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Abstract:  

Plant functional traits directly affect ecosystem functions. At the species level, trait 
combinations depend on trade-offs representing different ecological strategies, but at the 
community level trait combinations are expected to be decoupled from these trade-offs 
because different strategies can facilitate co-existence within communities. A key remaining 
question is to what extent community-level trait composition is globally filtered and how well 
it is related to global vs. local environmental drivers. Here, we perform a global, plot-level 
analysis of trait-environment relationships, using a database with more than 1.1 million 
vegetation plots and 26,632 plant species with trait information. Although we found a strong 
filtering of 17 functional traits, similar climate and soil conditions support communities 
differing greatly in mean trait values. The two main community trait axes which capture half 
of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at 
the species level but are weakly associated with climate and soil conditions at the global scale. 
Similarly, within-plot trait variation does not vary systematically with macro-environment. 
Our results indicate that, at fine spatial grain, macro-environmental drivers are much less 
important for functional trait composition than has been assumed from floristic analyses 
restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be 
predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, 
niche partitioning or biotic interactions. 

 

Introduction 

How climate drives the functional characteristics of vegetation across the globe has been a 
key question in ecological research for more than a century1. While functional information is 
available for a large portion of the global pool of plant species, we do not know how 
functional traits of the different species that co-occur in a community are combined, which is 
what determines their joint effect on ecosystems2-4. At the species level, Díaz et al.5 
demonstrated that 74% of the global spectrum of six key plant traits determining plant fitness 
in terms of survival, growth and reproduction can be accounted for by two principal 
components (PCs). They showed that the functional space occupied by vascular plant species 
is strongly constrained by trade-offs between traits and converges on a small set of successful 
trait combinations, confirming previous findings6-9. While these constraints describe 
evolutionarily viable ecological strategies for vascular plant species globally, they provide 
only limited insight into trait composition within communities. There are many reasons why 
trait composition within communities would produce very different patterns, and indeed much 
theory predicts this10-11. However, it is still unknown to what extent community-level trait 
composition depends on local factors (microclimate, fine-scale soil properties, disturbance 
regime10, successional dynamics2) and regional to global environmental drivers 
(macroclimate6,12-13, coarse-scale soil properties3,14). As ecosystem functions and services are 
ultimately dependent on the traits of the species composing ecological communities, 
exploring community trait composition at the global scale can advance our understanding of 
how climate change and other anthropogenic drivers affect ecosystem functioning.  



So far, studies relating trait composition to the environment at continental to global extents 
have been restricted to coarse-grained species occurrence data (e.g. presence in 1° grid cells15-

17). Such data capture neither biotic interactions (co-occurrence in large grid cells does not 
indicate local co-existence), nor local variation in environmental filters (e.g. variation in soil, 
topography or disturbance regime within grid cells). In contrast, functional composition of 
ecological communities sampled at fine-grained vegetation plots – with areas of few to a few 
hundred square meters – is the direct outcome of the interaction between both local and large-
scale factors. Here, we present a global analysis of plot-level trait composition. We combined 
the ‘sPlot’ database, a new global initiative incorporating more than 1.1 million vegetation 
plots from over 100 databases (mainly forests and grasslands; see Methods), with 30 large-
scale environmental variables and 18 key plant functional traits derived from TRY, a global 
plant-trait database (see Methods, Table 2). We selected these 18 traits because they affect 
different key ecosystem processes and are expected to respond to macroclimatic drivers 
(Table 1). In addition, they were sufficiently measured across all species globally to allow for 
imputation of missing values (see Methods). All analyses were confined to vascular plant 
species and included all vegetation layers in a community, from the canopy to the herb layer 
(see Methods). 

We used this unprecedented fine-resolution dataset to test the hypothesis (Hypothesis 1) that 
plant communities show evidence of environmental or biotic filtering at the global scale, 
making use of the observed variation of plot-level trait means and means of within-plot trait 
variation across communities. Ecological theory suggests that community-level convergence 
could be interpreted as the result of filtering processes, including environmental filtering and 
biotic interactions. Globally, temperature and precipitation drive the differences in vegetation 
between biomes, suggesting strong environmental filtering3,11 that constrains the number of 
successful trait combinations and leads to community-level trait convergence. Similarly, 
biotic interactions may eliminate excessively divergent trait combinations18,19. However, 
alternative functional trait combinations may confer equal fitness in the same environment10. 
If plant communities show a global variation of plot-level trait means higher than expected by 
chance, and a lower than expected within-plot trait variation (see Figure 1), this would 
support the view that environmental or biotic filtering are dominant structuring processes of 
community trait composition at the global scale. A consequence of strong community-level 
trait convergence, and thus low variation within plots with species trait values centred around 
the mean, would be that plot-level means will be similar to the trait values of the species in 
that plot. Hence, community mean trait values should then mirror the trait values of individual 
species5. 

While Hypothesis 1 addresses the degree of filtering, it does not make a statement on the 
attribution of driving factors. The main drivers should correlate strongly (though not 
necessarily linearly20) with plot-level trait means and within-plot trait variance. Identifying 
these drivers has the potential to fundamentally improve our understanding of global trait-
environment relationships. We tested the hypothesis (Hypothesis 2) that there are strong 
correlations between global environmental drivers such as macroclimate and coarse-scale soil 
properties and both plot-level trait means and within-plot trait variances3,6,12-17,20-24 (see Table 
1 for expected relationships and Supplementary Table 2 for variables used). Such evidence, 



although correlative, may contribute to the formulation of novel hypotheses to explain global 
plant trait patterns. 

 

Results and Discussion 

Consistent with Hypothesis 1 and as illustrated in Figure 1, global variation in plot-level trait 
means was much higher than expected by chance: all traits had positive standardized effect 
sizes (SESs), which were significantly > 0 for 17 out of 18 traits based on gap-filled data 
(mean SES = 8.06 standard deviations (SD), Table 2). This suggests that environmental or 
biotic filtering is a dominant force of community trait composition globally. Also as predicted 
by Hypothesis 1, within-plot trait variance was typically lower than expected by chance 
(mean SES = -1.76 SD, significantly < 0 for ten traits but significantly > 0 for three traits; 
Table 2). Thus, trait variation within communities may also be constrained by filtering.  

Trait correlations at the community level were relatively well captured by the first two axes of 
a Principal Component Analysis (PCA) for both plot-level trait means and within-plot trait 
variances (Figures 1 and 2). The dominant axes were determined by those traits with the 
highest absolute SESs of plot-level trait mean trait values (Table 2, mean of CWMs). The 
PCA of plot-level trait means (Fig. 2) reflects two main functional continua on which 
community trait values converge: one from short-stature, small-seeded communities such as 
grasslands or herbaceous vegetation to tall-stature communities with large, heavy diaspores 
such as forests (the size spectrum), and the other from communities with resource-acquisitive 
to those with resource-conservative leaves (i.e. the leaf economics spectrum)7. The high 
similarity between this PCA and the one at the species level by Díaz et al.5 is striking: here at 
the community level, based on 1.1 million plots, the same functional continua emerged as at 
the species level, based on 2,214 species. While the trade-offs between different traits at the 
species level can be understood from a physiological and evolutionary perspective, finding 
similar trade-offs between traits at the community level was unexpected, as species with 
opposing trait values can co-exist in the same community. In combination with our finding of 
strong trait convergence, these results reveal a strong parallel of present-day community 
assembly to individual species’ evolutionary histories.  

Surprisingly, we found only limited support for Hypothesis 2. Community-level trait 
composition was poorly captured by global climate and soil variables. None of the 30 
environmental variables accounted individually for more than 10% of the variance in the traits 
defining the main dimensions in Fig. 2 (Supplementary Fig. 2). The coefficients of 
determination were not improved when testing for non-linear relationships (see Methods). 
Using all 30 environmental variables simultaneously as predictors only accounted for 10.8% 
or 14.0% of the overall variation in plot-level trait means (cumulative variance, respectively, 
of the first two or all 18 constrained axes in a Redundancy Analysis). Overall, our results 
show that similar global-scale climate and soil conditions can support communities that differ 
markedly in mean trait values and that different climates can support communities with rather 
similar mean trait values. 



The ordination of within-plot variance of the different traits (Fig. 3) revealed two main 
continua. Variances of plant height and diaspore mass varied largely independently of 
variances of traits representing the leaf economics spectrum. This suggests that short and tall 
species can be assembled together in the same community independently from combining 
species with acquisitive leaves with species with conservative leaves. Global climate and soil 
variables accounted for even less variation on the first two PCA axes in within-plot trait 
variances than on the first two PCA axes in plot-level trait means. Only two environmental 
variables had r2 > 3% (Supplementary Fig. 3), whether allowing for non-linear relationships 
(see Methods) or not, and overall, macro-environment accounted for only 3.6% or 5.0% of the 
variation (cumulative variance, respectively, of the first two or all 18 constrained axes). 
Removing species richness effects from within-plot trait variances did not increase the 
amount of variation explained by the environment (see Methods).  

The findings of our study contrast strongly with studies where the variation in traits between 
species was calculated at the level of the species pool in large grid cells15,16, suggesting that 
plot-level and grid cell-level trait composition are driven by different factors21. Plot-level trait 
means and variances may both be predominantly driven by local environmental factors, such 
as topography (e.g. north- vs. south-facing slopes), local soil characteristics (e.g. soil depth 
and nutrient supply)3,14,24,25, disturbance regime (including land use26 and successional 
status2,27) or biotic interactions18-19,28, while broad-scale climate and soil conditions may only 
become relevant for the whole species pool in large grid cells. Such differences emphasize the 
importance of local environment in affecting the communities’ trait composition and should 
be taken into account when interpreting the effect of environmental drivers in functional trait 
diversity using data on either floristic pools or ecological communities. 

We note that the strongest community-level correlations with environment were found for 
traits not linked to the leaf economics spectrum. Mean stem specific density increased with 
potential evapotranspiration (PET, r2=15.6%; Fig. 4a, b), reflecting the need to produce 
denser wood with increasing evaporative demand. Leaf N:P ratio increased with growing-
season warmth (growing degree days above 5°C, GDD5, r2=11.5%; Fig. 4d), indicating strong 
phosphorus limitation29 in most plots in the tropics and subtropics (Fig. 4c, d). This pattern 
was not brought about by a parallel increase in the presence of legumes, which tend to have 
relatively high N:P ratios; excluding all species of Fabaceae resulted in a very similar 
relationship with GDD5 (r2=10.0%). The global N:P pattern is consistent with results based 
on traits of single species related to mean annual temperature30. We assume that the main 
underlying mechanism is the high soil weathering rate at high temperatures and humidity, 
which in the tropics and subtropics was not reset by Pleistocene glaciation. Thus, phosphorus 
limitation may weaken the relationships between productivity-related traits and macroclimate 
(Supplementary Fig. 2). For example, specific leaf area may be low as consequence of low 
nutrient availability3,14,24-25 in favourable climates as well as be low as consequence of low 
temperature and precipitation under favourable nutrient supply. Overall, our findings are 
relevant in improving Dynamic Global Vegetation Models (DGVMs), which so far have used 
trait information only from a few calibration plots22. The sPlot database provides much-
needed empirical data on the community trait pool in DGVMs31 and identifies traits that 



should be considered when predicting ecosystem functions from vegetation, such as stem 
specific density and leaf N:P ratio. 

Our results were surprisingly robust both to the selection of trait data, when comparing 
different plant formations and when explicitly accounting for the uneven distribution of plots. 
Using the original trait values measured for the species from the TRY database for the six 
traits used by Díaz et al.5 (see Methods), resulted in the same two main functional continua 
and an overall highly similar ordination pattern (Supplementary Fig. 4) compared to using 
gap-filled data for 18 traits (Fig. 2). Community-level trait composition was also similarly 
poorly captured by global climate and soil variables. Single regressions of CWMs with all 
environmental variables revealed very similar patterns to those based on gap-filled traits 
(Supplementary Fig. 5). Similarly, subjecting the CWMs based on six original traits to a 
Redundancy Analysis with all 30 environmental variables accounted only for 20.6% or 21.8% 
of the overall variation in CWMs (cumulative variance of the first two or all six constrained 
axes, respectively, Supplementary Fig. 4). These results clearly demonstrate that the 
imputation of missing trait values did not result in spurious artefacts which may have 
obscured community trait-environment relationships. 

We also assessed whether the observed trait-environment relationships hold for forests and 
non-forest vegetation independently (see Methods). Both subsets confirmed the overall 
patterns in trait means (Supplementary Figs. 3-6). The variance in plot-level trait means 
explained by large-scale climate and soil variables was higher for forest than non-forest plots, 
probably because forests belong to a well-defined and rather resource-conservative formation, 
whereas non-forest plots encompass a heterogeneous mixture of different vegetation types, 
ranging from alpine meadows to semi-deserts, and tend to depend more on disturbance and 
management, which can strongly affect trait-environment relationships of communities21. 
Finally, to test whether our findings depended on the uneven distribution of plots among the 
world’s different climates and soils, we repeated the analyses in 100 subsets of ~100,000 plots 
resampled in the global climate space (Supplementary Figs. 7-8). The analyses of the 
resampled datasets revealed the same patterns and confirmed the impact of PET and GDD5 
on stem specific density and leaf N:P ratio, respectively. The correlations between trait means 
and environmental variables were, however, stronger in the resampled subsets, possibly 
because the resampling procedure reduced the overrepresentation of the temperate-zone areas 
with intermediate climatic values.  

Our findings have important implications for understanding and predicting plant community 
trait assembly. First, worldwide trait variation of plant communities is captured by a few main 
dimensions of variation, which are surprisingly similar to those reported by species-based 
studies5,7-9, suggesting that the drivers of past trait evolution, which resulted in the present-day 
species-level trait spectra5, are also reflected in the composition of today’s plant communities. 
If species-level trade-offs indeed constrain community assembly, then the present-day 
contrasts in trait composition of terrestrial plant communities should also have existed in the 
past and will probably remain, even for novel communities, in the future. Most species in our 
present-day communities evolved under very variable filtering conditions across the globe, 
with respect to temperature and precipitation regimes. Therefore, it can be assumed that future 
filtering conditions will result in novel communities that follow the same functional continua 



from short-stature, small-seeded communities to tall-stature communities with large, heavy 
diaspores and from communities with resource-acquisitive to those with resource-
conservative leaves. Second, the main plot-level vegetation trait continua cannot easily be 
captured by coarse-resolution environmental variables21. This brings into question both the 
use of simple large-scale climate relationships to predict the leaf economics spectra of global 
vegetation13,15-16,22 and attempts to derive net primary productivity and global carbon and 
water budgets from global climate, even when employing powerful trait-based vegetation 
models31. The finding that within-plot trait variances were only very weakly related to global 
climate or soil variables points to the importance of i) local-scale climate or soil variables, ii) 
disturbance regimes or iii) biotic interactions for the degree of local trait dispersion11. Finally, 
both our findings on the limited role of large-scale climate in explaining trait patterns and on 
the prevalence of phosphorus limitation in most plots in the tropics and subtropics call for 
including local variables when predicting community trait patterns. Even under similar 
macro-environmental conditions, communities can vary greatly in trait means and variances, 
consistent with high local variation in species’ trait values3,6-7. Future research on functional 
response of communities to changing climate should incorporate the effect of local 
environmental conditions24-26 and biotic interactions18-19 for building reliable predictions of 
vegetation dynamics. 

 

Material and Methods 

Vegetation Data. The sPlot 2.1 vegetation database contains 1,121,244 plots with 23,586,216 
species × plot observations, i.e. records of a species in a plot 
(https://www.idiv.de/en/sdiv/working_groups/wg_pool/splot.html). This database aims at 
compiling plot-based vegetation data from all vegetation types worldwide, but with a 
particular focus on forest and grassland vegetation. Although the initial aim of sPlot was to 
achieve global coverage, the plots are very unevenly distributed with most data coming from 
Europe, North America and Australia and an overrepresentation of temperate vegetation types 
(Supplementary Fig. 1).  

For most plots (97.2%) information on the single species’ relative contribution to the sum of 
plants in the plot was available, expressed as cover, basal area, individual count, importance 
value or per cent frequency in subplots. For the other 2.8% (31,461 plots), for which only 
presence/absence (p/a) was available, we assigned equal relative abundance to the species 
(1/species richness). For plots with a mix of cover and p/a information (mostly forest plots, 
where herb layer information had been added on a p/a basis; 8,524 plots), relative abundance 
was calculated by assigning the smallest cover value that occurred in a particular plot to all 
species with only p/a information in that plot. In most cases (98.4%), plot records in sPlot 
include full species lists of vascular plants. Bryophytes and lichens were additionally 
identified in 14% and 7% of plots, respectively. After removing plots without geographic 
coordinates and all observations on bryophytes and lichens, the database contained 
22,195,966 observations on the relative abundance of vascular plant species in a total of 
1,117,369 plots. The temporal extent of the data spans from 1885 to 2015, but >95% of 
vegetation plots were recorded later than 1980. Plot size was reported in 65.4% of plots. 



While forest plots had plot sizes ³100 m2, and in most cases £1,000 m2, non-forest plots 
typically ranged from 5 to 100 m2. 

Taxonomy. To standardize the nomenclature of species within and between sPlot and TRY 
(see below), we constructed a taxonomic backbone of the 121,861 names contained in the two 
databases. Prior to name matching, we ran a series of string manipulation routines in R, to 
remove special characters and numbers, as well as standardized abbreviations in names. 
Taxon names were parsed and resolved using Taxonomic Name Resolution Service version 
4.0 (TNRS32; http://tnrs.iplantcollaborative.org; accessed 20 Sep 2015), selecting the best 
match across the five following sources: i) The Plant List (version 1.1; 
http://www.theplantlist.org/; Accessed 19 Aug 2015), ii) Global Compositae Checklist (GCC, 
http://compositae.landcareresearch.co.nz/Default.aspx; accessed 21 Aug 2015), iii) 
International Legume Database and Information Service (ILDIS, 
http://www.ildis.org/LegumeWeb; accessed 21 Aug 2015), iv) Tropicos 
(http://www.tropicos.org/; accessed 19 Dec 2014), and v) USDA Plants Database 
(http://usda.gov/wps/portal/usda/usdahome; accessed 17 Jan 2015). We allowed for partial 
matching to the next higher taxonomic rank (genus or family) in cases where full taxon names 
could not be found. All names matched or converted from a synonym by TNRS were 
considered accepted taxon names. In cases when no exact match was found (e.g. when 
alternative spelling corrections were reported), names with probabilities of ≥ 95% or higher 
were accepted and those with < 95% were examined individually. Remaining non-matching 
names were resolved based on the National Center for Biotechnology Information's 
Taxonomy database (NCBI, http://www.ncbi.nlm.nih.gov/; accessed 25 Oct 2011) within 
TNRS, or sequentially compared directly against The Plant List and Tropicos (accessed 
September 2015). Names that could not be resolved against any of these lists were left as 
blanks in the final standardized name field. This resulted in a total of 86,760 resolved names, 
corresponding to 664 families, occurring in sPlot or TRY or both. Classification into families 
was carried out according to APGIII33, and was used to identify non-vascular plant species 
(~5.1% of the taxon names) which were excluded from the subsequent statistical analysis. 

Trait Data. Data for 18 traits that are ecologically relevant (Table 1) and sufficiently covered 
across species34 were requested from TRY35 (version 3.0) on the 10th August, 2016. We 
applied gap-filling with Bayesian Hierarchical Probabilistic Matrix Factorization 
(BHPMF34,36-37). We used the prediction uncertainties provided by BHPMF for each 
imputation to assess the quality of gap-filling and removed all imputations with a coefficient 
of variation > 137. We obtained 18 gap-filled traits for 26,632 out of a total of 58,065 taxa in 
sPlot, which corresponds to 45.9% of all species but to 88.7% of all species × plot 
combinations. Trait coverage of the most frequent species was 77.2% and 96.2% for taxa that 
occurred in more than 100 or 1,000 plots, respectively. The gap-filled trait data comprised 
observed and imputed values on 632,938 individual plants, which we loge transformed and 
aggregated by taxon. For those taxa that were recorded at the genus level only, we calculated 
genus means. Out of 22,195,966 records of vascular plant species with geographic reference, 
21,172,989 (=95.4%) refer to taxa for which we had gap-filled trait values. This resulted in 
1,115,785 and 1,099,463 plots for which we had at least one taxon or two taxa with a trait 



value (99.5% and 98.1%, respectively, of all 1,121,244 plots), and for which trait means and 
variances could be calculated. 

As some mean values of traits in TRY were based on a very small number of replicates per 
species, which results in uncertainty in trait mean and variance calculations38, we tested to 
which degree the trait patterns in the dataset might be caused by a potential removal of trait 
variation by imputation of trait values and additionally carried out all analyses using the 
original trait data on the same 632,938 individual plants instead of gap-filled data 
(Supplementary Table 1). The degree of trait coverage of species ranged between 7.0% and 
58.0% for leaf fresh mass and plant height, respectively. Across all species, mean coverage of 
species with original trait values was 21.8%, as compared to 45.9% for gap-filled trait data. 
Linking these trait values to the species occurrence data resulted in a coverage of species × 
plot observations with trait values between 7.6% and 96.6% for conduit element length and 
plant height, respectively (Supplementary Table 1), with a mean of 60.7% as compared to 
88.7% for those based on gap-filled traits. Using these original trait values to calculate 
community-weighted mean (CWM) trait values (see below) resulted in a plot coverage of trait 
values between 48.2% and 100% for conduit element length and SLA, respectively. Across all 
plots, mean coverage of plots with original trait values was 89.3%, as compared to 100% for 
gap-filled trait data (Supplementary Table 1).  

We are aware that using species mean values for traits excludes the possibility to account for 
intraspecific variance, which can also strongly respond to the environment39. Thus, using one 
single value for a species is a source of error in calculating trait means and variances.  

 

Environmental Data. We compiled 30 environmental variables (Supplementary Table 2). 
Macroclimate variables were extracted from CHELSA40-41, V1.1 (Climatologies at High 
Resolution for the Earth’s Land Surface Areas, www.chelsa-climate.org). CHELSA provides 
19 bioclimatic variables equivalent to those used in WorldClim (www.worldclim.org) at a 
resolution of 30 arc sec (~ 1 km at the equator), averaging global climatic data from the 
period 1979–2013 and using a quasi-mechanistic statistical downscaling of the ERA-Interim 
reanalysis42.  

Variables reflecting growing-season warmth were growing degree days above 1°C (GDD1) 
and 5°C (GDD5), calculated from CHELSA data43. We also compiled an index of aridity 
(AR) and a model for potential evapotranspiration (PET) extracted from the Consortium of 
Spatial Information (CGIAR-CSI) website (www.cgiar-csi.org). In addition, seven soil 
variables were extracted from the SOILGRIDS project (https://soilgrids.org/, licensed by 
ISRIC – World Soil Information), downloaded at 250 m resolution and then resampled using 
the 30 arc second grid of CHELSA (Supplementary Table 2). We refer to these climate and 
soil data as “environmental data”.  

Community trait composition.  

For every trait j and plot k, we calculated the plot-level trait means as community-weighted 
mean (CWM) according to2,44: 
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where nk is the number of species sampled in plot k, pi,k is the relative abundance of species i 
in plot k, referring to the sum of abundances for all species with traits in the plot, and ti,j is the 
mean value of species i for trait j. This computation was done for each of the 18 traits for 
1,115,785 plots. The within-plot trait variance is given by community-weighted variance 
(CWV)44,45: 
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CWV is equal to functional dispersion as described by Rao’s quadratic entropy46, when using 
a squared Euclidean distance matrix di,j,k 47: 
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We had CWV information for 18 traits for 1,099,463 plots, as at least two taxa were needed to 
calculate CWV. We performed the calculations using the 'data.table' package48 in R. 

 

Assessing the degree of filtering. To analyse how plot-level trait means and within-plot trait 
variances (based on gap-filled trait data) depart from random expectation, for each trait we 
calculated standardized effect sizes (SESs) for the variance in CWMs and for the mean in 
CWVs. Significantly positive SESs in variance of CWM and significantly negative ones in 
the mean of CWV can be considered a global-level measure of environmental or biotic 
filtering. To provide an indication of the global direction of filtering, we also report SESs for 
the mean of CWM trait values. Similarly, to measure how much within-community trait 
dispersion varied globally, we also calculated SESs for the variance in CWV. 

SESs were obtained from 100 runs of randomizing trait values across all species globally. In 
every run we calculated CWM and CWV with random trait values, but keeping all species 
abundances in plots. Thus, the results of randomization are independent from species co-
occurrences structure of plots49. For every trait, the SESs of the variance in CWM were 
calculated as the observed value of variance in CWM minus the mean variance in CWM of 
the random runs, divided by the standard deviation of the variance in CWM of the random 
runs (Fig. 1). SESs for the mean in CWM, the mean in CWV and the variance in CWV were 
calculated accordingly. Tests for significance of SESs were obtained by fitting generalized 
Pareto-distribution of the most extreme random values and then estimating p values form this 
fitted distribution50. 

 

Vegetation trait-environment relationships. Out of the 1,115,785 plots with CWM values, 
1,114,304 (99.9%) had complete environmental information and coordinates. This set of plots 



was used to calculate single linear regressions of each of the 18 traits on each of the 30 
environmental variables. We used the 'corrplot' function51 in R to illustrate Pearson 
correlation coefficients (see Supplementary Figs. 1-2, 4, 6, 8) and for the strongest 
relationships produced bivariate graphs and mapped the global distribution of the CWM 
values using kriging interpolation in ArcGIS 10.2 (Fig. 4). We also tested for non-linear 
relationships with environment by including an additional quadratic term in the linear model 
and then report coefficients of determination. As in the linear relationships of CWM with 
environment, the highest r2 values in models with an additional quadratic term were 
encountered between stem specific density and PET (r2=0.156) and leaf N:P ratio and 
growing degree days above 5°C (GDD5, r2=0.118). These were not substantially different 
from the linear CWM-environment relationships, which had r2=0.156 and r2=0.115, 
respectively (Fig. 4, Supplementary Fig. 2). Similarly, including a quadratic term in the 
regressions did not increase the CWV-environment correlations. Here, the strongest 
correlations were encountered between plant height and soil pH (r2=0.044) and between 
specific leaf area (SLA) and the volumetric content of coarse fragments in the soil 
(CoarseFrags, r2=0.037), which were similar to those in the linear regressions (r2=0.029 and 
r2=0.036, respectively, Supplementary Fig. 3). 

To account for a possible confounding effect of species richness on CWV, which may cause 
low CWV through competitive exclusion of species, we regressed CWV on species richness 
and then calculated all Pearson correlation coefficients with the residuals of this relationship 
against all climatic variables. Here, the highest correlation coefficients were encountered 
between PET and CWV of conduit element length (r2=0.038), followed by the relationship of 
specific leaf area (SLA) and the volumetric content of coarse fragments in the soil 
(CoarseFrags, r2=0.034), which were very similar in magnitude to the CWV environment 
correlations (r2=0.035 and r2=0.036, respectively; Supplementary Fig. 3). 

The CWMs and CWVs were scaled to a mean of zero and standard deviation of one and then 
subjected to a Principal Component Analysis (PCA), calculated with the 'rda' function from 
the 'vegan' package52. Climate and soil variables were fitted post hoc to the ordination scores 
of plots of the first two axes, producing correlation vectors using the 'envfit' function. We 
refrain from presenting any inference statistics, as with > 1.1 million plots all environmental 
variables showed statistically significant correlations. Instead, we report coefficients of 
determination (r2), obtained from Redundancy Analysis (RDA), using all 30 environmental 
variables as constraining matrix, resulting in a maximum of 18 constrained axes 
corresponding to the 18 traits. We report both r2 values of the first two axes explained by 
environment, which is the maximum correlation of the best linear combination of 
environmental variables to explain the CWM or CWV plot × trait matrix and r2 values of all 
18 constrained axes explained by environment. We plotted the PCA results using the 'ordiplot' 
function and coloured the points according to the logarithm of the number of plots that fell 
into grid cells of 0.002 in PCA units (resulting in approximately 100,000 cells). For further 
details, see the captions of the figures.  

Additionally, we carried out the PCA and RDA analyses, using CWMs based on original trait 
values (see above). Because of a poor coverage of some traits we confined the analyses with 
original trait values to the six traits used by Díaz et al.5, which were leaf area, specific leaf 



area, leaf N, seed mass, plant height and stem specific density. Using these six traits resulted 
in 954,459 plots that had at least one species with a trait value for each of the six traits. 

 

Testing for formation-specific patterns. We carried out separate analyses for two 
‘formations’: forest and for non-forest plots. We defined as forest plots that had > 25% cover 
of the tree layer. However, this information was available for only 25% of the plots in our 
sPlot database. Thus, we also assigned formation status based on growth form data from the 
TRY database. We defined plots as ‘forest’ if the sum of relative cover of all tree taxa was > 
25%, but only if this did not contradict the requirement of > 25% cover of the tree layer (for 
those records for which this information was given in the header file). Similarly, we defined 
non-forest plots by calculating the cover of all taxa that were not defined as trees and shrubs 
(also taken from the TRY plant growth form information) and that were not taller than 2 m, 
using the TRY data on mean plant height. We assigned the status ‘non-forest’ to all plots that 
had >90% cover of these low-stature, non-tree and non-shrub taxa. In total, 21,888 taxa out of 
the 52,032 in TRY which also occurred in sPlot belonged to this category, and 16,244 were 
classed as trees. The forests and non-forest plots comprised 330,873 (29.7%) and 513,035 
(46.0%) of all plots, respectively. We subjected all CWM values for forest and non-forest 
plots to PCA, RDA and bivariate linear regressions to environmental variables as described 
above. 

The forest plots, in particular, confirmed the overall patterns, with respect to variation in 
CWM explained by the first two PCA axes (60.5%) and the two orthogonal continua from 
small to large size and the leaf economics spectrum (Supplementary Fig. 6). The variation 
explained by macroclimate and soil conditions was much larger for the forest subset than for 
the total data, with the best relationship (leaf N:P ratio and the mean temperature of the 
coldest quarter, bio11) having r2=0.369 and the second next best ones (leaf N:P ratio and 
GDD1 and GDD5) close to this value with r2=0.357 (Supplementary Fig. 7) and an overall 
variation in CWM values explained by environment of 25.3% (cumulative variance of all 18 
constrained axes in a RDA). The non-forest plots showed the same functional continua, but 
with lower total amount of variation in CWM accounted for by the first two PCA axes 
(41.8%, Supplementary Fig. 8) and much lower overall variation explained by environment. 
For non-forests, the best correlation of any CWM trait with environment was the one of 
volumetric content of coarse fragments in the soil (CoarseFrags) and leaf C content per dry 
mass with r2=0.042 (Supplementary Fig. 9). Similarly, the cumulative variance of all 18 
constrained axes according to RDA was only 4.6%. This shows, on the one hand, that forest 
and non-forest vegetation are characterized by the same interrelationships of CWM traits, and 
on the other hand, that the relationships of CWM values with the environment were much 
stronger for forests than for non-forest formations. The coefficients of determination were 
even higher than those previously reported for trait-environment relationships for North 
American forests (between CWM of seed mass and maximum temperature, r2=0.281)3.  

Resampling procedure in environmental space. In order to achieve a more even 
representation of plots across the global climate space, we first subjected the same 30 global 
climate and soil variables as described above, to a Principal Component Analysis (PCA), 



using the climate space of the whole globe, irrespective of the presence of plots in this space, 
and scaling each variable to a mean of zero and a standard deviation of one. We used a 2.5 arc 
minute spatial grid, which comprised 8,384,404 terrestrial grid cells. We then counted the 
number of vegetation plots in the sPlot database that fell into each grid cell. For this analysis, 
we did not use the full set of 1,117,369 plots with trait information (see above), but only those 
plots that had a location inaccuracy of max. 3 km, resulting in a total of 799,400 plots. The 
resulting PCA scores based on the first two principal components (PC1-PC2) were rasterized 
to a 100 × 100 grid in PC1-PC2 environmental space, which was the most appropriate 
resolution according to a sensitivity analysis. This sensitivity analysis tested different grid 
resolutions, from a coarse-resolution bivariate space of 100 grid cells (10 × 10) to a very fine-
resolution space of 250,000 grid cells (500 × 500), iteratively increasing the number of cells 
along each principal component by 10 cells. For each iteration, we computed the total number 
of sPlot plots per environmental grid cell and plotted the median sampling effort (number of 
plots) across all grid cells versus the resolution of the PC1-PC2 space. We found that the 
curve flattens off at a bivariate environmental space of 100 × 100 grid cells, which was the 
resolution for which the median sampling effort stabilized at around 50 plots per grid cell. As 
a result, we resampled plots only in environmental cells with more than 50 plots (858 cells in 
total). 

To optimize our resampling procedure within each grid cell, we used the heterogeneity-
constrained random (HCR) resampling approach53. The HCR approach selects the subset of 
vegetation plots for which those plots are the most dissimilar in their species composition 
while avoiding selection of plots representing peculiar and rare communities that differ 
markedly from the main set of plant communities (outliers), thus providing a representative 
subset of plots from the resampled grid cell. We used the turnover component of the Jaccard’s 
dissimilarity index (βjtu54) as a measure of dissimilarity. The βjtu index accounts for species 
replacement without being influenced by differences in species richness. Thus, it reduces the 
effects of any imbalances that may exist between different plots due to species richness. We 
applied the HCR approach within a given grid cell by running 1,000 iterations of randomly 
selecting 50 plots out of the total number of plots available within that grid cell. Where the 
cell contained 50 or fewer plots, all were included and the resampling procedure was not run. 
This procedure thinned out over-sampled climate types, while retaining the full environmental 
gradient. 

All 1,000 random draws of a given grid cell were subsequently sorted according to the 
decreasing mean of βjtu between pairs of vegetation plots and then sorted again according to 
the increasing variance in βjtu between pairs of vegetation plots. Ranks from both sortings 
were summed for each random draw, and the random draw with the lowest summed rank was 
considered as the most representative of the focal grid cell. Because of the randomized nature 
of the HCR approach, this resampling procedure was repeated 100 times for each of the 858 
grid cells. This enabled us to produce 100 different subsamples out of the full sample of 
799,400 vegetation plots subjected to the resampling procedure. Each of these 100 
subsamples was finally subjected to ordinary linear regression, PCA and RDA as described 
above. We calculated the mean correlation coefficient across the 100 resampled data sets for 
each environmental variable with each trait. 



To plot bivariate relationships, we used the mean intercept and slope of these relationships. 
PCA loadings of all 100 runs were stored and averaged. As different runs showed different 
orientation on the first PCA axes, we switched the signs of the axis loadings in some of the 
runs to make the 100 PCAs comparable to the reference PCA, based on the total data set. 
Across the 100 resampled data sets, we then calculated the minimum and maximum loading 
for each of the two PCA axes and plotted the result as ellipsoid. We also collected the post-
hoc regressions coefficients of PCA scores with the environmental variables in each of the 
100 runs, switched the signs accordingly and plotted the correlations to PC1 and PC2 as 
ellipsoids. The result is a synthetic PCA of all 100 runs. To illustrate the coverage of plots in 
PCA space, we used plot scores of one of the 100 random runs. Similarly, the coefficients of 
determination obtained from the RDAs of these 100 resampled sets were averaged. 

The mean PCA loadings across these 100 subsets (summarized in Supplementary Fig. 10) 
were fully consistent with those of the full data set in Fig. 2, with the same two functional 
continua in plant size and diaspore mass (from bottom left to top right), and perpendicular to 
that, the leaf economics spectrum. The variation in CWM accounted for by the first two axes 
was on average 50.9% ± 0.04 standard deviations (SD), and thus, virtually identical with that 
in the total dataset. In contrast, the variation explained on average by macroclimate and soil 
conditions (26.5% ± 0.01 SD as average cumulative variance of all 18 constrained axes in the 
RDAs across all 100 runs) was considerably larger than that for the total dataset, which is also 
reflected in consistently higher correlations between traits and environmental variables 
(Supplementary Fig. 11). The highest mean correlation was encountered for plant height and 
PET (mean r2=0.342 across 100 runs). PET was a better predictor for plant height than the 
precipitation of the wettest months (bio13, mean r2=0.231), as had been suggested 
previously6. The correlation of PET with stem specific density (mean r2=0.284) and warmth 
of the growing season (expressed as growing degree days above the threshold 5°C, GDD5) 
with leaf N:P ratio (mean r2=0.250) ranked among the best 12 correlations encountered out of 
all 540 trait-environment relationships, which confirms the patterns found in the whole data 
set (compared with Fig. 4). Overall, the coefficients of determination were much closer to the 
ones reported from other studies with a global collection of a few hundred plots (r2 values 
ranging from 36% to 53% based on multiple regressions of single traits with five to six 
environmental drivers22). 

 

Data availability statement 
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Tables 

 

Table 1: Traits used in this study and their function in the community. Traits are arranged 
according to the degree to which they should respond to macroclimatic drivers. ↑↓ in the trait 
column denotes opposing relationships, ô in the description column denotes trade-offs. For 
trait units, plot-level trait means and within-plot trait variance see Table 2. 

Trait Description Function Expected 
correlation 
with 
macroclimate 

Specific leaf area, Leaf 
area, Leaf fresh mass, 
Leaf N, Leaf P 
     ↑↓ 
Leaf dry matter content, 
Leaf N per area, Leaf C 

Leaf economics spectrum7-8,17: 
Thin, N-rich leaves with high turnover 
and high mass-based assimilation rates 
      ô 
Thick, N-conservative, long-lived leaves 
with low mass-based assimilation rates 

Productivity, 
competitive 
ability 

Very high12-

13,17,21,23 

Stem specific density  Fast growth 
     ô 
Mechanical support, Longevity 

Productivity, 
drought 
tolerance 

Very high12,22 

Conduit element length 
     ↑↓ 
Stem conduit density 

Efficient water transport 
     ô 
Safe water transport 

Water use 
efficiency 

High 

Plant height Mean individual height of adult plants Competitive 
ability 

High6,12 

Seed number per 
reproductive unit 
     ↑↓ 
Seed mass, Seed 
length, Dispersal unit 
length 

Seed economics spectrum23: 
Small, well dispersed seeds 
     ô 
Seeds with storage reserve to facilitate 
establishment and increase survival 

Dispersal, 
regeneration 

Moderate23-24 

Leaf N:P ratio P limitation (N:P > 15) 
N limitation (N:P < 10)29 

Nutrient 
supply 

Moderate30 

Leaf nitrogen isotope 
ratio (leaf d15N) 

Access to N derived from N2 fixation 
     ô 
N supply via mycorrhiza 

Nitrogen 
source,  
soil depth  

Moderate28 

 

 



Table 2: Traits, abbreviation of trait names, identifier in the Thesaurus Of Plant characteristics (TOP)55, units of measurement, observed values 
(obs.) standardized effect sizes (SES) and significance (p) of SES for means and variances of both plot-level trait means (community-weighted 
means, CWMs) and within-plot trait variances (community-weighted variances, CWVs). CWMs and CWVs were based on gap-filled traits for 
1,115,785 and 1,099,463 plots, respectively. All trait values were loge-transformed prior to analysis and observed values are on the loge scale. SES 
are also based on loge-transformed values. Stem specific density is stem dry mass per stem fresh volume, specific leaf area is leaf area per leaf dry 
mass, leaf C, N and P are leaf carbon, nitrogen and phosphorus content, respectively, per leaf dry mass, leaf dry matter content is leaf dry mass per 
leaf fresh mass, leaf delta 15N is the leaf nitrogen isotope ratio, stem conduit density is the number of vessels and tracheids per unit area in a cross 
section, conduit element length refers to both vessels and tracheids. SESs were calculated by randomizing trait values across all species globally 100 
times and calculating CWM and CWV with random trait values, but keeping all species abundances in plots (see Fig. 1). Tests for significance of 
SES were obtained by fitting generalized Pareto-distribution of the most extreme random values and then estimating p values form this fitted 
distribution50. * indicates significance at p < 0.05. 

    CWM CWV 
    mean variance mean variance 
Trait Abbreviation TOP Unit obs. SES p obs. SES p obs. SES p obs. SES p 
Leaf area LA 25 mm2 6.130 -9.75 * 1.691 12.53 * 1.565 -2.59 * 2.448 -0.27 n.s. 
Specific leaf area SLA 50 m2 kg-1 2.850 9.89 * 0.172 12.88 * 0.150 -1.33 n.s. 0.023 1.10 n.s. 
Leaf fresh mass Leaf.fresh.mass 35 g -2.125 -13.28 * 1.395 10.83 * 1.520 -2.05 * 2.311 0.01 n.s. 
Leaf dry matter content LDMC 45 g g-1 -1.294 -5.67 * 0.101 11.52 * 0.130 0.95 n.s. 0.017 6.73 * 
Leaf C  LeafC 452 mg g-1 6.116 -3.77 * 0.003 8.80 * 0.002 -1.78 * 0.000 -0.38 n.s. 
Leaf N LeafN 462 mg g-1 3.038 4.22 * 0.055 6.29 * 0.063 -3.19 * 0.004 -0.13 n.s. 
Leaf P LeafP 463 mg g-1 0.535 9.57 * 0.097 2.81 * 0.117 -5.17 * 0.014 -2.11 * 
Leaf N per area LeafN.per.area 481 g m-2 0.251 -9.06 * 0.075 8.18 * 0.099 -0.28 n.s. 0.010 1.54 n.s. 
Leaf N:P ratio Leaf.N:P.ratio - g g-1 2.444 -11.95 * 0.040 0.40 n.s. 0.081 -2.74 * 0.007 -0.39 n.s. 
Leaf d15N Leaf.delta15N - ppm 0.521 -3.58 * 0.254 6.68 * 0.455 2.82 * 0.207 2.44 * 
Seed mass Seed.mass 103 mg 0.407 -11.19 * 2.987 3.69 * 2.784 -9.06 * 7.750 -2.81 * 
Seed length Seed.length 91 mm 1.069 -4.51 * 0.294 5.50 * 0.365 -4.67 * 0.134 -3.07 * 
Seed number per 
reproductive unit 

Seed.num.rep.unit -  6.179 7.67 * 2.783 4.40 * 5.156 1.44 n.s. 26.588 2.25 * 

Dispersal unit length Disp.unit.length 90 mm 1.225 -2.51 * 0.343 6.50 * 0.451 -3.21 * 0.203 -1.39 n.s. 



Plant height Plant.height 68 m -0.315 -12.15 * 1.532 13.34 * 1.259 -9.01 * 1.585 9.68 * 
Stem specific density SSD 286 g cm-3 -0.869 -14.93 * 0.041 13.15 * 0.058 2.09 * 0.003 2.99 * 
Stem conduit density Stem.cond.dens - mm-2 4.407 15.08 * 0.656 8.45 * 0.975 -0.95 n.s. 0.951 1.10 n.s. 
Conduit element length Cond.elem.length - µm 5.946 -7.09 * 0.182 9.14 * 0.367 7.12 * 0.135 5.29 * 
Mean SES     -3.50  

 
8.06  

 
-1.76  

 
1.25  

Mean absolute SES     8.66  
 

8.06  
 

3.36  
 

2.43  
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Fig. 1: Conceptual figure to illustrate Hypothesis 1, stating that environmental or biotic 5 
filtering of community trait values result in a) higher than expected variation of community-6 
weighted means and b) lower than expected community-weighted variances of trait values. 7 
Both figures give an example for a single trait and show the relative abundance of trait values 8 
of all species in a plot. Black curves refer to observed plot-level trait values in two exemplary 9 
plots, while grey curves show plot-level trait values obtained from randomizing trait values 10 
across all species globally (see Methods). Randomization was done 100 times, but only one 11 
randomization event is shown. Deviation from random expectation was assessed with 12 
standardized effect sizes (SESs) for a) the variance in CWMs and b) for the mean in CWVs. 13 
Evidence for filtering is given in a) if the variance in plot-level trait means was higher than 14 
expected by chance (SES significantly positive) or b) if within-plot trait variance was 15 
typically lower than expected by chance (SES significantly negative, see Methods). 16 
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Fig. 2: Principal Component Analysis of global plot-level trait means (community-weighted 22 
means, CWMs). The plots (n=1,114,304) are shown by coloured dots, with shading indicating 23 
plot density on a logarithmic scale, ranging from yellow with 1–4 plots at the same position to 24 
dark red with 251–1142 plots. Prominent spikes are caused by a strong representation of 25 
communities with extreme trait values, such as heathlands with ericoid species with small leaf 26 
area and seed mass. Post-hoc correlations of PCA axes with climate and soil variables are 27 
shown in blue and magenta, respectively. Arrows are enlarged in scale to fit the size of the 28 
graph; thus, their lengths show only differences in variance explained relative to each other. 29 
Variance in CWM explained by the first and second axis was 29.7% and 20.1%, respectively. 30 
The vegetation sketches schematically illustrate the size continuum (short vs. tall) and the leaf 31 
economics continuum (low vs. high LDMC and leaf N content per area in light and dark green 32 
colours, respectively). See Table 2 and Supplementary Table 2 for the description of traits and 33 
environmental variables. 34 
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 37 

Fig. 3: Principal Component Analysis of global within-plot trait variances (community-38 
weighted variances, CWVs). The plots (n=1,098,015) are shown by coloured dots, with 39 
shading indicating plot density on a logarithmic scale, ranging from yellow with 1–2 plots at 40 
the same position to dark red with 631–1281 plots. Post-hoc correlations of PCA axes with 41 
climate and soil variables are shown in blue and magenta, respectively. Arrows are enlarged 42 
in scale to fit the size of the graph; thus, their lengths show only differences in variance 43 
explained relative to each other. Variance in CWV explained by the first and second axis was 44 
24.9% and 13.4%, respectively. CWV values of all traits increased from the left to the right, 45 
which reflects increasing species richness (r2 = 0.116 between scores of the first axis and 46 
number of species in the communities for which traits were available). The vegetation 47 
sketches schematically illustrate low and high variation in the plant size and leaf economics 48 
continua. See Table 2 and Supplementary Table 2 for the description of traits and 49 
environmental variables. 50 
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 55 

Fig. 4: The two strongest relationships found for global plot-level trait means (community-56 
weighted means, CWMs) in the sPlot dataset. CWM of the natural logarithm of stem specific 57 
density [g cm-3] as a) global map, interpolated by kriging within a radius of 50 km around the 58 
plots using a grid cell of 10 km, and b) function of potential evapotranspiration (PET, 59 
r2=0.156). CWM of the natural logarithm of the N:P ratio [g g-1] as c) global kriging map and 60 
d) function of the warmth of the growing season, expressed as growing degree days over a 61 
threshold of 5°C (GDD5, r2=0.115). Plots with N:P ratios > 15 (of 2.71 on the loge scale) tend 62 
to indicate phosphorus limitation29 and are shown above the broken line in red colour (90,979 63 
plots, 8.16% of all plots). The proportion of plots with N:P ratios > 15 increases with GDD5 64 
(r2=0.895 for a linear model on the log response ratio of counts of plots with N:P > 15 and 65 
£15 counted within bins of 500 GDD5). 66 
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