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Abstract 20 

1. Colour patterns often influence how animals interact with one another, but the ability 21 

of researchers to quantify pattern per se is hampered by a lack of easily-accessible and 22 

user-friendly measurement software packages. 23 

2. We address this issue by releasing PAT-GEOM, a free software package for use 24 

within ImageJ that allows users to measure seven properties of a pattern: (1) the shape 25 

of its markings, (2) the directionality in the shape of its markings, (3) the size of its 26 

markings, (4) the contrast of the pattern, (5) the distribution of its markings, (6) the 27 

directionality in the distribution of its markings, and (7) the randomness of the pattern. 28 

3. We provide examples of how PAT-GEOM may be used, such as to visualise the 29 

‘average pattern’ of a population of animals, or to compare the patterns on two animals. 30 

Using data from two case studies, we also demonstrate PAT-GEOM’s ability to identify 31 

the specific aspects of an organism’s pattern that match its background and to design 32 

artificial prey items that accurately resemble their model organism for use in predation 33 

experiments. 34 

4. PAT-GEOM collates the tools to measure these seven diverse properties of animal 35 

colour patterns into one convenient, easy-to-use package. It can be employed in a wide 36 

range of studies on topics such as aposematism, camouflage and mimicry, and also has 37 

the potential to be applied to other research fields such as landscape ecology, botany 38 

and cellular biology. 39 

 40 

Keywords  41 

Animal colour patterns; aposematism; background matching; behavioural ecology; 42 

pattern geometry; sensory ecology; spatial pattern. 43 
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Introduction 45 

Colour patterns influence many animal interactions (Cuthill et al., 2017), yet our ability 46 

to understand and quantify them remains limited. The visual information in colour 47 

patterns usually comprises several components, including colour, brightness, light 48 

polarisation properties, and pattern (the last being the spatial arrangement of the three 49 

preceding aspects), but most work has focused on colour or simple blocks of 50 

colour/brightness contrast. For example, the literature on animal colour vision 51 

(reviewed by Kelber, Vorobyev & Osorio, 2003) and colour spaces (reviewed by 52 

Renoult, Kelber & Schaefer, 2015) is comprehensive and measurement techniques are 53 

readily-available. Conversely, much less attention has been given to pattern. 54 

 55 

There is growing awareness that pattern per se provides important information, e.g. in 56 

common European vipers Vipera berus Linnaeus, 1758, zig-zag patterns alone can 57 

produce aposematic effects (Wüster et al., 2004), and avian brood parasite hosts use 58 

colour and pattern to recognise parasitic eggs (Spottiswoode & Stevens, 2010). This is 59 

stimulating the development of measurement tools—especially digital imaging (Stevens 60 

et al., 2007)—and analysis techniques, e.g. pixel matrices (Todd et al., 2005), adjacency 61 

analysis (Endler, 2012), pattern identification algorithms (Stoddard, Kilner & Town, 62 

2014), saliency maps (Pike, 2018) and boundary strength analysis (Endler, Cole & 63 

Kranz, 2018). 64 

 65 

There remains, however, uncertainty regarding what pattern properties are quantifiable 66 

and which approaches are suited to different questions and pattern types (Pérez-67 

Rodríguez, Jovani & Stevens, 2017). Furthermore, measurement tools are often not 68 

readily-available or located in separate software because their development stemmed 69 
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from researchers working on disparate systems. It is generally inconvenient to measure 70 

multiple properties as images must be processed numerous times in different software, 71 

e.g. first with the MICA toolbox (Troscianko & Stevens, 2015) for measuring contrast, 72 

then in NaturePatternMatch (Stoddard, Kilner & Town, 2014) for size and orientation, 73 

and finally in R for shape using the Momocs package (Bonhomme et al., 2014). A 74 

coordinated effort is needed to (1) determine what pattern properties can or should be 75 

quantified, and (2) develop tools to help researchers accomplish this easily. Here, we 76 

address these issues by releasing a free software package: PAT-GEOM. 77 

 78 

PAT-GEOM Overview 79 

PAT-GEOM is a free-to-use suite of macros (programmes automating functions within 80 

a larger programme) based in ImageJ (Schneider, Rasband & Eliceiri, 2012) that 81 

analyse pattern in digital images. It measures seven pattern properties (illustrated in Fig. 82 

1; example applications in Table 1): (1) the shape of its markings (i.e. the colour patches 83 

or mosaic elements within a pattern; sensu Endler, 1990), (2) the directionality in the 84 

shape of its markings, (3) the size of its markings, (4) the contrast of the pattern, (5) the 85 

distribution of its markings, (6) the directionality in the distribution of its markings, and 86 

(7) the randomness of the pattern.  87 

 88 

PROPERTY 1: MARKING SHAPE  89 

Shape measurements of appendages or whole organisms are important in behavioural 90 

studies and biology (e.g. Fitzpatrick, 1998; McLellan & Endler, 1998) but their 91 

application to colour pattern markings is relatively new. PAT-GEOM quantifies the 92 

shape of any Region of Interest (ROI; an area of the image to be measured) demarcated 93 

by users (manually using ImageJ’s drawing tools or automatically using its built-in 94 
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“Analyze Particles” function) using elliptical Fourier analysis (EFA), a landmark-95 

independent technique that approximates the ROI’s outline with a series of 96 

harmonically-related trigonometric functions (Kuhl & Giardina, 1982). For each 97 

harmonic, the x- and y-coordinates of the outline with increasing displacement, 𝑡, from 98 

a starting point, 𝑥(𝑡) and 𝑦(𝑡), are described by: 99 

𝑥(𝑡) = ∑ [𝐴𝑛 cos (
2𝜋𝑛𝑡

𝑇
) + 𝐵𝑛 sin (

2𝜋𝑛𝑡

𝑇
)]

𝑁

𝑛=1

 100 

(eqn 1) 101 

and 102 

𝑦(𝑡) = ∑ [𝐶𝑛 cos (
2𝜋𝑛𝑡

𝑇
) + 𝐷𝑛 sin (

2𝜋𝑛𝑡

𝑇
)]

𝑁

𝑛=1

 103 

(eqn 2) 104 

 Where:  𝑁 = total number of harmonics 105 

   𝑛 = harmonic number 106 

   𝑇 = total displacement 107 

   𝑡 = displacement along outline 108 

 109 

Elliptical Fourier descriptors (EFDs) for each harmonic are calculated from the 110 

coefficients, 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛, utilising the Fourier Shape Analysis plugin (Boudier & 111 

Tupper, 2016) which needs only be downloaded and placed in the ImageJ plugins folder. 112 

These EFDs are scale-, rotation- and translation-invariant and insensitive to variation in 113 

trace start point (Nixon & Aguado, 2008). Taken together, the EFDs of a shape’s 114 

harmonics uniquely describe it, i.e. they correspond to only that shape. Shapes with 115 

similar descriptors are also similar graphically (Nixon & Aguado, 2008), and EFDs may 116 

be used to compare shapes, e.g. using Principal Components Analysis (see Fig. 2D).  117 
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 118 

PROPERTY 2: MARKING SHAPE DIRECTIONALITY 119 

Directionality in pattern elements is known to affect neuronal activity in animal visual 120 

processing (Van Kerkoerle et al., 2014). PAT-GEOM quantifies the directionality in 121 

marking shape by fitting ellipses onto ROIs and computing their aspect ratio (major axis 122 

divided by minor axis) and orientation (angle of the major axis, rotating clockwise from 123 

the image’s x-axis; Fig. 1). It is important to standardise image orientation if comparing 124 

orientation across images, but not when comparing aspect ratio or variation in 125 

orientation. To standardise images, users should rotate ROIs (e.g. using ImageJ’s Rotate 126 

function) so that their reference axis (i.e. the axis the user wishes to represent an 127 

orientation of 0°) is parallel to the image’s x-axis. This will likely differ in every study, 128 

but could be the animal’s long axis or a line connecting two points on the organism. 129 

 130 

PROPERTY 3: MARKING SIZE 131 

The influence of marking size in animal signals is well-established (e.g. Spottiswoode 132 

& Stevens, 2010) but studies rarely use centroid size (the root-sum-squared distance 133 

between a shape’s centroid and the landmarks along its outline): the only independent 134 

measure of size (Bookstein, 1991). To compare shapes using centroid size, however, 135 

they must have the same number of landmarks. This is problematic because animal 136 

markings typically have no homologous features and may be drawn using different 137 

numbers of points. PAT-GEOM solves this by using averaged centroid size (Sc,ave), i.e. 138 

centroid size divided by the square root of the number of points on an ROI’s outline: 139 

Sc, ave = √
1

𝑁
∑ 𝑑𝑛

2

𝑁

𝑛=1

 140 

(eqn 3) 141 



PAT-GEOM 

7 
 

 Where:  𝑁 = total number of points on the outline 142 

   𝑑𝑛 = distance of point 𝑛 from the ROI’s centroid 143 

 144 

A worked example is included in the Supporting Information. Alternatively, PAT-145 

GEOM also outputs size in square pixels. An example where furrowed crabs Xantho 146 

hydrophilus (Herbst, 1790) are compared to their background substrate is shown in Fig. 147 

2C. 148 

 149 

PROPERTY 4: PATTERN CONTRAST 150 

Contrast is recognised as an important element of animal signals (e.g. Sandre, Stevens 151 

& Mappes, 2010; Cole & Endler, 2015). PAT-GEOM measures contrast using the 152 

Coefficient of Variation (CoV) of the pixel values in an ROI, i.e. their standard 153 

deviation divided by their mean. Because many biological patterns tend to exhibit 154 

higher variance with increasing mean values, this correction makes patterns of different 155 

luminance levels more comparable: 156 

CoV Contrast =
1

𝐼 ̅
√

1

𝑐𝑟
∑ ∑(𝐼𝑖𝑗 − 𝐼)̅

2
𝑟−1

𝑗=0

𝑐−1

𝑖=0

 157 

(eqn 4) 158 

Where:  𝑐 = width of the ROI in pixels  159 

𝑟 = height of the ROI in pixels  160 

   𝑖 = pixel’s x-coordinate, where 0 ≤ 𝑖 ≤ 𝑐 − 1 161 

   𝑗 = pixel’s y-coordinate, where 0 ≤ 𝑗 ≤ 𝑟 − 1 162 

   𝐼𝑖𝑗 = luminance of pixel (i, j) 163 

   𝐼 ̅= average luminance of all pixels in the ROI 164 

 165 
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PROPERTY 5: DISTRIBUTION OF MARKINGS 166 

Marking distribution, i.e. the spatial location of the markings within a colour pattern, 167 

has been used to identify pattern variation amongst different populations of a species 168 

(Todd et al., 2005). PAT-GEOM measures marking distribution by the position of their 169 

component pixels: an approach developed by Todd et al. (2005) and automated here. 170 

Images should be standardised for area, orientation and resolution, e.g. by matching the 171 

lowest resolution manually using ImageJ’s Scale function or using the MICA toolbox’s 172 

automated function. Low resolution images where the pattern of interest is unclear 173 

should be excluded. PAT-GEOM converts thresholded images into matrices of ‘1’s 174 

(pixels representing markings) and ‘0’s (pixels representing the background) and 175 

outputs individual or cumulative matrices and heat maps (Fig. 3). 176 

 177 

PROPERTY 6: DIRECTIONALITY OF MARKING DISTRIBUTION 178 

In addition to marking shape directionality (Property 2), directionality in marking 179 

distribution can also affect visual processing (Van Kerkoele et al., 2014). To measure 180 

this property, PAT-GEOM draws a linear best fit line through all the marking centroids 181 

and measures: (1) the line’s angle (rotating clockwise from the image’s x-axis) for 182 

orientation; and (2) its R2 value for alignment (Fig. 1). As elongated bodies tend to have 183 

more directional patterns, users should compare animals of similar shape or standardise 184 

images for aspect ratio and orientation, e.g. using ImageJ’s Size and Rotate functions.  185 

 186 

PROPERTY 7: PATTERN RANDOMNESS 187 

The randomness of patterns in visual scenes is known to influence animal behaviour, 188 

especially in camouflage, e.g. in blue tits (Dimitrova & Merilaita, 2009), but it is rarely 189 

quantified. For a measure of randomness (i.e. algorithmic complexity; Kolmogorov, 190 
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1965), PAT-GEOM outputs the size of the gif file that would be required to encode the 191 

ROI, corrected for header size. A fully random pattern contains the highest algorithmic 192 

complexity and therefore requires the largest file size, whereas one with repeating parts 193 

is less random and requires a smaller file (Lempel & Ziv, 1976; Kaspar & Schuster, 194 

1987). The nature of compression in gif files (Bolliger, Sprott & Mladenoff, 2003) and 195 

the suitability of this measure (Leeuwenberg, 1968; Donderi, 2006a; 2006b) are well 196 

studied. It was first applied in landscape ecology (e.g. Bolliger, Sprott & Mladenoff, 197 

2003) to measure the complexity of landscapes with patches of different land uses, 198 

which are analogous to markings in an animal colour pattern, and PAT-GEOM 199 

automates the process of deriving the file size. To compare ROIs, they should have 200 

identical sizes and sensitivity (ISO) settings (higher settings can introduce noise which 201 

artificially increases measurements).  202 

 203 

OTHER TOOLS 204 

In addition, PAT-GEOM contains tools to facilitate repetitive image processing steps, 205 

e.g. detecting ROIs, randomly sampling pixel values (Fig.4, Step 1), creating randomly-206 

positioned copies of an ROI and calculating the percentage coverage of markings on an 207 

animal (Fig. 4, Step 3). 208 

 209 

Considerations when using PAT-GEOM 210 

The ability to quantify the properties listed above should be useful for studying pattern 211 

in various organisms and topics. However, two important issues require consideration: 212 

how to collect image data rigorously and how to select properties to analyse. 213 

 214 

RIGOROUS DATA COLLECTION 215 
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All digital image-based analysis using any software (including, but not limited to, PAT-216 

GEOM) requires properly standardised images of sufficient resolution to capture the 217 

pattern being quantified (Stevens et al., 2007). A useful guide is that the shortest length 218 

measured should comprise at least two pixels. Calibration to correct for differing light 219 

conditions and non-linear sensor responses to radiance is also needed and the MICA 220 

toolbox (Troscianko & Stevens, 2015) in ImageJ produces mspec images corrected for 221 

these biases. It can also produce composite images with both ultraviolet and human 222 

visible wavelengths and convert pixel values based on animal vision models to reflect 223 

what animals might see. Usage of the MICA toolbox is recommended and PAT-GEOM 224 

was designed for compatibility with its mspec images. Nevertheless, PAT-GEOM is 225 

able to analyse any image format readable by ImageJ.  226 

 227 

WHAT PROPERTIES TO ANALYSE 228 

The choice of properties to analyse depends on the specific research question and study 229 

system. Table 1 provides usage guidelines and examples where it may be advisable to 230 

measure each property in PAT-GEOM.  231 

 232 

Summary and Future Directions 233 

Colour patterns are an important part of animal interactions, yet researchers’ ability to 234 

quantify pattern per se is poorly developed (Pérez-Rodríguez, Jovani & Stevens, 2017) 235 

and techniques to measure specific properties are lacking or difficult to implement. To 236 

address this, we developed PAT-GEOM, a suite of free-to-use macros (available at 237 

www.ianzwchan.com/my-research/pat-geom or https://doi.org/10.5281/zenodo.1834035) 238 

that quantitatively describe seven pattern properties: Marking Shape, Marking Shape 239 
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Directionality, Marking Size, Pattern Contrast, Marking Distribution, Marking 240 

Distribution Directionality and Pattern Randomness.  241 

 242 

Whilst five of the properties can be measured using other programmes (although usually 243 

using different metrics), a key benefit of PAT-GEOM is that the tools are in one 244 

package, making it convenient to measure multiple properties. For example, 245 

NaturePatternMatch measures only marking size and orientation; HANGLE, 246 

HMATCH and HCURVE (Crampton & Haines, 1996) measure only shape; and 247 

although some R packages take similar measurements (e.g. EFA with Momocs), these 248 

must be separately installed. Moreover, because these examples are distinct programmes, 249 

images must be processed multiple times to perform all measurements, whereas with 250 

PAT-GEOM processing needs to be done only once. PAT-GEOM also complements a 251 

recently-released R package patternize (Van Belleghem et al., 2017); while patternize 252 

investigates overall pattern variation by analysing raster objects representing entire 253 

colour patterns, PAT-GEOM quantifies specific properties that contribute to this 254 

variation. 255 

 256 

Being based in ImageJ, PAT-GEOM is highly versatile: it will analyse any image that 257 

ImageJ can open, including jpg, bmp, tif, gif, mspec and nef). It is also convenient to 258 

conduct analyses using other ImageJ-based programmes, e.g. granularity analysis with 259 

the MICA Toolbox and measuring fractal dimension with FracLac (Karperien, 1999). 260 

Finally, PAT-GEOM is not limited to patterns on animals and can potentially be applied 261 

to patterns across diverse fields, including landscape ecology (e.g. quantifying land plot 262 

randomness), botany (e.g. measuring leaf shape), and cellular biology (e.g. measuring 263 

occlusion body size in diseased cells). 264 
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 265 

It remains important, however, to improve our fundamental understanding of pattern 266 

and identify which measurable properties are biologically meaningful (Endler & 267 

Mappes, 2017; Pérez-Rodríguez et al., 2017). This would direct future work, including 268 

developing guidelines on what properties to measure in different situations and 269 

standardising the techniques used so that results are comparable across studies. It is an 270 

exciting time for researchers in this field: interest in the effects of pattern per se on 271 

animal behaviour, ecology, and evolution is growing, and our ability to quantify pattern 272 

using programmes such as PAT-GEOM is developing rapidly (Endler & Mappes, 2017). 273 

 274 
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Tables 392 

Table 1. Guidelines and application examples for the seven properties measured by PAT-GEOM. 

Property Technique  Guidelines Usage Examples 

Marking Shape Elliptical 

Fourier 

Analysis  

- Can be used in most, if not 

all situations where there are 

discrete pattern components. 

- Comparing the shape of the spots on a cuckoo egg to those on its host’s eggs. 

- Comparing average marking shape in two populations of a species (e.g. giraffes Giraffa camelopardalis).  

- Identifying individuals in species with unique colour patterns (e.g. whale sharks Rhincodon typus). 

- Comparing carapace patterns of a furrowed crab Xantho hydrophilus to the patterns in its background in 

putative background matching (see Fig. 2).  

Marking Shape 

Directionality 

Aspect Ratio  

and 

Orientation  

- More useful for patterns with 

elongated markings. 

- May need to first standardise 

for orientation, size and shape. 

- Comparing the markings found on hoverflies versus wasps.  

- Comparing an animal’s stripes to stripe-like patterns in its background, e.g. in zebras Equus quagga. 

- Measuring changes in butterfly wing or eyespot shape due to genetic manipulation or selection pressures, 

e.g. in the squinting bush-brown butterfly Bicyclus anynana. 

- Measuring variation in stripe shape in tigers Panthera tigris, e.g. photographed using camera traps. 

Marking Size Averaged 

Centroid 

Size  
 

- Better for discrete markings, 

vis-à-vis mottled patterns 

where granularity analysis 

(Troscianko & Stevens, 2015) 

is preferable. 

- Comparing the markings of artificial prey items and their model organism, e.g. for predation experiments 

with the monarch caterpillar Danaus plexippus. 

- Comparing average spot size in two populations of the same species, e.g. the seven-spot ladybird 

Coccinella septempunctata. 

- Comparing the size of the markings on an animal to those on its background. 

Pattern Contrast Coefficient 

of Variation 

- For use on non-thresholded 

images. 

- Can measure the whole or 

part of an animal. 

- Determining if a flounder’s (suborder Pleuronectidae) colour pattern matches a random sample of its 

background substrate. 

- Comparing two different parts of an animal which can change its appearance rapidly such as the common 

cuttlefish Sepia officinalis. 

Marking 

Distribution 

Pixel Matrix 

 

- Areas to be compared must 

be of the same dimensions (in 

pixels). 

- Visualising the “average pattern” of a population of animals, e.g. shore crabs Carcinus maenas. 

- Designing realistic prey items, e.g. to test putative aposematic coloration in the pink warty sea cucumber 

Cercodemas anceps (Figs. 3 & 4).  

Marking 

Distribution 

Directionality 

 

Angle  

and 

Alignment 

- May need to first standardise 

for orientation, size and shape 

of the animal’s body. 

- Determining if a particular population of organisms is developing more linearly positioned markings in 

response to a selection pressure, e.g. the spots of the queen fish Scomberoides commersonianus, or the 

eyespots of the squinting bush-brown butterfly Bicyclus anynana. 

- Comparing the patterns of two species with similar overall body shapes. 

Pattern 

Randomness 

Gif File Size 

 

- For non-thresholded images. 

- Areas to be compared must 

have the same dimensions (in 

pixels) and ISO settings. 

- Comparing patterns on different morphotypes of a species, such as button snails Umbonium vestiarium. 

- Determining mimic quality, e.g. the eggs of the common cuckoo Cuculua canorus and those of its host.  

- Comparing an animal (e.g. shore crabs Carcinus maenas) to its background. 
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