = R[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$ instead of $R[T_1, \ldots, T_d]$) gives isomorphisms of complexes

$$W_{n}\Omega_{B/R}^{\bullet} = W_{m+n}(B) \otimes_{W_{m+n}(A),F^{n}} W_{n}\Omega_{A/R}^{\bullet}$$

$$\cong B_{m+n} \otimes_{A_{m+n},\varphi^{n}} W_{n}\Omega_{A/R}^{\bullet}$$

$$= B_{m+n} \otimes_{A_{m+n},\varphi^{n}} \Omega_{A_{n}/W_{n}(R)}^{\bullet} \oplus B_{m+n} \otimes_{A_{m+n},\varphi^{n}} (W_{n}\Omega_{A/R}^{\bullet})_{frac}$$

$$= (W_{n}\Omega_{B/R}^{\bullet})_{int} \oplus (W_{n}\Omega_{B/R}^{\bullet})_{frac}$$

$$(1.9.2)$$

The decomposition into an integral and an acyclic fractional part according to weight functions with values in $\mathbb{Z}[1/p]$ is given in [L-Z1] (3.9) for polynomial algebras and in [B-M-S] Theorems 10.12 and 10.13 for Laurent polynomial algebras. From the uniqueness statement in the description of $W_n \Omega^{\bullet}_{A/R}$ as sums of basic Witt differentials we see that

$$\ker(W_n\Omega^{\bullet}_{A/R} \to W_n\Omega^{\bullet}_{\bar{A}/\bar{R}}) = W_n(\mathfrak{m}^{e-1})\Omega^{\bullet}_{A_n/W_n(R)} \oplus (W_n\Omega^{\bullet}_{\mathfrak{m}^{e-1}A/R})_{frac}$$

where $(W_n \Omega^{\bullet}_{\mathfrak{m}^{e-1}A/R})_{frac}$ consists of sums of basic Witt differentials in $(W_n \Omega^{\bullet}_{A/R})_{frac}$ with coefficients in $W_n(\mathfrak{m}^{e-1})$. Then ker π_n , for $\pi_n : W_n \Omega^{\ell}_{B/R} \to$

 $W_n \Omega^{\ell}_{\bar{B}/\bar{R}}$, is equal to

$$B_{m+n} \otimes_{A_{m+n},\varphi^m} W_n(\mathfrak{m}^{e-1}) \Omega^{\bullet}_{A_n/W_n(R)} \oplus B_{m+n} \otimes_{A_{m+n},\varphi^m} (W_n \Omega^{\bullet}_{\mathfrak{m}^{e-1}A/R})_{frac}$$
(1.9.3)
Since for $\alpha \in \mathfrak{m}^{e-1}$ and $p = [p] + V\eta$ we have $p \cdot [\alpha] = [p \cdot \alpha] + V(\eta \cdot [\alpha]^p) = 0$ we see that $p \cdot x = 0$ for all $x \in W_n(\mathfrak{m}^{e-1})$ and hence $1 - p^s F$: ker $\pi_{n+1} \to \ker \pi_n$ is the projection map which has kernel $\operatorname{Fil}^n W_{n+1} \Omega^{\ell}_{B/R} \cap \ker \pi_{n+1}$. By induction hypothesis, on the level $\overline{B}/\overline{R}$, ker $(1 - p^s F)$ is contained in $\operatorname{Fil}^n W \Omega^{\ell}_{\overline{B}/\overline{R}}$. This shows that $1 - p^s F : W_{\bullet} \Omega^{\ell}_{B/R} \to W_{\bullet} \Omega^{\ell}_{B/R}$ is an isomorphism of prosheaves for $s > 0$ and hence the map $1 - \operatorname{Fr}$ in the theorem is bijective in degrees $> r$. Now we prove the exactness of the complex of prosheaves

$$0 \to W_{\bullet} \Omega^r_{B/R, \log} \to W_{\bullet} \Omega^r_{B/R} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega^r_{B/R} \to 0$$

in the étale topology. Consider the commutative diagram

By induction hypothesis, the lower sequence is exact in the étale topology. To prove the surjectivity of 1 - F in the étale topology it suffices to show that $\ker \pi_{n+1} \xrightarrow{1-F} \ker \pi_n$ is surjective. We use again the description (1.9.3) of $\ker \pi_n$ as a sum of an integral and a fractional part with coefficients in $W_n(\mathfrak{m}^{e-1})$, and where the fractional part is acyclic, too.

Let $x = [x_0] + V\eta \in W_{n+1}(\mathfrak{m}^{e-1})$. Then $Fx = [x_0]^p + p \cdot \eta = 0$, so 1 - F is the projection from level n + 1 to level n on the integral part. In the fractional part of the decomposition (1.9.3) an element $\tilde{f} \otimes V\omega$, with \tilde{f} a lift of $f \in B$ to B_{m+n+1} corresponds to $\varphi^m \tilde{f} V \omega = V(F^{m+1}\tilde{f} \cdot \omega)$ in $W_{n+1}\Omega^r_{\mathfrak{m}^{e-1}B/R}$, where we identify \tilde{f} with its image in $W_{m+n+1}(B)$ and use the compatibility of φ and F under the map $B_{m+n+1} \to W_{m+n+1}(B)$. Likewise, $\tilde{f} \otimes dV\omega = \varphi^m \tilde{f} dV\omega =$ $d(F^m \tilde{f} V \omega) = dV(F^{m+1}\tilde{f} \cdot \omega)$ because p^m annihilates $W_{n+1}(R)$ and dF = pFd. Since $V\omega$ has coefficients in $W_{n+1}(\mathfrak{m}^{e-1})$ we see that $F \circ V(\omega) = p \cdot \omega = 0$. So again 1 - F is the projection from level n + 1 to level n on the image of V. On the other hand, 1 - F maps the image of dV onto the image of d. The assertion already holds in the Zariski topology. We recall here the argument in [II] I. Prop. 3.26 which also holds for the relative de Rham-Witt complex,

using the formula FdV = d. Let $x \in W_n \Omega_{B/R}^{r-1}$. Then

$$dx = FdVx - dVx + FdV^{2}x - dV^{2}x + \cdots$$
$$= (F-1)(dVx + \cdots + dV^{n}x)$$

Since for $y \in W_n \Omega_{B/R}^{r-1}$

$$(F-1)(dVy) = dy - dVy$$

lies in the image of d, the assertion follows. So in particular, the image of dV in $W_n \Omega^r_{\mathfrak{m}^{e-1}B/R}$ is contained in the image of 1-F. Hence $1-F: \ker \pi_{\bullet} \to \ker \pi_{\bullet}$ is surjective and therefore 1-F is surjective on the prosheaf $W_{\bullet} \Omega^r_{B/R}$ in the étale topology.

Now we compute the kernel of 1 - F: ker $\pi_{n+1} \to \ker \pi_n$. The above considerations show that 1 - F is the projection from level n + 1 to level n on the integral part of ker $\pi_{n+1} = W_{n+1}\Omega^r_{\mathfrak{m}^{e-1}B/R}$ and also on the image of V (because F vanishes there). So the kernel of 1 - F, when restricted to this integral part and the image of V, is contained in $\operatorname{Fil}^n W_{n+1}\Omega^r_{B/R} \cap \ker \pi_{n+1}$. On the other hand, the image of dV is mapped under 1 - F onto the image of d using the formula FdV = d.

In the following we prove a uniqueness statement for representing elements in

$$(W_n\Omega^r_{\mathfrak{m}^{e-1}B/R})_{frac} = B_{m+n} \otimes_{A_{m+n},\varphi^m} (W_n\Omega^r_{\mathfrak{m}^{e-1}A/R})_{frac}$$

as a sum of "basic" Witt differentials. For this we recall the notion of primitive basic Witt differentials $e(1, k, \mathcal{P})$ associated to primitive weight functions k : $\{1, \ldots, d\} \to \mathbb{Z} \cup \{\infty\}$ and partitions \mathcal{P} of supp $k, \mathcal{P} = I_0 \cup \cdots \cup I_r$ with $I_0 \neq \emptyset$. "Primitive" means that for at least one $i \in I_0, p \nmid k_i$. They are defined in [L-Z1] 2.2 and used in the uniqueness statement [L-Z1] Theorem 2.24 for polynomial algebras, where k takes values in N. But the same statement holds for Laurent polynomial algebras as well by allowing weight functions to take values in $\mathbb{Z} \cup \{\infty\}$, where the value $k_i = k(i)$ is ∞ if the variable T_i occurs in a logarithmic differential $d \log[T_i]$. A description of the elements $e(1, k, \mathcal{P})$ in the case of Laurent polynomial algebras is given in [B-M-S], 10.4, Case 1, assuming $v(a|_{I_0}) = v(a|_{I_1}) = \cdots = v(a|_{I_{\rho_1}}) = 0$, that is $\rho_1 = 0$ using the notation in [B-M-S].

Then an element z in $(W_n \Omega^r_{\mathfrak{m}^{e-1}A/R})_{frac}$ has a unique representation

$$z = \sum_{(k',\mathcal{P}')} \sum_{j=1}^{n-1} V^j \xi'_j e(1,k',\mathcal{P}') + \sum_{(k,\mathcal{P})} \sum_{j=1}^{n-1} dV^j \xi_j e(1,k,\mathcal{P})$$
(1.9.5)

where $(k', \mathcal{P}'), (k, \mathcal{P})$ are as above, $\mathcal{P}' = I'_0 \cup \cdots \cup I'_r$; $\mathcal{P} = I_0 \cup \cdots \cup I_{r-1}, \xi_j, \xi'_j \in W_{n-j}(\mathfrak{m}^{e-1})$. For our purposes, namely to compute the kernel of 1 - F, it is enough to consider the second sum, i.e. we will only consider exact differentials in the fractional part. In order to find elements in the kernel of

1 - F, we need to include the case j = 0 in the above sum, so we will consider elements

$$z = \sum_{(k,\mathcal{P})} \sum_{j=0}^{n-1} dV^j \xi_j e(1,k,\mathcal{P})$$

Since the product structure of $W_n(R)$ on $W_n(\mathfrak{m}^{e-1})$ factors through the action of k:

$$\alpha \cdot (\xi_0, \dots, \xi_{n-1}) = ([\alpha]\xi_0, [\alpha]^p \xi_1, \dots, [\alpha]^{p^{n-1}} \xi_{n-1})$$

we see that \mathfrak{m}^{e-1} , resp. $W_n(\mathfrak{m}^{e-1})$ become k-vector spaces. (Note that $I_R = VW_{n-1}(R)$ and $W_n(\mathfrak{m})$ both annihilate $W_n(\mathfrak{m}^{e-1})$.) Then the action of A_n on $(W_n\Omega^r_{\mathfrak{m}^{e-1}A/R})_{frac}$ factors through $A_k = A \otimes_R k = k[T_1^{\pm 1}, \ldots, T_d^{\pm 1}]$. We have an isomorphism for all $m \geq 0$ ([L-Z1], Prop. 3.2, Lemma A.9 and Corollary A.11)

$$(B_{m+n} \otimes_{A_{m+n},\varphi^m} A_n) \otimes_{A_n} A_k \cong B_n \otimes_{W_n(R)} k \cong B_k = B \otimes_R k \qquad (1.9.6)$$

given by $b \otimes a \otimes 1 \mapsto \bar{b}^{p^m} \cdot \bar{a}$ where \bar{b} , resp. \bar{a} is the image of b, resp. a under the canonical map $B_{m+n} \to B_k$ resp. $A_n \to A_k$.

Let $\mathcal{M}_{\leq p^n}$ be the set of all primitive basic Witt differentials $e(1, k, \mathcal{P})$ with $\mathcal{P} = I_0 \cup \cdots \cup I_{r-1}$ such that $1 \leq k_i < p^n$ or $k_i = \infty$ for all non-zero weights $k_i = k(i)$ occuring in k. Let $\{\rho_i\}_{i \in I}$ be a k-vector space basis of \mathfrak{m}^{e-1} . Since k is perfect $\{V^j[\rho_i]\}_{i \in I}$ is a k-vector space basis for $V^j[\mathfrak{m}^{e-1}]$ ($\subset W_n(\mathfrak{m}^{e-1})$) for all j. Then $\{V^j[\rho_i] \cdot e(1, k, \mathcal{P})\}_{i \in I, e(1, k, \mathcal{P}) \in \mathcal{M}_{\leq p^n}}$ is a basis of the A_k -action on primitive basic Witt differentials with coefficients in $V^j[\mathfrak{m}^{e-1}]$, for all $j \in \{0, \ldots, n-1\}$ via $\alpha \cdot \omega = \alpha^{p^n} \cdot \omega$ (compare Prop. 2.2 and Prop. 2.3 and its proof in [D-L-Z]; it also applies to the F-action of Laurent polynomial algebras A_k). Likewise $\{d(V^j[\rho_i]e(1, k, \mathcal{P}))\}_{i \in I, e(1, k, \mathcal{P}) \in \mathcal{M}_{\leq p^n}}$ is a basis of the A_k -action on d(primitive basic Witt differentials with coefficients in $V^j[\mathfrak{m}^{e-1}]$) for j fixed, $j \in \{0, \ldots, n-1\}$ via $\alpha d\omega = \alpha^{p^n} d\omega = d\alpha^{p^n} \omega$.

Let $\mathcal{M}_{l,n}$ be the k-vector space of primitive basic Witt differentials in degree r-1 with coefficients in $W_{n-l}(\mathfrak{m}^{e-1})$ and let $\mathcal{M}_{l,n}(j)$ be the subspace of $\mathcal{M}_{l,n}$ of those differentials with coefficients in $V^{j}[\mathfrak{m}^{e-1}] \subset W_{n-l}(\mathfrak{m}^{e-1})$, $j = 0, \ldots, n-l-1$. Then $\{dV^{l}(V^{j}[\rho_{i}]e(1,k,\mathcal{P}))\}_{i\in I,e(1,k,\mathcal{P})\in\mathcal{M}_{<p^{n}}}$ is a basis of the A_{k} -action on $dV^{l}(\mathcal{M}_{l,n}(j))$ via $\alpha dV^{l}\omega = \alpha^{p^{n-l}}dV^{l}\omega = dV^{l}\alpha^{p^{n}}\omega$. The isomorphism (1.9.6) shows that for all $m \geq 0$

$$B_{m+n} \otimes_{A_{m+n},\varphi^m} (W_n \Omega^r_{\mathfrak{m}^{e-1}A/R})^{exact}_{frac} \cong B_k \otimes_{A_k,F^m} (W_n \Omega^r_{\mathfrak{m}^{e-1}A/R})^{exact}_{frac}$$
(1.9.7)

Then $B_k \otimes_{A_k, F^{n-l}} (dV^l \mathcal{M}_{l,n}) \cong dV^l (B_k^{p^n} \otimes_{A_k^{p^n}} \mathcal{M}_{l,n})$ and $\{dV^l (V^j[\rho_i]e(1,k,\mathcal{P}))\}_{i\in I, e(1,k,\mathcal{P})\in\mathcal{M}_{< p^n}}$ is a basis of the B_k -action on $B_k \otimes_{A_k, F^{n-l}} dV^l (\mathcal{M}_{l,n}(j))$ for fixed j.

Summarizing, we have isomorphisms

$$B_{m+n} \otimes_{A_{m+n},\varphi^m} (W_n \Omega_{\mathfrak{m}^{e-1}A/R}^r)_{frac}^{exact} \cong B_{m+n} \otimes_{A_{m+n},\varphi^m} \left(\sum_{l=0}^{n-1} dV^l(\mathcal{M}_{l,n}) \right)$$
$$\cong \sum_{l=0}^{n-1} (B_{m+n} \otimes_{A_{m+n},\varphi^m} dV^l(\mathcal{M}_{l,n}))$$
$$\cong \sum_{l=0}^{n-1} B_k \otimes_{A_k,F^{n-l}} dV^l(\mathcal{M}_{l,n})$$
$$\cong \sum_{l=0}^{n-1} dV^l(B_k^{p^n} \otimes_{A_k^{p^n}} \mathcal{M}_{l,n}) \qquad (1.9.8)$$

(choose m := n - l for each l for the penultimate isomorphism). Then we have proven the following

LEMMA 1.10. For $z \in B_{m+n} \otimes_{A_{m+n}} (W_n \Omega^r_{\mathfrak{m}^{e-1}A/R})^{exact}_{frac}$ we have a representation as

$$z = \sum_{l=0}^{n-1} dV^l \left(\sum_{e(1,k,\mathcal{P})\in\mathcal{M}_{< p^n}} \left(\sum_{j=0}^{n-l-1} \sum_{i\in I} V^j([\rho_i])[b_{i,l,j,k,\mathcal{P}}^{p^n}] \right) e(1,k,\mathcal{P}) \right)$$

with uniquely determined elements $b_{i,l,j,k,\mathcal{P}} \in B_k$ and where $\{\rho_i\}_{i \in I}$ is a kbasis of \mathfrak{m}^{e-1} as before, hence $\{V^j[\rho_i]\}_{i \in I}$ is a basis of $V^j[\mathfrak{m}^{e-1}]$ as a k-vector subspace in $W_{n-l}(\mathfrak{m}^{e-1})$.

F maps an element $z = \sum_{l=0}^{n-1} dV^l(\beta_l)$ as above to $z' = \sum_{l=1}^{n-1} dV^{l-1}(\beta_l)$, using the formula FdV = d and that $Fd\beta_0$ vanishes because F annihilates $W_n(\mathfrak{m}^{e-1})$.

formula FdV = d and that $Fd\beta_0$ vanishes because F annihilates $W_n(\mathfrak{m}^{e-1})$. Now we are looking at a particular summand

$$dV^l\left(V^j([\rho_i])[b^{p^n}_{i,l,j,k,\mathcal{P}}]e(1,k,\mathcal{P})\right)$$

It is easy to see that $b_{i,l,j,k,\mathcal{P}}^{p^n}e(1,k,\mathcal{P})$ can be written as $g_{i,l,j,k,\mathcal{P}} \cdot \omega(k,\mathcal{P})$, where $\omega(k,\mathcal{P})$ is a logarithmic differential (a product of $d\log s$ in variables $[T_1], \ldots, [T_d]$) depending only on (k,\mathcal{P}) and $g_{i,l,j,k,\mathcal{P}} \in B_k$ (use that $d[T]^s = \frac{[T]^s d\log[T]}{s}$ for $p \nmid s$ and $F^r d[T] = [T]^{p^r} d\log[T]$). Then

$$V^{j}([\rho_{i}])[b^{p^{n}}_{i,l,j,k,\mathcal{P}}]e(1,k,\mathcal{P}) = V^{j}([\rho_{i}g^{p^{j}}_{i,l,j,k,\mathcal{P}}])\omega(k,\mathcal{P})$$

Then, for fixed j and i, F maps (using $F\omega = \omega$)

$$\sum_{l=0}^{n-1-j} dV^{l+j} [\rho_i g_{i,l,j,k,\mathcal{P}}^{p^j}] \omega(k,\mathcal{P})$$

$$\begin{split} \sum_{l=1}^{n-1-j} dV^{l+j-1}[\rho_i g_{i,l,j,k,\mathcal{P}}^{p^j}]\omega(k,\mathcal{P}) &= \sum_{l=1}^{n-1-j} dV^{l-1}(V^j[\rho_i] \cdot g_{i,l,j,k,\mathcal{P}})\omega(k,\mathcal{P}) \\ &= \sum_{l=1}^{n-1-j} dV^{l-1}(V^j[\rho_i][b_{i,l,j,k,\mathcal{P}}^{p^n}]e(1,k,\mathcal{P})) \end{split}$$

Note that $dV^j[\rho_i g_{i,l,j,k,\mathcal{P}}^{p^j}]$ (the case l = 0) vanishes under F because $d(V^{j-1}[\rho_i] \cdot [g_{i,l,j,k,\mathcal{P}}^p]) = 0$. So F maps

$$\sum_{l=1}^{n-1-j} dV^{l+j} [\rho_i \cdot g_{i,l,j,k,\mathcal{P}}^{p^j}] \omega(k,\mathcal{P})$$

 to

$$\sum_{l=1}^{n-1-j} dV^{l+j-1}[\rho_i][g_{i,l,j,k,\mathcal{P}}^{p^j}] \cdot \omega(k,\mathcal{P})$$

Now let us first look at the case j = 0 and consider an element

$$z = d([\alpha] \cdot [g]) \cdot \omega$$

 $\alpha \in \mathfrak{m}^{e-1}, g \in B_k, \omega$ a logarithmic differential satisfying $F\omega = \omega$. Then

$$z = d([1] + [\alpha][g])\omega$$
$$= d([1 + \alpha g])\omega + \sum_{l=1}^{n} dV^{l}([x_{l}])\omega \mod \operatorname{Fil}^{n+1}$$

where $x_l = S_l([1], [\alpha g])$ and S_l is the polynomial defining the *l*-component of the sum of two Witt vectors. It is known that $S_0(\underline{X}, \underline{Y}) = X_0 + Y_0, S_1(\underline{X}, \underline{Y}) = X_1 + Y_1 + \frac{1}{p}(X_0^p + Y_0^p - (X_0 + Y_0)^p)$. We do not need to know S_n for $n \ge 2$. We see that $x_1 = S_1([1], [\alpha g]) = -\alpha g$ and get mod Filⁿ⁺¹

$$d([1] + [\alpha][g]) = d([1 + \alpha g]) + dV([-\alpha g]) + \sum_{l=2}^{n} dV^{l}[x_{l}]$$

Now $F[\alpha] = [\alpha]^p = 0$, so we get, using FdV = d

$$0 = Fd([1 + \alpha g]) + d([-\alpha g]) + \sum_{l=1}^{n-1} dV^{l}[x_{l+1}]$$
$$= d\log[1 + \alpha g] + d([-\alpha g]) + \sum_{l=1}^{n-1} dV^{l}[x_{l+1}]$$

Documenta Mathematica 23 (2018) 1–1000

 to

because

$$Fd([1 + \alpha g]) = [1 + \alpha g]^{p-1}d([1 + \alpha g]) = d\log([1 + \alpha g])$$

since $[1 + \alpha g]^p = 1$. Hence

$$d\log[1 + \alpha g] = -d([-\alpha g]) - \sum_{l=1}^{n-1} dV^{l}[x_{l+1}]$$

Since $d \log[1+\alpha g]$ is invariant under F, the right hand side is invariant – modulo $\operatorname{Fil}^{n-1}W_n\Omega_{B/R}^r$ – under F as well. This implies, using Lemma 1.10, that $x_l = S_l([1], [\alpha g]) = -\alpha g$ for l = 2 and then by induction for all l. Returning to our element z we finally have, since Fz = 0 and $F\omega = \omega$,

$$d\log([1+\alpha g])\omega = (-\sum_{l=1}^{n-1} dV^{l}[-\alpha g] - d[-\alpha g])\omega$$
(1.11)

Since $(1 + \alpha g)(1 - \alpha g) = 1$ (because $\alpha^2 = 0$) we have

$$d\log([1+\alpha g]) = -d\log([1-\alpha g])$$

and hence (1.11) becomes

$$d\log([1+\alpha g])\omega = \left(\sum_{l=1}^{n-1} dV^{l}[\alpha g] + d[\alpha g]\right)\omega$$
$$= \left(\sum_{l=0}^{n-1} dV^{l}[\alpha g]\right)\omega$$

This shows that the right hand side is a logarithmic differential η satisfying $F\eta = \eta$. We have seen that for $\rho \in \mathfrak{m}^{e-1}, g \in B_k$

$$[1] + [\rho \cdot g] = [1 + \rho g] + V[-\rho g] + \sum_{j=2}^{\infty} V^{j}[-\rho g]$$

This implies

$$dV^{l}[\rho g] = dV^{l}([1] + [\rho g]) = dV^{l}[1 + \rho g] + \sum_{j \ge l+1} dV^{j}[-\rho g]$$

or

$$dV^{l}[1+\rho g] = dV^{l}[\rho g] - \sum_{j=l+1}^{\infty} dV^{j}[-\rho g]$$

Replacing g by g^{p^l} yields

$$dV^{l}[1 + \rho g^{p^{l}}] = dV^{l}[\rho g^{p^{l}}] - \sum_{j=l+1}^{\infty} dV^{j}[-\rho g^{p^{l}}]$$
(1.12)

Since $dV^{l-1}[\rho g^{p^l}] = 0$ we have

$$FdV^{l}[1+\rho g^{p^{l}}] = -\sum_{j=l}^{\infty} dV^{j}[-\rho g^{p^{l}}] = dV^{l-1}[1+\rho g^{p^{l}}]$$

which is invariant under F, because the infinite sum is invariant under F. Then

$$F^{l+1}dV^{l}[1+\rho g^{p^{l}}] = Fd[1+\rho g^{p^{l}}] = d\log[1+\rho g^{p^{l}}] = -\sum_{j=l}^{\infty} dV^{j}[-\rho g^{p^{l}}] \quad (1.13)$$

This shows that under the assumption Fz = z modulo Filⁿ

$$\sum_{l=0}^{n-1-j} dV^{l+j} [\rho_i g_{i,l,j,k,\mathcal{P}}^{p^j}] \omega(k,\mathcal{P})$$

is a logarithmic differential modulo Fil^n because $\rho_i g_{i,l,j,k,\mathcal{P}}^{p^2}$ does not depend on l. Using the uniqueness statement in Lemma 1.10. we conclude that

$$\ker(1-F|\ker\pi_{\bullet}) \subset W_{\bullet}\Omega^r_{B/R,\log}$$

This shows that

$$W_{\bullet}\Omega^r_{B/R,\log} = \ker(W_{\bullet}\Omega^r_{B/R} \xrightarrow{1-F} W_{\bullet}\Omega^r_{B/R})$$

and finishes the proof of Theorem 1.9.

Now we can define relative syntomic complexes. As at the beginning of this section, let R be artinian local with perfect residue field k of char p > 0. Let X/Spec R be smooth, admitting a lifting X_{\bullet} as an ind-scheme over Spec $W_{\bullet}(R)$. Assume there exists a compatible system of embeddings $i_n : X_n \to Z_n$ into Witt lifts Z_n which satisfy the properties of [L-Z1] Definition 3.3. The i_n factorise through a compatible system of PD-envelopes D_n . One obtains a compatible system of quasiisomorphisms

$$\mathcal{F}^{r}\Omega^{\bullet}_{X_{n}/W_{n}(R)} \xleftarrow{\cong} \mathrm{Fil}^{r}\Omega^{\bullet}_{D_{n}/W_{n}(R)} \xrightarrow{\cong} N^{r}W_{n}\Omega^{\bullet}_{X/R}$$

and hence an isomorphism of procomplexes

$$\Sigma: \mathcal{F}^r \Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)} \to N^r W_{\bullet} \Omega^{\bullet}_{X/R}$$
(1.14)

in $D_{\text{pro,Zar}}(X)$ resp $D_{\text{pro,et}}(X)$.

To construct Σ in general, one chooses a covering $\{X(i) = \text{Spec } A_i\}_{i \in I}$ of X such that A_i is étale over $R[T_1, \ldots, T_d]$. Since $X \hookrightarrow X_n$ is a nilpotent embedding, there exists a covering $\{X_n(i) = \text{Spec } A_{n,i}\}_{i \in I}$ of X_n such that $A_{n,i}$ is étale over $W_n(R)[T_1, \ldots, T_d]$ and $A_{n,i} \times_{W_n(R)} W_{n-1}(R) = A_{n-1,i}$, in particular $A_{n,i} \times_{W_n(R)} R = A_i$. Using [L-Z1] Prop. 3.2, the $\{A_{n,i}\}_n$ form a

Documenta Mathematica 23 (2018) 1–1000

17

compatible system of Frobenius lifts, in particular of Witt lifts for all $i \in I$. For $X_n(i_1, \ldots, i_s) = X_n(i_1) \cap \cdots \cap X_n(i_s)$ and $Z_n(i_1, \ldots, i_s) = X_n(i_1) \times_{W_n(R)} \cdots \times_{W_n(R)} X_n(i_s)$, the product embeddings $X_n(i_1, \ldots, i_s) \to Z_n(i_1, \ldots, i_s)$ with associated PD-envelopes $D_n(i_1, \ldots, i_s)$ are embeddings into Witt lifts and induce compatible morphisms of simplicial schemes $X^{\bullet} \to X_n^{\bullet} \to D_n^{\bullet} \to Z_n^{\bullet}$, hence the isomorphisms (1.7.1) are compatible and induce again an isomorphism (1.14)

$$\Sigma: \mathcal{F}^r \Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)} \to N^r W_{\bullet} \Omega^{\bullet}_{X/R}$$

of procomplexes in $D_{\text{pro,Zar}}(X)$ resp $D_{\text{pro,et}}(X)$. This completes the proof of Theorem 0.2.

In the following we always assume r < p. Using the composite map of 1 - Fr with Σ :

$$\mathfrak{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)} \xrightarrow{\Sigma} N^{r}W_{\bullet}\Omega^{\bullet}_{X/R} \xrightarrow{1-\mathrm{Fr}} W_{\bullet}\Omega^{\bullet}_{X/R}$$

we can define

$$\tilde{\sigma}_{X_{\bullet}}(r) = \operatorname{cone}\left(\mathcal{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)} \xrightarrow{1-\operatorname{Fr}} W_{\bullet}\Omega^{\bullet}_{X/R}\right)[-1].$$

This complex is denoted by $\sigma_X^I(r)$ in [B-E-K1]. It plays the role of a technical variant of the syntomic complex $\sigma_{X_{\bullet}}(r)$ we are going to define now. Consider the composite map of associated procomplexes:

$$\Omega_{X_{\bullet}/W_{\bullet}(R)}^{\geq r} \longrightarrow \mathfrak{F}^{r} \Omega_{X_{\bullet}/W_{\bullet}(R)}^{\bullet} \stackrel{(1-\operatorname{Fr}) \circ \Sigma}{\longrightarrow} W_{\bullet} \Omega_{X/R}^{\bullet}$$

which is also denoted by 1 - Fr. Here the first arrow is the canonical inclusion of complexes.

Definition 1.15.

$$\sigma_{X_{\bullet}}(r) = \operatorname{cone}\left(\Omega_{X_{\bullet}/W_{\bullet}(R)}^{\geq r} \stackrel{1-\operatorname{Fr}}{\longrightarrow} W_{\bullet}\Omega_{X/R}^{\bullet}\right)[-1]$$

is the relative syntomic complex of the ind-scheme X_{\bullet} on $(X)_{\text{et}}$ i.e. in $D_{\text{pro,et}}(X)$.

Let $\mathcal{M}(r) = \operatorname{cone}(\Omega_{X_{\bullet}/W_{\bullet}(R)}^{\geq r} \to \mathcal{F}^{r}\Omega_{X_{\bullet}/W_{\bullet}(R)})[-1]$. Theorem 1.9 yields an exact triangle

$$\mathcal{M}(r) \longrightarrow \sigma_{X_{\bullet}}(r) \longrightarrow W_{\bullet}\Omega^{r}_{X/R,\log}[-r] \xrightarrow{+1}$$

in $D_{\text{pro,et}}(X)$ and we have

$$\mathcal{M}(r) = \operatorname{cone} \left(\Omega_{X_{\bullet}}^{\geq r} \longrightarrow \mathcal{F}^{r} \Omega_{X_{\bullet}/W_{\bullet}(R)} \right) [-1]$$

= $\mathcal{F}^{r} \Omega_{X_{\bullet}/W_{\bullet}(R)}^{< r} [-1]$

Hence we get the following Theorem in analogy to [B-E-K1], Theorem 5.4:

THEOREM 1.16 (Fundamental triangle). There is an exact triangle in $D_{\text{pro,et}}(X)$:

$$\mathcal{F}^{r}\Omega^{< r}_{X_{\bullet}/W_{\bullet}(R)}[-1] \longrightarrow \sigma_{X_{\bullet}}(r) \longrightarrow W_{\bullet}\Omega^{r}_{X/R,\log}[-r] \xrightarrow{+1}$$

Apply $\tau_{\leq r} R \varepsilon_*$, where $\varepsilon : X_{\text{et}} \to X_{\text{Nis}}$, to this triangle and use the same argument for the Nisnevich versions of [B-E-K1] Theorem 5.4 to obtain an exact triangle in $D_{\text{pro,Nis}}(X)$.

$$\mathcal{F}^r\Omega^{< r}_{X_{\bullet}/W_{\bullet}(R)}[-1] \longrightarrow \sigma_{X_{\bullet},\mathrm{Nis}}(r) \longrightarrow W_{\bullet}\Omega^r_{X/R,\mathrm{log},\mathrm{Nis}}[-r] \xrightarrow{+1}$$

where $\sigma_{X_{\bullet},\text{Nis}}(r) := \tau_{\leq r} R \varepsilon_* \sigma_{X_{\bullet}}(r)$ and $W_{\bullet} \Omega^r_{X/R,\log,\text{Nis}} := \varepsilon_* W_{\bullet} \Omega^r_{X/R,\log,\text{et}}$. We can also prove the analogue of Theorem 6.1 in [B-E-K1]. The statement holds in the étale and Nisnevich topology.

THEOREM 1.17. The connecting homomorphism

$$\alpha: W_{\bullet}\Omega^{r}_{X/R,\log}[-r] \longrightarrow \mathcal{F}^{r}\Omega^{< r}_{X_{\bullet}/W_{\bullet}(R)}$$

resulting from the fundamental triangle is equal to the composite map

$$\beta: W_{\bullet}\Omega^{r}_{X/R, \log}[-r] \longrightarrow N^{r}W_{\bullet}\Omega^{\bullet}_{X/R} \xrightarrow{\sim} \mathcal{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)} \longrightarrow \mathcal{F}^{r}\Omega^{< r}_{X_{\bullet}/W_{\bullet}(R)}$$

Proof. The proof is very similar to the proof of Theorem 6.1 in [B-E-K1]. From the definition of $\sigma_{X_{\bullet}}(r)$ we get a morphism in $D_{\text{pro,et}}(X)$

$$\sigma_{X_{\bullet}}(r) \longrightarrow \Omega^{\geq r}_{X_{\bullet}/W_{\bullet}(R)}.$$

Define $\sigma'_{X_{\bullet}}(r) = \operatorname{cone}(\sigma_{X_{\bullet}}(r) \longrightarrow \Omega^{\geq r}_{X_{\bullet}/W_{\bullet}(R)})[-1]$. The morphism $\sigma_{X_{\bullet}}(r) \rightarrow W_{\bullet}\Omega^{r}_{X/R,\log}[-r]$ in the fundamental triangle induces a morphism

$$\sigma'_{X_{\bullet}}(r) \longrightarrow W_{\bullet}\Omega^{r}_{X/R,\log}[-r]$$

Then we have a chain of isomorphisms in $D_{\text{pro}}(X)$:

$$\begin{aligned} \sigma'_{X_{\bullet}}(r) & \xrightarrow{\sim} & \operatorname{cone}\left(\tilde{\sigma}_{X_{\bullet}}(r) \longrightarrow \mathcal{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)}\right)[-1] \\ & \xrightarrow{\sim} & \operatorname{cone}\left(\operatorname{cone}\left(N^{r}W_{\bullet}\Omega^{\bullet}_{X/R} \xrightarrow{1-\operatorname{Fr}} W_{\bullet}\Omega^{\bullet}_{X/R}\right)[-1] \longrightarrow N^{r}W_{\bullet}\Omega^{\bullet}_{X/R}\right)[-1] \\ & \xleftarrow{\sim} & \Sigma(r) := \operatorname{cone}\left(W_{\bullet}\Omega^{\bullet}_{X/R,\log}[-r] \longrightarrow N^{r}W_{\bullet}\Omega^{\bullet}_{X/R}\right)[-1] \end{aligned}$$

Then the proof of the Theorem follows from the following proposition: $\hfill \Box$

PROPOSITION 1.18. There is an exact triangle

$$\mathcal{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)}[-1] \longrightarrow \sigma'_{X_{\bullet}}(r) \longrightarrow W_{\bullet}\Omega^{r}_{X/R,\log}[-r] \xrightarrow{+1}$$

fitting into a commutative diagram of exact triangles

where (*) is the composite of the previous isomorphisms and the lower exact triangle is the fundamental triangle.

The proof of the Proposition is the same as for Proposition 6.3 in [B-E-K1]. It implies Theorem 1.17.

For a smooth projective variety Y/k with lifting $Y_n/W_n(k)$ we will also work with the syntomic complex $\sigma_{Y_n}(r)$ at finite level. Our definition differs from the one in [K2] Definition 1.6. But using Proposition 4.4 in [L-Z2] it is easy to see that $\sigma_{Y_{\bullet}/W_{\bullet}(k)}(r)$ and the procomplex in [B-E-K1], Definition 4.2 are quasiisomorphic.

PROPOSITION 1.19. Let

$$\mathfrak{M}_{n} := \left[W_{n} \Omega^{r}_{Y/k, \log} + V^{n-1} \Omega^{r}_{Y/k} \xrightarrow{\mathrm{d}} \mathrm{Fil}^{n-1} W_{n} \Omega^{r+1}_{Y/k} \xrightarrow{\mathrm{d}} \mathrm{Fil}^{n-1} W_{n} \Omega^{r+2}_{Y/k} \xrightarrow{\mathrm{d}} \cdots \right] [-r]$$

Then there is an exact triangle on (Y_{et})

$$0 \longrightarrow \mathcal{M}_n \longrightarrow N^r W_n \Omega^{\bullet}_{Y/k} \stackrel{1-\mathrm{Fr}}{\longrightarrow} W_{n-1} \Omega^{\bullet}_{Y/k} \longrightarrow 0.$$

Proof. It follows from the proof of Theorem 1.9 that 1−Fr is bijective in degrees < r and surjective in degrees ≥ r. Finally it follows from [B-E-K1] Lemma 4.4 and [II] I Lemma 3.30 that in degrees > r the kernel of 1−Fr is Filⁿ⁻¹ $W_n \Omega_{Y/k}^{\bullet}$. Since $(1 - F) dV^{n-1} \Omega_{Y/k}^{r-1} = dV^{n-2} \Omega_{Y/k}^{r-1} ⊂ W_{n-1} \Omega_{Y/k}^{r}$. It follows from [II] I 5.7.2 that the kernel of 1 − F in degree r is $W_n \Omega_{Y/k,\log}^r + V^{n-1} \Omega_{Y/k}^r$, as stated.

Note that we have an injection $W_n\Omega^r_{Y/k,\log} \hookrightarrow \mathcal{H}^r(\mathcal{M}_n)$.

DEFINITION 1.20. The syntomic complex $\sigma_{Y_n}(r)$ is defined as follows in $D(Y_{\text{et}})$:

$$\sigma_{Y_n}(r) = \operatorname{cone}\left(\Omega_{Y_n/W_n(k)}^{\geq r} \longrightarrow \mathcal{F}^r \Omega_{Y_n/W_n(k)}^{\bullet} \xrightarrow{\sim} N^r W_n \Omega_{Y/k}^{\bullet} \xrightarrow{1-\operatorname{Fr}} W_{n-1} \Omega_{Y/k}^{\bullet}\right) [-1]$$

This is the finite level version of Definition 1.15. for R = k. It follows from the definitions and Proposition 1.19. that one has an exact triangle

$$\mathfrak{F}^r \Omega^{< r}_{Y_n/W_n(k)}[-1] \longrightarrow \sigma_{Y_n}(r) \longrightarrow \mathfrak{M}_n \xrightarrow{+1}$$
(1.21)

We have $\mathcal{H}^{j}(\sigma_{Y_{n}}(r)) = \mathcal{H}^{j}\mathcal{M}$ in degrees > r and an exact sequence

Documenta Mathematica 23 (2018) 1–1000

20

$$0 \longrightarrow p\Omega_{Y_n}^{r-1}/p^2 \mathrm{d}\Omega_{Y_n}^{r-1} \longrightarrow \mathcal{H}^r(\sigma_{Y_n}(r)) \longrightarrow \mathcal{H}^r(\mathcal{M}_n) \longrightarrow 0.$$
(1.22)

For $\varepsilon : (Y)_{\text{et}} \to (Y)_{\text{Nis}}$ apply again $\tau_{\leq r} R \varepsilon_*$ to 1.23 to get the following exact triangle in $D(Y_{\text{Nis}})$

$$0 \longrightarrow \mathcal{F}^{r}\Omega^{< r}_{Y_{n}/W_{n}(k)}[-1] \longrightarrow \sigma_{Y_{n},\mathrm{Nis}}(r) \xrightarrow{\varphi} \mathcal{P}[-r] \longrightarrow 0$$
(1.23)

where $\sigma_{Y_n,\text{Nis}}(r) := \tau_{\leq r} R \varepsilon_* \sigma_{Y_n}(r)$ and \mathcal{P} is a Nisnevich-sheaf which contains $\varepsilon_* W_n \Omega^r_{Y/k,\log} = W_n \Omega^r_{Y/k,\log,\text{Nis}}$ (compare [B-E-K1] Proposition 2.4.1) as a subsheaf.

2 Relative motivic complexes

Let $\{Y_n/W_n(k)\}_n$ be a projective smooth formal scheme and let $\mathbb{Z}_{Y_1}(r)$, for r < p, be the Suslin-Voevodsky complex of Y_1/k [S-V]. Bloch-Esnault-Kerz have defined a motivic procomplex $\mathbb{Z}_{Y_{\bullet}}(r)$ in $D_{\text{pro,Nis}}(Y_1)$ by

$$\mathbb{Z}_{Y_{\bullet}}(r) = \operatorname{cone}\left(\sigma_{Y_{\bullet},\operatorname{Nis}}(r) \oplus \mathbb{Z}_{Y_{1}}(r) \xrightarrow{\varphi \oplus -\log} W_{\bullet}\Omega^{r}_{Y_{1},\log,\operatorname{Nis}}[-r]\right)[-1] \quad (2.1)$$

where φ is the map from the fundamental triangle (Theorem 1.16.) and log is the composite map

$$\mathbb{Z}_{Y_1}(r) \longrightarrow \mathcal{H}^r\left(\mathbb{Z}_{Y_1}(r)\right)\left[-r\right] = \mathcal{K}_{Y_1,r}^{\mathrm{Mil}}\left[-r\right] \stackrel{\mathrm{d\,log}[]}{\longrightarrow} W_{\bullet}\Omega_{Y_1,\mathrm{log,Nis}}^r\left[-r\right]$$
(2.2)

(see [B-E-K1] (7.4)).

Now we fix $m \in \mathbb{N}$ and define $X := Y_m$. Then at finite level $\mathbb{Z}_X(r)$ is defined as follows on $(X)_{\text{Nis}}$

$$\mathbb{Z}_X(r) = \operatorname{cone}\left(\sigma_{X,\operatorname{Nis}}(r) \oplus \mathbb{Z}_{Y_1}(r) \xrightarrow{\varphi \oplus (-\log)} \mathcal{P}[-r]\right) [-1]$$
(2.3)

where φ is the map in (1.23) and log is defined as before using the injection $W_m \Omega_{Y,\log,\text{Nis}}^r \hookrightarrow \mathcal{P}$. The long exact cohomology sequence associated to 2.3 yields an exact sequence in degree r:

$$0 \longrightarrow \mathcal{H}^{r}(\mathbb{Z}_{X}(r)) \longrightarrow \mathcal{H}^{r}(\sigma_{X,\mathrm{Nis}}(r)) \oplus \mathcal{H}^{r}(\mathbb{Z}_{Y_{1}}(r)) \xrightarrow{\varphi \oplus (-\log)} \mathcal{P} \longrightarrow 0.$$
(2.4)

The exact sequences 1.22, 1.23 and 2.4 yield the upper exact sequence in the commutative diagram

where the bottom row is the exact sequence shown in [B-E-K1], Theorem 12.3 and the middle vertical arrow is Kato's syntomic regulator map. It is a finite level version of the map (*) in the commutative diagram in [B-E-K1] p. 695 and is constructed similarly as in [K2] Section 3, where Kato constructs a map (using our notation)

$$\mathcal{O}_{Y_{n+1}}^{\times} \to \mathcal{H}^1(Y_1, \mathcal{S}_n(1)_{Y_n})$$

with his definition of the syntomic complexes given in [K2] Definition 1.6. The change of level from n + 1 to n is due to the fact that the element $p^{-1}\log(\overline{f(a)a^{-p}})$ in [K2] page 216 is only well-defined in \mathcal{O}_{D_n} because multiplication by p on $\mathcal{O}_{D_{n+1}}$ factors through an injection $p:\mathcal{O}_{D_n}\to\mathcal{O}_{D_{n+1}}$. Since we work with a different definition of $\sigma_{Y_n}(r)$ using the de Rham-Witt complex the above level change is unnecessary. In the section after Prop. 2.9 below we make the symbol map explicit in the case r = 1. One should read this section in the case R = k. The element $\frac{1}{p}\log\frac{F(\tilde{a})}{\tilde{a}^p}$ that occurs there is well-defined in $W_{n-1}(\mathcal{O}_{Y_1})$, where $\tilde{a} = [\lambda](1+V\eta)$ is in $W_n(\mathcal{O}_{Y_1})$. Hence we get a symbol map (with $X = Y_m$)

$$\mathcal{O}_X^{\times} \to \mathcal{H}^1(\sigma_{X_n,Nis}(1))$$

which induces

$$\mathcal{O}_X^{\times} \otimes \cdots \otimes \mathcal{O}_X^{\times} \to \mathcal{H}^r(\sigma_{X,\mathrm{Nis}}(r))$$

Analogous to [K2] Prop 3.2 we show that this map factors through the symbol map in the Milnor K-sheaf $\mathcal{K}_{X,r}^{\text{Mil}} \to \mathcal{H}^r(\sigma_{X,\text{Nis}}(r))$. Similar to [K2] Lemma 3.7.2 one sees that the composite map

$$\mathfrak{K}_{X,r}^{\operatorname{Mil}} \to \mathfrak{H}^r(\sigma_{X,\operatorname{Nis}}(r)) \to \mathfrak{P}$$

is given by $b_1 \otimes \cdots \otimes b_r \mapsto d \log [\bar{b}_1] \wedge \cdots \wedge d \log [\bar{b}_r]$ where \bar{b}_i is the reduction of b_i modulo p. Hence the composite map

$$\mathcal{K}_{X,r}^{\mathrm{Mil}} \to \mathcal{H}^{r}(\sigma_{X,\mathrm{Nis}}(r)) \oplus (\mathcal{K}_{Y_{1},r}^{\mathrm{Mil}} = \mathcal{H}^{r}(\mathbb{Z}_{Y_{1}}(r))) \xrightarrow{\varphi \oplus (-\log)} \mathcal{P}$$

vanishes and this defines a natural map fitting into the diagram (2.5)

$$\mathcal{K}_{X,r}^{\mathrm{Mil}} \to \mathcal{H}^r(\mathbb{Z}_X(r))$$

The diagram (2.5) implies that

$$\mathcal{H}^r(\mathbb{Z}_X(r)) \cong \mathcal{K}_{X,r}^{\mathrm{Mil}}.$$
(2.6)

It follows from the definition that $\mathbb{Z}_X(r)$ has cohomological degree $\leq r$, because $\mathcal{H}^j(\sigma_{X,\operatorname{Nis}}(r)) = \mathcal{H}^j(\mathbb{Z}_{Y_1}(r)) = 0$ for j > r and $\mathcal{H}^r(\sigma_{X,\operatorname{Nis}}(r)) \to \mathcal{P}$ is surjective. Finally it is easy to see that all the properties in [B-E-K1] Proposition 7.2 listed for the procomplex $\mathbb{Z}_{Y_{\bullet}}(r)$ pass over to $\mathbb{Z}_X(r)$ at finite level except the Kummer triangle Prop. 7.2 (3) which holds only for procomplexes.

In the following, let $R = W_m(k)$ and assume there exists an ind-scheme lifting $X_{\bullet}/\text{Spec } W_{\bullet}(R)$ of $X = Y_m/R$ which is compatible with Y_{\bullet} under the base change $R \to k$, i.e. $X_n \times_{W_n(R)} W_n(k) = Y_n$, in particular $X_m \times_{W_m(R)} W_m(k) = Y_m$.

DEFINITION 2.7. As object in $D_{\text{pro,Nis}}(X)$ the motivic procomplex $\mathbb{Z}_{X_{\bullet}}(r)$ is defined for r < p as follows:

$$\mathbb{Z}_{X_{\bullet}}(r) = \operatorname{cone}\left(\sigma_{X_{\bullet},\operatorname{Nis}}(r) \oplus \mathbb{Z}_{X}(r) \xrightarrow{\varphi \oplus (-\log)} W_{\bullet}\Omega^{r}_{X/R,\log,\operatorname{Nis}}[-r]\right) [-1]$$

where φ comes from the fundamental triangle (Theorem 1.16.) for the syntomic procomplex $\sigma_{X_{\bullet},\text{Nis}}(r)$ and $\mathbb{Z}_X(r) \xrightarrow{\log} W_{\bullet}\Omega^r_{X/R,\log,\text{Nis}}[-r]$ is the symbol map into the relative logarithmic de Rham-Witt complex, defined as follows

$$\mathbb{Z}_X(r) \longrightarrow \mathcal{H}^r(\mathbb{Z}_X(r))[-r] = \mathcal{K}_{X,r}^{\mathrm{Mil}}[-r] \xrightarrow{\mathrm{d}\log[\]} W_{\bullet}\Omega^r_{X/R,\log,\mathrm{Nis}}[-r].$$

Here [] is the Teichmüller lift from \mathcal{O}_X to $W_n(\mathcal{O}_X)$, the definition is analogous to [B-E-K1] (7.4).

PROPOSITION 2.8. The motivic procomplex $\mathbb{Z}_{X_{\bullet}}(r)$ has support in cohomology degrees $\leq r$. For $r \geq 1$, if the Beilinson-Soulé Conjecture is true, it has support in degrees [1, r].

Proof. Under the assumptions this holds for $\mathbb{Z}_X(r)$ by [B-E-K1] Prop. 7.2. By definition $\sigma_{X_{\bullet},\text{Nis}}(r)$ has support in [1, r]; from the definition of $\mathbb{Z}_{X_{\bullet}}(r)$ we get an exact sequence

$$0 \to \mathcal{H}^{r}(\mathbb{Z}_{X_{\bullet}}(r)) \to \mathcal{H}^{r}(\sigma_{X_{\bullet},\mathrm{Nis}}(r)) \oplus \mathcal{H}^{r}(\mathbb{Z}_{X}(r)) \to W_{\bullet}\Omega^{r}_{X/R,\mathrm{log},\mathrm{Nis}} \to 0$$

since $\mathcal{H}^r(\sigma_{X_{\bullet},\mathrm{Nis}}(r)) \to W_{\bullet}\Omega^r_{X/R,\log,\mathrm{Nis}}$ is surjective by (1.16.). This proves the proposition.

Note that the map dlog[] is an epimorphism in the étale topology because $W_{\bullet}\Omega^{r}_{X/R,\log}$ is, by definition, locally generated by symbols. We expect that the corresponding Nisnevich sheaf $W_{\bullet}\Omega^{r}_{X/R,\log,\mathrm{Nis}} = \varepsilon_{*}W_{\bullet}\Omega^{r}_{X/R,\log,\mathrm{et}}$ is again generated by symbols. For R = k this is shown in [B-E-K1], Prop 2.4 and [K1] Proposition 1.

Remark. It is easy to see that there is a canonical product structure

$$\mathbb{Z}_{X_{\bullet}}(r) \otimes_{\mathbb{Z}}^{L} \mathbb{Z}_{X_{\bullet}}(r') \longrightarrow \mathbb{Z}_{X_{\bullet}}(r+r')$$

compatible with the product structures on $\sigma_{X_{\bullet}}(r)$ and on $\mathbb{Z}_X(r)$. The argument is the same as [B-E-K1] Proposition 7.2 (5). On the other hand, property (3) in Proposition 7.2 does not seem to hold; the cone of the Kummer sequence $\mathbb{Z}_{X_{\bullet}}(r) \xrightarrow{p^n} \mathbb{Z}_{X_{\bullet}}(r)$ is likely to be much more complicated.

However, we do get the following analogy of [B-E-K1] Proposition 7.3:

PROPOSITION 2.9 (Fundamental motivic triangle). There is a unique commutative diagram of exact triangles

Proof. The right hand side square is homotopy Cartesian by definition, hence the proposition is proven in the same way as Proposition 7.3 in [B-E-K1]. \Box

Now we look at the special cases r = 0, 1: For r = 0, $\sigma_{X_{\bullet},\text{Nis}}(r)$ is isomorphic to $W_{\bullet}\Omega^{0}_{X/R,\log,\text{Nis}} = \mathbb{Z}/p^{\bullet}$, hence $\mathbb{Z}_{X_{\bullet}}(0) = \mathbb{Z}_{X}(0) = \mathbb{Z}$. For r = 1, we construct a map $\mathcal{K}_{X_{n,1}}^{\text{Mil}}[-1] = \mathcal{O}_{X_{n}}^{*}[-1] \to \sigma_{X_{n}}(1)$ as follows. Assume first that there exists a compatible system $X_{n} \hookrightarrow Z_{n}$ into Witt lifts Z_{n} with PD-envelope D_{n} as before and induced maps $\mathcal{O}_{D_{n}} \to W_{n}(\mathcal{O}_{X})$. We have an exact sequence

$$0 \longrightarrow N \longrightarrow \mathcal{O}_{Z_n}^* \longrightarrow \mathcal{O}_{X_n}^* \longrightarrow 1$$

so $\mathcal{O}_{X_n}^*[-1]$ is isomorphic to

$$\begin{array}{rrr} N & \longrightarrow & {\mathbb O}^*_{Z_n} \\ \text{degree 0} & & \text{degree 1} \end{array}$$

The complex $\sigma_{X_n}(1)$ is represented by the complex

$$\mathfrak{I}_{D_n} \xrightarrow{\mathrm{d}_1} \mathfrak{O}_{D_n} \otimes \Omega^1_{Z_n/W_n(R)} \oplus W_{n-1}(\mathfrak{O}_X) \xrightarrow{\mathrm{d}_2} \Omega^2_{D_n/W_n(R)} \oplus W_{n-1}\Omega^1_{X/R} \longrightarrow$$

where

$$d_1: x \mapsto (dx, (F_1 - 1)(x))$$

$$d_2: (x, y) \mapsto (dx, (F_1 - 1)(x) - dy)$$

and x is identified with its image under $\mathcal{I}_{D_n} \longrightarrow VW_{n-1}(\mathcal{O}_X)$ and $F_1(x = V\eta) = \frac{{}^{*}F^{*}}{p}(V\eta) = \eta$. We define a map $(N \to \mathcal{O}_{Z_n}^*) \longrightarrow \sigma_{X_n}(1)$

in degree 0 :
$$N \longrightarrow \mathcal{I}_{D_n}$$

 $a \longmapsto \log(a)$
in degree 1 : $\mathcal{O}^*_{Z_n} \longrightarrow \mathcal{O}_{D_n} \otimes \Omega^1_{Z_n} \oplus W_{n-1}(\mathcal{O}_X)$
 $a \longmapsto \left(d\log a, \frac{1}{p} \log \frac{F\tilde{a}}{\tilde{a}^p} \right)$

Note that $\tilde{a} = [\lambda](1 + V\eta) \in W_n(\mathcal{O}_X)$ is the image of a under

$$\mathcal{O}_{Z_n}^* \longrightarrow W_n(\mathcal{O}_X)^*$$

 $([\lambda] \text{ is the Teichmüller element of some } \lambda \in \mathcal{O}_X^*).$ Then $F(\tilde{a}) = [\lambda]^p (1 + p\eta)$ and $(\tilde{a})^p = [\lambda]^p (1 + V\eta)^p$ considered as elements in $W_{n-1}(\mathcal{O}_X)$. Then

$$\frac{F(\tilde{a})}{\tilde{a}^p} = \frac{1+p\eta}{(1+V\eta)^p}.$$

Documenta Mathematica 23 (2018) 1–1000

24

Because of the uniqueness of η the elements $\frac{1}{p}\log(1+p\eta)$ and $\frac{1}{p}\log(1+V\eta)^p$ are uniquely determined, hence

$$\frac{1}{p}\log\frac{F(\tilde{a})}{\tilde{a}^p} = \frac{1}{p}\log(1+p\eta) - \frac{1}{p}\log(1+V\eta)^p$$
$$= \frac{1}{p}\log(1+p\eta) - \log(1+V\eta)$$

is well-defined.

This defines a map

$$\mathcal{O}_{X_{\bullet}}^{*}[-1] \longrightarrow \sigma_{X_{\bullet},\mathrm{Nis}}(1)$$

of procomplexes, hence a map

$$\mathcal{O}_{X_{\bullet}}^{*} \longrightarrow \mathcal{H}^{1}\left(\sigma_{X_{\bullet}, \mathrm{Nis}}(1)\right).$$
(2.10)

If there is no global system of embeddings $X_n \to Z_n$ into Witt lifts Z_n one proceeds by simplicial methods as outlined before the definition of $\sigma_{X_{\bullet}}(r)$ (Def. 1.15.) to construct the map (2.10). We omit the details here. There is a commutative diagram of Nisnevich sheaves

which induces a map

$$\mathcal{O}_{X_{\bullet}}^* \longrightarrow \mathcal{H}^1(\mathbb{Z}_{X_{\bullet}}(1))$$

by the definition of $\mathbb{Z}_{X_{\bullet}}(1)$.

LEMMA 2.12. We have a commutative diagram of exact sequences

where $1 + V(\eta)x \mapsto \log(1 + V(\eta)x)$ is well-defined because p is nilpotent on \mathcal{O}_{X_n} and induces the isomorphism $1 + I_R \mathcal{O}_{X_{\bullet}} \to I_R \mathcal{O}_{X_{\bullet}}$. (Recall that $I_R = VW_{n-1}(R)$.)

By assumption $X_n \times_{W_n(R)} R = X$ and so $\mathcal{O}_{X_n}/I_R\mathcal{O}_{X_n} = \mathcal{O}_X$; since I_R is nilpotent we immediately deduce that on units $\mathcal{O}_{X_n}^*/1 + I_R\mathcal{O}_{X_n}^* = \mathcal{O}_X^*$, hence the lower sequence is exact. It is a slight generalisation of the *p*-adic logarithm isomorphism [B-E-K1] (1.3) that the log map is an isomorphism because $I_R\mathcal{O}_{X_n}$ admits a divided power structure and *p* is nilpotent.

The upper sequence is exact because of the fundamental motivic triangle (Proposition 2.9).

The Lemma implies that $\mathcal{O}_{X_{\bullet}}^*$ and $\mathcal{H}^1(\mathbb{Z}_{X_{\bullet}}(1))$ are isomorphic, hence

$$\mathbb{Z}_{X_{\bullet}}(1) \cong \mathbb{G}_{m/X_{\bullet}}[-1]. \tag{2.13}$$

The isomorphism 2.13 and the product structure on $\mathbb{Z}_{X_{\bullet}}(r)$ induce a symbol map (compare the proof of [K2], Proposition 3.2)

$$\mathcal{K}_{X_{\bullet},r}^{\mathrm{Mil}} \longrightarrow \mathcal{H}^{r}(\mathbb{Z}_{X_{\bullet}}(r)).$$
 (2.14)

But in the absence of ([B-E-K1], Theorem 12.3) which cannot be extended to a relative setting we cannot expect that 2.14 is an isomorphism.

3 p-adic deformation of motivic Chow groups

Let $X = Y_m/\text{Spec } W_m(k)$ as before and X_{\bullet} be a smooth projective lifting of X to Spec $W_{\bullet}(R)$, $R = W_m(k)$, which is compatible with Y_{\bullet} as before. Let r < p.

DEFINITION 3.1. The continuous Chow group of X_{\bullet} is defined as $\operatorname{Ch}_{\operatorname{cont}}^{r}(X_{\bullet}) := H_{\operatorname{cont}}^{2r}(X, \mathbb{Z}_{X_{\bullet}}(r)).$

Note that we also work with continuous cohomology.

The fundamental motivic triangle (Proposition 2.9) gives rise to an exact obstruction sequence to the deformation problem lifting a class in $H^{2r}(X, \mathbb{Z}_X(r))$ to a class in $\operatorname{Ch}^r_{\operatorname{cont}}(X_{\bullet})$

$$\operatorname{Ch}^{r}_{\operatorname{cont}}(X_{\bullet}) \xrightarrow{\partial} H^{2r}(X, \mathbb{Z}_{X}(r)) \xrightarrow{\operatorname{ob}} H^{2r}_{\operatorname{cont}}(X, \mathcal{F}^{r}\Omega_{X_{\bullet}}^{< r}).$$
(3.2)

Now we construct crystalline cycle classes on $H^{2r}(X, \mathbb{Z}_X(r))$. We have a canonical map

$$H^{2r}(X, \mathbb{Z}_X(r)) \longrightarrow H^r(X, \mathcal{H}^r(\mathbb{Z}_X(r)) = H^r(X, \mathcal{K}_r^{\mathrm{Mil}}) \stackrel{\mathrm{d}\log[]}{\longrightarrow} H^r(X, W\Omega^r_{X/R, \mathrm{log, Nis}})$$

The map of complexes (the first map in Theorem 1.9) in $C_{\text{pro,et}}(X)$

$$W_{\bullet}\Omega^r_{X/R,\log}[-r] \longrightarrow N^r W_{\bullet}\Omega^{\bullet}_{X/R}$$

defines a map of complexes in $C_{\text{pro,Nis}}(X)$

$$W_{\bullet}\Omega^{r}_{X/R,\log,\operatorname{Nis}}[-r] = \varepsilon_{*}W_{\bullet}\Omega^{r}_{X/R,\log}[-r] \to \varepsilon_{*}N^{r}W_{\bullet}\Omega^{\bullet}_{X/R} = N^{r}W_{\bullet}\Omega^{\bullet}_{X/R,\operatorname{Nis}}$$

(In the following we omit the subscript 'Nis' as all complexes and cohomology groups are taken in the Nisnevich topology) and yields the refined relative crystalline cycle class map

$$\begin{array}{cccc} H^{2r}(X, \mathbb{Z}_X(r)) & \longrightarrow & H^{2r}_{\mathrm{cont}}(X, N^r W_{\bullet} \Omega^r_{X/R}) \\ \xi & \longmapsto & c(\xi) \end{array}$$

$$(3.3)$$

Then the relative crystalline cycle class of ξ is the image $c_{\text{cris}}(\xi)$ of $c(\xi)$ in $H^{2r}_{\text{cont}}(X, W_{\bullet}\Omega^{\bullet}_{X/R})$. We have canonical isomorphisms (Theorem 1.2)

 $H^i_{\text{cont}}\left(X, N^r W_{\bullet} \Omega^{\bullet}_{Y/P}\right) \cong H^i\left(X, \mathfrak{F}^r \Omega^{\bullet}_{Y/P}\right)$

and

$$H^{n}_{\text{cont}}\left(X, W_{\bullet}\Omega^{\bullet}_{X/R}\right) \cong \varprojlim_{m} H^{n}(X, W_{m}\Omega^{\bullet}_{X/R})$$

$$\cong H^{n}_{\text{cris}}\left(X/W(R)\right)$$

$$\cong H^{n}_{\text{cont}}\left(X_{\bullet}, \Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)}\right)$$

$$(3.4)$$

where the first isomorphism follows from [L-Z1], Corollary 1.14 and the second from the main comparison theorem [L-Z1], Theorem 3.1. Note that in [B-O] §5 the crystalline site/topos and the cohomology of the crystalline structure sheaf is defined for any scheme defined over a PD-scheme S on which p is nilpotent. We apply this to the PD-scheme $S = \text{Spec } W_n(R)$ with PD-ideal $VW_{n-1}(R)$ and consider X as an S-scheme via $X \to \text{Spec } R \to S$. Then, by definition, $H^i_{\text{cris}}(X/W(R)) = \varprojlim_n H^i_{\text{cris}}(X/W_n(R)).$

DEFINITION 3.5 (Compare [B-E-K1], Definition 8.3).

- (1) One says that $c(\xi)$ is Hodge with respect to the lifting X_{\bullet} if and only if $c(\xi)$ lies in the image of $H^{2r}_{\text{cont}}(X, \Omega^{\geq r}_{X_{\bullet}})$ in $H^{2r}_{\text{cont}}(X, \mathcal{F}^n \Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)}) = H^{2r}_{\text{cont}}(X, N^r W_{\bullet} \Omega^{\bullet}_{X/R}).$
- (2) One says that $c_{cris}(\xi)$ is Hodge modulo torsion with respect to the lifting X_{\bullet} if and only if $c_{cris}(\xi) \otimes \mathbb{Q}$ lies in the image of $H^{2r}_{cont}(X, \Omega^{\geq r}_{X_{\bullet}}) \otimes \mathbb{Q} \to H^{2r}_{cris}(X/W(R)) \otimes \mathbb{Q}.$

Then we have the following

THEOREM 3.6. Let $X_{\bullet}/Spec W_{\bullet}(R)$ as before, let $\xi \in H^{2r}(X, \mathbb{Z}_X(r))$ and r < p. Then

- (1) $c(\xi)$ is Hodge with respect to the lifting $X_{\bullet} \iff \xi$ lies in the image of ∂ in 3.2.
- (2) $c_{cris}(\xi)$ is Hodge modulo torsion with respect to the lifting $X_{\bullet} \iff \xi \otimes \mathbb{Q}$ lies in the image of $\partial \otimes \mathbb{Q}$.

Proof. We claim that the canonical map

$$H^{2r}_{\mathrm{cont}}(X, N^r W_{\bullet} \Omega^{\bullet}_{X/R}) \longrightarrow H^{2r}_{\mathrm{cont}}\left(X, W_{\bullet} \Omega^{\bullet}_{X/R}\right)$$

induced by the map "1" (see Theorem 1.9) has kernel and cokernel killed by a power of p: Indeed, this map can be identified, via Theorem 1.2, with the map

$$H^{2r}_{\operatorname{cont}}(X, \mathfrak{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)}) \longrightarrow H^{2r}_{\operatorname{cont}}(X, \Omega^{\bullet}_{X_{\bullet}/W_{\bullet}(R)})$$

which is induced by the corresponding map of complexes

The kernel of this map of complexes is a complex of sheaves annihilated by p^{r-1} , hence its hypercohomology is killed by a power of p. The cokernel is a complex of sheaves that admits a filtration in a way that the successive quotients are complexes with entries of the form $\Omega^{j}_{X/R}$ or $I_R/pI_R\Omega^{j}_{X\bullet/W\bullet(R)}$. The cohomology of these sheaves is killed by a power of p since p is nilpotent on R. Hence the hypercohomology of the cokernel is killed by a power of p and therefore the map

$$H^{2r}_{\operatorname{cont}}(N^rW_{\bullet}\Omega^{\bullet}_{X/R})\otimes\mathbb{Q}\longrightarrow H^{2r}_{\operatorname{cris}}(X/W(R))\otimes\mathbb{Q}$$

is an isomorphism. Then the first part (1) implies the second part (2). The exact sequence 3.2 can be extended to a commutative diagram with exact rows

$$\begin{array}{ccccc}
\operatorname{Ch}_{\operatorname{cont}}^{r}(X_{\bullet}) & \xrightarrow{\partial} & H^{2r}\left(X, \mathbb{Z}_{X}(r)\right) & \xrightarrow{\operatorname{ob}} & H^{2r}_{\operatorname{cont}}\left(X, \mathcal{F}^{r}\Omega_{X_{\bullet}/W_{\bullet}(R)}^{< r}\right) \\
\downarrow c & \downarrow c & \downarrow = \\
H^{2r}\left(\Omega_{X_{\bullet}/W_{\bullet}(R)}^{\geq r}\right) & \longrightarrow & H^{2r}_{\operatorname{cont}}\left(\mathcal{F}^{r}\Omega_{X_{\bullet}/W_{\bullet}(R)}\right) & \longrightarrow & H^{2r}_{\operatorname{cont}}\left(X, \mathcal{F}^{r}\Omega_{X_{\bullet}/W_{\bullet}(R)}^{< r}\right) \\
\end{array} \tag{3.7}$$

where we have used again the isomorphisms 3.4. By Theorem 1.17. the right hand square commutes. Then the Theorem easily follows. \Box

Remark 3.8.

- (i) We do not need for the proof that the left vertical arrow is well-defined.
- (ii) If the Hodge-de Rham spectral sequence of the ind-scheme X_{\bullet} degenerates, then the map

$$H^{2r}_{\operatorname{cont}}\left(X,\Omega^{\geq r}_{X_{\bullet}}\right) \longrightarrow H^{2r}_{\operatorname{cont}}\left(\mathfrak{F}^{r}\Omega^{\bullet}_{X_{\bullet}/W(R)}\right)$$

is injective and hence the left vertical arrow is also well-defined.

(iii) For r = 1 we are really dealing with Picard groups. As $\mathbb{Z}_{X_{\bullet}}(1) = \mathbb{G}_{m/X_{\bullet}}[-1]$ we have $H^{2}(X, \mathbb{Z}_{X_{\bullet}}(1)) = \operatorname{Pic}(X_{\bullet})$. The system $\{H^{0}(X, \mathbb{G}_{m,X_{n}})\}_{n} (= \{W_{n}(R)^{*}\}_{n} \text{ if } X \text{ is connected} \}$ is obviously Mittag-Leffler, hence $\lim_{\stackrel{\leftarrow}{n}} H^{0}(X, \mathbb{G}_{m,X_{n}})$ vanishes and we have an isomorphism

$$\operatorname{Ch}^{1}_{\operatorname{cont}}(X_{\bullet}) = H^{1}_{\operatorname{cont}}(X, \mathbb{G}_{m, X_{\bullet}}) \cong \underset{n}{\underset{n}{\lim}}\operatorname{Pic}(X_{n})$$

DEFINITION AND COROLLARY 3.9. Let r < p. Let $X = Y_m$, Y_{\bullet} a formal smooth projective scheme over $\operatorname{Spf}W(k)$. Let $\xi \in H^{2r}(X, \mathbb{Z}_X(r))$. We say that its refined relative crystalline cycle class $c(\xi)$ is "Hodge" if there exists a smooth, projective lifting X_{\bullet} of X as ind-scheme over the ind-scheme Spec $W_{\bullet}(W_m(k))$, compatible with Y_{\bullet} , and such that $c(\xi)$ is "Hodge" with respect to X_{\bullet} . Assume $c(\xi)$ is "Hodge", then ξ deforms to a class on the formal scheme Y_{\bullet} , that is it lies in the image of the map

$$\operatorname{Ch}_{\operatorname{cont}}^{r}(Y_{\bullet}) \longrightarrow \underset{\leftarrow}{\lim} H^{2r}(Y_{n}, \mathbb{Z}_{Y_{n}}(r)) \longrightarrow H^{2r}(X, \mathbb{Z}_{X}(r)).$$

Proof. By general homological algebra the first arrow is surjective (as stated in [B-E-K1], p697). For any smooth lifting X_{\bullet} of $X = Y_m$ over Spec $W_{\bullet}(W_m(k))$ compatible with the formal scheme Y_{\bullet} under the base change $W_m(k) \longrightarrow k$ there is a base change map of motivic complexes $\mathbb{Z}_{X_{\bullet}}(r) \longrightarrow \mathbb{Z}_{Y_{\bullet}}(r)$ inducing $\mathrm{Ch}^r_{\mathrm{cont}}(X_{\bullet}) \longrightarrow \mathrm{Ch}^r_{\mathrm{cont}}(Y_{\bullet})$ through which the map

$$\delta : \operatorname{Ch}^r_{\operatorname{cont}}(X_{\bullet}) \longrightarrow H^{2r}(X, \mathbb{Z}_X(r))$$

factors. The Corollary follows from this and Theorem 3.6.

Remark. Note that $H^{2r}(X, \mathbb{Z}_X(r)) \otimes \mathbb{Q} = H^{2r}(Y_1, \mathbb{Z}_{Y_1}(r)) \otimes \mathbb{Q}$, hence we do not get any new information with regard to lifting vector bundles (compare [B-E-K1], Theorem 1.3). The implication in Corollary 3.9, i.e. the lifting property of ξ does not depend on the choice of X_{\bullet} , for which $c(\xi)$ is Hodge.

For an algebraic scheme Z, it is reasonable to define the cohomological Chow group as

$$\operatorname{Ch}^{p}(Z) := H^{p}(Z, \mathcal{K}_{p}^{\operatorname{Mil}}).$$

The graded object $\operatorname{Ch}^*(Z)$ then has a ring structure due to the natural product structure of Milnor K-groups, it is contravariant in Z and coincides with the usual Chow group of codimension *p*-cycles modulo rational equivalence if Z is regular excellent over an infinite field (see [Ke]). Applying this to $X = Y_m/W_m(k)$ we define

$$\operatorname{Ch}^{r}(X) := H^{r}(X, \mathcal{K}_{X,r}^{\operatorname{Mil}}).$$
(3.10)

The canonical map $\mathbb{Z}_X(r) \to \mathcal{K}_{X,r}^{\text{Mil}}[-r]$ defines a homomorphism.

$$\pi_r: H^{2r}(X, \mathbb{Z}_X(r)) \longrightarrow H^r(X, \mathcal{K}_r^{\mathrm{Mil}}) = \mathrm{Ch}^r(X)$$

that we already used in the construction of the crystalline cycle class. We want to give a criterion when this map is surjective or bijective.

With our definition of $\mathbb{Z}_X(r)$ it is easy to see that the fundamental motivic triangle for $\mathbb{Z}_{Y_{\bullet}}(r)$ holds for $\mathbb{Z}_X(r)$ as well: there is an exact sequence

$$0 \longrightarrow \mathcal{F}^{r}\Omega_{X/W_{m}(k)}^{< r}[-1] \longrightarrow \mathbb{Z}_{X}(r) \longrightarrow \mathbb{Z}_{Y_{1}}(r) \longrightarrow 0.$$
(3.11)

Documenta Mathematica 23 (2018) 1–1000

It induces the following commutative diagram, by taking hypercohomology of 3.11 and applying [B-E-K1], Theorem 12.3 to get the lower exact sequence in the diagram

The maps α , β are induced by

$$\mathfrak{F}^{r}\Omega^{< r}_{X/W_{m}(k)} \longrightarrow \mathfrak{H}^{r-1}\mathfrak{F}^{r}\Omega^{< r}_{X/W_{m}(k)} = \frac{p\Omega^{r-1}_{X}}{p^{2}\mathrm{d}\Omega^{r-2}_{X}}$$

The isomorphism σ is a standard map (compare [B-E-K1] 7.3). The first isomorphism in the left vertical arrow is shown in [M-V-W], Theorem 19.1, the second is explained in [M], Corollary 5.2 (b). Let

$$\tau_{\leq r-2} \mathcal{F}^r \Omega_{X/W_m(k)}^{< r} : p \mathcal{O}_X \xrightarrow{pd} p \Omega_X^1 \xrightarrow{pd} \cdots \xrightarrow{pd} p \Omega_X^{r-3} \xrightarrow{pd} \operatorname{Kerpd}(\subset p \Omega^{r-2}) \longrightarrow 0.$$

The diagram shows that if $H^{2r}(\tau_{\leq r-2}\mathcal{F}^r\Omega^{< r}_{X/W_m(k)}) = 0$ then π_r is surjective. As the cohomology of each term in the complex $\tau_{\leq r-2}\mathcal{F}^r\Omega^{< r}_{X/W_m(k)}$ vanishes in degrees > d we see that $H^{2r}(\tau_{\leq r-2}\mathcal{F}^r\Omega^{< r}_{X/W_m(k)}) = 0$ for $r > \dim X - 2$ and $H^j(\tau_{\leq r-2}\mathcal{F}^r\Omega^{< r}_{X/W_m(k)}) = 0$ for j = 2r, 2r - 1 holds for $r = d = \dim X$. In this case π_d is bijective (compare diagram 3.12) Hence we have shown

LEMMA 3.13. Let $d = \dim X / Spec W_m(k)$. Then

$$\pi_{d-1}: H^{2(d-1)}\left(X, \mathbb{Z}_X(d-1)\right) \longrightarrow \operatorname{Ch}^{d-1}(X)$$

is surjective and

$$\pi_d: H^{2d}(X, \mathbb{Z}_X(d)) \xrightarrow{\sim} \operatorname{Ch}^d(X)$$

is an isomorphism.

In both cases one can give a Hodge-theoretic criterion, following 3.9, for lifting an element $z \in \operatorname{Ch}^{?}(X)$ (? = d, d - 1) to an element in the continuous Chow group $\operatorname{Ch}^{?}_{\operatorname{cont}}(Y_{\bullet})$ by considering its (refined) crystalline cycle class in the cohomology of the relative de Rham-Witt complex. The precise formulation is clear and omitted here. Moreover, Theorem 0.1 (i) and (ii) follows from Corollary 3.9 and the above definitions.

References

[B-M-S] B. Bhatt, M. Morrow, P. Scholze, Integral *p*-adic Hodge theory, preprint 2016, arXiv: 1602.03148 [mathAG].

Documenta Mathematica 23 (2018) 1–1000

30

- [B-E-K1] S. Bloch, H. Esnault, M. Kerz, p-adic deformation of algebraic cycle classes, Inventiones Math. 195 (2014) pp. 673–722.
- [B-E-K2] S. Bloch, H. Esnault, M. Kerz, Deformation of algebraic cycle classes in characteristic zero, Algebraic Geometry 13 (2014) pp. 290–310.
- [B-O] P. Berthelot and A. Ogus, Notes on crystalline cohomology. Princeton University Press (1978).
- [D-L-Z] C. Davis, A. Langer, T. Zink, Overconvergent de Rham-Witt Cohomology, Annals. Sc. Ec. Norm. Sup. 44, no. 2 (2011), 197-262.
- [F-M] J.-M. Fontaine, W. Messing, p-adic periods and p-adic étale cohomology. Contemporary Maths vol. 87 (1987) pp. 179–207.
- [EGA1] A. Grothendieck, Élements de géométrie algébrique: I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. No.4 (1960)
- [G-L] O. Gregory and A. Langer, Higher displays arising from filtered de Rham-Witt complexes, preprint (2018)
- [Gr] M. Gros, Classes de Chern et classes de cycles en cohomology de Hodge-Witt logarithmique. Mém. Soc. Math. France 21 (1985) pp. 1–87.
- [II] L. Illusie, Complexe de Rham-Witt et cohomologie cristalline, Annales ENS (4), 12 (2), pp. 501–661 (1979)
- [K1] K. Kato, Galois cohomology of complete discrete valuation fields, In: Algebraic K-theory, Part II, Oberwolfach 1980. LN vol 967, pp. 215-238
- [K2] K. Kato, on *p*-adic vanishing cycles (application of ideas of Fontaine-Messing), in: Algebraic Geometry Sendai 1985, Adv. Studies Pure Maths 10 (1987), pp. 207–251.
- [Ke] M. Kerz, The Gersten Conjecture for Milnor K-theory, Inventiones Math. 175 (2009) pp. 1–33.
- [L-Z1] A. Langer and Th. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu 3 (2) (2004), pp. 231-314
- [L-Z2] A. Langer and Th. Zink, De Rham-Witt cohomology and displays, Documenta Mathematica 12 (2007), pp. 147–191.
- [M1] M. Morrow, A variational Tate Conjecture in crystalline cohomology, arxiv: 1408.6783 (2014).
- [M2] M. Morrow, K-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic *p*, arxiv: 1512.04703 (2015).

- [M] S. Müller-Stach, Algebraic cycle complexes: Basic properties, In: Proceedings of the Banff Conference in Arithmetic and Geometry of Algebraic Cycles (2000), pp. 285–305.
- [M-V-W] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Math Monographs 2 (2006).
- [S-V] A. Suslin, V. Voevodsky, Bloch-Kato Conjecture and motivic cohomology with finite coefficients, in: The Arithmetic and Geometry of Algebraic Cycles (2000), pp. 117-189.

Andreas Langer University of Exeter Mathematics Exeter EX4 4QF United Kingdom Email: A.Langer@exeter.ac.uk