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 34 
Introduction 35 
 36 
Plants provide a source of enzymes for metabolic engineering to produce valuable or useful products in 37 
micro-organisms or can themselves be engineered (Andre et al., 2016; Vickery et al., 2016; Moses et al., 38 
2017). Production of high value compounds (e.g. pharmaceuticals) and nutraceuticals (e.g. omega-3 fatty 39 
acids, carotenoids, tocochromanols, ascorbate, anthocyanins) involves either the introduction of novel 40 
pathways into a convenient host species or optimisation of endogenous pathways. Other manipulations 41 
include engineering protective secondary compound production for pest and pathogen resistance and 42 
osmolytes for stress resistance. Manipulation of central metabolic pathways such as photosynthesis (e.g. 43 
Calvin-Benson cycle, alternative carbon sinks, introduction of CO2 concentrating mechanisms, 44 
photorespiratory bypasses, xanthophyll cycle), starch and lipid synthesis has much potential to contribute 45 
to yield improvement. The use of plants as metabolic engineering vehicles to produce valuable compounds, 46 
as opposed to transferring plant pathways to microbes, will depend on feasibility and economic factors. 47 
Specialised cells and tissues (glandular trichomes, resin ducts and lactifers, oilseeds) adapted to synthesise 48 
and store toxic and hydrophobic compounds involved in defence may make production of certain classes of 49 
compounds (e.g. isoprenoids and alkaloids) more advantageous in plants (Huchelmann et al., 2017). On the 50 
other hand, plants present bottlenecks in terms of the number of genes which can be conveniently 51 
manipulated and a long timeframe for optimising pathway engineering (Sweetlove et al., 2017). As an 52 
alternative to stable transformation, transient expression, for example in Nicotiana, provides a rapid route 53 

to optimising engineering and could act as a production platform (Reed and Osbourn, 2018). Also, it has 54 
become apparent that cambial (stem) cells are easily cultured and produce high yields of secondary 55 
compounds, such as taxol from yew (Taxus cuspidate) (Lee et al., 2010). This finding could lead to a 56 
resurgence in the use of plant cell cultures. Recent developments in metabolic engineering and the 57 
application of a synthetic biology approach have been summarised (Stewart et al., 2018). Key tools and 58 
requirements for metabolic engineering in plants are a set of promoters that drive expression in specific 59 
cell types, the ability to introduce multiple enzymes that are expressed at the appropriate level, targeting of 60 

the pathway to specific subcellular locations/organelles and ensuring that the supply of reductant and 61 
cofactors is not limiting. An example of the importance of location is illustrated by the production of 62 
dhurrin in transgenic tobacco (Nicotiana benthamiana). Dhurrin is a cyanogenic glycoside produced by 63 
sorghum and the enzymes are normally anchored to the ER. Targeting the enzymes to the thylakoid 64 
membrane in a complex enables ferredoxin to be used as an alternative reductant and improves 65 
performance of the pathway (Gnanasekaran et al., 2016; Henriques de Jesus et al., 2017). This example also 66 
serves as an introduction to the potential of synthetic enzyme complexes to assist metabolic engineering.  67 
 68 
The occurrence and significance of enzyme complexes: metabolons and substrate channelling 69 
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 70 
The possibility that enzymes are not randomly distributed but are associated into potentially dynamic 71 
complexes consisting of enzymes in a metabolic pathway (metabolons) has a long history. The term 72 
“metabolon” was introduced by Srere (Srere, 1985) to denote a “supramolecular complex of sequential 73 
metabolic enzymes and cellular structural elements” (Srere, 1985, 1987). He proposed that metabolons 74 
would enable channelling of pathway intermediates between enzymes (see the following paragraph for a 75 
definition of channelling). The original definition included ribosomes and the DNA replication complex. 76 
However, more recent usage excludes these highly organised structures and there is a tendency for enzyme 77 
complexes to be termed metabolons in the absence of evidence for channelling or other functional 78 
attributes. There are immense technical challenges in detecting potentially loose and dynamic enzyme 79 
interactions (for example, by pulldowns, yeast two-hybrid and in vivo using fluorescent proteins) and 80 
assessing their in vivo functionality. In plants, there are examples of enzyme associations detected by these 81 
various methods and these have been reviewed (Laursen et al., 2015; Sweetlove and Fernie, 2018). 82 
Examples include flavonols/isoflavonols (Achnine et al., 2004; Crosby et al., 2011; Lee et al., 2012b; 83 
Dastmalchi et al., 2016; Diharce et al., 2016), polyamines (Panicot et al., 2002), sporopollenin (Lallemand et 84 
al., 2013; Qin et al., 2016), alkanes (Bernard et al., 2012), indole acetic acid (Muller and Weiler, 2000; 85 
Kriechbaumer et al., 2016), carotenoids (Nisar et al., 2015) and dhurrin (Moller and Conn, 1980; Laursen et 86 
al., 2016). In central metabolism, the best studied examples are glycolysis and the TCA cycle (Giege et al., 87 
2003; Graham et al., 2007; Zhang et al., 2017). The glycolytic enzymes are associated with the 88 
mitochondrial membrane and show dynamic behaviour; complex formation increasing with high 89 

respiratory demand (Graham et al., 2007). Similarly, in mammalian cells, the purinosome, an assembly of 90 
enzymes involved in purine biosynthesis, assembles when there is high demand for product (Pedley and 91 
Benkovic, 2017; Baresova et al., 2018). In only a few cases has the functional significance of these enzyme 92 
complexes been established. In this review, “metabolon” will be used in cases where channelling is 93 
demonstrated and “enzyme complex” where two or more enzymes in a metabolic pathway are physically 94 
associated.   95 
 96 

This functional significance of metabolons has been debated but the principles are becoming clearer, not 97 
least because of additional insights derived from synthetic enzyme complexes. To be effective an enzyme 98 
complex must enable channelling (Castellana et al., 2014; Sweetlove and Fernie, 2018). Channelling is the 99 
movement of an intermediate between active sites of successive enzymes with much decreased escape 100 
into the bulk cytoplasmic solution (Fig. 1A). Channelling could involve direct tunnelling of intermediates 101 
between active sites and/or electrostatic guidance (Elcock et al., 1997). Channelling occurs in highly-102 
organised complexes such as tryptophan synthase (Dunn et al., 2008), malate dehydrogenase/citrate 103 
synthase (Bulutoglu et al., 2016) and bacterial proline oxidation. In the latter example, proline is converted 104 
to glutamate via proline dehydrogenase (PRODH), which produces 1-pyrroline-5-carboxylate (P5C). P5C 105 
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spontaneously hydrates to form L-glutamate-semialdehyde (GSA), which is then oxidised by P5C 106 
dehydrogenase (P5CDH) to form glutamate. In many bacteria, PRODH and P5CDH comprise a bifunctional 107 
enzyme and kinetic studies indicate direct channelling of P5C/GSA between the active sites. However, in 108 
other cases such as Thermus thermophilus, the enzymes PRODH and P5CDH are on distinct proteins. Kinetic 109 
studies, substrate trapping and surface plasmon resonance analysis of protein-protein interaction showed 110 
orientation-dependent association between the enzymes and substrate channelling (Sanyal et al., 2015). 111 
Therefore, weak but specific interactions between these enzymes have evolved to enable channelling. This 112 
is an example of the Rosetta Stone hypothesis (Marcotte et al., 1999). The hypothesis suggests that if two 113 
separate proteins have homologues in another genome that are located on a single polypeptide, then the 114 
separate proteins are likely to interact with each other. A large proportion of the identified fusion proteins 115 
are enzymes (Enright et al., 1999; Marcotte et al., 1999). From an engineering point of view, synthetic 116 
fusion enzymes may or may not be effective. This is most likely because the enzymes have not co-evolved 117 
complementary structures that enable effective channelling or fusion interferes with correct folding.  118 
 119 
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Considering less-organised metabolons, the essential and comprehensive analysis by Sweetlove and Fernie 120 
(2018) identifies the key point that the close association of sequential enzymes (in the absence of specific 121 
interactions) cannot be effective at channelling because substrate diffusion rate is much faster than 122 
enzyme catalysis, so the intermediate can escape (Fig. 1B). Only a few enzymes including triose phosphate 123 
isomerase, carbonic anhydrase, superoxide dismutase, catalase and acetylcholine esterase operate at 124 
diffusion limited rates (Kcat/Km ~109 M-1 s-1). Therefore, simply pairing non-coevolved enzymes will not in 125 
itself be effective and, even if it is, it would increase initial rate but not steady state rate (Sweetlove and 126 
Fernie, 2018). As noted above, direct channelling requires co-evolved enzymes. This is unlikely to be the 127 
case when heterologous enzymes are used for engineering. Channelling requires that intermediates are not 128 
in equilibrium with the bulk solvent and this could be achieved by a large cluster of enzymes, not 129 
necessarily arranged in a specific manner, so that probabilistic channelling occurs (Castellana et al., 2014; 130 
Sweetlove and Fernie, 2018). Because of localised high enzyme concentration, the probability that a 131 
substrate binds to an active site before it leaves the cluster is increased and an increase in flux is also 132 
predicted (Fig 1D). It is suggested that high enzyme concentration can influence the thermodynamic 133 
feasibility of a pathway and its direction (Angeles-Martinez and Theodoropoulos, 2015). Evidence for 134 
effective channelling in enzyme complexes in vivo is scarce although the wide range of central and 135 
secondary metabolism pathways with interacting enzymes suggests that it is likely. Demonstration of 136 
channelling is challenging, and the various approaches have been reviewed (Zhang et al., 2017; Sweetlove 137 
and Fernie, 2018). Isotopic dilution is a useful technique: if channelling is occurring an added unlabelled 138 
pathway intermediate will not equilibrate with the labelled  139 

[Fig 1 here] 140 
intermediate derived from a labelled precursor. Channelling has been demonstrated in vitro for the isolated 141 
ER-bound dhurrin biosynthesis metabolon (Moller and Conn, 1980) and in vivo when a biosynthetic 142 
complex is introduced into chloroplasts (Henriques de Jesus et al., 2017). In plants, isotope dilution 143 
experiments have shown channelling in the glycolytic pathway bound to the surface of mitochondria (Giege 144 
et al., 2003; Graham et al., 2007). A recent comprehensive study of the plant TCA cycle showed 158 binary 145 
protein-protein interactions which were confirmed by channelling of citrate and pyruvate using isotope 146 
dilution experiments (Zhang et al., 2017). This key paper provides strong evidence for physical association 147 
between enzymes and the occurrence of channelling. It is also of significance since TCA cycle enzymes were 148 
the first enzymes involved in the initial characterisation of metabolons (Srere, 1987; Velot et al., 1997; 149 

Bulutoglu et al., 2016). The other consequences of channelling include decreasing the loss of potentially 150 
reactive and toxic intermediates into the bulk solution and influencing flux at branchpoints (Zhang et al., 151 
2017; Sweetlove and Fernie, 2018). It is notable that a large proportion of metabolons are membrane-152 
associated. As well as the examples mentioned above, glycolytic enzymes associate with the cytoskeleton in 153 
yeast and Arabidopsis (Araiza-Olivera et al., 2013; Garagounis et al., 2017). It is possible that channelling is 154 
aided by the physical and chemical properties in the cytoplasm in proximity to surfaces such as membranes 155 
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or cytoskeletal elements (Theillet et al., 2014). It is proposed that bacterial cytoplasm is divided into a 156 
super-crowded “cytogel” extending 20–70 nm from the plasma membrane and more dilute cytosol (Spitzer 157 
and Poolman, 2013). While not likely to influence the diffusion rate of small molecules significantly, the 158 
formation of protein complexes may be favoured near surfaces, suggesting that anchoring synthetic 159 
complexes to a membrane could be an advantageous strategy. Protein-protein interactions are driven by 160 
several mechanisms not covered here (Williamson, 2012). A novel suggestion is that enzymes show 161 
chemotactic movement along their substrate gradient which could drive their co-localisation (Wu et al., 162 
2015; Illien et al., 2017; Agudo-Canalejo et al., 2018; Zhao et al., 2018). These experiments use fluorophore-163 
tagged enzymes to follow movement in microfluidic devices but the interpretation of the fluorescence 164 
correlation spectroscopy, on which the conclusions are based, has been criticised (Gunther et al., 2018).  165 
 166 
Construction and functioning of synthetic enzyme complexes 167 
 168 
The existence of enzymes complexes and the possibility that they are important in influencing metabolic 169 
pathways has provided the drive to explore the use of synthetic enzyme complexes in metabolic 170 
engineering. There are essentially two approaches: anchoring enzymes on scaffold molecules of various 171 
kinds or encapsulating enzymes in protein coated microcompartments based on bacterial 172 
microcompartments and viral capsids. Many reviews have discussed and advocated synthetic enzyme 173 
complexes and possibly outnumber actual examples of its application. The reader is referred to these 174 
reviews for more information (Conrado et al., 2008; Boyle and Silver, 2012; Lee et al., 2012a; Singleton et 175 

al., 2014; Chessher et al., 2015; Pröschel et al., 2015; Siu et al., 2015; Polka et al., 2016; Plegaria and 176 
Kerfeld, 2018; Qiu et al., 2018). A selection of examples of synthetic enzyme complexes is reviewed here in 177 
relation to the methods used and outcome. 178 
 179 
Table 1. Examples of metabolic pathway engineering using scaffolded enzyme complexes.  180 
 181 
Product Host organism Approach Outcome Assay conditions Reference
Ethyl acetate  Saccharomyces 

cerevisiae 
Dockerin tags + 
cohesion/oleosin scaffold 

Enzymes co-localise to 
lipid droplet membranes 
(FRET). 1.8-fold increase 
in product in cell lysate 
assay. Channelling not 
tested  

Initial activity in 
vitro? 

Lin et al., 2017

Ethanol (pyruvate 
decarboxylase and alcohol 
dehydrogenase) 

E. coli Filamentous scaffold 
proteins formed from 
bacterial 
microcompartment coat 
protein (PduA) fused to 
synthetic self-assembling 
coiled-coil proteins. 
Enzymes tagged with 
coiled-coil proteins. Also 
attached to inner 
membrane.  

Network of cytoplasmic 
filaments visualised by 
TEM. Protein 
colocalization confirmed 
by tagged fluorescent 
proteins and microscopy. 

Ethanol yield 
increased two-
fold by 20 h but 
initial rate of 
increase same 
with or without 
scaffold. 

Lee et al., 
2018b 

Dhurrin Nicotiana 
benthamiana  

Fusion of three enzymes 
to TatB and TatC 

Dhurrin increases five-
fold. Channelling 

Products 
measured 5 d 

Henriques de 
Jesus et al., 
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Product Host organism Approach Outcome Assay conditions Reference
(thylakoid membrane 
proteins). 
Transient expression, 
chloroplast targeted 

suggested by decreased 
side products. Thylakoid 
location, but not enzyme 
proximity, confirmed.  

post-
Agrobacterium 
infiltration 

2017

Butan-1-ol E. coli Enzymes attached to 
Clostridium exoglucanase 
cellulose binding domain-
induced inclusion bodies 
via leucine zipper tags 

Two-fold increase in 
butanol formation. 
Enzymes shown to be 
present in inclusion 
bodies. 

Stable transgenic 
lines. 

Han et al., 
2017 

Indole-3-acetic acid E. coli Enzymes (or split GFP) 
fused to DNA-binding 
TALE proteins assembled 
on a plasmid with various 
distances between DNA 
binding sites 

GFP fluorescence 
indicates assembly on 
DNA scaffold. IAA 
production increased up 
to eight-fold in scaffold 
and binding site spacing-
dependent manner 

Overnight IPTG 
induction 

Zhu et al., 
2016 

Methanol to fructose-6-
phosphate via 
formaldehyde 

E. coli A multi-subunit malate 
dehydrogenase fused to 
SH3 plus a two-enzyme 
fusion protein with a SH3 
ligand. 

Assembly into a complex 
confirmed by TEM and 
dynamic light scattering. 
97-fold increase in F6P in 
vitro and 2.4-fold increase 
in methanol consumption 
in vivo. 

Faster initial 
MeOH 
consumption rate 
in vivo up to 5 h 
post addition.  

Price et al., 
2016 

Indigo E. coli Bacteriophage Ø P9 and 
P12 proteins assembled 
into protein-lipid vesicles. 
Enzymes or fluorescent 
proteins fused to N-
terminus of P9.  

Co-localisation of 
fluorescent proteins and 
fractionation of cell 
extracts show assembly of 
lipid-protein droplets (~20 
nm diameter). Indigo 
production increased 2.5-
fold in the complex (P12-
dependent) 

Enzyme 
expression 
induced 
“overnight” 

Myhrvold et 
al., 2016 

2,3-butanediol from 
phosphoenolpyruvate (PK) 
and α-acetolactate 
synthase 

Saccharomyces 
cerevisiae 

Enzymes tagged with 
cohesin and dockerin to 
assemble via cohesin-
dockerin interaction 

Complex formation 
confirmed by 
immunoprecipitation. 1.3-
fold increase in 
butanediol. Evidence for 
channelling: pyruvate 
produced by PK is less 
available for ethanol 
formation. 

Faster product 
yield (g/L culture) 
up to 24 h after 
initiating a 
culture by 
dilution. 

Kim et al., 
2016 

Branchpoint between 
carbamoyl phosphate 
(carbamoyl phosphate 
synthetase) utilisation for 
arginine (ornithine 
carbamoyltransferase) and 
carbamoyl-aspartate 
synthesis (aspartate 
carbamoyltransferase) 

E. coli Carbamoyl phosphate 
synthetase and aspartate 
carbamoyltransferase 
fusion protein expressed 
at high level 

Increase in phase-bright 
cytoplasmic structures 
typical of protein-dense 
clusters. Evidence for 
diversion of carbamoyl 
phosphate away from the 
competing arginine 
synthesis pathway 
dependent on clustering.  

Castellana et 
al., 2014 

Alkanes (acyl-ACP-
reductase and fatty 
aldehyde decarbonylase) 

E. coli Fusion protein or 
enzymes tagged with 
zinc-finger DNA binding 
proteins assembled on a 
plasmid DNA scaffold  

Enzyme scaffold assembly 
not assessed. Fusion 
protein increases alkanes 
4.8-fold and DNA scaffold 
up to 8.8-fold (dependent 
on enzyme stoichiometry) 

24 h post-IPTG 
induction 

Rahmana et 
al., 2014 

Resveratrol Saccharomyces 
cerevisiae 

GBD, SH3 and PDZ 
combined in protein 
scaffolds and enzymes 
tagged with their ligands  

Resveratrol increased by 
up to five-fold. 

Measured 36 h 
(five-fold) and 96 
h (two-fold) after 
induction 

Wang and Yu, 
2012 

Resveratrol, 1,2-
propanediol and 
mevalonate 

E. coli Enzymes tagged with zinc-
finger DNA binding 
proteins assembled on a 
plasmid DNA scaffold. 
Random scaffold control. 

Assembly shown in vitro 
(split YFP) and in vivo. Up 
to five-fold increase in 
product depending on 
enzyme 
proximity/pathway  

24 h post 
induction 
(resveratrol and 
propane diol). 50 
h post induction 
(mevalonate) 

Conrado et al., 
2012 

Hydrogen production 
(ferredoxin and 
hydrogenase) 

E. coli RNA scaffolds with 
aptamers plus proteins 
tagged with aptamer 
binding proteins 

Assembly indicated by 
split GFP. Mutant 
aptamer site controls. Up 
to 48-fold increase in 
product (dependent on 
scaffold geometry. 

16 h after 
induction 

Delebecque et 
al., 2011 
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Product Host organism Approach Outcome Assay conditions Reference
Glucaric acid E. coli GBD, SH3 and PDZ 

combined in protein 
scaffolds and enzymes 
tagged with their ligands 

Up to five-fold increase 
(g/L). Enzyme 
stoichiometry effects 
observed. 

48 h post 
induction. 

Moon et al., 
2010 

Mevalonate E. coli GBD, SH3 and PDZ 
combined in protein 
scaffolds and enzymes 
tagged with their ligands 

Up to 77-fold increase 
(g/L). Enzyme 
stoichiometry effects 
observed.. 

Up to 3 d post-
induction 

Dueber et al., 
2009 

 182 
 183 
 184 
Protein and protein-lipid scaffolds (Table 1). The first report of the construction of a synthetic enzyme 185 
complex in metabolic engineering was assembly of three enzymes required for synthesising mevalonic acid 186 
(acetoacetyl-CoA thiolase, hydroxy-methylglutaryl-CoA synthase and hydroxymethylglutaryl-CoA reductase)  187 
on a synthetic protein scaffold (Dueber et al., 2009) (Table 1). The enzymes were linked to scaffolds using 188 
high affinity mammalian protein-protein interaction domains (SH3, GBD and PDZ) assembled in various 189 
combinations in a synthetic scaffold protein with cognate binding domains. Each enzyme was fused to SH3, 190 
GBD and PDZ ligands. Expression in E. coli resulted in assembly of the scaffolded proteins and an increase in 191 

mevalonate accumulation when scaffolded. Following this success, further scaffolding experiments have 192 
been reported (Table 1). These display an increasing diversity and ingenuity of methods used to scaffold 193 
enzymes. Other high affinity protein-protein interaction domains have been harnessed (e.g. dockerin-194 
cohesin, leucine zippers, synthetic coiled-coil proteins). Generally, two to three enzymes have been 195 
assembled on the scaffolds. In cases where enzymes are multimeric, attachment of one enzyme to several 196 
scaffolds could allow cross linking to form larger structures (Fig. 1C). Larger conglomerations have been 197 
achieved by scaffolding to very large proteins (Price et al., 2016) or to proteins liable to form inclusion 198 

bodies (Han et al., 2017). A very promising approach is the production of a network of cytoskeleton-like 199 
synthetic protein filaments to which enzymes are scaffolded (Lee et al., 2018a; Lee et al., 2018b). A number 200 
of naturally occurring metabolons are membrane bound as noted above. In this context, enzyme complexes 201 
anchored in lipid droplets have been produced by using scaffold proteins that associate with lipid-binding 202 
proteins, such as oleosin (which is the coat protein for lipid droplets in oilseeds) and certain virus coat 203 
proteins (Myhrvold et al., 2016; Lin et al., 2017).      204 
 205 
Nucleic acid scaffolds. DNA and RNA have been explored as enzyme scaffolds (Delebecque et al., 2011; 206 

Conrado et al., 2012; Rahmana et al., 2014; Zhu et al., 2016). Enzymes are tagged with DNA binding 207 
proteins (e.g. zinc finger proteins, transcription activator-like effectors [TALEs]) and DNA scaffolds are 208 
synthesised with specific binding site arrangements and spacing. These have been expressed in E. coli with 209 
the scaffolds on plasmids. Plasmid copy number determines the amount of scaffold. RNA scaffolds have 210 
also been tested on the basis that RNA can fold into potentially useful geometries to provide binding sites 211 
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(aptamers) for tagged proteins (Delebecque et al., 2011). These approaches are appropriate for bacteria 212 
but would be more problematic in plants due to the need for accessible DNA and potential RNA instability.  213 
 214 
Why is scaffolding successful? The examples of scaffolding in Table 1 all show an increase in product 215 
because of enzyme scaffolding, although the benefit is sometimes modest. E. coli and Saccharomyces 216 
cerevisiae are the predominant hosts for testing scaffolds to date with the only plant example being the 217 
targeting of dhurrin biosynthesis enzymes to the thylakoid membrane by transient expression in N. 218 
benthamiana (Henriques de Jesus et al., 2017). Why does scaffolding work? As discussed earlier, dispersed 219 
scaffolded enzyme units would be unlikely to exhibit channelling and, if they did, faster initial reaction rates 220 
but not increased steady state rates would be expected (Sweetlove and Fernie, 2018). Considering the 221 
examples shown in Table 1, it is generally not possible to determine if the system is at steady state because 222 
many of the measurements are made hours or days after inducing scaffolding. Therefore, it is tempting to 223 
propose that most of the manipulations inadvertently induce the formation of sufficiently large complexes 224 
that increase local enzyme concentration, enabling probabilistic channelling and increased rate at steady 225 
state (Fig. 1C). This is essentially how pyrenoids work (see below). The example of Castellana et al. (2014) 226 
(Table 1) is also important because it shows that high expression of a bifunctional enzyme to form a 227 
complex big enough to visualise enables channelling and diverts intermediates at a branchpoint. Controlling 228 
flux at a branchpoint is also seen in the example of butanediol formation (Kim et al., 2016). Channelling was 229 
demonstrated when dhurrin biosynthesis enzymes were anchored to the thylakoid membrane. The 230 
pathway intermediates are reactive and when the enzymes are not anchored, LC-MS analysis detects many 231 

compounds derived from them and anchoring greatly reduces their accumulation (Henriques de Jesus et 232 
al., 2017). This is an important point for engineering pathways that involve reactive intermediates, where 233 
the benefit could be protection against toxicity, which could be equal to the benefit of greater yield. It is 234 
evident that normal metabolism causes “metabolite damage”; the production of unintended compounds 235 
and it is suggested that metabolite repair enzymes could be part of the metabolic engineering tool kit (Sun 236 
et al., 2017). Channelling between critical enzymes would also contribute to damage-limitation. In the 237 
scaffold examples, it is likely that channelling is enabled by aggregation of the individual scaffolds into 238 

larger clusters and in some of the cases this has been demonstrated (Table 1). IAA and alkane biosynthesis 239 
enzymes have been detected in complexes in plants (Muller and Weiler, 2000; Bernard et al., 2012; 240 
Kriechbaumer et al., 2016) but without specific evidence for channelling, so it is noteworthy that scaffolding 241 
increases production of these compounds in micro-organisms (Table 1).         242 
 243 
Most of the examples shown in Table 1 demonstrate that assembly has occurred by using techniques such 244 
as co-immunoprecipitation (co-IP), fluorescent proteins (bimolecular fluorescence complementation [BiFC], 245 
Förster resonance energy transfer [FRET]) and transmission electron microscopy (for larger assemblies and 246 
encapsulated enzymes). Possibly, super-resolution microscopy and transmission electron cryomicroscopy 247 
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(cryoEM) will be useful in providing more detailed information on the size and structure of complexes. 248 
Another factor, not explicitly tackled in any of the studies, is the possibility that the scaffolding has a 249 
favourable influence on the total amount of enzyme (perhaps by decreased rate of proteolysis) or 250 
influences specific activity and kinetic properties. Again, the characterisation is rarely sufficiently detailed 251 
to assess these possibilities. Finally, it is reasonable to suppose that unsuccessful attempts at scaffolding 252 
have not been published, making it impossible to assess the probability of success. 253 
 254 
Synthetic microcompartments: nanoreactors 255 
 256 
Many bacteria produce microcompartments (BMCs), protein-coated nanostructures which encapsulate 257 
enzymes (Fig. 1E). Their structure and functions have been well-reviewed (Kerfeld et al., 2018). They can be 258 
divided into two categories by function. Metabolosomes contain catabolic enzymes for utilisation of carbon 259 
sources via pathways that produce reactive intermediates. Carboxysomes function as part of the CO2 260 
concentrating mechanism (CCM) of photosynthetic bacteria and contain ribulose bisphosphate 261 
carboxylase-oxygenase (Rubisco) and carbonic anhydrase. They occur in two distinct forms: α-262 
carboxysomes in proteobacteria and some cyanobacteria and β-carboxysomes in cyanobacteria. BMCs 263 
function by concentrating enzymes (Rubisco and carbonic anhydrase) in a restricted space which enables 264 
channelling as described above for other enzyme complexes. The shell presumably evolved because there is 265 
an additional benefit to a diffusional barrier. Our understanding of how BMCs assemble, encapsulate the 266 
correct enzymes and allow substrate and product exchange via pores has advanced to the point where 267 

synthetic BMCs that self-assemble have been expressed in bacterial cells. Assembly of enzymes for 268 
encapsulation is assisted by incorporation of encapsulation peptides (EPs) (Gonzalez-Esquer et al., 2016; 269 
Plegaria and Kerfeld, 2018). In plants, there has been a focus on the possibility of introducing carboxysomes 270 
into chloroplasts to mimic the cyanobacterial CCM. As in cyanobacteria, this would also need transporters 271 
to concentrate bicarbonate into the chloroplast stroma. Bicarbonate would enter the carboxysomes where 272 
CO2 production is catalysed by encapsulated carbonic anhydrase and the high local concentration of 273 
Rubisco drives rapid CO2 fixation and outcompetes the oxygenase reaction (Rae et al., 2013). The first steps 274 

to this goal have been achieved by successful assembly of β-carboxysome shells in chloroplasts by transient 275 
expression of five shell proteins in Nicotiana (Lin et al., 2014). YFP tagged with a small targeting peptide 276 
from the carboxysome organising protein CcmN was incorporated into the shells. In a recent breakthrough, 277 
a minimal functional carboxysome was expressed in tobacco chloroplasts (Long et al., 2018). This was 278 
achieved by introducing two α-carboxysome coat proteins and the large and small subunits from the 279 
cyanobacterium Cyanobium. Chloroplasts were transformed to enable knockout of the endogenous Rubisco 280 
large subunit. The resulting plants were able to grow, carrying out CO2 assimilation with the encapsulated 281 
Cyanobium Rubisco. The results show that this minimal carboxysome allows encapsulated Rubisco to 282 
function and therefore the pores in the protein coat enable exchange of substrates and products.     283 
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 284 
BMCs are related to viral capsid proteins. Capsid proteins can self-assemble in heterologous hosts and have 285 
the potential to be used to encapsulate enzymes. An interesting recent example is encapsulation of an 286 
indigo biosynthesis pathway from tryptophan in a virus capsid protein. The enzymes were anchored to the 287 
capsid proteins using SpyTag/SpyCatcher protein fusions (Giessen and Silver, 2016). This system is based on 288 
the CnaB2 domain from the fibronectin-binding protein FbaB from Streptococcus pyogenes and works by 289 
spontaneous reaction between a lysine residue on SpyCatcher and aspartate on SpyTag to form an 290 
isopeptide bond (Reddington and Howarth, 2015). Tagging the enzymes with SpyCatcher and 291 
bacteriophage MS2 capsid protein with SpyTag resulted in assembly of particles in E. coli which increased 292 
indigo production by 60 % compared to controls (Giessen and Silver, 2016). Pores of BMCs and capsids can 293 
be engineered to control substrate uptake specificity (Glasgow et al., 2015). Isolated capsids showed that 294 
the enzymes were markedly more stable in vitro because of the covalent linkages.  295 
 296 
Harnessing and modifying other naturally occurring structures: synthetic organelles. 297 
 298 
Pyrenoids and peroxisomes could be considered large enzyme complexes that enable probabilistic 299 
channelling. Peroxisomes contain oxidases that produce hydrogen peroxide along with catalase, which 300 
decomposes the peroxide to water. In leaves, photorespiration generates a large flux of glycolate, which is 301 
oxidised in peroxisomes to produce glyoxylate (a reactive aldehyde) and hydrogen peroxide. By co-302 
operation between peroxisomes and mitochondria, photorespiration produces glycerate for recycling into 303 

the Calvin-Benson cycle (Hagemann and Bauwe, 2016). Isolated spinach leaf peroxisomes produce glycerate 304 
at the same rate with and without an intact membrane and, in both cases the intermediates glyoxylate and 305 
hydroxypyruvate are not detected in the suspension medium (Heupel and Heldt, 1994). The results indicate 306 
that the leaf peroxisome is a protein complex that maintains its integrity without the membrane boundary 307 
and which exhibits channelling. More recently, interaction between glycolate oxidase and catalase was 308 
shown by BiFC and co-IP (Zhang et al., 2016). The relative simplicity of peroxisomes (lack of a genome and a 309 
single membrane permeable to small molecules) makes them a tempting basis for production of a synthetic 310 

organelle housing engineered metabolic pathways. As noted above, the evidence for channelling in leaf 311 
peroxisomes even in the absence of a membrane provides a useful starting point. Various pathways have 312 
been engineered into peroxisomes, for example, to produce polyhydroxyalkanoates in Arabidopsis 313 
(Mittendorf et al., 1999; Kessel-Vigelius et al., 2013). Yeast peroxisomes have been engineered to efficiently 314 
produce alkanes and fatty alcohols from acyl-CoAs, with evidence that the high enzyme concentrations 315 
enabled channelling (Zhou et al., 2016). These pathways use the acyl-CoA metabolising capacity of 316 
peroxisomes. Modification of the existing peroxisomal protein import system can increase its efficiency for 317 
importing enzymes (DeLoache et al., 2016). However, the recent creation of a novel protein import system 318 
which runs in parallel with the endogenous system provides a step towards synthetic peroxisomes (Cross et 319 
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al., 2017). Deeper understanding of proliferation mechanisms and the protein-protein interactions that 320 
hold the peroxisomal matrix together will also assist in reaching this goal.     321 
 322 
The pyrenoid could provide another starting point for producing a protein aggregate with high enzyme 323 
concentration that enables channelling. This structure consists of an aggregate of Rubisco in the 324 
chloroplasts of algae and some liverworts and is required for their CO2 concentrating mechanism (CCM). It 325 
traps CO2 produced by carbonic anhydrase allowing improved Rubisco activity (Meyer et al., 2017; Küken et 326 
al., 2018). The protein components of this structure have been identified and the protein EPYC1, present in 327 
high concentration, interacts with Rubisco, forming a scaffold (Mackinder et al., 2016; Mackinder et al., 328 
2017). Additionally, the resulting structure is liquid, rather than crystalline, and undergoes a phase 329 
transition and fission during cell division (Freeman Rosenzweig et al., 2017). These structures suggest the 330 
possibility of making synthetic organelle-like structures without walls or membranes for metabolic 331 
engineering and, of course, the introduction of pyrenoids into plant chloroplasts is a potential route for 332 
improving photosynthesis (Mackinder, 2018).   333 
 334 
Conclusion 335 
It is evident that the amount of final product in engineered metabolic pathways can be increased by various 336 
ingenious scaffolding approaches. The most likely explanation is that the resulting enzyme aggregates are 337 
(often inadvertently) large enough to enable probabilistic channelling due to increased local enzyme 338 
concentration. Pyrenoids work in the same manner, while encapsulation in BMC and capsid coat proteins 339 

increases enzyme concentration and provides an additional (potentially selective) diffusion barrier. Leaf 340 
peroxisomes are robust protein complexes that can hold together without their membrane and exhibit 341 
channelling. Peroxisomes and pyrenoids could form the basis for engineering multienzyme metabolic 342 
pathways which benefit from channelling. Ultimately, the widespread use of channelling in plant metabolic 343 
engineering will be determined by a balance between the extra time required to introduce and optimise 344 
enzyme assemblies versus the potentially modest benefit in product yield. Channelling could provide a 345 
critical advantage if it enables production of compounds with highly reactive and toxic pathway 346 

intermediates or improves diversion of central metabolism intermediates into the engineered pathway.        347 
 348 
 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
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Figure Legends 381 
Figure 1. Enzyme assemblies and their influence on substrate channelling. A. Two closely associated (“co-382 
evolved”) enzymes enabling direct channelling of the intermediate between active sites. The active sites 383 
could be located on separate proteins or on a single bifunctional protein. B. Tagged enzymes attached to a 384 
synthetic scaffold protein, nucleic acid or lipid scaffold (see Table 1). There is little channelling since the 385 
diffusion rate of the intermediate is much faster than enzyme activity. C. The same assembly as (B) but 386 
showing how multimeric scaffolded enzymes can form larger aggregates of high enzyme concentration. D. 387 
A large assembly of enzymes providing high local enzyme concentration enables probabilistic channelling. 388 
Here, the high enzyme concentration increases the chance that the intermediate binds to an enzyme active 389 
site before diffusing away. E. An encapsulated enzyme assembly is identical to (D), but a self-assembling 390 
protein coat provides an additional diffusion barrier with pores at the vertices to allow (selective) exchange 391 
of substrates and products. The enzymes could be tethered to the coat proteins. Examples are bacterial 392 
microcompartments (BMCs) specialised for utilisation of carbon sources in pathways involving reactive 393 
intermediates (metabolosomes) and for CO2 fixation with encapsulated carbonic anhydrase and Rubisco 394 

(carboxysomes). Eukaryotes lack BMCs but have pyrenoids (an aggregation of Rubisco surrounded by a 395 
loose starch sheath found in algae and hornworts) and peroxisomes. Peroxisomes house enzymes that 396 
produce toxic products and could be considered analogous to metabolosomes. They are bounded by a 397 
membrane that is relatively permeable to small molecules and exhibit channelling. 398 
 399 
 400 
 401 
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ADVANCES 

• Multiple physical interactions between plant 
TCA cycle enzymes have been detected, which 
enables channeling of intermediates at some 
steps. This finding confirms the functional 
significance of TCA cycle metabolons, which are 
conserved across many species. 

• A functional streamlined α-carboxysome 
encapsulating Rubisco has been introduced into 
tobacco chloroplasts, providing a significant 
step in engineering a synthetic carbon dioxide-
concentrating mechanism into C3 plants. 

• Pyrenoids, an aggregation of Rubisco in algal 
chloroplasts forming their carbon dioxide 
concentrating mechanism (CCM), are dynamic 
liquid-like structures and a novel protein EPYC1 
is involved in their structure. This discovery 
paves the way for designing synthetic CO2-
concentrating mechanisms and could form the 
basis for engineering pyrenoid-like synthetic 
enzyme complexes for other purposes. 

• Anchoring a complex of dhurrin (a cyanogenic 
glycoside) biosynthesis enzymes to the 
thylakoid membrane in tobacco enables use of 
ferredoxin as an alternative reductant and 
improves pathway yield by channeling and 
decreasing the escape of reactive pathway 
intermediates. 
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OUTSTANDING QUESTIONS 

• How many of the enzyme complexes detected 
in plants by protein-protein interaction exhibit 
channeling with potential advantages for flux, 
control of branch points or sequestration of 
reactive intermediates? 

• Can increased knowledge of pyrenoid structure 
be harnessed to enable their use in metabolic 
engineering beyond photosynthesis? 

• Can peroxisomes be re-purposed to allow 
channeling in introduced pathways? 

• Innovative techniques for constructing synthetic 
enzyme complexes are so far almost entirely 
restricted to micro-organisms. Given the 
relatively small gain in product formation, will 
there be situations where investing in the 
optimization of channeling in plants would be 
beneficial? 

• Could the high throughput possible in micro-
organisms enable forced evolution of multiple 
enzymes to optimize their interactions before 
transfer to plants? 
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