p-Adic Deformation of motivic Chow groups

Andreas Langer

Abstract

For a smooth projective scheme Y over $W(k)$ we consider an element in the motivic Chow group of the reduction Y_{m} over the truncated Witt ring $W_{m}(k)$ and give a "Hodge" criterion - using the crystalline cycle class in relative crystalline cohomology - for the element to lift to the continuous Chow group of the associated p-adic formal scheme Y_{\bullet}. The result extends previous work of Bloch-EsnaultKerz on the p-adic variational Hodge conjecture to a relative setting. In the course of the proof we derive two new results on the relative de Rham-Witt complex and its Nygaard filtration, and work with a relative version of syntomic complexes to define relative motivic complexes for a smooth lifting of Y_{m} over the ind-scheme Spec $W_{\bullet}\left(W_{m}(k)\right)$.

2010 Mathematics Subject Classification: 14F30, 14F40, 19E15

Introduction

In a recent work, Bloch, Esnault and Kerz studied a p-adic analogue of Grothendieck's variational Hodge conjecture on the deformation of algebraic cycles resp. vector bundles. In the context of what is called p-adic variational Hodge Conjecture [B-E-K1], Conjecture 1.2, the above authors gave a Hodgetheoretic condition on the crystalline Chern class when a vector bundle on a smooth projective variety Y_{1} over a perfect field k of char p lifts to a vector bundle on a formal lifting Y_{\bullet} of Y_{1} over the Witt vectors $W(k)$. Their method relies on a construction of a motivic pro-complex $\mathbb{Z}_{Y_{\bullet}}(r)$ in the derived category of pro-complexes with respect to the Nisnevich topology on Y_{1}, which is obtained by glueing the Suslin-Voevodsky complex on Y_{1} with the syntomic complex of Fontaine-Messing on Y_{\bullet} along the logarithmic Hodge-Witt sheaf in degree r. The continuous Chow group $\mathrm{Ch}_{\text {cont }}^{r}\left(Y_{\bullet}\right)$ is defined in [B-E-K1] as the hypercohomology of the complex $\mathbb{Z}_{Y_{\bullet}}(r)$ and is equipped with a canonical map

$$
\mathrm{Ch}_{\text {cont }}^{r}\left(Y_{\bullet}\right) \longrightarrow \lim _{\overleftarrow{n}} H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{n}}(r)\right) \longrightarrow \operatorname{Ch}^{r}\left(Y_{1}\right)=H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{1}}(r)\right)
$$

to the usual Chow group of Y_{1}. The obstruction of deforming an algebraic cycle class from Y_{1} to Y_{\bullet} lies in the cohomology of a certain truncated filtered
de Rham complex on Y which is already entailed in the definition of the syntomic complex. The filtered de Rham complex, denoted by $p(r) \Omega_{Y_{0}}^{\bullet}$ is - as a procomplex - quasiisomorphic to a filtered version of the de Rham-Witt complex denoted by $q(r) W \Omega_{Y_{1} / k}$ in the étale/Nisnevich-topology [B-E-K1] Prop. 2.8. Hence the obstruction can be made visible by using the crystalline Chern classes which are induced by Gros's Chern classes [Gr] with values in the logarithmic Hodge-Witt cohomology [B-E-K1] Theorem 8.5. In another deep result Bloch-Esnault-Kerz relate the continuous Chow ring $\oplus_{r \leq d} \mathrm{Ch}_{\text {cont }}^{r}\left(Y_{\bullet}\right)_{\mathbb{Q}}$ to continuous K-theory $K_{0}^{\text {cont }}\left(Y_{\bullet}\right)_{\mathbb{Q}}[B-E-K 1]$ Theorem 11.1. This finally enables them to give an equivalent Hodge-theoretic criterion when a vector bundle, rationally, can be lifted from Y_{1} to Y_{\bullet} [B-E-K1], Theorem 1.3.
In the present note I study a relative version of the work of Bloch-EsnaultKerz, starting from the "motivic" Chow group $H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{m}}(r)\right)$ for fixed m. The problem is to find a similar criterion when an element in the latter cohomology group (the case $m=1$ being treated in [B-E-K1]) lifts to the continuous Chow group $C h_{\text {cont }}^{r}\left(Y_{\bullet}\right)$. In such a mixed characteristic situation, especially when working with a scheme Y_{m} defined over the artinian local ring $W_{m}(k)$, it is reasonable to define the cohomological codimension r Chow group as $H_{\text {Zar }}^{r}\left(Y_{m}, \mathcal{K}_{r}^{\mathrm{Mil}}\right)$. The graded object is automatically a ring, contravariant in Y_{m} (see [B-E-K2], §4 for a similar situation in char 0).
There is a canonical map

$$
H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{m}}(r)\right) \xrightarrow{\pi_{r}} H^{r}\left(Y_{m}, \mathcal{K}_{r}^{\mathrm{Mil}}\right)
$$

which in some cases can be shown to be an isomorphism or at least an epimorphism. Hence our problem is still related to deforming Chow groups p-adically. Whilst Bloch-Esnault-Kerz entirely work with $\mathbb{Z}_{Y_{\bullet}}(r)$ as a procomplex, we need to define $\mathbb{Z}_{Y_{m}}(r)$ at a finite level which requires some additional thoughts related to the divided Frobenius in the definition of the syntomic complex at finite level. For fixed m we consider the smooth projective scheme $Y_{m}=X_{1}$ over the ring $R=W_{m}(k)$ and we assume there exists a compatible system $X_{n} / \operatorname{Spec} W_{n}(R)$ of liftings of X_{1} which is compatible with the formal lifting Y_{\bullet} of Y_{1}, that is $X_{n+1} \times_{\text {Spec } W_{n+1}(R)} \operatorname{Spec} W_{n}(R)=X_{n}$ and $X_{n} \times{ }_{\text {Spec } W_{n}(R)} \operatorname{Spec} W_{n}(k)=Y_{n}$. Such a system X_{n} defines an ind-scheme X_{\bullet} over the ind-scheme $\operatorname{Spec} W_{\bullet}(R)$ in the sense of [EGA1], Prop. 10.6.3. As multiplication by p is not injective on $W(R)$ we need an alternative definition of the relative syntomic complex $\sigma_{X_{\bullet} / W_{\bullet}(R)}(r)$, using a divided Frobenius map defined on a filtered version $N^{r} W_{\bullet} \Omega_{X_{1} / R}$ of the relative de Rham-Witt complex $W \Omega_{X_{1} / R}^{\bullet}$. If $m=1$, so $R=k$, then our complex $\sigma_{X_{\bullet}}(r)$ and the complex $\sigma_{Y_{\bullet}}(r)$ of Fontaine-Messing [F-M] resp. Kato [K2] are isomorphic as procomplexes. We formally define a motivic complex $\mathbb{Z}_{X_{\bullet}}(r)$ on X_{1} in the same way as Bloch-Esnault-Kerz, by glueing $\mathbb{Z}_{X_{1}}(r)$ with $\sigma_{X_{\bullet}}(r)$ along the relative logarithmic Hodge-Witt sheaf $W_{\bullet} \Omega_{X_{1} / R, \log }^{r}$ in degree r and obtain a similar Hodge-theoretic condition to lifting a class in $H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{m}}(r)\right)$ to $H^{2 r}\left(X_{1}, \mathbb{Z}_{X}(r)\right)$, by using the crystalline cycle class with values in relative de Rham-Witt resp. relative crystalline cohomology.

As the ind-scheme X_{\bullet} is assumed to be compatible with Y_{\bullet} we can give a positive answer to our original problem (Theorem 3.6). We formulate here the main application on deforming elements in motivic Chow groups p-adically (Corollary 3.9):

Theorem 0.1. Let $r<p$.
(i) Let Y_{\bullet} be a formal smooth projective scheme over $\operatorname{Spf} W(k)$. Let $X_{1}=Y_{m}$ for some fixed $m \in \mathbb{N}$ and assume X_{1} admits a smooth lifting X_{\bullet}, over Spec $W_{\bullet}\left(W_{m}(k)\right)$ compatible with Y_{\bullet}. Let $\xi \in H^{2 r}\left(X_{1}, \mathbb{Z}_{X_{1}}(r)\right)$.
If $c(\xi)$ is "Hodge" with respect to X_{\bullet}, i.e. $c(\xi) \in \operatorname{Image}\left(\mathbb{H}^{2 r}\left(X_{\bullet}, \Omega_{X_{\bullet}}^{\geq_{\bullet}^{r}}\right) \rightarrow\right.$ $\left.H^{2 r}\left(X_{1}, N^{r} W_{\bullet} \Omega_{X_{1} / W_{m}(k)}\right)\right)$, then ξ lifts to an element $\hat{\xi} \in C H_{\text {cont }}^{r}\left(Y_{\bullet}\right)=$ $H_{\text {cont }}^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{\bullet}}(r)\right)$.
(ii) Let $z \in \operatorname{image}\left(\pi_{r}\right)$. If its crystalline cycle class is "Hodge" with respect to X_{\bullet}, then z lifts to an element \hat{z} in ${\underset{\leftarrow}{n}}_{\lim _{n}} H^{r}\left(Y_{n}, \mathcal{K}_{Y_{n}, r}^{\mathrm{Mil}}\right)$.

The theorem should be compared with [B-E-K1] Theorem 8.5. In the proof we will see that the implications in (i) and (ii) do not depend on the choice of $X_{\bullet} ;$ Given two liftings $X_{\bullet}, X_{\bullet}^{\prime}$ compatible with Y_{\bullet}, with respect to which $c(\xi)$ resp. $c(z)$ is "Hodge", the lifting property of ξ resp. z holds. In the course of the paper we need two technical results on the relative de Rham-Witt complex which play a crucial role in our construction and in the proofs.
In the relative setting the filtered de Rham complex $p(r) \Omega_{Y_{\bullet}}^{\bullet}$ mentioned earlier and used in the case $R=k$ in [B-E-K1] is replaced by the complex ($I_{R}:=$ $V W(R))$ denoted by $\mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{\text {: }}$
$I_{R} \mathcal{O}_{X_{\bullet}} \xrightarrow{p \mathrm{~d}} I_{R} \otimes_{W(R)} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{1} \xrightarrow{p \mathrm{~d}} \cdots \xrightarrow{p \mathrm{~d}} I_{R} \otimes \Omega_{X_{\bullet} / W_{\bullet}(R)}^{r-1} \xrightarrow{\mathrm{~d}} \Omega_{X_{\bullet} / W_{\bullet}(R)} \xrightarrow{\mathrm{d}} \cdots$
Then we prove Conjecture 4.1 in [L-Z2] for $r<p$
Theorem 0.2. Let $r<p$. The complex $\mathcal{F}^{r} \Omega_{X}^{\bullet} / W_{\bullet}(R)$ is in the derived category isomorphic to the complex, denoted by $N^{r} W_{\bullet} \Omega_{X_{1} / R}^{\bullet}$

$$
W_{\bullet} \mathcal{O}_{X_{1}} \xrightarrow{\mathrm{~d}} W_{\bullet} \Omega_{X_{1} / R}^{1} \xrightarrow{\mathrm{~d}} \cdots \xrightarrow{\mathrm{~d}} W_{\bullet} \Omega_{X_{1} / R}^{r-1} \xrightarrow{\mathrm{~d} V} W_{\bullet} \Omega_{X_{1} / R}^{r} \xrightarrow{\mathrm{~d}}
$$

The Theorem already holds at finite level for $X_{n} / W_{n}(R)$ for any ring R on which p is nilpotent (see Theorem 1.2).
In a second technical result on the relative de Rham-Witt complex we derive an exact triangle generalizing [II] I 5.7.2 and [B-E-K1] Corollary 4.6 in the case $R=k$.

Theorem 0.3. (= Theorem 1.9). Let R be artinian local with perfect residue field k and X_{1} smooth over Spec R. In the derived category of procomplexes on $\left(X_{1}\right)_{\text {et }}$ we have a short exact sequence

$$
\begin{gathered}
0 \longrightarrow W_{\bullet} \Omega_{X_{1} / R, \log }^{r}[-r] \longrightarrow N^{r} W_{\bullet} \Omega_{X_{1} / R}^{\bullet} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega_{X_{1} / R}^{\bullet} \longrightarrow 0 . \\
\text { Documenta MATHEMATICA } 23(2018) 1-1000
\end{gathered}
$$

Note that the complex $q(r) W_{\bullet} \Omega_{X_{1} / k}^{\bullet}$ appearing in [B-E-K1] Corollary 4.6 is isomorphic as procomplex to $N^{r} W_{\bullet} \Omega_{X_{1} / k}^{\bullet}$ by [L-Z2] Proposition 4.4, if $R=k$. Finally, we point out that Theorem 0.2 has been applied in the construction of higher displays ([G-L] Theorem 1.1 and [L-Z2] Conjecture 5.8).
In the equal characteristic p case, Matthew Morrow has recently studied a relative version of another arithmetic conjecture, the Crystalline Tate Conjecture (see [M1], [M2]), which is a characteristic p analogue of Grothendieck's variational Hodge conjecture.
This paper was prepared during a visit at IHES in Bures-sur-Yvette. The author thanks IHES for their hospitality.

1 Relative syntomic complexes

Let X be a smooth scheme X over Spec $R(R$ artinian local with perfect residue field k of characteristic $p>0$), admitting a lifting X_{\bullet} as ind-scheme over Spec $W_{\bullet}(R)$. We are going to define relative syntomic complexes $\sigma_{X_{\bullet}}(r)$ that will be entailed in the construction of the relative motivic complexes $\mathbb{Z}_{X_{\bullet}}(r)$ later on.
The definition of $\sigma_{X_{\bullet}}(r)$ will rely on an appropriate divided Frobenius map Fr on a filtered version of the relative de Rham-Witt complex, denoted by $N^{r} W_{n} \Omega_{X / R}^{\bullet}$:
$W_{n-1} \mathcal{O}_{X} \xrightarrow{\mathrm{~d}} W_{n-1} \Omega_{X / R}^{1} \xrightarrow{\mathrm{~d}} \cdots \longrightarrow W_{n-1} \Omega_{X / R}^{r-1} \xrightarrow{\mathrm{~d} V} W_{n} \Omega_{X / R}^{r} \xrightarrow{\mathrm{~d}} W_{n} \Omega_{X / R}^{r+1} \xrightarrow{\mathrm{~d}} \cdots$
(compare the definition in [L-Z2], Definition 2.1). Secondly, we will need a comparison between the complex $N^{r} W_{n} \Omega_{X / R}^{\bullet}$ and the following 'filtered' de Rham complex on the lifting X_{n}, denoted by $\mathcal{F}^{r} \Omega_{X_{n} / W_{n}(R)}^{\bullet}$, where $I_{R}=V W_{n-1}(R)$:
$I_{R} \otimes_{W_{n}(R)} \mathcal{O}_{X_{n}} \xrightarrow{p \mathrm{~d}} I_{R} \otimes_{W_{n}(R)} \Omega_{X_{n} / W_{n}(R)} \xrightarrow{p \mathrm{~d}} \cdots \xrightarrow{p \mathrm{~d}} I_{R} \otimes_{W_{n}(R)} \Omega_{X_{n} / W_{n}(R)}^{r-1} \xrightarrow{\mathrm{~d}} \Omega_{X_{n} / W_{n}(R)}^{r} \xrightarrow{\mathrm{~d}} \cdots$
We recall the following
Conjecture 1.1. ([L-Z2] Conjecture 4.1). Let R be a ring on which p is nilpotent, $X_{n} / W_{n}(R)$ smooth and $X:=X_{n} \times_{W_{n}(R)} R$. There is an isomorphism in the derived category between the complexes $N^{r} W_{n} \Omega_{X / R}^{\bullet}$ and $\mathcal{F}^{r} \Omega_{X_{n} / W_{n}(R)}$.

We can prove the following
TheOrem 1.2. The conjecture holds if $r<p$.
Proof. Assume first that there exists a closed embedding $X_{n} \hookrightarrow Z_{n}$ into a smooth $W_{n}(R)$-scheme Z_{n} which is a Witt lift of $Z=Z \times_{W_{n}(R)} R$ in the sense of [L-Z1] Definition 3.3. That is it is equipped with a map $\Delta_{n}: W_{n}(Z) \rightarrow Z_{n}$ fitting into a commutative diagram

Such a Witt-lift always exists locally. Let I be the ideal sheaf of X_{n} in $\mathcal{O}_{Z_{n}}$ and $\mathcal{J}=\mathcal{J}_{n}$ be the divided power ideal sheaf of the embedding i_{n}. Let $\mathcal{O}_{D_{n}}$ be the PD-envelope of $\mathcal{O}_{Z_{n}}$ with respect to \mathcal{J}, with underlying scheme D_{n}. We already know that the complex $\mathcal{O}_{D_{n}} \otimes_{\mathcal{O}_{n}} \Omega_{Z_{n} / W_{n}(R)}^{\bullet}$ is quasiisomorphic to $\Omega_{X_{n} / W_{n}(R)}^{\bullet}$ ([II], [B-O]). Let $\mathfrak{J}^{[r]}$ for $r \geq 1$ be the higher divided power ideal sheaves.
To keep notation light we will write \mathcal{O} for $\mathcal{O}_{D_{n}}, \Omega^{i}$ for $\Omega_{D_{n}}^{i}, I_{R} \mathrm{~J}^{[j]}$ for $I_{R} \otimes_{W_{n}(R)}$ ${ }^{\mathrm{J}}[j]$ and $I_{R}{ }^{\mathcal{J}[j]} \Omega^{s}$ for $I_{R} \otimes_{W_{n}(R)}\left(\mathcal{J}^{[j]} \otimes_{\mathcal{O}_{D_{n}}} \Omega_{D_{n}}^{s}\right)$. Then we consider the following diagram of complexes

$$
\begin{aligned}
& >{ }_{\square}^{p d} \\
& I_{R}{ }^{\mathfrak{J}[r-3]} \xrightarrow{d} I_{R}{ }^{\mathfrak{J}[r-2]} \Omega^{1} \xrightarrow{d} \cdots \xrightarrow{d} I_{R} \Omega^{r-3} \\
& I_{R}{ }^{\mathcal{J} r-2]} \xrightarrow{d} I_{R}{ }^{\mathcal{J}[r-2]} \Omega^{1} \xrightarrow{d} \cdots \xrightarrow{d} I_{R} \mathcal{J} \Omega^{r-3} \xrightarrow{\text { d }} I_{R} \Omega^{r-2}
\end{aligned}
$$

As in the classical case for $R=k$ (see [B-E-K1] 2.8) it follows from [B-O] Theorem 7.2, applied to $X_{n} \hookrightarrow Z_{n}$ and $X_{n}=X_{n}$, that the lower horizontal sequence is quasiisomorphic to $\Omega_{X_{n} / W_{n}(R)}^{\geq r}$. All horizontal sequences are - up to the term $I_{R} \Omega^{j}$ that is placed on the diagonal - exact because all sheaves $\mathcal{J}^{[j]}$ and Ω^{j} are - locally - free $\mathcal{O}_{X_{n}}$-modules by [B-O] Prop. 3.32. Therefore the sequence $\mathcal{J}^{[s-\bullet]} \Omega^{\bullet}$ remains exact after $\otimes_{W_{n}(R)} R$ because it then coincides with the corresponding sequence for the closed embedding $X=X_{n} \times_{W_{n}(R)} R \rightarrow$ $Z_{n} \times W_{n}(R) R$. Then $I_{R}{ }^{\mathfrak{J}[s-\bullet]} \Omega^{\bullet}$ is exact as well.
It is clear that adding up the two lower horizontal sequences degree-wise yields a complex that is quasiisomorphic to

$$
\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow I_{R} \Omega_{X_{n} / W_{n}(R)}^{r-1} \xrightarrow{d} \Omega_{X_{n} / W_{n}(R)}^{r} \xrightarrow{d} \Omega_{X_{n} / W_{n}(R)}^{r+1} \longrightarrow \cdots
$$

Moreover, it is easy to see that adding up degree-wise the $k+1$ lower horizontal sequences up to the sequence starting with $I_{R} \mathcal{J}^{[r-k]}$ we obtain a complex that is quasiisomorphic to

$$
\begin{equation*}
\cdots \longrightarrow 0 \longrightarrow I_{R} \Omega_{X_{n} / W_{n}(R)}^{r-k} \xrightarrow{p d} \cdots \xrightarrow{p d} I_{R} \Omega_{X_{n} / W_{n}(R)}^{r-1} \xrightarrow{d} \Omega_{X_{n} / W_{n}(R)}^{r} \xrightarrow{d} \cdots \tag{1.4}
\end{equation*}
$$

The quasiisomorphisms are induced by the canonical maps $\mathcal{O}_{D_{n}} \longrightarrow \mathcal{O}_{X_{n}}$, $\Omega_{D_{n}}^{j} \longrightarrow \Omega_{X_{n}}^{j}$ etc.
Define $\operatorname{Fil}^{r} \Omega_{D_{n} / W_{n}(R)}^{\bullet}$ to be the complex obtained by adding up all horizontal sequences degree-wise. Then $\operatorname{Fil}^{r} \Omega_{D_{n} / W_{n}(R)}^{\bullet}$ is quasiisomorphic to $\mathcal{F}^{r} \Omega_{X_{n} / W_{n}(R)}^{\bullet}$, the complex that is defined above before Conjecture 1.1.
Now construct a map

$$
\begin{equation*}
\Sigma: \operatorname{Fil}^{r} \Omega_{D_{n} / W_{n}(R)}^{\bullet} \longrightarrow N^{r} W_{n} \Omega_{X / R}^{\bullet} \tag{1.5}
\end{equation*}
$$

The composite map $\Delta_{n}: \mathcal{O}_{Z_{n}} \rightarrow W_{n}\left(\mathcal{O}_{X}\right)$ extends to a map $\sigma: \mathcal{O}_{D_{n}} \rightarrow$ $W_{n}\left(\mathcal{O}_{X}\right)$ with induced maps $\Omega_{D_{n}}^{i} \xrightarrow{\sigma} W_{n} \Omega_{X / R}^{i}$, because the image of $I \subset \mathcal{O}_{Z_{n}}$ is contained in $V W_{n-1}\left(\mathcal{O}_{X}\right)$ which is a PD-ideal in $W_{n}\left(\mathcal{O}_{X}\right)$. Let $x \in \mathcal{J}$ with image $\sigma(x)=V \eta \in V W_{n-1}\left(\mathcal{O}_{X}\right)$. Then $\sigma\left(x^{n}\right)=p^{n-1} V\left(\eta^{n}\right)$ hence $\sigma\left(\gamma_{n}(x)\right)=$ $\frac{1}{n!} p^{n-1} V\left(\eta^{n}\right)$. Then for $r \leq p-1, j<r$ and $n>j$, the element $\sigma^{(j)}=$ $\frac{1}{n!} p^{n-1-j} V\left(\eta^{n}\right)$ is well-defined. Define $F^{(j+1)}\left(\gamma_{n}(x)\right)={ }^{4} \frac{F}{p} " \sigma^{(j)}\left(\gamma_{n}(x)\right):=$ $\frac{1}{n!} p^{n-1-j} \eta^{n}$ using $F V=p$. Then the map Σ is defined on entries as follows: Consider a differential in the lower horizontal sequence

$$
\mathcal{J}^{[k]} \Omega^{r-k} \xrightarrow{d} \mathcal{J}^{[k-1]} \Omega^{r-k+1}
$$

For $m \geq k$ let $\gamma_{m}(x) \omega \in \mathcal{J}^{[k]} \Omega^{r-k}$ with $\sigma(x)=V \eta$ as above. Define $F_{k}\left(\gamma_{m}(x) \omega\right)=F^{(k)}\left(\gamma_{m}(x)\right) F \sigma(\omega)=\frac{p^{m-1-(k-1)}}{m!} \eta^{m} F \sigma(\omega)$ in $W_{n-1} \Omega_{X / R}^{r-k}$. Then

$$
d F_{k}\left(\gamma_{m}(x) \omega\right)=\frac{p^{m-k}}{(m-1)!} \eta^{m-1} d \eta F \sigma(\omega)+\frac{p^{m-k+1}}{m!} \eta^{m} F d \sigma(\omega)
$$

using $d F=p F d$.
On the other hand $d\left(\gamma_{m}(x) \omega\right)=\gamma_{m-1}(x) d x \omega+\gamma_{m}(x) d \omega$ and hence

$$
F_{k-1}\left(d \gamma_{m}(x) \omega\right)=\frac{p^{m-2-(k-2)}}{(m-1)!} \eta^{m-1} d \eta F \sigma(\omega)+\frac{p^{m-1-(k-2)}}{m!} \eta^{m} F d \sigma(\omega)
$$

Here we have used $F d V \eta=d \eta$. We see that $d F_{k}\left(\gamma_{m}(x) \omega\right)=F_{k-1} d\left(\gamma_{m}(x) \omega\right)$. Now let for $\underline{x}=\left(x_{1}, \ldots, x_{\ell}\right), x_{i} \in \mathcal{J}$ and $m=\sum_{i=1}^{\ell} m_{i} \geq k, \underline{x}^{[\underline{m}]}=$ $x_{1}^{\left[m_{1}\right]} \cdots x_{\ell}^{\left[m_{\ell}\right]}$ with $x_{i}^{\left[m_{i}\right]}=\gamma_{m_{i}}\left(x_{i}\right)=\frac{x_{i}^{m_{i}}}{\left(m_{i}\right)!}$ (an arbitrary element in $\mathcal{J}^{[k]}$). Let $\sigma\left(x_{i}\right)=V\left(\eta_{i}\right)$. Define

$$
F^{(k)}\left(\underline{x}^{[\underline{m}]}\right)=\left(\prod_{i=1}^{\ell} \frac{p^{m_{i}-1}}{\left(m_{i}\right)!} \eta_{i}^{m_{i}}\right) \cdot p^{-(k-\ell)}
$$

The definition is compatible with the previous case $\ell=1$. Again we have for $\underline{x}^{[\underline{m}]} \cdot \omega \in \mathcal{J}^{k} \Omega^{r-k}$ and $F_{k}\left(\underline{x}^{[\underline{m}]} \cdot \omega\right):=F^{(k)}\left(\underline{x}^{[m]}\right) \cdot F \sigma(\omega)$ the equality

$$
d F_{k}\left(\underline{x}^{[\underline{m}]} \cdot \omega\right)=F_{k-1} d\left(\underline{x}^{[\underline{m}]} \cdot \omega\right)
$$

The tedious proof is omitted.
So we have a commutative diagram for $k \geq 1$

We can extend the map F_{k} to a map

$$
F_{k+1}: I_{R} \mathfrak{J}^{[k]} \Omega^{\ell-k} \longrightarrow W_{n-1} \Omega_{X / R}^{\ell-k}
$$

by

$$
F_{k+1}\left(V \xi \underline{x}^{[\underline{m}]} \omega\right)=\xi F_{k}\left(\underline{x}^{[\underline{m}]} \omega\right)
$$

Then
commutes as well for $k \geq 1$. It is also clear that the diagram

commutes where $F_{1}(V \xi \omega)=\xi F \omega$, using that $d F \omega=p F d \omega$.
In degree $r-1$ the maps d commute with $d V$ because we have commutative diagrams

because

$$
d V\left(F_{1}(V \xi \omega)\right)=d V(\xi F \sigma(\omega))=d(V \xi \sigma(\omega))=V \xi d \sigma(\omega)=V \xi \sigma(d(\omega))
$$

and

$$
d V\left(F_{1}\left(\gamma_{m}(x) \omega\right)\right)=d V\left(\frac{p^{m-1}}{m!} \eta^{m} F \sigma(\omega)\right)=d\left(\sigma\left(\gamma_{m}(x)\right) \sigma(\omega)\right)=\sigma d\left(\gamma_{m}(x) \omega\right)
$$

(where $\sigma(x)=V \eta$ as before).
Hence we have constructed a map

$$
\begin{equation*}
\Sigma: \operatorname{Fil}^{r} \Omega_{D_{n} / W_{n}(R)}^{\bullet} \longrightarrow N^{r} W_{n} \Omega_{X / R}^{\bullet} \tag{1.6}
\end{equation*}
$$

from the complex constructed in diagram (1.3) into the Nygaard complex. We have a diagram

If we have two embeddings $X_{n} \xrightarrow{i_{n}} Z_{n}, X_{n} \xrightarrow{i_{n}^{\prime}} Z_{n}^{\prime}$ into Witt lifts Z_{n}, Z_{n}^{\prime} with corresponding diagrams (1.3) for each embedding and corresponding complexes $\mathrm{Fil}^{r} \Omega_{D_{n} / W_{n}(R)}^{\bullet}, \mathrm{Fil}^{r} \Omega_{D_{n}^{\prime} / W_{n}(R)}^{\bullet}$ then by considering the product embedding $X_{n} \xrightarrow{\left(i_{n}, i_{i}^{\prime}\right)} Z_{n} \times Z_{n}^{\prime}$ and the corresponding Fil r-complex, we see that we get a canonical map

$$
\begin{equation*}
\mathcal{F}^{r} \Omega_{X_{n} / W_{n}(R)}^{\bullet} \longrightarrow N^{r} W_{n} \Omega_{X / R}^{\bullet} \tag{1.7.1}
\end{equation*}
$$

in the derived category which does not depend on the choice of the embedding i_{n}. In order to prove Theorem 1.2 it suffices to show that the map Σ is a quasiisomorphism. This is a local question, hence we may assume that $X_{n}=$ $Z_{n}=D_{n}$ are affine with Frobenius lift F. Then the assertion follows from [L-Z2] Corollary 4.3. This proves the Theorem and Conjecture 4.1 in [L-Z2] for $r<p$ assuming the existence of a global embedding into a Witt lift. If there is no embedding of X_{n} into a Witt lift one proceeds by simplicial methods as in [II] II.1.1, [L-Z1] §3.2. Let $X_{n}(i), i \in I$ be a covering of X_{n}, inducing a covering $X(i)$ of X, and an embedding $X_{n}(i) \rightarrow Y_{n}(i)$ which is a Witt lift of $Y(i)=Y_{n}(i) \times_{W_{n}(R)} R$. One gets simplicial schemes $X^{\bullet} \rightarrow X_{n}^{\bullet} \rightarrow D_{n}^{\bullet} \rightarrow Y_{n}^{\bullet}$ and quasiisomorphisms of simplicial complexes of sheaves

$$
\mathcal{F}^{r} \Omega_{X_{n}^{\bullet} / W_{n}(R)}^{\bullet} \leftarrow \operatorname{Fil}^{r} \Omega_{D_{n}^{\bullet} / W_{n}(R)}^{\bullet} \rightarrow N^{r} W_{n} \Omega_{X \bullet / R}^{\bullet}
$$

on X^{\bullet}; let $\theta: X^{\bullet} \rightarrow X$ be the natural augmentation. By applying $R \theta_{*}$ to the quasiisomorphisms we get, by cohomological descent in Zariski/étale topology, an isomorphism (1.7.1) in $D_{\text {ét }}(X)$.

There are well known maps of the de Rham-Witt complexes, denoted by " 1 " and $F r$, between $N^{r} W_{n} \Omega_{X_{R}}^{\bullet}$ and $W_{n-1} \Omega_{X / R}^{\bullet}$:

The diagram commutes because of $F \mathrm{~d} V=d, \mathrm{~d} F=p F \mathrm{~d}$ and $V \mathrm{~d}=p \mathrm{~d} V \cdot p^{i} V$ means $p^{i} V$ composed with the projection from level n to level $n-1$. The map Fr of complexes also appears in [L-Z2] in the context of (pre-)displays and plays the role of a divided Frobenius.
In the following we will consider the derived category of procomplexes $D_{\text {pro,et }}(X)$ defined as follows: Let $C_{\text {pro,et }}(X)$ be the category of pro-systems of unbounded complexes of sheaves on the small étale site of X. Then $D_{\text {pro,et }}(X)$ is the Verdier localisation of the homotopy category of $C_{\text {pro,et }}(X)$ where all objects are killed which are represented by pro-systems of complexes with levelwise vanishing cohomology sheaves (compare [B-E-K1] Definition A.4).

Theorem 1.9. Let R be an artinian local ring with perfect residue field k, $X /$ Spec R smooth. Then there is an exact sequence of pro-complexes in $D_{\text {pro,et }}(X)$:

$$
0 \longrightarrow W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \longrightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega_{X / R}^{\bullet} \longrightarrow 0
$$

where $W_{\bullet} \Omega_{X / R, \log }^{r}$ is, locally for $X=$ Spec A, generated by $\operatorname{d} \log \left[x_{1}\right] \wedge \ldots \wedge$ $\mathrm{d} \log \left[x_{r}\right]$, with $x_{1}, \ldots, x_{r} \in A$, as $W_{\bullet}\left(\mathbb{F}_{p}\right)$-module.

Proof. Let $l<r, i \geq 0$. Consider the map

$$
p^{i} V-\mathrm{id}: W_{n-1} \Omega_{X / R}^{l} \longrightarrow W_{n-1} \Omega_{X / R}^{l}
$$

Then $\left(p^{i} V-\mathrm{id}\right) \alpha=p^{i} V \alpha-\alpha$ and for given β we have $\beta=\left(p^{i} V-\mathrm{id}\right) \alpha$ has the solution $\alpha=-\sum_{m=0}^{\infty}\left(p^{i} V\right)^{m} \beta$ hence $p^{i} V$ - id is surjective. On the other hand, let $\alpha \in \operatorname{Ker}\left(p^{i} V-\mathrm{id}\right)$. Then $\alpha=p^{i} V \alpha$, hence $\alpha \in\left(p^{i} V\right)^{s} W_{n-1} \Omega_{X / R}^{l}$ for all s, so $\alpha=0$ and thus $1-\mathrm{Fr}$ is an automorphism in degrees $<r$.
A formal inverse of $\left(1-p^{s} F\right)$, for $s>0$, is $\sum_{n=0}^{\infty}\left(p^{s} F\right)^{n}=\sum_{n=1}^{\infty} p^{s n} F^{n}$. This is an element of the Cartier-Raynaud ring because for any $u>0 p^{s n} \in$ $V^{u} W(R)$ for almost all n. Hence $\sum_{n \geq 0} p^{s n} F^{n}$ acts on the completed $W \Omega_{X / R}^{l}$ and provides an inverse of $1-p^{s} F$ on $W \Omega_{X / R}^{l}$. But then $1-p^{s} F$ is also surjective on the prosystem $W_{\bullet} \Omega_{X / R}^{l}$.
Since all assertions in the theorem only need to be checked locally, we may assume now that $X=\operatorname{Spec} B$, where B is étale over a Laurent polynomial
algebra $A=R\left[T_{1}^{ \pm 1}, \ldots, T_{d}^{ \pm 1}\right]$. It is enough to prove the theorem when replacing B by $B \otimes_{R} R / \mathfrak{m}^{e}$ for any $e \geq 1$, where \mathfrak{m} is the maximal ideal of R. For $e=1$ this follows from [II] I Théorème 5.7.2. We will prove the remaining assertions by inducion on e. So let B / R be such that $\mathfrak{m}^{e} R=0$ and assume the theorem holds for $\bar{B}=B \otimes_{R} R / \mathfrak{m}^{e-1}$. To prove the injectivity of $1-p^{s} F$, for $s>0$, on the prosheaf $W_{\bullet} \Omega_{B / R}^{\ell}$ it is enough to show that

$$
\operatorname{ker}\left(1-p^{s} F: W_{n+1} \Omega_{B / R}^{\ell} \rightarrow W_{n} \Omega_{B / R}^{\ell}\right)
$$

is contained in $\operatorname{Fil}^{n} W_{n+1} \Omega_{B / R}^{\ell}$. (For $e=1$, this is shown in [II] I, Lemma 3.30). Consider the commutative diagram

Let $A_{n}=W_{n}(R)\left[T_{1}^{ \pm 1}, \ldots, T_{d}^{ \pm 1}\right]$ and $\varphi: A_{n+1} \rightarrow A_{n}$ be the Frobenius, extend$\operatorname{ing} F: W_{n+1}(R) \rightarrow W_{n}(R)$ by $T_{i} \rightarrow T_{i}^{p}$. The map $A_{n} \rightarrow W_{n}(A), T_{i} \rightarrow\left[T_{i}\right]$ is compatible with Frobenii. As shown in [L-Z1] Prop. 3.2, φ extends to a Frobenius structure $B_{n+1} \rightarrow B_{n}$, where B_{n} is a lifting of B over $W_{n}(R)$, étale over A_{n}, equipped with a map $B_{n} \rightarrow W_{n}(B)$, again compatible with Frobenii. Let now $m \in \mathbb{N}$ be such that $p^{m} W_{n+1}(R)=0$. Then étale base change for the relative de Rham-Witt complex and the proof of [L-Z1] Theorem 3.5 (applied to $A=R\left[T_{1}^{ \pm 1}, \ldots, T_{d}^{ \pm 1}\right]$ instead of $R\left[T_{1}, \ldots, T_{d}\right]$) gives isomorphisms of complexes

$$
\begin{align*}
W_{n} \Omega_{B / R}^{\bullet} & =W_{m+n}(B) \otimes_{W_{m+n}(A), F^{n}} W_{n} \Omega_{A / R}^{\bullet} \tag{1.9.2}\\
& \cong B_{m+n} \otimes_{A_{m+n}, \varphi^{n}} W_{n} \Omega_{A / R}^{\bullet} \\
& =B_{m+n} \otimes_{A_{m+n}, \varphi^{n}} \Omega_{A_{n} / W_{n}(R)} \oplus B_{m+n} \otimes_{A_{m+n}, \varphi^{n}}\left(W_{n} \Omega_{A / R}^{\bullet}\right)_{\text {frac }} \\
& =\left(W_{n} \Omega_{B / R}^{\bullet}\right)_{\text {int }} \oplus\left(W_{n} \Omega_{B / R}^{\bullet}\right)_{\text {frac }}
\end{align*}
$$

The decomposition into an integral and an acyclic fractional part according to weight functions with values in $\mathbb{Z}[1 / p]$ is given in [L-Z1] (3.9) for polynomial algebras and in [B-M-S] Theorems 10.12 and 10.13 for Laurent polynomial algebras. From the uniqueness statement in the description of $W_{n} \Omega_{A / R}^{\bullet}$ as sums of basic Witt differentials we see that

$$
\operatorname{ker}\left(W_{n} \Omega_{A / R}^{\bullet} \rightarrow W_{n} \Omega_{\bar{A} / \bar{R}}^{\bullet}\right)=W_{n}\left(\mathfrak{m}^{e-1}\right) \Omega_{A_{n} / W_{n}(R)}^{\bullet} \oplus\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{\bullet}\right)_{\text {frac }}
$$

where $\left(W_{n} \Omega_{\mathfrak{m}}^{\bullet}{ }^{\bullet-1} A / R\right)_{\text {frac }}$ consists of sums of basic Witt differentials in $\left(W_{n} \Omega_{A / R}^{\bullet}\right)_{\text {frac }}$ with coefficients in $W_{n}\left(\mathfrak{m}^{e-1}\right)$. Then $\operatorname{ker} \pi_{n}$, for $\pi_{n}: W_{n} \Omega_{B / R}^{\ell} \rightarrow$
$W_{n} \Omega_{\bar{B} / \bar{R}}^{\ell}$, is equal to

$$
\begin{equation*}
B_{m+n} \otimes_{A_{m+n}, \varphi^{m}} W_{n}\left(\mathfrak{m}^{e-1}\right) \Omega_{A_{n} / W_{n}(R)}^{\bullet} \oplus B_{m+n} \otimes_{A_{m+n}, \varphi^{m}}\left(W_{n} \Omega_{\mathfrak{m} e-1}^{\bullet} / R\right)_{f r a c} \tag{1.9.3}
\end{equation*}
$$

Since for $\alpha \in \mathfrak{m}^{e-1}$ and $p=[p]+V \eta$ we have $p \cdot[\alpha]=[p \cdot \alpha]+V\left(\eta \cdot[\alpha]^{p}\right)=0$ we see that $p \cdot x=0$ for all $x \in W_{n}\left(\mathfrak{m}^{e-1}\right)$ and hence $1-p^{s} F: \operatorname{ker} \pi_{n+1} \rightarrow \operatorname{ker} \pi_{n}$ is the projection map which has kernel $\operatorname{Fil}^{n} W_{n+1} \Omega_{B / R}^{\ell} \cap \operatorname{ker} \pi_{n+1}$. By induction hypothesis, on the level $\bar{B} / \bar{R}, \operatorname{ker}\left(1-p^{s} F\right)$ is contained in $\operatorname{Fil}^{n} W \Omega_{\bar{B} / \bar{R}}^{\ell}$. This shows that $1-p^{s} F: W_{\bullet} \Omega_{B / R}^{\ell} \rightarrow W_{\bullet} \Omega_{B / R}^{\ell}$ is an isomorphism of prosheaves for $s>0$ and hence the map $1-\mathrm{Fr}$ in the theorem is bijective in degrees $>r$.
Now we prove the exactness of the complex of prosheaves

$$
0 \rightarrow W_{\bullet} \Omega_{B / R, \log }^{r} \rightarrow W_{\bullet} \Omega_{B / R}^{r} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega_{B / R}^{r} \rightarrow 0
$$

in the étale topology. Consider the commutative diagram

By induction hypothesis, the lower sequence is exact in the étale topology. To prove the surjectivity of $1-F$ in the étale topology it suffices to show that $\operatorname{ker} \pi_{n+1} \xrightarrow{1-F} \operatorname{ker} \pi_{n}$ is surjective. We use again the description (1.9.3) of $\operatorname{ker} \pi_{n}$ as a sum of an integral and a fractional part with coefficients in $W_{n}\left(\mathfrak{m}^{e-1}\right)$, and where the fractional part is acyclic, too.
Let $x=\left[x_{0}\right]+V \eta \in W_{n+1}\left(\mathfrak{m}^{e-1}\right)$. Then $F x=\left[x_{0}\right]^{p}+p \cdot \eta=0$, so $1-F$ is the projection from level $n+1$ to level n on the integral part. In the fractional part of the decomposition (1.9.3) an element $\tilde{f} \otimes V \omega$, with \tilde{f} a lift of $f \in B$ to B_{m+n+1} corresponds to $\varphi^{m} \tilde{f} V \omega=V\left(F^{m+1} \tilde{f} \cdot \omega\right)$ in $W_{n+1} \Omega_{\mathfrak{m}^{e-1} B / R}^{r}$, where we identify \tilde{f} with its image in $W_{m+n+1}(B)$ and use the compatibility of φ and F under the map $B_{m+n+1} \rightarrow W_{m+n+1}(B)$. Likewise, $\tilde{f} \otimes d V \omega=\varphi^{m} \tilde{f} d V \omega=$ $d\left(F^{m} \tilde{f} V \omega\right)=d V\left(F^{m+1} \tilde{f} \cdot \omega\right)$ because p^{m} annihilates $W_{n+1}(R)$ and $d F=p F d$. Since $V \omega$ has coefficients in $W_{n+1}\left(\mathfrak{m}^{e-1}\right)$ we see that $F \circ V(\omega)=p \cdot \omega=0$. So again $1-F$ is the projection from level $n+1$ to level n on the image of V. On the other hand, $1-F$ maps the image of $d V$ onto the image of d. The assertion already holds in the Zariski topology. We recall here the argument in [II] I. Prop. 3.26 which also holds for the relative de Rham-Witt complex,
using the formula $F d V=d$. Let $x \in W_{n} \Omega_{B / R}^{r-1}$. Then

$$
\begin{aligned}
d x & =F d V x-d V x+F d V^{2} x-d V^{2} x+\cdots \\
& =(F-1)\left(d V x+\cdots+d V^{n} x\right)
\end{aligned}
$$

Since for $y \in W_{n} \Omega_{B / R}^{r-1}$

$$
(F-1)(d V y)=d y-d V y
$$

lies in the image of d, the assertion follows. So in particular, the image of $d V$ in $W_{n} \Omega_{\mathfrak{m}^{e-1} B / R}^{r}$ is contained in the image of $1-F$. Hence $1-F: \operatorname{ker} \pi_{\bullet} \rightarrow \operatorname{ker} \pi_{\bullet}$ is surjective and therefore $1-F$ is surjective on the prosheaf $W_{\bullet} \Omega_{B / R}^{r}$ in the étale topology.
Now we compute the kernel of $1-F: \operatorname{ker} \pi_{n+1} \rightarrow \operatorname{ker} \pi_{n}$. The above considerations show that $1-F$ is the projection from level $n+1$ to level n on the integral part of ker $\pi_{n+1}=W_{n+1} \Omega_{\mathfrak{m}^{e-1} B / R}^{r}$ and also on the image of V (because F vanishes there). So the kernel of $1-F$, when restricted to this integral part and the image of V, is contained in $\mathrm{Fil}^{n} W_{n+1} \Omega_{B / R}^{r} \cap \operatorname{ker} \pi_{n+1}$. On the other hand, the image of $d V$ is mapped under $1-F$ onto the image of d using the formula $F d V=d$.
In the following we prove a uniqueness statement for representing elements in

$$
\left(W_{n} \Omega_{\mathfrak{m}^{e-1} B / R}^{r}\right)_{\text {frac }}=B_{m+n} \otimes_{A_{m+n}, \varphi^{m}}\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{\text {frac }}
$$

as a sum of "basic" Witt differentials. For this we recall the notion of primitive basic Witt differentials $e(1, k, \mathcal{P})$ associated to primitive weight functions k : $\{1, \ldots, d\} \rightarrow \mathbb{Z} \cup\{\infty\}$ and partitions \mathcal{P} of supp $k, \mathcal{P}=I_{0} \cup \cdots \cup I_{r}$ with $I_{0} \neq \emptyset$. "Primitive" means that for at least one $i \in I_{0}, p \nmid k_{i}$. They are defined in [L-Z1] 2.2 and used in the uniqueness statement [L-Z1] Theorem 2.24 for polynomial algebras, where k takes values in \mathbb{N}. But the same statement holds for Laurent polynomial algebras as well by allowing weight functions to take values in $\mathbb{Z} \cup\{\infty\}$, where the value $k_{i}=k(i)$ is ∞ if the variable T_{i} occurs in a logarithmic differential $d \log \left[T_{i}\right]$. A description of the elements $e(1, k, \mathcal{P})$ in the case of Laurent polynomial algebras is given in [B-M-S], 10.4, Case 1, assuming $v\left(\left.a\right|_{I_{0}}\right)=v\left(\left.a\right|_{I_{1}}\right)=\cdots=v\left(\left.a\right|_{I_{\rho_{1}}}\right)=0$, that is $\rho_{1}=0$ using the notation in [B-M-S].
Then an element z in $\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{\text {frac }}$ has a unique representation

$$
\begin{equation*}
z=\sum_{\left(k^{\prime}, \mathcal{P}^{\prime}\right)} \sum_{j=1}^{n-1} V^{j} \xi_{j}^{\prime} e\left(1, k^{\prime}, \mathcal{P}^{\prime}\right)+\sum_{(k, \mathcal{P})} \sum_{j=1}^{n-1} d V^{j} \xi_{j} e(1, k, \mathcal{P}) \tag{1.9.5}
\end{equation*}
$$

where $\left(k^{\prime}, \mathcal{P}^{\prime}\right),(k, \mathcal{P})$ are as above, $\mathcal{P}^{\prime}=I_{0}^{\prime} \cup \cdots \cup I_{r}^{\prime} ; \mathcal{P}=I_{0} \cup \cdots \cup I_{r-1}$, $\xi_{j}, \xi_{j}^{\prime} \in W_{n-j}\left(\mathfrak{m}^{e-1}\right)$. For our purposes, namely to compute the kernel of $1-F$, it is enough to consider the second sum, i.e. we will only consider exact differentials in the fractional part. In order to find elements in the kernel of
$1-F$, we need to include the case $j=0$ in the above sum, so we will consider elements

$$
z=\sum_{(k, \mathcal{P})} \sum_{j=0}^{n-1} d V^{j} \xi_{j} e(1, k, \mathcal{P})
$$

Since the product structure of $W_{n}(R)$ on $W_{n}\left(\mathfrak{m}^{e-1}\right)$ factors through the action of k :

$$
\alpha \cdot\left(\xi_{0}, \ldots, \xi_{n-1}\right)=\left([\alpha] \xi_{0},[\alpha]^{p} \xi_{1}, \ldots,[\alpha]^{p^{n-1}} \xi_{n-1}\right)
$$

we see that \mathfrak{m}^{e-1}, resp. $W_{n}\left(\mathfrak{m}^{e-1}\right)$ become k-vector spaces. (Note that $I_{R}=$ $V W_{n-1}(R)$ and $W_{n}(\mathfrak{m})$ both annihilate $W_{n}\left(\mathfrak{m}^{e-1}\right)$.) Then the action of A_{n} on $\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{\text {frac }}$ factors through $A_{k}=A \otimes_{R} k=k\left[T_{1}^{ \pm 1}, \ldots, T_{d}^{ \pm 1}\right]$. We have an isomorphism for all $m \geq 0$ ([L-Z1], Prop. 3.2, Lemma A. 9 and Corollary A.11)

$$
\begin{equation*}
\left(B_{m+n} \otimes_{A_{m+n}, \varphi^{m}} A_{n}\right) \otimes_{A_{n}} A_{k} \cong B_{n} \otimes_{W_{n}(R)} k \cong B_{k}=B \otimes_{R} k \tag{1.9.6}
\end{equation*}
$$

given by $b \otimes a \otimes 1 \mapsto \bar{b}^{p^{m}} \cdot \bar{a}$ where \bar{b}, resp. \bar{a} is the image of b, resp. a under the canonical map $B_{m+n} \rightarrow B_{k}$ resp. $A_{n} \rightarrow A_{k}$.
Let $\mathcal{M}_{<p^{n}}$ be the set of all primitive basic Witt differentials $e(1, k, \mathcal{P})$ with $\mathcal{P}=I_{0} \cup \cdots \cup I_{r-1}$ such that $1 \leq k_{i}<p^{n}$ or $k_{i}=\infty$ for all non-zero weights $k_{i}=k(i)$ occuring in k. Let $\left\{\rho_{i}\right\}_{i \in I}$ be a k-vector space basis of \mathfrak{m}^{e-1}. Since k is perfect $\left\{V^{j}\left[\rho_{i}\right]\right\}_{i \in I}$ is a k-vector space basis for $V^{j}\left[\mathfrak{m}^{e-1}\right]\left(\subset W_{n}\left(\mathfrak{m}^{e-1}\right)\right)$ for all j. Then $\left\{V^{j}\left[\rho_{i}\right] \cdot e(1, k, \mathcal{P})\right\}_{i \in I, e(1, k, \mathcal{P}) \in \mathcal{M}_{<p^{n}}}$ is a basis of the A_{k}-action on primitive basic Witt differentials with coefficients in $V^{j}\left[\mathfrak{m}^{e-1}\right]$, for all $j \in$ $\{0, \ldots, n-1\}$ via $\alpha \cdot \omega=\alpha^{p^{n}} \cdot \omega$ (compare Prop. 2.2 and Prop. 2.3 and its proof in [D-L-Z]; it also applies to the F-action of Laurent polynomial algebras $\left.A_{k}\right)$. Likewise $\left\{d\left(V^{j}\left[\rho_{i}\right] e(1, k, \mathcal{P})\right)\right\}_{i \in I, e(1, k, \mathcal{P}) \in \mathcal{M}_{<p^{n}}}$ is a basis of the A_{k}-action on d (primitive basic Witt differentials with coefficients in $V^{j}\left[\mathfrak{m}^{e-1}\right]$) for j fixed, $j \in\{0, \ldots, n-1\}$ via $\alpha d \omega=\alpha^{p^{n}} d \omega=d \alpha^{p^{n}} \omega$.
Let $\mathcal{M}_{l, n}$ be the k-vector space of primitive basic Witt differentials in degree $r-1$ with coefficients in $W_{n-l}\left(\mathfrak{m}^{e-1}\right)$ and let $\mathcal{M}_{l, n}(j)$ be the subspace of $\mathcal{M}_{l, n}$ of those differentials with coefficients in $V^{j}\left[\mathfrak{m}^{e-1}\right] \subset W_{n-l}\left(\mathfrak{m}^{e-1}\right)$, $j=0, \ldots, n-l-1$. Then $\left\{d V^{l}\left(V^{j}\left[\rho_{i}\right] e(1, k, \mathcal{P})\right)\right\}_{i \in I, e(1, k, \mathcal{P}) \in \mathcal{M}_{<p^{n}}}$ is a basis of the A_{k}-action on $d V^{l}\left(\mathcal{M}_{l, n}(j)\right)$ via $\alpha d V^{l} \omega=\alpha^{p^{n-l}} d V^{l} \omega=d V^{l} \alpha^{p^{n}} \omega$. The isomorphism (1.9.6) shows that for all $m \geq 0$

$$
\begin{equation*}
B_{m+n} \otimes_{A_{m+n}, \varphi^{m}}\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{\text {frac }}^{e x a c t} \cong B_{k} \otimes_{A_{k}, F^{m}}\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{\text {frac }}^{\text {exact }} \tag{1.9.7}
\end{equation*}
$$

Then $B_{k} \otimes_{A_{k}, F^{n-l}}\left(d V^{l} \mathcal{M}_{l, n}\right) \cong d V^{l}\left(B_{k}^{p^{n}} \otimes_{A_{k}^{p^{n}}} \mathcal{M}_{l, n}\right)$ and $\left\{d V^{l}\left(V^{j}\left[\rho_{i}\right] e(1, k, \mathcal{P})\right)\right\}_{i \in I, e(1, k, \mathcal{P}) \in \mathcal{M}_{<p^{n}}} \quad$ is a basis of the B_{k}-action on $B_{k} \otimes_{A_{k}, F^{n-l}} d V^{l}\left(\mathcal{M}_{l, n}(j)\right)$ for fixed j.

Summarizing, we have isomorphisms

$$
\begin{align*}
B_{m+n} \otimes_{A_{m+n}, \varphi^{m}}\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{f r a c}^{e x a c t} & \cong B_{m+n} \otimes_{A_{m+n}, \varphi^{m}}\left(\sum_{l=0}^{n-1} d V^{l}\left(\mathcal{M}_{l, n}\right)\right) \\
& \cong \sum_{l=0}^{n-1}\left(B_{m+n} \otimes_{A_{m+n}, \varphi^{m}} d V^{l}\left(\mathcal{M}_{l, n}\right)\right) \\
& \cong \sum_{l=0}^{n-1} B_{k} \otimes_{A_{k}, F^{n-l}} d V^{l}\left(\mathcal{M}_{l, n}\right) \\
& \cong \sum_{l=0}^{n-1} d V^{l}\left(B_{k}^{p^{n}} \otimes_{A_{k}^{p^{n}}} \mathcal{M}_{l, n}\right) \tag{1.9.8}
\end{align*}
$$

(choose $m:=n-l$ for each l for the penultimate isomorphism). Then we have proven the following
LEMMA 1.10. For $z \in B_{m+n} \otimes_{A_{m+n}}\left(W_{n} \Omega_{\mathfrak{m}^{e-1} A / R}^{r}\right)_{\text {frac }}^{\text {exact }}$ we have a representation as

$$
z=\sum_{l=0}^{n-1} d V^{l}\left(\sum_{e(1, k, \mathcal{P}) \in \mathcal{M}_{<p^{n}}}\left(\sum_{j=0}^{n-l-1} \sum_{i \in I} V^{j}\left(\left[\rho_{i}\right]\right)\left[b_{i, l, j, k, \mathcal{P}}^{p^{n}}\right]\right) e(1, k, \mathcal{P})\right)
$$

with uniquely determined elements $b_{i, l, j, k, \mathcal{P}} \in B_{k}$ and where $\left\{\rho_{i}\right\}_{i \in I}$ is a k basis of \mathfrak{m}^{e-1} as before, hence $\left\{V^{j}\left[\rho_{i}\right]\right\}_{i \in I}$ is a basis of $V^{j}\left[\mathfrak{m}^{e-1}\right]$ as a k-vector subspace in $W_{n-l}\left(\mathfrak{m}^{e-1}\right)$.
F maps an element $z=\sum_{l=0}^{n-1} d V^{l}\left(\beta_{l}\right)$ as above to $z^{\prime}=\sum_{l=1}^{n-1} d V^{l-1}\left(\beta_{l}\right)$, using the formula $F d V=d$ and that $F d \beta_{0}$ vanishes because F annihilates $W_{n}\left(\mathfrak{m}^{e-1}\right)$. Now we are looking at a particular summand

$$
d V^{l}\left(V^{j}\left(\left[\rho_{i}\right]\right)\left[b_{i, l, j, k, \mathcal{P}}^{p^{n}}\right] e(1, k, \mathcal{P})\right)
$$

It is easy to see that $b_{i, l, j, k, \mathcal{P}}^{p^{n}} e(1, k, \mathcal{P})$ can be written as $g_{i, l, j, k, \mathcal{P}} \cdot \omega(k, \mathcal{P})$, where $\omega(k, \mathcal{P})$ is a logarithmic differential (a product of d log's in variables $\left.\left[T_{1}\right], \ldots,\left[T_{d}\right]\right)$ depending only on (k, \mathcal{P}) and $g_{i, l, j, k, \mathcal{P}} \in B_{k}$ (use that $d[T]^{s}=$ $\frac{[T]^{s} d \log [T]}{s}$ for $p \nmid s$ and $\left.F^{r} d[T]=[T]^{p^{r}} d \log [T]\right)$. Then

$$
V^{j}\left(\left[\rho_{i}\right]\right)\left[b_{i, l, j, k, \mathcal{P}}^{p^{n}}\right] e(1, k, \mathcal{P})=V^{j}\left(\left[\rho_{i} g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right]\right) \omega(k, \mathcal{P})
$$

Then, for fixed j and i, F maps (using $F \omega=\omega$)

$$
\sum_{l=0}^{n-1-j} d V^{l+j}\left[\rho_{i} g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right] \omega(k, \mathcal{P})
$$

to

$$
\begin{aligned}
\sum_{l=1}^{n-1-j} d V^{l+j-1}\left[\rho_{i} g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right] \omega(k, \mathcal{P}) & =\sum_{l=1}^{n-1-j} d V^{l-1}\left(V^{j}\left[\rho_{i}\right] \cdot g_{i, l, j, k, \mathcal{P}}\right) \omega(k, \mathcal{P}) \\
& =\sum_{l=1}^{n-1-j} d V^{l-1}\left(V^{j}\left[\rho_{i}\right]\left[b_{i, l, j, k, \mathcal{P}}^{p^{n}}\right] e(1, k, \mathcal{P})\right)
\end{aligned}
$$

Note that $d V^{j}\left[\rho_{i} g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right]$ (the case $\left.l=0\right)$ vanishes under F because $d\left(V^{j-1}\left[\rho_{i}\right]\right.$. $\left.\left[g_{i, l, j, k, \mathcal{P}}^{p}\right]\right)=0$. So F maps

$$
\sum_{l=1}^{n-1-j} d V^{l+j}\left[\rho_{i} \cdot g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right] \omega(k, \mathcal{P})
$$

to

$$
\sum_{l=1}^{n-1-j} d V^{l+j-1}\left[\rho_{i}\right]\left[g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right] \cdot \omega(k, \mathcal{P})
$$

Now let us first look at the case $j=0$ and consider an element

$$
z=d([\alpha] \cdot[g]) \cdot \omega
$$

$\alpha \in \mathfrak{m}^{e-1}, g \in B_{k}, \omega$ a logarithmic differential satisfying $F \omega=\omega$. Then

$$
\begin{aligned}
z & =d([1]+[\alpha][g]) \omega \\
& =d([1+\alpha g]) \omega+\sum_{l=1}^{n} d V^{l}\left(\left[x_{l}\right]\right) \omega \quad \bmod \mathrm{Fil}^{n+1}
\end{aligned}
$$

where $x_{l}=S_{l}([1],[\alpha g])$ and S_{l} is the polynomial defining the l-component of the sum of two Witt vectors. It is known that $S_{0}(\underline{X}, \underline{Y})=X_{0}+Y_{0}, S_{1}(\underline{X}, \underline{Y})=$ $X_{1}+Y_{1}+\frac{1}{p}\left(X_{0}^{p}+Y_{0}^{p}-\left(X_{0}+Y_{0}\right)^{p}\right)$. We do not need to know S_{n} for $n \geq 2$. We see that $x_{1}=S_{1}([1],[\alpha g])=-\alpha g$ and get $\bmod \operatorname{Fil}^{n+1}$

$$
d([1]+[\alpha][g])=d([1+\alpha g])+d V([-\alpha g])+\sum_{l=2}^{n} d V^{l}\left[x_{l}\right]
$$

Now $F[\alpha]=[\alpha]^{p}=0$, so we get, using $F d V=d$

$$
\begin{aligned}
0 & =F d([1+\alpha g])+d([-\alpha g])+\sum_{l=1}^{n-1} d V^{l}\left[x_{l+1}\right] \\
& =d \log [1+\alpha g]+d([-\alpha g])+\sum_{l=1}^{n-1} d V^{l}\left[x_{l+1}\right]
\end{aligned}
$$

because

$$
F d([1+\alpha g])=[1+\alpha g]^{p-1} d([1+\alpha g])=d \log ([1+\alpha g])
$$

since $[1+\alpha g]^{p}=1$. Hence

$$
d \log [1+\alpha g]=-d([-\alpha g])-\sum_{l=1}^{n-1} d V^{l}\left[x_{l+1}\right]
$$

Since $d \log [1+\alpha g]$ is invariant under F, the right hand side is invariant - modulo Fil $^{n-1} W_{n} \Omega_{B / R}^{r}$ - under F as well. This implies, using Lemma 1.10, that $x_{l}=$ $S_{l}([1],[\alpha g])=-\alpha g$ for $l=2$ and then by induction for all l. Returning to our element z we finally have, since $F z=0$ and $F \omega=\omega$,

$$
\begin{equation*}
d \log ([1+\alpha g]) \omega=\left(-\sum_{l=1}^{n-1} d V^{l}[-\alpha g]-d[-\alpha g]\right) \omega \tag{1.11}
\end{equation*}
$$

Since $(1+\alpha g)(1-\alpha g)=1$ (because $\left.\alpha^{2}=0\right)$ we have

$$
d \log ([1+\alpha g])=-d \log ([1-\alpha g])
$$

and hence (1.11) becomes

$$
\begin{aligned}
d \log ([1+\alpha g]) \omega & =\left(\sum_{l=1}^{n-1} d V^{l}[\alpha g]+d[\alpha g]\right) \omega \\
& =\left(\sum_{l=0}^{n-1} d V^{l}[\alpha g]\right) \omega
\end{aligned}
$$

This shows that the right hand side is a logarithmic differential η satisfying $F \eta=\eta$. We have seen that for $\rho \in \mathfrak{m}^{e-1}, g \in B_{k}$

$$
[1]+[\rho \cdot g]=[1+\rho g]+V[-\rho g]+\sum_{j=2}^{\infty} V^{j}[-\rho g]
$$

This implies

$$
d V^{l}[\rho g]=d V^{l}([1]+[\rho g])=d V^{l}[1+\rho g]+\sum_{j \geq l+1} d V^{j}[-\rho g]
$$

or

$$
d V^{l}[1+\rho g]=d V^{l}[\rho g]-\sum_{j=l+1}^{\infty} d V^{j}[-\rho g]
$$

Replacing g by $g^{p^{l}}$ yields

$$
\begin{equation*}
d V^{l}\left[1+\rho g^{p^{l}}\right]=d V^{l}\left[\rho g^{p^{l}}\right]-\sum_{j=l+1}^{\infty} d V^{j}\left[-\rho g^{p^{l}}\right] \tag{1.12}
\end{equation*}
$$

Since $d V^{l-1}\left[\rho g^{p^{l}}\right]=0$ we have

$$
F d V^{l}\left[1+\rho g^{p^{l}}\right]=-\sum_{j=l}^{\infty} d V^{j}\left[-\rho g^{p^{l}}\right]=d V^{l-1}\left[1+\rho g^{p^{l}}\right]
$$

which is invariant under F, because the infinite sum is invariant under F. Then

$$
\begin{equation*}
F^{l+1} d V^{l}\left[1+\rho g^{p^{l}}\right]=F d\left[1+\rho g^{p^{l}}\right]=d \log \left[1+\rho g^{p^{l}}\right]=-\sum_{j=l}^{\infty} d V^{j}\left[-\rho g^{p^{l}}\right] \tag{1.13}
\end{equation*}
$$

This shows that under the assumption $F z=z$ modulo Fil^{n}

$$
\sum_{l=0}^{n-1-j} d V^{l+j}\left[\rho_{i} g_{i, l, j, k, \mathcal{P}}^{p^{j}}\right] \omega(k, \mathcal{P})
$$

is a logarithmic differential modulo Fil^{n} because $\rho_{i} g_{i, l, j, k, \mathcal{P}}^{p^{j}}$ does not depend on l. Using the uniqueness statement in Lemma 1.10. we conclude that

$$
\operatorname{ker}\left(1-F \mid \operatorname{ker} \pi_{\bullet}\right) \subset W_{\bullet} \Omega_{B / R, \log }^{r}
$$

This shows that

$$
W_{\bullet} \Omega_{B / R, \log }^{r}=\operatorname{ker}\left(W_{\bullet} \Omega_{B / R}^{r} \xrightarrow{1-F} W_{\bullet} \Omega_{B / R}^{r}\right)
$$

and finishes the proof of Theorem 1.9.
Now we can define relative syntomic complexes. As at the beginning of this section, let R be artinian local with perfect residue field k of char $p>0$. Let $X /$ Spec R be smooth, admitting a lifting X_{\bullet} as an ind-scheme over Spec $W_{\bullet}(R)$. Assume there exists a compatible system of embeddings i_{n} : $X_{n} \rightarrow Z_{n}$ into Witt lifts Z_{n} which satisfy the properties of [L-Z1] Definition 3.3. The i_{n} factorise through a compatible system of PD-envelopes D_{n}. One obtains a compatible system of quasiisomorphisms

$$
\mathcal{F}^{r} \Omega_{X_{n} / W_{n}(R)}^{\bullet} \stackrel{\cong}{\leftrightarrows} \operatorname{Fil}^{r} \Omega_{D_{n} / W_{n}(R)}^{\bullet} \stackrel{\cong}{\leftrightarrows} N^{r} W_{n} \Omega_{X / R}^{\bullet}
$$

and hence an isomorphism of procomplexes

$$
\begin{equation*}
\Sigma: \mathcal{F}^{r} \Omega_{X \bullet / W \bullet(R)}^{\bullet} \rightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet} \tag{1.14}
\end{equation*}
$$

in $D_{\text {pro,Zar }}(X)$ resp $D_{\text {pro,et }}(X)$.
To construct Σ in general, one chooses a covering $\left\{X(i)=\text { Spec } A_{i}\right\}_{i \in I}$ of X such that A_{i} is étale over $R\left[T_{1}, \ldots, T_{d}\right]$. Since $X \hookrightarrow X_{n}$ is a nilpotent embedding, there exists a covering $\left\{X_{n}(i)=\operatorname{Spec} A_{n, i}\right\}_{i \in I}$ of X_{n} such that $A_{n, i}$ is étale over $W_{n}(R)\left[T_{1}, \ldots, T_{d}\right]$ and $A_{n, i} \times_{W_{n}(R)} W_{n-1}(R)=A_{n-1, i}$, in particular $A_{n, i} \times_{W_{n}(R)} R=A_{i}$. Using [L-Z1] Prop. 3.2, the $\left\{A_{n, i}\right\}_{n}$ form a
compatible system of Frobenius lifts, in particular of Witt lifts for all $i \in I$. For $X_{n}\left(i_{1}, \ldots, i_{s}\right)=X_{n}\left(i_{1}\right) \cap \cdots \cap X_{n}\left(i_{s}\right)$ and $Z_{n}\left(i_{1}, \ldots, i_{s}\right)=X_{n}\left(i_{1}\right) \times_{W_{n}(R)}$ $\cdots \times_{W_{n}(R)} X_{n}\left(i_{s}\right)$, the product embeddings $X_{n}\left(i_{1}, \ldots, i_{s}\right) \rightarrow Z_{n}\left(i_{1}, \ldots, i_{s}\right)$ with associated PD-envelopes $D_{n}\left(i_{1}, \ldots, i_{s}\right)$ are embeddings into Witt lifts and induce compatible morphisms of simplicial schemes $X^{\bullet} \rightarrow X_{n}^{\bullet} \rightarrow D_{n}^{\bullet} \rightarrow Z_{n}^{\bullet}$, hence the isomorphisms (1.7.1) are compatible and induce again an isomorphism (1.14)

$$
\Sigma: \mathcal{F}^{r} \Omega_{X \bullet / W \bullet(R)}^{\bullet} \rightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}
$$

of procomplexes in $D_{\text {pro,Zar }}(X)$ resp $D_{\text {pro,et }}(X)$. This completes the proof of Theorem 0.2.

In the following we always assume $r<p$. Using the composite map of $1-\mathrm{Fr}$ with Σ :

$$
\mathcal{F}^{r} \Omega_{X \bullet / W \bullet(R)} \xrightarrow{\stackrel{\Sigma}{\longrightarrow}} N^{r} W_{\bullet} \Omega_{X / R}^{\bullet} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega_{X / R}^{\bullet}
$$

we can define

$$
\tilde{\sigma}_{X_{\bullet}}(r)=\operatorname{cone}\left(\mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega_{X / R}^{\bullet}\right)[-1] .
$$

This complex is denoted by $\sigma_{X}^{I}(r)$ in [B-E-K1]. It plays the role of a technical variant of the syntomic complex $\sigma_{X_{\bullet}}(r)$ we are going to define now. Consider the composite map of associated procomplexes:

$$
\Omega_{X_{\bullet} / W_{\bullet}(R)}^{\geq r} \longrightarrow \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)} \xrightarrow{(1-\mathrm{Fr}) \circ \Sigma} W_{\bullet} \Omega_{X / R}^{\bullet}
$$

which is also denoted by $1-$ Fr. Here the first arrow is the canonical inclusion of complexes.

Definition 1.15.

$$
\sigma_{X_{\bullet}}(r)=\operatorname{cone}\left(\Omega_{X_{\bullet} / W_{\bullet}(R)}^{\geq r} \xrightarrow{1-\mathrm{Fr}_{\bullet}} W_{\bullet} \Omega_{X / R}^{\bullet}\right)[-1]
$$

is the relative syntomic complex of the ind-scheme $X \bullet$ on $(X)_{\mathrm{et}}$ i.e. in $D_{\text {pro,et }}(X)$.
Let $\mathcal{M}(r)=\operatorname{cone}\left(\Omega_{X_{\bullet} / W_{\bullet}(R)}^{\geq r} \rightarrow \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}\right)[-1]$. Theorem 1.9 yields an exact triangle

$$
\mathcal{M}(r) \longrightarrow \sigma_{X \bullet}(r) \longrightarrow W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \xrightarrow{+1}
$$

in $D_{\text {pro,et }}(X)$ and we have

$$
\begin{aligned}
\mathcal{M}(r) & =\operatorname{cone}\left(\Omega_{X_{\bullet}}^{\geq r} \longrightarrow \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}\right)[-1] \\
& =\mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{<r}[-1]
\end{aligned}
$$

Hence we get the following Theorem in analogy to [B-E-K1], Theorem 5.4:

Theorem 1.16 (Fundamental triangle). There is an exact triangle in $D_{\text {pro,et }}(X)$:

$$
\mathcal{F}^{r} \Omega_{X \bullet / W_{\bullet}(R)}^{<r}[-1] \longrightarrow \sigma_{X \bullet}(r) \longrightarrow W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \xrightarrow{+1}
$$

Apply $\tau_{\leq r} R \varepsilon_{*}$, where $\varepsilon: X_{\text {et }} \rightarrow X_{\text {Nis }}$, to this triangle and use the same argument for the Nisnevich versions of [B-E-K1] Theorem 5.4 to obtain an exact triangle in $D_{\text {pro,Nis }}(X)$.

$$
\mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{<r}[-1] \longrightarrow \sigma_{X_{\bullet}, \mathrm{Nis}}(r) \longrightarrow W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{r}[-r] \xrightarrow{+1}
$$

where $\sigma_{X_{\bullet}, \text { Nis }}(r):=\tau_{\leq r} R \varepsilon_{*} \sigma_{X \bullet}(r)$ and $W_{\bullet} \Omega_{X / R, \text { log,Nis }}^{r}:=\varepsilon_{*} W_{\bullet} \Omega_{X / R, \text { log,et }}^{r}$. We can also prove the analogue of Theorem 6.1 in [B-E-K1]. The statement holds in the étale and Nisnevich topology.

Theorem 1.17. The connecting homomorphism

$$
\alpha: W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \longrightarrow \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{<r}
$$

resulting from the fundamental triangle is equal to the composite map

$$
\beta: W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \longrightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet} \xrightarrow{\sim} \mathcal{F}^{r} \Omega_{X \bullet / W \bullet(R)} \longrightarrow \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{<r} .
$$

Proof. The proof is very similar to the proof of Theorem 6.1 in [B-E-K1]. From the definition of $\sigma_{X \bullet}(r)$ we get a morphism in $D_{\text {pro,et }}(X)$

$$
\sigma_{X_{\bullet}}(r) \longrightarrow \Omega_{X_{\bullet} / W_{\bullet}(R)}^{\geq r}
$$

Define $\sigma_{X_{\bullet}}^{\prime}(r)=\operatorname{cone}\left(\sigma_{X_{\bullet}}(r) \longrightarrow \Omega_{X_{\bullet} / W_{\bullet}(R)}^{\geq r}\right)[-1]$. The morphism $\sigma_{X_{\bullet}}(r) \rightarrow$ $W_{\bullet} \Omega_{X / R, \log }^{r}[-r]$ in the fundamental triangle induces a morphism

$$
\sigma_{X \bullet}^{\prime}(r) \longrightarrow W_{\bullet} \Omega_{X / R, \log }^{r}[-r]
$$

Then we have a chain of isomorphisms in $D_{\text {pro }}(X)$:

$$
\begin{aligned}
& \sigma_{X \bullet}^{\prime}(r) \xrightarrow{\sim} \quad \text { cone }\left(\tilde{\sigma}_{X \bullet}(r) \longrightarrow \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}\right)[-1] \\
& \xrightarrow{\sim} \text { cone }\left(\text { cone }\left(N^{r} W_{\bullet} \Omega_{X / R}^{\bullet} \xrightarrow{1-\mathrm{Fr}} W_{\bullet} \Omega_{X / R}^{\bullet}\right)[-1] \longrightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}\right)[-1] \\
& \stackrel{\sim}{\leftarrow} \Sigma(r):=\operatorname{cone}\left(W_{\bullet} \Omega_{X / R, \log }^{\bullet}[-r] \longrightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}\right)[-1]
\end{aligned}
$$

Then the proof of the Theorem follows from the following proposition:
Proposition 1.18. There is an exact triangle

$$
\mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}[-1] \longrightarrow \sigma_{X \bullet}^{\prime}(r) \longrightarrow W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \xrightarrow{+1}
$$

fitting into a commutative diagram of exact triangles

where ($*$) is the composite of the previous isomorphisms and the lower exact triangle is the fundamental triangle.

The proof of the Proposition is the same as for Proposition 6.3 in [B-E-K1]. It implies Theorem 1.17.
For a smooth projective variety Y / k with lifting $Y_{n} / W_{n}(k)$ we will also work with the syntomic complex $\sigma_{Y_{n}}(r)$ at finite level. Our definition differs from the one in [K2] Definition 1.6. But using Proposition 4.4 in [L-Z2] it is easy to see that $\sigma_{Y_{\bullet} / W_{\bullet}(k)}(r)$ and the procomplex in [B-E-K1], Definition 4.2 are quasiisomorphic.

Proposition 1.19. Let
$\mathcal{M}_{n}:=\left[W_{n} \Omega_{Y / k, \log }^{r}+V^{n-1} \Omega_{Y / k}^{r} \xrightarrow{\mathrm{~d}} \mathrm{Fil}^{n-1} W_{n} \Omega_{Y / k}^{r+1} \xrightarrow{\mathrm{~d}} \mathrm{Fil}^{n-1} W_{n} \Omega_{Y / k}^{r+2} \xrightarrow{\mathrm{~d}} \cdots\right][-r]$
Then there is an exact triangle on $\left(Y_{\mathrm{et}}\right)$

$$
0 \longrightarrow \mathcal{M}_{n} \longrightarrow N^{r} W_{n} \Omega_{Y / k}^{\bullet} \xrightarrow{1-\mathrm{Fr}} W_{n-1} \Omega_{Y / k}^{\bullet} \longrightarrow 0
$$

Proof. It follows from the proof of Theorem 1.9 that $1-\mathrm{Fr}$ is bijective in degrees $<r$ and surjective in degrees $\geq r$. Finally it follows from [B-E-K1] Lemma 4.4 and [II] I Lemma 3.30 that in degrees $>r$ the kernel of $1-\mathrm{Fr}$ is $\mathrm{Fil}^{n-1} W_{n} \Omega_{Y / k}^{\bullet}$. Since $(1-F) \mathrm{d} V^{n-1} \Omega_{Y / k}^{r-1}=\mathrm{d} V^{n-2} \Omega_{Y / k}^{r-1} \subset W_{n-1} \Omega_{Y / k}^{r}$. It follows from [II] I 5.7.2 that the kernel of $1-F$ in degree r is $W_{n} \Omega_{Y / k, \log }^{r}+V^{n-1} \Omega_{Y / k}^{r}$, as stated.

Note that we have an injection $W_{n} \Omega_{Y / k, \log }^{r} \hookrightarrow \mathcal{H}^{r}\left(\mathcal{M}_{n}\right)$.
Definition 1.20. The syntomic complex $\sigma_{Y_{n}}(r)$ is defined as follows in $D\left(Y_{\text {et }}\right)$:
$\sigma_{Y_{n}}(r)=\operatorname{cone}\left(\Omega_{\bar{Y}_{n} / W_{n}(k)}^{\geq r} \longrightarrow \mathcal{F}^{r} \Omega_{Y_{n} / W_{n}(k)}^{\sim} \xrightarrow{\sim} N^{r} W_{n} \Omega_{Y / k}^{\bullet} \xrightarrow{1-\mathrm{Fr}} W_{n-1} \Omega_{Y / k}^{\bullet}\right)[-1]$
This is the finite level version of Definition 1.15. for $R=k$. It follows from the definitions and Proposition 1.19. that one has an exact triangle

$$
\begin{equation*}
\mathcal{F}^{r} \Omega_{Y_{n} / W_{n}(k)}^{<r}[-1] \longrightarrow \sigma_{Y_{n}}(r) \longrightarrow \mathcal{M}_{n} \xrightarrow{+1} \tag{1.21}
\end{equation*}
$$

We have $\mathcal{H}^{j}\left(\sigma_{Y_{n}}(r)\right)=\mathcal{H}^{j} \mathcal{M}$ in degrees $>r$ and an exact sequence

$$
\begin{equation*}
0 \longrightarrow p \Omega_{Y_{n}}^{r-1} / p^{2} \mathrm{~d} \Omega_{Y_{n}}^{r-1} \longrightarrow \mathcal{H}^{r}\left(\sigma_{Y_{n}}(r)\right) \longrightarrow \mathcal{H}^{r}\left(\mathcal{M}_{n}\right) \longrightarrow 0 \tag{1.22}
\end{equation*}
$$

For $\varepsilon:(Y)_{\text {et }} \rightarrow(Y)_{\text {Nis }}$ apply again $\tau_{\leq r} R \varepsilon_{*}$ to 1.23 to get the following exact triangle in $D\left(Y_{\text {Nis }}\right)$

$$
\begin{equation*}
0 \longrightarrow \mathcal{F}^{r} \Omega_{Y_{n} / W_{n}(k)}^{<r}[-1] \longrightarrow \sigma_{Y_{n}, \mathrm{Nis}}(r) \xrightarrow{\varphi} \mathcal{P}[-r] \longrightarrow 0 \tag{1.23}
\end{equation*}
$$

where $\sigma_{Y_{n}, \text { Nis }}(r):=\tau_{\leq r} R \varepsilon_{*} \sigma_{Y_{n}}(r)$ and \mathcal{P} is a Nisnevich-sheaf which contains $\varepsilon_{*} W_{n} \Omega_{Y / k, \log }^{r}=W_{n} \Omega_{Y / k, \log , \text { Nis }}^{\bar{r}}$ (compare [B-E-K1] Proposition 2.4.1) as a subsheaf.

2 Relative motivic complexes

Let $\left\{Y_{n} / W_{n}(k)\right\}_{n}$ be a projective smooth formal scheme and let $\mathbb{Z}_{Y_{1}}(r)$, for $r<p$, be the Suslin-Voevodsky complex of Y_{1} / k [S-V]. Bloch-Esnault-Kerz have defined a motivic procomplex $\mathbb{Z}_{Y_{\bullet}}(r)$ in $D_{\text {pro,Nis }}\left(Y_{1}\right)$ by

$$
\begin{equation*}
\mathbb{Z}_{Y_{\bullet}}(r)=\operatorname{cone}\left(\sigma_{Y_{\bullet}, \mathrm{Nis}}(r) \oplus \mathbb{Z}_{Y_{1}}(r) \xrightarrow{\varphi \oplus-\log } W_{\bullet} \Omega_{Y_{1}, \log , \mathrm{Nis}}^{r}[-r]\right)[-1] \tag{2.1}
\end{equation*}
$$

where φ is the map from the fundamental triangle (Theorem 1.16.) and \log is the composite map

$$
\begin{equation*}
\mathbb{Z}_{Y_{1}}(r) \longrightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{Y_{1}}(r)\right)[-r]=\mathcal{K}_{Y_{1}, r}^{\mathrm{Mil}}[-r] \xrightarrow{\mathrm{d} \log []} W_{\bullet} \Omega_{Y_{1}, \log , \mathrm{Nis}}^{r}[-r] \tag{2.2}
\end{equation*}
$$

(see [B-E-K1] (7.4)).
Now we fix $m \in \mathbb{N}$ and define $X:=Y_{m}$. Then at finite level $\mathbb{Z}_{X}(r)$ is defined as follows on $(X)_{\text {Nis }}$

$$
\begin{equation*}
\mathbb{Z}_{X}(r)=\operatorname{cone}\left(\sigma_{X, \mathrm{Nis}}(r) \oplus \mathbb{Z}_{Y_{1}}(r) \xrightarrow{\varphi \oplus(-\log)} \mathcal{P}[-r]\right)[-1] \tag{2.3}
\end{equation*}
$$

where φ is the map in (1.23) and \log is defined as before using the injection $W_{m} \Omega_{Y, \text { log,Nis }}^{r} \hookrightarrow \mathcal{P}$. The long exact cohomology sequence associated to 2.3 yields an exact sequence in degree r :

$$
\begin{equation*}
0 \longrightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{X}(r)\right) \longrightarrow \mathcal{H}^{r}\left(\sigma_{X, \mathrm{Nis}}(r)\right) \oplus \mathcal{H}^{r}\left(\mathbb{Z}_{Y_{1}}(r)\right) \xrightarrow{\varphi \oplus(-\log)} \mathcal{P} \longrightarrow 0 \tag{2.4}
\end{equation*}
$$

The exact sequences $1.22,1.23$ and 2.4 yield the upper exact sequence in the commutative diagram
where the bottom row is the exact sequence shown in [B-E-K1], Theorem 12.3 and the middle vertical arrow is Kato's syntomic regulator map. It is a finite level version of the map (*) in the commutative diagram in [B-E-K1] p. 695 and is constructed similarly as in [K2] Section 3, where Kato constructs a map (using our notation)

$$
\mathcal{O}_{Y_{n+1}}^{\times} \rightarrow \mathcal{H}^{1}\left(Y_{1}, \mathcal{S}_{n}(1)_{Y_{n}}\right)
$$

with his definition of the syntomic complexes given in [K2] Definition 1.6. The change of level from $n+1$ to n is due to the fact that the element $p^{-1} \log \overline{\left(f(a) a^{-p}\right)}$ in [K2] page 216 is only well-defined in $\mathcal{O}_{D_{n}}$ because multiplication by p on $\mathcal{O}_{D_{n+1}}$ factors through an injection $p: \mathcal{O}_{D_{n}} \rightarrow \mathcal{O}_{D_{n+1}}$. Since we work with a different definition of $\sigma_{Y_{n}}(r)$ using the de Rham-Witt complex the above level change is unnecessary. In the section after Prop. 2.9 below we make the symbol map explicit in the case $r=1$. One should read this section in the case $R=k$. The element $\frac{1}{p} \log \frac{F(\tilde{a})}{\tilde{a}^{p}}$ that occurs there is well-defined in $W_{n-1}\left(\mathcal{O}_{Y_{1}}\right)$, where $\tilde{a}=[\lambda](1+V \eta)$ is in $W_{n}\left(\mathcal{O}_{Y_{1}}\right)$. Hence we get a symbol map (with $X=Y_{m}$)

$$
\mathcal{O}_{X}^{\times} \rightarrow \mathcal{H}^{1}\left(\sigma_{X_{n}, N i s}(1)\right)
$$

which induces

$$
\mathcal{O}_{X}^{\times} \otimes \cdots \mathcal{O}_{X}^{\times} \rightarrow \mathcal{H}^{r}\left(\sigma_{X, \mathrm{Nis}}(r)\right)
$$

Analagous to [K2] Prop 3.2 we show that this map factors through the symbol map in the Milnor K-sheaf $\mathcal{K}_{X, r}^{\mathrm{Mil}} \rightarrow \mathcal{H}^{r}\left(\sigma_{X, \mathrm{Nis}}(r)\right)$. Similar to [K2] Lemma 3.7.2 one sees that the composite map

$$
\mathcal{K}_{X, r}^{\mathrm{Mil}} \rightarrow \mathcal{H}^{r}\left(\sigma_{X, \mathrm{Nis}}(r)\right) \rightarrow \mathcal{P}
$$

is given by $b_{1} \otimes \cdots \otimes b_{r} \mapsto d \log \left[\bar{b}_{1}\right] \wedge \cdots \wedge d \log \left[\bar{b}_{r}\right]$ where \bar{b}_{i} is the reduction of b_{i} modulo p. Hence the composite map

$$
\mathcal{K}_{X, r}^{\mathrm{Mil}} \rightarrow \mathcal{H}^{r}\left(\sigma_{X, \mathrm{Nis}}(r)\right) \oplus\left(\mathcal{K}_{Y_{1}, r}^{\mathrm{Mil}}=\mathcal{H}^{r}\left(\mathbb{Z}_{Y_{1}}(r)\right)\right) \xrightarrow{\varphi \oplus(-\log)} \mathcal{P}
$$

vanishes and this defines a natural map fitting into the diagram (2.5)

$$
\mathcal{K}_{X, r}^{\mathrm{Mil}} \rightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{X}(r)\right)
$$

The diagram (2.5) implies that

$$
\begin{equation*}
\mathcal{H}^{r}\left(\mathbb{Z}_{X}(r)\right) \cong \mathcal{K}_{X, r}^{\mathrm{Mil}} \tag{2.6}
\end{equation*}
$$

It follows from the definition that $\mathbb{Z}_{X}(r)$ has cohomological degree $\leq r$, because $\mathcal{H}^{j}\left(\sigma_{X, \mathrm{Nis}}(r)\right)=\mathcal{H}^{j}\left(\mathbb{Z}_{Y_{1}}(r)\right)=0$ for $j>r$ and $\mathcal{H}^{r}\left(\sigma_{X, \text { Nis }}(r)\right) \rightarrow \mathcal{P}$ is surjective. Finally it is easy to see that all the properties in [B-E-K1] Proposition 7.2 listed for the procomplex $\mathbb{Z}_{Y_{\bullet}}(r)$ pass over to $\mathbb{Z}_{X}(r)$ at finite level except the Kummer triangle Prop. 7.2 (3) which holds only for procomplexes.
In the following, let $R=W_{m}(k)$ and assume there exists an ind-scheme lifting $X_{\bullet} /$ Spec $W_{\bullet}(R)$ of $X=Y_{m} / R$ which is compatible with Y_{\bullet} under the base change $R \rightarrow k$, i.e. $X_{n} \times{ }_{W_{n}(R)} W_{n}(k)=Y_{n}$, in particular $X_{m} \times{ }_{W_{m}(R)} W_{m}(k)=$ Y_{m}.

Definition 2.7. As object in $D_{\text {pro,Nis }}(X)$ the motivic procomplex $\mathbb{Z}_{X \cdot}(r)$ is defined for $r<p$ as follows:

$$
\mathbb{Z}_{X \bullet}(r)=\text { cone }\left(\sigma_{X \bullet, \mathrm{Nis}}(r) \oplus \mathbb{Z}_{X}(r) \stackrel{\varphi \oplus(-\log)}{\longrightarrow} W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{r}[-r]\right)[-1]
$$

where φ comes from the fundamental triangle (Theorem 1.16.) for the syntomic procomplex $\sigma_{X \bullet, \mathrm{Nis}}(r)$ and $\mathbb{Z}_{X}(r) \xrightarrow{\log } W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{r}[-r]$ is the symbol map into the relative logarithmic de Rham-Witt complex, defined as follows

$$
\mathbb{Z}_{X}(r) \longrightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{X}(r)\right)[-r]=\mathcal{K}_{X, r}^{\mathrm{Mil}}[-r] \xrightarrow{\mathrm{d} \log []} W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{r}[-r] .
$$

Here [] is the Teichmüller lift from \mathcal{O}_{X} to $W_{n}\left(\mathcal{O}_{X}\right)$, the definition is analogous to [B-E-K1] (7.4).
Proposition 2.8. The motivic procomplex $\mathbb{Z}_{X \cdot}(r)$ has support in cohomology degrees $\leq r$. For $r \geq 1$, if the Beilinson-Soulé Conjecture is true, it has support in degrees $[1, r]$.
Proof. Under the assumptions this holds for $\mathbb{Z}_{X}(r)$ by [B-E-K1] Prop. 7.2. By definition $\sigma_{X_{\bullet}, \text { Nis }}(r)$ has support in $[1, r]$; from the definition of $\mathbb{Z}_{X_{\bullet}}(r)$ we get an exact sequence

$$
0 \rightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{X \bullet}(r)\right) \rightarrow \mathcal{H}^{r}\left(\sigma_{X_{\bullet}, \mathrm{Nis}}(r)\right) \oplus \mathcal{H}^{r}\left(\mathbb{Z}_{X}(r)\right) \rightarrow W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{r} \rightarrow 0
$$

since $\mathcal{H}^{r}\left(\sigma_{X_{\bullet}, \mathrm{Nis}}(r)\right) \rightarrow W_{\bullet} \Omega_{X / R, \text { log,Nis }}^{r}$ is surjective by (1.16.). This proves the proposition.

Note that the map $d \log []$ is an epimorphism in the étale topology because $W_{\bullet} \Omega_{X / R, \log }^{r}$ is, by definition, locally generated by symbols. We expect that the corresponding Nisnevich sheaf $W_{\bullet} \Omega_{X / R, \log , \text { Nis }}^{r}=\varepsilon_{*} W_{\bullet} \Omega_{X / R, \text { log,et }}^{r}$ is again generated by symbols. For $R=k$ this is shown in [B-E-K1], Prop 2.4 and [K1] Proposition 1.
Remark. It is easy to see that there is a canonical product structure

$$
\mathbb{Z}_{X \bullet}(r) \otimes_{\mathbb{Z}}^{L} \mathbb{Z}_{X \cdot}\left(r^{\prime}\right) \longrightarrow \mathbb{Z}_{X \bullet}\left(r+r^{\prime}\right)
$$

compatible with the product structures on $\sigma_{X}(r)$ and on $\mathbb{Z}_{X}(r)$. The argument is the same as [B-E-K1] Proposition 7.2 (5). On the other hand, property (3) in Proposition 7.2 does not seem to hold; the cone of the Kummer sequence $\mathbb{Z}_{X_{\bullet}}(r) \xrightarrow{p^{n}} \mathbb{Z}_{X_{\bullet}}(r)$ is likely to be much more complicated.
However, we do get the following analogy of [B-E-K1] Proposition 7.3:
Proposition 2.9 (Fundamental motivic triangle). There is a unique commutative diagram of exact triangles

Proof. The right hand side square is homotopy Cartesian by definition, hence the proposition is proven in the same way as Proposition 7.3 in [B-E-K1].

Now we look at the special cases $r=0,1$:
For $r=0, \sigma_{X_{\bullet}, \mathrm{Nis}}(r)$ is isomorphic to $W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{0}=\mathbb{Z} / p^{\bullet}$, hence $\mathbb{Z}_{X \cdot}(0)=$ $\mathbb{Z}_{X}(0)=\mathbb{Z}$.
For $r=1$, we construct a map $\mathcal{K}_{X_{n, 1}}^{\mathrm{Mil}}[-1]=\mathcal{O}_{X_{n}}^{*}[-1] \rightarrow \sigma_{X_{n}}(1)$ as follows. Assume first that there exists a compatible system $X_{n} \hookrightarrow Z_{n}$ into Witt lifts Z_{n} with PD-envelope D_{n} as before and induced maps $\mathcal{O}_{D_{n}} \rightarrow W_{n}\left(\mathcal{O}_{X}\right)$. We have an exact sequence

$$
0 \longrightarrow N \longrightarrow \mathcal{O}_{Z_{n}}^{*} \longrightarrow \mathcal{O}_{X_{n}}^{*} \longrightarrow 1
$$

so $\mathcal{O}_{X_{n}}^{*}[-1]$ is isomorphic to

$$
\begin{array}{rll}
N & \longrightarrow & \mathcal{O}_{Z_{n}}^{*} \\
\text { degree } 0
\end{array}
$$

The complex $\sigma_{X_{n}}(1)$ is represented by the complex

$$
\mathcal{J}_{D_{n}} \xrightarrow{\mathrm{~d}_{1}} \mathcal{O}_{D_{n}} \otimes \Omega_{Z_{n} / W_{n}(R)}^{1} \oplus W_{n-1}\left(\mathcal{O}_{X}\right) \xrightarrow{\mathrm{d}_{2}} \Omega_{D_{n} / W_{n}(R)}^{2} \oplus W_{n-1} \Omega_{X / R}^{1} \longrightarrow
$$

where

$$
\begin{array}{rll}
\mathrm{d}_{1}: x & \mapsto & \left(\mathrm{~d} x,\left(F_{1}-1\right)(x)\right) \\
\mathrm{d}_{2}:(x, y) & \mapsto & \left(\mathrm{d} x,\left(F_{1}-1\right)(x)-\mathrm{d} y\right)
\end{array}
$$

and x is identified with its image under $\mathcal{J}_{D_{n}} \longrightarrow V W_{n-1}\left(\mathcal{O}_{X}\right)$ and
$F_{1}(x=V \eta)=\frac{" F^{*}}{p}(V \eta)=\eta$.
We define a map $\left(N \rightarrow \mathcal{O}_{Z_{n}}^{*}\right) \longrightarrow \sigma_{X_{n}}(1)$

$$
\begin{array}{ccccc}
\text { in degree } 0 & : & N & \longrightarrow & \mathcal{J}_{D_{n}} \\
& & a & \longmapsto & \log (a) \\
\text { in degree } 1 & : & \mathcal{O}_{Z_{n}}^{*} & \longrightarrow & \mathcal{O}_{D_{n}} \otimes \Omega_{Z_{n}}^{1} \oplus W_{n-1}\left(\mathcal{O}_{X}\right) \\
& & a & \longmapsto & \left(\mathrm{~d} \log a, \frac{1}{p} \log \frac{F \tilde{a}}{\tilde{a}^{p}}\right)
\end{array}
$$

Note that $\tilde{a}=[\lambda](1+V \eta) \in W_{n}\left(\mathcal{O}_{X}\right)$ is the image of a under

$$
\mathcal{O}_{Z_{n}}^{*} \longrightarrow W_{n}\left(\mathcal{O}_{X}\right)^{*}
$$

($[\lambda]$ is the Teichmüller element of some $\lambda \in \mathcal{O}_{X}^{*}$).
Then $F(\tilde{a})=[\lambda]^{p}(1+p \eta)$ and $(\tilde{a})^{p}=[\lambda]^{p}(1+V \eta)^{p}$ considered as elements in $W_{n-1}\left(\mathcal{O}_{X}\right)$. Then

$$
\frac{F(\tilde{a})}{\tilde{a}^{p}}=\frac{1+p \eta}{(1+V \eta)^{p}}
$$

Because of the uniqueness of η the elements $\frac{1}{p} \log (1+p \eta)$ and $\frac{1}{p} \log (1+V \eta)^{p}$ are uniquely determined, hence

$$
\begin{aligned}
\frac{1}{p} \log \frac{F(\tilde{a})}{\tilde{a}^{p}} & =\frac{1}{p} \log (1+p \eta)-\frac{1}{p} \log (1+V \eta)^{p} \\
& =\frac{1}{p} \log (1+p \eta)-\log (1+V \eta)
\end{aligned}
$$

is well-defined.
This defines a map

$$
\mathcal{O}_{X \cdot}^{*}[-1] \longrightarrow \sigma_{X_{\bullet}, \mathrm{Nis}}(1)
$$

of procomplexes, hence a map

$$
\begin{equation*}
\mathcal{O}_{X \bullet}^{*} \longrightarrow \mathcal{H}^{1}\left(\sigma_{X_{\bullet}, \mathrm{Nis}}(1)\right) \tag{2.10}
\end{equation*}
$$

If there is no global system of embeddings $X_{n} \rightarrow Z_{n}$ into Witt lifts Z_{n} one proceeds by simplicial methods as outlined before the definition of $\sigma_{X_{\bullet}}(r)$ (Def. 1.15.) to construct the map (2.10). We omit the details here.

There is a commutative diagram of Nisnevich sheaves

which induces a map

$$
\mathcal{O}_{X_{\bullet}}^{*} \longrightarrow \mathcal{H}^{1}\left(\mathbb{Z}_{X_{\bullet}}(1)\right)
$$

by the definition of $\mathbb{Z}_{X_{\bullet}}$ (1).
Lemma 2.12. We have a commutative diagram of exact sequences

$$
\left.\begin{array}{ccccccc}
0 & \longrightarrow & I_{R} \mathcal{O}_{X_{\bullet}} \cong 1+I_{R} \mathcal{O}_{X_{\bullet}} & \longrightarrow & \mathcal{H}^{1}\left(\mathbb{Z}_{X X}(1)\right) & \longrightarrow & \mathcal{H}^{1}\left(\mathbb{Z}_{X}(1)\right) \\
& & & \longrightarrow & 0 \\
0 & \longrightarrow & I_{R} \mathcal{O}_{X_{\bullet}} \cong 1+I_{R} \mathcal{O}_{X_{\bullet}} & \longrightarrow & & \mathcal{O}_{X_{\bullet}}^{*} & \longrightarrow
\end{array}\right)
$$

where $1+V(\eta) x \mapsto \log (1+V(\eta) x)$ is well-defined because p is nilpotent on $\mathcal{O}_{X_{n}}$ and induces the isomorphism $1+I_{R} \mathcal{O}_{X_{\bullet}} \rightarrow I_{R} \mathcal{O}_{X_{\bullet}} . \quad$ (Recall that $I_{R}=$ $V W_{n-1}(R)$.)

By assumption $X_{n} \times_{W_{n}(R)} R=X$ and so $\mathcal{O}_{X_{n}} / I_{R} \mathcal{O}_{X_{n}}=\mathcal{O}_{X}$; since I_{R} is nilpotent we immediately deduce that on units $\mathcal{O}_{X_{n}}^{*} / 1+I_{R} \mathcal{O}_{X_{n}}^{*}=\mathcal{O}_{X}^{*}$, hence the lower sequence is exact. It is a slight generalisation of the p-adic logarithm isomorphism [B-E-K1] (1.3) that the log map is an isomorphism because $I_{R} \mathcal{O}_{X_{n}}$ admits a divided power structure and p is nilpotent.

The upper sequence is exact because of the fundamental motivic triangle (Proposition 2.9).
The Lemma implies that $\mathcal{O}_{X_{\bullet}}^{*}$ and $\mathcal{H}^{1}\left(\mathbb{Z}_{X_{\bullet}}(1)\right)$ are isomorphic, hence

$$
\begin{equation*}
\mathbb{Z}_{X_{\bullet}}(1) \cong \mathbb{G}_{m / X_{\bullet}}[-1] \tag{2.13}
\end{equation*}
$$

The isomorphism 2.13 and the product structure on $\mathbb{Z}_{X \cdot}(r)$ induce a symbol map (compare the proof of [K2], Proposition 3.2)

$$
\begin{equation*}
\mathcal{K}_{X \bullet, r}^{\mathrm{Mil}} \longrightarrow \mathcal{H}^{r}\left(\mathbb{Z}_{X \bullet}(r)\right) . \tag{2.14}
\end{equation*}
$$

But in the absence of ([B-E-K1], Theorem 12.3) which cannot be extended to a relative setting we cannot expect that 2.14 is an isomorphism.

3 -ADIC Deformation of motivic Chow groups

Let $X=Y_{m} /$ Spec $W_{m}(k)$ as before and X_{\bullet} be a smooth projective lifting of X to Spec $W_{\bullet}(R), R=W_{m}(k)$, which is compatible with Y_{\bullet} as before. Let $r<p$.

Definition 3.1. The continuous Chow group of X_{\bullet} is defined as $\mathrm{Ch}_{\mathrm{cont}}^{r}\left(X_{\bullet}\right):=$ $H_{\text {cont }}^{2 r}\left(X, \mathbb{Z}_{X \cdot}(r)\right)$.

Note that we also work with continuous cohomology.
The fundamental motivic triangle (Proposition 2.9) gives rise to an exact obstruction sequence to the deformation problem lifting a class in $H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right)$ to a class in $\mathrm{Ch}_{\text {cont }}^{r}\left(X_{\bullet}\right)$

$$
\begin{equation*}
\mathrm{Ch}_{\text {cont }}^{r}\left(X_{\bullet}\right) \xrightarrow{\partial} H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right) \xrightarrow{\text { ob }} H_{\text {cont }}^{2 r}\left(X, \mathcal{F}^{r} \Omega_{X}^{<r}\right) . \tag{3.2}
\end{equation*}
$$

Now we construct crystalline cycle classes on $H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right)$. We have a canonical map

$$
H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right) \longrightarrow H^{r}\left(X, \mathcal{H}^{r}\left(\mathbb{Z}_{X}(r)\right)=H^{r}\left(X, \mathcal{K}_{r}^{\text {Mil }}\right) \xrightarrow{\mathrm{d} \log []} H^{r}\left(X, W \Omega_{X / R, \log , \mathrm{Nis}}^{r}\right) .\right.
$$

The map of complexes (the first map in Theorem 1.9) in $C_{\text {pro,et }}(X)$

$$
W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \longrightarrow N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}
$$

defines a map of complexes in $C_{\text {pro,Nis }}(X)$

$$
W_{\bullet} \Omega_{X / R, \log , \mathrm{Nis}}^{r}[-r]=\varepsilon_{*} W_{\bullet} \Omega_{X / R, \log }^{r}[-r] \rightarrow \varepsilon_{*} N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}=N^{r} W_{\bullet} \Omega_{X / R, \mathrm{Nis}}^{\bullet}
$$

(In the following we omit the subscript 'Nis' as all complexes and cohomology groups are taken in the Nisnevich topology) and yields the refined relative crystalline cycle class map

$$
\begin{align*}
H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right) & \longrightarrow H_{\text {cont }}^{2 r}\left(X, N^{r} W_{\bullet} \Omega_{X / R}^{r}\right) \tag{3.3}\\
\xi & \longmapsto c(\xi)
\end{align*}
$$

Then the relative crystalline cycle class of ξ is the image $c_{\text {cris }}(\xi)$ of $c(\xi)$ in $H_{\text {cont }}^{2 r}\left(X, W_{\bullet} \Omega_{X / R}^{\bullet}\right)$. We have canonical isomorphisms (Theorem 1.2)
$H_{\mathrm{cont}}^{i}\left(X, N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}\right) \cong H^{i}\left(X, \mathcal{F}^{r} \Omega_{X \bullet / W \bullet(R)}^{\bullet}\right)$
and

$$
\begin{align*}
& H_{\mathrm{cont}}^{n}\left(X, W_{\bullet} \Omega_{X / R}^{\bullet}\right) \cong{\underset{m}{\lim }}^{{\underset{m}{n}}_{n}^{n}}\left(X, W_{m} \Omega_{X / R}^{\bullet}\right) \tag{3.4}\\
& \cong H_{\text {cris }}^{n}(X / W(R)) \\
& \cong H_{\mathrm{cont}}^{n}\left(X_{\bullet}, \Omega_{X_{\bullet} / W_{\bullet}(R)}\right)
\end{align*}
$$

where the first isomorphism follows from [L-Z1], Corollary 1.14 and the second from the main comparison theorem [L-Z1], Theorem 3.1. Note that in [B-O] §5 the crystalline site/topos and the cohomology of the crystalline structure sheaf is defined for any scheme defined over a PD-scheme S on which p is nilpotent. We apply this to the PD-scheme $S=\operatorname{Spec} W_{n}(R)$ with PD-ideal $V W_{n-1}(R)$ and consider X as an S-scheme via $X \rightarrow \operatorname{Spec} R \rightarrow S$. Then, by definition, $H_{\text {cris }}^{i}(X / W(R))=\lim _{{ }_{n}} H_{\text {cris }}^{i}\left(X / W_{n}(R)\right)$.
Definition 3.5 (Compare [B-E-K1], Definition 8.3).
(1) One says that $c(\xi)$ is Hodge with respect to the lifting X_{\bullet}. if and only if $c(\xi)$ lies in the image of $H_{\text {cont }}^{2 r}\left(X, \Omega_{\bar{X}}^{>r}\right)$ in $H_{\text {cont }}^{2 r}\left(X, \mathcal{F}^{n} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{\bullet}\right)=$ $H_{\text {cont }}^{2 r}\left(X, N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}\right)$.
(2) One says that $c_{\text {cris }}(\xi)$ is Hodge modulo torsion with respect to the lifting X_{\bullet} if and only if $c_{\text {cris }}(\xi) \otimes \mathbb{Q}$ lies in the image of $H_{\text {cont }}^{2 r}\left(X, \Omega_{X_{\bullet}}^{\geq r}\right) \otimes \mathbb{Q} \rightarrow$ $H_{\text {cris }}^{2 r}(X / W(R)) \otimes \mathbb{Q}$.
Then we have the following
Theorem 3.6. Let $X_{\bullet} /$ Spec $W_{\bullet}(R)$ as before, let $\xi \in H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right)$ and $r<p$. Then
(1) $c(\xi)$ is Hodge with respect to the lifting $X_{\bullet} \Longleftrightarrow \xi$ lies in the image of ∂ in 3.2.
(2) $c_{\text {cris }}(\xi)$ is Hodge modulo torsion with respect to the lifting $X \bullet \Longleftrightarrow \xi \otimes \mathbb{Q}$ lies in the image of $\partial \otimes \mathbb{Q}$.

Proof. We claim that the canonical map

$$
H_{\text {cont }}^{2 r}\left(X, N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}\right) \longrightarrow H_{\text {cont }}^{2 r}\left(X, W_{\bullet} \Omega_{X / R}^{\bullet}\right)
$$

induced by the map " 1 " (see Theorem 1.9) has kernel and cokernel killed by a power of p : Indeed, this map can be identified, via Theorem 1.2, with the map

$$
H_{\text {cont }}^{2 r}\left(X, \mathcal{F}^{r} \Omega_{X_{\bullet} / W_{\bullet}(R)}\right) \longrightarrow H_{\text {cont }}^{2 r}\left(X, \Omega_{X_{\bullet} / W_{\bullet}(R)}\right)
$$

which is induced by the corresponding map of complexes

The kernel of this map of complexes is a complex of sheaves annihilated by p^{r-1}, hence its hypercohomology is killed by a power of p. The cokernel is a complex of sheaves that admits a filtration in a way that the successive quotients are complexes with entries of the form $\Omega_{X / R}^{j}$ or $I_{R} / p I_{R} \Omega_{X_{\bullet} / W_{\bullet}(R)}^{j}$. The cohomology of these sheaves is killed by a power of p since p is nilpotent on R. Hence the hypercohomology of the cokernel is killed by a power of p and therefore the map

$$
H_{\text {cont }}^{2 r}\left(N^{r} W_{\bullet} \Omega_{X / R}^{\bullet}\right) \otimes \mathbb{Q} \longrightarrow H_{\text {cris }}^{2 r}(X / W(R)) \otimes \mathbb{Q}
$$

is an isomorphism. Then the first part (1) implies the second part (2).
The exact sequence 3.2 can be extended to a commutative diagram with exact rows

where we have used again the isomorphisms 3.4. By Theorem 1.17. the right hand square commutes. Then the Theorem easily follows.

Remark 3.8.

(i) We do not need for the proof that the left vertical arrow is well-defined.
(ii) If the Hodge-de Rham spectral sequence of the ind-scheme $X \bullet$ degenerates, then the map

$$
H_{\text {cont }}^{2 r}\left(X, \Omega_{X_{\bullet}}^{\geq r}\right) \longrightarrow H_{\text {cont }}^{2 r}\left(\mathcal{F}^{r} \Omega_{X_{\bullet} / W(R)}^{\bullet}\right)
$$

is injective and hence the left vertical arrow is also well-defined.
(iii) For $r=1$ we are really dealing with Picard groups. As $\mathbb{Z}_{X_{0}}(1)=$ $\mathbb{G}_{m / X}[-1]$ we have $H^{2}\left(X, \mathbb{Z}_{X_{\bullet}}(1)\right)=\operatorname{Pic}\left(X_{\bullet}\right)$. The system $\left\{H^{0}\left(X, \mathbb{G}_{m, X_{n}}\right)\right\}_{n}\left(=\left\{W_{n}(R)^{*}\right\}_{n}\right.$ if X is connected $)$ is obviously MittagLeffler, hence $\underset{\overleftarrow{L}_{n}}{\lim ^{1}} H^{0}\left(X, \mathbb{G}_{m, X_{n}}\right)$ vanishes and we have an isomorphism

$$
\operatorname{Ch}_{\mathrm{cont}}^{1}\left(X_{\bullet}\right)=H_{\mathrm{cont}}^{1}\left(X, \mathbb{G}_{m, X}\right) \cong{\underset{\overleftarrow{\bullet}}{ }}_{\lim _{n}} \operatorname{Pic}\left(X_{n}\right)
$$

Definition and Corollary 3.9. Let $r<p$. Let $X=Y_{m}, Y_{\bullet}$ a formal smooth projective scheme over $\operatorname{Spf} W(k)$. Let $\xi \in H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right)$. We say that its refined relative crystalline cycle class $c(\xi)$ is "Hodge" if there exists a smooth, projective lifting X_{\bullet} of X as ind-scheme over the ind-scheme Spec $W_{\bullet}\left(W_{m}(k)\right)$, compatible with Y_{\bullet}, and such that $c(\xi)$ is "Hodge" with respect to X_{\bullet}. Assume $c(\xi)$ is "Hodge", then ξ deforms to a class on the formal scheme Y_{\bullet}, that is it lies in the image of the map

Proof. By general homological algebra the first arrow is surjective (as stated in [B-E-K1], p697). For any smooth lifting X_{\bullet} of $X=Y_{m}$ over Spec $W_{\bullet}\left(W_{m}(k)\right)$ compatible with the formal scheme Y_{\bullet} under the base change $W_{m}(k) \longrightarrow k$ there is a base change map of motivic complexes $\mathbb{Z}_{X_{\bullet}}(r) \longrightarrow \mathbb{Z}_{Y_{\bullet}}(r)$ inducing $\mathrm{Ch}_{\text {cont }}^{r}\left(X_{\bullet}\right) \longrightarrow \mathrm{Ch}_{\text {cont }}^{r}\left(Y_{\bullet}\right)$ through which the map

$$
\delta: \mathrm{Ch}_{\text {cont }}^{r}\left(X_{\bullet}\right) \longrightarrow H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right)
$$

factors. The Corollary follows from this and Theorem 3.6.
Remark. Note that $H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right) \otimes \mathbb{Q}=H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{1}}(r)\right) \otimes \mathbb{Q}$, hence we do not get any new information with regard to lifting vector bundles (compare [B-E-K1], Theorem 1.3). The implication in Corollary 3.9, i.e. the lifting property of ξ does not depend on the choice of X_{\bullet}, for which $c(\xi)$ is Hodge.

For an algebraic scheme Z, it is reasonable to define the cohomological Chow group as

$$
\mathrm{Ch}^{p}(Z):=H^{p}\left(Z, \mathcal{K}_{p}^{\mathrm{Mil}}\right)
$$

The graded object $\mathrm{Ch}^{*}(Z)$ then has a ring structure due to the natural product structure of Milnor K-groups, it is contravariant in Z and coincides with the usual Chow group of codimension p-cycles modulo rational equivalence if Z is regular excellent over an infinite field (see [Ke]). Applying this to $X=$ $Y_{m} / W_{m}(k)$ we define

$$
\begin{equation*}
\mathrm{Ch}^{r}(X):=H^{r}\left(X, \mathcal{K}_{X, r}^{\mathrm{Mil}}\right) \tag{3.10}
\end{equation*}
$$

The canonical map $\mathbb{Z}_{X}(r) \rightarrow \mathcal{K}_{X, r}^{\mathrm{Mil}}[-r]$ defines a homomorphism.

$$
\pi_{r}: H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right) \longrightarrow H^{r}\left(X, \mathcal{K}_{r}^{\mathrm{Mil}}\right)=\mathrm{Ch}^{r}(X)
$$

that we already used in the construction of the crystalline cycle class. We want to give a criterion when this map is surjective or bijective.
With our definition of $\mathbb{Z}_{X}(r)$ it is easy to see that the fundamental motivic triangle for $\mathbb{Z}_{Y_{\bullet}}(r)$ holds for $\mathbb{Z}_{X}(r)$ as well: there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}[-1] \longrightarrow \mathbb{Z}_{X}(r) \longrightarrow \mathbb{Z}_{Y_{1}}(r) \longrightarrow 0 \tag{3.11}
\end{equation*}
$$

It induces the following commutative diagram, by taking hypercohomology of 3.11 and applying [B-E-K1], Theorem 12.3 to get the lower exact sequence in the diagram

$$
\begin{array}{cccccccc}
H^{2 r-1}\left(Y_{1}, \mathbb{Z}_{Y_{1}}(r)\right) & \rightarrow & H^{2 r-1}\left(X, \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}\right) & \rightarrow & H^{2 r}\left(X, \mathbb{Z}_{X}(r)\right) & \rightarrow & H^{2 r}\left(Y_{1}, \mathbb{Z}_{Y_{1}}(r)\right) & \rightarrow
\end{array} H^{2 r}\left(X, \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}\right)
$$

The maps α, β are induced by

$$
\mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r} \longrightarrow \mathcal{H}^{r-1} \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}=\frac{p \Omega_{X}^{r-1}}{p^{2} \mathrm{~d} \Omega_{X}^{r-2}} .
$$

The isomorphism σ is a standard map (compare [B-E-K1] 7.3). The first isomorphism in the left vertical arrow is shown in [M-V-W], Theorem 19.1, the second is explained in [M], Corollary 5.2 (b).
Let
$\tau_{\leq r-2} \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}: p \mathcal{O}_{X} \xrightarrow{p \mathrm{~d}} p \Omega_{X}^{1} \xrightarrow{p \mathrm{~d}} \cdots \xrightarrow{p \mathrm{~d}} p \Omega_{X}^{r-3} \xrightarrow{p \mathrm{~d}} \operatorname{Ker} p \mathrm{~d}\left(\subset p \Omega^{r-2}\right) \longrightarrow 0$.
The diagram shows that if $H^{2 r}\left(\tau_{\leq r-2} \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}\right)=0$ then π_{r} is surjective.
As the cohomology of each term in the complex $\tau_{\leq r-2} \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}$ vanishes in degrees $>d$ we see that $H^{2 r}\left(\tau_{\leq r-2} \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}\right)=0$ for $r>\operatorname{dim} X-2$ and $H^{j}\left(\tau_{\leq r-2} \mathcal{F}^{r} \Omega_{X / W_{m}(k)}^{<r}\right)=0$ for $j=2 r, 2 r-1$ holds for $r=d=\operatorname{dim} X$. In this case π_{d} is bijective (compare diagram 3.12) Hence we have shown

Lemma 3.13. Let $\mathrm{d}=\operatorname{dim} X /$ Spec $W_{m}(k)$. Then

$$
\pi_{d-1}: H^{2(d-1)}\left(X, \mathbb{Z}_{X}(d-1)\right) \longrightarrow \mathrm{Ch}^{d-1}(X)
$$

is surjective and

$$
\pi_{d}: H^{2 d}\left(X, \mathbb{Z}_{X}(d)\right) \xrightarrow{\sim} \mathrm{Ch}^{d}(X)
$$

is an isomorphism.
In both cases one can give a Hodge-theoretic criterion, following 3.9, for lifting an element $z \in \operatorname{Ch}^{?}(X)(?=d, d-1)$ to an element in the continuous Chow group $\mathrm{Ch}_{\text {cont }}^{?}\left(Y_{\bullet}\right)$ by considering its (refined) crystalline cycle class in the cohomology of the relative de Rham-Witt complex. The precise formulation is clear and omitted here. Moreover, Theorem 0.1 (i) and (ii) follows from Corollary 3.9 and the above definitions.

References

[B-M-S] B. Bhatt, M. Morrow, P. Scholze, Integral p-adic Hodge theory, preprint 2016, arXiv: 1602.03148 [mathAG].
[B-E-K1] S. Bloch, H. Esnault, M. Kerz, p-adic deformation of algebraic cycle classes, Inventiones Math. 195 (2014) pp. 673-722.
[B-E-K2] S. Bloch, H. Esnault, M. Kerz, Deformation of algebraic cycle classes in characteristic zero, Algebraic Geometry 13 (2014) pp. 290-310.
[B-O] P. Berthelot and A. Ogus, Notes on crystalline cohomology. Princeton University Press (1978).
[D-L-Z] C. Davis, A. Langer, T. Zink, Overconvergent de Rham-Witt Cohomology, Annals. Sc. Ec. Norm. Sup. 44, no. 2 (2011), 197-262.
[F-M] J.-M. Fontaine, W. Messing, p-adic periods and p-adic étale cohomology. Contemporary Maths vol. 87 (1987) pp. 179-207.
[EGA1] A. Grothendieck, Élements de géométrie algébrique: I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. No. 4 (1960)
[G-L] O. Gregory and A. Langer, Higher displays arising from filtered de RhamWitt complexes, preprint (2018)
[Gr] M. Gros, Classes de Chern et classes de cycles en cohomology de HodgeWitt logarithmique. Mém. Soc. Math. France 21 (1985) pp. 1-87.
[Il] L. Illusie, Complexe de Rham-Witt et cohomologie cristalline, Annales ENS (4), 12 (2), pp. 501-661 (1979)
[K1] K. Kato, Galois cohomology of complete discrete valuation fields, In: Algebraic K-theory, Part II, Oberwolfach 1980. LN vol 967, pp. 215-238
[K2] K. Kato, on p-adic vanishing cycles (application of ideas of FontaineMessing), in: Algebraic Geometry Sendai 1985, Adv. Studies Pure Maths 10 (1987), pp. 207-251.
[Ke] M. Kerz, The Gersten Conjecture for Milnor K-theory, Inventiones Math. 175 (2009) pp. 1-33.
[L-Z1] A. Langer and Th. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu 3 (2) (2004), pp. 231-314
[L-Z2] A. Langer and Th. Zink, De Rham-Witt cohomology and displays, Documenta Mathematica 12 (2007), pp. 147-191.
[M1] M. Morrow, A variational Tate Conjecture in crystalline cohomology, arxiv: 1408.6783 (2014).
[M2] M. Morrow, K-theory and logarithmic Hodge-Witt sheaves of formal schemes in characteristic p, arxiv: 1512.04703 (2015).
[M] S. Müller-Stach, Algebraic cycle complexes: Basic properties, In: Proceedings of the Banff Conference in Arithmetic and Geometry of Algebraic Cycles (2000), pp. 285-305.
[M-V-W] C. Mazza, V. Voevodsky, C. Weibel, Lecture notes on motivic cohomology, Clay Math Monographs 2 (2006).
[S-V] A. Suslin, V. Voevodsky, Bloch-Kato Conjecture and motivic cohomology with finite coefficients, in: The Arithmetic and Geometry of Algebraic Cycles (2000), pp. 117-189.

Andreas Langer
University of Exeter
Mathematics
Exeter EX4 4QF
United Kingdom
Email: A.Langer@exeter.ac.uk

