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Abstract

This paper proposes a new Continuous Adaptive HOSM control algorithm. The key

advantage of the adaption scheme is that it does not require knowledge of the bounds on

the matched uncertainty, and the gains themselves are not conservatively overestimated

by the adaption scheme – which helps mitigate the problem of chattering. Compared

with earlier work, two variable parameters are allowed to adapt and this facilitates

much better self-tuning capabilities and improved closed-loop performance.
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1. Introduction

The most attractive feature of conventional sliding mode control, namely its unique

robustness properties, has, at least traditionally, come at the cost of using a high fre-

quency switching control law. This is quite acceptable in many practical systems: e.g.

DC/DC converter control and impulsive control of space vehicles [5, 14]. However,

in many systems the digital implementation of these control laws, combined with the

effects of unavoidable unmodelled parasitic dynamics, leads to low frequency oscil-

lations in the sliding variable known as chattering. This oscillation is subsequently

transmitted to the state variable during sliding – which is highly undesirable [4]. Over

the last two decades significant progress has been made in terms of the creation of
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so-called higher-order sliding mode (HOSM) control schemes which seek to allevi-

ate the phenomenon of chattering – often by artificially inflating the relative degree.

However these schemes still inherently employ discontinuous injection terms – usually

‘hidden’ and buried within the controller dynamics. Whilst these endeavors have re-

sulted in the formulation of continuous sliding mode controllers – such as the popular

super-twisting controller – it has been subsequently shown that, rather than totally elim-

inating chattering, these controllers only mitigate chattering [4]. Even modern higher

order controllers such as those proposed in [11, 12], require upper bounds on the distur-

bances/uncertainty (or the derivatives thereof). In general these bounds are difficult to

estimate and these supremum values are embedded in the controller gains. The conser-

vatism resulting from using worst case upper bounds on the disturbances/uncertainty

within the controller, compounds the chattering associated with the implementation.

This phenomenon has (partly) motivated research in what broadly could be described

as ‘adaptive sliding mode control’. In this paradigm the gains in the controller, which

depend on bounds on the uncertainty, are allowed to adapt. For this to be an effective

tool to counteract chattering, the adaptive terms must remain as small as possible, and

yet be sufficiently large to guarantee the sliding motion is achieved and maintained

([10, 13, 2]). Despite the interest, and the growing literature addressing the problem,

finding rigorous and yet effective ways of lowering unnecessarily large gains once slid-

ing is achieved, has proved challenging. One common approach is to include ‘leakage’

terms – but this often leads to only pseudo-sliding or real-sliding [1]. The problem of

adventitiously reducing the gains during sliding was specifically studied in [6], where

the continuous finite-time control law from [3] in conjunction with an adaptive super-

twisting structure was employed. The disadvantage of the approach in [6] is that only

one of the super-twisting parameters was adapted. The other tuning parameter was

assumed to be sufficiently large – a feature that may adversely effect chattering. To

directly address this problem, this paper employs the continuous finite time control law

from [3] in conjunction with a new adaptive super-twisting structure from [7] which

adjusts both gains. This will be shown to facilitate much better self-tuning capabilities

and improved closed-loop performance.
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2. Problem Statement

Consider the generic case1 when the (scalar) sliding variable, σ, to be nullified satisfies

σ(n)(t) = u(t) + d(t) (1)

where the integer n > 2. In (1), u(t) represents the scalar control variable, and d(t)

is an unknown disturbance. It is assumed the disturbance d(t) is twice differentiable

and its first and second derivatives are bounded, but these bounds are not known. The

objective is to compute a continuous HOSM control law to force σ, σ̇, ..., σ(n−1) = 0 in

finite time despite the uncertainty represented by the unknown signal d(t) and without

knowledge of the bounds on |ḋ(t)| and |d̈(t)|. To address this problem an adaptive

HOSM controller is proposed in which the gains of the adaptive terms evolve in such a

way that they are ‘as small as possible’, and yet can guarantee sliding is maintained. To

achieve this, the scheme will rely on exploiting information contained in the so-called

equivalent injection signal [18, 6]. The main contribution of this paper is in proposing

a Continuous Adaptive HOSM control algorithm in which both variable parameters

adapt (and are not overestimated). This allows better self-tuning capabilities compared

to the case in where only one parameter is adapted [6].

3. Preliminaries

The control scheme to address the problem posed in Section 2 will be built from two

elements: the continuous finite time controller proposed by [3] in conjunction with a

recently proposed fully adaptive super-twisting structure from [7]. The existing results

which are built upon in this paper will be summarised in this section in the form two

propositions:

Proposition 1: (Bhat & Bernstein) Consider the system

σ(n)=γ1|σ|α1sign (σ) . . .+ γn|σ(n−1)|αnsign(σ(n−1)) (2)

1To obtain the structure in (1) it is assumed that appropriate pre-transformations of the original full order

dynamics and a (smooth) feedback control law have already been applied to ‘cancel’ known terms – in other

words classical feedback linearization is used to obtain (1).
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where the scalars γ1, γ2, ..., γn are such that the polynomial pn+γnp
n−1+...+γ2p+γ1

is Hurwitz and the scalars α1, α2, ..., αn are chosen recursively as

αi−1 =
αiαi+1

2αi+1 − αi
, i = 2, ..., n (3)

with αn+1 = 1 and αn = ᾱ. Then there exists an εb ∈ (0, 1) such that for every

ᾱ ∈ (1− εb, 1) the origin σ, σ̇ . . . , σ(n) = 0 is a finite time stable equilibrium.

Proof: See Proposition 8.1 in [3]. �

This is clearly an existence theorem and the gains αi must be computed by simula-

tion.2 The table below shows an example of a set of gains which satisfies the conditions

of Proposition 1 and achieves finite time convergence for systems of order up to 4 with

the roots of the polynomial pn + γnp
n−1 + ...+ γ2p+ γ1 all equal to −2.

n control law component

1 −2|σ|1/2sign(σ)

2 −4|σ|3/7sign(σ)− 4|σ̇|3/5sign(σ̇)

3 −8|σ|7/16sign(σ)− 12|σ̇|7/13sign(σ̇)− 6|σ̈|7/10sign(σ̈)

4 −16|σ|1/2sign(σ)− 32|σ̇|4/7sign(σ̇)− 24|σ̈|2/3sign(σ̈)− 8|...σ |4/5sign(
...
σ)

Table 1: Coefficients for the continuous finite time component

The second proposition considers the differential equations

ṡ(t) = −λ(t)sign(s(t))|s(t)|1/2 + z(t)− s(t)L̇(t)/L(t) (4)

ż(t) = −β(t)sign(s(t)) + φ(t) (5)

studied in [7]. In the above the variables s, z are scalars and φ represents an unknown

scalar uncertainty/disturbance which is differentiable with bounds which are unknown.

In (4)-(5) the adaptive gains

λ(t) =
√

L(t)λ0 (6)

β(t) = L(t)β0 (7)

2Recall the HOSMCs of [11] also rely on computer tuned gains.
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where λ0 and β0 > 1 are fixed positive scalars and L(t) > 0 is an adjustable gain.

Define three matrices as

A0 =

⎡
⎣ − 1

2λ0
1
2

−β0 0

⎤
⎦ B0 =

⎡
⎣ 0

1

⎤
⎦ C0 =

[
1 0

]
(8)

then the following can be proved:

Proposition 2: (Edwards & Shtessel) Suppose L(t) is bounded and chosen to enforce

L(t) ≥ |φ(t)|, then a 2-SM occurs making s = ṡ = 0 in finite time if the gains λ0 and

β0 are chosen so that there exists a symmetric positive definite matrix P such that

PA0 +AT
0 P + ε̃0P + PB0B

T
0 P + CT

0 C0 < 0 (9)

where the scalar ε̃0 > 0, or equivalently ‖G0(s)‖∞ < 1 where

G0(s) := C0(sI −A0)
−1B0 =

1

(2s2 + λ0s+ β0)
(10)

Proof: See Proposition 1 and Remark 2 in work of [7] �

In Proposition 2 above the scalar L(t) is considered as an adaptable gain which is

‘advantageously’ manipulated. Here the evolution of L(t) will be chosen to depend on

the so-called equivalent control. This theoretical abstraction proposed in [17] is usually

used to analyze the reduced order dynamics associated with the sliding motion. During

sliding, the equivalent control can be approximated in real-time by low pass filtering of

the switched signal e.g

˙̄ueq(t) =
1

τ

(
β(t) sign(s(t))− ūeq(t)

)
(11)

where τ is a (small) positive constant. Furthermore, at least in principle, during sliding,

the difference between ūeq(t) and the true value of the equivalent control ueq(t) can be

made arbitrary small by making τ small [14]. Consequently, during the sliding motion

exhibited in (4)-(5), by filtering the discontinuous injection signal β(t) sign(s(t)), a

good estimate of ueq(t) = φ(t) (in this case) can be obtained in real-time provided τ

is sufficiently small. In modern micro-processor boards with bespoke implementations

of standard low pass filters, very high sample rates can be achieved allowing very small
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values of τ to be selected. For a detailed discussion on estimating the equivalent control

see [18, 6].

Remark 1: The choice of the positive scalar τ is crucial to the performance of the

controller. The scalar τ must be small enough so that the bandwidth of the filter in (11)

is sufficiently high to capture all the important frequency components of d(t) and yet

be sufficiently practical so that unwanted noise does not become part of ūeq(t). In ad-

dition, taking into account possible digital implementation, τ should be larger than the

sampling time of the chip on which the controller with the filter (11) is implemented.

Invariably the choice of τ must be made on a case by case basis exploiting engineer-

ing system information/judgement concerning the plant to be controlled. The output

of the filter in (11) is a visible signal during any simulation/implementation and so a

judgement can be made from ūeq(t) whether or not a meaningful disturbance estimate

for the plant is being obtained, and hence whether the selection of τ requires further

tuning.

4. Main Results

Here, as in [6, 18] it is assumed a low-pass filter exists, with suitably small time

constant τ and output ūeq(t), for which there exist scalars 0 < ε1 < 1 and ε0 > 0 such

that

||ūeq(t)| − |ueq(t)|| < ε1|ueq(t)|+ ε0 (12)

holds for all time after a finite time teq . (The initial time interval [0, teq] allows for the

fast dissipation of the effects of the initial conditions in the filter (11).) For a given

value of τ , estimates of the scalars ε0 and ε1 can be computed to ensure (12) holds [6].

This paper proposes a new continuous adaptive control law with two varying pa-

rameters, specifically:

u(t) = −uσ(t)− us(t) (13)

where

uσ(·)=γ1|σ|α1sign (σ) . . .+ γn|σ(n−1)|αnsign(σ(n−1)) (14)
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(which is identical to the right hand side of (2)) and

us(t) = s(t)L̇(t)/L(t) + λ(t) |s|1/2 sign(s) +

∫ t

0

β(τ)sign(s(τ))dτ (15)

(which is new) where the auxiliary sliding variable s is defined as

s(t) = σ(n−1)(t) +

∫ t

0

us(τ)dτ (16)

In (15) the time varying gain

λ(t) = 2
√
2β0L(t) (17)

and β(t) is defined in (7), where β0 > 1 is a fixed design scalar and L(t) > l0 > 0

is a time-varying gain. In (14) the scalars γ1, γ2, ..., γn must be chosen so that the

polynomial pn + γnp
n−1 + ...+ γ2p+ γ1 is Hurwitz and the scalars α1, α2, ..., αn are

chosen recursively to satisfy the conditions in (3) associated with Proposition 1.

Theorem 1: Consider the system in (1) with uncertainty d(t) which is twice differ-

entiable and subject to |ḋ(t)| < d1 and |d̈(t)| < d2 where the bounded scalars d1 and

d2 exist but are unknown. Using the control law from (13) in (1) where L(t) is adapted

in such a way that L(t) > |ḋ(t)|, then there exists an εb ∈ (0, 1) such that for every

ᾱ ∈ (1− εb, 1) the origin σ, σ̇, ..., σ(n) = 0 is a finite time stable equilibrium point.

Proof: From equations (16), (1), (13) and (15), the dynamics associated with the aux-

iliary variable s are described by

ṡ(t) = d(t)−λ(t) |s|1/2 sign(s)−
∫ t

0

β(τ)sign(s(τ))dτ − L̇(t)s(t)/L(t)

︸ ︷︷ ︸
−us(t)

(18)

Define φ(t) = ḋ(t), then (18) is exactly equivalent to the set of differential equations

in (4)-(5) studied in [7]. Using λ0 = 2
√
2β0 where β0 > 1, it is easy to confirm from

(10) that ‖G0(s)‖∞ < 1 and using Proposition 2 from Section 3 the choice of gains

in (7) and (17) ensure a 2-SM occurs in finite time in (4)-(5) if L(t) > |φ(t)|, forcing

s = ṡ = 0. Once sliding has been attained and ṡ = s = 0, the term us(t) from

(13) exactly compensates for the uncertainty: i.e us(t) = d(t). Consequently from

equations (1) and (13)

σ(n) = d(t) + u(t) = d(t)− u(t)︸ ︷︷ ︸
=0

−ub(t) = −ub(t)
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and therefore from the definition of ub in (14), during the sliding motion (associated

with s) the closed-loop system is governed by

σ(n) = −γ1 |σ|α1 sign (σ) . . .− γn|σ(n−1)|αnsign(σ(n−1))

From Proposition 1 in Section 3, there exists an εb ∈ (0, 1) such that for every ᾱ ∈
(1− εb, 1) the origin σ, σ̇ . . . , σ(n) = 0 is a finite time stable equilibrium �

Based on the result in Theorem 1, the problem becomes one of selecting L(t) so

that L(t) > |φ(t)|. In this paper this constraint will be ensured by using the dual-layer

adaptive structure proposed in [6]. As in [6] define a new scalar variable δ as

δ(t) = L(t)− 1

αβ0
|ūeq(t)| − ε (19)

In (19), ūeq(t) is the approximation of the equivalent control, the scalar α is chosen to

satisfy 0 < α < 1/β0 < 1 and ε is a small positive scalar chosen to ensure

1

αβ0
|ūeq(t)|+ ε/2 >

1

β0
|ueq(t)| (20)

The design scalars α and ε represent ‘safety margins’ (at the expense of introducing

conservatism) and are discussed in Remark 3.

The proposed adaptive element L(t) on which the gains λ(t) and β(t) depend is

given by

L(t) = l0 + l(t) (21)

where l0 is a (small) fixed positive (design) constant and

l̇(t) = −ρ(t)sign(δ(t)) (22)

where δ(t) is defined in (19). The scalar in (22) is by definition

ρ(t) = r0 + r(t) (23)

where r0 is a fixed positive design scalar and the time varying component r(t) satisfies

ṙ(t) = γ|δ(t)| (24)

where γ is a fixed positive scalar design constant.
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Remark 2: It is clear the adaption scheme is driven by the estimate of the equiva-

lent control ūeq(t). The estimate of the equivalent control ūeq(t) is typically (almost

always) obtained by low-pass filtering the discontinuous injection. The choice of band-

width of the filter (which constitutes design freedom) affects the accuracy with which

ūeq(t) captures the true formal equivalent control and hence the disturbance/uncer-

tainty. In the scheme proposed in this paper the signal ūeq(t) does not need to perfectly

capture the equivalent control but needs to be sufficiently accurate to satisfy (12). To

select an appropriate bandwidth, engineering understanding of the physical system to

be controlled is required – especially an understanding of the relevant frequency ranges

of the disturbances. The choice of filter in this sense plays a similar role to the weight-

ing functions used in robust linear control when formulating H∞ problems [19].

Theorem 2: The controller given in (13)-(17) and (21)-(24) is a continuous adaptive

HOSM controller for the system in (1), and drives σ, σ̇, ..., σ(n) → 0 in finite time

despite the presence of the disturbance d(t) with bounded derivatives |ḋ(t)| ≤ d1 and

|d̈(t)| < d2 without requiring knowledge of d1 and d2.

Proof: As shown in the proof of Proposition 2 in [7] the dual-layer adaptive mechanism

in (21)-(24) forces L(t) > |φ(t)| in finite time. Once achieved, the conditions of

Theorem 1 above are satisfied and σ, σ̇, ..., σ(n) = 0 in finite time and the statement of

the theorem is proven. �

Remark 3: In [7] it is argued that for the scheme to work successfully, the true equiva-

lent control ueq(t) must satisfy

1

β0
|ueq(t)| ≤ 1

β0
|ūeq(t)|+ 1−α

αβ0
|ūeq(t)|+ ε

2︸ ︷︷ ︸
safety margin

(25)

In the right hand side of (25) it is clear the gains α and ε establish a ‘cone’ around the

equivalent control |ueq(t)| involving the multiplicative gain
(1−α)
αβ0

and a fixed off-set

ε
2 . These introduce a safety margin and robustness into the adaptive scheme – which

is crucial since |ueq(t)| can only be estimated by ūeq(t) through the low-pass filtering

process. A small value of α � 1 and a large value for ε reflects a lack of confidence

in ūeq(t) capturing accurately the true value of the equivalent control and therefore
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the actual uncertainty. A consequence of using a small value of α � 1 and a large

value for ε is that the gain L(t) in (19) no longer accurately tracks the magnitude of the

uncertainty (since it tracks the right hand side of (25)) and therefore the adaptive gains

will be unnecessarily large. Conversely a value of α close to unity and a small value for

ε means L(t) will closely track the magnitude of the uncertainty; however to achieve

this requires confidence in ūeq(t) accurately reflecting the true equivalent control. (If

α = 1 and ε = 0 then |ueq(t)| = |ūeq(t)| must hold.)

Remark 4: Prior to sliding taking place, filtering the injection term β(t)sign(σ) does

not formally provide ‘the equivalent injection’ (which only has meaning during the ex-

istence of a sliding motion). However in the absence of sliding it can be shown that

sign(δ(t)) < 0 and therefore l̇(t) > r0 > 0 and the gain L(t) is forced to monoton-

ically increase. Once L(t) is sufficiently large, sliding is induced in finite time. For

further details see [6].

Remark 5: Compared to the control law described in [6] the significant difference to

the scheme presented in this paper is the definition of us(t) in (15) and the specific

choice of the adaptive gains in (7) and (17) which allow both λ(t) and β(t) to adapt.

Previously the scheme in [6] involved a fixed ‘large enough λ’. By allowing λ(t) to

vanish as L(t) becomes small helps to mitigate chattering.

Remark 6: For practical implementation the adaptive scheme in (22) and (24) can be

replaced by

l̇(t) = −ρ(t)sign(δ(t)) (26)

ṙ(t) =

⎧⎨
⎩

γ|δ(t)| if |δ(t)| > δ0

0 otherwise
(27)

where δ0 is a (small) positive design scalar. For details see [6].

Remark 7: In both versions of the adaptation law (i.e (24) and (27)) the gain r(t) and

hence ρ(t) is non-decreasing but remains bounded. The gain ρ(t) can be interpreted

as an upper bound on the second derivative of the disturbance |d̈(t)|. Although in (22)

and (26) large amplitude switching can occur in the right hand side if ρ(t) is large, the

gain l(t), and hence L(t), are both continuous. Consequently the changes to λ(t) and

β(t) in (6) and (7) are continuous.
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5. Simulations

Consider the relative degree three situation when n = 3 in (1) and where for simulation

purposes the unknown disturbance is given by d(t) = 2 sin t + 0.2 sin 5t + 0.5. The

signal d(t) and the bounds on the derivatives ḋ(t) and d̈(t) are assumed to be unknown.

In the simulations, the values from Table 1 have been used to create uσ(t) in (14). In

the adaptive component β0 = 1.1, γ = 10, r0 = 1 and l0 = 0.001. The time constant

of the filter (11) is τ = 0.001, starting with zero initial conditions. The results of the

simulations, obtained by the Euler integration algorithm with a fixed time increment

equal to 10−6s, where σ(0) = 1, σ̇(0) = 0.5 and σ̈(0) = 0, in three different scenarios

are shown in the sequel. The three simulation scenarios considered here are:

1. With the HOSM controller parameters α = 0.99 and ε = 0.02 in (19).

2. With the HOSM controller parameters α = 0.7 and ε = 0.3 in (19). This case

deliberately introduces larger safety margins in the control gain β(t) and results

in conservative over-bounding of the unknown the perturbation derivative |ḋ|.
3. Using the continuous adaptive 3-SMC with λ(t) = λ(0) = 0.05 (i.e. the scheme

from [5] in which λ is non-adaptive) and only β(t) is adapted in accordance with

equations (7) and (21)-(24))

Figure 1: Evolution of σ, σ̇ and σ̈ with the adaptive gains λ(t) and β(t)

The plots for the first simulation scenario are shown in Figures 1-4. Figure 1 demon-

strates finite time convergence of σ, σ̇ and σ̈ to zero in the presence of the bounded
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Figure 2: Evolution of the control function u(t)

�

Figure 3: Evolution of the adaptive gains λ(t) and β(t) and |ḋ(t)| for α = 0.99 and ε = 0.02

disturbance. The time history of the continuous adaptive 3-SMC control u(t), with

both λ(t) and β(t) being adapted, is shown in Figure 2. The evolution of the gains

λ(t) and β(t), shown in Figure 3, demonstrates the excellent self-tuning capabilities

of the adaptive continuous 3-SMC control from (6)-(7), (21)-(24) in terms of control

gain non-overestimation. Specifically, the adaptive gain β(t) just slightly supersedes

the |ḋ(t)| profile, while λ(t) = 2
√

2β(t) is in accordance with equations (7) and (17).

The evolutions of ρ(t), δ(t) and L(t) are presented in Figure 4. It is clear that the

adaptive gain ρ(t) reaches a constant value, while the adaptive parameter L(t) follows
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Figure 4: Evolution of ρ(t), δ(t) and L(t) for α = 0.99 and ε = 0.02

Figure 5: Evolution of λ(t), β(t) and |ḋ(t)| for α = 0.7 and ε = 0.3
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the unknown profile |ḋ(t)|, and the variable δ(t) reaches zero in finite time.

The plots for the second simulation scenario are shown in Figure 5 and demon-

strates the adaptive gain β(t) over-bounds the profile of |ḋ(t)| with a larger more con-

servative margin than in the first simulation scenario: this is exactly as expected. The

plots of σ, σ̇, and σ̈ as well of the control function u(t) are practically the same as in

the first scenario.

The plots for the third simulation scenario are shown in Figures 6 and 7 and demon-

strate a significant degradation of the adaptive control system performance with a fixed

(poorly) chosen value of λ(t) = 0.05. Specifically, the transient responses of σ, σ̇ and

σ̈ in Figure 6 are much more oscillatory, and the control function u(t) in Figure 7 is no

longer continuous.

Figure 6: Evolution of σ, σ̇ and σ̈ with the adaptive gain β(t) and fixed λ = 0.05

6. Conclusions

The main contribution of this paper is in proposing a Continuous Adaptive HOSM

control algorithm. The adaptive scheme does not require knowledge of upper bounds

on the (matched) uncertainty and its derivatives, and is constructed so as not to con-

servatively overestimate the magnitude of the uncertainty, thus mitigating chattering.

Compared with the authors’ earlier work, in this paper, two parameters adapt and this

allows better self-tuning.
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Figure 7: Evolution of u(t) with the adaptive gain β(t) and fixed λ = 0.05
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