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Abstract   10 

1. The ecology of many coral reefs has changed markedly over recent decades in response to various 11 

combinations of local and global stressors. These ecological changes have important implications for 12 

the abundance of taxa that regulate the production and erosion of skeletal carbonates, and thus for 13 

many of the geo-ecological functions that coral reefs provide, including reef framework production and 14 

sediment generation, the maintenance of reef habitat complexity and reef growth potential. These 15 

functional attributes underpin many of the ecosystem goods and services that reefs provide to society. 16 

2. Rapidly changing conditions of reefs in the Anthropocene are likely to significantly impact the 17 

capacity of reefs to sustain these geo-ecological functions. Although the Anthropocene footprint of 18 

disturbance will be expressed differently across eco-regions and habitats, the end point for many reefs 19 

may be broadly similar: i) progressively shifting towards net neutral or negative carbonate budget 20 

states; ii) becoming structurally flatter; and iii) having lower vertical growth rates. It is also likely that a 21 

progressive depth-homogenisation will occur in terms of these processes. 22 

3. The Anthropocene is likely to be defined by an increasing disconnect between the ecological 23 

processes that drive carbonate production on the reef surface, and the net geological outcome of that 24 

production i.e., the accumulation of the underlying reef structure. Reef structures are thus likely to 25 
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become increasingly relict or senescent features, which will reduce reef habitat complexity and 26 

sediment generation rates, and limit reef potential to accrete vertically at rates that can track rising sea 27 

levels. 28 

4. In the absence of pervasive stressors, recovery of degraded coral communities has been observed, 29 

resulting in high net positive budgets being regained. However, the frequency and intensity of climate-30 

driven bleaching events is predicted to increase over the next decades. This would increase the spatial 31 

footprint of disturbances and exacerbate the magnitude of the changes described here, limiting the 32 

capacity of many reefs to maintain their geo-ecological functional roles. The enforcement of effective 33 

marine protection, or the benefits of geographic isolation or of favourable environmental conditions 34 

(“refugia” sites) may offer the hope of more optimistic futures in some locations. 35 
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 40 

Introduction 41 

The ecology and structure of many tropical coral reefs has altered markedly over the past few decades. 42 

Drivers of this degradation range from direct damage from destructive human practices to the loss of 43 

ecological resilience because of harmful algal blooms resulting from the loss of herbivory and coastal 44 

eutrophication (e.g., Jackson et al., 2014). Global scale climate stressors, and especially those 45 

associated with elevated sea-surface temperature anomalies, have also extended the footprint of 46 

disturbance to even the most remote (from direct human influence) regions (Bruno & Valdivia 2016; 47 

Hughes et al., 2017). Reef deterioration may thus occur as a response to an individual stressor such as 48 

mass bleaching, but it also occurs in response to combinations of different stressors acting 49 

simultaneously, and occasionally synergistically, to increase coral mortality or reduce coral growth and 50 

reproduction (Darling et al., 2010).   51 
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 52 

A major consequence of these climatic and pervasive local stressors has often been a rapid decrease 53 

in the abundance of habitat-building corals (Gardner TA et al. 2003, Alvarez-Filip et al., 2013; Bruno & 54 

Selig 2007, Hughes et al., 2018), which has consequently reduced reef structural complexity and coral 55 

carbonate production rates (Perry et al., 2014a). Equally, many reefs have been impacted by changes 56 

(both increases and decreases) in the abundance of bioeroding taxa such as parrotfish, urchins, 57 

sponges and microendolithic organisms (Glynn & Manzello 2015). The collective effect has been to 58 

alter the rates and relative balance of carbonate producing and eroding processes (Perry et al., 2014b). 59 

Such changes are of increasing interest because these processes directly regulate net rates of 60 

carbonate production and sediment generation, and collectively can impact upon multiple geo-61 

ecological functions on reefs (Perry et al., 2008). These functions include reef-building and the capacity 62 

of reefs to accrete vertically in response to sea-level rise (Kuffner & Toth, 2016; Perry et al., 2018), and 63 

the supply of sands necessary to sustain beaches and reef islands (Fig. 1). Changes in the abundance 64 

of the taxa that control reef budgets can also drastically modify the structural functions that corals 65 

provide, and may be caused by shifts in coral morpho-taxa dominance e.g., from complex, branching 66 

forms to low relief morphological assemblages, or as a result of rapid physical disturbance. Change 67 

may also occur as a result of an increase, relative to carbonate production, in rates of bioerosion such 68 

that reef structures are denuded. Whilst the structural configurations that arise can differ, the net effect 69 

is that the contemporary structural diversity of reefs is altered, with consequences for multiple reef-70 

associated species and processes.  71 

 72 

Reef-building and vertical reef accretion, sand supply, and maintenance of structurally complex habitats 73 

are key geo-ecological functions that underpin many of the ecosystem goods and services reefs 74 

provide to society (Fig. 1). In the context of the rapidly changing condition of reefs in the Anthropocene 75 

this review considers three major consequences of on-going reef disturbance for the geo-ecological 76 
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functionality of coral reefs: 1) impacts on contemporary carbonate production and bioerosion rates for 77 

reef budget states and detrital sediment generation; 2) impacts associated with eco-morphological taxa 78 

transitions, especially in terms of structural complexity and diversity; and 3) impacts on rates and 79 

patterns of reef accretion (Fig. 1). These issues have major socio-economic relevance because they 80 

are directly relevant to considerations of the physical resilience of reefs, and thus to understanding and 81 

projecting changes in reef functionality in relation to issues such as coastal protection, fisheries, and 82 

shoreline erosion.  83 

 84 

1. Impacts on contemporary carbonate production and bioerosion rates (the declining 85 

carbonate budget problem)    86 

The carbonate budget of a reef is a measure of the net rate of calcium carbonate production, and this 87 

has important implications as an influence on the potential for reef framework structural development 88 

i.e., for reef-building, and for the maintenance of a reef’s physical framework structure. Carbonate 89 

budget processes reflect both local reef ecology and oceanographic setting (such as sea-surface 90 

temperature, storm and prevailing wave intensity, ocean chemistry, and nutrient regime; Kleypas et al., 91 

1999), which in turn influence calcification rates and physical disturbance periodicity. The concept of 92 

quantifying reef carbonate budgets as an approach to assessing geo-ecological functions and 93 

processes on reefs stems from early studies that used either hydrochemical methodologies to define 94 

net community calcification (e.g., Smith & Kinsey, 1976), or census-based approaches to quantify taxa-95 

level contributions to both carbonate production and bioerosion (e.g., Stearn et al., 1977, Scoffin et al., 96 

1980, Hubbard et al., 1990). Both methodologies have been employed across a range of recent studies 97 

(e.g., Perry et al., 2012; Silbiger et al., 2014) and where used in tandem have shown good correlation 98 

(Courtney et al., 2016). Whilst the global coverage and the diversity of sites for which detailed data 99 

exists remains relatively small, these studies provide a basis for understanding the range of budget 100 

states that define contemporary reefs and, in a very few cases, for monitoring disturbance driven 101 
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changes (Perry & Morgan, 2017; Manzello et al., 2018). Based on various field studies, shallow water 102 

(<~15 m) carbonate production rates under optimal conditions in the lower latitude reef-building regions 103 

are generally considered to average ~1-10 kg CaCO3 m-2 yr-1 depending on reef zone, depth, and 104 

ecoregion (Kinsey & Hopley 1991; Vecsei, 2004).   105 

 106 

Reef budget states are an expression of the strong linkage that exists between reef ecology and budget 107 

processes, and thus significant inter- and intra-reef variability in budget states should intuitively be 108 

expected. At the individual reef scale this will be expressed most clearly on an across-reef basis, with 109 

the taxa driving production and bioerosion naturally varying between habitats and depth zones (Perry & 110 

Hepburn, 2008; Fig. 2). Shallow (<~15 m) fore-reef sites have historically tended to be dominated by 111 

high rates of coral and coralline algal carbonate production and bioerosion (especially associated with 112 

parrotfish and urchin grazing), but with the production side of the budget generally dominant. The net 113 

effect has been that budget states in shallow fore-reef habitats tend to be strongly net positive (Fig. 2A), 114 

thus sustaining in-situ reef framework accumulation. At the same time these high rates of carbonate 115 

production represent a source, under physical disturbance conditions, for rubble export that can 116 

contribute to reef crest and reef flat formation (Scoffin, 1993; Blanchon et al. 2017), as well as 117 

undergoing (along with sediment) off-reef export into deeper waters to form expansive talus slopes 118 

(Hubbard et al. 1990). 119 

 120 

The budget processes and states that define deeper water reef zones (below about 20 m) remain 121 

poorly documented, largely because they are below the limits of prolonged SCUBA diving. However, as 122 

depth increases, light and wave turbulence reduce, driving transitions in the abundance of the taxa that 123 

control the balance between carbonate production and loss. Coral assemblage shifts and changes in 124 

the morphology of corals (increasing prevalence of plate-like growth forms) with depth are well 125 

documented, and it is also known that coral calcification rates decline with depth, albeit in a species 126 
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specific and non-uniform way (Hubbard & Scaturo, 1985; Weinstein et al., 2016). Furthermore, as depth 127 

increases the abundance of grazing parrotfish and urchins declines, and changes in the composition of 128 

endolithic bioeroding communities occur (Perry & Harborne, 2016). In the Caribbean at least, endolithic 129 

sponges become the dominant macroendolithic taxa and shifts from phototrophic to heterotrophic 130 

microendoliths occur (Perry & Hepburn, 2008). The net effect is that the in-situ carbonate budgets of 131 

deeper reef habitats (although poorly quantified) will progressively shift in favour of the erosional side of 132 

the equation (Fig. 2A) (Weinstein et al., 2016), but with the overall reef budget augmented at some 133 

sites by the import of rubble and sediment from shallower reef zones.      134 

 135 

The processes that control reef budget states also naturally vary with environmental conditions over 136 

larger spatial scales, and most obviously, with latitude. Thus, and although again poorly quantified, 137 

there is a trend towards lower and then progressively neutral budget states towards the latitudinal limits 138 

of coral growth (Grigg 1982; Yamano et al., 2012), as the balance between the amount of carbonate 139 

produced and what is removed progressively shifts in favour of the latter. There has been some 140 

speculation that one consequence of ocean warming may be to drive northerly or southerly expansions 141 

in coral species ranges (and thus reef-building), and there is some evidence of this occurring in the past 142 

(Greenstein & Pandolfi, 2008). If so, one might hypothesise that subtle shifts will occur towards slightly 143 

more positive budgets in areas where reef building may not presently occur (Precht & Aronson, 2004). 144 

However, in reality little net change in overall budget states may actually arise. Firstly, because light 145 

constraints with increasing latitude may reduce coral growth (Kleypas et al. 1999; Muir et al., 2015). 146 

Secondly, because ocean acidification may stimulate enhanced destructive processes, for instance 147 

favouring the proliferation of bioeroding endolithic organisms (Enochs et al., 2016), while negatively 148 

affecting coral calcification and reef-building (Manzello et al., 2008). Thus the interaction of these 149 

factors may limit any possible warming benefits in higher latitude areas.  150 

 151 
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The strong links that exist between marine environmental conditions, reef ecology and carbonate 152 

budget states thus raise the question of how budget states may respond or transition following 153 

prolonged or high frequency ecological or environmental perturbations. Indeed, one of the defining 154 

questions in terms of the physical functionality of reefs in the Anthropocene is whether detrimental 155 

budget regimes are becoming more persistent or widespread as the footprint of multiple environmental 156 

disturbances increases. In this context changes in coral assemblages, resulting either from short-term 157 

climate driven (e.g., coral bleaching) or more prolonged anthropogenically-driven community 158 

transitions, are likely to result in marked transitions in rates of reef carbonate production. At the same 159 

time reef ecological changes may drive major shifts in the abundance of reef bioeroding taxa. These 160 

changes may reflect either: i) the loss of coral communities and associated habitat structural complexity 161 

that support specific bioeroding species (Perry & Harborne, 2016); or ii) more direct impacts such as 162 

those associated with the selective targeting of large parrotfish by fishers (Bellwood et al., 2011) or 163 

disease (Lessios et al., 1984). Collectively, these impacts may directly modify either the carbonate 164 

production side of the budget equation or rates of bioerosion, or both.   165 

 166 

The potential for temporal budget transitions was conceptually explored in relation to different budget 167 

state scenarios by Perry et al. (2008). In some cases, change, driven by a suite of interacting ecological 168 

disturbances, is hypothesised to occur gradually or in a stepped fashion over a number of decades. In 169 

other cases, change may occur rapidly, such as that associated with major bleaching events. However, 170 

whilst the end point in both cases is broadly the same i.e., a diminished carbonate budget state, the 171 

pathways to this point can differ markedly. On many shallow water Caribbean reefs, for example, 172 

carbonate production rates have progressively declined over at least the last 30-40 years, as the 173 

abundance of formerly dominant high rate carbonate producing branching coral taxa (specifically the 174 

Acropora spp.) has declined (Perry et al., 2014a). At the same time chronic overfishing and the 175 

widespread die-off of Diadema antillarum considerably reduced the abundance of many bioeroding 176 
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species (Carpenter, 1990). The net effect has been that many shallow water reefs have probably 177 

shifted to states close to budgetary stasis and in some cases net erosion (Fig. 2B). These states can 178 

lead to progressive breakdown and loss of surficial reef structural complexity (see Section 2 below) and 179 

in some cases to loss of the wider reef structure itself (Lewis, 2002).  180 

 181 

In contrast, where previously “healthy” shallow water reefs are impacted by short-lived but high 182 

magnitude stress events, such as those associated with sea-surface temperature anomaly events, 183 

carbonate production rates can collapse almost instantaneously. At the same time bioerosion rates 184 

often remain high, at least initially (Perry & Morgan, 2017), meaning that the budgets of reefs rapidly 185 

transition to strongly net negative states (Eakin, 2001) and surficial structural complexity declines 186 

through progressive reef framework collapse (Lasagna et al., 2010). The extent and magnitude of 187 

change in deeper fore-reef habitats is poorly quantified but can be reasonably assumed to be less 188 

marked, because these deeper sites are more buffered from the extreme effects of direct and indirect 189 

human disturbance (Muir et al., 2017), and are less impacted by bleaching (Baird et al., 2018). 190 

However, given that coral calcification rates are lower at depth, where such sites are impacted by 191 

disturbance, the magnitudes of budget decline would be predicted to be severe.  192 

 193 

Whether and how rapidly reefs (and their budgets) can recover from major short-lived shock events is 194 

thus of growing interest. Data from sites impacted by the 1998 bleaching event in the Indian Ocean 195 

show that many reefs recovered to states of high coral cover and, where assessed, high net positive 196 

budget states (Perry et al., 2015a). However, many Indian Ocean reefs were severely impacted again 197 

by bleaching in 2016, resetting their ecology and budgets to net negative states (Perry & Morgan, 198 

2017). The frequency of future severe bleaching events in such regions will thus strongly influence 199 

whether the budgets of reefs again recover, and there are two key points that can be made here. The 200 

first is that recent models suggest that in the absence of rapid climate mitigation actions, the frequency 201 
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of severe bleaching events will increase, and whilst predictions for the timing of annual severe 202 

bleaching vary geographically, many sites are predicted to experience strong warming each year by at 203 

least 2070 (van Hooidonk et al., 2016). The second point is that in some locations there is evidence 204 

that not all reefs recovered from the 1998 event. For example in the Seychelles some reefs recovered, 205 

but others “regime-shifted” to macroalgal-dominated states (Graham et al., 2015), the latter being 206 

defined by persistent low or net negative budgets (Januchowski-Hartley et al., 2017). The broader 207 

implications of this are that as regions are hit by future (more frequent) bleaching events so the ratio of 208 

reefs that can recover may fall relative to those that become “regime-shifted”, either due to increasing 209 

frequency of disturbance events or reduced ecological resilience.  210 

 211 

The long-term outcome of further and sustained ecological disturbance in the Anthropocene era may 212 

therefore be a progressive transition on many shallow-water reefs away from historical (high) carbonate 213 

budget states to persistent low net positive or negative overall budget states, threatening the integrity of 214 

reef structures. Indeed, across many degraded reefs bioerosion may become a defining control on reef 215 

budgets (Kuffner & Toth, 2016), although it is presently unclear how the progressive loss of structural 216 

complexity may act as a feedback that limits bioerosion rates over time (Perry & Harborne, 2016). 217 

Exceptions to this may, however, occur either i) in areas where very effective marine protection or 218 

inherent geographic isolation limits the magnitude of human disturbance (Cinner et al. 2018; Guest et 219 

al. 2018), thus facilitating more rapid recovery from climate-driven disturbances; or ii) where marine 220 

environmental conditions e.g. elevated turbidity regimes (Cacciapaglia & van Woesik 2016), or depth 221 

(Baird et al. 2018) may limit the magnitude of climate-driven disturbance. Such locations offer the hope 222 

of more optimistic futures for some reefs and/or the potential to act as refugia sites and sources for 223 

species replenishment. 224 

 225 
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A further, though generally poorly documented aspect of carbonate budget change relates to the 226 

processes of reef sediment generation. Reef-derived sediment is a volumetrically important component 227 

of the structure of most reefs (Hubbard, Miller & Scaturo 1990; Hubbard, Burke & Gill 1998), and thus a 228 

key part of the reef-building process, as well as providing sedimentary material to sustain beaches and 229 

shorelines. Most sediment generated on reefs and within reef-related habitats (lagoons) derives either 230 

directly from organisms that secrete calcium carbonate skeletons (e.g., molluscs, foraminifera) and 231 

which contribute post-mortem to the sediment reservoir, or are produced indirectly from skeletal 232 

carbonate breakdown e.g., by specific species of fish and urchins (Scoffin, 1992). It follows therefore 233 

that as the abundance of these direct and indirect sediment producing species/processes change, 234 

driven by the same disturbance events discussed above, so the functional role of reefs as focal points 235 

of sediment generation will change (Perry et al., 2011). Such change may be expressed either in terms 236 

of the volumes or types of sediment produced, but the consequences of change are likely to be 237 

especially marked where disturbances impact upon a narrow range of disproportionality important 238 

sediment producing taxa (e.g., parrotfish – Perry et al., 2015b; benthic foraminifera – Collen & Garton, 239 

2004). In such cases, loss of the relevant taxa may render sediment production rates insufficient to 240 

sustain local beaches or islands. 241 

 242 

2. Impacts associated with eco-morphological taxa transitions (the changing reef complexity 243 

problem)  244 

The structure and function of ecosystems are deeply linked to the identity of the species that create 245 

habitats, and in tropical reef ecosystems, scleractinian corals have a disproportionate influence on 246 

ecosystem structure, function and stability. This is because corals create, modify and maintain the 247 

complex three-dimensional framework structure. These complex structures have substantial ecological, 248 

economic and social relevance. For instance, reef complexity is strongly linked to fish and invertebrate 249 

diversity and the ecological interactions among them (Graham & Nash 2013; Morillo-Velarde et al. 250 
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2018), and strongly influences wave energy dissipation over reefs (see next section and Fig. 4). 251 

Because of the importance of hard coral cover in building and structuring reef frameworks (see Section 252 

1 above), research on reef degradation has mostly focused on exploring the trends, drivers and 253 

consequences of declining live coral cover and reef complexity. However, functioning depends, to a 254 

large extent, on the life history strategies of corals, which are strongly linked to species morphological 255 

and physiological attributes (Darling et al., 2012; McWilliam et al., 2018). At the same time species 256 

growth rates, skeletal density, size and morphological complexity have been identified as primary traits 257 

defining processes of carbonate production and habitat provisioning on reefs (Darling et al., 2012; 258 

Alvarez-Filip et al., 2013; McWilliam et al., 2018). It is therefore unlikely that coral cover alone captures 259 

the variability in reef structure and community calcification mediated by different coral taxa (Alvarez-260 

Filip et al. 2011a; Perry et al., 2015a). For instance reefs dominated by species with high structural 261 

complexity and high growth rates are likely to not only maintain more diverse communities but also to 262 

regulate the functional structure of reef communities (Alvarez-Filip et al., 2011b; Richardson et al., 263 

2017a; ). 264 

 265 

In this context, the distribution of coral species and their functionality create habitat heterogeneity (or 266 

reef zones) within specific biogeographic regions. These are influenced by spatial variations in 267 

environmental forces such as temperature, light penetration and sediment inputs. However, the rapid 268 

environmental changes being caused by anthropogenic pressures are now non-randomly modifying the 269 

distribution of coral species and, in many cases, promoting a shift in dominance towards taxa better 270 

adapted to the new conditions. The net effect of this is to modify the functional performance of coral 271 

communities (Carturan et al., 2018), because disturbance typically favors fewer generalist species that 272 

are able to tolerate stress and therefore competitively dominate the landscape (Clavel et al., 2011; 273 

Alvarez-Filip et al., 2015a). A major functional transition associated with ecological change therefore 274 

relates to shifts in the abundance of corals with different morphological properties, or to different 275 
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disturbance-driven pathways of framework breakdown. Most simply these transitions can occur where, 276 

for example, highly rugose branching coral taxa have been lost and replaced by low-relief coral forms, 277 

leading to marked changes in habitat (and micro-habitat) diversity and complexity (Fig. 3), and to 278 

changes in reef carbonate budgets (Figs. 3B, C).  279 

 280 

In the Caribbean, for example, diseases, coral bleaching and local anthropogenic stressors have acted 281 

synergistically to transform coral communities over the past 40-50 years (e.g., Jackson et al., 2014). 282 

Throughout the region, the few species responsible for most of the structural complexity on reefs have 283 

been replaced by opportunistic species (Green et al., 2008). Although it has been proposed that 284 

species reconfiguration may prevent ecosystem collapse as populations of remaining coral species 285 

could maintain ecosystem integrity under future climate change (Hughes et al., 2012), a growing body 286 

of evidence shows that simplified reef communities alter ecosystem functioning and productivity, and 287 

jeopardize the persistence of ecosystem goods and services (Alvarez-Filip et al., 2015b; Hughes et al., 288 

2018; Richardson et al., 2018). This is because shifted reefs are dominated by rapid colonizer species 289 

that whilst relatively tolerant to thermal and/or physical stressors, have different morpho-functional 290 

characteristics (Alvarez-Filip et al., 2011) and typically provide less structural habitat complexity (Green 291 

et al., 2008; Van Woesik et al., 2011; Darling et al., 2012). Thus as coral assemblages change from 292 

reefs dominated by large reef-building corals to smaller non-framework building species, declines in 293 

both coral-community calcification and reef rugosity can occur that are independent of changes in total 294 

coral abundance (Alvarez-Filip et al., 2013, Fig. 3C).  295 

 296 

While reef community transitions in the Caribbean have thus commonly resulted from a gradual 297 

process of ecosystem degradation and loss of ecological resilience, there are many examples in the 298 

Indo-Pacific of reefs that have experienced different trajectories of change. In this eco-region, rapid 299 

declines in coral cover and shifts in coral abundance have commonly occurred in response to strong 300 
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acute events such as ocean warming-induced mass bleaching (Hughes et al., 2017). Mass bleaching 301 

events and subsequent coral mortality result in a radical shift in the composition and functional traits of 302 

coral assemblages, drastically transforming reef landscapes across large spatial scales (Gilmour et al., 303 

2013; Hughes et al., 2018). Tabular and branching corals, which are fast-growing, three-dimensional 304 

species that commonly dominate many Indo-Pacific reefs, tend to be disproportionally affected by post-305 

bleaching mortality (Gilmour et al., 2013; Perry & Morgan, 2017; Hughes et al., 2018). Thus, in many 306 

cases, reefs shift away from the dominance of morphologically complex coral species, to assemblages 307 

dominated by taxa with simpler morphological characteristics and slower growth rates, resulting in rapid 308 

loss of coral community-scale complexity (e.g. Perry & Morgan, 2017; Hughes et al., 2018; Fig. 3B). 309 

Although recovery of degraded reefs is largely dependent on the growth of remnant corals (Halford et 310 

al., 2004; Gilmour et al., 2013), there is evidence showing that in the absence of further stressors reefs 311 

can recover both in terms of overall coral cover and habitat complexity (Gilmour et al., 2013; Graham et 312 

al., 2015). However, predicted increases in the frequency of bleaching-level thermal stress are likely to 313 

impede recovery potential on many reefs (van Hooidonk et al., 2016).  314 

 315 

An emerging challenge in coral reef ecology is therefore to understand the functional consequences of 316 

shifts in coral abundance and composition. Ecological assemblage phase shifts have direct relevance 317 

to the issues of changing carbonate budgets discussed above because different morphological groups 318 

of corals are generally defined by different calcification and linear extension rates (González-Barrios &  319 

Álvarez-Filip, 2018). Coral reef habitats dominated by stress-tolerant taxa may thus become defined by 320 

persistent low (relative to regional optimal) budget states (Manzello et al., 2018). Abrupt, regional-scale 321 

shifts in coral assemblages may also radically reduce the abundance and diversity of species traits that 322 

facilitate key ecological functions (Hughes et al., 2018; McWilliam et al., 2018). Dominance patterns of 323 

coral assemblages therefore seem to be the most important driver of the functioning of coral reefs, and 324 

thus the future of these ecosystems might depend not only on general reductions of local and global 325 
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stressors, but also on the maintenance of keystone coral species. As anthropogenic pressures 326 

continue, understanding how initial habitat configurations prior to disturbance will influence changes in 327 

coral communities, and reef-associated species such as fish (Alvarez-Filip et al., 2011b; Richardson et 328 

al., 2017b, 2018), will be critical for developing forewarnings of resilience loss and the threat of 329 

functional collapse, such that management efforts may be appropriately assigned.  330 

 331 

3. Impacts on rates and patterns of reef growth (the reducing reef accretion problem)  332 

A major functional consequence of the ecologically-driven transitions on reef carbonate budgets is the 333 

capacity to change reef accretion (vertical growth) potential. Reef growth is in part a function of the 334 

carbonate budget of a reef, but represents a measure of the net rate of vertical reef framework 335 

accumulation over time i.e., how much of the framework carbonate that is produced adds to the surface 336 

of the reef. The term potential is important because whilst a net positive budget state can be considered 337 

the minimum for reef accretion to occur, other factors such as rates of physical framework removal are 338 

also important. Indeed, previous authors have defined different conceptual budget states that reflect 339 

variations in the relative balance between framework “input” (carbonate production, external sediment 340 

and rubble inputs) and “export” (biological, physical and chemical erosion) processes (Kleypas et al., 341 

2001). From a reef growth perspective these conceptual states provide a useful framework within which 342 

to envisage the interacting input and output factors that determine short term budget states. The 343 

relative balance between production and export processes then aggregate to influence long-term reef-344 

building potential, essentially by dictating the net amount of carbonate being produced that 345 

accumulates in a given environment.  346 

 347 

Under what might be considered optimal reef-building conditions, the “norm” is most commonly a 348 

situation where the production-dominated state persists more or less continuously to drive net in-situ 349 

reef framework accumulation and reef accretion (Kleypas et al., 2001). Indeed, the Holocene record of 350 
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reef-building, as discerned from core records, provides numerous examples of semi-continuous vertical 351 

reef-building (Montaggioni, 2005; Gischler 2015), with vertical reef accretion persisting until otherwise 352 

sea-level constrained (Perry & Smithers, 2011), or where other external environmental factors (e.g., 353 

water quality, ocean temperatures) limit accretion (Toth et al, 2018). Conversely, there are examples of 354 

reefs that have developed under very different long-term environmental conditions, and which represent 355 

alternative examples of reef-building states. One well-documented example occurs in nearshore 356 

settings where persistent terrestrial sediment inputs influence the reef budget under “import-dominated” 357 

conditions (Browne et al., 2013). In such settings framework production (coral growth) clearly remains 358 

important, but core records show that a high proportion of the accumulating reef structure comprises 359 

fine-grained terrigenoclastic sediments that represent a long-term external input to the reef-building 360 

budget (Perry et al., 2012). In contrast, there are examples of persistent “export-dominated” reefs 361 

where all or most framework carbonate produced annually is removed by seasonal storms or cyclones 362 

(e.g., along the S. African coast; Riegl, 2001). The net effect is an absence of long-term framework 363 

accumulation and no net reef accretion.  364 

 365 

The examples cited above clearly point to marked natural spatial heterogeneity in reef-building 366 

potential. However, a question that arises in the context of Anthropocene-era change is how rapidly and 367 

to what extent is the potential for reef accretion now being diminished? Declines in contemporary 368 

accretion rates may occur where within-site production rates are reduced relative to rates of biological, 369 

physical or chemical erosion, thus driving shifts from production to erosion dominated budgetary states. 370 

As outlined in previous sections, these transitions may arise either from progressive ecological 371 

deterioration (over decadal timescales), or acute and high magnitude disturbance events (e.g., severe 372 

bleaching). In the latter case, recent historical evidence suggests that, depending on species and 373 

recovery rates, periods of perhaps 10-15 years largely free from disturbance may be sufficient to 374 

enable reefs to regain their former states of high carbonate production and accretion potential (Perry et 375 
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al., 2015a; Figure 3A). However, the potential for such “boom-bust-boom” cyclicity is increasing 376 

uncertain given projections of more frequent high magnitude bleaching events driven by warming 377 

events.  378 

 379 

Where accretion rates do decline, and there is emerging evidence that this is an increasingly 380 

widespread Anthropocene scenario (Perry et al., 2018), there are a number of major implications in 381 

terms of reef geo-ecological functionality. One of the most significant is the question of whether reefs 382 

will retain capacity to keep up with rates of accelerating sea-level rise (SLR). Evidence from Holocene 383 

core records of reef growth, when ecological conditions and thus by inference carbonate budget states 384 

are considered to have been more optimal, suggest that many reefs exhibited an impressive capacity to 385 

either “keep-up” or to “catch-up” during periods of rapid SLR (Neumann & Macintyre, 1985). Indeed, 386 

measured vertical accretion rates from the early Holocene, when sea-levels were rising rapidly, may 387 

have been up to ~15 mm yr-1 in both the tropical western Atlantic and Indo-Pacific regions (Dullo, 388 

2005). Longer-term average accretion rates in both regions were lower, in the tropical western Atlantic 389 

~3-4 mm yr-1 (Hubbard, 2008) and a little below this in the Indo-Pacific region (Dullo, 2005). Whilst 390 

some high coral cover sites may sustain vertical accretion rates sufficient to match near-future sea-level 391 

rise (van Woesik & Cacciapaglia 2018), the critical point is that many contemporary coral reefs are now 392 

defined by vertical accretion rates that will be insufficient to keep pace with sea-level rise. Indeed, 393 

recent assessments of reef accretion potential at sites around the tropical western Atlantic and Indian 394 

Ocean regions suggest that accretion rates presently average only 1.8 mm yr-1 and 2.0 mm yr-1 395 

respectively (Perry et al., 2018).  396 

 397 

A major consequence of these changes in accretion rates is that many reefs may increasingly lose the 398 

ability to maintain their functional roles in terms of buffering coasts from wave energy exposure, and the 399 

ability to track rising sea levels. This will be an especially critical issue if projections of increasing 400 
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Tropical Cyclone intensity are realised (Bhatia et al. 2018). Several recent studies have modelled SLR 401 

impacts on wave energy regimes across reefs (e.g., Storlazzi et al., 2011; Beetham et al., 2017) and 402 

three key controls related to reef structure and accretion rates emerge: i) reef width and profile; ii) 403 

surface structural complexity; and iii) reef growth relative to the rate of water depth increase. The first of 404 

these, reef width and profile, are unlikely to change markedly over relevant future timescales since 405 

these parameters are a function of antecedent topography and long-term reef growth. More likely to 406 

change are parameters ii) and iii). Coral cover and assemblage composition strongly influence reef 407 

surface structural complexity, and this is important because complexity exerts a frictional effect on 408 

waves (Harris et al., 2018). Thus, reef surface complexity changes discussed above (section 2) have 409 

the potential to directly impact wave attenuation. Maintenance of reef surface elevation relative to sea 410 

level is also important because water depth modulates across-reef and nearshore wave energy 411 

regimes. Mean water depth increases will occur where vertical growth rates lag behind actual or relative 412 

increases in sea-level. Emerging evidence suggests that for many reefs the Anthropocene era is likely 413 

to be defined by declines in both accretion rates and surficial complexity (rugosity) (Fig. 4). Thus, whilst 414 

a few reefs may currently maintain capacity to track SLR and limit wave attenuation (Fig. 4 – Group A), 415 

a great many will not (Fig. 4 – Group C) and some have already lost this capacity (Fig. 4 – Group D). 416 

Indeed, recent assessments of reef growth – SLR interactions under different SLR scenarios through to 417 

2100 suggest that tropical western Atlantic reefs will experience increases in water depths above reefs 418 

of ~40 cm by 2100 under the RCP 4.5 (Representative Concentration Pathway) scenario, and ~60 cm 419 

under RCP 8.5, whilst in the Indian Ocean region average water depth increases of ~47 cm and ~71 420 

cm are predicted under these scenarios (Perry et al., 2018). Many reefs are therefore expected to offer 421 

less resistance to water flow, thus increasing the risks of coastal erosion and flooding of low-lying 422 

areas, with associated heightened economic and social costs for coastal communities. 423 

 424 
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A further implication of changing reef ecology and declining budget states that will exacerbate the 425 

impacts on reef-building may arise from changes to the supply-side of the reef-building process. The 426 

Holocene record of reef-building clearly shows that reef construction at a given site is typically 427 

dominated by a relatively restricted suite of coral taxa, and that this material is often converted to coral 428 

rubble during high energy physical disturbances (Hubbard et al., 1998). This coral rubble is often 429 

largely derived from fast-growing branched coral taxa, which subsequently: i) represents a 430 

volumetrically important component of accumulating reef frameworks, and ii) has historically sustained 431 

shallow fore-reef and reef crest building as a result of breakage and rubble transport (Blanchon et al., 432 

2017). However, changes in coral species composition and in the abundance of relevant morpho-taxa 433 

(especially branched corals) means that the supply side of this reef growth dynamic is changing. For 434 

example, in the Caribbean previously dominant shallow water branched corals (Acropora spp.) have 435 

been largely replaced by low-relief taxa, such as Agaricia spp., Porites spp. and Siderastraea spp. 436 

(Green et al. 2008; Perry et al. 2014a), and these do not represent appropriate substitutes in terms of 437 

the supply side of the rubble-driven reef building process. Thus, changes in shallow water reef ecology 438 

can lead to marked reef-growth shifts that will impact both the impacted habitat, but also adjacent 439 

shallower and deeper reef zones which normally derive coral rubble from the impacted zone.   440 

 441 

Collectively, these ideas point to an increasing disconnect between the underlying framework structure 442 

of contemporary reefs, which can represent the products of carbonate accumulation over several 443 

millennia, and reef carbonate budgets and thus accretion potential. In other words, in some regions, the 444 

underlying reef structure is essentially becoming a relict feature with little/no new carbonate being 445 

added. The idea of a progressive decoupling between contemporary reef ecology and the maintenance 446 

of the underlying reef structure is not necessarily a solely Anthropocene phenomenon (Kuffner & Toth, 447 

2016; Toth et al. 2018). Indeed, it has previously been discussed as a response to changing 448 

environmental conditions around the latitudinal or environmental limits of reef-building (van Woesik & 449 
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Done, 1997). However, as live coral cover diminishes and net carbonate budgets decline, the number 450 

of reefs where the underlying reef structure essentially becomes a relict or senescent feature (i.e. 451 

where reef “turn-off” has occurred; Buddemeier & Hopley, 1988) will increase, with profound 452 

implications for the capacity of reefs to maintain their critical geo-ecological functional roles (Kuffner & 453 

Toth, 2016). Indeed, many of the geo-ecological ecosystem services that reefs provide may 454 

increasingly depend on the underlying relict or senescent structures of reefs as carbonate budgets, 455 

surficial structural complexity and reef accretion processes decline.  456 

 457 

Concluding remarks 458 

A major consequence of coral reef ecological transitions is that the Anthropocene is likely to be defined 459 

by an increased decoupling between current reef ecological states and the physical functions that reefs 460 

provide. This conclusion is based on the fact that on many reefs a progressive or rapid transition away 461 

from high historical carbonate budget states to states of low net positive or negative production is now 462 

occurring. This change threatens many of the key geo-ecological functions that reefs provide: their 463 

structural composition and microhabitat diversity, their capacity to generate sufficient sediments to 464 

sustain adjacent beaches and shorelines, their capacity to continue accreting vertically at rates that can 465 

match sea-level rise, and thus their functionality as wave attenuating structures. It is reasonable to 466 

hypothesise that these changes will be most marked in shallower water settings which are most 467 

exposed to warming events, often harbour the most susceptible coral taxa, and which are most 468 

“exposed” to direct human stressors. Although not entirely immune from ecological change, deeper reef 469 

habitats (below ~20 m) may be more protected. Thus, the Anthropocene footprint on reefs may be 470 

expressed rather differently across habitats and depth zones. It is also reasonable to hypothesise that 471 

budget states across individual reefs may become increasingly depth-homogenised, threatening the 472 

strong links that exist between structurally and ecologically complex shallow water reef habitats and the 473 

well-being of coastal human populations. These issues point to the need for further research to better 474 
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understand: 1) how the processes of carbonate production and bioerosion interact as reef habitats 475 

change; 2) how these same processes vary with depth and latitude across reefs; 3) the extent to which 476 

remaining healthy reefs may be able to sustain the key geo-ecological functions outlined above; and 4) 477 

the extent to which ecological restoration efforts are feasible (at least over small spatial scales) to 478 

restore reef geo-ecological functionality. These functional attributes (reef-building and reef accretion, 479 

sand generation and assemblage-driven habitat complexity and diversity) underpin many of the 480 

ecosystem goods and services that reefs provide to society and thus strategies to protect or restore 481 

them represents a major Anthropocene challenge. 482 
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 735 

Figure captions 736 

 737 

Fig. 1 Schematic showing the main processes that control reef carbonate budgets and the key geo-738 

ecological functions that reefs provide that relate to budget processes and states. 739 

 740 

Fig 2. Schematic showing depth distribution of key processes influencing biological carbonate budgets 741 

on reefs and their relative importance (note no actual rates implied) in different depth zones under A) 742 

pre-Anthropocene historical conditions, and B) Anthropocene era conditions. Resultant net budget 743 

states in each depth zone are shown on the right (based on the ternary budget states plot of Perry et al. 744 

2008).     745 

 746 

Figure 3. The resilience of different scales of structural complexity to ecological change 747 

(A) Hierarchical scales of reef structural complexity. Geomorphology-scale complexity results from 748 

long-term accretion (100-1000s years); community-scale complexity is provided by the skeleton of 749 
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mainly large massive and branching coral forms; cryptic-scale complexity is associated with rubble and 750 

holes and crevices created by and among coral structures. (B, C) Conceptual plots showing changes in 751 

the relative abundance of framework versus opportunistic coral taxa, in the three levels of reef 752 

structural complexity, and in net carbonate budget states over time in response to (B) acute stressors 753 

such as mass bleaching events after which community recovery occurs, and (C) the non-random 754 

decline of corals under a chronic stress(ors). In (B) community-scale complexity declines rapidly after 755 

the collapse of dead branching and tabular species, although this collapsed structure still provides 756 

some degree of cryptic complexity. In the absence of other sources of stress, coral communities 757 

recover gradually thus increasing the abundance of complex coral forms. Geomorphologic complexity 758 

remains essentially unaffected during these processes. The carbonate budget collapses immediately 759 

after the stress event but progressively recovers to former states as the reef community recovers. 760 

Although not depicted in the figure, recovery will be impeded if the frequency of acute stressors 761 

increases over time. In (C) geomorphologic-scale complexity is largely unaffected by ecological 762 

changes on coral communities but declines slightly as bioeroding forces start to affect the reef matrix. 763 

Community-scale complexity declines when the skeletons of the most structurally complex corals 764 

collapse, and then the trend of decline is observed although an increase in the abundance of small-765 

opportunistic coral species. Cryptic-scale complexity is relatively unaffected by the immediate collapse 766 

of coral skeletons as coral rubble and boulders provide a variety of crevices and holes. However, with 767 

time this structure gradually erodes, infills with sediment and consolidates such that the structure is 768 

increasing homogenized. The carbonate budgets of these reefs progressively decline.  769 

 770 

Figure 4. Potential impacts of changing vertical reef accretion and reduced structural complexity on the 771 

coastal protection functions that reefs provide. (A) Plot showing reef accretion rates relative to reef 772 

rugosity for sites across the tropical western Atlantic (TWA) and Indian Ocean (IO) regions (data from 773 

Perry et al. 2018) in the context of the Reef Health Index of Harris et al. (2018). (B) Schematics 774 
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showing the effects of different scenarios of reef keep-up potential (as a function of accretion rate) and 775 

substrate friction (as a function of rugosity) in terms of limiting coastal wave exposure risk – scenarios 776 

a-d relate to the different states identified in (A).   777 
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